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Abstract. The acceleration of the expansion of the Universe which has been identified in
recent years has deep connections with some of the most central issues in fundamental physics.
At present, the most plausible explanation is some form of vacuum energy. The puzzle of
vacuum energy is a central question which lies at the interface between quantum theory and
general relativity. Solving it will presumably require to construct a quantum theory of gravity
and a correspondingly consistent picture of spacetime. To account for the acceleration of the
expansion, one may also think of a more dynamical form of energy, what is known as dark
energy, or modifications of gravity. In what follows, we review the the basic models for dark
energy and the difficulties encountered in each approach, as well as we discuss the vacuum
energy problem.

1. Introduction: the dark energy issue
A large set of observational data has led to the conclusion that the expansion of the
Universe has recently (compared to the age of the Universe) been accelerating. This may
be due to “astrophysical reasons”. Two popular proposals are: (i) the back reaction of
inhomogeneities would alter the evolution of cosmological parameters, traditionally used to
describe a homogeneous universe [1]; (ii) a large local inhomogeneity (void) would make us
underestimate the average energy density of the Universe that governs its rate of expansion.
Alternatively, this may be due to novel aspects of fundamental physics. I will concentrate
in this review on the latter possibility. A starting point for the discussion may be Einstein’s

equations?:
1
Guw =R — 59WR =81G Ty (1)

One of Einstein’s achievements was to foresee that such an equation could lead to a cosmological
scenario, that is, could describe the evolution of the Universe at large. It is true that the first
solution proposed was static, through the introduction of the cosmological term (see below),
but this rapidly led to time-dependent solutions that paved the way to the discovery of the
expansion of the Universe. In parallel, a series of tests indicates that the principles governing
General Relativity, as described by Einstein’s equations, are tested to an incredible precision: for
example, the equivalence principle is presently tested to the 107! level. This seems to leave us
us with very little room to modify the theory of gravity in order to account for the acceleration

! Université Paris Diderot, CNRS/IN2P3, CEA/TRFU and Observatoire de Paris
2 The metric signature we adopt throughout is Einstein’s choice: (4, —, —, -).
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of the expansion of the Universe. This is not so because the precise tests of General Relativity
are all local, in the sense that they are all performed in the solar system. On the other hand,
the rate of expansion concerns the Universe in its largest dimensions. One may thus consider
modifications of gravity at large distances that would lead to a different rate of expansion for
the Universe.

To be a little more precise, let us assume a homogeneous and isotropic universe and write
the metric in its Robertson-Walker form:

ds? = Edt* — d®(t) yijda'da?, (2)
S dr?
Coiad 2 (102 o 2002
Yijdx'ds? = Tz T <d9 + sin” 6d¢o ) ) (3)

where a(t) is the cosmic scale factor and the constant k takes the values +1 or 0 depending on
whether space is flat (0), closed (+1) or open (—1). Assimilating the content of the universe to
a perfect fluid of pressure p and energy density p, we write the energy-momentum tensor 7},
present in Einstein’s equations (1):

Tuu = —P9uv + (p + p)UMUV 5 (4)

where U* is the velocity 4-vector (UT = 1,U? = 0). Then, one can extract from Einstein’s
equations the Friedmann equation, which gives an expression for the Hubble parameter H = a/a
measuring the rate of the expansion of the Universe:

a? _ 8nGy k

2 _

Differentiating the Friedmann equation with respect to time, and using the energy-momentum
conservation

p=—3H(p+p), (6)
one easily obtains
4nG
i=——>"a(3p+p) . (7)

which shows that non relativistic matter (p ~ 0, p > 0) can only account for a deceleration of
the expansion (i < 0).

Modifications of the theory of gravity may induce new terms or a new form for the Friedmann
equation, which would lead to a rate of expansion larger than the one foreseen in the context of
the standard Big-Bang model. For example, in the case where our Universe is a 4-dimensional
brane immersed in a higher-dimensional universe, an extra term appears on the right-hand side
of the Friedmann equation (5) which scales like p? [2]. However, this term is important for high
densities, hence in the primordial Universe, and cannot account for a recent acceleration of the
expansion.

A popular model for modifying gravity at large distances has been the induced gravity model
of Dvali, Gabadadze and Porrati [3]: four-dimensional gravity is induced on the brane (with
corresponding Newton’s constant G ), besides the five-dimensional gravity (constant G,) of
the 5-dimensional spacetime in which the brane is immersed. The Friedmann equation is then

modified to [4, 5]:
2
8rG 1 1 k
H? = N ) ==
( 3 Pt 4r2 + 27"c> a?’ ®)

where the critical distance 7. is the ratio G,/2G, . The extra terms may this time induce an
acceleration at late times.
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It is however quite difficult to modify gravity. Most models suffer from the appearance of
ghosts or tachyons, or from the presence of the van Dam-Veltman-Zakharov discontinuity [6, 7], a
pathology of theories of massive gravity concerning the light deflection by static sources. This is
probably just an illustration of the robustness of the theory of General Relativity as a description
of gravity.

We will thus concentrate in this review on a third possibility to account for the acceleration
of the expansion of the Universe: we assume that a new unknown component participates to
the energy density of the Universe. It is obviously a dark component since it is not observed
through its luminous emission. And it is certainly not a new form of matter, since, as we have
seen in (7), matter leads to a deceleration of the acceleration. It has thus been named dark
energy. We will focus, in what follows, on dark energy, discuss its properties, and some of its
explicit realizations.

