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Abstract

Applications to Condensed Matter and Integrable Systems are explored through the choice of

boundary conditions for the gravitational field in three dimensions and negative cosmological con-

stant (AdS3 GR).

First, a map between two-dimensional Integrable Systems and General Relativity was estab-

lished. We considered a family of boundary conditions depending on the integer N that reveal the

equivalence between first-order Einstein equations and the Ablowitz–Kaup–Newell–Segur (AKNS)

system. The latter encodes a broad family of integrable equations, e.g., KdV, MKdV, Sine-Gordon

and Nonlinear Schrödinger. For N = 1 and odd values of N , and after some settings, we recovered

the Brown-Henneaux boundary conditions and the KdV-type, respectively. The integrability of

the AKNS system was mapped to an abelian infinite-dimensional asymptotic symmetry algebra of

gravitational charges. We identified the conjugacy classes of the spatial holonomy, from where we

conclude that particle sources and (extremal) black hole configurations are attainable.

Lastly, transport properties were studied in a two-dimensional holographic description of AdS3

GR. This scalar theory, invariant under anisotropic scaling and known as the anisotropic chiral

boson, is obtained after the choice of suitable boundary conditions that generalized the Brown-

Henneaux case. Using bosonization techniques, we identified a fermionic current operator. In

the context of linear response theory, we employed the Kubo formula to calculate a two-terminal

conductance which, in its DC limit, reduces to the Ohm’s law. An important feature of this result

lies in the fact that the holographic DC conductivity depends explicitly on the dynamical exponent

that controls the anisotropic scaling. The bulk realization of the linear response is related to a type

of gravitational memory emerging in the context of near-horizon boundary conditions.

Keywords: Boundary conditions; Asymptotic Symmetries; Integrable Systems; AKNS hierarchy;

Anisotropic scaling; Kubo formula.
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Notations

In this thesis, we set ~ = 1.

K = `/4G is the Chern-Simons level, where ` is the AdS3 radius and G the three-dimensional

Newton constant.
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Chapter 1

Introduction

1.1 The holographic principle

Initially conceived by Thorne, ’t Hooft, and Susskind [1–3], respectively, the holographic correspon-

dence states that the dynamical content of a gravitational theory living on a D-dimensional volume

is contained on a (D − 1)-surface. Its first concrete realization was given in the context of string

theory [4], known as the AdS/CFT conjecture. For a theory living on a D-dimensional asymptot-

ically Anti-de Sitter (AdS) space, there is a dual (D − 1)-dimensional conformally-invariant field

theory. Specifically, the seminal correspondence was shown between a type IIB superstring theory

on AdS5 × S5 with a N = 4 super Yang-Mills theory at the large N limit [4–7]. Since General

Relativity, but seen as the low-energy regime of string theory, was mapped to a non-gravitational

quantum field theory, the duality was also referred to as gauge/gravity correspondence.

Many works have continued AdS/CFT correspondences in its original context [8–11] (for classical

reviews, see e.g., [12–15]), and it has been realized that this duality allowed to connect different

branches of physics, for instances, quantum chromodynamics [16–22], particle physics [23], fluid

dynamics [24–30], condensed matter theory (CMT) [31–44] and mathematics [45, 46].

A precursory result of the AdS/CFT correspondence, formulated almost ten years before Malda-

cena’s article [4], is the one of J. D. Brown and Marc Henneaux [47], who proved that by describing

the fall-off of the gravitational field on AdS3, the theory exhibits asymptotically two independent

copies, ±, of the 2D conformal symmetry,

i
{
L±m,L±n

}
= (m− n)L±m+n +

c

12
m3δm+n ,

where m,n are arbitrary integers and c = 3`/2G stands for the Brown-Henneaux central charge.

This lower-dimensional result emphasizes the role of the asymptotic behavior of fields in order

to elucidate holographic properties of gauge theories.
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1.2 Asymptotic symmetries and holography beyond AdS

The imposition of suitable boundary conditions define asymptotic symmetries. These correspond

to the set of gauge transformations that preserve the form of boundary conditions (a more de-

tailed discussion regarding this topic can be found in article [48], reviews [49, 50] and thesis [51]).

Concretely they can be defined as the following quotient group,

Asymptotic symmetry group =
Gauge transformations preserving boundary conditions

Trivial gauge transformations
.

Here, trivial gauge transformations are those carrying no global charges [52]. Thus, asymptotic

symmetries extracts improper gauge transformations that alter the physical state of the system,

and they allow to construct conservations laws associated to gauge symmetries, e.g., energy and

angular momentum in General Relativity (GR) [53–55], electric charge in electrodynamics and in

nonabelian gauge theories [56]; and from the holographic point of view, they correspond to global

symmetries of the dual description [4].

In this context, let us briefly review how asymptotic symmetries played an important role in

what is known as flat holography.

1.2.1 Flat holography

Bondi, van der Burg, Metzner and Sachs showed that the symmetry group of asymptotically flat

spacetimes is an infinite-dimensional extension of Poincaré, labeled as the BMS group [57–59],

which correspond to the semidirect product between the Lorentz group and the infinite-dimensional

abelian group of spacetimes supertranslations, being the latter a generalization of spacetime trans-

lations.

In this regard, an infinite-dimensional extension of Lorentz transformations corresponds to local

conformal transformations, known as superrotations. This allows to enhance the BMS group as the

semidirect product between superrotations and supertranslations.

According to Barnich and Troessaert [60–62], this reconsideration corresponds to the compatible

asymptotic symmetry group in asymptotically flat four-dimensional spacetimes. As a consequence,

this result allows to employ the techniques of 2D conformal field theory at the null infinity as

an holographic four-dimensional reduction of gravity, as suggested long time ago in [63–65]. The

existence of this asymptotic symmetry group gives an indication that the holographic principle can

be extended to its flat counterpart, known as flat holography.

Motivated by the aforementioned works, in recent years this asymptotic symmetry has gained

a lot of interest due its higher-dimensional uplift [66, 67], its appearance in the near-horizon region

of nonextremal black holes [68], the soft hair proposal to solve the information loss in black hole

evaporation [69–79] (for details, see [80]), its connection between soft theorems in Quantum Field
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Theory and memory effects [81] through the Strominger’s triangle [82, 83] and the newly Celestial

Holography program (for a review, see e.g., [84–87]).

1.3 Three-dimensional gravity

Without sources, three-dimensional General Relativity (3D GR) is a trivial theory from the bulk

perspective [88–90], namely, since the Weyl tensor vanishes identically in three dimensions, the

theory does not propagate bulk degrees of freedom, such as gravitational waves. This implies that

the Riemann tensor may be fixed in terms of the Ricci tensor, so the geometry can be locally

classified according to the value of the cosmological constant.

Although this property, boundaries let asymptotic degrees of freedom arise [91]. So the dynam-

ical content is encoded in the choice of asymptotic boundary conditions. Besides, the theory can

be written as a Chern-Simons action for all values of the cosmological constant [92, 93], allowing

to perform the asymptotic analysis bypassing the metric formalism. Moreover, black hole solutions

are admitted for negatively curved spacetimes [94, 95].

1.3.1 BTZ black hole

The Bañados-Teitelboim-Zanelli (BTZ) [94, 95] black hole is an exact stationary and axially-

symmetric solution to 3D GR with negative cosmological constant. In Boyer-Lindquist-like co-

ordinates (t, r, φ), the metric is

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2

(
dφ+Nφ(r)dt

)2
,

where the lapse and shift functions are

N(r) =

(
−8MG+

r2

`2
+

16G2J2

r2

)1/2

, Nφ = −4GJ

r2
,

respectively, and the angular coordinate ranges from 0 < φ ≤ 2π. Here M denotes the mass and J

the angular momentum.

This black hole has Killing vectors ∂t and ∂φ, and possess two event horizons radii r± when the

condition N(r±) = 0 is fulfilled, with

r2
± = 4MG`2

1±

√
1−

(
J

M`

)2
 .

Positive roots are characterized when |J | ≤ M` with M > 0. Hence, extremal configurations are

reached when the former inequality is saturated, i.e., |J | = M`.
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The BTZ black hole has some similarities and differences with the Kerr black hole. Regarding

the similarities, its causal properties are akin, it has an outer event horizon radius r = r+, with

Killing horizon given by the vector field ξ = ∂t+Ωh∂φ, where Ωh is the angular velocity of the event

horizon Ωh = − (gtt/gtφ)|r=r+ = −Nφ(r+); an ergosphere region is present, fufills the Bekenstein-

Hawking area law, possess a Hawking temperature, emerge when gravitational collapse occurs and

exhibits mass inflation [96]. Regarding the differences, it is asymptotically AdS3,

ds2
AdS3

= −
(

1 +
r2

`2

)
+

dr2(
1 + r2

`2

) + dφ2 ,

rather than asymptotically flat, and no curvature singularity appears at the origin.

Because the Ricci tensor of the BTZ is equal to the one of AdS3, it reveals that this solution is

locally AdS3, just as we discussed previously.

From the holographic point of view, this solution has shown its versatility by being a fruitful toy

model in the understanding of the semiclassical properties of black holes. An important question

concerning the aforementioned object is to understand the microscopic origin of the Bekenstein-

Hawking macroscopic quarter of the area law [97]. Motivated by successful results in string the-

ory [98], and using the fact that GR on AdS3 with the Brown-Henneaux boundary conditions is

dual to a theory with conformal global symmetry, Strominger found [99] that the entropy of the

BTZ black hole can be microscopically computed by means of the Cardy formula

S = 2π

(√
cL
6
EL +

√
cR
6
ER

)
,

where cL,R, stands for the left and right copies of the Brown-Henneaux central charge, and EL,R

the left and right energies that depend on M and J .

This features led the using of the BTZ black hole as a laboratory to test new ideas in holography.

1.3.2 Infinite-dimensional symmetries and 3D gravity

Choosing suitable boundary conditions allows us to explore aspects of the holographic nature of

the gravitational field in 3D, which enjoys infinite-dimensional asymptotic symmetries. In this

regard, it is worth mentioning successful examples, such as the ones on AdS3, asymptotically flat

spacetimes, and higher-spin gravity.

Symmetries on AdS3 and its deformations

The Brown-Henneaux case [47] is the starting point to explore conformal holography on AdS3. In

the presence of minimally and nonminimally coupled scalar matter field, the usual central charge c =

3`/2G was obtained in [100], while in higher-curvature gravity, a modification of the latter quantity
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was provided by scaling arguments in [101]. In the context of Topological Massive Gravity [102, 103],

the latter was modified in [104], while specific fall-off for asymptotically AdS3 solutions, compatible

with conformal symmetry, were described in [105, 106]; and in New Massive Gravity [107, 108], in

article [109].

Different infinite-dimensional asymptotic symmetry algebras were obtained by the use of novel

asymptotic boundary conditions, e.g., warped conformal [110–112], centerless warped conformal [68],

twisted warped conformal [113], Heisenberg [114], a generalization of conformal, Heisenberg and

warped [115], sl(2,R) current algebra [116], a generalization of the latter through [117], and a two

centrally extended Virasoro plus a centrally extended (time-dependent) Weyl sector [118], never-

theless, what we will show along this thesis is that conformal symmetry (and its deformations) is

not the only part of this “landscape” in three dimensions.

Symmetries on asymptotically flat spacetimes

An appealing feature of holography on AdS3 is that many of their results and lessons can be

pushed towards its flat limit after a suitable contraction [119–124]. In 3D asymptotically flat

spacetimes, the three-dimensional version of the BMS group appears, labeled as BMS3. The latter

corresponds to the semidirect product of the diffeomorphism group on the circle with an abelian

ideal of supertranslations [125], whose symmetry algebra admits a nontrivial central extension [126],

i{Jm,Jn} = (m− n)Jm+n ,

i{Jm,Pn} = (m− n)Pm+n +
1

4G
m3δm+n ,

i{Pm,Pn} = 0 ,

where Pm and Jm are the superrotation and supertranslations generators, respectively. (Re-

markably, the two-dimensional Virasoro algebra reduces to the Galilean conformal algebra (GCA)

through the nonrelativistic contraction c → ∞ [119, 127, 128], being the latter isomorphic to

BMS3.) The latter algebra appear in different physical contexts, e.g., string theory [129–136],

higher spins [137–144] and massless Klein-Gordon fields [145], and in recent years has shown its

importance by appearing in the near-horizon geometry of three-dimensional black holes [68, 146–

148], applied in holographic entanglement entropy [149–164] and asymptotically counting of grow-

ing microstates by means of compatible Cardy formulas [165–167] of the flat-analogue version of

the BTZ black hole, which is framed in the context of the so-called flat cosmological solutions; and

it was generalized [168] to supersymmetry [169–171] and hypergravity [172, 173].

A comprehensive review in 3D flat holography can be found in [174], while selected thesis in

this topic, in references [175–177].
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Symmetries in higher-spin gravity

As we have seen, Virasoro symmetry plays a central role in holography. Nevertheless, it is possible

to further generalize it when we study higher-spin theories.

Higher spin gravities are gauge theories containing a massless spin 2 particle that couples to

higher-spin fields. These theories are interesting since they might have better quantum properties

than Einstein’s gravity, whose quantum behavior is not understood, along with several holographic

applications, e.g., [178–184].

Although higher-spin fields suffer inconsistencies in their interactions [185, 186], these can be

circumvented by means of Vasiliev equations [187, 188], which non-minimally couple them with

an infinite tower of spin fields s = 0, 1, 2, . . . ,∞, in the presence of cosmological constant. It is

important to mention that the perspective provided by Vasiliev reconciles spacetime and gauge

symmetries in a non-trivial form [189], thus allowing to avoid the no-go theorem of Coleman and

Mandula [190] (for a review on no-go versus yes-go examples on higher-spin gravity, see [142]).

Since there is no action principle and only certain sectors of Vasiliev’s theory are known, one

possible route to gain insights is to reduce the theory to a toy model that captures the most relevant

properties of higher-spin fields. In this regard, the three-dimensional case can be fruitful since

interacting higher particles with gravity can be non perturbatively described by a Chern-Simons

field theory [191–193] (for a review, see [194]).

The above can be further simplified since it is possible to consistently truncate the infinite tower

of particles to the case of a finite number of fields with spin s = 2, 3, . . . , N . Therefore, the simplest

case to deal with corresponds to N = 3, which is gravity non-minimally coupled to a spin-three

field with a negative cosmological constant. This allows to find exact black hole solutions, endowed

with a non-trivial spin 3 hair, as reported in [195–198].

In the previously mentioned context, asymptotic symmetries were studied in [199–204], along

with introduction of chemical potentials [197, 198, 205], unambiguously characterizing their global

charges, which turns out to be the Zamolodchikov WN algebra [206].

W algebras appeared originally in the context of 2D Conformal Field Theory [206–209] and they

are closely related to Integrable Systems as a second Hamiltonian structure in KdV-like hierarchies

such as the Boussinesq equation [210].

1.4 Integrable Systems and the asymptotic dynamics of 3D

GR

Just as infinite-dimensional symmetries emerge naturally in 3D GR, they also appear in the context

of Integrable Systems.
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Several well-known nonlinear equations, such as the Korteweg-de Vries (KdV) [211, 212], Non-

linear Schrödinger (NLS) [213], Sine-Gordon (SG) [214], Toda lattice [215], and many other that

appear in nature [216–218], including in GR [219], are known to be solvable. These equations belong

to a more broad topic, known as Integrable Systems (classical textbooks are, e.g., [220–222]).

Different definitions of Integrable Systems can be found in the literature. For example, by Liou-

ville’s theorem, an integrable equation admits sufficiently conserved quantities in order to integrate

the equations of motion [223]. Concretely, for a finite 2n-dimensional symplectic Hamiltonian sys-

tem, we say it is completely integrable if a maximal set of n functionally-independent conserved

quantities are admitted, partially integrable if there are less than n, superintegrable if there are

greater than n, and maximally superintegrable when an amount of 2n − 1 conserved quantities

exists [224].

Although Liouville’s theorem provides a definition of what finite-dimensional integrable systems

are, there is no universally accepted definition for its infinite-dimensional analogue [222]. This is

the reason why integrable systems manifests through the following broadly criteria [225]:

• The existence of “enough” conserved quantities, and

• the possibility to obtain explicit solutions,

A relevant type of solutions, supported by a solid experimental basis [226–230] are solitons. Ac-

cording to [221], these waves are localized within a spacetime region, they are of permanent form,

scatter with other solitons and emerge from the collision unchanged, up to a phase shift. They

appear due to a “fine process”; the nonlinearity is canceled with certain effects (such as dissipation

in the KdV or dispersion in the Burgers equation). Examples are the kink and breathers (peri-

odic solitons) of SG, n-soliton and cnoidal waves of KdV [231], peakons of Camassa-Holm [218],

Peregrine [232] and Akhmediev [233] breathers of NLS, among others.

These waves are constructed by particular methods, for instances, the Inverse Scattering [234–

237] and Bäcklund transformations [238–242]. The first is a nonlinear extension of Fourier analysis

(for details, see [243]), while the second extends the superposition principle to the nonlinear case

(for a introductory discussion, see [244]; for concrete examples, see [245–248]; and for a detailed

treatise on the subject, see [249]). Other techniques are the Hirota’s bilinear method [250], Painlevé

criteria [251, 252], Lie groups [253], Consistent Tanh Expansion [254–259], nonlocal symmetries [260,

261] and Darboux transformations [262, 263].

The existence of conserved charges is a consequence of the invariance under particular trans-

formations [264]. In this context, a large number of equations in field theory [265, 266] admit the

following formulation,

u̇ = D1

(
δH2

δu

)
= D2

(
δH1

δu

)
, (1.4.1)
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where u = u(t, φ) stands for the dynamical field, Hn =
´
dφ Hn, with Hn = Hn[u] a density

depending on u and its spatial derivatives, δ/δu denotes the functional derivative operator with

respect to u and D1,2 are integro-differential operators. If D1 and D2 are compatible Hamiltonian

operators, we say that Eq. (1.4.1) is a bi-Hamiltonian system [253]. If we are able to solve the

recurrence relation

δHn+1

δu
= D−1

1 ◦ D2

(
δHn

δu

)
, (1.4.2)

for all positive integers n (namely, we are able to find Hn+1 in terms of Hn), the bi-Hamiltonian

formulation with this property implies the existence of infinite Poisson-commuting quantities [267,

268],

Ḣn = {Hn, Hm}1,2 = 0 , n = 0, 1, 2, . . . , (1.4.3)

where {,}1,2 stands for the Poisson bracket associated to the Hamiltonian operators D1,2,

{F [u], G[u]}1,2 =

ˆ
dφ

δF

δu
D1,2

(
δG

δu

)
, (1.4.4)

respectively. The involution of charges Hn in (1.4.3) reveals then the integrability of the sys-

tem [269–274]. This fact implies that these nonlinear equations possess a thoroughly symmetric

structure.

It is in this context where Integrable Systems meet 3D GR: Through the imposition of suitable

boundary conditions for the gravitational field, the involution of the infinite conserved charges of the

treated integrable hierarchy translates to the infinite-dimensional abelian asymptotic symmetries

of gravitational charges devoid of central extensions.

In holography, the above means that sectors of the asymptotic dynamics of 3D GR will be

described by an integrable hierarchy, i.e., the Einstein equations of motion will be shown equivalent

to the aforementioned system and the global symmetries of the putative dual field theory satisfies

the classical algebra (1.4.3).

Recent works have shown indications about the holographic relationship between the asymp-

totic nature of 3D GR and Integrable Systems. On AdS3, motivated by articles [197, 198], Pérez,

Tempo, and Troncoso introduced suitable field-dependent asymptotic behavior of the Lagrange

multipliers of the Chern-Simons 1-form gauge connection, so at the boundary, gravitational excita-

tions were governed by the KdV hierarchy [275], from where, exploiting its anisotropic scaling and

the duality between the high and low-temperature behavior, a compatible Cardy formula for the

entropy was found. Moreover, its Hawking-Page phase transition was analyzed in [276]. Similarly,

the holographic connection with the Benjamin-Ono [277], the KdV/MKdV [278] and, for the case
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of gravity coupled to spin-N fields, the Boussinesq hierarchy [279], was also established.

On the other hand, in the context of asymptotically flat spacetimes, the flat analog of the KdV

hierarchy [275] was found in [280].

1.5 Nonrelativistic holography and General Relativity

Lifshitz symmetry appears in physical systems that are invariant under the following anistropic

scaling

t→ λzt , xi → λxi , i = 1, 2, . . . , (1.5.1)

where z is known as the dynamical exponent. When z = 1 and z = 2 it is possible to enhance the

symmetry of the spacetime in order to include the Lorentz and Galilean group, respectively, while

for others z, boost invariance is explicitly broken.

We have four motivations to discuss this type of holography. First, this symmetry allows us

to explore holographic aspects beyond AdS [281–289] on account with its nontrivial presence in

black hole physics [290–296]; secondly, due its intimate connection with integrable hierarchies in

3D GR, as shown in [275–277]; thirdly, its appearance in a variety of condensed matter systems,

such as heavy fermions [297, 298], semiconductors [299] and quantum critical phenomena [300]

(thus bringing the possibility to address holography in nonrelativistic set-ups); and lastly, it allows

the computation of quantities of physical interest, e.g., (entanglement) entropy [301–304], transport

properties [305–314] and quasinormal modes [315], in analogy to Virasoro and BMS.

It is in the context of 3D GR where we can concretize holographic relationships with 2D

anisotropic scaling field theories, since Lifshitz behavior emerge as global symmetries of the pu-

tative dual theory [275, 277, 278, 280, 316, 317], which are succesfully generalized to higher-spin

gravity [275, 318–325].

2D Lifshitz-invariant models are known to appear in 2D (anti) ferromagnet systems [326, 327]

and in the chiral Potts model [328]. One appealing attribute of these lower-dimensional models are

the duality that they exhibit between the high and low-temperature behavior [329]. If a gap energy

separates both regimes, this duality allows an account for the asymptotic growth of states, leading

to a compatible Cardy-like formula for the entropy that depends on the dynamical exponent z,

where for z = 1, the entropy reduces to the standard one of conformal field theory.

The anisotropic version [329] not only tends to tie with integrable hierarchies, as said, but with

number theory as well [277].
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1.6 Aim of this thesis

According to the previous discussion, the general objective of this thesis is to expand the “landscape”

of GR on AdS3 through the choice of a new set of suitable asymptotic boundary conditions. By

characterizing its asymptotic symmetries, we will address this through two examples.

Because in 3D the Chern-Simons equations of motion are a zero-curvature condition (see more

in Eq. (2.2.1)), in article [330] we report on a family of boundary conditions labeled on a single

integer, N , N̄ , that reveals the equivalence between first-order Einstein equations and the Ablowitz-

Kaup-Newell-Segur (AKNS) system [234], which comprises a large number of well known integrable

hierarchies, e.g. the KdV, MKdV, SG, and NLS. For example, for N = 1 and odd values of N , and

after some settings, we obtain the Brown-Henneaux [47] and KdV-type boundary conditions [275],

respectively.

In integrable models, a nontrivial task is to find its conserved functionals and prove its involution.

One of the main advantages in the zero-curvature description of spacetime dynamics,

ftφ = ∂taφ − ∂φat + [at, aφ] = 0 , (1.6.1)

lies in the ability to employ the trace formula [331] in order to explicitly reveal the aforementioned

quantities. From the gravity side, it allows to relate boundary conditions, the gauge fields a

that generates the zero-curvature equations of motion, and conserved charges in a single formula.

Particularly, it is described in Eq. (2.1.20), and treated in detail in Appendix C.3.

Thus, the integrability of the AKNS system is mapped to an abelian infinite-dimensional asymp-

totic symmetry algebra of gravitational charges. By characterizing the conjugacy classes of the

angular holonomy, particle sources and (extremal) black hole configurations were shown attainable

from the asymptotic behavior. Hence, local excitations of black holes obey several integrable equa-

tions. Summarizing, integrable systems were provided with a gravitational account, and viceversa,

in such a way that the properties of one flowed into the properties of the other.

In [332], we formulated the anisotropic chiral boson description [333] as a dual field theory

of AdS3 GR through suitable boundary conditions that induce Lifshitz symmetry. We show that

this theory corresponds to local excitations of the gravitational field at the near-horizon sector

of a Rindler spacetime. Due to the fractional statistics of this theory, with help of bosonization

elements, we construct a fermionic quantum charge operator. By means of the Kubo formula [334,

335], we compute a two-terminal conductance at its DC limit. As a consequence of its symmetry,

the latter depends explicitely on the dynamical exponent z. Additionally, we conclude that chiral

bosons stores DC information of the boundary electric current, changing the charges of the system.

These features can be recognized as the lower-dimensional analogue of 4D gravitational memory

effect [82, 336].
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1.7 Outline of this thesis

This thesis is divided in two parts. The connection between General Relativity on AdS3 with

Integrable Systems is explored in the first part, while the connection with Condensed Matter Theory

and Lifshitz symmetry is treated in the second one.

In Chapter 2, we introduce the AKNS integrable model and we prove its integrability, according

to [234, 267, 268].

In Chapter 3 we review the role of asymptotic boundary conditions in the Chern-Simons for-

mulation of AdS3 GR. As an example, we treat the Brown-Henneaux case in detail.

In Chapter 4, through the choice of consistent AKNS-type boundary conditions, we connect

AdS3 GR with the aforementioned integrable hierarchy.

This finish the first part of this thesis.

In Chapter 5 we review aspects of linear response theory and we obtain the Kubo formula.

In Chapter 6 we review aspects regarding the anisotropic chiral boson theory. We emphasize

its u(1) symmetry, its anyonic nature and we obtain that the associated u(1) Noether charges can

be interpreted as fermionic quantities.

In Chapter 7 we introduce novel asymptotic boundary conditions that induces Lifshitz symmetry.

Through the Hamiltonian reduction of Chern-Simons theory, anisotropic chiral excitations (with an

external source) effectively describe gravitational boundary degrees of freedom. We use the Kubo

formula to obtain a two-terminal conductance that depends on the anisotropic dynamical exponent

z. We geometrize this result and we understand how can be interpreted as 3D memory effect.

This finish the second part of this thesis.

In Chapter 7 we conclude this thesis work and we discuss future prospects.
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Part I

Integrable Systems and General

Relativity
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Chapter 2

The AKNS system

As we have reviewed in the introduction, the robustness and diversity of methods for solving inte-

grable nonlinear partial differential equations [238–242, 244–248, 250–263] are of vital significance

for a wide variety of physics areas [243], and the AdS/CFT correspondence as well [337]. In par-

ticular, in this chapter we will focus our attention on the Ablowitz-Kaup-Newell-Segur (AKNS)

system, reported originally in article [234]; a 1 + 1 integrable model that comprises several famous

differential equations, such as the Korteweg-de Vries (KdV), Modified Korteweg-de Vries (MKdV),

Sine-Gordon (SG), and nonlinear Schrödinger (NLS) equations into one single formalism. Its inte-

grability was manifested by means of the Inverse Scattering Transformation (IST) [234]. However,

as is usually the case with several integrable hierarchies, the AKNS model admits a Lax represen-

tation and a zero curvature formulation. The latter will bring us the key relationship for its future

geometrization in the context of 3D GR, as it shows an intimate connection with the sl(2,R) Lie

algebra.

2.1 Aspects of the system

2.1.1 The model

In this section, the AKNS system is postulated. Following recursive methods, we explicitly construct

the first three hierarchies associated to this system.

With coordinates t and φ, where 0 ≤ φ ≤ 2π, the (Wick-rotated version of the) AKNS model is
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given by the following system of nonlinear partial differential equations

ṙ +
1

`
(C ′ − 2rA− 2ξC) = 0 , (2.1.1a)

ṗ+
1

`
(B′ + 2pA+ 2ξB) = 0 , (2.1.1b)

A′ − pC + rB = 0 , (2.1.1c)

for dynamical functions r = r(t, φ) and p = p(t, φ), where u′ ≡ ∂φu, u̇ ≡ ∂tu, ` is a constant with

dimension of length (which in the GR side will correspond to the AdS3 radius), ξ a constant without

dimensions referred in the literature as spectral parameter and A, B and C are composite arbitrary

functions of the fields r(t, φ) and p(t, φ) that has to be specified. In order to construct the AKNS

conserved densities, we will assume the fields are identified in 0 and 2π, i.e., r(t, 0) = r(t, 2π) and

p(t, 0) = p(t, 2π).

A simple method to find solutions of the previous system consist to perform a polynomial

expansion in ξ for the functions A, B and C as following

A =

N∑
n=0

Anξ
N−n, B =

N∑
n=0

Bnξ
N−n, C =

N−n∑
n=0

Cnξ
N−n , (2.1.2)

where N is an arbitrary positive integer. Replacing in (2.1.1a), (2.1.1b) and (2.1.1c), respectively,

we obtain the following set of dynamical equations

ṙ =
1

`
(−C ′N + 2rAN ) , ṗ =

1

`
(−B′N − 2pAN ) , (2.1.3)

while every coefficients of the expansion (2.1.2) satisfy the following recursive relations

A′n = pCn − rBn , (2.1.4a)

Bn+1 = −1

2
B′n − pAn , (2.1.4b)

Cn+1 =
1

2
C ′n − rAn , (2.1.4c)

along with conditions B0 = C0 = 0. The deduction of the above relationships are performed in

Appendix C.1.

It is possible to explicitly construct every term of the previous recursion. If we replace n = 0

in (2.1.4a), we readily find A′0 = 0. Integrating, we obtain that A0 is an arbitrary constant. To

simplify the discussion, let us assume for the moment that this constant is fixed to the unity. Then,

readily B1 = −p. We can perform the same analysis and find C1 = −r. Therefore, we find that

A′1 = 0, from where we obtain a different constant after integration. For the sake of simplicity,

fixing the latter and subsequent integration constants to be zero, we can find B2, C2 and so on.
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However, if we let all integration constants survive, the analysis will be similar (see Appendix C.2).

Hence, for the forthcoming analysis, we will consider the aforementioned homogeneous choice.

We write here the first three coefficients

A0 = 1, A1 = 0 , A2 = −1

2
pr ,

B0 = 0 , B1 = −p , B2 =
1

2
p′ ,

C0 = 0 , C1 = −r , C2 = −1

2
r′ .

(2.1.5)

With them, we can explicitly write the first three dynamical equations according to (2.1.3) and

recover the mentioned integrable hierarchies. For N = 1, we replace its associated coefficients, A1,

B1 and C1, and we obtain the chiral boson equations

ṗ =
1

`
p′, ṙ =

1

`
r′ , (2.1.6)

while for N = 2 we arrive to the following nonlinear differential equations

ṗ =
1

`

(
p2r − 1

2
p′′
)
, ṙ =

1

`

(
−pr2 +

1

2
r′′
)

; (2.1.7)

and for N = 3 we get the following nonlinear system with third derivatives

ṗ =
1

`

(
−3

2
pp′r +

1

4
p′′′
)
, ṙ =

1

`

(
−3

2
prr′ +

1

4
r′′′
)
. (2.1.8)

It is possible to compute subsequent equations for N > 3, however, let us recover different integrable

equations at this point. Case N = 1 correspond to the chiral boson system, N = 2 to the Wick

rotated nonlinear Schrödinger equation1, and N = 3 recovers KdV and MKdV when r = −1 (or

p = −1) and p = −r, respectively.

As we have said, the Sine-Gordon (SG) equation is also included in this formalism. To make it

appear explicitly, let us redefine the fields as

p = −1

2
u′ , r =

1

2
u′ , A =

1

4ξ
cosu , B = C =

1

4ξ
sinu , (2.1.11)

1The argument is the following. The nonlinear Schrödinger equation and its complex conjugate equation are given
by

iṗ =
1

`

(
p2p∗ −

1

2
p′′

)
, −iṗ∗ =

1

`

(
p∗2p−

1

2
p∗′′

)
. (2.1.9)

Performing a Wick rotation t→ iτ , we obtain

ṗ =
1

`

(
p2p∗ −

1

2
p′′

)
, ṗ∗ =

1

`

(
−p∗2p+

1

2
p∗′′

)
. (2.1.10)

Labeling p∗ = r, we arrive to (2.1.7). We stress that the functions p and r must be real, so as a final step, we must
impose r ∈ R.
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at the level of equations (2.1.1), yielding

u̇′ =
1

`
sinu . (2.1.12)

Aspects regarding the geometrization of this equation will be given in future works.

