
4.32.5

Weak Deflection Angle by the
Einstein–Cartan Traversable
Wormhole Using Gauss–Bonnet
Theorem with Time Delay

Susmita Sarkar, Nayan Sarkar, Abhisek Dutta and Farook Rahaman

Article

https://doi.org/10.3390/universe10080331

https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com
https://doi.org/10.3390/universe10080331


Citation: Sarkar, S.; Sarkar, N.;

Dutta, A.; Rahaman, F. Weak

Deflection Angle by the Einstein–

Cartan Traversable Wormhole Using

Gauss–Bonnet Theorem with Time

Delay. Universe 2024, 10, 331. https://

doi.org/10.3390/universe10080331

Academic Editor: Gerald B. Cleaver

Received: 12 July 2024

Revised: 10 August 2024

Accepted: 13 August 2024

Published: 16 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Weak Deflection Angle by the Einstein–Cartan Traversable
Wormhole Using Gauss–Bonnet Theorem with Time Delay

Susmita Sarkar 1, Nayan Sarkar 2,*, Abhisek Dutta 3 and Farook Rahaman 3

1 School of Applied Science and Humanities, Haldia Institute of Technology,
Haldia 721606, West Bengal, India; susmita.mathju@gmail.com

2 Department of Mathematics, Karimpur Pannadevi College, Karimpur 741152, West Bengal, India
3 Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India;

abhisek96.physics@gmail.com (A.D.); rahaman@iucaa.ernet.in (F.R.)
* Correspondence: nayan.mathju@gmail.com

Abstract: In this article, we estimate the gravitational deflection angles of light in the spacetime of
Einstein–Cartan wormholes supported by normal matter or phantom energy utilizing the Gauss–
Bonnet theorem. The obtained deflection angles are examined in relation to the wormhole throat
radius r0 and the equation of state parameter ω across four scenarios, and it has been seen that the
larger throat radii r0 result in higher deflection angles. Moreover, the wormholes filled with phantom
energy exhibit greater deflection angles compared to those filled with normal matter. The reported
deflection angles are influenced by dark matter and Maxwell’s fish eye matter: Dark matter, as well
as Maxwell’s fish eye matter, increases the deflection angles. The deflection angle is also estimated
using the Keeton and Petters method, which is proportional to wormhole throat r0 and inversely
proportional to the impact parameter b. Additionally, a comparative study is performed on the
deflection angles obtained from four different scenarios. Finally, analytical results for time delay due
to Einstein–Cartan wormholes are estimated for the four ω cases which are decreasing for increasing
values of rc.

Keywords: Einstein–Cartan wormholes; Gauss–Bonnet theorem; deflection angle; time delay

