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The construction of  "pion factories" 1, 2, 3, 4 gives rise to the 
question of  how far  are we from  observing real ππ and μμ collisions. 
Czonka and Sessler6 have previously discussed the possible use of  CERN 
intersecting storage ring for π-P and π - π scattering. The purpose of 
this note is to sketch the characteristics of  a particular pion storage 
device and to estimate bounds for  certain machine parameters needed to 
produce reasonable ππ and μμ collision rates. We call this device the 
"precetron" because the colliding orbits are constantly precessing. 

A device for  pion-pion collisions in the mass region of ρ meson 
has been proposed and its parameters calculated. It operates on the 
following  idea: over 1013 π+ and π - in the momentum range Ρ π =310-555 
MeV/c are produced by a short burst of 6×101 5 protons of  800 MeV 
incident onto a metal target placed in the center of  a 400 Kgauss (pulsed) 
magnetic field,  extending over a radius of  R 5 cm and shaped to con-
tain ~ 100 turns of pions. Pion orbits are circles tangential to the target; 

π+ and π - orbits precess in opposite directions, the of  their centers 
being circles of  radius r ½ R whose origin is at the target. The π+-π-

collisions of  interest take place in the peripheral region of  this "magnetic 
pot", where the crossing angles of  the intersecting precessing orbits are 
smallest. This orbit-precession device has a large momentum acceptance 
of pions, p / p 5 0 % and large angular acceptance, 0° to 180° in hori-
zontal and ±10° in vertical plane, in contrast to a conventional storage 
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ring which would require well-defined momentum and small angular 
divergence in order to have the pions captured. 

Single particle orbits have been calculated to first order; they show 
the precessing character of the orbits and the stability of the free oscil­
lation densities in the colliding region-an outer shell of thickness ηR-have 
been calculated as a function of η; number of protons/sec, N; mag­
netic field, B; proton pulse length, g, in units of pion laboratory life­
time (which is ~10-7 sec); number of proton pulses/sec, b; and other 
parameters, eq. (28). The π-π collision rate is proportional to N2B3 and 
inversely proportional to bg2 i. e. the poorer the duty cycle of the pro­
ton accelerator, the higher the rate. If a proton linac with g=b=1 can 
be made with the same average power as the Los Alamos Meson Factory 
(but with 600,000 times poorer duty cycle), there will be about 20,000 
π-π collisions/hour. However, this b=g=1 regime can be also accom­
plished without changing the machine parameters, by storing the proton 
beam in a storage ring for ~1 sec and dumping it onto the precetron 
target in one turn. 

All backward scattered pions from π+π- π+π-, which represent ~50% 
of the collisons, will leave the magnetic pot because of the change 
of the sign of the force; their momenta will be measured outside 
and their directions after scattering reconstructed, to obtain the π-π 
effective mass of the collision (no knowledge of the crossing angles 
and energies before collision is needed to obtain the effective mass). 

After several pion life-times, the muons from the decaying pions 
will be orbiting in similar precessing orbits and similar collision rates 
will be obtained. 

I. DESCRIPTION OF THE "PRECETRON" 

A. The setup 
We consider the following setup: a solid metal target is placed in 

the center of a high magnetic field which is shaped to contain at least 
100 turns of pions of momentum in the range Pπ=310-550 MeV/c 
(Tπ=200-430 MeV). We assume a magnetic field of 400 kG (probably 
a pulsed one) which gives a radius 3.3 cm for the pion orbit of an 
average energy Tπ=300 MeV (Pπ=415 MeV/c). 

A proton beam is incident onto the target which is~2 cm thick in 
the beam direction and narrow (~0.2 cm). For the purpose of a simp­
lified discussion we show in Fig. 1 the first turn for π+ and π- of one 
energy emitted at 30° to proton beam; this leads to four orbits. As we 
show later, these orbits precess about the z axis as indicated by the 
dashed arrow. There will be a similar family of orbits for each angle 
of pion emission. 

In addition to pions, particles such as protons, deuterons and other 
light nuclei will also be produced and captured in the magnetic field. 
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Later on, after one pion lifetime, leptons will be present in the mixture 
too. We shall refer to this early mixture of positive and negative orbits 
of various hadrons with different crossing angles and momenta as the 
hadron jumble, in contrast to the lepton jumble that will be orbiting 
later. 

We believe that a pulsed, iron-free field capable of containing the 
jumble can be produced by an appropriate coil configuration, and that a 
gap could be made about the midplane to allow exit of reaction products. 
Such a "magnetic pot" could be accomplished by a pair of coils with 
the current in both in the same direction (See Fig. 2), or by a more 
refined combination containing two pairs of coils of different radii and 
current5. This point is covered in Appendix I. 

We have investigated the single particle orbits in a weak focusing 
field approximately given by BZ=Bo (1-k r

2 

) 
BZ=Bo (1-k R2 ) where k is small, of 

order 0.1, and R is a radius which contains the "pot"; details are pre­
sented in Appendix I. These calculations indicate that, to first order, 
the radial and vertical oscillations are stable and that the orbits precess 
about the z axis, with a precession frequency k'/4 times the orbital 
frequency where k'=k( 2a 

)2 
k'=k( R )2 

and a is the radius of orbit. Precessing 
single particle orbits for π+ and π- are shown in Fig. 3. For a uniform 
proton spill comparable or longer than the precession period we will 
have a uniform azimuthal distribution of orbit centers. In a shell near 
the outer envelope of the particle trajectory in Fig. 3, the particle is 
effectively providing a counter-clockwise current of say π+'s. The π- of 
the same momentum will move in the opposite direction and, in the 
outer shell, will be on a direct collision course with π+ so that the 
crossing angle is approximately zero. The shell thickness can be a 
reasonable fraction of the orbit radius without containing large crossing 
angles. The particle density calculations are given in Appendix II. 