2.1.2 Conserved quantities as a recursive construction

As said in the introduction, the identification of conserved charges is crucial to prove the integra-

bility of any system of nonlinear partial differential equations. Following [234], here we present a

recursive deduction of these quantities.

From the equations of motion (2.1.1b) and (2.1.1a), it is possible to write B and C as

B =
1

2ξ
(−2pA−B′ − `ṗ) , C =

1

2ξ
(−2rA+ C ′ + `ṙ) . (2.1.13)

Using A′ given in (2.1.1c), and after an integration by parts, we arrive to

A′ =
1

2ξ

∂

∂t
(`pr) +

1

2ξ

∂

∂φ
(pC + rB)− 1

2ξ
(p′C + r′B) . (2.1.14)

Repeating the process, we have the following recursive series

A′ =
`

2ξ

∂

∂t
(pr) +

1

2ξ

∂

∂φ
(pC + rB)− 1

(2ξ)
2

∂

∂φ
(p′C − r′B)

− 1

(2ξ)
2

∂

∂φ
(2prA)− `

(2ξ)
2

∂

∂t
(p′r − pr′) +

`

(2ξ)
2 (ṗ′r + pṙ′)

− 1

(2ξ)
2

[(
2p2r − p′′

)
C −

(
2pr2 − r′′

)
B
]
,

(2.1.15)

which can be written in the following form,

A′ =
`

2ξ

∂

∂t
(pr)− `

(2ξ)
2

∂

∂t
(p′r − pr′) +

∂

∂φ
(. . . ) + . . . . (2.1.16)

We encoded all terms with spatial derivatives in the first ellipsis, while lower powers in ξ in the

second one. Integrating in φ between 0 and 2π, we obtain

A(2π)−A(0) =
`

2ξ

∂

∂t

ˆ 2π

0

dφ pr − `

(2ξ)
2

∂

∂t

ˆ 2π

0

dφ (p′r − pr′) . (2.1.17)

The total derivatives on the angular component vanishes because p and r are identified when

φ = 0, 2π, as said below Eq. (2.1.1). Besides, the latter identification implies that A(2π) = A(0),

and since ξ is arbitrary, we obtain a sequence of globally conserved quantities.
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Thus, the first nontrivial densities are

H2 = −pr, H3 =
1

4
(p′r − pr′) , . . . , (2.1.18)

where Hn =
´
dφ Hn. An explicit list of these quantities can be found in Appendix C.5.

2.1.3 Integrability

In this section we address the integrability of the AKNS system. An important step is to establish

the relationship between the coefficients An, Bn and Cn with the found conserved quantities Hn

and its functional derivatives, δHn/δp and δHn/δr. This will lead us to easily write the AKNS

equations of motion as a bi-Hamiltonian system.

In Appendix C.3, it is established the aforementioned relationship,

An =
n− 1

2
Hn , Bn =

δHn+1

δr
≡ Rn+1 , Cn =

δHn+1

δp
≡ Pn+1 , (2.1.19)

for n ≥ 1 by means of the trace formula [331]

δ

δu

ˆ
tr

(
at
∂aφ
∂ξ

)
dφ = ξ−γ

∂

∂ξ
ξγ tr

(
at
∂aφ
∂u

)
. (2.1.20)

Here, u =

p
r

, tr stands for the matrix trace, γ an arbitrary constant to be determined and a are

1-form gauge fields (this quantities will make sense when we write the AKNS system in the zero-

curvature formulation, in Section 2.2). The aforementioned is a general tool in the zero-curvature

formulation of Integrable Systems that allow us to establish a relationship between the coefficients

of the polynomial expansion (2.1.2) and functional conserved densities Hn. Succesful applications

of the trace formula are, e.g., the N -AKNS [331], Kaup-Newell [338] and Camassa-Holm [339]

hierarchies. For details, see Appendix C.3.

Thus, naturally we can write the AKNS system (2.1.3) in a bi-Hamiltonian fashion

ṙ
ṗ

 = D1

RN+1

PN+1

 = D2

RN+2

PN+2

 , (2.1.21)

where D1 and D2 are the following compatible Hamiltonian operators [253]

D1 =
1

`

 −2r∂−1
φ r −∂φ + 2r∂−1

φ p

−∂φ + 2p∂−1
φ r −2p∂−1

φ p

 , D2 =
1

`

0 −2

2 0

 . (2.1.22)
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The Poisson bracket of the first {,}1 and second {,}2 Hamiltonian structures are defined then as

{F [r, p], G[r, p]}1,2 =

ˆ
dφ
(
δF
δr

δF
δp

)
D1,2

 δG
δr

δG
δp

 , (2.1.23)

respectively.

The involution of charges is a consequence of the bi-Hamiltonian formulation and the compati-

bility of operators D1,2 [253, 267, 268] (see Section 1.4 for a detailed review). Define the transpose

operator Mt = D−1
1 ◦ D2, which satisfies the following recursion relation (recall Eq. (1.4.2))

δHn+1

δu
= Mt

(
δHn+2

δu

)
, n ∈ N0 , (2.1.24)

then it is possible to prove that the conserved quantities Hn Poisson-commute with each other

under the first and second brackets (2.1.23), i.e.,

Ḣn = {Hn, Hm}1,2 = 0 , n = 1, 2, . . . . (2.1.25)

As showed in Appendix C.4, since all charges are in involution, we have thus proven the integrability

of the AKNS system.

2.2 Zero-curvature formulation

Integrable systems can be written in different forms. One of them, and the AKNS is not the

exception, is the zero-curvature formulation,

ftφ ≡ ∂taφ − ∂φat + [at, aφ] = 0 , (2.2.1)

where aφ and at are some connections spanned in a particular Lie algebra. In the context of AdS3

GR, the dynamics of the gravitational field is equivalent to (2.2.1), since Einstein equations can be

written as two independent copies of the zero-curvature equation in the Chern-Simons formulation

of gravity

F± = dA± +A± 2 = 0 , (2.2.2)

where A± = A±µ (t, r, φ)dxµ, with µ = t, r, φ. After a suitable choice of function b± in the gauge

transformation

a± = b−1
±
(
d+A±

)
b± , (2.2.3)
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it is possible to gauge-away the radial dependence of the fields [91], so Eq. (2.2.2) turns equivalent

to (2.2.1).

Regarding the deduction of Eq. (2.2.1, the zero-curvature equation of motion arise as a com-

patibility condition of a more fundamental auxiliary system. Consider the following linear problem

∂φU = Uaφ, ∂tU = Uat , (2.2.4)

where U is a column vector with dependence on t, φ and ξ. Equation (2.2.1) can be obtained by the

following procedure: Derive with respect to the time and the angle the first and second equation

of (2.2.4), respectively,

∂t∂φU = ∂tUaφ + U∂taφ , ∂φ∂tU = ∂φUat + U∂φat . (2.2.5)

Substracting them we find

U (∂taφ − ∂φat) + ∂tUaφ − ∂φUat = 0 . (2.2.6)

Replacing (2.2.4), we finally obtain

Uftφ = 0 . (2.2.7)

If U 6= 0, we arrive to (2.2.1).

Regarding to the AKNS system, it can be obtained if we consider the following gauge connections

aφ = −2ξL0 − pL1 + rL−1 , at =
1

`
(−2AL0 +BL1 − CL−1) , (2.2.8)

where L0,±1 are the generators of the sl(2,R) Lie algebra,

[Ln, Lm] = (n−m)Ln+m , (2.2.9)

for n = 0,±1 (see Appendix A for further properties of the sl(2,R) Lie algebra). As emphasized in

the introduction, one of the advantages to write integrable equations as a zero-curvature formulation

lies in the possibility to construct its conserved functionals by means of the trace formula (2.1.20).

As we will see in next chapters, the zero-curvature formulation of Integrable Systems finds a

natural application on AdS3 GR, since the Einstein equations can be written as a zero-curvature

equation of motion (2.2.1), as we previously emphasized. From the holographic perspective, the

choice of the 1-form gauge connection will correspond to boundary conditions for the gravitational

side, from where it will be possible to obtain the AKNS system as the asymptotic dynamics of
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AdS3 GR . This map will be addressed in Chapter 4.
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Chapter 3

The role of boundary conditions in

three-dimensional General Relativity

3.1 Preliminary discussion

In three dimensions, GR is known is abscent of propagating degrees of freedom, such as bulk

gravitational waves. Physically, this is due the vanishing of the Weyl tensor, leaving the theory

as a topological field one. We can prove this argument by counting the numer of independent

components that the Riemann tensor has, since it can be written in terms of the Weyl tensor as

Rµνλρ = Wµνλρ +
2

D − 2

(
gλ[µRν]ρ +Rλ[µgν]ρ

)
− 2

(D − 1) (D − 2)
gλ[µgν]ρR . (3.1.1)

Due the antisymmetry properties and the Bianchi identities, the Riemann tensor has D2(D2−1)/12

independent components. Therefore, the Weyl tensor has

D2
(
D2 − 1

)
12

− D (D + 1)

2
=
D (D + 1) (D + 2) (D − 3)

12
, (3.1.2)

independent components, vanishing identically in D = 3, proving that in this dimension there are

no gravitational waves. Another consequence of this result lies in the ability to classify the geometry

of each 3D solution in the vacuum with the value of the cosmological constant Λ.

Taking the trace of vacuum Einstein equations, we obtain that R = 6Λ. Replacing this value on

the latter equations, we can fix the Ricci tensor to Rµν = 2Λgµν . Because the Weyl tensor vanishes,

it is possible to prove that the Riemann tensor is proportional to the cosmological constant,

Rµνλρ = Λ (gλµgρν − gλνgρµ) . (3.1.3)
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Therefore, we conclude that every solution of 3D Einstein equations can be classified as following,

• Λ > 0 correspond to solutions that are locally dS3,

• Λ = 0 correspond to solutions that are locally Mink3,

• Λ < 0 correspond to solutions that are locally AdS3.

This is the reason why the discovery of the BTZ black hole on AdS3 [95] was surprising, since it

was believed that no black hole solution was allowed in this theory.

Although 3D GR is a trivial theory from the bulk perspective, characterizing asymptotic degrees

of freedom will be given by fixing boundary conditions [91]. Thus, all of the dynamical content

of the theory is captured in the election of suitable boundary conditions of the gravitational field.

The criteria to choosing them, originally reported in [54], are:

(a) To ensure the differentiability of the action principle,

(b) generators of conserved charges must be finite,

(c) includes gravitational solutions of physical interest, such as black holes.

In this chapter we review the asymptotic aspects of three-dimensional General Relativity with

negative cosmological constant by using the Chern-Simons formulation [92, 93]. The Brown–

Henneaux example is treated in detail in order to illustrate the previous criteria, and to prepare

the necessary concepts of Chapter 4.

3.2 Three-dimensional General Relativity

In the vacuum and with negative cosmological constant, General Relativity can be described in

terms of two copies of the Chern-Simons action [92, 93]

I = ICS[A+]− ICS[A−] , (3.2.1)

where the Chern-Simons action is defined as

I±CS[A±] =
K

4π

ˆ
M

〈
A±dA± +

2

3
A±3

〉
. (3.2.2)

K is known as the level of the theory and is defined as K = `/4G, where ` is the AdS3 radius and

G the three-dimensional Newton constant. M = Σ×R is a manifold in three dimensions, with Σ a

two-dimensional spacelike manifold with coordinates (r, φ), with 0 ≤ r < ∞ and 0 ≤ φ ≤ 2π, and

R correspond to time. Wedge product is understood and 〈.〉 stands for the invariant nondegenerate

bilinear form.
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For GR on AdS3, the 1-form gauge connectionA is spanned in the Lie algebra g = g++g−, where

g± denotes the two independent copies of sl(2,R). For Minkowski space, the gauge connection is

spanned in the iso(2, 1) Lie algebra, while for dS3 in sl(2,C).

The connection splits as A = A+ + A−, and it is related with the triad ea = eaµdx
µ and the

spin connection ωaµdxµ as following

A± = ω ± e

l
. (3.2.3)

The first-order Einstein equations reads as the zero-curvature condition

F± ≡ dA± +A± 2 = 0 . (3.2.4)

This is the same equation where we can write the AKNS system of Chapter 2, but now there are

two (decoupled) sl±(2,R) copies.

3.2.1 Constraint analysis and boundary terms

Here we review the constraint structure of Chern–Simons theory, following [340, 341]. Further

details can be found in Appendices D.1 and D.2.

Performing a 2 + 1 splitting A±µ = (A±0 ,A
±
i ), in components, we can write the Chern–Simons

action as

I±H = −K
4π

ˆ
Σ×R

dtd2xεij
〈
A±i Ȧ

±
j −A

±
0 F
±
ij

〉
+ B± , (3.2.5)

where B± is a boundary term chosen such that it ensures the differentiability of the action I±H ,

d2x = drdφ and εij ≡ ε0ij . We can see that A±0 is a Lagrange multiplier and F±ij a constraint of

the theory. Performing an infinitesimal variation of (3.2.5), we obtain

δI±H = −K
4π

ˆ
dtd2x εij

〈
2F±i0 δA

±
j − δA

±
0 F

±
ij + ∂t

(
A±i δA

±
j

)
− ∂i

(
2A±0 δA

±
j

) 〉
+ δB± , (3.2.6)

Vanishing the terms that contributes to the equations of motion, the action (3.2.6) is just surface

integrals

δI±H = −K
4π

ˆ
dtd2x εij

〈
∂t
(
A±i δA

±
j

)
− ∂i

(
2A±0 δA

±
j

) 〉
+ δB± . (3.2.7)

Assuming the fields vanishes for t1 and t2, as following

δA±j (t1, r, φ) = 0 , and δA±j (t2, r, φ) = 0 ,
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the surface integral reads

δI±H = −K
2π

ˆ
dtd2x

〈
∂r

(
εrφA±0 δA

±
φ

)
+ ∂φ

(
εφrA±0 δA±r

) 〉
+ δB± . (3.2.8)

Choosing manifold orientation εrφ = 1, and angular periodicity in the fields, the angular surface

integral also vanishes. Using Stokes’ theorem, we arrive then to the following surface integral

δI±H =
K

2π

ˆ
∂M

dtdφ
〈
A±0 δA

±
φ

〉
+ δB± . (3.2.9)

Because the action principle must be differentiable, we find that the infinitesimal variation of the

boundary term is

δB± = −K
2π

ˆ
∂M

dt dφ
〈
A±0 δA

±
φ

〉
. (3.2.10)

We can see from (3.2.10) that specific asymptotic behavior of the fields is necessary in order to

integrate the boundary term δB±. The choice is subtle, since A0 is a Lagrange multiplier and is

not fixed by the equations of motion due the presence of first-class constraints [52].

According to [91], if we perform a gauge transformation

a± = b−1
±
(
d+A±

)
b± , (3.2.11)

where b±(r) its a particular global gauge parameter, it will capture the radial dependence of the

connection A±.

The gauge fields now are a± = a±t (t, φ)dt + a±φ (t, φ)dφ, i.e., they do not depend on the radial

coordinate r. Thus, the boundary term reads

δB± = −K
2π

ˆ
∂M

dt dφ
〈
a±t δa

±
φ

〉
. (3.2.12)

Suppose we have boundary conditions of the form a±φ = L±(t, φ)L0 and a±t = 1
`µ
±(t, φ)L0, where

µ± is a composite function of L±(t, φ). With this election, we do not know how to integrate the

associated surface integral (3.2.12), since it is unknown the explicit field-dependent form of µ± [197,

198] and [275]. Following the latter reference, imposing µ± = δH±

δa±φ
, the boundary term (3.2.12)

readily integrates. Moreover, the equation of motion is L̇± = ± 1
`∂φ

δH±

δa±φ
. This is a Hamiltonian ap-

proach of the zero-curvature equation of motion. The latter election shows the connection between

AdS3 GR with Integrable Systems.

3.2.2 Generator of charges

Using the approach of Jackiw [342], the constraint analysis is performed in this section.
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In the Chern-Simons formulation, gauge transformations can be seen as the following infinites-

imal transformation (we discard the ±-notation although the forthcoming results stands for both

copies)

δA = dΛ + [A,Λ] . (3.2.13)

According to [340], gauge transformations are generated by the constraint of the theory,

G [Λ] =
K

4π

ˆ
Σ

d2x εij
〈

ΛFij

〉
+Q[Λ] , (3.2.14)

with a boundary term chosed such that ensures the differentiability of the constraint. Regarding

this boundary term, we will take care of it the next page.

It is necessary to compute the symplectic structure, namely, the Poisson bracket of the theory.

For this purpose, consider the action (3.2.5)

IH = −K
4π

ˆ
Σ×R

dtd2x εijgab

(
Aai Ȧbj −Aa0F bij

)
, (3.2.15)

where gab = 〈La, Lb〉 is the Killing metric of sl(2,R). Define

ljc(x) =
K

4π
εjkgcdAdk(x). (3.2.16)

Then, the 2-symplectic structure reads

σijab(x, x
′) =

δlja(x)

δAbi (x′)
− δlib(x)

δAaj (x′)
= −K

2π
εijgabδ

(2)(x− x′) (3.2.17)

where it is possible to explicitly compute its inverse, Jabij (x, x′)

Jdblj (x, x′) = −2π

K
gbdεjlδ

(2)(x− x′) . (3.2.18)

Therefore, the Poisson bracket of the theory is

{
Aai (x),Abj(x′

}
≡ Jabij (x, x′) =

2π

K
εijg

abδ(2)(x− x′) . (3.2.19)

We can now compute the infinitesimal variation of the field Aai (x) as

δAai (x) =
K

4π

ˆ
d2x′ εklgcdΛ

c(x′)
{
Aai (x), F dkl(x

′)
}
. (3.2.20)

By means of Poisson bracket (3.2.19) we find that indeed the constraint generates gauge transfor-
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mations

δAai (x) = {Aai (x), G [Λ]} = ∂iΛ
a(x) + fabcAbi (x)Λc(x) . (3.2.21)

Following [54], we will now take care of the boundary term Q[Λ]. By Noether’s theorem, if δAai is a

symmetry of the theory, then a conserved charge G exists, and also conversely: If a conserved charge

G exists, then an associated symmetry δAai exists. If we compute the variation of the constraint,

we see that it must be suplemented by a boundary term δQ in order to make it differentiable. We

define then the improved generator δG as

G [Λ] = G [Λ] +Q [Λ] , (3.2.22)

where

δQ [Λ] = −K
2π

ˆ
∂M

dφ

〈
Λ δaφ

〉
. (3.2.23)

Explicit calculations regarding the latter procedures can be found in Appendix D.2.2.

As said in the previous section, we must consider appropriate boundary conditions in order to

make δB and now δQ integrable. This election is not trivial, since boundary conditions must also

generate the asymptotic symmetry algebra.

3.3 Example: Brown–Henneaux boundary conditions

In this section we reconsider the previously discussed concepts by means of the celebrated Brown-

Henneaux boundary conditions [47]. We will explicitly compute the boundary term (3.2.12), the

charges (3.2.23), asymptotic symmetries and the algebra they fulfill, which will be two independent

copies of Virasoro, with central extension c = 3`/2G.

The Brown-Henneaux asymptotic boundary conditions in the Chern–Simons formulation are

a±φ = L±1 −
2π

K
L±(t, φ)L∓1 , a±t = ±1

`
a±φ . (3.3.1)

The equations of motion are known as the chiral boson equation

L̇± = ±1

`
L±′ . (3.3.2)

Any general solution of this equation will have the form L± = L±(t− φ).

In what follows we will find that these boundary conditions are suitable, namely they fulfill the

criteria [54] of Section 3.1.
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We computed the Hamiltonian action of 3D GR and we obtained the boundary term (3.2.12).

With the Brown-Henneaux choice (3.3.1), the boundary term readily integrates as

B± = ∓ K

4π`

ˆ
∂M

dt dφ
〈
a± 2
φ

〉
(3.3.3)

Therefore, we accomplished the first item of the criteria listed in Page 22. Now we must find the

set of gauge transformations that preserve the form of the boundary conditions and calculate its

symmetries at the boundary.

The 1-form gauge field a± is preserved if satisfies (3.2.13), where Λ± is an infinitesimal gauge

parameter whose general form is

Λ±
[
α±, µ±, β±

]
= α±L0 ± µ±L±1 ∓ β±L∓1 . (3.3.4)

α±, µ± and β± are arbitrary functions on the time and the angle.

The infinitesimal gauge transformation of the angular component is

δa±φ = −2π

K
δL±L∓1 =

(
−2β± +

4π

K
µ±L± + α±

′
)
L0

±
(

2π

K
α±L± − β±′

)
L∓1 ±

(
α± + µ±

′
)
L±1 .

(3.3.5)

The latter implies the following system of equations

β± =
1

2
α±
′
+

2π

K
µ±L± , δL± = ∓

(
α±L± − K

2π
β±
′
)
, α± = −µ±′ . (3.3.6)

We can replace the value of α± and leave β± as a function of µ±, as promised,

β± = −1

2
µ±
′′

+
2π

K
µ±L± . (3.3.7)

With this results, we can find that the infintesimal transformation of L±, which is given by

δL± = ±D±µ± , (3.3.8)

where D± is the nontrivial operator

D± := L±′ + 2L±∂φ −
K

4π
∂3
φ . (3.3.9)

Transformation (3.3.8) is known as a large gauge transformation, or the asymptotic symmetry that
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preserve the form of the angular boundary condition. Therefore, Λ± reads

Λ±
[
µ±
]

= −µ±′L0 ± µ±L±1 ∓
(
−1

2
µ±
′′

+
2π

K
µ±L±

)
L∓1 . (3.3.10)

Λ± encodes the family of asymptotic permissible transformations that we found before.

On the other hand, invariance of the temporal boundary condition a±t fulfills

δa±t = ∓ 2π

K`
δL±L∓1 =

(
±1

`
µ±′′ − µ̇±′

)
L0 +

2π

K`

[
− µ±′L± ∓ `

(
µ±L̇± + µ̇±L±

)
±K`

4π
µ̇±′′

]
L∓1 ∓

(
±1

`
µ±′ − µ̇±

)
L±1 .

(3.3.11)

Therefore, we arrive to the following set of equations

µ̇±′ = ±1

`
µ±′′ , µ̇± = ±1

`
µ±′ , δL± = ±µ±′L± + `

(
µ±L̇± + µ̇±L±

)
− k`

4π
µ̇±′′ . (3.3.12)

The second and first equations are the chiral boson equations and its derivative, respectively.

Equating the last equation with (3.3.8), and using the two latter obtained, we arrive to the following

condition

` µ±
(
L̇± ∓ 1

`
L±′

)
= 0 . (3.3.13)

Because µ± is arbitrary, the latter vanishes when we use the equations of motion (3.3.2). The

function µ± satisfies the chiral boson equation as showed, thereby it has the form µ± = µ±(t− φ).

It is important to say that the function µ± is not a pure gauge parameter; it has its own dynamics

due the obtained symmetries at the boundary.

Thus, we have separated the gauge transformations from the ones that generate conserved

charges and we have identified its dynamics. Now we aim to compute the asymptotic charges.

The variation of the generator of charges is given by Eq. (3.2.23), where Λ± is the permissible

gauge parameter found in (3.3.10). Because µ± only depends on the time and the angle since satisfies

the chirality condition (so δµ± = 0), we can find Q± readily. It has the following expression

Q±
[
µ±
]

= ∓
ˆ
∂M

dφ µ±L± . (3.3.14)

Now we aim to compute the asymptotic symmetry algebra. With (3.3.14), we identify the charge

generator as a Fourier transform,

Q±
[
µ± = e−imφ

]
= ∓
ˆ
dφ e−imφL± ≡ ∓L±m , (3.3.15)
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where

L±m =

ˆ
dφ e−imφL± . (3.3.16)

In general, the algebra of charges can be computed as the variation with respect to µ±2 of the charge

generator, evaluated in µ±1 [47],

{
Q±

[
µ±1
]
, Q±

[
µ±2
]}

= δµ±2
Q±

[
µ±1
]
. (3.3.17)

This implies that
{
Q±

[
µ±1
]
, Q±

[
µ±2
]}

= ±δµ±2
´
dφ µ±1 L± = ±

´
dφ µ±1 δµ±2

L± [47]. After some

calculations (see Appendix D.3), the asymptotic symmetry algebra is

i
{
L±m,L±n

}
= (m− n)L±m+n +

K

2
m3δm+n,0 , (3.3.18a)

with the known Brown–Henneaux central charge c = 6K = 3`/2G.

As we see, the choice of boundary conditions is not trivial, since they induce asymptotic sym-

metries that serve as spectrum of the holographic dual theory, as we reviewed in the introduction.

This is not the only election that we can consider.

Let us briefly discuss what kind of spacetime generates the aforementioned election.

3.3.1 Holonomy

The holonomy is a geometrical quantity that measures if parallel transport is preserved or not along

closed loops.

Spatial (angular) deffects are recognized by the angular holonomy M±,

M± = Tr

(
P exp

˛
dφ a±φ

)
, (3.3.19)

where the angular gauge connection a±φ is given, in this case, by Eq. (3.3.1) and P is the path-

ordered operator. We stress the fact that the trace in (3.3.19) ensures the gauge invariance of the

angular holonomy.

For the AdS3 set-up that we consider in this thesis, it is important to classify the SL(2,R)

conjugacy classes [343], characterized by the following values:

1. M± < 2 correspond to a elliptic conjugacy class. This type of configurations corresponds to

classical particle sources, inducing conical singularities.

2. If M± = 2 we have parabolic conjugacy classes. They correspond to extremal black holes

configurations.
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3. Finally, if M± > 2, it typifies hyperbolic conjugacy classes that characterize black hole

solutions.

SL(2,R) holonomy conjugacy classes
Holonomy value M± > 2 M± = 2 M± < 2
Conjugacy classes Hyperbolic Parabolic Elliptic

Gravitational configurations Black hole Extremal black hole Particle sources

Table 3.1: SL(2,R) holonomy conjugacy classes and its characterization.

Thus, the holonomy allow to characterize spacetimes without the need to explicitly compute

them [344], although the geometry of every solution in 3D GR with Λ < 0 will locally coincide with

AdS3.

For the Brown-Henneaux case, then the angular holonomy yields the value

M± = 2 cosh

2π

√
L±0
K

 , (3.3.20)

where a Fourier expansion was performed. From this result we can see that elliptic, parabolic and

hyperbolic configurations are attainable, leading to conical singularities, extremal and black hole

solutions.

3.3.2 The metric

The metric can be recovered from the asymptotic boundary conditions with the following relation

gµν =
`2

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
, (3.3.21)

where

A± = b−1
± (d+ a±) b± . (3.3.22)

b± is an arbitrary gauge parameter that captures the radial dependence, as said before.

Consider the gauge parameter

b±(r) = e±
r
`L0 . (3.3.23)

In light-cone coordinates x± = t/` ± φ, the aforementioned metric (that manifestly contains the
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BTZ black hole solution) can be obtained from the boundary dynamics, yielding

ds2 = `2
[
dr2 +

2π

K

(
L+
(
dx+

)2
+ L−

(
dx−

)2)− (e2r +
4π2

K2
L+L−

)
dx+dx−

]
. (3.3.24)

By construction it is a solution of vacuum Einstein equations, there are two arbitrary functions

L±(t, φ). This is the most general metric that makes explicit the Virasoro invariance, known as

Bañados metric [345].
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Chapter 4

Geometrization of the AKNS system

In this chapter we describe a novel relation between the large family of integrable models given by

the AKNS hierarchy and the spacetime dynamics of AdS3 GR [330]. The diverse properties of the

AKNS system form a large class of suitable boundary conditions that generalize [47] and [275].

We start the discussion based on the formalism developed in Chapters 2 and 3.

Consider a manifold with coordinates t and φ, with 0 ≤ φ ≤ 2π. Using the zero-curvature

formulation of Integrable Systems, we postulate the AKNS boundary conditions of the Chern-

Simons formulation of AdS3 GR

a±φ = ∓2ξ±L0 − p±L±1 + r±L∓1 ,

a±t =
1

`
(−2A±L0 ±B±L±1 ∓ C±L∓1) ,

(4.0.1)

where ` is the AdS3 radius, p± = p±(t, φ) and r± = r±(t, φ) are the fields carrying the boundary

degrees of freedom of the theory, A±, B± and C± are composite arbitrary functions of r±(t, φ) and

p±(t, φ) that has to be specified. As we said in Eqs. (2.2.1) and (3.2.4), Einstein equations in the

first-order formalism now reads as the vanishing 2-form curvature

f±tφ = ∂ta
±
φ − ∂φa

±
t +

[
a±t , a

±
φ

]
= 0 .

Therefore, for the AKNS boundary conditions (4.0.1), the zero-curvature yields the following set of

differential equations (2.1.1),

ṗ± = ∓1

`

(
B±
′
+ 2p±A± + 2ξ±B±

)
, (4.0.2a)

ṙ± = ∓1

`

(
C±
′ − 2r±A± − 2ξ±C±

)
, (4.0.2b)

A±
′

= p±C± − r±B± . (4.0.2c)
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Using the same polynomial ansatz of Eq. (2.1.2), we obtain at order ξ±0 the following dynamical

equations

ṗ± = ∓1

`

(
B±N
′
+ 2p±A±N

)
, ṙ± = ∓1

`

(
C±N
′ − 2r±A±N

)
, (4.0.3)

in complete analogy with (2.1.3); while for the remaining terms we obtain the recursion relations

A±n
′

= p±C±n − r±B±n , (4.0.4a)

B±n+1 = −1

2
B±n
′ − p±A±n , (4.0.4b)

C±n+1 =
1

2
C±n
′ − r±A±n , (4.0.4c)

subjected to conditions B±0 = C±0 = 0. As we see, every result of Chapter 2 works in this scenario.

In order to figure if the boundary conditions (4.0.1) are suitable, which is the general objective

of this chapter, it is first necessary to briefly expose the main results of Chapter 2 but in terms of

the chiral/antichiral sector.

Using the trace formula [331] (see Appendix C.3), one may cast A±n , B±n and C±n as

A±n =
n− 1

2
H±n , B±n = R±n+1 , C±n = P±n+1 , (4.0.5)

for n ≥ 1, where the quantities R±n+1 and P±n+1 are functional derivatives of the conserved charges

H±n , defined as following

R±n+1 =
δH±n+1

δr±
, P±n+1 =

δH±n+1

δp±
. (4.0.6)

The latter allows to write the AKNS system as a bi-Hamiltonian equationṙ±
ṗ±

 = ∓D±1

R±N+1

P±N+1

 = ∓D2

R±N+2

P±N+2

 , (4.0.7)

where the compatible Hamiltonian operators D±1 and D±2 are

D±1 =
1

`

 −2r±∂−1
φ r± −∂φ + 2r±∂−1

φ p±

−∂±φ + 2p±∂−1
φ r± −2p±∂−1

φ p±

 , D2 =
1

`

0 −2

2 0

 , (4.0.8)

respectively. These results will be the basis where we can establish the holographic relationship that

lies between 3D GR and Integrable Systems. The connecting bridge for this formal relationship,

as we have emphasized in the introduction, are asymptotic symmetries, generated by the choice of

suitable boundary conditions [54].
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In what follows, we will prove that boundary conditions (4.0.1) are suitable, fulfilling the criteria

discussed in Section 3.1.