1. Introduction

Wormholes are tunnels in spacetime that can link either two parallel universes or two
locations within the same universe. This intriguing nature continuously motivates physi-
cists to find precise solutions describing the wormhole structures within both the framework
of general relativity and modified theories of gravity. The concept of a wormhole was first
proposed by Weyl [1], and later, Einstein and Rosen [2] formulated an interesting model that
presents a bridge connecting two identical regions, termed the Einstein–Rosen bridge. It
has been seen that the Einstein–Rosen bridge is non-traversable and collapses shortly after
formation [3]. In 1988, Morris and Thorne [4] first formulated the traversable wormhole
in the context of general relativity, in which the traversability depends on the presence of
the exotic matter within the wormhole [5]. Indeed, the traversable wormhole in general
relativity demands the violation of the null energy condition at least within the vicinity of
the wormhole’s throat [6]. After the seminal work of Morris–Thorne, several theoretical
researchers explored the different facets of wormhole structures [7–22]. In the recent past,
Konoplya et al. [23] studied the traversable asymmetry wormholes endowed by the smooth
gravitational and charged Dirac fields in the context of general relativity. Their study
claimed that a stationary observer at the wormhole throat does not feel the gravitational
force for the physically relevant condition on the wormhole throat; however, this condition
is unnecessary [24]. Kain [25] investigated the relationship between entangled particles
and wormholes within the framework of general relativity. Additionally, the wormhole so-
lutions are also investigated in the context of the modified theories of gravity, such as f (R)
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gravity [26–28], Horava gravity [29], f (R, T) gravity [30], κ(R, T) gravity [31], semiclassical
gravity [32,33], Einstein–Gauss–Bonnet gravity [34,35], bumblebee gravity [36], exponen-
tial f (R, T) gravity [37], teleparallel gravity [38], Brans–Dicke gravity [39–42], born-infield
gravity [43,44], Kaluza–Klein gravity [45,46], etc. Moreover, Luis Blázquez-Salced et al. [47]
introduced a detailed calculation of an Ansatz that can demonstrate the spherically sym-
metric Einstein–Dirac configurations in d-dimensional space. They also explored a regular
wormhole solution supported by the Dirac fields by applying the Ansatz. It has been
found that traversable wormholes can exist in four-dimensional Einstein–Dirac–Maxwell
gravity without requiring the exotic matter [48], and this study has been thoroughly dis-
cussed in Ref. [49]. In the scenario of wormhole study, Moraes [50] introduced the general
solutions for static wormholes in f (R, T) gravity; Chew et al. [51] studied the spinning
wormhole solutions in the context of scalar–tensor theory; Brihaye et al. [52] studied the
scalarized–charged wormholes in the framework of Einstein–Gauss–Bonnet gravity; Barros
et al. [53] studied the wormhole solutions with matter haunted by conformally coupled
ghosts; Rosa et al. [54] analyzed the traversable wormholes in the energy–momentum
squared gravity.

The Einstein–Cartan theory of gravity represents a groundbreaking approach that
incorporates the effects of mass with spin, expanding upon the theory of relativity and of-
fering a new perspective on the cosmos [55,56]. Indeed, the Einstein-Cartan theory suggests
that spacetime is not merely characterized by matter and energy but also encompasses
an additional dimension known as spinors, often conceptualized as the fifth dimension.
The Einstein-Cartan theory also predicted the expansion of the universe; especially, the
cosmological settings in this theory suggest the elimination of the Big Bang singularity by
a non-singular state of finite minimum radius [57–65]. Recently, Falco and Battista [66]
studied the binary dynamics at the first post-Newtonian order within the framework of
the Einstein-Cartan theory; Ranjbar et al. [67] studied the gravitational slip parameter and
gravitational waves in the Einstein–Cartan theory. Furthermore, in the background of
the Einstein–Cartan theory, Akhshabi and Zamani [68] investigated the measurement of
cosmological distances in the presence of torsion; Luz [69] found the cosmological solutions
where matter is represented by a perfect fluid with inherent spin; Elizalde et al. [70] studied
the impact of the spin tensor of dark matter on the transmission of gravitational waves; He
et al. [71] studied the different scalaron-induced inflation along with the Starobinsky infla-
tion. Apart from that, the Einstein–Cartan theory also received much attention in studying
several traversable wormhole structures. Bronnikov and Galiakhmetov [72] introduced the
possibility of the existence of static traversable wormholes without any requirement for
exotic matter in the context of Einstein–Cartan gravity, and Mehdizadeh et al. [73] investi-
gated the wormhole structures filled with Weyssenhoff fluid and anisotropic matter in the
Einstein–Cartan theory. Additionally, several researchers introduced different wormhole
structures in the context of the Einstein–Cartan theory [74–77].