The advantages of the above device over that of a more con­
ventional storage ring lies with its large acceptance. Both the solid angle 
and momentum bit can be large. Production angles from zero to 180° 
are all captured. The vertical angle of emission with respect to the 
midplane is limited by the vertical acceptance and vertical oscillations, 
but, as shown in Appendix I, vertical angles of ± 0.15 radians are 
reasonable and lead to a solid angle acceptance of the order of 1 or 2 
sr. In addition, the high field of this device confines the particles to a 
small volume and thereby increases the particle density. 
Identification of π+π- Collision Products From The Hadron Jumble 

Les us consider the reaction 
π++π- π++π- (1) 

In P-wave scattering (rho meson), the angular distribution is strongly 
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peaked forward and backward equally. The π's scattered forward are 
unlikely to leave the pot since they will tend to be recaptured in quasi-stable 
orbits. However, the backward scattered pions will be immediately 
kicked out of the field by the change of sign of the force. Particles 
scattered more or less in the direction of the major component of the 
field will also exit. Thus, a reasonable fraction, of order 1/2 of the 
collisions, will be detectable. 

The concurrent reaction 
π+ + π- π° + π° (2) 

is obviously easier to detect regardless of the production angle. Howe­
ver, it can occur only from l=0. This excludes the P-wave (ρ meson) 
whose cross section is believed to be dominant by an order of magnitude 
over the non-resonant (l=even) cross section. 

The products of the π-P scattering will come out of the pot in a 
similar way; the discrimination of pions from protons can be done in a 
standard way. 

The calibration of the system could be done by using the π-P 
resonance and p-p scattering to map the proton current. 

The effective mass of the pion-pion or pion-proton pair is measured 
by the magnetic analysis of their momenta outside the pot, with conven­
tional wide gap magnets surrounding it. The invariant quanity M2π+π-=(E++E-)2 - ()2 
is independent of the energies and crossing 
angles of π+ and π- before the collision. The directions and momenta 
have to be known only after the collision. The knowledge of the mag­
netic field topography is thus the only requirement necessary to recon­
struct the collision vertex and to obtain the reaction energy, M+-. 
Inelastic collisions are assumed to be negligible. Should there be a contri­
bution from the G-parity violating process (electromagnetic) π+π- π+π°, 
it could be detected by γγ conversion outside the pot. If two additional 
pions are produced (π+π- π+π-π°π° or 2π+ 2π-), of which only two 
charged pions are measured, the kinematic constraints can eliminate 
many possible misinterpretations of the event as an elastic one since. 
the sum of the energies of two pions in this case should lie in the 
lîmits 400<T++T-<800 MeV; if two pions are missing, it will be 
observed in the limits 100<T++T-<500 MeV. 

II REACTION RATE 

To estimate the π-π reaction rate in the hadron jumble and to study 
the important factors, we consider a simplified model with the following 
features, some of which will be modified later for a more precise calcu­
lation: 

a) A point target; 
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b) A uniform particle distribution in the vertical (z) direction; 
c) A uniform momentum distribution over the region of interest; 
d) A π-production angular distribution which is isotropic to 
45° then zero to 180°, also π-/π+=x=1/4.5; 

e) We will only consider interactions from the region with orbit 
diameters from ηR to the maximum diameter, R. We will assume that 
the crossing angles are approximately zero in this region. 

f) We will assume that the particle density is uniform in the region 
of interest. Later we will calculate using the actual particle density. 

A. Basic formulae 
In Fig. 4 we show schematically the region of interest which is 

the outer shell from ηR to R. Also shown are typical π orbits which 
reach the shell from which we accept interactions. In this shell the π's 
are moving mainly along the circumferences of circles whose centers are 
at the target. In the shell the π's effectively become two currents of 
opposite charge moving in opposite directions around the target. 

If the π's spent all of their time in circular beams moving in oppo­
site directions with 100% overlap and zero crossing angles, the instan­
taneous interaction rate dI/dt would be 

dI =2σβ12c n+n- (3) dt =2σβ12c V (3) 

where: σ=π-π cross section 
n+, n-=the total number of π+ and π- particles, respectively 
which are functions of time. 
β12 =the π+π- relative velocity, 

c =speed of light, 
V =volume of the interaction region, 

V=πR2(1-η2) Z2πA, (4) 
where is mean radius in the shell, A is the cross-sectional area of 
shell, and Z is the vertical extension of the beam. 

We can apply (3) to our problem by replacing n+ and n- by and n- where is the average fraction of the time a π is in the outer 
shell. This is no more than saying that number of π's in the shell is 
the total number of π's times the probability that the π is in the shell. 

For the orbit in Figure 4, f is the ratio of the arc length S to the 
total perimeter of the orbit, i. e., 

f(a)= S(a) (5) f(a)= 2πa (5) 
and 

= 
R/2 

f(a)g(a)da, (6) = ∫ f(a)g(a)da, (6) = 
ηR/2 

f(a)g(a)da, (6) 
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where g(a) is the distribution of orbit radii (uniform) corresponding to 
the assumed momentum distribution. 