Dark energy does not appear to be clustered. We may thus treat this diffuse background as
a perfect fluid with energy density p, , pressure p, and equation of state:

Obviously, acceleration of the expansion implies that this dark energy component dominates the
energy density of the Universe and that, according to (7),

3py +py <Oorw, <—1/3. (10)

In order to be a little more precise, let us assume that the dominant contributions to the late
evolution of the Universe are non relativistic (luminous and dark) matter and dark energy (with
an equation of state parameter w, constant in time) : since then p = p,, + p, and p = w, p,,
the Hubble parameter at redshift z reads from (5), using a(t) = ag/(1 + 2z) and assuming k = 0,

H(2) = H3 [, (1+2)° + 0, (1+ 2201000 (1)

where the present value Hy ~ 70 km.s~!.Mpc~! of the Hubble parameter sets the critical
density scale p. = 3HZ/(87G ) ~ 10720 kg.m™3: Q,, = p,,,/pc and Q. = p,.,/pe 3. Obviously,
at present time (z = 0), we have, from (11),

1=Q, +Q,, (12)

which is just another way of writing the Friedmann equation (5).

Cosmological observations lead in this simple model to a determination of the two independent
parameters: €, and w, . As is well-known [8, 9], observational data on the flux ¢ received from
supernovae of type Ia leads, under the assumption of a constant luminosity L (i.e. if these
supernovae behave as standard candles), to a determination of their luminosity distance dp:
¢ = L/(4nd2). The dependence of the luminosity distance with respect to the redshift of the
supernovae then provides a constraint on the geometry of spacetime. Similarly, data on distant
galaxies provide important information on the acoustic oscillations that the coupled baryon-
photon fluid underwent before photons decoupled from baryons: the corresponding baryon
acoustic peak [10] is similar to the peaks observed in the cosmic microwave background of
photons. It provides, just as well, important information on the cosmological parameters. As
an illustration, figure 1 gives the constraints obtained by the collaboration SuperNova Legacy
Survey [11] on the cosmological parameters (€2,,,w, ), using as well the baryon oscillation data.
The central values correspond to Q,, = 0.3, Q, = 0.7 and w, = —1: the energy density of the
Universe is dominated by the dark energy component.

3 An index 0 indicates a value at present time and we have used (6) to show for example that p, ~ a(t)~21T%x),



DISCRETE’08: Symposium on Prospects in the Physics of Discrete Symmetries IOP Publishing

Journal of Physics: Conference Series 171 (2009) 012011 doi:10.1088/1742-6596/171/1/012011
-0.5 S-ZS{ v
|
; L
-1.5-
0 0.2 0.4 0.6

Figure 1. Contours at 68.3%, 95.5% and 99.7% confidence levels for the fit to a flat (Q,,,w,)
cosmology, from the SNLS Hubble diagram alone, from the SDSS baryon acoustic oscillations
alone [10] and the joint confidence contours [11].

A powerful tool is also provided by weak gravitational lensing [12]. The deviation of light
rays by an accumulation of matter along the line of sight depends on the distance to the source,
and thus on the cosmological parameters. As the Universe accelerates, there is more volume
and more lenses between the observer and the object at redshift z.

The result Q, ~ 0.7 yields p,, ~ 0.7p. ~ 1072 kg.m 3. If fundamental microphysics is to
provide the apropriate framework for dark energy, it might be more transparent to work in units
where = ¢ = 1. In this case, energy densities have dimensions of mass to the fourth power
and we can write:

py ~ AL, Ay ~1073 eV . (13)

Is this scale a new fundamental scale associated with the physics of dark energy? In this case, is
there any connection with neutrino masses? Or is it only a derived scale with no fundamental
meaning? Such questions should receive an answer in the context of specific models.

The deceleration parameter ¢ = —ia/a? reads, using (7),
= M5 [Q (14 2)° +Q, (1 + 3w, )(1+ z)3<1+wx>} : (14)
QH(Z)Q M X X

This shows that, in our simple model, the universe starts accelerating at a redshift value z,cc
given by
Q. 1-1/Guy)
I [—(1 3w, )X . (15)
Q]\J
Setting 0, ~ 1 —Q,, allows to determine zac. in terms of €2,,: for Q,, ~ 0.3 and w, ~ —1, we
have zacc ~ 0.6. This is why a lot of attention has been paid to the region of redshifts around
1. We will see however in what follows that this value is somewhat model dependent.
A central problem that models of dark energy have to address is the following: since matter
and dark energy evolve differently, why should they be of the same order at present times? This
is known as the cosmic coincidence problem or the “Why now?” problem. As is clear from
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Figure 2. The cosmic coincidence problem illustrated in the case of a cosmological constant
i.e. a dark energy component with w, = —1 (see below).

figure 2, this problem is particularly acute in the case (favoured by observation, see figure 1)
where w, = —1, that is, where the dark energy energy density remains constant in time: why is
it emerging from matter energy density at present time? Or, to avoid phrasing the question in
an anthropocentric manner, why is it emerging at a time close to galaxy formation (z ~ 5 to 10)?
At a time which, at the scale of the age of the Universe, is not so distant from radiation-matter
equality (z ~ 3500).

Another generic problem associated with dark energy arises if one interprets dark energy as a
field. Because the only basic dimensionful parameter in the problem is the Hubble constant Hy
(which has the dimension of an inverse time, i.e. of a mass in units where i = ¢ = 1)*, in generic
examples, the mass of the dark energy field is of the order of Hy, that is 10733 eV. This pauses
drastic challenges to any dark energy theory of fundamental physics. Not only because this is a
small number but also because the exchange of the dark energy field between ordinary quarks or
leptons leads to a long range force, which is not observed (or not yet). The consequence has to
be that, if it exists, the dark energy field has to be extraordinarily weakly coupled to ordinary
matter. Tests of the equivalence principle also induce strong constraints on such couplings. Let
us however stress that such restrictions do not apply to couplings to dark matter or neutrinos
since these have not been probed to the degree of accuracy reached for ordinary matter. As we
will see, this leads to interesting models for dark energy.