Einstein’s general theory of relativity has been confirmed by several experiments over
the years. In this regard, gravitational lensing is one of the famous tools for the confirmation
of general relativity that was carried out by studying solar eclipses in modern observational
cosmology [78,79]. Gravitational lensing can also be employed to determine the mass
of galaxies and clusters, as well as to detect dark matter [80]. For the first time, Soldner
suggested gravitational lensing in the background of Newtonian theory. Later, Liebes [81]
and Refsdal [82] developed the basic theories of gravitational lensing. In the literature,
there are three types of gravitational lensing, namely, strong gravitational lensing, weak
gravitational lensing, and micro gravitational lensing. These three types of gravitational
lensing can be analyzed using various types of methods available in the literature. Gibbons
and Werner [83] introduced a very renowned method to calculate the deflection angle of
light by using the Gauss–Bonnet theorem, and this method evaluated the exact deflection
angle in the weak limit approximation for the Schwarzschild black hole [83]. Moreover,
this method was used to estimate the deflection angle in the gravitational field of the Kerr
black hole [84], rotating the global monopole and cosmic string [85–87], under the Lorentz
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symmetry breaking and quantum effects [88,89], Rindler-modified Schwarzschild black
hole [90], etc. Furthermore, adopting Gibbons and Werner’s method, Crisnejo et al., [91]
estimated the deflection angles of light and massive particles in a plasma medium in the
spacetime of the Schwarzschild black hole. Jusufi estimated the deflection angles of massive
particles in the gravitational field of the Kerr black hole [92], and he extended the study for
charged particles in Kerr–Newman spacetime [93].

On the other hand, there is no experimental evidence for the existence of wormhole
geometry up to the present. In this respect, the scientific community has been studying
gravitational lensing in wormhole spacetimes using various renowned methods. Taking
Gibbons and Werner’s method into account, Jusifi et al. [94] calculated the weak deflection
angles of light by wormholes supported by electric charge, magnetic charge, and scalar
fields. The deflection angle of light by charged wormholes in the content of Einstein–
Maxwell-dilation theory was estimated in Ref. [95]. Jusufi and Ovgun [96] explored the
gravitational lensing for rotation wormholes. Kuhfittig [97] calculated the deflection angle
of light by the wormholes that existed in the galactic halo region. Shaikh et al. [98] studied
the gravitational lensing and the energy conditions in the spacetime of the scalar–tensor
wormholes. In addition, the deflection angles of light are estimated in the background
of various types of wormholes that are studied in the literature [99–113]. Additionally,
the deflection angle of spherically symmetric lenses can be computed up to the post-
post-Newtonian (PPN), introduced by Keeton and Petters [114,115], and Sereno and de
Luca [116] expanded the PPN approximation for Kerr black holes.

Dark matter consists of particles that do not interact with or emit light, making
them undetectable through electromagnetic radiation observation. The Standard Model of
Cosmology has established that the dark sector of the universe comprises 27% dark matter
(DM). In 1933, Zwicky [117,118] discovered the existence of DM in the galaxy cluster. The
Milky Way Galaxy also contains dark matter content that has been shown with the help of
sound observational grounds [119–121]. The presence of dark matter is inferred primarily
through its gravitational effects, although it also exhibits a minimal non-gravitational
interaction and is of a non-relativistic nature [122]. The dark matter candidate affects the
deflection angle of light in wormhole spacetimes [123]. In this article, we have estimated the
deflection angles of light in the spacetime of the Einstein–Cartan wormhole using Gibbons
and Werner’s method and Keeton–Petters’ method, and we also analyzed the dark matter
and Maxwell’s fish eye matter influences on the deflection angles. The present article has
been designed as follows: We have formulated the Einstein–Cartan traversable wormhole
solutions in Section 2. The Gauss–Bonnet method is described in Section 3. The Gaussian
optical curvature is formulated in Section 3.1, and the Gauss–Bonnet theorem is described
in Section 3.2. We have analyzed the dark matter influences on the deflection angle in
Section 4. Section 5 deals with the influences of Maxwell’s fish eye matter on the deflection
angle. We have estimated the deflection angle using the Keeton and Petters method in
Section 6. The time delay is estimated in Section 7. Finally, the results and conclusion have
been derived in Section 8.