From a simple consideration of this geometry in Fig. 4 we see that 

S(a)=4a cos-1 ηR (7) S(a)=4a cos-1 
2a (7) 

or 
f(a)= 2 

C O S - 1 ηR (7) f(a)= 
π 
C O S - 1 

2a (7) 

It should also be noted that πf(a) is the maximum crossing angle for 
two orbits of radius a, intersecting inside the shell. For the intersection 
shown at r, the crossing angle α is 

α=2 cos-1 r . (8) α=2 cos-1 
2a 
. (8) 

In general, two orbits of radii a1 and a2, intersecting at r have a 
crossing angle of 

α=cos-1 r +cos-1 r (9) α=cos-1 
2a1 

+cos-1 2a2 
(9) 

Using (7) for f we obtain for f 
= 2 R cos-1 M R dx = 2 

∫ 
cos-1 M R dx = 

π ∫ 
cos-1 

X R(1-M) 
= 

π 
Rη 

cos-1 
X R(1-M) 

= 2 η [ 1 COS-1 η - log( 1+√1-η2 )] (10) = 
π 1 - η [ η COS-1 η - log( η )] (10) 

We are now ready to apply (3) to our problem with the result (using 
N-=kN+) 

dI = 2σβ12cn2+χ  (11) dt 
= 

πR2 Z(1-η2) (11) 

Let us replace R by an expression involving , the average orbit dia­
meter. For the simple model under consideration 

=R (1+η) (12) =R 2 (12) 

Finally, 
dI = 2σβ12cn2+x K (13) 
dt 

= 

π2 z K (13) 

where 
K=(η)·( 1+η 

)2 
1 (14) K=(η)·( 

2 )2 (1-η2) 
(14) 

is a function of η alone. For η=1/2 we have (1/2)=0.49 
and K=0.18. 

In Appendix II we derive a similar formula for this same model 
except that we calculate the actual particle densities D+, D- as functions 
of position. The rate is obtained from 
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dI = ∫2σβ12cD+D-d(vol) (15) dt 

= 
∫2σβ12cD+D-d(vol) (15) dt 

= 

shell 

The result is formula (13) with a different expression for K (η) given 
by eqs. (74). Here we obtain K=0.25 for η=1/2. 

In Appendix II we also calculate the case where the momentum 
distribution is peaked about the average value and for a shape closely 
approximating π production data. Once again formula (13) is obtained 
but with a different expression for K(η). In this case K=0.47 for η=1/2. 

B. Time-Dependence for Decaying Particles 
Let us calculate n(t) during and after a uniform proton burst. Fi­

gure 5 graphically depicts the situation. We assume that it will be too 
difficult to run with detectors turned on during the proton spill so that 
detectors will be turned on at the end of it. 

When the protons are hitting the target (detectors off), the pion 
intensity builds up according to 

n(t)=στ(1-c-t/τ) (16) 
where τ is the laboratory life-time of the pion, 

τ=γτo, (17) 
and α = instantaneous π production rate which is proportional to the 
proton current, dN/dt; 

α=f dN . (18) α=f dt . (18) 

Here, N is the number of protons and f is the fraction of protons "trans­
formed" into pions which are captured in the magnetic pot. The fraction 
f is given by 

∫ 
δ2σ dΩdP T No (19) 

∫ δΩδP dΩdP A No (19) 
where T=target length, A=184 for tungsten and τ is the π life time in 
the laboratory, τ=τπLAB=γτo. 

Protons stop hitting the target after a time t and the detectors 
are switched on. The we have 

n(t)= ατ(1-e- t/τ)e-(t- t)τ (20) 
where t is the length of the proton burst and t anytime after the be­
ginning of the burst. We shall now compute the number of interactions, 
I, produced from this burst while detectors are on: 

I= 
∞ 
dI (t)dt= 

2K σβ12C ∞ 
n-(t)n+(t)dt, (21) I= ∫ 

dI (t)dt= 
2K σβ12C 

∫ 
n-(t)n+(t)dt, (21) I= ∫ dt (t)dt= π ZR2 ∫ 
n-(t)n+(t)dt, (21) I= 

t 
dt (t)dt= π ZR2 

t 

n-(t)n+(t)dt, (21) 
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from which we obtain 

I=[τ3(1-e- t/τ)2α2+]x Kσβ12 
, I=[τ3(1-e- t/τ)2α2+]x 

π Z2 
, (22) 

where α-=xα+=xα, and x=π-/π+ ratio which is~1/4,5 for 15° emission 
from 800 MeV protons on Beryllium. 

Eq. (22) gives the number of interections per burst. The interaction 
rate per sec, is then I times the number of bursts per second, b, so 
that 

=σxα2τ3β12c(1-e- t/τ)2 
K b =σxα2τ3β12c(1-e- t/τ)2 π z2 

b (23) 

Equation (22) was derived on the assumption that all pion losses 
are due to the natural pion decay only. As will be discussed below, 
the effective pion lifetime, τπeff will be shorter. Equation (22) is still 
valid by replacing τπLAB τπeff, where 

τπeff=ΦτπLAB=Φπτo, and Φ<1 (24) 
General features of the jumble are more easily seen by writing α, 

instead in equation (18), as 
α= fN α= 

b t (25) 

where N=average number of protons on target/sec. Further we can 
express the burst length t as a fraction of π lab life time: 

t=gτπeff=gΦγτo, (26) 
where g is the ratio between the burst length and the effective pion 
lifetime. 