The model that we have used until now to parametrize the data is useful to orient the
discussion but oversimplified. Indeed, in most models that we will discuss below, the dynamics
associated with dark energy is somewhat more involved. In particular, the equation of state
parameter w, often evolves with time. Various parametrizations have been proposed to account
for this effect. Since we are dealing with late time evolution (a ~ ap), it has become popular

1 See below explicit examples to understand why this is the relevant scale for the mass of the dark energy field,
and not the scale A, that we have introduced in (13).
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[13] to write
w, =wp + (ap — a)w, - (16)

Observational data favors values for the equation of state parameter of dark energy which are
close to —1: wg ~ 1 and w, < 1. This is where the discussion on dark energy reaches its most
fascinating aspects: if w, = —1, this would be a clear signal to identify dark energy with the
energy of the quantum vacuum. We recall that, in classical quantum physics, the vacuum is the
fundamental state of the system considered. Quantum field theory enriches the notion since this
vacuum state cannot be isolated from the quantum fluctuations associated with virtual particle
production but its energy is not an observable because only differences of energy are measurable
(the best example is the Casimir effect where quantum fluctuations of the electromagnetic field
induce a force —hence a difference of energy— between two conducting plates separated by the
vacuum). But, in a gravitational context, the presence of the energy-momentum tensor in the
right-hand side of Einstein’s equations (1) shows that absolute energies have an impact on the
geometry of spacetime. Indeed, as can be seen from the Friedmann equation (5), it is the
absolute energy density that determines the rate of expansion.

As is well-known, the cosmological odyssey of the vacuum energy started with the
cosmological term introduced by Einstein in the early days: in order to reproduce what was
known at the time i.e. a static universe (our own galaxy), Einstein introduced an extra term in
his equation in order to allow for the presence of a static solution [14]:

1
Guw = Ry — §gw,R =87G  Tpw + Mg - (17)

The cosmological term involves the cosmological constant A which has the dimension of an
inverse length squared. Its effect is clearly seen from the Friedmann equation that follows, using
the Robertson-Walker metric (2),

a1 k
Thus a positive cosmological constant induces an acceleration of the expansion.

Typically, since we know that the spatial curvature term is presently subdominant, (18)
considered at present time implies the following constraint on A (barring a cancellation between
the dynamical p and the constant \):

A\ < HE . (19)

In other words, the length scale £5 = |A|~1/2 associated with the cosmological constant must be
larger than the Hubble length ¢g, = cH; 1~ 10% m, and thus be a cosmological distance.
This may not be a problem as long as one remains classical: /{p, provides a natural
cosmological scale for our present Universe. The problem arises when one tries to combine
gravity with quantum theory. Indeed, from Newton’s constant and the Planck constant &, we

can construct the Planck mass scale m, = ,/hc/(87G,,) = 2.4x 10'® GeV /c?, the corresponding

length scale being the Planck length £, = h/(m,c) = 8.1 x 1073° m.
The above constraint now reads:

b= N2> 0y, = Hio ~10% ¢, (20)

In other words, there are more than sixty orders of magnitude between the scale associated with
the cosmological constant and the scale of quantum gravity.

It might be just as well to consider that the cosmological constant is altogether vanishing.
Indeed, Einstein soon withdrew the cosmological term, writing his equation in the form (1), and
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claiming that this was his “biggest blunder”. But the devil was now out of the box: assuming
that there is a non-vanishing vacuum energy i.e. (T,,,) = pvacGuw ° Einstein’s equation (1) reads

1
ij — §gw,R = 87TGNTHV + 87TGvaan,u1/ . (21)

The last term is thus interpreted as an effective cosmological constant [15]:
A4

— -
my

Aefi = 8TG Pyac = (22)

Generically, pyac receives a non-zero contribution from symmetry breaking: for example, the scale
A would be typically of the order of 100 GeV in the case of the electroweak gauge symmetry
breaking. But the constraint (20) now reads:

A<107%m, ~ 1073 eV. (23)

It is this very unnatural fine-tuning of parameters (in explicit cases pyac and thus A are functions
of the parameters of the theory) that is referred to as the cosmological constant problem, or
more accurately the vacuum energy problem.

There is one spacetime symmetry that ensures a vanishing vacuum energy: it is
supersymmetry. Indeed, from the supersymmetry algebra (the commutator of two
supersymmetry transformations is a spacetime translation {Q,, Qs} = 274 P,), one may derive
the following expression for the Hamiltonian H = P,

H:iZQ? : (24)

Thus the vacuum energy (0|H|0) vanishes if and only if the vacuum is supersymmetric i.e.
Q.|0) = 0 for all . Supersymmetry thus seems the apropriate framework to discuss vanishing
or small vacuum energies. However, we know that in nature, supersymmetry is broken by a large
amount, say larger than 1 TeV, which gives a contribution of the same order to the vacuum
energy, hence much larger than the 1073 eV allowed above.

We have seen above that observational data is consistent with the possibility that the
acceleration of the expansion is due to the cosmological constant, its value is as large as the
upper bounds just obtained:

A~ HE D Uy ~lpy, A~1073eV . (25)

Considering the latter scale A, which characterizes the vacuum energy (pyac = A*), one may
note the interesting numerical coincidence:

h
KC ~ Sl ~ 1074 m (26)

This relation underlines the fact that the vacuum energy problem involves some deep connection
between the infrared regime (the infrared cut-off being ¢p,) and the ultraviolet regime (the
ultraviolet cut-off being ¢, ), between the infinitely large and the infinitely small. We will return
to this interesting question in the last question.