2. Einstein–Cartan Traversable Wormhole Solutions

The Einstein–Cartan theory (ECT) is developed to describe the spin effects on the
gravitational theory by considering a four-dimensional differential manifold endowed with
a metric tensor and a linear connection [55,56]. Indeed, the mass and spin of the matter
configuration simultaneously affect the structure of spacetime in the framework of the ECT.
The action integral in this formulation can be expressed as [55,56]

S =
∫

d4x
√

g

[−1
2k

(R + 2Λ) + Lm

]

=
∫

d4x
√

g
[−1

2k

{

R({}) + Cα
βλC

βλ
α − Cα

βαC
βλ
λ + 2Λ

}

+ Lm

]

. (1)
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where k = 8πG/c4, R, Lm, and Λ are the gravitational coupling constant, Ricci scalar,
Lagrangian of the matter fields, and the cosmological constant, respectively. Furthermore,
the contortion tensor C

µ
αβ can be defined in the following form:

C
µ
αβ = T

µ
αβ + T

µ
αβ + T

µ
βα . (2)

Here, Tα
µν denotes the spacetime torsion tensor, defined as

T
µ
αβ =

1
2

[

Γ
µ
αβ − Γ

µ
βα

]

. (3)

The Cartan field equations can be derived from the variation of the action (1) with
respect to the contortion tensor, as follows:

Tα
µβ − δα

βT
γ
µγ + δα

µT
γ
βγ = −1

2
kτ α

µβ , (4)

where τµαβ = 2(δLm/δCµαβ)/
√−g represents the spin tensor of matter [55]. The governing

equation of the torsion tensor is algebraic and does not permit the generation of torsion
waves outside the matter distribution [55]. As a result, spacetime torsion exists solely
within the matter configuration. Therefore, the variation of the action (1) formed the EC
field equation as [55,124–126]

Gµν({})− Λgµν = κ(Tµβ + θµβ), (5)

where () represents the symmetrization, and θµβ is defined as

θµβ =
1
κ

[

4T
η
µηT

β
µβ − 2gµνT

ρσ
ρ Tσ

ϵσ −
(

T
ρ
µϵ + 2T

ρ

(µϵ)

)(

Tϵ
νρ + 2T ϵ

(νρ)

)

+
gµν

2

(

Tρσϵ + 2T(σϵ)ρ
)(

Tϵσρ + 2T(σρ)ϵ

)]

, (6)

where the tensor θµν is a correction in the dynamical energy–momentum tensor
Tµβ = 2(δLm/δgµβ)/

√−g. It is noted that field Equation (5) reduces to the standard
Einstein field equation with a cosmological constant for θµν = 0. However, field Equation (5)
can also be expressed as

Rµν −
1
2

Rgµν − Λgµν = κ∆µν, (7)

where Rµν, and ∆µν are the Ricci tensor and canonical energy–momentum tensor, respectively.
Moreover, ∆µν is related to Tµβ through the Belinfante–Rosenfeld relation, defined as

∆αβ = Tαβ +
1
2

(

∇µ − 2T
γ
µγ

)

(

τ
µ

αβ − τ
µ

β α + τ
µ

αβ

)

, (8)

where ∇µ represents the covariant derivative with respect to the asymmetric connec-
tion [127]. It is observed that the Bianchi identities (4) and EC field Equation (7) together
yield the conservation laws for both the canonical energy–momentum tensor and the spin
tensor [55,56,128–137]. Now, we take into account a classical representation of spin, defined
as [137–140]

τ α
µν = Sµνuα, Sµνuµ = 0, (9)

where uα and Sµν are the four-velocity and spin density tensor, respectively.
Therefore, the total energy–momentum tensor can be expressed as comprising the

usual fluid component and an intrinsic spin component, given by [141]
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Ttotal
αβ = Tαβ + θαβ

=
[

(ρ(r) + Pt(r))uαuβ + Pt(r)gαβ + (Pr(r)− Pt(r))vαvβ

]