Finally from eq. (65) we can replace z by 

z S ; z 
√k/2 ; 

(27) 

where S is the maximum accepted vertical slope (taken to be of order 
~0.15). Making substitutions (25-27) we obtain: 

σKx β12CΦπτof22 ( 1-e-g )2 
1 . 

πS3√2 ( g )2 b 

. 
(28a) 

One can replace the pion orbit diameter. , by 

=2= 2 = 2ππmπ =2= 
0.3B 

= 
0.3B (29) 

where is in MeV/c, B in kG, r in cm and obtain: 

= 2.4×10
-3σKx√β12cB3Φτof22 

( 
1-e-g )2 1 = πSπ2π3Mπ3 ( g 

)2 

b 
(28b) 
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In equations (28a, b) the quantities are: 
σ=ππ total cross section (~10-25cm2), 
K=eqs. (14), (74), (80), 
X=π-/π+ ratio, 
k=eq. (39), 
β12=π-π relative velocity, 
c=velocity of light. 
B=magnetic field (kilogauss), 
Φ=eq. (24), 
τo=natural π± lifetime, 
=average number of protons/sec on target, 
g=eq. (26), 
b=number of bursts/sec, 
S=maximum accepted vertical slope, 
M π=π ± mass, 
π=average π velocity, 
π=average value of Eπ/mπ, 
From equation (28) we see, within the limit of this model, that 

for a fixed number of protons per/sec, , the luminosity is best for the 
poorest duty cycle. L is maximum when the term 

1 ( 1-e-g 
)2 b 

( 
g )2 

(30) 
has a maximum. 
The ratio in parenthesis has a broad maximum for a narrow burst, i. e., 
as g o Eq. (30) 1/b. The number of bursts, b, for a given average 
proton intensity should be as small as possible, hence the duty cycle, 
which can be written as 

Duty Cycle=bgγΦτo, (31) 
hould be as small as possible. In other words, a high instantaneous 
intensity of π's produced per second, is desired. It is obviously more 
advantageous to produce them in one burst of the order of, or shorter 
than the effective pion lifetime. 

The luminosity is directly proportional to the third power of the 
containing magnetic field, B, for a given momentum and fixed accep­
tance. The highest π-π collision rates will be near the target because D+ 
is largest there, but we have excluded this region because of two com­
plications: 

a) Large crossing angles which can be anywhere from 0 to 180°; 
b) Interactions of pions with target. 
Hence results computed from eq. (28) will be a lower limit on 

the rate. 

C. EFFECTIVE PION LIFETIME 
Pions will be lost from the hadron jumble not only by their natural 

decay but by their multiple traversals through the target. To estimate the 

202 



amount of material seen we use the following simplified model. All 
orbits are tangent to the z axis, which goes through the center of the 
target. Due to the vertical free oscillations, the orbits uniformly populate, 
(approximately) the vertical aperture. Thus, the average length, , of 
target traversed per orbit is 

= w proj, = z proj, (32) 

where z is the vertical aperture (4 cm), w the width of the target 
(0.2 cm) and proj the average projected length traversed if all orbits 
are projected onto the z=0 plane (see Fig. 6). For a target of thickness 
2 cm in the beam direction and 0.2 cm wide square cross section we 
obtain proj=0.5 cm based on a calculation using the above model. Thus 
=0.025 cm. 

The traversal losses arise from three factors: 
a) Energy degradation. For the tungsten target described above 

300 MeV π's will lose 100 MeV in 180 turns. This should be compared 
to the 125 turns they make in one laboratory lifetime. 

b) Multiple scattering. This will cause small losses. The total mul­
tiple scattering in 125 turns is 6°, whille our vertical angular acceptance 
is around ± 10°. 

c) Nuclear interaction. The interaction length in tungsten is 7.8 cm 
while 180 turns corresponds to 4.4 cm of traversal. From this we can 
see that collision losses will be as important as decay losses in limiting 
luminosity. Collision losses can be represented by a collision lifetime, 
τc, so that the effective τπ is 

τeff= 
τcτπLAB 

τeff= τc+τπLAB (33) 

Traversal of 7.8 cm corresponds to 310 turns or about 2.5 natural life­
times. Thus, τc2.5τπLAB and 

τπeff=0.7τπLAB (34) 
or Φ=0.7 

A NUMERICAL EXAMPLE 
We shall now compute the pion-pion collision rates using Eq. (28). 

The number of proton bursts/sec, b, and the burst length in units of 
pion lab life-time, g, will be kept general. 

Other beam parameters, including the average beam power, will be 
taken from the LAMPF proposal1. 

According to LAMPF studies (p. 29 of ref. 1), a 1 mA average 
proton beam (6×1015 p/s) of 800 MeV incident upon 18 grams/cm2 Be 
target will yield, at 15°, 1.1×1010 π+/sec (with Tπ=300 MeV, in a channel 
with the momentum and solid angle acceptances p=6.7%, Q=3×10-3 

at 43 ft from the production point (the decay length is 74.6 ft). From this we 
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compute the pion yield per 1 mA of protons, Y, per gram/cm2 Be per 
st/MeV/c to be 

Y=1.28×1010π+/sec/gr/cm2/Be/sr/MeV/c (35) 
Scaling this by (ABe/Aw) to obtain a tungsten yield gives 