For the time being, we discuss generic models of dark energy using the dynamics of scalar

fields.

5 We note here that this corresponds to a perfect fluid with equation of state p = —p (Too = p and T3; = pds;
from (4)).
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2. Scalar field models of dark energy

2.1. Why scalar fields?

Scalar fields easily provide a diffuse cosmological background and are thus a favourite candidate
for dark energy. More precisely, the relevant quantity when discussing perturbations associated
with a field is the speed of sound

)
2=

5
It is a measure of how the pressure of the field resists gravitation clustering. In most models
with scalar fields, we have ¢? ~ 1, which explains why scalar dark energy does not cluster: its
own pressure resists gravitational collapse.

A typical candidate for dark energy is a scalar field ¢ slowly evolving in its potential V().
More explicitly, let us consider the following action

(27)

2
s = [day= [—%R +50"00,0 ~ V(9)] (28)

which describes a real scalar field ¢ minimally coupled with gravity. Computing the
corresponding energy-momentum tensor, we obtain the energy density and pressure

py = %¢2+V(¢) : (29)
P = ¥V (30)

The corresponding equation of motion is, if one neglects the spatial curvature (k ~ 0),

. ) AV
Hp=—— 1
b 3Hb= -G (31)
from which we deduce as expected
po = —3H (py + po) - (32)

We have for the equation of state parameter

oy =P o2V (33)
YT 1PV T

If the kinetic energy is subdominant (¢?/2 < V/(¢)), we clearly obtain —1 < wg < 0, which thus
provides a potential dark energy candidate (see (10).

Particle physics models, in particular in the context of supersymmetry or string theory,
provide numerous models of dark energy scalar fields. We present some of them in the remainder
of this Section.

2.2. The example of quintessence
We start with the simplest class of models. Historically, they correspond to the first models
studied, already back in 1988 [16, 18, 17].

For illustration, let us consider the case of the Ratra-Peebles [17, 18] potential:

M4+a
= (ba 5

V(o) a>0, (34)
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in a universe dominated by a background component with equation of state parameter wp
(the cosmic scale factor a(t) evolves as t>/"B with ng = 1 + 3wg; np = 4 for radiation, 3 for
nonrelativistic matter).

We are looking for a scaling solution where the ¢ energy density scales as a power of the
cosmic scale factor:

pp o< a ", ngcst. (35)
Then pg/py = —neH. In this case, using (32), one obtains
wy = % 1. (36)

Hence the equation of state parameter needs to be constant.
Using (29,30), we have ¢ ~ V(¢) ~ py ~ t~2%/"5. Thus ¢ behaves as t!~("¢/"2) and, since
¢~ ~ t72m6/"B  one obtains

ang a(l +wp)

= = —1
ng =5 Or W + ai2 (37)
The complete solution of the equation of motion (31) is
1
ala+ 2 2TLB MAte2\ ot2
¢ = ( ) . (38)
2[6(a+2) —npal

It turns out that such scaling solutions correspond to attractors in the cosmological evolution
of the scalar field.

We have thus found an attractor scaling solution ¢ o a™8/(2+e) Pg X a—on8/(2+a) in the case
where the background density initially dominates. The scalar field energy density py decreases
at a slower rate than the background density (pp o< a=™8) and tracks it until it becomes of the
same order, at a given value ag. We thus have:

np/(2+a) 2np/(2+a)
o (e P (& _ (39)
m, ag " pB ag
X 9 9 2(a+4) _ 2a X
Since pp ~ m¥ /t* and py ~ M “e+2 t~o+2, the energy density ps overcomes the background
at2 a
value pp at a time tg ~ mp? M~

Shortly after ¢ has reached for a = ag a value of order mp, it satisfies the standard slow roll
conditions

2 m2 V"
eE%(m;V) (/)8 <1 = ;/V —ala+ (mu/é)? <1,  (40)

and (37) provides a good approximation to the present value of wg. Thus, at the end of the
matter-dominated era, this field may provide the quintessence component that we are looking
for.

Two features are interesting in this respect. One is that this scaling solution is reached for
rather general initial conditions, i.e. whether py starts of the same order or much smaller than
the background energy density [19].

The second is the present value of p. Typically, since in this scenario ¢ is of order m, when the
quintessence component emerges, we must choose the scale M in such a way that V(m,) ~ pe.
The constraint reads:

M ~ (HgmZ

P

)1/(4-1—04) (41)
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We may note that this gives for « =2, M ~ 10 MeV, not such an atypical scale for high energy
physics.

Models of dynamical supersymmetry breaking easily provide a potential of the Ratra-Peebles
type discussed above [20]. Let us consider supersymmetric QCD with gauge group SU(N,.) and
Ny < N, flavors, i.e. Ny quarks Qg (resp. antiquarks Q9),g=1-- Ny, in the fundamental
N (resp. anti-fundamental N¢) of SU(N.). At the scale of dynamical symmetry breaking A
where the gauge coupling becomes strong, boundstates of the meson type form: M9 = Q ng .
The dynamics is described by a superpotential which can be computed non-perturbatively using
standard methods:

ABNe=Ny)/(Ne=Ny)

(det MY/ PNe=Np)

Such a superpotential has been used in the past but with the addition of a mass or interaction
term (i.e. a positive power of M) in order to stabilize the condensate. One does not wish to
do that here if M is to be interpreted as a runaway quintessence component. For illustration
purpose, let us consider a condensate diagonal in flavor space: M9 = ¢25?. Then the potential
for ¢ has the form (32), with o = 2(N. + Ny)/(Ne — N¢). Thus,

W = (N - Ny) (42)

Nc—{—Nf

-1
W TN,

(1+wp), (43)
which clearly indicates that the meson condensate is a potential candidate for a quintessence
component.