+ u(αS
µ

β)
uνC

ρ
µνuρ

+uρC
µ
ρσuσu(αSβ)µ − 1

2
u(αTβ)µνSµν +

1
2

Tµν(αS
µ

β)
uν, (10)

where vµ is the radial unit spacelike vector field, and ρ(r), Pr(r), and Pt(r) are the energy
density, radial pressure, and tangential pressure of the fluid, respectively. Therefore,
Einstein’s field equation for anisotropic matter distribution with spin correction terms
can be written from Equations (5) and (6) together with Equations (9) and (10) in the
following form

Gµν − Λgµν = κ
(

ρ + Pt −
κ

2
S2
)

uµuν + κ
(

Pt −
κ

4
S2
)

gµν + (Pr − Pt)vµvν. (11)

With S2 = 1
2 ⟨SµνSµν⟩.

Now, the Morris–Thorne traversable wormhole spacetime metric is defined as [4]

ds2 = −e2Φ(r)dt2 +

(

1 − Ω(r)(r)

r

)−1

dr2 + r2(dθ2 + sin2θdϕ2) (12)

where Φ(r) and Ω(r)(r) are the redshift function and shape function, respectively.
Therefore, for metric (12), EC field Equation (11) reads as (considering the units

κ = c = 1)

ρ(r) =
1

4r2

[

4Ω′(r)(r) + r2S2(r)− 4Λr2
]

, (13)

Pr(r) =
1

4r3

[

8rΦ′(r)(r − Ω(r)(r))− 4Ω(r)(r) + r3S2(r) + 4Λr3
]

, (14)

Pt(r) =
1

4r3

[

4r2
(

Φ′′(r) + Φ′2(r)
)

(r − Ω(r)(r))− 2rΦ′(r)
(

rΩ′(r)(r)− 2r + Ω(r)(r)
)

+r3S2(r)− 2rΩ′(r)(r) + 2Ω(r)(r)
]

. (15)

where ′ stands for d
dr . The conservation equation of the total energy–momentum tensor can

be expressed as

Φ′(ρ(r) + Pr(r)) + P′
r(r) +

2
r
(Pr(r)− Pt(r))−

1
2

[

Φ′S2 +
1
2
(S2)′

]

= 0. (16)

Furthermore, we can assume that the spin component of the conservation equation is
satisfied independently, leading to

Φ′S2 +
1
2
(S2)′ = 0 (17)

Thus, we acquire

S2 = S2
0 exp(−2ϕ′(r)) (18)

where S0 is a constant of integration.
Recently, Mehdizadeh et al. [73] introduced the traversable wormhole solutions in

the context of the Einstein–Cartan gravity by adopting a linear equation of state (EoS),
Pr(r) = ωρ(r); ω is a constant termed as an EoS parameter and a constant redshift function,
defined as Φ′(r) = 0. Substituting Pr(r) and ρ(r) into the EoS Pr(r) = ωρ(r), one obtains
the following expression:
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Ω′(r) =
8r(r − Ω(r))Φ′(r)− 4Ω(r) + (1 − ω)r3S2(r) + 4Λr3(1 + ω)

4ωr
. (19)

Now, for the constant redshift function, Φ′(r) = 0, the share function Ω(r) is obtained
from Equation (19) in the following form

Ω(r) =
ξr3

4(1 + 3ω)
+

C

r
1
ω

, (20)

where C is the integration constant, and ξ = 4Λ(1 + ω)− S2
0(ω − 1). Now, the condition

Ω(r0) = r0 yields the following result:

C =
4r0(3w + 1)− ξr3

0

4(3w + 1)r
− 1

w
0

(21)

Mehdizadeh et al. [73] set the values of Λ and S0 to ensure that ξ = 0. Therefore, the
value of C reads as

C = r
1+ 1

w
0 (22)

Thus, the shape function reads as

Ω(r) = r0

( r0

r

)
1
ω

. (23)

Now, we can obtain the following result:

Ω′(r0) = − 1
ω

. (24)