Y=4.7×109π+/sec/gr/cm2w/sr/MeV/c/lmA/protons 
Assuming that the π-production cross section is constant out to 45° and 
then drops abruptly to zero, we obtain an effective solid angle of 0.45 
sr. We take a momentum bit of P/P=.5 full width. Other numbers are 
38 gr of tungsten, Φ=0.7, τ0=2.8×10-8, x=1/4.5. γ=3, β121.0, =6.6 cm 
and z=4 cm, or S=0.15, and βπ1.0. With these numbers, 
the luminosity from Eq. (28) becomes 

L=4.3×1029 1 
( 

1-e-g 

)2 
per cm2 per hour, L=4.3×1029 

b ( g )2 
per cm2 per hour, (36) 

or, using the cross section for π+π- at the ρ-resonance peak (Tπ+=Tπ-=240 MeV), 
σ=10-25 cm2, the rate becomes 

=4.3×104 
1 

( 

1-e-g 
)2 interactions/hour. =4.3×104 

b ( g 
)2 interactions/hour. (37) 

For the presently planned structure of the beam at LAMPF (120 
pulses, 500 µsec long, where b=120, g=5×103) we obtain one π-π 
collision every .7×105 hour 10 year. However, with b=g=1, which 
means that all the protons hit the target in one burst of duration 0.1 
µsec, we get 17000 π-π collisions per hour. With b=1, g=0.1 (10 ns 
burst) the rate becomes 39,000/hour, as shown in Table I. Both these 
last cases require between 6×105 and 6×106 poorer duty cycle with 
the same average power. 

To find an optimum solution for the maximum reaction rate at a 
reasonable instantaneous power, let us discuss equation (36). The duty 
cycle is proportional to the product bg, which we will maximize 
in order to ease the instantaneous power requirement. For large g, 
g>10, the function 

G2=( 
1-e-g 

)2 G2=( g )2 
(38) 

is a very small number, G2 <10-2. For g<10, G2 rises fast to unity as 
g 0. The smallest g to choose is right after the fastest rate of change 
of G2, i. e., after δG2/δg=max. This happens for 0<g<0.1; there, G2 

has values in the region 0.4-0.95, respectively. We do not gain by 
going below g=0.1. Referring to Table I, we see that with 10,000 bursts 
of t=0.1 µsec (b=104, g=1 or 60 times poorer duty cycle) one obtains 
2 π-π interactions per hour. 

In conclusion, one can have anywhere between 2 and 39,000 π-π 
interactions per hour if one can make a 1 mA proton machine with the 
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same average beam power but whose duty cycle is between 60 and 
600,000 times poorer (instantaneous power 60 to 600,000 times higher) 
than the planned duty cycle of LAMPF (6%). 

E. Proton Storage Ring 
An alternate solution to decreasing the linac's duty cycle has been 

suggested by D. Nagel (Priv. Comm.): the protons from a number of 
linac pulses are collected into a storage ring and then dumped in one 
short pulse. With this procedure one could obtain b=g 1 if protons 
can be stored in a ring of radius r=300 cm and switched out in one 
turn (~10-7 sec). This would yield about 5 π-π collisions per storage 
ring pulse. Proton injection into storage ring may be facilitated by using 
the 100 microamp H--beam at LAMPF. The 800 MeV H--ions can 
be converted to 800 MeV protons with very thin stripping foils. 

F. Limitations 
We enumerate and comment on some important approximations of 

our calculations as well as some practical limitations of our "precetron" 
model: 

1. Collective phenomenon such as space charge effects, beam-beam 
interactions, etc. have been neglected in our treatment of orbits. Only 
single particle orbits were computed and then only to first order. A 
study obtaining more exact single particle orbits and of collective effects 
are the next step. 

2. A 400 Kg field in the volume required is yet to be accom­
plished. However it has been achieved in a 5/8" bore7. 

3. The 0.2 cm diameter, 2 cm long tungstan target in our numeri­
cal example must dissipate around 50 K W of power. At LAMPF a 1 cm 
diameter 10 cm long graphite target has been stably operated while 
dissipating 62 KW. At incipient burn-out this target was receiving 94 KW8. 

4. Radiation damage to the coils of this device may be a problem 
but it is a common problem to the thick target facilities of meson fac­
tories. 

III. MUON-MUON COLLISIONS 

A. THE LEPTON JUMBLE 
The solid metal target in the middle of the "magnetic pot", will 

gradually (within a few effective π lifetimes) remove all undecayed 
hadrons by stopping them or by scattering them out. Only the muons 
from the pion decay and few electrons from the mu-decay will stay in 
orbit. The orbits will eventually pull away the target, as shown in Fig. 
7B. The mechanism by which the lepton orbits get detached from the 
target is the following: muons from π decay are generally emitted at 
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an angle different from 0° with the pion direction (Fig. 7A). While the 
parent pion was heading toward the target at which it was created 
(Liouville's theorem), the muon direction is generally different and thus 
will avoid the target. The exception is when the decay takes place too 
close the target to escape it. A large fraction of the muons will miss 
the target and continue orbiting in a new phase space. The muons that 
hit the target will continue traversing it until all their energy is lost. 

B. MUON-MUON LUMINOSITY AND REACTION RATE 
Because of their 100-times longer life-time than that of π's, Eq. 

(28) is approximately valid for the muon rate too (daughter much longer 
living than parent). The only difference is that 100 times lower instan-taneous 
rates (higher duty cycle) are needed, because now g=1 means 
10 µsec pulse, rather than 0.1 µsec which was the case for π's,and the 
luminosity goes up by 100. 