4.1 Integration of the boundary term

Performing the polynomial expansion (2.1.2), the variation of the boundary term (3.2.12) reads

δB± = ±K
2π

ˆ
dt

`

N∑
n=0

ˆ
dφ
(
C±n δp

± +B±n δr
±) ξ±N−n . (4.1.1)

By means of (4.0.5), we arrive to

δB± = ±K
2π

ˆ
dt

`

N∑
n=0

ˆ
dφ

(
δH±n+1

δp±
δp± +

δH±n+1

δr±
δr±

)
ξ±

N−n
. (4.1.2)

Hence, using the AKNS boundary conditions (4.0.1), we readily have a well-defined action with the

following boundary term

B± = ±K
2π

ˆ
dt

`

N∑
n=0

H±n+1ξ
±N−n . (4.1.3)

4.2 Asymptotic symmetries and asymptotic algebra

As we reviewed in Section 3.3, asymptotic symmetries are the set of gauge transformations that

preserve the form of imposed asymptotic boundary conditions, which in this case are (4.0.1). Its

infinitesimal form is

δa± = dΛ± +
[
a±,Λ±

]
. (4.2.1)

The exercise is analogue as the one performed for the Brown–Henneaux case of Section 3.3. We

want to characterize asymptotic symmetries, i.e., the ones that generate conserved charges, namely,

Noetherian charges. In order to achieve that, notice that the angular component of (4.2.1) is

δa±φ − ∂φΛ± +
[
Λ±, a±φ

]
= 0 , (4.2.2)

which is similar to the zero-curvature condition (2.2.1), where we can “recognize” ∂t ↔ δ and

a±t ↔ Λ± [197]. Inspired by this analogy, we write Λ± in the following (reminiscent of a±t in

(4.0.1)) general form

Λ± = −2α±L0 ± β±L±1 ∓ γ±L∓1 , (4.2.3)
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where α±, β± and γ± are field-dependent arbitrary functions that has to be specified. As a

consequence, the angular component (4.2.2) reads as the following system of equations

δp± = ∓
(

2α±p± + 2ξ±β± + β±
′
)
, (4.2.4a)

δr± = ∓
(
−2α±r± − 2ξ±γ± + γ±

′
)
, (4.2.4b)

α±
′

= p±γ± − r±β± . (4.2.4c)

Following the lessons of Chapter 2, if we specify α±, β± and γ± according to the polynomial

expansion (2.1.2),

α± =

M∑
m=0

α±mξ
±M−m, β± =

M∑
m=0

β±mξ
±M−m, γ± =

M∑
m=0

γ±mξ
±M−m, (4.2.5)

where M is a number that labels the infinite family of permissible gauge transformations (which is

not necessarily equal to N), we readily obtain that the infinitesimal transformation of the fields r±

and p± are just the analogue versions of the AKNS equations (2.1.3) and (2.1.4a),

δp± = ∓
(
β±M
′
+ 2p±α±M

)
, (4.2.6a)

δr± = ±
(
−γ±M

′
+ 2α±Mr

±
)
, (4.2.6b)

α±M
′

= p±γ± − r±β± , (4.2.6c)

with conditions β±0 = γ±0 = 0 (analogue to conditions B±0 = C±0 = 0). These are the asymptotic

infinitesimal transformations of the fields that preserve the form of boundary conditions (4.0.1).

It is clear by construction that a±t belongs to the above family of permissible gauge parameters

at

a±t = ±1

`
Λ±|M=N . (4.2.7)

Because (4.2.1) yields an equation analogue to the zero-curvature condition, conservation along the

temporal component a±t reduces to combinations of the equations of motion. Thus, it does not

imply any further condition on the gauge parameter (see Appendix E.1).

By virtue of relationships (4.0.5), we find that the coefficients of (4.2.5) satisfy the known

identities

α±m =
m− 1

2
H±m, β±m = R±m+1, γ±m = P±m+1 . (4.2.8)
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Therefore, expansion (4.2.5) reads

α± =

M∑
m=0

(
m− 1

2

)
H±m ξ±

M−m
, (4.2.9a)

β± =

M∑
m=0

R±m+1 ξ
±M−m, (4.2.9b)

γ± =

M∑
m=0

P±m+1 ξ
±M−m. (4.2.9c)

As we reviewed in the previous chapter, from the Hamiltonian point of view, gauge transformation

(4.2.1) is generated by the boundary term Q± [Λ±] that must be suplemented to the first class con-

straint in order to make it differentiable. Using the boundary conditions (4.0.1), the differentiated

charge (3.2.23) reads

δQ±
[
Λ±
]

= −K
2π

ˆ
∂M

dφ
(
β±δr± + γ±δp±

)
(4.2.10)

In an analogue version when we integrated the boundary term in Section 4.1, we find then

δQ±
[
Λ±
]

= ±K
2π

M∑
m=0

ˆ
∂M

dφ
(
R±m+1δr

± + P±m+1δp
±) ξ±M−m , (4.2.11)

yielding

Q±
[
Λ±
]

= ±K
2π

M∑
m=0

H±m+1 ξ
±M−m . (4.2.12)

The charges are finite, and they are just the conserved quantities of the AKNS system.

We are now in position to compute its algebra. Recall that the algebra of charges between

two arbitrary gauge parameters Λ± and Λ̄± was computed in the Brown–Henneaux case, given by

expression (3.3.17). Because,
{
Q± [Λ±] , Q±

[
Λ̄±
]}

= δ̄Q± [Λ±], we readily obtain

{
Q±

[
Λ±
]
, Q±

[
Λ̄±
]}

= ±K
2π

ˆ
∂M

dφ
(
β±δ̄r± + γ±δ̄p±

)
. (4.2.13)

We can recast the latter expression as

{
Q±

[
Λ±
]
, Q±

[
Λ̄±
]}

= ±K
2π

ˆ
∂M

dφ
(
β± γ±

)δ̄r±
δ̄p±

 , (4.2.14)
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which is the same as

{
Q±

[
Λ±
]
, Q±

[
Λ̄±
]}

= ±K
2π

ˆ
∂M

dφ
(
R±m+1 P±m+1

)
D±1

R±M̄+1

P±
M̄+1

 . (4.2.15)

This the first Poisson bracket between Hm+1 and HM̄+1, defined in (2.1.23). Because the conserved

charges of the AKNS system are in involution (see Eq. (2.1.25)), the Poisson bracket of gravitational

charges vanishes,

{
Q±

[
Λ±
]
, Q±

[
Λ̄±
]}

= ±K
2π

{
H±m+1, H

±
M̄+1

}
1

= 0 . (4.2.16)

We computed the asymptotic symmetry algebra of charges, which realize an infinite-dimensional

abelian one.

4.3 Holonomy and gravitational configurations

For the AKNS boundary conditions, its angular component is given by (4.0.1), from where the

holonomy (3.3.19) reads

M± = 2 cosh

(
2π

√
(ξ±)

2
+ p±0 r

±
0

)
. (4.3.1)

p±0 and r±0 are the zero modes of the Fourier expansions. The remarkable fact of this result indicates

that all gravitational configurations are attainable, namely, the AKNS boundary conditions includes

particle sources, extremal and ordinary black hole solutions. This is because we can always work

with zero modes and the spectral parameter such that the hyperbolic cosine turns complex and

transforms into a cosine, allowing to reach values less than 2 (See Table 3.1).

Because the action functional is differentiable, the generator of charges are finite and black

hole solutions lies in the conjugacy class of boundary conditions, the imposed AKNS asymptotic

behavior are adequate.

4.4 Recovering specific boundary conditions

Here we recover specific boundary conditions from the asymptotic behavior. For details, see Ap-

pendix E.2.

It is desirable to make explicit how we particularly recover the Brown-Henneaux [47] and KdV-

type [275] boundary conditions.

Recalling expansion (2.1.2), truncated at some integer number N . We have a large family of
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boundary conditions labeled by this number (e.g., see Eq. (E.2.5f)). Fixing N = 1, we have

a±t,N=1 =
1

`

[
−2L0ξ

± ±
(
−p±L±1 + r±L∓1

)]
. (4.4.1)

If ξ± = 0, we define p± = −1 and r± = − 2π
K L

±(t, φ), we obtain the Brown–Henneaux boundary

conditions (3.3.1). On the other hand, for odd values of N , i.e.,

a±t,N=3 =
1

`

{
−2L0ξ

± 3 ±
(
−p±L±1 + r±L∓1

)
ξ± 2 +

[
−1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
ξ±

− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

}
,

(4.4.2a)

a±t,N=5 =
1

`

{
−2L0ξ

± 5 ±
(
−p±L±1 + r±L∓1

)
ξ± 4 +

[
−1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
ξ± 3

+

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
ξ± 2

+

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
ξ±

− 1

8

[
6p± 2r±r±′ − p±′′r±′ + p±′r±′′ + p±′′′r± − p±

(
6p±′r± 2 − r±′′′

) ]
L0

± 1

16

[
− 6p± 3r± 2 + 6p±′ 2r± + 4p±

(
p±′r±′ + 2p±′′r±

)
+ 2p± 2r±′′ − p±′′′′

]
L±1

∓ 1

16

[
− 6p± 2r± 3 + 4p±′r±r±′ + 2p±′′r± 2 + p±

(
6r±′ 2 + 8r±r± 2

)
− r±′′′′

]
L∓1

}
,

(4.4.2b)

...

and letting p± = −1 we obtain the KdV-type boundary conditions, reported in [275].

4.5 The metric

Just like for the Brown–Henneaux case of Subsection 3.3.2, the metric may be recovered by means

of the following relation

gµν =
`2

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
. (4.5.1)
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Figure 4.1: ADM decomposition.

We choose the explicit group element

b±(r) = exp
[
± log

(r
`

)
L0

]
, (4.5.2)

thus we arrive to the following metric components

gtt = −B
+B−r2

`2
+
(
A+ −A−

)2
+B+C+ +B−C− − C+C−`2

r2
, (4.5.3a)

gtr =
(A− −A+) `

r
, (4.5.3b)

gtφ =
(B−p+ −B+p−) r2

2`
+
`

2

[
2
(
ξ+ + ξ−

) (
A+ −A−

)
−B+r+ +B−r−

−C+p+ + C−p−
]

+
`3

2r2

(
C−r+ − C+r−

)
,

(4.5.3c)

grr =
`2

r2
, (4.5.3d)

grφ = −`
2

r

(
ξ+ + ξ−

)
, (4.5.3e)

gφφ = p+p−r2 +
[
p+r+ + p−r− +

(
ξ+ + ξ−

)2]
`2 +

`4

r2
r+r− . (4.5.3f)

In ADM coordinates ds2 = −N2dt2 + (N idt + dxi)(N jdt + dxj)γij , the metric can be seen in

the following form. The lapse function is

N2 =
r2

4`2
(Ω+ω− + Ω−ω+)

2

ω−ω+
, (4.5.4)
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and the shift functions are

Nr =
r

`

(
A− −A+ +

1

2

(
ξ+ + ξ−

)(Ω−

ω−
− Ω+

ω+

))
, (4.5.5a)

Nφ =
1

2`

(
Ω−

ω−
− Ω+

ω+

)
. (4.5.5b)

Additionally, the spatial metric reads

γij =

 `2

r2 − `
2

r (ξ+ + ξ−)

− `
2

r (ξ+ + ξ−) `2 (ξ+ + ξ−)
2

+ r2ω−ω+

 . (4.5.6)

The auxiliary functions Ω± and ω± are defined as

Ω± ≡ B± − `2

r2
C∓, ω± ≡ p± +

`2

r2
r∓ . (4.5.7)

The difference with the Brown–Henneaux case lies in the γrφ component and the form of the lapse

and shift functions.

The boundary dynamics arises from the asymptotic behavior of the lapse function N and shift

vectors N i [197], which depends on the dynamical functions and consequently induces a non-trivial

surface evolution at the boundary. This property has been used previously in [275] and [278] to

connect the dynamics of AdS3 GR with the KdV and Gardner integrable hierarchies, respectively.

We constructed the metric associated to the AKNS boundary conditions, which contains two

sets of dimensionless functions {A±, B±, C±, p±, r±}, labeled by the ± superscript, and chosen to

depend only on the coordinates t and φ. On the other hand, the two quantities ξ± are constants

without dimensions.

4.6 Remarks

Proving the consistency of boundary conditions (4.0.1) imply that the AKNS system is equivalent

to the asymptotic dynamics of AdS3 GR.

When we say that the boundary conditions are “suitable”, we refer to the criteria of Section 3.1,

namely, the AKNS boundary conditions integrate the boundary term in the Hamiltonian action,

define finite asymptotic charges, the asymptotic symmetry algebra closes in an abelian infinite-

dimensional form with devoid of central extensions and they includes all possible gravitational

configurations by calculating the angular holonomy. We consistently recovered the boundary con-

ditions [47, 275] and we understood that the dynamical fields p± and r± induce deformations on

the spacetime through the Lapse function (4.5.4) and the Shift vectors (4.5.5).

It would be desirable to translate our results to the metric formalism. For example, to obtain
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the abelian asymptotic symmetry algebra from the group of isommetries at the boundary (namely,

to solve the asymptotic Killing equation by impossing suitable boundary conditions). To recover

the NLS, KdV, MKdV or SG metrics explicitly. Other avenue is to provide an interpretation of the

mass and angular momentum in terms of the dynamical fields. Finally, a more general question

involves the meaning of the Inverse Scattering Transformation and soliton construction under the

light of curved spacetimes.
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Part II

Condensed Matter Theory and

General Relativity
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Chapter 5

Linear response theory

Response theory aims to understand how a system reacts to a particular applied external pertur-

bation [346], yielding a response function, or susceptibility χ(t, t′) associated to the former. This is

the main quantity that one tries to compute and hopefully, measure in a experiment.

Concrete examples are the application of an electric field or momentum transport in some

liquids. This perturbations will give an associated conductivity and viscosity, respectively.

In general, it is hard to obtain an analytic expression of susceptibilities. Therefore one may

approximate susceptibilities to its first order in the perturbation. This is what is known as linear

response theory. In the second part of this thesis, the aim is to obtain the first-order susceptibility

of a dual theory to 3D GR by means of the Kubo formula [334, 335].

Along with its natural application in Condensed Matter Theory [347], the Kubo formula find

diverse applications in the lines of the holographic correspondence. Black holes [348, 349], Hall [350]

and strongly correlated viscosities [351], anomalies [352, 353], higher-spin interactions [354] (with

spin-3 possible experimental measurement [355]), two-dimensional [356] and three-dimensional [25,

357, 358] relativistic fluids, and electrical conductivity and charge susceptibility fixed by the value

of the central charge [359] are part of them.

The objective of this chapter is to establish the Kubo formula. In Chapter 7, it will be used

to compute a two-terminal holographic conductance associated to the boundary dynamics of AdS3

GR with a specific asymptotic behavior. To deduce it, we will consider the Dirac interaction

picture of quantum mechanics in presence of a time-dependent arbitrary perturbation. Then, by

Taylor expanding the time-evolution operator, we will obtain the first-order approximation of the

mean value of an arbitrary operator sensible to this perturbation. The first-order contribution of

this approximation will correspond to the retarded Green function, from where we will be able to

establish a relationship between the latter and the susceptibility of the theory.
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5.1 Susceptibilities are retarded Green function

Consider a Hamiltonian perturbation

H = H0 + V (t) , (5.1.1)

where H0 is the free part of the theory and V (t) its perturbation.

Consider an arbitrary operator O(t, x). If the perturbation is small, then we write the first-order

change in the expectation value of this operator

δ 〈O(t, x)〉 := 〈O(t, x)〉 − 〈O(t, x)〉
∣∣
V=0

, (5.1.2)

as

δ 〈O(t, x)〉 =

ˆ
dt′ χ(t, t′)V (t′) , (5.1.3)

where χ(t, t′) is the linear response function, or susceptibility associated to the perturbation V .

Consider now the following differential equation

D [y(t)] = F (t) , (5.1.4)

where D is some differential operator, y = y(t) an arbitrary function and F (t) a driving force.

Formally, the solution of this differential equation is

y(t) = y0 +

ˆ
dt′G(t, t′)F (t′) , (5.1.5)

with y0 the homogenous solution and G(t, t′) stands for the Green function or Kernel of the system.

One thus recognize the susceptibility as the Green function of the system, however, we must consider

causality conditions: The susceptibility follows the perturbation, rather than preceed it. So we may

associate this condition of the response function, or susceptibility, with the retarded Green function,

namely, the Green function that vanishes for negative time. Hence, we have

χ(t, t′) = GR(t, t′) , (5.1.6)

where the index R labels the retarded prescription.

One more condition has to be specified. We will study systems that are invariant under time-

translations, so the susceptibility depend only on the time difference χ(t− t′). Thus,

χ(t− t′) = 0 , for t− t′ < 0 . (5.1.7)
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5.2 Interaction picture

Here we review the interaction picture for a time-dependent perturbation V = V (t). By means

of the evolution operator U(t, t0), we will calculate the wavefunction |Ψ〉. Under the action of the

perturbation we will find that Dyson equation governs the dynamics of the time-evolution operator.

We can solve it recursively [360], whose solution will have a precise form on V (t).

Again, consider the Hamiltonian of the form (5.1.1),

H = H0 + V (t) ,

In the Heisenberg picture, operators O(t, x) evolve with the full Hamiltonian in the form

O(t, x) = eiH(t−t0)O(0, x)e−iH(t−t0) . (5.2.1)

Here we aim compute the expectation value of these operators. This can be achieved by means of

the following formula

〈O(t, x)〉 = Tr
[
O(t, x)ρ(t)

]
, (5.2.2)

where ρ(t) is the density matrix of the system. Let us rewrite expression (5.2.2) in the following

form

〈O(t, x)〉 = Tr
[
O(t, x)eiH(t−t0)ρ(0, x)e−iH(t−t0)

]
. (5.2.3)

Using the cyclic property of the trace, we obtain

〈O(t, x)〉 = Tr
[ (
eiH0(t−t0)O(t, x)e−iH0(t−t0)

)
×

×
(
eiH0(t−t0)eiH(t−t0)ρ(0, x)e−iH(t−t0)e−iH0(t−t0)

) ]
,

(5.2.4)

which allow us to consider the following definitions

OI(t, x) := eiH0(t−t0)O(t, x)e−iH0(t−t0) , (5.2.5a)

ρI(t, x) := eiH0(t−t0)eiH(t−t0)ρ(0, x)e−iH(t−t0)e−iH0(t−t0) ≡ eiH0(t−t0)ρ(t, x)e−iH0(t−t0) , (5.2.5b)

where the subindex I is denoted for the interacting picture. Therefore, we obtain that the mean

value of some arbitrary operator O(t, x) will be given in terms of its interacting operators

〈OI(t, x)〉 = Tr
[
OI(t, x)ρI(t, x)

]
. (5.2.6)
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From the Heisenberg picture (5.2.1), and using definition (5.2.5a), we find that O(t, x) may be

written as

O(t, x) ≡ U(t, t0)OI(t, x)U†(t, t0) , (5.2.7)

where

U(t, t0) = eiH(t−t0)e−iH0(t−t0) . (5.2.8)

Because the wavefunction for t > t0 evolves as

|Ψ〉 = eiH(t−t0) |0〉 , (5.2.9)

in terms of U(t, t0), it reads as

|Ψ〉 = e−iH0(t−t0)U†(t, t0) |0〉 . (5.2.10)

We aim now to determine the form of operator U(t, t0). Taking a temporal derivative of the previous

equation, we obtain the Tomonaga-Schwinger equation for U(t, t0),

i
∂U(t, t0)

∂t
|0〉 = V (t, t0)U(t, t0) |0〉 , (5.2.11)

with initial condition U(t, t) = 1. This equation can be formally solved in terms of a Dyson-

series [360]

U(t, t0) = T exp

(
−i
ˆ t

t0

V (t′, t0)dt′
)
, (5.2.12)

where T is the time-ordering operator.

We have the tools to compute the first-order susceptibility associated to an arbitrary perturba-

tion. The relation that is going to allow us to compute it is known as the Kubo formula [334, 335].

In the next section we will obtain it explicitly.

5.3 The Kubo formula

At first order, the evolution operator U(t, t0) can be Taylor-expanded as

U(t, t0) ≈ 1− i
ˆ t

t0

dt′ V (t′, t0) + . . . , (5.3.1)
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where the ellipsis denote second-order contributions. Therefore, by virtue of relation (5.2.7), it is

possible to prove that the expectation value of the arbitrary operator O(t, x) is (see Appendix F.1

for the explicit deduction)

〈O(t, x)〉 ' 〈O(t, x)〉
∣∣
V=0

+ i

ˆ t

−∞
dt′ 〈[V (t′, t0),OI(t, x)]〉 . (5.3.2)

where the initial state was put in the far past t0 → −∞. According to definition (5.1.2), and

inserting a Heaviside theta function Θ(t− t′) to extend the range of the time integration, the first

order contribution reads

δ 〈O(t, x)〉 = i

ˆ ∞
−∞

dt′Θ(t− t′) 〈[VI(t′),OI(t, x)]〉 . (5.3.3)

Let us suppose now a perturbation of the form

V (t, x) = λ

ˆ
dxµ(x)B(x) , (5.3.4)

with µ(x) a source, and B(x) an observable operator. As we will see in the next chapters, the

introduction of this chemical potential on the gravity side will induce an holographic difussion of

chiral bosons that leaves an electrostatic current voltage after its passage, just like in the Quantum

Hall Effect (see Chapter 7, in particular Eq. (7.2.16)).

Then the perturbed Hamiltonian (5.1.1) reads

H = H0 + λ

ˆ
dxµ(x)B(x) . (5.3.5)

Hence, (5.3.3) is

δ 〈O(t, x)〉 = i

ˆ ∞
−∞

dt′
ˆ
dx′ µ(t′, x′)Θ(t− t′) 〈[BI(t′, x′),OI(t, x)]〉 , (5.3.6)

where λ was fixed to the unity since we are considering only linear contributions. We can recognize

the integrand expression as the susceptibility of the system. We arrive then to what is known as

the Kubo formula,

χOB(t− t′;x, x′) = −iΘ(t− t′) 〈[OI(t, x), BI(t
′, x′)]〉 , (5.3.7)

where the linear response of its associated operator is

δ 〈O(t, x)〉 =

ˆ
dt′ dx′ χOB(t− t′;x, x′)µ(t′, x′) . (5.3.8)

We obtained then the first-order susceptibility and mean value of an arbitrary operator O.
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From the holographic point of view, it is important to mention that the susceptibility is local

in the frequency space. This implies that subsequent calculations will enjoy this property, mean-

ing that no global geometric issues, such as global holonomies in black hole backgrounds will be

considered. This implies that we can stand on an event horizon background and perform local

calculations on that region of the spacetime (see Appendix F.2).
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Chapter 6

Anisotropic chiral bosons and

bosonization

Lifshitz holography [283] allows to explore holographic properties in non-relativistic frameworks. In

this context, a simple theory that exhibits anisotropic scaling in 1 + 1 dimensions is the anisotropic

chiral boson theory [333], which naturally generalizes the chiral boson case [91, 361, 362]. Its action

principle is given by

I± [ϕ±] =
K

8π

ˆ
dt dx

[
ϕ̇±ϕ

′
± ∓ v

(
∂
z+1
2

φ ϕ±

)2
]
, (6.0.1)

where dots stands for time derivatives while primes for spatial derivatives. The number z is odd

integer and corresponds to the dynamical exponent of anisotropic scaling, while v the velocity of

chiral excitations. Its equations of motion are

∂x

(
ϕ̇± ± v (−1)

z+1
2 ∂zxϕ±

)
= 0 , (6.0.2)

which reveals the existence of gauge symmetries ϕ± → ϕ±+f±(t). By means of a Fourier expansion,

it is possible to find that the dispersion relation ω±k of the theory is,

ω±k = ±vkz . (6.0.3)

As we see, different chiralities propagates in differents directions. Observe that the parity P and

time-reversal operators T , defined as the action x → −x and t → −t, respectively, swaps the
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chirality, since

P
[
I±
]

= −I∓ , (6.0.4)

T
[
I±
]

= −I∓ . (6.0.5)

Thus, the theory is PT -invariant. It is worth mentioning that (6.0.1) recovers the Floreanini-

Jackiw case for z = 1 [361], and 2D conformal algebra is obtained from nonlocal infinitesimal

symmetries [333]. Besides, the infinitesimal transformation

δϕ± = η±k , η±k = ei(kx±ωkt) , (6.0.6)

generates a u(1)-current algebra, whose Noether charge is

J± = ±K
4π
∂xϕ± , (6.0.7)

and its conjugate conserved charge, defined as

I± = ∓K
4π
∂tϕ± , (6.0.8)

fulfills the continuity equation

∂tJ± + ∂xI± = 0 . (6.0.9)

Details can be found in Appendix G.1.

From the quantum of point of view, the theory was consistently cuantized by means of Dirac [363],

Jackiw symplectic [220, 342] and path integral method [52, 364, 365]. In particular, by means of

the second method (see Appendix G.2), the Dirac bracket of the fields reads

{ϕ±(x), ∂x′ϕ±(x′)} = ±4π

K
δ(x− x′) , (6.0.10)

where the passage to quantum mechanics follows the the prescription {, } → i [, ].

Because the theory exhibits conformal behavior, it is possible to calculate the entropy of a gas of

non-interacting anisotropic chiral bosons by means of a compatible extension of Cardy formula [275,

277, 329, 333], whose leading term agrees with the asymptotic sum of power-partitions from number

theory [366].
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6.1 Fractional statistics

One of the cornerstones of quantum physics is the exchange statistics that emerges when the many-

particle wavefunction transforms under interchange of indistinguishable particles. In this regard,

anyons are quasiparticles that occur only in two-dimensional systems, whose statistic is fractional ;

it is neither bosonic nor fermionic [367–369].

Anyons had two versions: Abelian and non-abelian. When we interchange abelian anyons,

the wavefunction acquires a phase factor eiθ, while in the non-abelian case, the wavefunction not

only acquires the latter, but instead, it can change to a fundamentally different quantum state.

They lie at the root of many physical phenomena, e.g., topological quantum computation [370,

371], Fractional Quantum Hall Effect [372–377]1, exclusion statistics (generalized Pauli exclusion

principle for anyons) [379–383] and Majorana fermions in solid state systems [384]. Remarkably,

the abelian flavor was recently detected by two experiments [385, 386].

Here we show that anisotropic chiral bosons fulfill an abelian fractional statistics where the

operator J±, defined as

J± = ±K
4π
ϕ′± , (6.1.1)

is the associated Noether current of symmetry (6.0.6), and corresponds to the fermionic number

operator under bosonization. Details of the forthcoming calculations can be seen in detail in

Appendix G.3.

Following [361], we define the fermionic annihilation c± and creation c†± operators

c±(x) =: e−i
√

K
2 ϕ±(x) : , c†±(x) =: ei

√
K
2 ϕ±(x) : , (6.1.2)

respectively, where : O : is the normal-ordering of the operator O. The bosonic fields ϕ± can be

expanded as a superposition of creation and annihilation modes

ϕ±(x) = θ±(x) + θ†±(x) , (6.1.3)

where θ+(x) correspond to the creation operator and θ†+(x) to the annihilation one, while θ−(x)

to the annihilation operator and θ†−(x) to the creation one. Performing the passage to quantum

mechanics, the Dirac bracket (6.0.10), reads as the following commutation rule

[ϕ±(x), ϕ±(x′)] = ∓2iπ

K
sign(x− x′) . (6.1.4)

1In fact, the quantum Hall state at filling fraction ν = 5/2 may provide the first experimental evidence of a
non-abelian phase [378].
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This allow us to find the bosonic algebra of creation and annihilation operators, given by

[
θ±(x), θ†±(x′)

]
= ± 2

K
log [−2iπ (x− x′ + iη)] , (6.1.5)

where η → 0+ is a regulator. With the bosonic algebra of creation and annihilation operators

obtained, we can prove that operators (6.1.2) satisfy the fermionic anticommutation rule

{c±(x), c±(x′)} =
{
c†±(x), c†±(x′)

}
=
{
c±(x), c†±(x′)

}
= 0 , x 6= x′ . (6.1.6)

Performing a Taylor expansion of the operator J±, and by means of commutation rule (6.1.5) , it

is possible to find

: c†−(x)c−(x) := − 1

2π

√
K

2
∂xϕ−(x) , (6.1.7)

and

: c+(x)c†+(x) :=
1

2π

√
K

2
∂xϕ+(x) . (6.1.8)

Therefore, for the chiral/antichiral sector, we arrive to

J+(x) =

√
K

2
: c+(x)c†+(x) : , J−(x) =

√
K

2
: c†−(x)c−(x) : . (6.1.9)

This justifies calling J± as the electric charge density. Besides, by virtue of the conservation law

(6.0.9), we say that I± is its conjugate electric charge operator.
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Chapter 7

Holographic two-terminal

conductance and memory effect

In this chapter, we perform the Hamiltonian reduction of Chern–Simons theory by imposing suitable

boundary conditions. The asymptotic degrees of freedom of the theory are going to be captured by

(two independent copies) of the anisotropic chiral boson theory, characterized by the action principle

(6.0.1). Using the tools developed in Chapter 5, particularly by means of the Kubo formula, we

will compute a holographic two-terminal conductance in the DC limit. Finally, we aim to interpret

this result as the dynamics of the gravitational field within a spacetime.

Along this chapter, we follow [91, 316, 387].

7.1 Anisotropic chiral movers as gravitational boundary ex-

citations

7.1.1 From Chern–Simons to Wess-Zumino-Novikov-Witten (WZNW)

In Chapter 3.3, in particular in Eq. (3.2.5), we found that the Chern–Simons action can be written

as

I± = I±H + B± , (7.1.1)

where

I±H = −K
4π

ˆ
dt d2x εij

〈
A±i Ȧ

±
j −A

±
0 F
±
ij

〉
, (7.1.2)
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is the bulk action, and B± a boundary term, whose variation is

δB± = −K
2π

ˆ
∂M

dt dφ
〈
A±0 δA

±
φ

〉
. (7.1.3)

As said in Chapter 3, the bulk action has a constraint (3.2.14). Without holonomies, a solution of

the latter is

A±i = G−1
± ∂iG± , (7.1.4)

where i = r, φ and G±(t, r, φ) ∈ SL±(2,R). Replacing in the bulk action, we obtain

I±H = −K
4π

ˆ
dt d2x εij

〈
G−1
± ∂iG±Ġ

−1
± ∂jG± +G−1

± ∂iG±G
−1
± ∂jĠ±

〉
. (7.1.5)

The second term is a total derivative,

εij
〈
G−1
± ∂iG±G

−1
± ∂jĠ±

〉
= −εij

〈
∂iG

−1
± ∂jĠ±

〉
= −εij∂i

〈
G−1
± ∂jĠ±

〉
, (7.1.6)

while the first term may be readily written as

εij
〈
G−1
± ∂iG±Ġ

−1
± ∂jG±

〉
= −εij

〈
G−1
± ∂iG±G

−1
± Ġ±G

−1
± ∂jG±

〉
. (7.1.7)

Choosing manifold orientation εrφ = 1, the action may be splitted into

I±H = I±WZ + I±Nlsm , (7.1.8)

where I±WZ is known as the Wess-Zumino term and I±Nlsm is the nonlinear sigma model contribution,

defined as

I±WZ =
K

4π

ˆ
dt d2x εij

〈
G−1
± ∂iG±G

−1
± Ġ±G

−1
± ∂jG±

〉
, (7.1.9a)

I±Nlsm =
K

4π

ˆ
∂M

dt dφ
〈
G−1
± Ġ′±

〉
, (7.1.9b)

respectively. Primes denote derivatives with respect to φ. For latter purposes, it is important to

observe that the integrand of (7.1.9a) can be written as

〈(
G−1
± dG±

)3〉
= −3εij

〈
G−1
± ∂iG±G

−1
± Ġ±G

−1
± ∂jG±

〉
. (7.1.10)
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Let us establish now a bulk/boundary relationship between the solutions of the constraint equation.

The constraint solution (7.1.4) holds at the bulk, but at the boundary we can write

a±i = g−1
± ∂ig± , (7.1.11)

with G± the bulk extension of g±. Because a radial gauge transformation reads

A± = b−1
±
(
d+ a±

)
b± , (7.1.12)

we have the following equality

G−1
± dG± = b−1

± db± + b−1
± g−1
± dg±b± = b−1

± g−1
± d (g±b±) . (7.1.13)

This implies that

G±(t, r, φ) = g±(t, φ)b±(r) , (7.1.14)

which allows to relate G± with g± and the gauge parameter b±, given by the following election

b±(r) = e± log(r/`)L0 . (7.1.15)

Using the cyclic property of the trace, I±Nlsm reduces to

I±Nlsm =
K

4π

ˆ
∂M

dt dφ
〈
b−1
± g−1
± ∂t (g±b±)

′〉
=
K

4π

ˆ
∂M

dt dφ
〈
g−1
± ġ′±

〉
. (7.1.16)

The addition I±WZ+I±Nlsm is known as the Wess-Zumino-Novikov-Witten (WZNW) model [388–391].