The above result ensures that the shape function satisfies the flare-out condition
Ω′(r0) < 1 for ω > 0 or ω < −1. Moreover, Mehdizadeh et al. [73] described that their
presented wormholes are supported by normal matter or matter made of phantom energy
corresponding to ω > 0 or ω < −1. In this scenario, therefore, the Einstein–Cartan
traversable wormhole solutions can be expressed as

ds2 = −dt2 +

[

1 −
( r0

r

)
ω+1

ω

]−1

dr2 + r2(dθ2 + sin θdϕ2), (25)

The above Einstein–Cartan traversable wormholes are asymptotically flat, which
permits the estimation of the deflection angle in the spacetime of these wormholes by using
the Gauss–Bonnet (GB) method in the weak field limit. Indeed, the asymptotically flat
nature of the present wormholes motivates us to consider them in this study.

3. Gauss–Bonnet (GB) Method

In this section, we are going to estimate the deflection angles in the spacetimes of both
kinds of Einstein–Cartan traversable wormholes: filled with normal matter and matter
made of phantom energy by the use of the GB method.
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3.1. Gaussian Optical Curvature

To obtain the Gaussian optical curvature, we take into account the null geodesics
deflected by Einstein–Cartan wormholes. At the equatorial plane θ = π/2, the null
geodesic equations ds2 = 0 for the wormhole spacetime metric (2) read as

dt2 =

[

1 −
( r0

r

)
ω+1

ω

]−1

dr2 + r2dϕ2. (26)

Now, we consider the static radial Regge–Wheeler tortoise coordinate r⋆ that helps to
express the optical metric with a new function f (r⋆) in the following form:

dt2 ≡ g
op
ab dxadxb = dr⋆2 + f (r⋆)2dφ2. (27)

It is important to note that the static radial Regge–Wheeler tortoise coordinate r⋆

ensures that the equatorial plane in the optical metric can be described as a surface of
revolution whenever it is embedded in R

3. Now, comparing Equations (26) and (27), we
obtain the following results:

dr⋆ =

[

1 −
( r0

r

)
ω+1

ω

]−1/2

dr, (28)

f (r⋆) = r. (29)

The mathematical formula to calculate the Gaussian curvature G of the optical surface
is defined as [83]

G = − 1
f (r⋆)

d2 f (r⋆)

dr⋆2 = − 1
f (r⋆)

[

dr

dr⋆
d

dr

(

dr

dr⋆

)

d f

dr
+

(

dr

dr⋆

)2 d2 f

dr2

]

.

Using the above formula (30), we obtain the optical Gaussian curvature for the Einstein–
Cartan wormholes (2) as

G = − (ω + 1)r
ω+1

ω
0

2ωr
3ω+1

ω

. (30)

The above optical Gaussian curvature can be used to calculate the deflection angle of
light by the Einstein–Cartan wormholes.

3.2. Deflection Angle

In the realm of the weak gravitational field, the bending angle of light observed from
a distant source can be calculated using the Gauss–Bonnet theorem. For a non-singular
region SR surrounded by the beam of light with boundary ∂SR = γgop ∪ γR, having the
Euler characteristic element χ and metric g in the focal region where the light rays meet
with both the source and the viewer, the GB theorem reads as [83]

∫∫

SR

G dA+
∮

∂SR

κ dt + ∑
i

θi = 2πχ(SR), (31)

where θi stands for the exterior angle at the ith vertex, dA is the the surface element, and κ
represents the geodesic curvature. It is noted that χ(SR) = 1 for a non-singular domain
outside of the light ray and χ(SR) = 0 for a singular domain outside of the light ray. We go
further for the non-singular domain outside of the light ray.
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Now, the geodesic curvature can be computed using the following formula:

κ = gop (∇γ̇γ̇, γ̈) with gop(γ̇, γ̇) = 1, (32)

where γ̈ represents the unit acceleration vector. It is noted that the jump angles of the
viewer θv and source θs satisfy the condition θv + θs → π for R → ∞ [83]. Furthermore, for
a geodesic γgop , κ(γgop) = 0. Therefore, geodesic curvature κ becomes