In terms of the muon lifetime, the planned time structure of the 
LAMPF beam is b=120, g=50, for which Eq. (28) gives a luminosity 
of 1024/cm2/hr. But the µ-µ cross section is ~103-104 times smaller than 
that for the strongly interacting pions, so that it gives one µ-µ scattering 
every 105 hours. On the other hand, with g=1(10 µsec pulses) and 
b100, one gets 20 µ-µ collisions per hour, with the duty cycle 60 
times poorer than the one planned for LAMPF. 

The advantages of the proton storage ring, discussed above, apply 
equally well to the muon case. 

Table 1 
Pion-Pion Luminosity and Interaction Rate 

Pion-Pion luminosity and Interaction rates are shown as function of proton 
burst length, g(in units of effective π life time) and b, the number of burst/sec. These 
are calculated using eq. (36) and (37). Only the outer shell contribution (η=1/2) 
are included hence their results are lower limits. 

Collision 
rate Burst length Luminosity 

Collision 
rate 

g σ L 
in units of 

eff. π life-time 
b 

burst/sec 
L 
cm-2/hr π+π π+π 

interactions hour 

in units of 
eff. π life-time 

b 
burst/sec 

L 
cm-2/hr π+π π+π 

interactions hour 
5×103 120 1.4 × 1020 1.4×10-5 

10 1 4.3 × 1027 430 
50 10 1.7 × 1025 1.7 
1 1 1.7 × 1029 17,000 
1 10 1.7 × 1028 1 700 
1 100 1.7 × 1027 170 
1 1,000 1.7 × 1026 17 
0.1 1 3.9 × 109 39,000 
0.1 10 3.9 × 109 3,900 
0.1 100 3.9 × 1027 390 
0.1 1,000 3.9 × 1026 39 
0.01 1 4.3 × 1029 43,000 
0.01 100 4.3 × 107 430 
0.1 10,000 3.9 × 105 3.9 
1 10,000 1.7 × 1025 1.7 
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APPENDIX I 
ORBIT CALCULATIONS 

An exact solution of Maxwells equations (in cylindrical coordinates) 
which posseses focussing properties is 

Bθ=0 (a) 

Br= 
-2k Borz Br= R2 Borz (b) (39) 

Bz=Bo[ 1-kr
2 
+ 2kz

2 ] Bz=Bo[ 1-R2 + R2 
] 

(c) 
where k and R are constants. The constant R is introduced to make k 
dimensionless and will be taken as a radius characteristic of the dimen­
sion of the magnetic "pot." In the main text we use , the average pion 
orbit diameter as this characteristic radius. 

Such a field, for small k. can be approximately achieved around 
the midpoint of two identical coils of radius a separated by a distance 
2d, d≠a. The first few terms in an expansion of Bz in terms of z/a and 
r/a are9 

Bz= µI sin α | P11(cosα)+P13 (cos α) ( 
2z2-r2 

) 
+P15 (cos α) Bz= a sin α | P

1
1(cosα)+P13 (cos α) ( 2a2 ) 

+P15 (cos α) 
(8z4-24z2r2+3r4) | + ..., 8a4 | + ..., (40) 

where P1n are the associated Legendre functions and tan α=a/d. The 
corresponding expansion for Br is 

Br = -( 
µI sin α )[ P13 (COS α)+ (4z

2-3r2) P15(cos α) ]( rz ) Br = -( a 
sin α )[ P13 (COS α)+ 2a2 P15(cos α) ]( a2 ) (41) 

By using two sets of coils each of different radii, separations, and 
currents, it is possible to choose these parameters to obtain any desired 
value for the ratio of coefficients of second order to zeroth order terms and 
at the same time make the fourth order term vanish. Thus, departures 
from Eq. (40) comes in only at 6th order and higher. Clearly, by a 
suitable arrangement of sets of coils of varying radii and separations, 
one can approximate (39) as closely as is needed. 

The field given by (39) can be obtained from a scaler potential, 
Φ, given by 

Φ(r, z)=Boz (1-
kr2 + 2kz2 ) Φ(r, z)=Boz (1- R2 + 3R2 ) (42) 

The equipotential surfaces of (42) give rise to the following family of 
curves in θ=const. planes: 

r2= R
2 

( 
Φ - 2kz -1) r2= k ( Boz 

- 3R2 -1) (43) 
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These are shown graphically in Fig. 7 for a typical case k=0.1 and 
R=1. One could also achieve (39) by suitably shaped iron pole tips in a 
magnet. 

The equations of motion for Bθ=0 in cylindrical coordinates are 
mr=mv02+(e/c)rθ Bz, (a) 

d (mr2θ)= er (z Br-rBz), dt (mr
2θ)= c (z Br-rBz), (b) (44) 

m = er Br m = c Br (c) 

where m = m o and β=v/c=constant for static fields. Eq. (44b) can 
be integrated once to give using the initial r (0)=0 

= 
ωo (1-kV2 + 2kz2 ) = 2 (1-2R2 + R2 ) (45) 

where ωo=-eBo/cm. 
Substituing (45) for yields the following coupled equations for 

r and z: 

=-ω2o 
k . r2z (1- kr2 + 2kz2 ). =-ω2o R2 

. r2z (1-2R2 + R2 
). 

(a) 

=- rω2o [1-2kr2 + 4kz2 + k2r2 ( 3 -4z2+4z4 )], =-
4 [1-R2 + R2 + R4 ( 4 -4z2+4z4 )], (b) (46) 

We shall take initial conditions as 
r(0)=z(0)=θ(0)=0, 
(0)=vr≠0, (48) 
(0)=vz≠0. 