We solved the constraint of the theory and we obtained, as a dual theory of AdS3 GR, the

aforementioned model.

7.1.2 From WZNW to anisotropic chiral bosons

Here we address the reduction from the WZNW model to the anisotropic chiral boson theory. This

reduction is going to be addressed through the Gauss decomposition for G± and g±,

G±(t, r, φ) = eX±(t,r,φ)L±1e±Φ±(t,r,φ)L0eY±(t,r,φ)L∓1 , (7.1.17a)

g± = ex±(t,φ)L±1e±ϕ±(t,φ)L0ey±(t,φ)L∓1 . (7.1.17b)

respectively.

For the chiral sector, the Gauss decomposition (7.1.17a) of G+ acquires the following represen-
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tation

G+ =

1 −X+

0 1

e−Φ+/2 0

0 eΦ+/2

 1 0

Y+ 1

 , (7.1.18)

while for the antichiral one, the representation of G− is

G− =

 1 0

X− 1

eΦ−/2 0

0 e−Φ−/2

1 −Y−
0 1

 . (7.1.19)

Replacing the latter in (7.1.10), and after direct calculations, the integrand of the WZ action reads

〈(
G−1
± dG±

)3〉
= −3dr dt dφ εαβγ∂α

(
eΦ±∂βX±∂γY±

)
, (7.1.20)

yielding

I±WZ =
K

4π

ˆ
dr dt dφ eΦ±∂r

(
εtrφẊ±Y

′
± + εtφtX ′±Ẏ±

)
; (7.1.21a)

where periodicity on the fields was assumed. With manifold orientation εtrφ = 1, we arrive then to

the following reduction

I±WZ =
K

4π

ˆ
∂M

dtdφ eΦ±
(
Ẋ±Y

′
± −X ′±Ẏ±

)
. (7.1.22)

Now we aim to perform a similar procedure to the nonlinear sigma term (7.1.16). Integrating by

parts the angular derivative in (7.1.16), we readily obtain

I±Nlsm =
K

4π

ˆ
∂M

dtdφ

[
1

2
ϕ̇±ϕ

′
± − eϕ±

(
ẋ±y

′
± + x′±ẏ±

)]
. (7.1.23)

If we add the WZ–term plus the Nlsm, namely the WZNW–model, we arrive to the boundary

description of AdS3 GR, up to the boundary term (7.1.3), which will be treated at the end.

We need a relation between the bulk functions {X±,Φ±, Y±} and the boundary {x±, ϕ±, y±}

ones, because they are a different set of functions. The path will be given by means of Eq. (7.1.14),

with gauge parameter b± = e± log(r/`)L0 . Hence, for the chiral sector we have

e−Φ+/2
(
1− eΦ+X+Y+

)
−eΦ+/2X+

eΦ+/2Y+ eΦ+/2

 =

e−ϕ+/2
√

`
r (1− eϕ+x+y+) −eϕ+/2

√
r
`x+

eϕ+/2
√

`
ry+ eϕ+/2

√
r
`

 .

From elements 22, 12 and 21 we obtain the consistency conditions eΦ+ = r
` e
ϕ+ , X+ = x+ and

Y+ = `
ry+, respectively. On the other hand, for the antichiral sector, we have the following matrix
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equality

 eΦ−/2 −eΦ−/2Y−

eΦ−/2X− e−Φ−/2
(
1− eΦ−X−Y−

)
 =

 eϕ−/2
√

r
` −eϕ−/2y−

√
`
r

eϕ−/2x−
√

r
` e−ϕ−/2

√
`
r (1− eϕ−x−y−)

 .

Thus, from elements 11, 12 and 21 we get conditions eΦ− = r
` e
ϕ− , Y− = `

ry− and X− = x−,

respectively. In sum, we have the forthcoming consistency conditions for both sectors

eΦ± =
r

`
eϕ± , X± = x± , Y± =

`

r
y± , (7.1.24)

With them, I±H = I±WZNW = I±WZ + I±Nlsm reduces to the 2-dimensional surface integral

I±WZNW =
K

4π

ˆ
∂M

dt dφ

(
1

2
ϕ̇±ϕ

′
± − 2eϕ±x′±ẏ±

)
. (7.1.25)

At this stage, the procedure was general, however, we aim to obtain a further reduction of the

previous action by imposing suitable boundary conditions. These are given by

a±φ = ±4π

K
J±(t, φ)L0 , (7.1.26)

a±t = ±v (−1)
z−1
2 ∂z−1

φ a±φ + µ(t, φ)L0 , (7.1.27)

where v > 0 is a coupling constant with dimensions of [length]z−1 and, as we will see next, µ

to an external perturbation, and z to the odd integer dynamical exponent of Lifshitz scaling. It

is important to say that for z = 1 we obtain the Brown-Henneaux case in the Chern-Simons

formulation.

Recalling solution (7.1.11), we can equate the latter with the angular boundary condition

(7.1.26), as following

g−1
± ∂φg± = ±4π

K
J±(t, φ)L0 . (7.1.28)

By virtue of the Gauss decomposition (7.1.17b), it implies the following relationships

eϕ±x′±y± +
1

2
ϕ′± = ±2π

K
J± , eϕ±x′± = 0 , eϕ±x′±y

2
± + y′± + y±ϕ

′
± = 0 . (7.1.29)

Replacing the middle equation into the first one, we arrive to the following crucial relation,

J± = ±K
4π
∂φϕ± , (7.1.30)

allowing us to connect the angular (spatial) derivative of the field ϕ± with the asymptotic function
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J±(t, φ). The exponential of the WZNW action (7.1.25) vanishes by virtue of the second equation

of (7.1.29), so the WZNW reduces to the kinetic integral functional

I±kinetic =
K

8π

ˆ
dt dφ ϕ̇±ϕ

′
± . (7.1.31)

7.1.3 Reduction of the boundary term

Now we must take care of the boundary term (7.1.3). After a gauge transformation, it reads

δB± = −K
2π

ˆ
∂M

dt dφ
〈
a±t δa

±
φ

〉
,

where the lowercase fields a± do not have radial dependence.

Replacing the angular boundary condition (7.1.26) and the temporal one (7.1.27) in the variation

of the boundary term, we obtain

δB± = −K
2π

ˆ
∂M

dt dφ
〈
±v (−1)

z−1
2 ∂z−1

φ a±φ δa
±
φ

〉
−
ˆ
∂M

dt dφµδJ± . (7.1.32)

Then, the boundary term integrates as following,

B± = ∓Kv
4π

ˆ
∂M

dt dφ

〈(
∂
z−1
2

φ a±φ

)2
〉
−
ˆ
∂M

dt dφµJ± , (7.1.33)

rendering a well-defined action. According to the Gauss decomposition (7.1.17b) and the sec-

ond consistency condition of (7.1.29), the latter boundary contribution– that deforms the WZNW

model–, yield a term proportional to ∼
(
∂
z+1
2

φ ϕ±

)2

, namely

B±(z) = ∓Kv
8π

ˆ
∂M

dt dφ
(
∂
z+1
2

φ ϕ±

)2

∓ K

4π

ˆ
∂M

dt dφµϕ′± . (7.1.34)

We have all the ingredients to obtain the anisotropic chiral boson theory, with a perturbation µ,

as an effective description that captures the boundary degrees of freedom of the gravitational field.

Replacing the previous result and the kinetic term (7.1.31) in the action (7.1.1), we obtain

I± [ϕ±] =
K

8π

ˆ
dt dφ

[
ϕ̇±ϕ

′
± ∓ v

(
∂
z+1
2

φ ϕ±

)2

∓ 2µϕ′±

]
, (7.1.35)

where the gravitational description is given by the substraction of the two anisotropic chiral boson

actions (6.0.1), with the source µ coupled to J±.

In summary, by solving the constraint equation F±ij = 0 and by means of Gauss decomposition

(7.1.17), we performed the Hamiltonian reduction of AdS3 GR . We obtained at the boundary a
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substraction

I [ϕ+, ϕ−] = I+ [ϕ+]− I− [ϕ−] , (7.1.36)

of two anisotropic chiral boson action (7.1.35) [333].

7.2 Boundary two-terminal conductance

In the previous section, we proved that the anisotropic chiral boson theory (with the external source

µ coupled to J±), is a holographic description of AdS3 GR through suitable boundary conditions.

Using the u(1) operator J± and its conjugate current I±, given in (6.0.7) and (6.0.8),

J±(t, x) = ±K
4π
∂xϕ±(t, x) , I±(t, x) = ∓K

4π
∂tϕ± , (7.2.1)

respectively, we aim to obtain its associated susceptibility through the Kubo formula (5.3.7)

χ̃±I,J (ω;x, x′) = −i
ˆ ∞
−∞

dtΘ(t)eiωt 〈[I±(x, t),J±(x′, 0)]〉 . (7.2.2)

As reviewed in the previous chapter and Appendix G.3.2, anisotropic chiral excitations exhibits any-

onic nature, allowing us to interpret J± and I± as electric charge and density fermionic operators,

respectively.

7.2.1 Anisotropic chiral susceptibility

Here we obtain the holographic susceptibility associated to the anisotropic chiral bosons. Consider

the u(1) operators defined in (6.0.7) and (6.0.8). We aim to compute the linear response associated

to these operators, which are given by the following expression

δ
〈
Ĩ±(ω, x)

〉
=

ˆ ∞
∞

dx′ µ̃(x′, ω) χ̃±I,J (ω;x, x′) , (7.2.3)

where µ̃(x′, ω) is the Fourier frequency-space source and χ̃±I,J (ω;x, x′) the susceptibility. According

to the bosonization performed, J± and I± are related with electric charge transport, so we expect

that the quantity

δ
〈
Ĩtot

〉
≡ δ

〈
Ĩ+

〉
+ δ

〈
Ĩ−
〉
, (7.2.4)

gives the total expected current intensity carried by chiral bosons with AC frequency ω. Neverthe-

less, in order to find the latter quantity it is necessary to calculate the susceptibility of the theory.
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Recall that this can be found by means of the Kubo formula

χ̃±I,J (ω;x, x′) = −i
ˆ ∞
−∞

dtΘ(t)eiωt 〈[I±(x, t),J±(x′, 0)]〉 . (7.2.5)

We start explaining how to compute the different-time commutator. Because the fields ϕ±(t, x)

satisfies the superposition principle, they can be expanded in Fourier series

ϕ±(x, t) =

ˆ ∞
−∞

dk

k
ei(kx±ωkt)b±,k , (7.2.6)

where b±,k correspond to the k-th wavenumber annihilation operator, b†±,k the k-th wavenumber

creation operator, and ωk its dispersion relation (6.0.3).

Before calculating the commutator of I± with J±, it is necessary first to obtain the commu-

tation algebra of annihilation operators b±,k. Recall that the anisotropic chiral bosons satisfy the

commutation rule (6.1.4),

[ϕ±(x), ∂x′ϕ±(x′)] = ±4iπ

K
δ(x− x′) . (7.2.7)

If we invert the Fourier transform, we can find the commutation algebra of annihilation operators

[b±,k, b±,k′ ] = ± 2

K
kδ(k + k′) . (7.2.8)

Details can be found in Appendix H.1.

Now we are in position to compute the different-time commutator. Because the operators J±
and I± are proportional to the space and time derivative of the fields, respectively, we have to take

derivatives of the fields in order to build these operators. Then, using (7.2.8), we readily obtain

[I±(x, t),J±(x′, 0)] =

[
∓K

4π
∂tϕ±(x, t),±K

4π
∂x′(x

′, 0)

]
=

K

8π2

ˆ ∞
−∞

dk ωke
ik(x−x′)e±iωkt . (7.2.9)

Thus, we obtained the different-time commutator associated to the operators I± and J±. Replacing

this result in the Kubo–formula (7.2.5), we arrive to the following integral expression

χ̃±I,J (ω;x, x′) = − iK
8π2

ˆ ∞
−∞

dk ωke
ik(x−x′)

ˆ ∞
−∞

dtΘ(t)ei(ω±ωk)t . (7.2.10)

The time-integral is just the Fourier transform of the theta Heaviside function, given by

ˆ ∞
−∞

Θ(t)ei(ω±ωk)t =
i

ω ± ωk + iε
,

where ε is a positive regulator that appears as a consequence of the susceptibility causality. As
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proved in Appendix H.2, the susceptibility acquires then the following form

χ̃±I,J (ω;x, x′) ≡ K

4π

[
±δ(x− x′)∓ (ω + iε)F± (x− x′;ω)

]
, (7.2.11)

where the function F±(x− x′;ω) is the integral expression

F±(x− x′;ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
, (7.2.12)

which has p = 0, 1, 2, . . . , z − 1 simple poles. Using the residue theorem, we obtain

ωF±(y;ω) = −iΘ(y)
∑

k±p ∈Im>

ωk±p e
ik±p y

ω′
k±p

+ iΘ(−y)
∑

k±p ∈Im<

ωk±p e
ik±p y

ω′
k±p

, (7.2.13)

where y = x− x′ and ≷ denotes the upper/lower complex plane sector, respectively.

The latter result is general, since we never used the dispersion relation ωk = vkz of the

anisotropic chiral boson, so in principle, any dispersion relation is valid at this point.

If we now specialize to the anisotropic chiral boson case, the numerator and denominator of the

latter expression get simplified and the dependence on the dynamical exponent z± emerge through

functions ∆±≷, yielding

ωF±(y;ω) = −Θ(y)∂y∆±>(y;ω) + Θ(−y)∂y∆±<(y;ω) , (7.2.14)

where ∆±≷ is defined as

∆±≷(y;ω) =
∑

k±p ∈Im≷

eik
±
p y

z±
. (7.2.15)

For details in the explicit contour integration of function (7.2.12), see Appendix H.3.

7.2.2 Total current intensity and conductance

We computed the associated susceptibility to the operators I± and J±. We have to further compute

the associated total electric current, given by the linear response (7.2.3).

We must now specify a particular chemical potential. Turning on an external source that

corresponds to an electrostatic potential that produces a fermionic difussion, as seen in Fig. 7.1,

µ̃(x′, ω) = VLΘ(xL − x′) + VRΘ(x′ − xR) . (7.2.16)

61



x′

µ̃(ω;x′)

VL

VR

xLxR

Figure 7.1: Chemical potential µ̃ in frequency space, where we supposed (only for drawing purposes)
VL > VR.

and replacing the chemical potential (7.2.16) in (7.2.3) we arrive to

δ
〈
Ĩ±(ω, x)

〉
= ∓K

4π

ˆ ∞
−∞

dy [VLΘ(xL − x+ y) + VRΘ(x− y − xR)]× .

×
[
−δ(y)−Θ(y)∂y∆±>(y;ω) + Θ(−y)∂y∆±<(y;ω)

]
.

(7.2.17)

After direct manipulations (see Appendix H.4), the linear response of the mean current intensity

reads

δ
〈
Ĩ±(ω, x)

〉
= ∓K

4π
{− [VLΘ(xL − x) + VRΘ(x− xR)]

+ VL
[
Θ(x− xL)∆±>(x− xL;ω)−Θ(xL − x)∆±<(x− xL;ω)

]
− VR

[
Θ(x− xR)∆±>(x− xR;ω)−Θ(xR − x)∆±<(x− xR;ω)

]
+ [VLΘ(xL − x) + VRΘ(x− xR)]

(
∆±>(0;ω) + ∆±<(0;ω)

)}
.

(7.2.18)

This expression is valid in the AC regime. Nevertheless, we aim to recover an Ohm’s law in the

DC limit ω → 0. This means that it is necessary to calculate expression ∆±≷(0), given in definition

(7.2.15). It turns out that ∆±≷(0) is a constant that counts the number of poles. On the upper and

lower complex plane, the iε–prescription implies that we have z±∓1
2 poles on the upper plane and

z±±1
2 poles on the lower one. In sum,

∆±>(0) =
z± ∓ 1

2z±
, ∆±<(0) =

z± ± 1

2z±
. (7.2.19)

Thus, ∆±>(0) + ∆±<(0) = 1. This implies that the first and second terms cancel with the seventh

and eigth ones of (7.2.18), from where we obtain

δ
〈
Ĩ±(ω, x)

〉 ∣∣
ω→0

= ∓K
4π

{
VL

[
Θ(x− xL)− z± ± 1

2z±

]
− VR

[
Θ(x− xR)− z± ± 1

2z±

]}
. (7.2.20)

We obtained the mean current intensity in a first-order approximation of the chiral/antichiral
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sectors. Then, the total mean current intensity reads

δ
〈
Ĩtot

〉
≡ δ

〈
Ĩ+

〉
+ δ

〈
Ĩ−
〉

=
K

8π
∆V

(
1

z+
+

1

z−

)
, (7.2.21)

where we defined the electric potential difference ∆V = VL−VR. We can recognize the two-terminal

conductance σ given by the following expression

σ =
δ
〈
Ĩtot

〉
∆V

=
K

8π

(
1

z+
+

1

z−

)
. (7.2.22)

This is the two-terminal conductance associated to anisotropic chiral excitations as an effective

description of AdS3 GR at the radial infinity, subjected to the perturbation µ given in Eq. (7.2.16).

7.3 The gravitational side

Through establishing the bulk/boundary correspondence, here we aim to provide a gravitational

perspective of operators J± and I±.

7.3.1 The bulk correspondence

Consider the Chern-Simons action coupled to a covariantly conserved current source Jµ±,

I±CS

[
A±; J±

]
= I±CS

[
A±
]
−
ˆ
d3x

〈
A±µ J

µ
±
〉
. (7.3.1)

First-order Einstein equations in this formalism reads as

K

2π
εαµνF±µν = Jα± . (7.3.2)

This allow to identify a physical process in the bulk where an external source modifies the Chern-

Simons field A±. Choosing orientation εrxt = 1, we obtain

K

2π
F±tx = Jr± . (7.3.3)

With a gauge transformation, where b±(r) is the gauge parameter that captures the radial depen-

dence of the fields, the gauge connection will not depend on the radius. With this transformation,

Einstein equations (7.3.3) simplifies, and acquires the following form

b−1
± f±txb± =

2π

K
Jr± , (7.3.4)
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with f±tx = ∂ta
±
x − ∂xa±t +

[
a±t , a

±
x

]
. The source is defined through a current pointing in the radial

direction

Jr± = −K
2π
∂xµb

−1
± L0b± , J t± = Jx± = 0 , (7.3.5)

where its precise dependence on the group element b± ensures the conservation law ∂αJ
α
± +[

A±α , Jα±
]

= 0. The functional dependence of µ will be chosen so that (7.3.4) describes the boundary

perturbation of the previous section.

Because (7.3.4) reduces to f±tx = ∂xµL0 and with the following boundary conditions

a±x = ±4π

K
J±L0 , a±t = ∓4π

K
I±L0 . (7.3.6)

we can write (7.3.4) as

∂tJ± + ∂xI± = ±K
4π
∂xµ . (7.3.7)

Now, from boundary conditions (7.1.27), we directly obtain that I± is related with J± as

I± = I in
± ± v (−1)

z+1
2 ∂z−1

x J± , (7.3.8)

or

δI± = ±v (−1)
z+1
2 ∂z−1

x J± , (7.3.9)

where I in
± is an initial condition to be fixed. Importantly, this constant will be interpreted in light of

a particular initial gravitational configuration where the system consequently evolves. Therefore, by

virtue of relationship (7.3.8), equation (7.3.7) transforms into the anisotropic chiral boson equation

∂tJ± ± v (−1)
z+1
2 ∂zxJ± = ±K

4π
∂xµ . (7.3.10)

The formal solution of the latter is

J±(t, x) = J in
± ±

K

4π

ˆ
dt′ dx′G±R(x− x′, t− t′) ∂x′µ(t′, x′) , (7.3.11)

where R dubs the retarded Green function. The reason to consider the retarded prescription lies

in causality, in the sense that we measure after the physical process has been taken place, and not

before. Mathematically, this can be accomplished if we impose that the ordinary Green function
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vanishes for negative time, i.e.,

G±(x− x′, t− t′ < 0) = 0 .

Because the retarded propagator emerge after the perturbation has been placed, it is a sensible

quantity that, according to linear response theory (see Chapter 5), can be recognized as the sus-

ceptibility of the theory χ(x−x′, t− t′). Thus, J±−J in
± ≡ δ 〈J±〉 stands for the expectation value

of the electric charge operator; while analogue analysis stands for δ 〈I±〉, the expectation value of

the intensity current of both sectors.

Expanding in Fourier modes, the retarded Green function reads

G±R(x− x′, t− t′) =
1

(2π)2

ˆ
dk dω eik(x−x′)e−iω(t−t′)G̃±R(k, ω) , (7.3.12)

where it is possible to obtain the inverse of the differential operator ∂t ± v (−1)
z+1
2 ∂zx,

G̃±R(k, ω) =
i

ω ± ωk + iε
, (7.3.13)

with ωk = vkz. As proved in Appendix H.5, replacing in (7.3.11), we obtain

J±(t, x) = J in
± ±

iK

8π

ˆ
dt′ dx′ dω F± (x− x′, ω) ∂x′µ(t′, x′) , (7.3.14)

where the integral function F± is the same as the definition given in (7.2.12),

F±(x− x′, ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
.

Because I± is related with J± through Eq. (7.3.8), then with result (7.3.14) it is possible to obtain

Ĩ± = Ĩ in
± ∓

K

4π
ω

ˆ
dx′ F±(x− x′, ω)µ(x− x′, ω) . (7.3.15)

We have to solve the integral expression. In order to make contact with the holographic result of

the previous section, let us now specify the source in the following form

µ̃(x′, t) = δ(t) [VLδ(xL − x′) + VRδ(x
′ − xR)] , (7.3.16)

drawn in Fig. 7.1. The temporal localization of the external source models a process where the

initial and final configurations corresponds to solutions of vacuum Einstein’s equation. This election

yield the same result as the one obtained from the putative dual theory (7.2.22) at the DC limit,

but we recovered it now from the bulk perspective.
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Particular questions must be addressed at this point:

(I) To answer how we recover an associated spacetime where anisotropic chiral bosons evolves

within,

(II) to elucidate the geometric interpretation of operators I± and J±,

(III) answer if the computation of σ, obtained in (7.2.22) is characterized by an adiabatic process,

and

(IV ) to understand what gravitational phenomena can be associated to these boundary excitations.

7.3.2 Linear response for near-horizon boundary conditions

In order to answer points (I) and (II), let us construct a spacetime solution. In terms of Chern–

Simons gauge fields, the aforementioned can be obtained from the following relationship

gµν =
`2

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉
. (7.3.17)

To construct those solutions, consider a particular radial dependence of the group element b± [114,

147],

b±(r) = exp
[
± r

2`
(L1 − L−1)

]
. (7.3.18)

Because the spatial component of the gauge field (7.1.26) lies on the hyperbolic conjugacy class

(see table 3.1), the resulting gravitational configurations are typified by black hole solutions [343].

Hence, closer to the Rindler horizon r = 0, it is possible to find the following spacetime metric

ds2 =

(
2π`2

K

)2 (
I2

totdt
2 − 2Itotρtotdtdx+ ρ2

totdx
2
)

+ dr2 +O
(
r2
)
, (7.3.19)

where we defined Itot = I+ + I− and ρtot = J+ + J−. The operators J± and I± corresponds

to the ones specified in (6.0.7) and (6.0.8), respectively. The O
(
r2
)
terms stands for subleading

components.

From the geometry, we can conclude the following. Operators Itot and ρtot induces a rotation

to the black hole, while the horizon area is measured by an observer in a rotating frame close to

r = 0, whose operator is defined as an integral of the total charge density in Fourier space

A =

ˆ
dx ρ̃tot . (7.3.20)

Because ρ̃tot appears in the gxx component, let us study its behavior in the DC limit. After a
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Fourier transform, (7.3.7) may be readily written as

iωδρ̃tot − ∂xδĨtot = 0 . (7.3.21)

Recall the integral expression (7.2.12) for function F± when we computed the retarded Green

function (or susceptibility) associated to I± and J±,

F±(x− x′;ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
.

In its denominator we have the polynomial equation Q(k) = ω ± vkz + iε. When we use residue

theorem, we will have a sum of z poles such that Q(k±p ) = 0, where k±p ∝ ω1/z. Recall now ∆≷(0),

defined in (7.2.15), which is a sum of this poles at the DC limit (see comment before Eq. (7.2.19)).

It has maximum order of O
(
ω1/z

)
. Recalling that the integration and algebraic manipulation of

∆≷(x− x′;ω) yields finally the total current intensity, its maximum order at the DC limit then is

δĨtot|ω→0 = σ∆V +O
(
ω1/z

)
. (7.3.22)

By means of Eq. (7.3.21), then the order of δρ̃tot is

δρ̃tot ∝ O
(
ω1/z−1

)
. (7.3.23)

Because in the DC limit this quantity diverges, the metric component gxx will have the same

behavior at this regime.

Regarding question (III), the perturbed process we consider when we computed the two-terminal

conductance (7.2.22) is adiabatic, since, from Eq. (7.3.21), we obtain

δA = 0 . (7.3.24)

If the black hole fulfills the Bekenstein-Hawking area law [97], this result guarantees that this law

holds in the entire process. Thus, we have chiral bosons in a localized near-horizon sector that do

not alter the entropy of the black hole. Moreover, these excitations diffuse anisotropically according

to Ohm’s law.

7.3.3 Memory effect

The strategy to answer question (IV ) of Page 66 is to turn off and on the external source µ and

map some of the previous results into the language of chiral bosons. The reason is because chiral

bosons corresponds to improper diffeomorphisms of AdS3: They change the physical state of the

system since they capture the boundary degrees of freedom of the theory.
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Without the source µ, the scalar fields ϕ± parametrize the global cover of AdS3. Recalling

definitions (6.0.7) and (6.0.8), we obtain

dϕ± = ±K
4π

(J±dx− I±dt) . (7.3.25)

Thus, we can parametrize the AdS3 metric as

ds2 = − l
2

4
sinh2

(r
l

)
(dϕ+ + dϕ−)2 + dr2 +

l2

4
cosh2

(r
l

)
(dϕ+ − dϕ−)2 . (7.3.26)

The diffeomorphism (7.3.25) makes evident that the degrees of freedom yielding J± and I± belong

to the set of large gauge transformations.

Since we are always standing locally on AdS3, we want to see how the metric evolves from a

certain initial setting ϕin
± . We start with configuration

ϕin
±(t, x) =

4π

K
(t± x)J in

± . (7.3.27)

The latter corresponds to the BTZ black hole with inner and outer horizons 2π`2

K

(
J in

+ + J in
−
)
,

respectively [392]. In order to make this choice consistent with (7.3.8), we set the initial value of

the electric current to be I in
± = ∓J in

± .

If we now turn on the source µ, the dynamic is dictated by Eq. (7.3.7), which, after replacing

Eq. (7.3.8), transforms into the anisotropic chiral equation for J±, (7.3.10). The solution of this

equation is given by (7.3.14).

After the choice of the chemical potential (7.2.16), we can write J± as,

J± = J in
± ∓

K

4π(vzt)1/z
Θ(t)

{
VLAiz

[
± x− xL

(vzt)
1/z

]
− VRAiz

[
± x− xR

(vzt)
1/z

]}
, (7.3.28)

where Aiz(x) corresponds to the higher-order Airy function of the first kind, defined in Eq. (B.0.3)

of Appendix H.5 as

Aiz(x) =
1

2π

ˆ ∞
−∞

dk ei(
kz

z +kx) . (7.3.29)

There are two crucial steps in order to write (7.3.28) in terms of anisotropic chiral bosons.

Physically, we perturbed the system with a temporally localized source, so when the perturbation

is turned off, the solution (7.3.28) still holds for t > 0. However, according to (7.3.7), without the

source we can express the following output functions

J out
± = ±K

4π
∂xϕ

out
± , Iout

± = ∓K
4π
∂tϕ

out
± . (7.3.30)
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We can write the higher-order Airy function as a derivative on x. According to (B.3.2), if we define

ψz(x) as

ψz(x) =
1

2iπ
p.v.

ˆ ∞
−∞

dk
ei(

kz

z +kx)

k
, (7.3.31)

where ψz(x) is the antiderivative of the z-order Airy function by virtue of Eq. (B.3.1), namely,

∂

∂x
ψz(x) = Aiz(x) , (7.3.32)

then (7.3.28) reads as

ϕout
± (t, x) = ϕin

±(x, t)∓ VL ψz
(
± x− xL

(vz±t)1/z±

)
± VR ψz

(
± x− xR

(vz±t)1/z±

)
. (7.3.33)

In the final evolution of the process, we end again with the AdS3 geometry (7.3.26). The difference

lies in the form of the function ϕ±, which changed nontrivially, storing sensible physical information

of the process that has occured, since it is possible to obtain an electrical two-terminal conductance

from this result.

Consider the total electric current defined as δ 〈Itot〉 ≡ δ 〈I+〉+ δ 〈I+〉. Then the conductivity

is defined as the time-average of the total electric current over voltage, as following

σ =
1

∆V

ˆ ∞
−∞

dt δ 〈Itot〉 = − K

4π∆V

ˆ ∞
−∞

dt ∂t(δϕ+ − δϕ−) , (7.3.34)

where δϕ± ≡ ϕout
± (x, t) − ϕin

±(x, t). After the integration, we arrive to chiral bosons evaluated in

t = ±∞. Due the causality condition, the chiral bosons at minus infinity vanishes. Using the fact

that ψ±z (0) = 1/2z± (see Eq. (B.3.3)), we can write

δϕ±(t =∞, x) = ∓∆V

2z±
. (7.3.35)

yielding the same result (7.2.22). This outcome puts in evidence two facts. The first is that chiral

bosons belong to the set of improper diffeomorphisms, as said, since they capture the boundary

degrees of freedom of the theory by storing DC sensible information of the boundary electric current.

This means that, from the canonical point of view, they change the charges of the system, despite

we are always standing on AdS3.

Although the external source is turned off, there are permanent imprints in the solution space of

anisotropic chiral bosons, as showed in (7.3.33). This linear response effect, where a susceptibility

(or retarded Green function) arise from a holographic perturbation, can be mapped as a three-

dimensional version of the 4D gravitational memory effect, where the passage of a gravitational

wave induces a permanent displacement of the detectors [82, 336].
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7.4 Remarks

Through the choice of suitable boundary conditions, we formulated a 2D scalar theory - the

anisotropic chiral boson [333]- as a putative dual description of AdS3 GR. Through the Kubo

formula, we obtained an Ohm’s law in the DC limit ω → 0. An important feature of this result lies

in the fact that the holographic conductivity depends explicitly on the dynamical exponent that

controls the anisotropic scaling.

A black hole interpretation was given, since we proved that anisotropic chiral bosons corresponds

to local excitations of the gravitational field at the near-horizon region of the BTZ black hole.

Because chiral bosons evolves in a particular form, they change the physical state of the system by

storing boundary DC information. Thus, through the identification of large gauge transformations,

we identified a 3D analogue gravitational memory effect.
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Conclusions

Due the lack of bulk gravitational propagating degrees of freedom, we argued along this thesis, that

the holographic character of 3D GR is given by the choice of suitable boundary conditions. We

emphasized this by working on AdS3 geometries.

On one side, we established a dictionary between Integrable Systems, in particular the Ablowitz-

Kaup-Newell-Segur (AKNS) system, and AdS3 GR, through boundary conditions and asymptotic

symmetries.

On the other hand, the introduction of an external source in Lifshitz-type boundary conditions

allowed us to geometrize quantities of a perturbed holographic description of AdS3 GR, and connect

it with 3D memory effect.

Here we conclude this thesis by exposing different possible avenues that can expand what has

been treated along these pages.

Discussion of Part I

All of the results obtained in Chapter 4 are given in the Chern-Simons approach of GR on AdS3.