Because the value of the quintessence field ¢ is of order m, in the period of acceleration of
the expansion, one must take into account all non-renormalisable interactions of order (¢/m,)".
For example, in a supersymmetric context, the full supergravity corrections must be included.
One may then argue [21] that this could put in jeopardy the positive definiteness of the scalar
potential, a key property of the quintessence potential and one reason to consider supersymmetry.

The couplings of scalar fields are defined in supergavity by two functions: a real function
K (¢,$5), known as the Kihler potential (the second derivatives g,; = 9*K/0¢,0¢; also determine
the field-dependent normalisation of the kinetic terms: g,ﬁ“qﬁ,@mﬁ]—) and a complex holomorphic
function W (¢), the superpotential. More precisely,

oW OK W\ , (oW 0K WY\ 3 ) |
V: K/m2 e o 1] - R — o W2 . :6Z ] 44
e P [(6@2 +6¢Zm%>9 (&b]_'—@(b]m%) m%| | » 97 93k k (44)

The problem is the term —3|W|?/m? (which vanishes in the limit m, — oo where one
recovers rigid supersymmetry). One possibility is to consider no-scale models: the presence of 3
moduli fields 7% with Kéhler potential K = — ", In(T% + T*) cancels the negative contribution
—3|W|2/m123 in the supergravity potential.

Alternatively, one may consider models where (W) = 0 (but not its derivatives).Let us take
the Brax and Martin model [21, 22] as an example. It involves three fields X, Y and the
quintessence field ¢:

K(X,Y,$) = ¢+ XX +YY () /m? , W(X,Y,¢) =AXY . (45)
Assuming that, in the minimum, (X) = ¢ and (Y') = 0, the potential reads
_ A2‘§’4m2p
1% ¢ — e(¢¢+|§|2)/m§> > P 46

This has a form similar to the Ratra-Peebles potential (34), but with an extra exponential factor
which stabilizes the quintessence field at large values.
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We have just seen that Kahler potentials with g,; # d,, lead to nontrivial kinetic terms.
Dynamics may be hidden in such nontrivial terms, which proves to be well suited to describe
dark energy, as we now see.

2.83. Non-trivial kinetic terms

In order to introduce this class of models, we will take our inspiration from the description of a
relativistic particle in special relativity. From the Lagrangian L = —m+/1 — ¢2, where m is the
mass of the particle and ¢(t) its one-dimensional position, one derives its energy E = m/+/1 — ¢?
and momentum k = mq/+/1 — ¢2. Moving to field theory, one may replace ¢(t) by ¢(x,t), §>
by 0*¢0,,¢ (which would simply read #? in the case of a homogeneous field) and even make the
mass m a field-dependent function u(¢). The corresponding Lagrangian density is thus

L= —p(d)\/1 — 0160,6 . (47)

Such non-trivial structure in the kinetic terms of scalar fields often appears in the context
of string and brane theory. For example, non-BPS Dp-branes suffer from an instability under
which all open string states disappear: a tachyonic mode is present and the system should relax
to the minimum of the tachyonic potential [23, 24]. This is described at the level of the effective
field theory by a Dirac-Born-Infeld (DBI) action

S = / Pty V(¢)\/ — det [gmn + 270 Fppp, + O 0nd)] (48)

where ¢ is the tachyon field, V(¢) the tachyon potential and o/ = M§2 the string constant.
Disregarding the gauge field, we obtain

S= / @ V(@)y/=gy/det [0 + g™ 0,40, ¢] = / & V(OV=gV1+ g 0n¢Ond , (49)

where g = det(gmn). The same action provides the effective description of a Dp-brane anti-Dp-
brane system: ¢ then describes the distance between the two branes.

More recently, a similar system has been considered: a probe D3-brane travelling down a
five-dimensional warped throat geometry. The warping means that the d + 1 = 4-dimensional
metric on the brane is ¢-dependent, namely f(¢)™1) guv- Thus, assuming a constant potential,
one obtains [25, 26]

S= [ d'a V=g oW1+ 1(0)9 0,00, . (50)
In the case of throats coming from IIB flux compactifications [26],
A

and an additive potential term arises from the couplings of the D-brane to background RR
fluxes.

Models with non-trivial kinetic terms have been proposed to account for dark energy [27]:
k-essence models are based on the following generic action

4 m? 1,
S = /d T/ —g —7R+£(X,qz5) , where X = 59" 0,0, ¢ . (52)

Variation of the action with respect to ¢ yields the energy-momentum for the scalar field:

2 48
V=g g™

T;w = 'C,Xa,ugbauq5 - guwc . (53)
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This has a hydrodynamic description. Indeed, introducing (cf the example that started this
section)
_ 00

Uy = ,
= V2X

(54)

T, has the perfect fluid form (4) with
The equation of state parameter thus reads
w=——t .
2Xpx —p
The speed of sound can be expressed as [28]
2 PXx P.x
== 57
px Dpx+2Xpxx (57)

In the case where £ depends only on X, then one has p = p(p) and one recovers the usual

c2 =0p/op.
The equation of motion for the scalar field reads
G 0,00,¢ +2XL x5 — Ly =0, (58)
where [29] 3
G" =L xg" + L xx 0"p0" ¢ . (59)

Following the examples that we started with, we will make the simplifying assumption that the
dependences in X and ¢ of L(X, ¢) factorize:

p(X,0) = K(@)p(X), (60)
p(X,0) = K(@)p(X), pX)=2Xpx—p. (61)
It proves to be useful to parametrize differently the function p(X):
s =W = e (62)
)
Then
pX) =—-4(), (63)
and .
9 2 _9—9Y
w = 7 c; = el (64)

The positivity of energy (63) implies that ¢’ > 0. Assuming that p(X) is increasing with X (i.e.
g—g'y > 0), then ¢ > 0 requires ¢” > 0. Thus g is a monotonously decreasing convex function
of y.