For k=0, the motion is simple, i. e., 

θ= ωot 
, 

θ= 2 
, 

ro=2a sin θ, 
(47) o=z(0)t, (47) 

ωo= 
Vr , ωo= a 
, 

a= Vr . a= 
ωo 

. 

These are helical orbits whose motion in z=constant planes are circular 
orbits. If we now consider k and z2/R2 as small quantities and expand 
(45) and (46), keeping only lowest order terms, we have 

=-ω20 
k2 r2z =-ω20 R2 
r2z (a) 
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=- rω2o 
(1-

2kr2 
) =- 4 (1- R2 ) 

(b) (49) 

θ = ωo 

(1-
kr2 

) θ = 2 (1- 2R2 ) (c) 

Eq. (49 b) has solutions in terms of Jacobian elliptic functions. 

Sn( ωot | m2), Sn( 2√m2+1 | m2), (50) 

where 
m2= 1-√1-4k' -1. m2= 2k' -1. (51) 

k'=( 2a )2k k'=( R )2k This can be seen by integrating (49 b) once using the substitution =P 
and obtaining 

2=V2r- ω2o ( r2 -k r
4 

) 
2=V2r- 2 

( 
2 -k 2R1 ) (52) 

Using V21=ω2oa2, (52) becomes 

r=ωoa√1-( 
r )2 +k'( r )4. r=ωoa√1-( 2a )2 +k'( 2a )4. (53) 

Integrating (53) once leads to 
ωot 11 du ωot ∫ du 

2√m2+1 ∫ √(1-u2)(1-m2u2) 2√m2+1 0 √(1-u2)(1-m2u2) 
(54) 

where 
u= r u= 2a√m2+1 

and 
m2= 1-√1-4k' -1. m2= 2k' -1. (55) 

Eq. (54) is a standart elliptical integral defining the Sn function10. 
Therefore, the solution of (49 b) is 

r=2a√m2+1 Sn( ωot | m2) r=2a√m2+1 Sn( 2√m2+1 | m2) (56) 

An expansion of (56) to first order in k' yields11 

r=(2a)(1+ 9 k' )( sin αt+ k' sin 3 αt), r=(2a)(1+ 16 k' )( sin αt+ 16 sin 3 αt), (57) 

where α= ωo 
(1-

3k' 
). 

where α= 2 (1- 4 ). 
(58) 

Using Eq. (57) for r, we obtain, to first order in k', the following relationship: 

14-965 
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θ= 
t 
θ dt= ωo [(1-k'/4)t+(k'/8α)sin 2 αt] θ= ∫ θ dt= ωo [(1-k'/4)t+(k'/8α)sin 2 αt] θ= ∫ θ dt= 2 [(1-k'/4)t+(k'/8α)sin 2 αt] θ= 
0 
θ dt= 2 [(1-k'/4)t+(k'/8α)sin 2 αt] (59) 

We can use (59) to eliminate t from (57) and obtain r (θ). Carrying 
this out to first order in k' results in 

r=2a(1+k'/2)sinθ(1-k'/2) (60) 
From (60) it is clear that the orbits precess about the z axis with 

a period 4/k' times the orbital period. 
The solution (57) can nov be inserted into Eq. (46a) to obtain an 

equation for the z motion. Thus, 
=-ω2ok'z sin2αt 
or 

+ ω2o k'(1-cos 2αt)t=0 + 2 k'(1-cos 2αt)t=0 (61) 

Eq. (61) is in the standard form for Mathieu's equation and possesses a 
Floquet solution, which for small k is12 

Z(t)= (0) 
√( 

2 
) 

a (sin ωo √2k't)(1-k' cos 2 αt 
) 

Z(t)= √r √( k' ) (1-k'/2) 
(sin 

2 √2k't)(1- 2 
cos 2 αt 

) 
(62) 

Thus, the vertical oscillations are stable with amplitude S, given by 

S=So√ 2 a S=So√ k' (1-k'/2), (63) 

where So is (0)/Vr, the initial slope in a vertical lane containing the z 
axis. Let h= z/2 be the vertical half aperture, then the maximum accep­
table slope is 

Sm= h 
√ k' )(1-k'/2) Sm= a 
√ 

2 )(1-k'/2) 

= z √k/2(1-( 2a 
)2k) 

z √k/2. = R √k/2(1-( R )2k) R √k/2. 
(64) 

For z=4 cm, R = 6.6 cm, and k=0.1 we obtain Sm0.15 radian 
In the main text we express z in terms of Sm and R where we 

use for R, the characteristic radius of the pot, the average pion orbit 
diameter denoted ; hence 

zSm√2/k (65) 
The calculations reported here have been made only to first order 

in k and (z/R)2. It is possible that higher order terms may couple verti­
cal and radial oscillation in such a way as to be unstable for even 
small k and (z/R)2. To investigate this we will, in the future 
numerically intergrate the coupled eqs. (46a) and (46b). 
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APPENDIX II 
PARTICLE DENSITY CALCULATIONS 

We wish to calculate the particle density ρ for a δ function orbit 
diameter x, distribution. We assume a uniform distribution for z and 
θ0, where θ0 is the angle of the orbit center in cylindrical coordi­
nates. Clearly, ρ is a function of r only; hence we will set θ=0. As 
shown in Fig. 9a, two orbits pass through each given point (r, θ). 
The density ρ is defined by 

ρ(r)dV=ρ(r) rdrdθdz=number of particles in dV 

=2 NT dθOdz) )( dS 
) =2 2π z 

dθOdz) )( 2πa ) 
(66) 