Although this framework enjoys some advantages than the metric formalism, it is desirable to

express results in terms of the metric field gµν , e.g., to explicitly write the spacetimes where NLS,

KdV or MKdV equations evolves within; the form of their asymptotic Killing vectors and how the

mass and angular momentum reads in terms of the dynamical fields p± and r±.

Another path to follow is performing the Hamiltonian reduction of AdS3 GR by solving its first-

class constraint, with [393] and without global holonomies; and obtain at the boundary an action

princple whose Euler-Lagrange equations yields the AKNS system or modifications of it. In this

regard, it is desirable to study this action functional by canonical analysis. It would be expected

to recover the action reported in [316].

More general prospects involves gravitational or black hole interpretations of different methods

used in the Integrable Systems literature regarding the construction of N -soliton solutions, e.g., the

Inverse Scattering Transformation or Bäcklund ones. Better understanding of this map involves to

construct solitons in the Chern-Simons approach and map these results to the metric formalism. For
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example, we expect that Bäcklund transformations would allow us to find general Miura-like maps

at the level of Einstein equations, or to find specific (proper or improper) change of coordinates

where a 1-soliton solution maps to a self-interacting one through Bianchi nonlinear superposition

principle.

Hamiltonian methods are not the only ones that have been explored in the construction of grav-

itational charges. Covariant methods, such as Balasubramanian-Kraus [394] or Noether-Wald [395,

396] have been of profound importance for nowadays theoretical gravitational physics. Since general

AKNS black holes are not stationary, it is necessary to work with fixed N .

In the BTZ black hole, the entropy and the mass are generated by the Killing vector ξ =

∂t−Nφ∂φ, while angular momentum by ∂φ, so it is expected that this method works for particular

AKNS black holes.

Other avenue regards higher-spin gravity. We would search to generalize boundary conditions

(4.0.1) for the gravitational field nonminimally-coupled to a spin-3 particle by spanning the gauge

connection in two independent copies of the sl±(3,R) Lie algebra,

[Hi, Hj ] = 0,
[
Hi, E

±
j

]
= ±KjiE

±
j ,

[
E+
i , E

−
j

]
= δijHj ,[

E±i , E
±
3

]
= 0,

[
E+

3 , E
−
3

]
= H1 +H2,

[
Hi, E

+
3

]
= ±E±3 ,[

E±1 , E
±
2

]
= ±E±3 ,

[
E±1 , E

∓
3

]
= ∓E∓3 ,

[
E±2 , E

∓
3

]
= ∓E∓1 ,

(7.4.1)

where H1, H2, E
±
1 , E

±
2 , E

±
3 are the generators of the algebra, and Kij its Cartan matrix. Unlike the

sl(2,R) case where two dynamical equations of motion (4.0.3) and three recurrence relationships

(4.0.4) appears, here it is expected to obtain six dynamical equations of motion with eighteen recur-

sion relationships, thus generalizying the AKNS system to the self-interacting spin-3 case. Besides,

an abelian realization through a nonlinear redefinition of the Zamolodchikov W3 generators in terms

of the new dynamical fields should be accomplished. After this warm-up, a spin-N generalization

is desirable.

It is known that the Poincaré algebra iso(2, 1) can be recovered from the Anti-de Sitter Lie

algebra so(2, 2)

[Ja, Jb] = εabcJ
c ,

[Ja, Pb] = εabcP
c ,

[Pa, Pb] = −ΛεabcJ
c ,

(7.4.2)

where Λ = −1/l2 < 0 is the cosmological constant, by the Innönü–Wigner contraction `→∞. Fu-

ture prospects for results of Chapter 4, are to recover its flat limit by the aforementioned contraction.

However, the reduction is not straightforward, since we must redefine the dynamical functions in

order to take this limit safely. We expect that some dynamical terms present in the so(2, 2) case
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dissapear after taking this limit. Additionally, it is not clear if the conditions B±0 = C±0 = 0 holds

in the flat case, in the sense that, in order to achieve the usual recursion relations, a double power

expansion to N and M in the spectral parameters must be taken, so the initial conditions that one

obtained in the sl(2,R) case, maps into initial conditions to row and columns of Bn,m and Cn,m,

whose indices will stand in different foots.

Regarding the Λ > 0 (de Sitter) case, the gauge connection, along with a particular reality

condition, is spanned in the sl(2,C) Lie algebra. In this case, the possible AKNS configuration will

evolve on cosmological set-ups.

Discussion of Part II

Although the anisotropic chiral boson theory is defined for odd z, a possible prospect to continue

with the research line exposed in Part II of this thesis is to consider the even extension of the

aforementioned theory. That is, to find suitable boundary conditions where the Hamiltonian re-

duction leads to an even version field description. In this context, it is proposed to perform the

same analysis of Chapter 6 and 7, i.e., to perturb the theory with a certain chemical potential

and, since we also expect anyons excitations, to write the possible u(1) operators in their fermionic

formulation, so as find an associated conductivity in the DC limit.

In order to consider an eternal black hole (and not a local one as we treated in [332]), we should

consider two asymptotically AdS3 boundaries [393]. When we performed the Hamiltonian reduction

in Chapter 7, we solved the constraint without holonomies, however, if we aim to consider them, it

is necessary to include them in the solution of the zero-curvature equation of motion. This change

the holographic dual theory in the sense that the zero modes couple the dynamical fields on the two

different boundaries. Under the light of linear response theory, it would allow us to find transport

coefficients that interpolate both boundaries.

A natural avenue to pursue is to extend the construction of Chapter 7 but when the gravitational

field nonminimally coupled a higher spin field. In this regard, the simplest case to consider is a spin-

3 field. As mentioned above, in this case the Chern-Simons connection spans into two independent

copies of the sl±(3,R) algebra.

If we generalize the Lifshitz-like boundary conditions (7.1.26) and (7.1.27), but now for sl±(3,R),

then we expect to obtain the self-interacting higher version of the anisotropic chiral boson after a

Hamiltonian reduction (with no global holonomies). In this sense, it would be desirable to compute

transport coefficients using the reviewed methods of Chapter 5.

Another appealing line to explore is to study the fluctuation-dissipation theorem [397, 398]

from the metric formalism. From linear response theory, it is known that the real part of the

susceptibility, labeled χ′ is associated to the reactive part of the theory. It is a function that says
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to which particular frequency ω the reaction is concentrated.

On the other hand, the imaginary part of the susceptibility, χ′′, is associated to dissipative

effects. This functions says us where the system naturally vibrates at some frequency, i.e., the

regime where the system is able to absorb energy.

In statistical mechanics, the two-point correlation function S(t) is associated to the variance

or fluctuation of the system. Using the Kubo formula (5.3.7) [334, 335], and for translational

invariance systems, the theorem reads

S(ω) = −2 [nB(ω) + 1]χ′′(ω) ,

where nB(ω) = (eβω − 1)−1 is the Bose–Einstein distribution function. We see that nB correspond

to thermal effects while the “−1” term represent quantum fluctuations. Observe that the classical

limit is recovered at high temperatures βω � 1, where nB approximates to kBT/ω, with kB the

Boltzmann constant. Thus, we obtain S(ω) ≈ −2 (kT/ω)χ′′(ω).

Future prospects involve a possible geometrization of the fluctuation-dissipation theorem. We

would like to find the frequencies where the system absorbs energy and understand it metric coun-

terparts, in the sense to what kind of gravitational phenomena we can associate this absorption

process. Besides, if the Hamiltonian reduction in the eternal black hole set-up is plausible, an

appealing question to ask is if the transport coefficient that interpolates the two boundaries is

dissipative or not, and figure at what kind of frequency naturally vibrates.

Strominger [399] revealed the triangular relation between unrelated different physics topics

associated to the infrared dynamics of physical massless particles theories. There are three corners:

Soft theorems, memory effects and asymptotic symmetries.

From memory effect, according to [82], the Heaviside step function can be interpreted as a

domain wall that connects to inequivalent vaccuas, related by an asymptotic symmetry. We can

move from asymptotic symmetries to a soft theorem since every symmetry has its ownWard identity.

Ward identities are identities of the scattering amplitudes from where physical information can

be obtained, e.g., to constrain the tensor structure of vacuum polarization or to say that longitudinal

polarization of the photon is unphysical in a particular gauge. But soft theorems are relations of

scattering amplitudes with and without soft particles, so we ended at the beginning.

We conjecture that the final part of the triangle can be addressed if we calculate the scattering

amplitude of anisotropic chiral bosons and then finding its Ward identity, allowing us to translate

the other two corners of the triangle in the language of particle physics and quantum field theory.
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Appendix A

sl(2,R) matrix representations and

identities

In this appendix we present the sl(2,R) algebra and its 2× 2 matrix representation, along with the

trace identities that the generators fulfill.

The sl(2,R) algebra (2.2.9) is

[Ln, Lm] = (n−m)Ln+m , (A.0.1)

where L0, L−1 and L1 are its generators that admits the following 2× 2 matrix representation

L−1 =

0 0

1 0

 , L0 =

−1/2 0

0 1/2

 , L1 =

0 −1

0 0

 . (A.0.2)

The generators satisfy the following trace identities

〈L±1, L0〉 = 0 , 〈L1, L−1〉 = −1 , 〈L0, L0〉 = 1/2 , (A.0.3)

from where the Killing metric gab = 〈La, Lb〉 reads

gab =


0 0 −1

0 1/2 0

−1 0 0

 (A.0.4)
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Appendix B

Higher-order Airy functions of the

first kind

Following [400], in this appendix we show that the z-dependent plane-wave like Fourier integral

fz(t, x) =

ˆ ∞
−∞

dk exp [i(ky ± ωkt)] , z ∈ N , (B.0.1)

where ωk = vkz, can be written in terms of the higher-order Airy functions of the special kind Aiz1,

fz(t, x) =
2π

(vzt)1/z
Aiz

[
± x

(vzt)1/z

]
, (B.0.2)

defined as

Aiz(x) =
1

2π

ˆ ∞
−∞

dk exp

[
i

(
kz

z
+ kx

)]
. (B.0.3)

B.1 Ordinary Airy functions

Airy functions Ai(x) are special functions defined as the integral expression

Ai(x) =
1

2π

ˆ ∞
0

dk cos

(
k3

3
+ kx

)
=

1

2π

ˆ ∞
−∞

dk e
i
(
k3

3 +kx
)
. (B.1.1)

Along this appendix, we will use the exponential representation of the Airy function. As a particular

objective, we will show that the latter function fulfills the Airy equation

d2

dx2
Ai(x) = xAi(x) . (B.1.2)
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To prove that, let us take a second derivative on u,

d2

dx2
Ai(x) =

1

2π

ˆ ∞
−∞

dk
d2

dx2
e
i
(
k3

3 +kx
)

(B.1.3a)

=
1

2π

ˆ ∞
−∞

dk (ik)2e
i
(
k3

3 +kx
)

(B.1.3b)

= − 1

2π

ˆ ∞
−∞

dk k2e
i
(
k3

3 +kx
)
. (B.1.3c)

If we add a zero in the integrand in order to conveneniently appear ordinary Airy functions, we

obtain

d2

dx2
Ai(x) = − 1

2π

ˆ ∞
−∞

dk
(
k2 + x− x

)
e
i
(
k3

3 +kx
)

(B.1.3d)

= − 1

2π

ˆ ∞
−∞

dk
(
k2 + x

)
e
i
(
k3

3 +kx
)

+
x

2π

ˆ ∞
−∞

dk e
i
(
k3

3 +kx
)

(B.1.3e)

≡ − 1

2iπ

ˆ ∞
−∞

dk
d

dk

[
e
i
(
k3

3 +kx
)]

+ xAi(x) . (B.1.3f)

However, the integral vanishes since

lim
|k|→∞

e
i
(
k3

3 +kx
)

= 0 , (B.1.4)

when arg k = nπ, for n ∈ Z. Hence (B.1.1) fulfills the Airy equation

d2

dx2
Ai(x) = xAi(x) . (B.1.5)

B.2 Higher-order Airy functions of the first kind

We define the higher-order Airy function of the first kind Aiz(x) as

Aiz(x) =
1

2π

ˆ ∞
−∞

dk ei(
kz

z +kx) , z ≥ 1 . (B.2.1)

This generalized version of the Airy function reduces to particular known functions for lower values

of z, e.g., for z = 1, it reduces to a delta distribution

Ai1(u) =
1

2π

ˆ ∞
−∞

dk eik(x+1) = δ(x+ 1) . (B.2.2)

For z = 2, we arrive to a Gaussian integral

Ai2(x) =
1

2π

ˆ ∞
−∞

dk e
i
(
k2

2 +kx
)

=
1

2
√
π

(1 + i) e−
i
2x

2

, (B.2.3)
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when x ∈ R; while for z = 3, we readily recover the ordinary Airy function Ai(x),

Ai3(x) =
1

2π

ˆ ∞
−∞

dk e
i
(
k3

3 +kx
)
≡ Ai(x) . (B.2.4)

Another feature of this generalized special function is that fulfills an extension of the Airy equation

(B.1.5),

∂z

∂xz
Aiz(x) = (−1)

z
2 +1xAiz(x) . (B.2.5)

The proof is analogue to the one of ordinary Airy equation. Let us take z derivatives of the

higher-order Airy function (B.2.1), as following

∂z

∂xz
Aiz(x) =

1

2π

ˆ ∞
−∞

dk
∂z

∂xz
ei(

kz

z +kx) (B.2.6a)

=
1

2π

ˆ ∞
−∞

dk (ik)zei(
kz

z +kx) (B.2.6b)

=
(−1)z/2

2π

ˆ ∞
−∞

dk kzei(
kz

z +kx) . (B.2.6c)

In the same spirit as Eq. (B.1.3d), we add now a zero to make appear higher-order Airy functions

∂z

∂xz
Aiz(x) =

(−1)z/2

2π

ˆ ∞
−∞

dk (kz + x− x)ei(
kz

z +kx) (B.2.6d)

=
(−1)z/2

2π

ˆ ∞
−∞

dk (kz + x)ei(
kz

z +kx) +
(−1)

z
2 +1x

2π

ˆ ∞
−∞

dk ei(
kz

z +kx) (B.2.6e)

≡ (−1)z/2

2π

ˆ ∞
−∞

dk (kz + x)ei(
kz

z +kx) + (−1)
z
2 +1xAiz(x) . (B.2.6f)

The latter integral is a total derivative. Because

lim
|k|→∞

e
i
(
kz+1

z+1 +kx
)

= 0 , (B.2.7)

when arg k = 2nπ/(z + 1), with n ∈ Z, the integral vanishes, yielding (B.2.5).

B.3 Antiderivative of the higher-order Airy functions

Let us define the antiderivative of higher-order Airy functions of the special kind; i.e., to find a

function ψz(x) such that fulfills

∂

∂x
ψz(x) = Aiz(x) . (B.3.1)

117



The function is readily

ψz(x) =
1

2iπ
p.v.

ˆ ∞
−∞

dk
ei(

kz

z +kx)

k
, (B.3.2)

where p.v. stands for the Cauchy principal value.

B.3.1 Zero value

An important result that has direct application in the calculation of anisotropic chiral bosons DC

current (7.3.35) occurs when x = 0, namely,

ψz(0) =
1

2iπ
p.v.

ˆ ∞
−∞

dk
ei
kz

z

k
=

1

2z
. (B.3.3)

This result can be proved as following. Using De Moivre’s formula, let us write

ψz(0) =
1

2iπ
p.v.

ˆ ∞
−∞

dk

k

[
cos

(
kz

z

)
+ i sin

(
kz

z

)]
. (B.3.4a)

Because the odd cosine integral vanishes, we only need to compute the sine part

ψz(0) =
1

2π
p.v.

ˆ ∞
−∞

dk

k
sin

(
kz

z

)
. (B.3.4b)

With the change of variables kz

z = y, then kz−1dk = dy, yielding

ψz(0) =
1

2π
p.v.

ˆ ∞
−∞

dy
sin y

xn
≡ 1

2zπ
p.v.

ˆ ∞
−∞

dy
sin y

y
. (B.3.4c)

By standard complex analysis, it is possible to prove

p.v.

ˆ ∞
−∞

dy
sin y

y
= π .

Finally, we arrive then to result (B.3.3),

ψz(0) =
1

2z
.

B.4 Fourier-type integral

Recalling the z-order Airy function defined in (B.2.1) as

Aiz

[
± x

z
√
vzt

]
=

1

2π

ˆ ∞
−∞

dk exp

[
i

(
kz

z
± kx

z
√
vzt

)]
, (B.4.1)
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with the change of variables κ z
√
vzt = k, we can directly write dκ z

√
vzt = dk, allowing to establish

a relationship between the higher-order Airy functions and plane wave-like Fourier integral. Then,

Aiz

[
± x

z
√
vzt

]
=

z
√
vzt

2π

ˆ ∞
−∞

dκ exp [i (vκzt± κx)] . (B.4.2)

Defining κ→ ±κ (and then κ→ k), we obtain a propagating wave-like Fourier integral

Aiz

[
± x

z
√
vzt

]
=

z
√
vzt

2π

ˆ ∞
−∞

dk exp [i (kx± ωkt)] , (B.4.3)

where ωk = vkz. Finally, if we define the Fourier integral

fz(x, t) =

ˆ ∞
−∞

dk exp [i(kx± ωkt)] , (B.4.4)

we are able to establish the following relationship with the higher-order Airy function

fz(t, x) =
2π
z
√
vzt

Aiz

[
± x

z
√
vzt

]
, (B.4.5)

arriving to (B.0.2).
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Appendix C

Appendices of Chapter 2

C.1 Deduction of the AKNS recursive equations of motion

In this appendix we aim to obtain the recursive equations of motion (2.1.3)

ṙ =
1

`
(−C ′N + 2rAN ) , ṗ =

1

`
(−B′N − 2pAN ) , (C.1.1)

where the coefficients An, Bn and Cn satisfy the relations (2.1.4a), (2.1.4b) and (2.1.4c),

A′n = pCn − rBn , (C.1.2a)

Bn+1 = −1

2
B′n − pAn , (C.1.2b)

Cn+1 =
1

2
C ′n − rAn , (C.1.2c)

B0 = C0 = 0 . (C.1.2d)

The deduction is the following. Consider the AKNS system,

ṙ +
1

`
(C ′ − 2rA− 2ξC) = 0 , (C.1.3a)

ṗ+
1

`
(B′ + 2pA+ 2ξB) = 0 , (C.1.3b)

A′ − pC + rB = 0 . (C.1.3c)

Perform a polynomial ansatz in ξ,

A =

N−n∑
n=0

Anξ
N−n, B =

N−n∑
n=0

Bnξ
N−n, C =

N−n∑
n=0

Cnξ
N−n , (C.1.4)
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with N an arbitrary positive integer. Replacing the latter expansion in (C.1.3a), we have

ṙ +
1

`

[
N∑
n=0

(C ′n − 2rAn) ξN−n − 2

N∑
n=0

Cnξ
N−(n−1)

]
= 0 . (C.1.5)

After relabeling indices of the last sum, and gathering terms with the same order in ξ, we obtain

[
ṙ +

1

`
(C ′N − 2rAN )

]
+

1

`

N−1∑
n=0

(C ′n − 2rAn + 2Cn+1) ξN−n +
1

`
2C0ξ

N+1 = 0 . (C.1.6)

Because ξ is arbitrary, we arrive to the equations

ṙ +
1

`
(C ′N − 2rAN ) = 0 , (C.1.7a)

Cn+1 =
1

2
C ′n − rAn , (C.1.7b)

C0 = 0 . (C.1.7c)

Thus, we obtained in particular the first equation of (C.1.1), (C.1.2b) and the second equality of

(C.1.2d). Performing the same procedure by using the polynomial ansatz we obtain the rest of

equations. This completes the procedure.
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C.2 AKNS recursive construction with integration constants

Here we explicitly construct the recursive form of the coefficients An, Bn and Cn from expansion

(2.1.2) with all of the integrations constants considered.

Recall from the equations of motion that we obtained B0 = C0 = 0. Replacing the latter in

(2.1.4a), we readily get A0 = c0, where c0 is an integration constant. Consider now n = 0 in (2.1.4b)

and (2.1.4c): We arrive to B1 = −c0p, C1 = −c0r, respectively. Using the latter results, we arrive

to A1 = c1. Thus, the equations of motion (2.1.3) for N = 1 are

ṗ =
1

`
(c0p

′ − 2c1p) , ṙ =
1

`
(c0r

′ + 2c1r) . (C.2.1)

We can continue and obtain subsequent coefficients A2, B2 and C2 in order to obtain the associated

equations of motion for N = 2, and so on.

We index in the following the first five inhomogeneous coefficients

A0 = c0 ,

A1 = c1 ,

A2 = −1

2
c0pr + c2 ,

A3 =
1

4
c0 (p′r − pr′)− 1

2
c1pr + c3 ,

A4 =
1

8
c0
(
p′r′ − p′′r − pr′′ + 3p2r2

)
+

1

4
c1 (p′r − pr′)− 1

2
c2pr + c4 ,

B0 = 0 ,

B1 = −c0p ,

B2 =
1

2
c0p
′ − c1p ,

B3 =
1

2
c0

(
−1

2
p′′ + p2r

)
+

1

2
c1p
′ − c2p,

B4 = −1

4
c0

(
−1

2
p′′′ + 3pp′r

)
+

1

2
c1

(
p2r − 1

2
p′′
)

+
1

2
c2p
′ − c3p ,

C0 = 0 ,

C1 = −c0r ,

C2 = −1

2
c0r
′ − c1r ,

C3 = −1

2
c0

(
1

2
r′′ − pr2

)
− 1

2
c1r
′ − c2r ,

C4 = −1

4
c0

(
1

2
r′′′ − 3prr′

)
+

1

2
c1

(
pr2 − 1

2
r′′
)
− 1

2
c2r
′ − c3r .



The first five equations of motion are

N = 0 : ṗ = −2

`
c0p ,

ṙ =
2

`
c0r ,

N = 1 : ṗ =
1

`
(c0p

′ − 2c1p) ,

ṙ =
1

`
(c0r

′ + 2c1r) ,

N = 2 : ṗ =
1

`

[
c0

(
−1

2
p′′ + p2r

)
+ c1p

′ − 2c2p

]
,

ṙ =
1

`

[
c0

(
1

2
r′′ − pr2

)
+ c1r

′ + 2c2r

]
,

N = 3 : ṗ =
1

`

[
−1

4
c0 (6pp′r − p′′′)− c1

(
1

2
p′′ − p2r

)
+ c2p

′ − 2c3p

]
,

ṙ =
1

`

[
−1

4
c0 (6prr′ − r′′′)− c1

(
−1

2
r′′ + pr2

)
+ c2r

′ + 2c3r

]
,

N = 4 : ṗ =
1

`

[
1

8
c0

(
−6p3r2 + 6p′

2
r + 4pp′r′ + 6pp′′r + 2p2r′′ + 2prp′′ − p′′′′

)
+

1

4
c1 (−6pp′r + p′′′) + c2

(
p2r − 1

2
p′′
)

+ c3p
′ − 2c4p

]
,

ṙ =
1

`

[
1

8
c0

(
6p2r3 − 4p′rr′ − 6pr′

2 − 8prr′′ − 2r2p′′ + r′′′′
)

+
1

4
c1 (−6prr′ + r′′′) + c2

(
−pr2 +

1

2
r′′
)

+ c3r
′ + 2c4r

]
.

Let us focus now in the equations of motion for the dynamical function p for case N = 0 and

N = 1. We can readily see that the right-hand side equation associated to N = 0 is written in the

N = 1 case, but the integration constant incremented in one order, namely c1. This structure will

be repeated for the following equations in the hierarchy, leading to the previous equations coupled

to the next one. In order to simplify the analysis and decouple them, it is convenient to perform

the forthcoming reduction. If we let c0 = 1 and ci = 0, for i 6= 1, the coefficients An, Bn and Cn
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simplify as

A0 = 1 ,

A1 = 0 ,

A2 = −1

2
pr ,

A3 =
1

4
(p′r − pr′) ,

A4 =
1

8

(
p′r′ − p′′r − pr′′ + 3p2r2

)
,

(C.2.2)

B0 = 0 ,

B1 = −p ,

B2 =
1

2
p′ ,

B3 =
1

2

(
−1

2
p′′ + p2r

)
,

B4 = −1

4

(
−1

2
p′′′ + 3pp′r

)
,

(C.2.3)

C0 = 0 ,

C1 = −r ,

C2 = −1

2
r′ ,

C3 = −1

2

(
1

2
r′′ − pr2

)
,

C4 = −1

4

(
1

2
r′′′ − 3prr′

)
.

(C.2.4)
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Thus, we obtain the next equations of motion,

N = 0 : ṗ = −2

`
p ,

ṙ =
2

`
r ,

N = 1 : ṗ =
1

`
p′ ,

ṙ =
1

`
r′ ,

N = 2 : ṗ =
1

`

(
−1

2
p′′ + p2r

)
,

ṙ =
1

`

(
1

2
r′′ − pr2

)
,

N = 3 : ṗ =
1

`

(
−3

2
pp′r +

1

4
p′′′
)
,

ṙ =
1

`

(
−3

2
prr′ +

1

4
r′′′
)
,

N = 4 : ṗ =
1

`

(
−3

4
p3r2 +

3

4
p′

2
r +

1

2
pp′r′ +

3

4
pp′′r +

1

4
p2r′′ +

1

4
prr′′ − 1

8
p′′′′
)
,

ṙ =
1

`

(
3

4
p2r3 − 1

2
p′rr′ − 3

4
pr′

2 − prr′′ − 1

4
r2r′′ +

1

8
r′′′′
)
.

N = 1 correspond to the chiral boson system, N = 2 recovers the (Wick rotated) nonlinear

Schrödinger equation, while N = 3 recovers KdV and MKdV when r = −1 (or p = −1) and

p = −r, respectively. The case N = 4 is written for completitude.
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C.3 Trace formula for the AKNS hierarchy

The trace formula [331] is a powerful tool that allows to establish a relationship between recursive

quantities that appear when we consider the zero-curvature formulation, with conserved functionals.

In particular, it has direct implications in the computation of the asymptotic symmetry algebra

of gravitational charges in 3D GR and can be applied for all kind of boundary conditions in the

Chern-Simons formulation.

It is given by the following expression

δ

δu

ˆ
tr

(
at
∂aφ
∂ξ

)
dφ = ξ−γ

∂

∂ξ
ξγ tr

(
at
∂aφ
∂u

)
, (C.3.1)

where tr denotes the matrix trace and γ is an arbitrary constant to be determined.

We are interested in the AKNS hierarchy. In this case, the function u takes the form u =

p
r

,

where p = p(t, φ) and r = r(t, φ). The left hand side of the trace formula is

tr

(
at
∂aφ
∂ξ

)
=

2A

`
, (C.3.2)

while for the right hand side we obtain

tr

(
at
∂aφ
∂p

)
= −C

`
, tr

(
at
∂aφ
∂r

)
= −B

`
. (C.3.3)

Expanding as it was performed in (C.1.4), the trace formula reads

δ/δp
δ/δr

 ˆ N∑
n=0

2Anξ
N−ndφ = −ξ−γ ∂

∂ξ

N∑
n=0

Cn
Bn

 ξN+γ−n

= −
N∑
n=0

Cn
Bn

 (N + γ − n) ξN−n−1

= −
N+1∑
n=1

(N + γ − n+ 1)

Cn−1

Bn−1

 ξN−n .

Because A0 = 1 (which implies that the first functional functional derivative of the left-hand side

summation will vanish), the left hand side summation thus begins from n = 1. Additionally, on

the right-hand side, when n = N + 1, we will have expression γ

CN
BN

 ξ−1. In contrast, at the

left-hand side we will never reach negative powers of the spectral parameter expansion, hence, we



will impose that the latter expression vanishes, yieldingδ/δp
δ/δr

 ˆ N∑
n=1

2Anξ
N−ndφ = −

N∑
n=1

(N + 1 + γ − n)

Cn−1

Bn−1

 ξN−n ,

and since ξ is arbitrary we can math the coefficient expansions for 1 ≤ n ≤ N ,δ/δp
δ/δr

ˆ An dφ = −1

2
(N + 1 + γ − n)

Cn−1

Bn−1

 , (C.3.4)

In principle, this is the relationship between the functional derivatives of An with Bn−1 and Cn−1,

however, in order to unambiguously characterize this relationship, we must now fix the value of γ.

To do that, consider n = 2, which impliesδ/δp
δ/δr

 ˆ pr dφ = (−N + 1− γ)

r
p

 .

Therefore, we arrive to the system r = (−N + 1− γ) r and p = (−N + 1− γ) p. Thus, γ = −N ,

from where we obtain the important relationshipδ/δp
δ/δr

 ˆ An dφ =
n− 1

2

Cn−1

Bn−1

 . (C.3.5)

If we recognize

Bn−1 =
δHn

δr
≡ Rn , Cn−1 =

δHn

δp
≡ Pn , (C.3.6)

the trace formula can be read asδ/δp
δ/δr

 ˆ An dφ =
n− 1

2

δ/δp
δ/δr

Hn ,

allowing to establish the following important relationship between the coefficient An and conserved

densities, given in Eq. (2.1.19),

An =
n− 1

2
Hn , n ≥ 1 . (C.3.7)
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C.4 Involution of charges

In this appendix, we aim to prove the integrability of the AKNS system, namely, that Eq. (2.1.25)

Ḣn = {Hn, Hm}1,2 = 0 , n ∈ N , (C.4.1)

holds. In order to prove this statement, it is convenient to recall two definitions. First, from Eq.

(2.1.23) the Poisson bracket of the first {,}1 and second {,}2 Hamiltonian structures

{F [r, p], G[r, p]}1 =

ˆ
dφ

(
δF

δu

)t
D1

(
δG

δu

)
, (C.4.2a)

{F [r, p], G[r, p]}1 =

ˆ
dφ

(
δF

δu

)t
D2

(
δG

δu

)
, (C.4.2b)

where u =

p
r

, whose operators D1 and D2 are defined as

D1 =
1

`

 −2r∂−1
φ r −∂φ + 2r∂−1

φ p

−∂φ + 2p∂−1
φ r −2p∂−1

φ p

 , D2 =
1

`

0 −2

2 0

 , (C.4.3)

respectively. And lastly, the recursion formula between conserved functionals (2.1.24),

D1

(
δHn+1

δu

)
= D2

(
δHn+2

δu

)
, n ∈ N0 . (C.4.4)

Consider then the following Poisson bracket

{Hn, Hm}1 =

ˆ
dφ

(
δHn

δu

)t
D1

(
δHm

δu

)
. (C.4.5a)

Applying Eq. (C.4.4), we can write the latter as

{Hn, Hm}1 =

ˆ
dφ

(
δHn

δu

)t
D2

(
δHm+1

δu

)
(C.4.5b)

≡ {Hn, Hm+1}2 , (C.4.5c)

or

{Hn, Hm}1 = −{Hm+1, Hn}2 . (C.4.5d)



Again, according to (C.4.4), the latter expresion can be written as

{Hn, Hm}1 = −
ˆ
dφ

(
δHm+1

δu

)t
D2

(
δHn

δu

)
(C.4.5e)

= −
ˆ
dφ

(
δHm+1

δu

)t
D1

(
δHn−1

δu

)
(C.4.5f)

≡ −{Hm+1, Hn−1} , (C.4.5g)

or

{Hn, Hm}1 = {Hn−1, Hm+1}1 . (C.4.5h)

Performing the latter procedure n−m times, we obtain

{Hn, Hm}1 = {Hn−1, Hm+1}1 = {Hn−2, Hm+2}1 = . . . =
{
Hn−(n−m), Hm+n−m

}
1

≡ {Hm, Hn}1 .
(C.4.6)

Thus, {Hn, Hm}1 = 0. In the same fashion, the proof for the second Poisson bracket {,}2 is analogue

{Hn, Hm}2 = {Hn, Hm}1 =

ˆ
dφ

(
δHn

δu

)t
D2

(
δHm

δu

)
(C.4.7a)

=

ˆ
dφ

(
δHn

δu

)t
D1

(
δHm−1

δu

)
(C.4.7b)

≡ {Hn, Hm−1}1 (C.4.7c)

= −{Hm−1, Hn}1 (C.4.7d)

= −
ˆ
dφ

(
δHm−1

δu

)t
D1

(
δHn

δu

)
(C.4.7e)

= −
ˆ
dφ

(
δHm−1

δu

)t
D2

(
δHn+1

δu

)
(C.4.7f)

≡ −{Hm−1, Hn+1}2 (C.4.7g)

= {Hn+1, Hm−1}2 , (C.4.7h)

where Eq. (C.4.4) was applied when passing to (C.4.7b) and (C.4.7f). Performing the latter

procedure m− n times, we obtain

{Hn, Hm}2 = {Hn+1, Hm−1}2 = {Hn+2, Hm−2} = . . . =
{
Hn+(m−n), Hm−(m−n)

}
2

= {Hm, Hn}2 ,
(C.4.7i)
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arriving to {Hm, Hn}2 = 0. Because charges are in involution for the two Poisson brackets {,}1
and {,}2, we thus have proved (C.4.1).
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C.5 List of AKNS conserved densities

As showed in the previous appendix, the Hamiltonian densities are related with coefficients An

according to Eq. (C.3.7)

An =
n− 1

2
Hn , n ≥ 1 ,

where the coefficients An were constructed in Eq. (C.2.2). Here we appendix a list of the first

Hamiltonian densities Hn, such that its functionals are

Hn =

ˆ
dφHn .