Tracker solutions require w = wp, a condition that fixes y as the solution yr of g/(yg') =
—wp. One can show [27] that this implies the following form for K(¢):

()= . (65)
e P — _Cgyr)yl (66)
Py + PB

where the constant C'is 2 for a radiation background, and 9/8 for a matter background.
Accelerating solutions (w < 0) are obtained on the other hand for negative values of g, that
is for y > yg where yg is the value where g vanishes. It is possible to find functions g such
that such accelerating solutions appear only at the onset of matter domination. Then, matter
domination triggers the dark energy component: a nice solution to the “Why now?” problem.
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2.4. The problems of scalar field models of dark energy

However appealing, the quintessence idea is difficult to implement in the context of realistic
models [30, 31]. As we have already mentionned, the main problem lies in the fact that the
quintessence field must be extremely weakly coupled to ordinary matter. This problem can take
several forms:

e the quintessence field must be very light. If we return to our example of Ratra-Peebles
potential in (34), V”(m,) provides an order of magnitude for the mass-squared of the
quintessence component:

M 1+a/2
mg ~ M <—> ~ Hy~ 10733 eV. (67)

mp

using (41). This might argue for a pseudo-Goldstone boson nature of the scalar field that
plays the role of quintessence. This field must in any case be very weakly coupled to ordinary
matter; otherwise its exchange would generate observable long range forces. Eotvos-type
experiments put very severe constraints on such couplings.

e it is difficult to find a symmetry that would prevent any coupling of the form
B(¢/mp)"F* F,, to the gauge field kinetic term. Since the quintessence behavior is
associated with time-dependent values of the field of order mp, this would generate, in
the absence of fine tuning, corrections of order one to the gauge coupling. But the
time dependence of the fine structure constant for example is very strongly constrained:
|&/a| <5 x 107 yr~L. This yields a limit [30]:

T (68)

where < ¢ > is the average over the last 2 x 10° years.

All the preceding shows that there is extreme fine tuning in the couplings of the quintessence
field to ordinary matter, unless they are forbidden by some symmetry. This is due to the
lightness of the field which induces a new long range force. The most stringent constraints come
from tests of the equivalence principle. However these constraints apply to ordinary matter: no
experiment has tested the equivalence principle with neutrinos or with dark matter. This leaves
thus the possibility that dark energy is coupled in a non-negligible way to neutrinos or dark
matter. We consider such possibilities in the next section.

3. Can dark energy be coupled to some form of matter?

3.1. Mass varying sterile neutrinos

Let us consider a sterile neutrino with a mass m,,(¢) which depends on a scalar field ¢ [32, 33, 34].
The effective coupling between the neutrino and the scalar field may be described by the function:

_ dlogm,(9)
do ’
In the case of a nonrelativistic uniform neutrino background, the neutrino energy density is

simply p,(¢) = n,my(¢) (n, is the neutrino number density), while the pressure p,(¢) is
negligible. The effective potential for the scalar field thus reads

B(o) (69)

Verr(9) = V(@) + pu(¢) = V() + numu(9) (70)
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where V (¢) is the original scalar potential. The minimum is obtained for
V(@) +nymi,(¢) =0, (71)

and the mass of the scalar field is given by Vi = V" + p, (3% + /). In this model, the scalar
mass is not as small as for quintessence. Indeed, under the condition

=V +pu (87 + ) > H (72)

the scalar field evolves adiabatically and tracks the minimum of (71) as neutrinos are diluted by
the expansion (n, ~ a™3).

Dark energy is in this case the coupled scalar field-neutrino fluid. Its energy density is simply
px = Vesr. Using (6), we have

. a
Px = _35/))((1 + wx) . (73)
Hence
a OVeg
1 - _
T x 3Veg Oa
_ __ G {m%%—n 8m”_|_a_v]
N Vg |~ Oa Y da da
a 3 ¢ / / } m, V' (¢)
= - ——MyNy a_ v = T Nt TN 4
g [ g el V)| = T (&

where we have used (71). Thus w, turns out to be close to —1 in two cases: a flat scalar
potential V(¢) or a steep dependence of the neutrino mass m,(¢) (which triggers a motion of
the ¢ field following (71)).

If we put numbers, we note that the cosmological bound m, < 1 eV induces an upper bound
on the neutrino energy density €2, < 0.02. Thus Q, ~ 0.70 gives Vg/p, ~ 35. Hence most of
the dark energy density is still in the scalar field.

The difficulty in this type of scenario is that the exchange of the scalar field induces a force
between the neutrinos. They thus feel an effective Newton’s constant [35]

G ~ Gy (14268%m2) (75)

This may lead to the formation of neutrino nuggets which are not observed. The condition for
avoiding such nuggets is roughly: 2ﬁ2m2PQl, < Q,,, that is ﬁQmZP < 15.

3.2. Environmental coupling

We mentionned above that the possibility that masses may depend on the ultralight quintessence
field, leads to stringent experimental constraints. Interestingly enough, one can twist the
problem around and use the couplings of the quintessence field to make its mass dependent
on the environment, or more precisely on the local matter density: within ordinary matter,
it is a massive field and its interacting range remains within the experimental bounds (in the
submillimeter region); without matter, i.e. in outer space, it is almost massless and has a very
large interaction range. This is the basic idea of the so-called chameleon cosmology [36, 37].