The. factor 2 is present because of the two orbits at ±θo. 
The first factor in parenthesis is the number of orbits around θo which 
pasts through dV as shown in Fig. 9b; and the second factor is the fracion 
of each orbit in dV. NT is the total number of particles considered. 
Now r=2a cos θo. and 

ds= rdθ =2adθ ds= cos θo 
=2adθ 

Hence, 
ρ(r)dV= NT dθodzdθ=ρ(r)rdrdθdz ρ(r)dV= 

π2( z) 
dθodzdθ=ρ(r)rdrdθdz 

and 
ρ(r)= NT (θO,θ,Z) = NT ρ(r)= π2( z)r (r, θ, z) 

= 
π2( z)r√4a2-r2, 

where the Jacobian is 

| 
dr 

|-1= 
1 . 

| dθo 

|-1= 

√4a2-r2 . 
Letting x=2a, we have 

ρ(r,x)= NT · 1 · 1 ρ(r,x)= 
π2 z 

· 
√x2-r2 · r (67) 

The density ρ, is normalized to NT, the total number of particles, as the 
integral below shows: 

pot 
∫ρ(r)rdrdθdz=NT. 

pot 
∫ρ(r)rdrdθdz=NT. 

If we now take an x distribution f(x), corresponding to some 
momentum distribution, then the π+ particle density D+ is given by 

D+(r, θ, z)=N+ 
R f(x)dx =D+(r), D+(r, θ, z)=N+ ∫ f(x)dx =D+(r), D+(r, θ, z)=N+ ∫ π2( Z)r√x2-r2 =D+(r), 

D+(r, θ, z)=N+ 

r 
π2( Z)r√x2-r2 =D+(r), (68) 

where N+ is the total number of orbiting π+'s. The interaction rate dI/dt 
is then determined from 
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dI 

=∫2D+D-β12cdV. dt =∫2D+D-β12cdV. dt vol. of 
shell 

(69) 

For a uniform x distribution in a shell from ηR to R we have 

f(x)= 1 ηR≤x≤R f(x)= (1-η)R 
ηR≤x≤R (70) 

and D+ becomes 
D+(r)= N + 1 Sech-1 r 

. 
D+(r)= 1-η π2R( z)r 

Sech-1 R . 
(71) 

Using this in (69) yields 
dI 

= 2σβ12cxK N+2, dt 
= 

π z N+
2, (72) 

where 
= R(1+η) , = 2 , (73) 

K = (1 + η)2 1 dx (sech-1x)2. K = (1 + η)2 ∫ dx (sech-1x)2. K = (1-η)22π2 ∫ X (sech-1x)2. K = (1-η)22π2 η X 
(sech-1x)2. (74) 

If we take η=12, K0.25. 
The actual π+ momentum distribution is not uniform and will modify 

the results above. A convenient polynomial approximatiou for f(x) corres­
ponding to the π+ spectrum expected from 800 MeV protons13 on 
tungsten is 

f(x)= 12 
( 

X )3[1-X 2 ] 0≤x≤R. f(x)= R ( R )3[1-R2 ] 0≤x≤R. (75) 

R is the maximum diameter orbit. The distribution (75) yields ah average 
value, given by 

==0.69 R (76) 
and, a variance σx of 

σx=0.35=0.25 R. (77) 
Using (75) we obtain D+ 

D + = 8 N + 
( 1 -

r2 
3 

(1+ 
4r2 

). 
D + = 8 N + 

( 1 -
r2 )2 (1+ 

4r2 
). 

D + = 5π2 R( z)r (1 - R2 )2 (1+ R2 ). 
(78) 

Computing dI/dt using (78) and (69) results in 
dI - 2σβ12cxKN2+ , dt 

-
π( z) , (79) 

where 
K= 128 0.49 

1 dy (1-y2)3(1+4y2)2. K= 128 0.49 ∫ dy (1-y2)3(1+4y2)2. K= 25π2 0.49 ∫ y (1-y
2)3(1+4y2)2. K= 25π2 0.49 η y 

(1-y2)3(1+4y2)2. (80) 

If η=1/2. then K0.47. 
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Fig. 1 First turn for + and π- of median energy emitted at 30° to proton beam. 
The dashed line gives the direction of the π+ orbit precession. β is directed into the 

plane of the paper; it is centered at the target center and is shown in Fig. 2 
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Fig. 2 (a) Possible coil configuration. For more omplex configuration see ref. (5). 
(b) Major field component as function of r. 

Fig. 3 Typical π+ and π- colliding orbits of one momentum showing precession. 
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Fig. 4 Typical π+ orbits showing the shell from which the 
interactions are accepted. 

The shell is the region of radii from ηR to R. 

Fig. 5. Pion intensity as a function of time. T=length of the proton spill onto the 
target inside the pot; τ=laboratory pion life-time. 
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Fig. 6 Schematic showing amount of target material traver ed by π+ whose orbit 
lies in the midplane and whose orbit center lies on a line thru the target center 

which makes an angle of θo with respect to the target. 

Fig. 7 (a) Two examples of π+ -µ+ decay which produce µ+ orbits which will never 
hit the target. 
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(b) Families of orbits corresponding to the two examples of decay in Fig. 7a 
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Fig. 8 Equipotential surfaces for the ase k=0.1 a d R=1.0. 
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Fig. 9 (a) Two orbits at±θo passing thru point r. 
(b) Orbits defining dV. 
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