In particular,

H1 = 0 ,

H2 = −pr ,

H3 =
1

4
(p′r − pr′) ,

H4 =
1

12

(
p′r′ − p′′r − pr′′ + 3p2r2

)
,

H5 =
1

32

(
−6pp′r2 + 6p2rr′ − p′′r′ + p′r′′ + p′′′r − pr′′′

)
,

H6 =
1

80

(
−10p3r3 + 5p′ 2r2 + 5p2r′ 2 + 10pp′′r2 + 10p2rr′′

−p′′r′′ + p′′′r′ + p′r′′′ − p′′′′r − pr′′′′) ,

H7 =
1

192

(
30p2p′r3 − 30p3r2r′ − 10p′rr′ + 10pp′r′ 2 − 20p′p′′r2 + 10pp′′rr′

− 10pp′rr′′ + 20p2r′r′′ − 10pp′′′r2 + p′′′r′′ + 10p2rr′′′

− p′′r′′′′ − p′′′′r′ + p′r′′′′ + p(5)r − pr(5)
)
,

...

(C.5.1)

where p(n), r(n) stands for the nth angular derivative of functions p and r, respectively.



Appendix D

Appendices of Chapter 3

D.1 Dirac analysis of Chern-Simons theory

In this appendix, we explicitly show the Dirac constraint analysis [363] of 2 + 1 Chern-Simons

theory.

D.1.1 Primary Hamiltonian and Dirac’s algorithm

In components, the Chern-Simons action reads

ICS =
K

4π

ˆ
M
d3x εµνρ

〈
Aµ∂νAρ +

2

3
AµAνAρ

〉
, (D.1.1)

whereM is foliated with coordinates (t, r, φ), with 0 ≤ r <∞ and 0 ≤ φ ≤ 2π. Consider the 2 + 1

splitting Aµ = (A0,Ai). The previous action decompose as

ICS =
K

4π

ˆ
dtd2x

[
ε0ij

〈
A0∂iAj +

2

3
A0AiAj

〉
+εi0j

〈
Ai∂0Aj +

2

3
AiA0Aj

〉
+ εij0

〈
Ai∂jA0 +

2

3
AiAjA0

〉] (D.1.2a)

=
K

4π

ˆ
dtd2x εij

〈
−AiȦj +A0∂iAj − ∂jAiA0 + ∂j (AiA0)

+
2

3
(A0AiAj −AiA0Aj +AiAjA0)

〉
,

(D.1.2b)

where d2x = drdφ, ε0ij ≡ εij , and we integrated by parts the third term. Regarding boundary

terms, we will care about them in Section D.2.1. The last term can be rewritten as

2

3
εij 〈A0AiAj −AiA0Aj +AiAjA0〉 = εij 〈A0[Ai,Aj ]〉 . (D.1.3)
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Thus, we arrive to action

IH [A0,Ai] = −K
4π

ˆ
Σ×R

dt d2x εij
〈
AiȦj −A0Fij

〉
+ B , (D.1.4)

with Fij defined as

Fij = ∂iAj − ∂jAi + [Ai,Aj ] , (D.1.5)

and a boundary term that ensures its differentiability. Recalling the Killing metric definition of

Appendix A, we can write the Lagrangian density as

L = −K
4π
εijgab

(
Aai Ȧbj −Aa0F bij

)
, (D.1.6)

where F bij = ∂iAbj − ∂jAbi + f bcdAciAdj .

We want to compute the Hamiltonian of the theory. Because we are working with a gauge

theory, the constraint nature of the latter will soon appear explicitly. The canonical momentum

can be read from (D.1.4), which is

Πk
c =

∂L
∂Ȧck

= −K
4π
εjkgbcAbj . (D.1.7)

For next purposes, it is convenient to invert the latter relationship by contracting with εlkgcd as

Πk
c εlkg

cd = −K
4π
εjkεlkgbcg

cdAbj = −K
4π
Adl .

Then, we can write the gauge field A in terms of the canonical momentum Π according to

Adl = −4π

K
Πk
c εlkg

cd . (D.1.8)

From (D.1.7), we can identify two primary constraints

(
Φ1
)
c

= Π0
c ≈ 0 , (D.1.9a)(

Φ2
)k
c

= Πk
c +

K

4π
εjkgbcAbj ≈ 0 , (D.1.9b)

where ≈ stands for the usual weakly-equal definition [52]. If Γ is the naive 2N -dimensional phase

space, two quantities F and G will be weakly-equal iff F = G on the constrained surface Γc.

According to Dirac [363], let us compute now the canonical Hamiltonian Hc, defined as the
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following Legendre transformation

Hc =

ˆ
d2x

(
Πµ
aȦaµ − L

)
(D.1.10a)

=

ˆ
d2x

[
Πi
aȦai +

K

4π
εijgab

(
Aai Ȧbj −Aa0F bij

)]
(D.1.10b)

=

ˆ
d2x

{
Πi
a

(
−4π

K
Π̇j
bεijg

ba

)
+
K

4π
εijgab

[(
−4π

K
Πk
c εijg

ca

)(
−4π

K
Π̇l
dεjlg

db

)
−Aa0F bij

]} (D.1.10c)

= −K
4π

ˆ
d2x εijgabAa0F bij , (D.1.10d)

or

Hc = −K
4π

ˆ
d2x εij 〈A0Fij〉 . (D.1.10e)

Then, the primary Hamiltonian Hp, i.e., the canonical Hamiltonian Hc added with the primary

constraints, reads

Hp =

ˆ
d2x

[
− K

4π
εijgabAa0F bij + (λ1)ai

(
Πi
a +

K

4π
εjigbaAbj

)
+ (λ2)aΠ0

a

]
. (D.1.11)

This quantity generates time evolution of any dynamical variable F . In this regard, it is important

to emphasize the fact that every constraint of the theory must be preserved along time-evolution.

Define the following Poisson bracket

{
Aaµ(x),Πν

b (x′)
}

= δ(2)(x− x′) , (D.1.12)

where δ(2)(x − x′) is the 2-dimensional Dirac delta along spatial coordinates (r, φ). Before study

the consistency of contraints (D.1.9), it is convenient to consider the following Poisson bracket

{
Πk
c (x), F bij(x

′)
}

=
{

Πk
c (x), ∂′iAbj(x′)− ∂′jAbi (x′) + f badAai (x′)Adj (x′)

}
= −

[
δbc
(
δkj ∂
′
i − δki ∂′j

)
+ f bcd

(
δki Adj (x′)− δkjAdi (x′)

)]
δ(2)(x− x′) .

(D.1.13)
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Let us begin with Φ1, defined in (D.1.9a). Its time-evolution is given by

(
Φ̇1
)
c

=
{

Φ1
c(x), Hp

}
(D.1.14a)

=

ˆ
d2x′

{
Π0
c(x),−K

4π
εijgabAa0(x′)F bij(x

′)

+ (λ1)ai (x′)

(
Πi
a(x′) +

K

4π
εjigbaAbj(x′)

)
+ (λ2)a(x′)Π0

a(x′)

} (D.1.14b)

= −K
4π

ˆ
d2x′ εijgab

{
Π0
c(x),Aa0(x′)

}
F bij(x

′) (D.1.14c)

=
K

4π
εijgcbF

b
ij ≈ 0 . (D.1.14d)

As we see, this constraint leads to a secondary one, namely

(Φ3)c =
K

4π
εijgcbF

b
ij ≈ 0 . (D.1.15)

The time-evolution of Φ2, defined in Eq. (D.1.9b), is

(
Φ̇2
)k
c

=
{

(Φ2)kc , Hp

}
(D.1.16a)

=

ˆ
d2x′

{
Πk
c (x) +

K

4π
εlkgdcAdl (x),−K

4π
εijgabAa0(x′)F bij(x

′)

+ (λ1)ai (x′)

(
Πi
a(x′) +

K

4π
εjigbaAbj(x′)

)
+ (λ2)a(x′)Π0

a(x′)

} (D.1.16b)

=
K

4π

ˆ
d2x

[
− εijgabAa0(x′)

{
Πk
c (x), F bij(x

′)
}

+ εjigba(λ1)ai (x′)
{

Πk
c (x),Abj(x′)

}
+ εlkgdc(λ

1)ai (x′)
{
Adl (x),Πi

a(x′)
}]
.

(D.1.16c)

By means of (D.1.13), we obtain

(
Φ̇2
)k
c

=
K

2π

ˆ
d2x′ εkjgac

[
−Aa0(x′)∂′j − fabdAb0(x′)Adj (x′)−

(
λ1
)a
j

(x′)
]
δ(2)(x− x′) (D.1.16d)

=
K

2π
εkjgac

[
∂jAa0 − fabdAb0Adj −

(
λ1
)a
j

]
≈ 0 . (D.1.16e)

As we see, the time-evolution of Φ2 does not generate any new constraint, but a condition that fix

the Lagrange multiplier λ1. Regarding the consistency of the third constraint Φ3, it can be directly
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computed using (D.1.13) )

(Φ̇3)c =
{

(Φ3)c(x), Hp

}
(D.1.17a)

=

ˆ
d2x′

{
K

4π
εklgcdF

d
kl(x),−K

4π
εijgabAa0(x′)F bij(x

′)

+ (λ1)ai (x′)

(
Πi
a(x′) +

K

4π
εjigbaAbj(x′)

)
+ (λ2)a(x′)Π0

a(x′)

} (D.1.17b)

=
K

4π

ˆ
d2x′ εklgcd(λ

1)ai (x′)
{
F dkl(x),Πi

a(x′)
}

(D.1.17c)

=
K

2π
εkjgac

[
∂k
(
λ1
)a
j

+ fade
(
λ1
)d
j
Aek
]
≈ 0 . (D.1.17d)

Again, this is another condition for the Lagrange multiplier λ1, so we end Dirac’s algorithm here,

since no new constraints emerged. Hence, in sum we have the following constraints

(
Φ1
)
c

(x) = Π0
c(x) ≈ 0 ,(

Φ2
)k
c

(x) = Πk
c (x) +

K

4π
εjkgbcAbj(x) ≈ 0 ,(

Φ3
)
c

(x) =
K

4π
εijgcbF

b
ij ≈ 0 .

Table D.1: Constraints of Chern-Simons theory

D.1.2 Classification of constraints and Dirac bracket

With the constraints identified and summarized in Table D.1, we aim here to construct the com-

patible Poisson bracket of the theory, i.e., the Dirac bracket {,}DB defined as

{F (x), G(x′)}DB = {F (x), G(x′)}

−
ˆ
d2y d2y′

{
F (x),ΦA(y)

}
C−1
AB(y, y′)

{
ΦB(y′), G(x′)

}
,

(D.1.18)

where CAB =
{

ΦA,ΦB
}
and

CADC−1
DB = δAB = C−1

BDC
DA . (D.1.19)

So, in order to compute the Dirac bracket of Chern-Simons theory, first it is necessary to obtain the

form of matrix CAB , which allow us to classify the constraints of the theory. According to [363],

if the Poisson bracket between the function F = F (A,Π) and a constraint Φi, with i = 1, 2, 3,
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vanishes weakly, i.e.,

{
F,Φi

}
≈ 0 , ∀i , (D.1.20)

then we can say that F is a first-class constraint. On the other hand, F will be a second-class one

if there is at least one constraint such that its Poisson bracket with F does not vanishes weakly,

i.e., ∃i
({
F,Φi

}
6≈ 0
)
. Regarding Chern-Simons theory, it is direct to prove that Φ1 is a first-class

constraint, while Φ2 and Φ3 are second-class, since the only nontrivial Poisson brackets are

{(
Φ2
)k
c

(x),
(
Φ2
)l
d

(x′)
}

=

{
Πk
c (x) +

K

4π
εjkgbcAbj(x),Πl

d(x
′) +

K

4π
εilgedAei (x′)

}
=
K

4π

(
εjlgbd

{
Πk
c (x),Abj(x′)

}
+ εjkgbc

{
Abj(x),Πl

d(x
′)
})

= −K
2π
εklgcdδ

(2)(x− x′) ,

(D.1.21a)

{(
Φ2
)k
c

(x),
(
Φ3
)
d

(x′)
}

=

{
Πk
c (x) +

K

4π
εjkgbcAbj(x),

K

4π
εlmgdeF

e
lm(x′)

}
=
K

4π
εijgdb

{
Πk
c (x), F bij(x

′)
}

=
K

2π
εkj
(
gdc∂

′
j + fdbcAbj(x′)

)
δ(2)(x− x′) ,

(D.1.21b)

where Eq. (D.1.13) was used. We can summarize the latter results in Table D.2

{(
Φ1
)
c

(x),
(
Φ1
)
d

(x′)
}
≈ 0 ,{(

Φ1
)
c

(x),
(
Φ2
)k
d

(x′)
}
≈ 0 ,{(

Φ1
)
c

(x),
(
Φ3
)
d

(x′)
}
≈ 0 ,

{(
Φ2
)k
c

(x),
(
Φ1
)
d

(x′)
}
≈ 0 ,{(

Φ2
)k
c

(x),
(
Φ2
)l
d

(x′)
}

= −K
2π
εklgcdδ

(2)(x− x′) ,{(
Φ2
)k
c

(x),
(
Φ3
)
d

(x′)
}

=
K

2π
εkj
(
gdc∂

′
j + fdbcAbj(x′)

)
δ(2)(x− x′) ,

{(
Φ3
)
c

(x),
(
Φ1
)
d

(x′)
}
≈ 0 ,{(

Φ3
)
c

(x),
(
Φ2
)k
d

(x′)
}

= −K
2π
εkj
(
gdc∂j − fdbcAbj(x)

)
δ(2)(x− x′) ,{(

Φ3
)
c

(x),
(
Φ3
)
d

(x′)
}
≈ 0 .

Table D.2: Poisson brackets of constraints. We readily see that Φ1 is first-class, while the remaining,
Φ2 and Φ3, are second-class constraints
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Although Φ3 can be identified with a second-class constraint, it can be linearly combined with Φ2

as

(Φ̄3)c(x) = (Φ3)c(x)−
[
∂i(Φ

2)ic(x) + fabcAbi (x)(Φ2)ia(x)
]
, (D.1.22)

in order to convert it into a first-class one, since every Poisson bracket of the latter improved

constraint vanishes with the others [401]. Because only Φ2 remains as a second-class constraint of

the theory, the Dirac bracket of Chern-Simons theory is defined as

{F (x), G(x′)}DB = {F (x), G(x′)}

−
ˆ
d2y d2y′

{
F (x),

(
Φ2
)k
c

(y)
}(
C−1

)cd
kl

(y, y′)
{(

Φ2
)l
d

(y′), G(x′)
}
,

(D.1.23)

where

Cklcd(x, x
′) =

{(
Φ2
)k
c

(x),
(
Φ2
)l
d

(x′)
}

= −K
2π
εklgcdδ

(2)(x− x′) . (D.1.24)

Because the matrix C fulfills

ˆ
dwCkice(y, w)

(
C−1

)ed
il

(w, y′) = δkl δ
d
c δ

(2)(y − y′) , (D.1.25)

it is possible to find its inverse, which is given by

(
C−1

)cd
kl

(x, x′) =
2π

K
εklg

cdδ(2)(x− x′) . (D.1.26)

So now we have all the ingredients to compute the Dirac bracket (D.1.23) of Chern-Simons theory.

Particularly, the bracket between Aai (x) with Abj(x′) is

{
Aai (x),Abj(x′)

}
DB

= −
ˆ
d2y d2y′

{
Aai (x),Πk

c (y)
}(2π

K
εklg

cdδ(2)(y − y′)
)
×

×
{

Πl
d(y
′),Abj(x′)

} (D.1.27a)

=
2π

K
εijg

abδ(2)(x− x′) , (D.1.27b)

in agreement with result (3.2.19), obtained by means of Jackiw symplectic method. On the other
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hand, the Dirac bracket between Aai (x) with Πj
b(x
′) is

{
Aai (x),Πj

b(x
′)
}

DB
=
{
Aai (x),Πj

b(x
′)
}
−
ˆ
d2y d2y′

{
Aai (x),

(
Φ2
)k
c

(y)
}
×

×
(

2π

K
εklg

cdδ(2)(y − y′)
){(

Φ2
)l
d

(y′),Πj
b(x
′)
} (D.1.28a)

= δab δ
j
i δ

(2)(x− x′)− 1

2

ˆ
d2y d2y′ δac δ

k
i δ

(2)(x− y)×

× εklgcdδ(2)(y − y′)εmlgedδebδjmδ(2)(y′ − x′)
(D.1.28b)

=
1

2
δab δ

j
i δ

(2)(x− x′) . (D.1.28c)

Finally, the Dirac bracket between the canonical momentum turns out to be

{
Πi
a(x),Πj

b(x
′)
}

DB
= −

ˆ
d2y d2y′

{
Πi
a(x),

(
Φ2
)k
c

(y)
}(2π

K
εklg

cdδ(2)(y − y′)
)
×

×
{(

Φ2
)l
d

(y′),Πj
b(x
′)
} (D.1.29a)

= −
ˆ
d2y d2y′

{
Πi
a(x),

K

4π
εmkgecAem(y)

}
×

×
(

2π

K
εklg

cdδ(2)(y − y′)
){

K

4π
εnlghdAhn(y′),Πj

b(x
′)

} (D.1.29b)

= −1

2

ˆ
d2y d2y′ εmkgecδ

i
mδ

e
cδ

(2)(x− y)εklg
cdδ(2)(y − y′)×

× K

4π
εnlghdδ

h
d δ
j
nδ

(2)(y′ − x′)
(D.1.29c)

= −K
8π
εikgacεklg

cdεjlgbdδ
(2)(x− x′) (D.1.29d)

= −K
8π
εijgabδ

(2)(x− x′) . (D.1.29e)

In sum, we have the following results, according to Table D.3,

{
Aai (x),Abj(x′)

}
DB

=
2π

K
εijg

abδ(2)(x− x′) ,{
Aai (x),Πj

b(x
′)
}

DB
=

1

2
δab δ

j
i δ

(2)(x− x′) ,{
Πi
a(x),Πj

b(x
′)
}

DB
= −K

8π
εijgabδ

(2)(x− x′) .

Table D.3: Dirac brackets of Chern-Simons theory

Now we can impose the constraints, so the primary Hamiltonian of the theory (D.1.11) turns into

the Chern-Simons Hamiltonian

H = −K
4π

ˆ
d2x εij 〈A0Fij〉 , (D.1.30)
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allowing us to say that (D.1.4)

IH [A0,Ai] = −K
4π

ˆ
Σ×R

dt d2x
〈
AiȦj −A0Fij

〉
,

corresponds to the Hamiltonian action of Chern-Simons theory, where the canonical momentum is

Πk
c (x) = −K

4π
εjkgbcAbj(x) .

D.2 Regge-Teitelboim analysis of Chern-Simons theory

In this appendix we explicitly show the details regarding the constraint analysis of Chern–Simons

theory à la Regge-Teitelboim.

D.2.1 Boundary term

Let us begin with the Hamiltonian action of Chern-Simons theory

IH [A0,Ai] = −K
4π

ˆ
Σ×R

dt d2x εij
〈
AiȦj −A0Fij

〉
+ B , (D.2.1)

with Fij defined as

Fij = ∂iAj − ∂kAi + [Ai,Aj ] , (D.2.2)

where Fij = ∂iAj − ∂jAi + [Ai,Aj ] is a constraint of the theory, A0 a Lagrange multiplier, and B

a boundary term that must ensure that the action functional IH is differentiable.

The equations of motion are obtained when we perform an infinitesimal variation on the dynamical
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fields, as following

δIH = −K
4π

ˆ
dtd2x εij

〈
δAi Ȧj +Ai δȦj − δA0 Fij

−A0 (∂i δAj − ∂j δAj + δ[Ai,Aj ])
〉

+ δB
(D.2.3a)

= −K
4π

ˆ
dtd2x εij

〈
δAi Ȧj − Ȧi δAj + ∂t (Ai δAj)− δA0 Fij

−A0 (2∂i δAj + δ (AiAj −AjAi))
〉

+ δB
(D.2.3b)

= −K
4π

ˆ
dtd2x εij

〈
−2Ȧi δAj + ∂t (Ai δAj)− δA0 Fij

−A0 (2∂i δAj + 2δ (AiAj))
〉

+ δB
(D.2.3c)

= −K
4π

ˆ
dtd2x εij

〈
−2Ȧi δAj + ∂t (Ai δAj)− δA0 Fij

+ 2∂iA0 δAj − ∂i (2A0 δAj)

− 2 (A0 δAiAj +A0Ai δAj)
〉

+ δB

(D.2.3d)

= −K
4π

ˆ
dtd2x εij

〈
−2Ȧi δAj + ∂t (Ai δAj)− δA0 Fij

+ 2∂iA0 δAj − ∂i (2A0 δAj)− 2[A0,Ai] δAj
〉

+ δB ,
(D.2.3e)

where, in order to create the commutator, we used the cyclic property of the traces and changed

indices using the properties of the Levi-Civita symbol. Finally we can write the variation of the

Hamiltonian action as (in agreement with Eq. (3.2.6))

δIH = −K
4π

ˆ
dtd2x εij

〈
2
(
−Ȧi + ∂iA0 − [A0,Ai]

)
δAj − δA0 Fij

+ ∂t (Ai δAj)− ∂i (2A0 δAj)
〉

+ δB .
(D.2.3f)

Hence, we have the following equations of motion

δIH
δAj

= ∂iA0 − ∂0Ai + [Ai,A0] ≡ Fi0 = 0 ,
δIH
δA0

= Fij = 0 . (D.2.4)

Vanishing the terms proportional to the latter terms, the action (D.2.3f) reads

δIH = −K
4π

ˆ
dtd2x εij

〈
∂t (Ai δAj)− ∂i (2A0 δAj)

〉
+ δB . (D.2.5)

Assuming the fields behave as

δAj (t1, r, φ) = 0 , and δAj (t2, r, φ) = 0 ,
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the surface integral reads

δIH =
K

4π

ˆ
dtd2x εij

〈
∂i (2A0 δAj)

〉
+ δB (D.2.6a)

=
K

2π

ˆ
dtd2x

〈
∂r
(
εrφA0 δAφ

)
+ ∂φ

(
εφrA0 δAr

) 〉
+ δB . (D.2.6b)

Choosing manifold orientation εrφ = 1 and periodicity of the fields between 0 and 2π, the angular

surface term vanishes, obtaining

δIH =
K

2π

ˆ
dtdrdφ

〈
∂r (A0 δAφ)

〉
+ δB =

K

2π

ˆ
∂M

dtdφ
〈
A0 δAφ

〉
+ δB , (D.2.6c)

where Stokes’ theorem was used. Because the action must reach a minimum, the boundary term

finally reads

δB = −K
2π

ˆ
∂M

dtdφ
〈
A0 δAφ

〉
, (D.2.7)

in agreement with (3.2.10).

D.2.2 Charge generator

In this section, we aim to prove that the constraint (3.2.14),

G [Λ] =
K

4π

ˆ
Σ

d2x εij
〈

ΛFij

〉
=
K

4π

ˆ
Σ

d2xεijgabΛ
aF bij , (D.2.8)

generates infinitesimal gauge transformations (3.2.13),

δA = dΛ + [A,Λ] , (D.2.9)

which, in components, reads as

δAai (x) = ∂iΛ
a(x) + fabcAbi (x)Λc(x) , (D.2.10)

where fabc is the structure constant of the algebra.

From Jackiw symplectic approach of Eq. (3.2.19) and the Dirac brackets summarized in Table D.3,

the bracket between the gauge fields reads

{
Aai (x),Abj(x′

}
≡ Jabij (x, x′) =

2π

K
εijg

abδ(2(x− x′) . (D.2.11)
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Thus, an infinitesimal variation of the field Aai (x) is

δAai (x) = {Aai (x), G [Λ]} (D.2.12a)

=
K

4π

ˆ
d2x′ εklgcdΛ

c(x′)
{
Aai (x), F dkl(x

′)
}
, (D.2.12b)

where

εkl
{
Aai (x), F dkl(x

′)
}

= εkl
{
Aai (x), ∂kAdl (x′)− ∂lAdk(x′) + fdefAek(x′)Afl (x′)

}
= 2εkl

(
∂′k
{
Aai (x),Adl (x′)

}
+ fdef{Aai (x),Aek(x′)}Afl (x′)

)
=

4π

K
εkl
(
εilg

ad∂′kδ
(2(x− x′) + fdef εikg

aeδ(2(x− x′)Afl (x′)
)

=
4π

K

(
gad∂′iδ

(2(x− x′)− fdefgaeδ(2(x− x′)Afi (x′)
)
.

Therefore, the variation is

δAai (x) =

ˆ
d2x′ Λc(x′)gcd

(
gad∂′iδ

(2(x− x′)− fdefgaeδ(2(x− x′)Afi (x′)
)

(D.2.12c)

=

ˆ
d2x′

(
Λa(x′)∂′iδ

(2(x− x′)− gaefcefΛc(x′)Afi (x′)δ(2(x− x′)
)

(D.2.12d)

=

ˆ
d2x′

(
−∂′iΛa(x′)− gaefcefΛc(x′)Afi (x′)

)
δ(2(x− x′) (D.2.12e)

= −∂iΛa(x) + fabcΛ
b(x)Aci (x) (D.2.12f)

= −
[
∂iΛ

a(x) + fabcAbi (x)Λc(x)
]
, (D.2.12g)

proving that the constraint (D.2.8) generate gauge transformations (D.2.10), allowing us to classify

it as a first-class constraint [52].

An important aspect of the constraint is that it must be differentiable. To prove this statement,

let us first recall the definition of the Poisson bracket of Chern-Simons theory. If F and G depend

on A, then the Poisson bracket is defined as

{F,G} =

ˆ
d2x d2x′

δF

Aai (x)
Jabij (x, x′)

δG

Abj(x′)
(D.2.13a)

=
2π

K

ˆ
d2x d2x′

δF

Aai (x)
εijg

abδ(2(x− x′) δG

Abj(x′)
(D.2.13b)

=
2π

K

ˆ
d2x′

δF

Aai
εijg

ab δG

Abj
. (D.2.13c)
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Then, δAai (x) can be calculated as

δAai (x) = {Aai (x), G [Λ]} (D.2.14a)

=
2π

K

ˆ
d2x′

δAai
Ack

εklg
cd δG[Λ]

Adl
(D.2.14b)

=
2π

K

ˆ
d2x′ δac δ

k
i εklg

cdδ(2(x− x′)δG[Λ]

Adl
(D.2.14c)

=
2π

K
gadεil

δG[Λ]

Adl
. (D.2.14d)

We must make sense of the functional derivative of G [Λ] with respect to Adl . Let us consider its

definition, given in (D.2.8) and calculate its variation as,

δG [Λ] =
K

4π

ˆ
d2x εijΛbδF aij (D.2.15a)

=
K

2π

ˆ
d2x′εijΛb

(
∂iδAbj + f bcdAciδAdj

)
. (D.2.15b)

Defining the covariant derivative Di := ∂i + [Ai, ·], we can rewrite the latter as

δG [Λ] =
K

2π

ˆ
d2x′εijΛbDiδAbj . (D.2.15c)

Intergrating by parts, we arrive to

δG [Λ] =
K

2π

ˆ
d2x′ εijDi

(
ΛbδAbj

)
− K

2π

ˆ
d2x′ εijDiΛbδAbj . (D.2.15d)

Let us focus on the right-hand side. As we can see, the first term is not differentiable, since we

cannot calculate its functional derivative with respect to A (it is a boundary term); while regarding

the second term, its functional derivative will be proportional to the desired infinitesimal gauge

transformation. This is the reason why we define the variation of the boundary term as

δQ [Λ] = −K
2π

ˆ
d2x′ εijDi

(
ΛbδAbj

)
, (D.2.16)

in such a way that the constraint is improved, redefining itself as well as

G[Λ] = G[Λ] +Q[Λ] , (D.2.17)

hence, its variation is

δG[Λ] = δG[Λ] + δQ[Λ] (D.2.18)

≡ δG[Λ]− K

2π

ˆ
d2x′ εijDi

(
ΛbδAbj

)
, (D.2.19)
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where

δG[Λ] = −K
2π

ˆ
d2x′ εijDiΛbδAbj . (D.2.20)

Therefore, by construction

δG[Λ]

δAbj
= −K

2π
εijDiΛb . (D.2.21)

Replacing the improved constraint in the place where the original constraint was in (D.2.14d), we

see that

δAai (x) =
2π

K
gadεil

δG[Λ]

Adl
=

2π

K
gadεil

(
−K

2π
εklDkΛd

)
= −DiΛ

a , (D.2.22)

being the right result for an infinitesimal gauge transformation with parameter Λ. Therefore, it is

the improved constraint (D.2.17) that indeed generates gauge transformations, and not (D.2.8).

Finally, let us compute the boundary term δQ. The covariant derivative acts as an ordinary

derivative for a scalar of the inner group, we obtain

δQ [Λ] = −K
2π

ˆ
d2x′ εij∂i

(
ΛbδAbj

)
(D.2.23a)

= −K
2π

ˆ
∂M

d2x′ εijΛbδAbj (D.2.23b)

= −K
2π

ˆ
∂M

d2x′
[
εrφ∂r

(
ΛbδAbφ

)
+ εφr∂φ

(
ΛbδAbr

)]
. (D.2.23c)

With manifold orientation εrφ = 1, and assuming periodicity on the fields, we finally arrive to Eq.

(3.2.23),

δQ [Λ] = −K
2π

ˆ
∂M

dφ

〈
Λ δAφ

〉
. (D.2.23d)

145



D.3 Virasoro asymptotic algebra

We aim to compute the asymptotic symmetry algebra associated to Brown-Henneaux boundary

conditions in the Chern-Simons formulation, given in Eq. (3.3.1)

a±φ = L±1 −
2π

K
L±(t, φ)L∓1 , a±t = ±1

`
a±φ . (D.3.1)

By means of the procedure developed in Section 3.3, the charge is given by Eq. (3.3.14)

Q±
[
µ±
]

= ∓
ˆ
∂M

dφ µ±L± . (D.3.2)

Then, with µ± as a Fourier mode, we can identify the charge generator as the following Fourier

transform,

Q±
[
µ± = e−imφ

]
= ∓
ˆ
dφ e−imφL± ≡ ∓L±m , (D.3.3)

where

L±m =

ˆ
dφ e−imφL± . (D.3.4)

According to Ref. [47], the algebra of charges can be computed as following

{
Q±

[
µ±1
]
, Q±

[
µ±2
]}

= δµ±2
Q±

[
µ±1
]
≡ ∓δµ±2

ˆ
dφ µ±1 L± = ∓

ˆ
dφ µ±1 δµ±2

L± , (D.3.5)

where δµ±2 L
± = ±D±µ±2 , in line with (3.3.8), with operator D± defined as

D± := L±′ + 2L±∂φ −
K

4π
∂3
φ .