Let us illustrate on the example of a scalar-tensor theory

2
= [ dinyTg | R = 0,000 - V) + 5o (6200 (76)
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where 5, is the matter action and 1 a generic matter field. The Euler equation for the scalar

field is then
AVeg

d¢
If V(¢) is a runaway potential and A(¢) is a monotonically increasing function, then the effective

has a ground state which evolves with p,, oc a=3. The coupling between matter and the scalar
field is measured by the field-dependent function

0p = —

» Verr(9) = V(@) + A(9)py - (77)

dlog A(¢)
= ——"" 78
8(0) = =52 (78)
Taking for example a constant 3(¢) = M~ i.e. A(¢) = e?’™ and
n anA4+n
V(g) = Ade@dh/o" % 4 o for ¢ > aA | (79)
we have at the ground state, under the assumption aA < ¢g < M,
na* M A" Yt
b0 = <7> . (80)
P
and the scalar field mass is
n N 1/(n+1)
2 _ Pum p]VIM

One may wander whether the presence of this scalar field modifies the standard tests of
gravity. Let us take for example a large celestial body such as a planet, which we identify with a
sphere of radius R and mass M. In the center of the planet, the matter density fixes the value of
the scalar field at the minimum to be ¢;, and its mass my,, whereas outside the matter energy
density is much smaller and correspondingly the scalar field value is different; we note it ¢out
and the corresponding mass mqyt. Solving the equation for the ¢ field in this static spherically
symmetric situation

d>¢  2do OV
dr? + rdr  0¢
allows to determine the profile ¢(r). The transition between the values ¢y, and ¢oyt occurs in a
region of thickness of order m;_ L a thin shell if mi, R > 1. One can easily deduce the force felt

m

by a test particle of mass m placed at a distance r > R of the center [38]:

ﬁ (¢out - ¢in)
@ b

N

(82)

_ GyMm

F — |1+

- (53)

where ®,, = G, M/R is the Newtonian potential at the surface of the body. One recognizes the
gravitational force in the first term and in the second term the force F'(¢) = —mfd¢/dr induced
by the exchange of the scalar field. We must therefore impose

B (¢out - ¢in)

1. 84
5 < (84)

N
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3.3. Dark matter
The stringent constraint that exists on the coupling of dark energy to observable matter does not
apply to dark matter. It could thus be envisaged that dark energy and dark matter are coupled
[39, 40, 41, 42, 43, 44, 45]. Since dark matter is the main matter component, this coupling
might help to solve the “Why now?” question: the onset of matter domination may have some
influence on dark energy density.

Let us for example [44] consider the case where the dark matter particle x depends on the
value of the dark energy scalar ¢:

my (@) = moexp(—Ag) . (85)

If the scalar potential is exponential, i.e. V(¢) = Vpexp(B¢), there is an attractor solution
corresponding to

3 3+AXAN+0)
- ] Q,~1-—Q =2 AT
In fact, we have
ad A

and, as a result of the coupling between dark matter and dark energy, the following scaling
behavior for the energy densities

Py ~ Py~ a*3(1+W) . (88)

The scaling behavior of dark matter may not seem so surprising when one realizes that
P = M (P)ny ~ a2 (89)

where, as usual, the matter number density scales as a—3.

It might be worth noting that, in this kind of scenario, the onset of acceleration may be at
higher redshift than in the ordinary case [46].

Such scenarios suffer from the same kind of instability as the mass varying neutrino scenario
of section 3.1 [39, 47].

4. Back to the cosmological constant

Given the difficulties inherent to most dark energy scenarios, as we have sen, as well as the
observatinal results which concord towards a value of the equation of state parameter w, close
to —1, it might be advisable to return to the issue of the vacuum energy.

From the point of view of high energy physics, it is difficult to imagine a rationale for a pure
cosmological constant, especially if it is nonzero but small compared to the typical fundamental
scales (electroweak, strong, grand unified or Planck scale). There should be dynamics associated
with this form of energy.

For example, in the context of string models, any dimensionful parameter is expressed in
terms of the fundamental string scale M and of vacuum expectation values of scalar fields. The
physics of the cosmological constant would then the physics of the corresponding scalar fields.

Indeed, it was difficult from the start to envisage string theory in the context of a true
cosmological constant. The corresponding spacetime is known as de Sitter spacetime and has
an event horizon. This is difficult to reconcile with the S-matrix approach of string theory
in the context of conformal invariance. More precisely, in the S-matrix approach, states are
asymptotically (i.e. at times t — +o00) free and interact only at finite times: the S-matrix
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element between an incoming set of free states and an outgoing set yields the probability
associated with such a transition.

Steven Weinberg [48] has constrained the possible mechanisms for the relaxation of the
cosmological constant by proving the following “no-go” theorem: it is not possible to obtain
a vanishing cosmological constant as a consequence of the equations of motion of a finite number
of fields.