By means of (D.3.5), the asymptotic symmetry algebra of Fourier modes L±m is

i
{
L±m,L±n

}
= ∓i

ˆ
dφ e−imφ

(
±D±e−inφ

)
(D.3.6a)

= −i
ˆ
dφ e−imφ

(
L±′ + 2L±(−in)− K

4π
(−in)3

)
e−inφ (D.3.6b)

= −i
ˆ
dφ

(
−L±(−i)(m+ n)− 2inL± − iK

4π
n3

)
e−i(m+n) (D.3.6c)

= −i
ˆ
dφ

(
i(m− n)L± − iK

4π
n3

)
e−i(m+n) (D.3.6d)

= (m− n)

ˆ
dφ L±e−i(m+n) − K

4π
n3 · 2πδm+n,0 (D.3.6e)

= (m− n)L±m+n +
K

2
m3δm+n,0 , (D.3.6f)



with central charge c = 6K = 3`/2G. Thus, two independent copies of the 2D Virasoro algebra

were obtained.
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Appendix E

Appendices of Chapter 4

E.1 Conservation of gauge transformations along the tempo-

ral component

In this appendix, we show that gauge transformations (4.2.1)

δa = dΛ + [a,Λ] , (E.1.1)

δ̄a = dΛ̄ +
[
a, Λ̄

]
, (E.1.2)

along the temporal component of AKNS boundary conditions reduces to combinations of the equa-

tions of motion.

From the canonical point of view, an infinitesimal gauge transformation with parameter Λ and

Λ̄, respectively, are given by [47]

δaφ = {aφ, Q[Λ]} , (E.1.3)

δ̄aφ =
{
aφ, Q

[
Λ̄
]}
. (E.1.4)

Thus, the action of two infinitesimal gauge transformations reads

δδ̄aφ =
{
δ̄aφ, Q[Λ]

}
=
{{
aφ, Q

[
Λ̄
]}
, Q
}
, (E.1.5)

δ̄δaφ =
{
δaφ, Q

[
Λ̄
]}

=
{
{aφ, Q[Λ]}, Q

[
Λ̄
]}
. (E.1.6)

Hence, the commutator reads

[
δ, δ̄
]
aφ =

{{
aφ, Q

[
Λ̄
]}
, Q [Λ]

}
−
{
{aφ, Q [Λ]}, Q

[
Λ̄
]}
. (E.1.7)
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Recalling the Jacobi identity

{{
aφ, Q

[
Λ̄
]}
, Q [Λ]

}
+
{
{Q [Λ] , aφ}, Q

[
Λ̄
]}

+
{{
Q
[
Λ̄
]
, Q [Λ]

}
, aφ
}

= 0 ,

we can readily write
{{
aφ, Q

[
Λ̄
]}
, Q [Λ]

}
−
{
{aφ, Q [Λ]}, Q

[
Λ̄
]}

=
{{
Q
[
Λ̄
]
, Q [Λ]

}
, aφ
}
. Therefore,

the commutator vanishes

[
δ, δ̄
]
aφ =

{{
Q
[
Λ̄
]
, Q [Λ]

}
, aφ
}

= 0 , (E.1.8)

since charges are in involution, according to Eq. (4.2.16). On the other hand, the application of

two successive infinitesimal gauge transformations reads

δδ̄aφ = δ
(
∂φΛ̄ +

[
aφ, Λ̄

])
(E.1.9a)

= ∂φ
(
∂φΛ̄ +

[
aφ, Λ̄

])
+
[
∂φΛ̄ +

[
aφ, Λ̄

]
,Λ
]

(E.1.9b)

= ∂2
φΛ̄ + ∂φ

[
aφ, Λ̄

]
+
[
∂φΛ̄,Λ

]
+
[[
aφ, Λ̄

]
,Λ
]
, (E.1.9c)

while

δ̄δaφ = δ̄ (∂φΛ + [aφ,Λ]) (E.1.10a)

= ∂φ (∂φΛ + [aφ,Λ]) +
[
∂φΛ + [aφ,Λ], Λ̄

]
(E.1.10b)

= ∂2
φΛ + ∂φ[aφ,Λ] +

[
∂φΛ, Λ̄

]
+
[
[aφ,Λ], Λ̄

]
. (E.1.10c)

Therefore, the commutator is

[
δ, δ̄
]
aφ = ∂2

φΛ̄ + ∂φ
[
aφ, Λ̄

]
+
[
∂φΛ̄,Λ

]
+
[[
aφ, Λ̄

]
,Λ
]

− ∂2
φΛ− ∂φ[aφ,Λ]−

[
∂φΛ, Λ̄

]
−
[
[aφ,Λ], Λ̄

] (E.1.11a)

= ∂2
φ

(
Λ̄− Λ

)
+ ∂φ

[
Λ̄,Λ

]
+ ∂φ

[
aφ, Λ̄− Λ

]
+
[[
aφ, Λ̄

]
,Λ
]
−
[
[aφ,Λ], Λ̄

]
. (E.1.11b)

Recalling the Jacobi identity

[[
aφ, Λ̄

]
,Λ
]

+
[
[Λ, aφ], Λ̄

]
+
[[

Λ̄,Λ
]
, aφ
]

= 0 ,

we are able to write the last two terms of Eq. (E.1.11b) as

[[
aφ, Λ̄

]
,Λ
]
−
[
[aφ,Λ], Λ̄

]
=
[
aφ,
[
Λ̄,Λ

]]
.
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Then, (E.1.11b) is

[
δ, δ̄
]
aφ = ∂2

φ

(
Λ̄− Λ

)
+ ∂φ

[
Λ̄,Λ

]
+ ∂φ

[
aφ, Λ̄− Λ

]
+
[
aφ,
[
Λ̄,Λ

]]
(E.1.11c)

= ∂φ
{
∂φ
(
Λ̄− Λ

)
+
[
Λ̄,Λ

]}
+
[
aφ, ∂φ

(
Λ̄− Λ

)
+
[
Λ̄,Λ

]]
. (E.1.11d)

Let

¯̄Λ := δΛ̄− δ̄Λ +
[
Λ, Λ̄

]
(E.1.12a)

= ∂φΛ̄ +
[
Λ̄,Λ

]
− ∂φΛ−

[
Λ, Λ̄

]
+
[
Λ, Λ̄

]
(E.1.12b)

= ∂φ
(
Λ̄− Λ

)
+
[
Λ̄,Λ

]
. (E.1.12c)

Therefore, the commutator of gauge transformations (E.1.11d) closes as following

[
δ, δ̄
]
aφ = ∂φ

¯̄Λ +
[
aφ,

¯̄Λ
]
≡ ¯̄δaφ . (E.1.13)

Now we can equate the latter with the canonical result (E.1.8), which allows to find the particular

solution ¯̄Λ = 0, or

δ̄Λ = δΛ̄ +
[
Λ, Λ̄

]
. (E.1.14)

However, as it was said below Eq. (4.2.2), we recognized ∂t ↔ δ and a±t ↔ Λ± [197]. Thus, the

previous condition is analogue to

δ̄at = ∂tΛ̄ +
[
at, Λ̄

]
. (E.1.15)

As we see, we obtained gauge transformations along temporal components from the angular one,

provided the involution of conserved charges, inner feature of integrable systems. Thus, we do not

obtain further conditions for the gauge parameter Λ.
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E.2 Recovering specific boundary conditions

Here we explicitly show how the AKNS boundary conditions (4.0.1)

a±φ = ∓2ξ±L0 − p±L±1 + r±L∓1 , (E.2.1a)

a±t =
1

`
(−2A±L0 ±B±L±1 ∓ C±L∓1) , (E.2.1b)

encodes a family of boundary conditions as coefficients of powers of the spectral parameter ξ±. Let

us focus on the temporal component, written as

a±t,N =

N∑
n=0

a±t,nξ
±N−n , (E.2.2)

where

a±t,n =
1

`

(
−2A±nL0 ±B±n L±1 ∓ C±n L∓1

)
. (E.2.3)

The coefficients A±n , B±n and C±n are given by expressions (C.2.2), (C.2.3) and (C.2.4), respectively.

The first six coefficients of the latter expansion are

a±t,n=0 = −2

`
L0 , (E.2.4a)

a±t,n=1 = ±1

`

(
−p±L±1 + r±L∓1

)
, (E.2.4b)

a±t,n=2 =
1

`

(
p±r±L0 ±

1

2
p±′L±1 ±

1

2
r±′L∓1

)
, (E.2.4c)

a±t,n=3 =
1

`

[
−1

2

(
p±′r± − p±r±′

)
L0 ±

1

4

(
2p± 2r± − p±′′

)
L±1

∓1

4

(
2p±r± 2 − r±′′

)
L∓1

]
,

(E.2.4d)

a±t,n=4 =
1

`

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
,

(E.2.4e)

a±t,n=5 =
1

`

{
− 1

8

[
6p± 2r±r±′ − p±′′r±′ + p±′r±′′ + p±′′′r± − p±

(
6p±′r± 2 − r±′′′

) ]
L0

± 1

16

[
− 6p± 3r± 2 + 6p±′ 2r± + 4p±

(
p±′r±′ + 2p±′′r±

)
+ 2p± 2r±′′ − p±′′′′

]
L±1

∓ 1

16

[
− 6p± 2r± 3 + 4p±′r±r±′ + 2p±′′r± 2 + p±

(
6r±′ 2 + 8r±r± 2

)
− r±′′′′

]
L∓1

}
.

(E.2.4f)



Thus, the first six temporal boundary conditions a±t,N reads

a±t,N=0 = −2

`
L0 , (E.2.5a)

a±t,N=1 =
1

`

[
−2L0ξ

± ±
(
−p±L±1 + r±L∓1

)]
, (E.2.5b)

a±t,N=2 =
1

`

[
−2L0ξ

± 2 ±
(
−p±L±1 + r±L∓1

)
ξ± 1 − 1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
,

(E.2.5c)

a±t,N=3 =
1

`

{
−2L0ξ

± 3 ±
(
−p±L±1 + r±L∓1

)
ξ± 2 +

[
−1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
ξ±

− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

}
,

(E.2.5d)

a±t,N=4 =
1

`

{
−2L0ξ

± 4 ±
(
−p±L±1 + r±L∓1

)
ξ± 3 +

[
−1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
ξ± 2

+

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
ξ±

− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

}
,

(E.2.5e)
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a±t,N=5 =
1

`

{
−2L0ξ

± 5 ±
(
−p±L±1 + r±L∓1

)
ξ± 4 +

[
−1

2

(
p±′r± − p±r±′

)
L0

±1

4

(
2p± 2r± − p±′′

)
L±1 ∓

1

4

(
2p±r± 2 − r±′′

)
L∓1

]
ξ± 3

+

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
ξ± 2

+

[
− 1

4

(
3p± 2r± 2 + p±′r±′ − p±′′r± − p±r±′′

)
L0

± 1

8

(
−6p±p±′r± + p±′′′

)
L±1 ∓

1

8

(
6p±r±r±′ − r±′′′

)
L∓1

]
ξ±

− 1

8

[
6p± 2r±r±′ − p±′′r±′ + p±′r±′′ + p±′′′r± − p±

(
6p±′r± 2 − r±′′′

) ]
L0

± 1

16

[
− 6p± 3r± 2 + 6p±′ 2r± + 4p±

(
p±′r±′ + 2p±′′r±

)
+ 2p± 2r±′′ − p±′′′′

]
L±1

∓ 1

16

[
− 6p± 2r± 3 + 4p±′r±r±′ + 2p±′′r± 2 + p±

(
6r±′ 2 + 8r±r± 2

)
− r±′′′′

]
L∓1

}
.

(E.2.5f)
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Appendix F

Appendices of Chapter 5

F.1 Kubo formula deduction

The explicit deduction of the Kubo formula [334, 335] is presented in this appendix.

Let us start from (5.2.12)

U(t, t0) = T exp

(
−i
ˆ t

t0

V (t′, t0)dt′
)
, (F.1.1)

where T stands for the time-ordering operator. We can Taylor expand the latter as

U(t, t0) ≈ 1− i
ˆ t

t0

dt′ V (t′, t0) + (−i)2

ˆ t

t0

dt′
ˆ t1

t0

dt′′V (t′)V (t′′) + . . . , (F.1.2)

where the ellipsis stands for higher-order terms in the expansion. In the interaction picture, as it

was obtained in (5.2.7), every operator can be decomposed in the following form

O(t, x) ≡ U(t, t0)OI(t, x)U†(t, t0) . (F.1.3)

Thus, the expectation value of an arbitrary operator is

〈O(t, x)〉 = Tr
[
ρ(t, x)O(t, x)

]
(F.1.4a)

= Tr
[
ρI(t, x)U†(t, t0)O(t, x)U(t, t0)

]
, (F.1.4b)

where the cyclic property of the trace was used in the last line. Keeping only first-order terms in
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the forthcoming expansion, 〈O(t, x)〉 can be approximated as

〈O(t, x)〉 ≈ Tr

[
ρI(t, x)

(
1 + i

ˆ t

t0

dt′ V (t′, t0) + . . .

)
O(t, x)×

×
(

1− i
ˆ t

t0

dt′ V (t′, t0) + . . .

)] (F.1.4c)

= Tr

[
ρI(t, x)

(
O(t, x) + i

ˆ t

t0

dt′ [V (t′, t0),O(t, x)] + . . .

)]
(F.1.4d)

= Tr[ρI(t, x)O(t, x)] + iTr

[
ρI(t, x)

ˆ t

t0

dt′ [V (t′, t0),O(t, x)]

]
. (F.1.4e)

Defining

〈O(t, x)〉
∣∣
V=0

:= Tr[ρI(t, x)O(t, x)] , (F.1.5)

and according to definition (5.1.2), δ 〈O(t, x)〉 := 〈O(t, x)〉 − 〈O(t, x)〉
∣∣
V=0

, we arrive to

δ 〈O(t, x)〉 = i

ˆ t

t0

dt′ 〈[VI(t′, t0),OI(t, x)]〉 . (F.1.6)

Placing the initial state in the far past t0 → −∞, and plugging a Heaviside theta function Θ(t− t′)

to extend the range of integration, defined as

Θ(t− t′) =

1 , t > t′

0 , t ≤ t′ ,
(F.1.7)

we arrive to (5.3.3),

δ 〈O(t, x)〉 = i

ˆ ∞
−∞

dt′Θ(t− t′) 〈[VI(t′),OI(t, x)]〉 . (F.1.8)
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F.2 Localness of the susceptibility

Here we prove that the susceptibility is local in the frequency space ω.

We will perform a Fourier transform (FT) to Eq. (5.3.8),

δ 〈O(t, x)〉 =

ˆ
dt′ dx′ χOB(t− t′;x, x′)µ(t′, x′) . (F.2.1)

For simplicity, consider a FT to the arbitrary operator O(t)

O(ω) =

ˆ
dt eiωtO(t) . (F.2.2)

Hence, (5.3.8) reads

δ 〈O(ω)〉 =

ˆ
dt dt′ dx′χOB(t− t′;x, x′)µ(t′, x′)eiωt (F.2.3a)

=

ˆ
dx′ dt′ dt

[
eiω(t−t′)χOB(t− t′;x, x′)

]
eiωt

′
µ(t′, x′) (F.2.3b)

≡
ˆ
dx′ χOB(ω;x, x′)µ(ω, x′) . (F.2.3c)

Thus, the susceptibility is local in the frequency ω: If the perturbation acts at frequency ω, it will

responds at the same frequency.



Appendix G

Appendices of Chapter 6

G.1 u(1)-current symmetry

In this appendix we show that the action principle (6.0.1)

I± [ϕ±] =
K

8π

ˆ
dt dx

[
ϕ̇±ϕ

′
± ∓ v

(
∂
z+1
2

x ϕ±

)2
]
, (G.1.1)

(where dots stands for temporal derivatives and primes for spatial derivatives) exhibits u(1) sym-

metry,

δϕ± = δη±k , η±k = ei(kx±ωkt) , (G.1.2)

where ωk = vkz; and determine its corresponding Noether charge.

Under arbitrary infinitesimal transformations, the action transforms as

δI± =
K

8π

ˆ
dt dx

[
δϕ̇±ϕ

′
± + ϕ̇±δϕ

′
± ∓ 2v

(
∂
z+1
2

x ϕ±

)
∂
z+1
2

x δϕ±

]
. (G.1.3)

Replacing δϕ± = η±k , we have

δI± =
K

8π

ˆ
dt dx

[
η̇±k ϕ

′
± + ϕ̇±η

±′
k ∓ 2v

(
∂
z+1
2

x ϕ±

)
∂
z+1
2

x η±k

]
(G.1.4a)

=
K

8π

ˆ
dt dx

[
−2η̇±′k ϕ± ∓ 2v (−1)

z+1
2 ϕ±∂

z+1
x η±k + ∂t

(
η±′k ϕ±

)]
, (G.1.4b)

where we integrated by parts and assumed periodic boundary conditions on the fields (thus elimi-

nating spatial boundary terms).
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We can rewrite the above equation as

δI± = −K
4π

ˆ
dt dxϕ±∂x

[
∂t ± v(−1)

z+1
2 ∂zx

]
η±k +

K

8π

ˆ
dt dx ∂t

(
ϕ±η

±
k

)
. (G.1.4c)

If η±k satisfies the equations of motion,

[
∂t ± v(−1)

z+1
2 ∂zx

]
η±k = 0 ,

then the form of η±k is determined as

η±k = ei(kx±ωkt) . (G.1.5)

Hence, the variation of the action is

δI± =
K

8π

ˆ
dt dx ∂t

(
ϕ±η

±′
k

)
. (G.1.6)

On the other hand, starting from (G.1.3), if we integrate by parts and cancel the terms that

contribute to the equation of motion, then we have that

δI± =
K

8π

ˆ
dt dx ∂t

(
δϕ±ϕ

′
±
)
. (G.1.7a)

If we again integrate by parts, and substitute the corresponding infinitesimal transformation δϕ± =

η±k , we obtain

δI± = −K
8π

ˆ
dt dx ∂t

(
ϕ±η

±′
k

)
(G.1.7b)

Equating the last equation with (G.1.6), we arrive to the following Noether charge

J±[η±k ] =

ˆ
dx η±k J± , (G.1.8)

where

J± =
K

4π
∂xϕ± . (G.1.9)

Additionally, we see that J± satisfies the continuity equation

∂tJ± + ∂xI± = 0 , (G.1.10)
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so its conjugate quantity I± turns out to be

I± = −K
4π
∂tϕ± . (G.1.11)

As showed in (7.1.36), at the boundary, the asymptotic degrees of freedom will be captured by the

action principle

I [ϕ+, ϕ−] = I+[ϕ+]− I− [ϕ−] , (G.1.12)

so the negative copy will have a global negative sign. This will affect the symmetries, so in this

case, the Noether charge and its conjugate quantity will be readily

J± = ±K
4π
∂xϕ± , I± = ∓K

4π
∂tϕ± . (G.1.13)
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G.2 Jackiw quantization of anisotropic chiral bosons

Following [342, 402] it is possible to read the Dirac bracket of the theory by analizying the theory

in its symplectic form.

Define the generalized set of coordinates za = (qi, pj)
t with a = 1, 2, . . . , 2N . In this formalism,

the action of every theory is

ˆ
dt (laż

a −H) , (G.2.1)

with la = (pi, 0). An infinitesimal variation of the action reads

ˆ
dt
[
(∂alb − ∂bla) żb − ∂aH

]
δza . (G.2.2)

If we define the 2-form symplectic matrix

ωab = ∂alb − ∂bla , (G.2.3)

the equations of motion can be written as

ża = ωab∂bH . (G.2.4)

These equations can be obtained from the Poisson bracket

{f, g} = ∂afω
ab∂bg , (G.2.5)

where
{
za, zb

}
= ωab. Now we are going to apply the symplectic formalism to the anisotropic chiral

boson in order to obtain the Dirac bracket.

The Lagrangian density of the anisotropic chiral boson theory is1

L± = ±K
8π

[
ϕ̇±ϕ

′
± ∓ v

(
∂
z+1
2

φ ϕ±

)2
]
, (G.2.6)

so it is possible to read

l±(x) = ∓K
8π
∂xϕ±(x) . (G.2.7)

1Note that we put a global ± sign in front of the Lagrangian density (G.2.6). We did this since in Chapter 7,
it will be proved that with suitable boundary conditions, AdS3 GR will be reduced to an action principle whose
Lagrangian density will have the form L[ϕ+, ϕ−] = L[ϕ+]− L[ϕ−].



Therefore, the symplectic matrix ω± is

ω±(x, x′) = ∓K
4π
∂xδ(x− x′) . (G.2.8)

Because its inverse satisfies,

ˆ
dy ω±(x, y)J±(y, x′) = δ(x− x′) . (G.2.9)

we can readily obtain the Dirac bracket of the theory,

J±(x, x′) ≡ {ϕ±(x), ϕ±(x′)} = ±4π

K
∂−1
x′ δ(x− x

′) . (G.2.10)

Taking a derivative in x′ to both sides, we finally obtain

{ϕ±(x), ∂x′ϕ±(x′)} = ±4π

K
δ(x− x′) . (G.2.11)

With the symplectic structure obtained, the quantization of (G.2.11) proceeds with the prescription

{, } → i [, ].
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G.3 Bosonization

In this appendix we perform the explicit computations regarding the fermionic interpretation of

the operators J± and I±.

Define the operators [361]

c±(x) =: e−i
√

K
2 ϕ±(x) : , c†±(x) =: ei

√
K
2 ϕ±(x) : , (G.3.1)

where : O : denotes the normal-ordering of the operator O.

We calculated the bosonic equal-time Dirac bracket in Eq. (G.2.10). Performing the passage to

quantum mechanics, the Dirac bracket transforms to a commutator, and the functions ϕ± can be

interpreted as anisotropic chiral boson operators that satisfies

[ϕ±(x), ϕ±(x′)] = ∓4iπ

K
∂−1
x δ(x− x′) . (G.3.2)

Recalling that ∂xsign(x− x′) = 2δ(x− x′), where

sign(x− x′) =


−1 , x− x′ < 0 ,

0 , x− x′ = 0 ,

1 , x− x′ > 0 ,

(G.3.3)

the previous commutator can be read as

[ϕ±(x), ϕ±(x′)] = ∓2iπ

K
sign(x− x′) . (G.3.4)

G.3.1 Bosonic creation and annihilation commutation algebra

Because anisotropic chiral excitations can be decomposed in positive and negative frequency modes,

we can write its excitations as a superposition of creation and annihilation operators, as following

ϕ±(x) = θ±(x) + θ†±(x) . (G.3.5)

It is important to say that for the chiral sector, θ+(x) correspond to a creation operator and θ†+(x)

to an annihilation one, while for the antichiral sector, θ−(x) to a annihilation mode and θ†−(x) to

a creation one. The antichiral sector obeys the usual convention, while the chiral one an inverted

one (see Table G.1)

We aim to compute the algebra of the creation and annihilation modes. In order to do that,



Chiral sector Antichiral sector
Creation operator θ+(x) θ†−(x)

Annihilation operator θ†+(x) θ−(x)

Table G.1: Bosonic creation and annihilation modes of each sector.

consider the next useful representation of the Dirac delta

2iπδ(x− x′) =
1

x− x′ − iη
+

1

x′ − x− iη
, (G.3.6)

where η → 0+ is a positive regulator. Now, let us calculate the commutation algebra [∂xϕ±(x), ϕ±(x′)]

by replacing the creations and annihilation operators,

[∂xϕ±(x), ϕ±(x′)] =
[
∂xθ±(x), θ†±(x′)

]
+
[
∂xθ
†
±(x), θ±(x′)

]
, (G.3.7)

where we assummed that

[θ±(x), θ±(x′)] = 0 ,
[
θ†±(x), θ†±(x′)

]
= 0 . (G.3.8)

Recalling that the commutator fulfills (G.2.11), and using the Delta representation (G.3.6), we can

obtain from (G.3.7) the following relationship

[
∂xθ±(x), θ†±(x′)

]
+
[
∂xθ
†
±(x), θ±(x′)

]
= ∓ 2

K

(
1

x− x′ − iη
+

1

x′ − x− iη

)
. (G.3.9)

Equating left and right-handed terms, we arrive to the differential equations

[
∂xθ±(x), θ†±(x′)

]
= ∓ 2

K

(
1

x′ − x− iη

)
, (G.3.10a)[

∂xθ
†
±(x), θ±(x′)

]
= ∓ 2

K

(
1

x− x′ − iη

)
. (G.3.10b)

In order to obtain the creation and annihilation algebra, we can integrate the first commutation

relation with respect to x, which leads to

[
θ ± (x), θ†±(x′)

]
= ± 2

K
log (x′ − x− iη) + c1 ,

where c1 is an integration constant. If we integrate the second one, we arrive to

[
θ†±(x), θ±(x′)

]
= ∓ 2

K
log (x− x′ − iη) + c2 .

If we flip the commutator and relabel x → x′, we can recognize c1 = c2. A consistent value for
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the integration constant is given by c1 = ± 2
K log(2iπ), so the algebra of creation and annihilation

operators reads

[
θ±(x), θ†±(x′)

]
= ± 2

K
log [−2iπ (x− x′ + iη)] . (G.3.11)

We obtained then the bosonic algebra of creation and annihilation operators.

G.3.2 Majorana fermions

Here we show that the bosonic anisotropic particles possess a non-abelian statistics that allows to

interpret them as Majorana fermiones

Fermionic creation and annihilation operators

We aim to compute the algebra of operators c± and c†±, given in (G.3.1). We are going to prove

that they can be interpreted as fermionic creation and annihilation operators.

Let us compute the anticommutator {c±(x), c±(x′)}. Consider the combination

c±(x)c±(x′) =: e−i
√

K
2 ϕ±(x) :: e−i

√
K
2 ϕ±(x′) : . (G.3.12)

In particular, let us focus on the negative copy first.

Recalling the creation and annihilation expansion (G.3.5), we make sense of the normal ordering

as following

c−(x)c−(x′) = e−i
√

K
2 θ
†
−(x)e−i

√
K
2 θ−(x)e−i

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x′) . (G.3.13)

Using the Baker–Campbell–Haussdorff identity eAeB = e[A,B]eBeA, we have

c−(x)c−(x′) = e−i
√

K
2 θ
†
−(x)

(
e−

K
2 [θ−(x),θ†−(x′)]e−i

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x)

)
e−i
√

K
2 θ−(x′) (G.3.14a)

= e−i
√

K
2 θ
†
−(x)

(
elog[−2iπ(x−x′+iη)]e−i

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x)

)
e−i
√

K
2 θ−(x′) (G.3.14b)

= [−2iπ (x− x′ + iη)] e−i
√

K
2 (θ†−(x)+θ†−(x′))e−i

√
K
2 (θ−(x)+θ−(x′)) , (G.3.14c)

where we used, from the first to the second line, the commutation relation (G.3.11). On the other

hand, if we relabel x→ x′, we can write c−(x′)c−(x), yielding

c−(x′)c−(x) = [2iπ (x− x′)] e−i
√

K
2 (θ†−(x)+θ†−(x′))e−i

√
K
2 (θ−(x)+θ−(x′)) , (G.3.15)

where the limit η → 0+ was taken. After adding the last two terms, we directly obtain {c−(x), c−(x′)} =

0.
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Let us perform now the analogue procedure for the chiral sector,

c+(x)c+(x′) =: e−i
√

K
2 ϕ+(x) :: ei

√
K
2 ϕ+(x′) : (G.3.16a)

= e−i
√

K
2 θ+(x)e−i

√
K
2 θ
†
+(x)e−i

√
K
2 θ+(x′)e−i

√
K
2 θ
†
+(x′) (G.3.16b)

= e−i
√

K
2 θ+(x)

(
e−

K
2 [θ†+(x),θ+(x′)]e−i

√
K
2 θ+(x′)e−i

√
K
2 θ
†
+(x)

)
e−i
√

K
2 θ
†
+(x′) (G.3.16c)

= e−i
√

K
2 θ+(x)

(
elog[−2iπ(x−x′+iη)]e−i

√
K
2 θ+(x′)e−i

√
K
2 θ
†
+(x)

)
e−i
√

K
2 θ
†
+(x′) (G.3.16d)

= [−2iπ (x− x′)] e−i
√

K
2 (θ+(x)+θ+(x′))e−i

√
K
2 (θ†+(x)+θ†+(x′)) . (G.3.16e)

Again, c+(x′)c+(x) can be calculated from the latter if x → x′. So {c+(x), c+(x′)} = 0, and

therefore the result holds for the two copies. A direct consequence is that
{
c†±(x), c†±(x′)

}
= 0

fulfills.

We only need to compute the anticommutator of c±(x) and c†±(x′). Let us start with the

negative copy. The combination c−(x)c†−(x′) is

c−(x)c†−(x′) =: e−i
√

K
2 ϕ−(x) :: ei

√
K
2 ϕ−(x′) : (G.3.17a)

= e−i
√

K
2 θ
†
−(x)e−i

√
K
2 θ−(x)ei

√
K
2 θ
†
−(x′)ei

√
K
2 θ−(x′) (G.3.17b)

= e−i
√

K
2 θ
†
−(x)

(
e
K
2 [θ−(x),θ†−(x′)]ei

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x)

)
ei
√

K
2 θ−(x′) (G.3.17c)

= e−i
√

K
2 θ
†
−(x)

(
e− log[−2iπ(x−x′+iη)]ei

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x)

)
ei
√

K
2 θ−(x′) (G.3.17d)

=
e−i
√

K
2 (θ†−(x)−θ†−(x′))e−i

√
K
2 (θ−(x)−θ+(x′))

−2iπ (x− x′ + iη)
, (G.3.17e)

while c†−(x′)c−(x) reads

c†−(x′)c−(x) =: ei
√

K
2 ϕ−(x′) :: e−i

√
K
2 ϕ−(x) : (G.3.18a)

= ei
√

K
2 θ
†
−(x′)ei

√
K
2 θ−(x′)e−i

√
K
2 θ
†
−(x)e−i

√
K
2 θ−(x) (G.3.18b)

= ei
√

K
2 θ
†
−(x′)

(
e
K
2 [θ−(x′),θ†−(x)]e−i

√
K
2 θ
†
−(x)ei

√
K
2 θ−(x′)

)
e−i
√

K
2 θ−(x) (G.3.18c)

= ei
√

K
2 θ
†
−(x′)

(
e− log[−2iπ(x′−x+iη)]e−i

√
K
2 θ
†
−(x)ei

√
K
2 θ−(x′)

)
e−i
√

K
2 θ−(x) (G.3.18d)

=
e−i
√

K
2 (θ†−(x)−θ†−(x′))e−i

√
K
2 (θ−(x)−θ−(x′))

−2iπ (x′ − x+ iη)
. (G.3.18e)

Taking the limit η → 0+, and adding the latter two results, we readily obtain that
{
c−(x), c†−(x′)

}
=

0.
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Now let us compute
{
c+(x), c†+(x′)

}
for the chiral sector. The combination c+(x)c†+(x′) is

c+(x)c†+(x′) =: e−i
√

K
2 ϕ+(x) :: ei

√
K
2 ϕ+(x′) : (G.3.19a)

= e−i
√

K
2 θ+(x)e−i

√
K
2 θ
†
+(x)ei

√
K
2 θ+(x′)ei

√
K
2 θ
†
+(x′) (G.3.19b)

= e−i
√

K
2 θ+(x)

(
e
K
2 [θ†+(x),θ+(x′)]ei

√
K
2 θ+(x′)e−i

√
K
2 θ
†
+)x)

)
ei
√

K
2 θ
†
+(x′) (G.3.19c)

= e−i
√

K
2 θ+(x)

(
e− log[−2iπ(x−x′+iη)]ei

√
K
2 θ+(x′)e−i

√
K
2 θ
†
+(x)

)
ei
√

K
2 θ
†
+(x′) (G.3.19d)

=
e−i
√

K
2 (θ+(x)−θ+(x′))e−i

√
K
2 (θ†+(x)−θ†+(x′))

−2iπ (x− x′ + iη)
. (G.3.19e)

On the other hand, c†+(x′)c+(x) is

c†+(x′)c+(x) =: ei
√

K
2 ϕ+(x′) :: e−i

√
K
2 ϕ+(x) : (G.3.20a)

= ei
√

K
2 θ+(x′)ei

√
K
2 θ
†
+(x′)e−i

√
K
2 θ+(x)e−i

√
K
2 θ
†
+(x) (G.3.20b)

= ei
√

K
2 θ+(x′)

(
e
K
2 [θ†+(x′),θ+(x)]e−i

√
K
2 θ+(x)ei

√
K
2 θ
†
+(x′)

)
e−i
√

K
2 θ
†
+(x) (G.3.20c)

= ei
√

K
2 θ+(x′)

(
e− log[−2iπ(x′−x+iη)]e−i

√
K
2 θ+(x)ei

√
K
2 θ
†
+(x′)

)
e−i
√

K
2 θ
†
+(x) (G.3.20d)

=
e−i
√

K
2 (θ+(x)−θ+(x′))e−i

√
K
2 (θ†+(x)−θ†+(x′))

−2iπ (x′ − x+ iη)
. (G.3.20e)

Again, taking the limit η → 0, we readily obtain that
{
c+(x), c†+(x′)

}
= 0, proving this result

for the chiral/antichiral sector. Therefore, we proved that the following anticommutation algebra

fulfills

{c±(x), c±(x′)} =
{
c†±(x), c†±(x′)

}
=
{
c±(x), c†±(x′)

}
= 0 , x 6= x′ . (G.3.21)

Operator c−(x) stands for the fermionic annihilation operator, c+(x) to the creation one, and for

the chiral sector, c+(x) stands for the fermionic creation operator and c†+(x) to the annihilation

one (see Table G.2).

Chiral sector Antichiral sector
Creation operator c+(x) c†−(x)

Annihilation operator c†+(x) c−(x)

Table G.2: Fermionic creation and annihilation operators of each sector.

Majorana fermions

Majorana fermions are particles that are their own antiparticle [403], and appear in different con-

texts, such as neutrino physics [404, 405], Quantum Hall Effect [384], and superconductors [406].

166



If we define

c±(t, x) =
ψi(t, x) + iψj(t, x)√

2
, c†±(t, x) =

ψi(t, x)− iψj(t, x)√
2

, (G.3.22)

where ψ±i (t, x) denotes a collection of i = 1, . . . , n fermionic particles, we have

ψ±i (t, x) =
c±(t, x) + c†±(t, x)

√
2

, ψ±j (t, x) =
c±(t, x)− c†±(t, x)

√
2i

(G.3.23)

From (G.3.21), we readily obtain that ψ±i is a fermion, because satisfies

{
ψ±i (x), ψ±j (x′)

}
= 0 x 6= x′ . (G.3.24)

Furthermore, from definition (G.3.23), it is possible to prove that ψ±i,j =
(
ψ±i,j

)†. This condition

allows us to interpret ψ±i,j as Majorana fermions.

We can write the number operators n−(x) = c†−(x)c−(x), n+(x) = c+(x)c†+(x) in terms of these

Majorana fermions as following

n−(x) = c†−(x)c−(x) = 1 + iψ−i (x)ψ−j (x) , (G.3.25a)

n+(x) = c+(x)c†+(x) = 1− iψ+
i (x)ψ+

j (x) . (G.3.25b)

The fermionic number (charge density) operator of the two sectors are n±(x) ∝ ∓iψ±i (x)ψ±j (x).

This operator is the one that is going to provide the fermionic interpretation of J±.

Fermionic charge operator

Here we aim to compute the fermionic number operator in terms of anisotropic chiral fields ϕ±(x).

For the antichiral sector, let us calculate : c†−(x)c−(x′) :, just like we did in Section G.3.2,

: c†−(x)c−(x′) : =: ei
√

K
2 ϕ−(x) :: e−i

√
K
2 ϕ−(x) : (G.3.26a)

= ei
√

K
2 θ
†
−(x)ei

√
K
2 θ−(x)e−i

√
K
2 θ
†
−(x′)e−i

√
K
2 θ−(x′) (G.3.26b)

= ei
√

K
2 θ
†
−(x)

(
e
K
2 [θ−(x),θ†−(x′)]e−i

√
K
2 θ
†
−(x′)ei

√
K
2 θ−(x)

)
e−i
√

K
2 θ−(x′) (G.3.26c)

= ei
√

K
2 θ
†
−(x)

(
e− log[−2iπ(x−x′+iη)]e−i

√
K
2 θ
†
−(x′)ei

√
K
2 θ−(x)

)
e−i
√

K
2 θ−(x′) (G.3.26d)

=
ei
√

K
2 (θ†−(x)−θ†−(x′))ei

√
K
2 (θ−(x)−θ−(x′))

−2iπ(x− x′ + iη)
. (G.3.26e)

If we define ∆x = x − x′, the Taylor expansions of ∆θ−(x) ≡ θ−(x) − θ−(x′) and ∆θ†−(x) ≡

167



θ†−(x)− θ†−(x′) are

∆θ−(x) ≡ θ−(x)− θ−(x′) ≈ ∆x∂xθ−(x)− 1

2
(∆x)

2
∂2
xθ−(x) ,

∆θ†−(x) ≡ θ†−(x)− θ†−(x′) ≈ ∆x∂xθ
†
−(x)− 1

2
(∆x)

2
∂2
xθ
†
−(x) ,

respectively. Therefore, the Taylor expansion of the number operator is

: c†−(x)c−(x′) : ≈ 1

−2iπ (x− x′ + iη)

{[
1 + i

√
K

2
∆θ†−(x)− K

4

(
∆θ†−(x)

)2
]
×

×

[
1 + i

√
K

2
∆θ−(x)− K

4
(∆θ−(x))

2

]}
.

(G.3.27)

At second order, the latter expansion is

: c†−(x)c−(x′) : =
i

2π (∆x+ iη)

{
1 + i

√
K

2
∆x∂x

(
θ†−(x) + θ−(x)

)
− (∆x)

2

2

[
i

√
K

2
∂2
x

(
θ†−(x) + θ−(x)

)
+
K

2

((
∂xθ
†
−(x)

)2

+ (∂xθ−(x))
2

+ 2∂xθ
†
−(x)∂xθ−(x)

)]}
.

(G.3.28)

We can recognize the bosonic field ϕ−(x) according to (G.3.5), and taking the limit η → 0+, we

can write

: c†−(x)c−(x′) : =
i

2π∆x

{
1 + i

√
K

2
∆x∂xϕ−(x)

− (∆x)
2

2

[
i

√
K

2
∂2
xϕ−(x) +

K

2
: (∂xϕ−(x))

2
:

]} (G.3.29a)

=
i

2π∆x
− 1

2π

√
K

2
∂xϕ−(x)

+
∆x

4π

[√
K

2
∂2
xϕ−(x)− iK

2
: (∂xϕ−(x))

2
:

]
.

(G.3.29b)

The first term correspond to the vacuum term. If we take the limit ∆x → 0, we find that the

number operator is

: c†−(x)c−(x) := − 1

2π

√
K

2
∂xϕ−(x) . (G.3.30)
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This is operator J−(x), defined in (7.1.30). Hence we can establish the following relationship

J−(x) =

√
K

2
: c†−(x)c−(x) : . (G.3.31)

An analogue procedure can be performed for the chiral sector, yielding

J+(x) =

√
K

2
: c+(x)c†+(x) : . (G.3.32)

Therefore, we can say that the u(1) Noether charge J± is the electric charge density of the

anisotropic chiral boson theory.
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Appendix H

Appendices of Chapter 7

In this appendix we explicitly show the calculations mentioned in Chapter 7.

H.1 u(1) creation and annihilation algebra

Consider the Fourier-expanded chiral field

ϕ±(x, t) =

ˆ ∞
−∞

dk

k
ei(kx±ωkt)b±,k , (H.1.1)

where b±,k correspond to the k-th wavenumber annihilation operator and b†±,k the k-th wavenum-

ber creation operator. We want to invert relation (H.1.1) and expand the annihilation operator

in Fourier modes to compute the commutator of b±(k) with b±(k′). For this, we multiply by

e−i(k
′x±ωk′ t),

ϕ±(t, x)e−i(k
′x±ωk′ t) =

ˆ ∞
−∞

dk

k
ei(k−k

′)xe±i(ωk−ωk′ )tb±(ωk, k) . (H.1.2)

Integrating on x, we obtain

ˆ ∞
∞

dxϕ±(t, x)e−i(k
′x±ωk′ t) =

ˆ ∞
−∞

dk

k

(ˆ ∞
−∞

dx ei(k−k
′)x

)
e±i(ωk−ωk′ )tb±(ωk, k)

=

ˆ ∞
−∞

dk

k
(2πδ(k − k′)) e±i(ωk−ωk′ )tb±(ωk, k) . (H.1.3)

Thus,

b±(ωk, k) =
k

2π

ˆ ∞
∞

dxϕ±(t, x)e−i(kx±ωkt) . (H.1.4)
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Then the commutator of operators b±(k) is

[b±(k), b±(k′)] =
kk′

(2π)2

ˆ ∞
−∞

dx dx′ [ϕ±(x), ϕ±(x′)]e−i(kx+k′x′)e∓i(ωk+ωk′ )t . (H.1.5)

Observe that k′e−i
′kx′ = i∂x′e

−ik′x′ , hence

[b±(k), b±(k′)] =
ik

(2π)2

ˆ ∞
−∞

dx dx′ [ϕ±(x), ϕ±(x′)]e−i(kx±ωkt)∂x′e
−i(k′x′±ωk′ t) . (H.1.6)

We can integrate by parts, suppose the fields vanishes sufficiently fast in the boundaries and using

the algebra of chiral fields,

[ϕ±(x), ∂x′ϕ±(x′)] = ±4iπ

K
δ(x− x′) , (H.1.7)

we obtain

[b±(k), b±(k′)] = − ik

(2π)2

ˆ ∞
−∞

dx dx′ [ϕ±(x), ∂x′ϕ±(x′)]e−i(kx±ωkt)e−i(k
′x′±ωk′ t). (H.1.8a)

= − ik

(2π)2

ˆ ∞
−∞

dx dx′
(
±4iπ

K
δ(x− x′)

)
e−i(kx±ωkt)×

× e−i(k
′x′±ωk′ t).

(H.1.8b)

= ± k

πK

ˆ ∞
−∞

dx e−i(k+k′)xe∓i(ωk+ωk′ )t (H.1.8c)

= ± 2

K
kδ(k + k′) , (H.1.8d)

in agreement with (7.2.8).
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H.2 Susceptibility expression

We aim to obtain Eq. (7.2.11) for the susceptibility. As we have seen in Section 7.2, recall that

χ̃±I,J (ω;x, x′) = −i
ˆ ∞
−∞

dtΘ(t)eiωt 〈[I±(x, t),J±(x′, 0)]〉 (H.2.1a)

= − iK
8π2

ˆ ∞
−∞

dtΘ(t)eiωt
ˆ ∞
−∞

dk ωke
ik(x−x′)e±iωkt (H.2.1b)

= − iK
8π2

ˆ ∞
−∞

dk ωke
ik(x−x′)

ˆ ∞
−∞

dtΘ(t)ei(ω±ωk)t. (H.2.1c)

As said in Eq. (7.2.9), we consider the Fourier transform of the theta Heaviside function

ˆ ∞
−∞

dtΘ(t)ei(ω±ωk)t =
i

ω ± ωk + iε
,

where ε is a regulator that appears as a consequence of the susceptibility causality, i.e., the suscep-

tibility vanishes for t < 0. Therefore,

χ̃±I,J (ω;x, x′) =
K

8π2

ˆ ∞
−∞

dk
ωk

ω ± ωk + iε
eik(x−x′) (H.2.20d)

=
K

8π2

ˆ ∞
−∞

dk
ωk ± (ω + iε)∓ (ω + iε)

ω ± ωk + iε
eik(x−x′) (H.2.20e)

≡ K

8π2

ˆ ∞
−∞

dk
± (ω ± ωk + iε)∓ (ω + iε)

ω ± ωk + iε
eik(x−x′) (H.2.20f)

=
K

8π2

ˆ ∞
−∞

dk

(
±1∓ ω + iε

ω ± ωk + iε

)
eik(x−x′) (H.2.20g)

=
K

4π

(
±δ(x− x′)∓

ˆ ∞
−∞

dk

2π

ω + iε

ω ± ωk + iε
eik(x−x′)

)
(H.2.20h)

≡ K

4π

[
±δ(x− x′)∓ (ω + iε)F± (x− x′;ω)

]
, (H.2.20i)

where the function F±(x− x′;ω) is defined as

F±(x− x′;ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
. (H.2.21)

Thus, we arrived to Eq. (7.2.11).



H.3 Complex integral

We start from Eq. (7.2.12),

F±(x− x′;ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
. (H.3.1)

Using standard complex calculus, we aim to solve this integral and arrive to Eq. (7.2.14).

Define y = x− x′. The function F± now reads as

F±(y;ω) =

ˆ ∞
−∞

dk

2π

eiky

ω ± ωk + iε
.

Extending the integral to the complex plane, we see it has a simple pole k±p , with p = 0, 1, 2, . . . , z±−

1 when ωk±p = ∓ (ω + iε). In order to fix ideas, let us work with the dispersion relation of anisotropic

chiral bosobserve that for this case, the simple pole k±p satisfies the equation ω± v
(
k±p
)z±

+ iε = 0,

which yields

k±p = ∓e2pπ/z± (ω + iε)
1/z± ≡ ∓e2pπ/z±ω1/z±

(
1 +

iε

ω

)1/z±

≈ ∓ω1/z±ei(2pπ+ε)/z± .

Hence, every pole will have ω1/z± complex module and θ = (2pπ + ε)/z± angle. As an example,

consider case z± = 1. Then we have an unique pole given by expression

k±0 = ∓ωeiε = ∓ω (cos ε+ i sin ε) ≈ ∓ω (1 + iε) .

On the other hand, for z± = 3, we will have the following poles

k±p = ∓ω1/3ei(2pπ+ε)/3 = ∓ω1/3


eiε ≈ 1 + iε, p = 0,

ei(2π+ε)/3 ≈ − 1
2 + i

√
3

2 , p = 1,

ei(4π+ε) ≈ − 1
2 −

i
√

3
2 , p = 2.

The two aforementioned cases can be seen pictorically in figure (H.1).

Now that we settled the idea, we may solve F±. In general, it may be extended to the complex

plane by considering the following contour integral

˛
C≷

dz

2π

eizy

ω ± ωz + iε
=

˛
Γ≷

dz

2π

eizy

ω ± ωz + iε
+

ˆ ∞
−∞

dk

2π

eiky

ω ± ωk + iε
,

where C≷ is a general contour that considers the arc Γ≷ and the real line. For y > 0, we will close



k−0

k+
0

iε

−iε
Re{k±}

Im{k±}

k+
1

k+
0

k+
2

Re{k+}

Im{k+}

−iε

Figure H.1: Left picture: Poles for case z± = 1. Right picture: Poles for case z+ = 3. For the ±
sector, the pole k±0 is always shifted to the lower and upper complex plane, respectively.

the contour from above and in anticlockwise manner, yielding

˛
C>

dz

2π

eizy

ω ± ωz + iε
=

˛
Γ>

dz

2π

eizy

ω ± ωz + iε
+

ˆ ∞
−∞

dk

2π

eiky

ω ± ωk + iε
.

By Jordan’s lemma, the Γ> contour integral goes to zero. Thus, the complex integral is the real

one and it can be solved by using the residue theorem

˛
C>

dz

2π

eizy

ω ± ωz + iε
=

ˆ ∞
−∞

dk

2π

eiky

ω ± ωk + iε
= iΘ(y) Res

[
eiky

ω ± ωk + iε
, ωk = +(ω + iε)

]
(H.3.2a)

= iΘ(y)
∑

k±p ∈Im>

eik
±
p y

±ω′
k±p

. (H.3.2b)

On the other hand, for y < 0, we will close the contour from below and in clockwise manner, and

by Jordan’s lemma, we obtain

ˆ ∞
−∞

dk

2π

eiky

ω ± ωk + iε
= −iΘ(−y) Res

[
eiky

ω ± ωk + iε
, ωk = −(ω + iε)

]
(H.3.3a)

= −iΘ(−y)
∑

k±p ∈Im<

eik
±
p y

±ω′
k±p

. (H.3.3b)

Therefore, F±(y;ω) is

F±(y;ω) = ±iΘ(y)
∑

k±p ∈Im>

eik
±
p y

ω′
k±p

∓ iΘ(−y)
∑

k±p ∈Im<

eik
±
p y

ω′
k±p

. (H.3.4)
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Thus, if we take the limit ε→ 0, (ω + iε)F±(y;ω) reads

ωF±(y;ω) = ±iΘ(y)
∑

k±p ∈Im>

(
∓ωk±p

)
eik
±
p y

ω′
k±p

∓ iΘ(−y)
∑

k±p ∈Im<

(
∓ωk±p

)
eik
±
p y

ω′
k±p

(H.3.5a)

= −iΘ(y)
∑

k±p ∈Im>

ωk±p e
ik±p y

ω′
k±p

+ iΘ(−y)
∑

k±p ∈Im<

ωk±p e
ik±p y

ω′
k±p

. (H.3.5b)

The latter result is general, since we did not replace the dispersion relation of the anisotropic chiral

boson on any calculation. On the other hand, If we now specialize to the anisotropic chiral boson

case, we obtain

ωF±(y;ω) = −iΘ(y)
∑

k±p ∈Im>

k±p e
ik±p y

z±
+ iΘ(−y)

∑
k±p ∈Im<

k±p e
ik±p y

z±
(H.3.25c)

= −Θ(y)∂y
∑

k±p ∈Im>

eik
±
p y

z±
+ Θ(−y)∂y

∑
k±p ∈Im<

eik
±
p y

z±
(H.3.25d)

≡ −Θ(y)∂y∆±>(y;ω) + Θ(−y)∂y∆±<(y;ω) (H.3.25e)

where ∆±≷ is defined as

∆±≷(y;ω) =
∑

k±p ∈Im≷

eik
±
p y

z±
. (H.3.26)

Hence, we arrived to Eq. (7.2.14).
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H.4 Linear response

In this Appendix we show the explicit calculations in order to arrive to Eq. (7.2.18).

We start from Eq. (7.2.17)

δ
〈
Ĩ±(ω, x)

〉
= ∓K

4π

ˆ ∞
−∞

dy [VLΘ(xL − x+ y) + VRΘ(x− y − xR)]×

×
[
−δ(y)−Θ(y)∂y∆±>(y;ω) + Θ(−y)∂y∆±<(y;ω)

] (H.4.1a)

≡ ∓K
4π

(I0 + I1 + I2) , (H.4.1b)

where I0 is

I0 = −
ˆ ∞
−∞

dy [VLΘ(xL − x+ y) + VRΘ(x− y − xR)] δ(y) (H.4.2a)

= − [VLΘ(xL − x) + VRΘ(x− xR)] . (H.4.2b)

On the other hand, I1 is

I1 = −
ˆ ∞
−∞

dy [VLΘ(xL − x+ y) + VRΘ(x− y − xR)] Θ(y)∂y∆±>(y;ω) (H.4.3a)

=

ˆ ∞
−∞

dy ∂y {[VLΘ(xL − x+ y) + VRΘ(x− y − xR)] Θ(y)}∆±>(y;ω) (H.4.3b)

=

ˆ ∞
−∞

dy {[VLδ(xL − x+ y) + VRδ(x− y − xR)] Θ(y)

[VLΘ(xL − x+ y) + VRΘ(x− y − xR)] δ(y)}∆±>(y;ω)

(H.4.3c)

= VLΘ(x− xL)∆±>(x− xL;ω)− VRΘ(x− xR)∆±>(x− xR;ω)

+ [VLΘ(xL − x) + VRΘ(x− xR)] ∆±>(0;ω) .
(H.4.3d)

Finally, I2 is

I2 =

ˆ ∞
−∞

dy [VLΘ(xL − x+ y) + VRΘ(x− y − xR)] Θ(−y)∂y∆±<(y;ω) (H.4.4a)

= −
ˆ ∞
−∞

dy ∂y {[VLΘ(xL − x+ y) + VRΘ(x− y − xR)] Θ(−y)}∆±<(y;ω) (H.4.4b)

= −
ˆ ∞
−∞

dy {[VLδ(xL − x+ y)− VRδ(x− y − xR)] Θ(−y)

− [VLΘ(xL − x+ y) + VRΘ(x− y − xR)] δ(−y)}∆±<(y;ω)

(H.4.4c)

= −VLΘ(xL − x)∆±<(x− xL;ω) + VRΘ(xR − x)∆±<(x− xR;ω)

+ [VLΘ(xL − x) + VRΘ(x− xR)] ∆±<(0;ω) .
(H.4.4d)



Therefore, (H.4.1b) is

δ
〈
Ĩ±(ω, x)

〉
= ∓K

4π
{− [VLΘ(xL − x) + VRΘ(x− xR)]

+ VL
[
Θ(x− xL)∆±>(x− xL;ω)−Θ(xL − x)∆±<(x− xL;ω)

]
− VR

[
Θ(x− xR)∆±>(x− xR;ω)−Θ(xR − x)∆±<(x− xR;ω)

]
+ [VLΘ(xL − x) + VRΘ(x− xR)]

(
∆±>(0;ω) + ∆±<(0;ω)

)}
,

(H.4.5)

in agreement with (7.2.18).
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H.5 Bulk two-terminal conductance

Here we show how the holographic result exposed in (7.2.22) can be obtained from the bulk per-

spective.

Consider the anisotropic chiral boson equation given in (7.3.10),

[
∂t + v(−1)

z±+1
2 ∂z

±

x

]
J± = ±K

4π
∂xµ ., (H.5.1)

with odd z±. As said in Eq. (7.3.11), the formal solution to this differential equation comes in

terms of the retarded Green function G±R ,

J±(t, x) = J in
± ±

K

4π

ˆ
dt′ dx′G±R(x− x′, t− t′)∂x′µ , (H.5.2)

where J in
± is the homogenous solution (i.e., the solution without the chemical potential source) and

G±R fulfills the Green equation

[
∂t + v(−1)

z±+1
2 ∂z

±

x

]
G±R(t− t′, x− x′) = δ(t− t′)δ(x− x′) . (H.5.3)

In order to find G±R , it is convenient to consider the next Fourier expansion

G±R(t− t′, x− x′) =

ˆ
dk dω

(2π)2
ei[k(x−x′)−ω(t−t′)]G̃±R(ω, k) . (H.5.4)

Replacing in (H.5.3), and using the integral representation of Dirac deltas, we arrive to the following

equation in Fourier space

ˆ
dk dω

(2π)2

[
−iω ± v(−1)

z±+1
2 iz

±
kz
±
]
G̃±R(ω, k)ei[k(x−x′)−ω(t−t′)] =

ˆ
dk dω

(2π)2
ei[k(x−x′)−ω(t−t′)] .

(H.5.5)

Hence G̃±R(ω, k) is the inverse of the differential operator as following

G̃±R(k, ω) =
1

−iω ± v(−1)
z±+1

2 iz±kz±
=

1

−iω ∓ ivkz±
=

i

ω ± ωk
. (H.5.6)

As discussed in Appendix H.3, the retarded prescription will be guaranteed by means of the regu-

lator ε→ in form,

G̃±R(k, ω) =
i

ω ± ωk + iε
. (H.5.7)



Replacing the latter in (H.5.4), and then in (H.5.2), we obtain

J±(t, x) = J in
± ±

K

4π

ˆ
dt′ dx′

ˆ
dk dω

eik(x−x′)e−iω(t−t′)

ω ± ωk + iε
∂x′µ(t′, x′) . (H.5.8)

This expression is not new, since it is possible to recognize the function (7.2.12),

F±(x− x′, ω) =

ˆ ∞
−∞

dk

2π

eik(x−x′)

ω ± ωk + iε
, (H.5.9)

allowing us to rewrite Eq. (H.5.8) as

J±(t, x) = J in
± ±

iK

8π2

ˆ
dt′ dx′

ˆ
dk F±(x− x′, ω)e−iω(t−t′)∂x′µ(t′, x′) , (H.5.10)

in agreement with (7.3.14). This expression will be useful in memory effect calculations.

With the charge density J± obtained, let us proceed to compute the current intensity I±, being

the latter related with the former by means of equation (7.3.8).

I±(t, x) = I in
± ± v (−1)

z±+1
2 ∂z

±−1
x J± . (H.5.11)

Replacing (H.5.8) in the previous equation, we arrive to the following expression (in frequency

space)

I±(x, ω) = I± +
iK

4π
v(−1)

z+1
2 ∂z

±−1
x

ˆ
dx′

(ˆ
dk

2π

eik(x−x′)

ω ± ωk + iε

)
∂x′µ(x, x′;ω) . (H.5.12)

Integrating by parts the chemical potential, we obtain

I±(x, ω) = I± −
iK

4π
v(−1)

z±+1
2 ∂z

±−1
x

ˆ
dx′

(
∂x′

ˆ
dk

2π

eik(x−x′)

ω ± ωk + iε

)
µ(x, x′;ω) (H.5.13a)

≡ I in
± −

iK

4π
v(−1)

z±+1
2 ∂z

±−1
x

ˆ
dx′ ∂x′F

±(x− x′, ω)µ(x, x′;ω) . (H.5.13b)

If y = x− x′, then we can rewrite the above expression as

I±(x, ω) = I in
± −

iK

4π
v(−1)

z±+1
2

ˆ
dy ∂z

±

y F±(y, ω)µ(x, x− y;ω) . (H.5.13c)

Explicitly

I±(x, ω) = I in
± −

iK

4π
v(−1)

z+1
2

ˆ
dy dk

2π

iz
±
kz
±
eiky

ω ± ωk + iε
µ(x, x− y;ω) . (H.5.13d)
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Noting that iz
±

= −i(−1)
z±+1

2 , we can write

I±(x, ω) = I in
± +

K

4π

ˆ
dy dk

2π

ωke
iky

ω ± ωk + iε
µ(x, x− y;ω) , (H.5.13e)

or

I±(∆x, ω) = I in
± +

K

4π

ˆ
dy dk

2π

(
ωk ± (ω + iε)∓ (ω + iε)

ω ± ωk + iε

)
eikyµ(x, x− y;ω) (H.5.13f)

= I in
± +

K

4π

ˆ
dy dk

2π

(
±1∓ ω + iε

ω ± ωk + iε

)
eikyµ(x, x− y;ω) (H.5.13g)

= I in
± ±

K

8π2
µ(x, x;ω)∓ K

4π
(ω + iε)

ˆ
dy F±(y, ω)µ(x, x− y;ω) , (H.5.13h)

which is reminiscent of Eq. (7.2.11). If we choose µ according to (7.2.16),

µ̃(x′, ω) = VLΘ(xL − x′) + VRΘ(x′ − xR) , (H.5.14)

(see Fig. 7.1) then the vacuum term proportional to µ(x, x;ω) vanishes and we recover the same

boundary result at the DC limit, but now from the bulk perspective.
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H.6 Chiral bosons two-terminal conductance

In this appendix, we show the details in the obtention of Eq. (7.3.28). In particular, we use results

from Appendix B.

Starting from Eq. (H.5.8),

J±(t, x) = J in
± ±

K

4π

ˆ
dt′ dx′

ˆ
dk dω

eik∆xe−iω∆t

ω ± ωk + iε
∂x′µ(t′, x′) ,

and introducing the chemical potential given in (7.2.16), the latter equation reads as

J±(t, x) = J in
± ±

K

4π

ˆ
dt′ dx′

ˆ
dk dω

ei[k(x−x′)−ω(t−t′)]

ω ± ωk + iε
×

× δ(t′) [−VLδ(x′ − xL) + VRδ(x
′ − xR)]

(H.6.1a)

= J in
± ±

K

4π

ˆ
dx′
ˆ
dk dω

eik(x−x′)e−iωt

ω ± ωk + iε
[−VLδ(x′ − xL) + VRδ(x

′ − xR)] (H.6.1b)

Using the following Fourier integral

ˆ
dω

e−iω∆t

ω ± ωk + iε
= −2iπΘ(t)e±iωkt , (H.6.2)

then J± reads

J±(t, x) = J in
± ∓

K

8π2
Θ(t)

ˆ
dx′
ˆ
dk eik(x−x′)e±iωkt [VLδ(x

′ − xL)− VRδ(x′ − xR)] (H.6.3a)

= J in
± ∓

K

8π2
Θ(t)

ˆ
dk
(
VLe

ik(x−xL) − VReik(x−xR)
)
e±iωkt . (H.6.3b)

According to the integral definition (B.0.1) of Appendix B, we can recognize the function

fz(t, x− x′) =

ˆ ∞
−∞

dk ei[k(x−x′)±ωkt] , (H.6.4)

which, by virtue of Eq. (B.0.2) admits a relationship with the higher-order Airy function of the

first kind, Aiz, as

fz(t, x− x′) =
2π

(vzt)1/z
Aiz

[
± x− x′

(vzt)1/z

]
. (H.6.5)



Thus, we can write

J±(t, x) = J in
± ∓

K

8π2
Θ(t)

[
VLf

±
z (t, x− xL)− VRf±z (t, x− xR)

]
(H.6.6a)

= J in
± ∓

K

4π(vz±t)1/z±
Θ(t)

{
VLAiz±

[
± x− xL

(vz±t)1/z±

]
− VRAiz±

[
± x− xR

(vz±t)1/z±

]}
,

(H.6.6b)

in agreement with (7.3.28).

Now, for t > 0, and by considering Eqs. (7.3.30)

J out
± = ±K

4π
∂xϕ

out
± , Iout

± = ∓K
4π
∂tϕ

out
± , (H.6.7)

and also (B.3.1),

∂

∂x
ψz(x) = Aiz(x) ,

we can write (H.6.6b) as a sum of total partial derivatives

±K
4π
∂xϕ

out
± = ±K

4π
∂xϕ

in
± −

K

4π
∂x

[
VLψ

±
z

(
± x− xL

(vz±t)1/z±

)
− VRψz±

(
± x− xR

(vz±t)1/z±

)]
(H.6.8a)

∴ ϕout
± = ϕin

± ∓ VLψ±z
(
± x− xL

(vz±t)1/z±

)
± VRψ±z

(
± x− xR

(vz±t)1/z±

)
, (H.6.8b)

in concordance with (7.3.33). Therefore,

δϕ± = ∓VLψ±z
(
± x− xL

(vz±t)1/z±

)
± VRψ±z

(
± x− xR

(vz±t)1/z±

)
. (H.6.9)

Now, the two-terminal conductance σ is postulated in Eq. (7.3.34) as

σ =
1

∆V

ˆ ∞
−∞

dt (δ 〈I+〉+ δ 〈I−〉) , (H.6.10a)

thus, with the operator I± defined in (H.6.7), we obtain

=
1

∆V

ˆ ∞
−∞

dt

(
−K

4π
∂tδϕ+ +

K

4π
∂tϕ−

)
(H.6.10b)

= − K

4π∆V

ˆ ∞
−∞

dt ∂t(δϕ+ − δϕ−) (H.6.10c)

= − K

4π∆V
{[δϕ+(t =∞)− δϕ−(t =∞)]− [δϕ+(t = −∞)− δϕ−(t = −∞)]} . (H.6.10d)
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Because chiral bosons vanishes in t→ −∞, only the first two term survives, allowing us to write

σ = − K

4π∆V
[δϕ+(t =∞)− δϕ−(t =∞)] , (H.6.10e)

with,

δϕ±(t =∞, x) = ∓VL lim
t→∞

ψ±z

(
± x− xL

(vz±t)1/z±

)
± VR lim

t→∞
ψ±z

(
± x− xR

(vz±t)1/z±

)
(H.6.11a)

= ∓VLψ±z (0)± VRψ±z (0) (H.6.11b)

= ∓ VL
2z±

± VR
2z±

= ∓∆V

2z±
, (H.6.11c)

in agreement with (7.3.35).
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