Indeed, let us consider N such fields ¢,, n =1,---, N. In the equilibrium configuration these
fields are constant and their equations of motion simply read

oL
—=0 . (90)
Opn

Remembering that Aeg ~ (T*,) where the energy-momentum tensor may be obtained from
varying the metric (T" = 6L£/6g,. ), we see that the vanishing of the cosmological constant is
a consequence of the equations (90) if we can find N functions f,(¢) such that

oL oL
29#1/@ = Z Efn(@) . (91)

This amounts to a symmetry condition, the invariance of the Lagrangian £ under

0guw =209, , Opp = —afa(e) - (92)

However, one can redefine the fields p,, n =1,---, N into g5, a =1,---, N — 1 and ¢ in such a
way that the invariance reads

5guu = 2aguu , 00,=0 , dp=-a . (93)

The Lagrangian which satisfies this invariance is written

£ =\/Det (9g,)L0(0) = €1/|g| Lo(o) . (94)

which does not provide a solution to the relaxation of the cosmological constant, as can be
seen by redefining the metric: g,, = eQ‘f’gW (in the new metric, the field ¢ has only derivative
couplings).

Obviously, Weinberg’s no-go theorem relies on a series of assumptions: Lorentz invariance,
finite number of constant fields, possibility of globally redefining these fields... All attempts to
propose a relaxation mechanism have tried to avoid the conclusions of the theorem by relaxing
one of these asumptions.

4.1. Emergent gravity

Padmanabhan [49] makes an interesting remark regarding the geometric mean formula of
equation (26). Consider a 3-dimensional macroscopic region of size L and divide this region
into N microscopic cells of size £, each having a Poissonian fluctuation in energy of amount
¢ ~ 1/¢,. The mean square energy fluctuation in the macroscopic region is (AE)% ~ N/ EIQD and

the corresponding energy density p = AE/L? = NY/2/(¢,L?). If we assume that the degrees of
freedom scale as the surface enclosing the region, then N ~ (L/f,)? and

1
e

p (95)
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On the other hand, if one makes the more standard assumption that the degrees of freedom
scale as the volume of the bulk region, then N ~ (L/¢,)3 and p ~ 1/(L3/2€51’3/2).

We see that (26) corresponds to the first case, that is equation (95) with L = ¢f,. This may
be a simple numerical coincidence or have a deeper meaning.

Padmanabhan [49] proposes to construct the gravitational interaction as an emergent long
wavelength phenomenon, described in terms of an effective theory using vector fields. The
corresponding action is invariant under the shift 7, — T, + A/(87Gy)guw: the bulk
cosmological constant can be gauged away. It is thus only the degrees of freedom located
in the boundary of the spacetime region considered, which participate to the observed value of
the cosmological constant. This leads naturally to the value (26) or (95).

A simlar route has been followed by C. Hogan [50], who proposes a holographic quantum
geometry of spacetime with only two spatial dimensions. The basic effect can be understood on
the basis of the Rayleigh criterion of wave optics. If one ray of light (wavelength \), emitted
by an aperture of size d, travels a distance L, one observes a diffraction spot of size AL/d. The
endpoints of the ray are uncertain by an amount A'/2LY/2 which corresponds to an aperture of
the same size as the diffraction spot (d ~ AL/d). Setting A = ¢, and L = ¢y, the resemblance
of this uncertainty distance with (26) is striking.

4.2. Fluzes and the landscape
In the context of string and brane theory, an interesting proposal has been put forward, which
makes use of the many nontrivial fluxes present in semi-realistic models [51].

The inspiring example was provided by the Brown-Teitelboim mechanism [52, 53] where the
quantum creation of closed membranes leads to a reduction of the vacuum energy inside. This
is easier to understand on a toy model with a single spatial dimension.

Let us thus consider a line and establish along it a constant electric field Fy > 0: the
corresponding (vacuum) energy is E2/2. Quantum creation of a pair of +¢-charged particles
(g > 0) leads to the formation of a region (between the two charges) where the electric field
is partially screened to the value Ey — ¢ and thus the vacuum energy is decreased to the value
(Eo — ¢)?/2. Quantum creation of pairs in the new region will subsequently decrease the value
of the vacuum energy. The process ends in flat space when the electric field reaches the value
E < q/2 because it then becomes insufficient to separate the pairs created.

In a truly three-dimensional universe, the quantum creation of pairs is replaced by the
quantum creation of membranes and the one-dimensional electric field is replaced by a tensor
field A,,,.There are two potential problems with such a relaxation of the cosmological constant.

First, since the region of small cosmological constant originates from regions with large
vacuum energies, hence exponential expansion, it is virtually empty: matter has to be produced
through some mechanism yet to be specified. The second problem has to do with the multiplicity
of regions with different vacuum energies: why should we be in the region with the smallest
value? Such questions are crying for an anthropic type of answer: some regions of spacetime are
preferred because they allow the existence of observers.

The anthropic principle approach can be sketched as follows [48]. We consider regions of
spacetime with different values of tg (time of galaxy formation) and ¢j, the time when the
cosmological constant starts to dominate i.e. when the Universe enters a de Sitter phase of
exponential expansion. Clearly galaxy formation must precede this phase otherwise no observer
(similar to us) would be able to witness it. Thus t¢ < t5. On the other hand, regions with
tp > tg have not yet undergone any de Sitter phase of reacceleration and are thus “phase-space
suppressed” compared with regions with ¢y ~ t¢. Hence the regions favoured have tx R tg and
thus pa ~ par-
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5. Conclusion: testing dark energy

An ambitious observational program is now set up at the international level to unravel the
mysteries associated with dark energy. After all, if the acceleration of the expansion is to be
explained in terms of dark energy, it is the dominant contribution to the energy density of the
Universe that one is searching for. Cosmological observations associated with large scale surveys,
whether ground-based or space-based, will presumably tell us in the future whether this dark
energy is the energy of the vacuum or a more dynamical form of energy. But, in the latter case,
provided this new form of energy is explained by one or several scalar fields, it is most probable
that tests of fundamental physics such as the equivalence principle, the constancy of constants,...
will provide key information for selecting the right theory.
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