κ(γR) = |∇γ̇R
γ̇R|, (33)

Now, the radial part of the geodesic curvature κ with the condition γR := r(φ) = R =
constant can be expressed as

(∇γ̇R
γ̇R)

r = γ̇
φ
R

(

∂φγ̇r
R

)

+ Γ̃r
φφ

(

γ̇
φ
R

)2
, (34)

where Γ̃r
φφ stands for the Christoffel symbol of the optical metric. The first term in the

expression above nullifies and the subsequent term can be derived using the unit speed
condition g̃φφγ̇

φ
Rγ̇

φ
R = 1, this results in

lim
R→∞

κ(γR) = lim
R→∞

|∇γ̇R
γ̇R|,→

1
R

.

For the optical metric (26), limR→∞ dt → R dφ at the significantly vast radial distances.
Therefore, the GB theorem (31) can be expressed as

∫∫

SR

G dA+
∮

γR

κ dt
R→∞
=

∫∫

S∞

GdA+

π+α̂
∫

0

dφ = π, (35)

where dA =
√

det gopdr⋆dφ. Finally, the mathematical formula for the deflection angle can
be expressed as

α̂ = −
π
∫

0

∞
∫

rγ

G
√

det gop dr⋆dφ. (36)

We can estimate the deflection angle from the above formula (36) by choosing the
light ray as r(φ) = b/ sin φ, where b is the impact parameter. Next, we compute the
deflection angle of light in the spacetime of the Einstein–Cartan wormholes associated with
the normal matter, ω = 1/3, 1/6, and the matter with phantom energy, ω = −6/5,−3/2.

3.2.1. Case-I: ω = 1
3

First, we compute the Gaussian optical curvature using formula (30) for the case
ω = 1/3 as

Gω= 1
3
= −2r4

0
r6 . (37)

Then, the deflection angle with the above Gaussian optical curvature can be expressed
in terms of the following integral:

α̂ω= 1
3

=

π
∫

0

∞
∫

rγ

2r4
0

r6

√

det gop dr⋆dφ. (38)

To evaluate the integral above, it is important to recognize that
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√

det gop dr⋆ = r

[

1 −
( r0

r

)4
]−1/2

dr (39)

Expanding the last equation in the Taylor series we obtain

√

det gop dr⋆ = r dr

[

1 +
1
2

( r0

r

)4
+

3
8

( r0

r

)8
+

5
16

( r0

r

)12
+

35
128

( r0

r

)16
+ ..... + O

(

( r0

r

)4n
)]

. (40)

After imposing the above result in Equation (36), we obtain the deflection angle as

α̂ω= 1
3
≃ 3π

16

( r0

b

)4
+

35π

1024

( r0

b

)8
+

231π

16384

( r0

b

)12
+

32175π

4194304

( r0

b

)16
+

323323π

67108864

( r0

b

)20
. (41)

This deflection angle is graphically depicted in Figure 1 (Left), which ensures that it
decreases in increasing values of impact parameter b and increases for increasing values
of wormhole throat radius r0. Furthermore, one can see that the deflection angle becomes
zero for r0 = 0, the absence of Einstein–Cartan wormholes.
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Figure 1. Deflection angle α̂ against the impact parameter b corresponding to ω = 1
3 (Left) and

ω = 1
6 (Right).

3.2.2. Case-II: ω = 1
6

The Gaussian optical curvature for ω = 1/6 is obtained from Equation (30) as

Gω= 1
6
= −7r7

0
2r9 (42)

With the above Gaussian curvature (42), the deflection angle reads as

α̂ω= 1
6

=

π
∫

0

∞
∫

rγ

7r7
0

2r9

√

det gop dr⋆dφ. (43)

To find the result of the above integral, let us note that

√

det gop dr⋆ = r

[

1 −
( r0

r

)7
]−1/2

dr = r dr

[

1 +
1
2

( r0

r

)7
+

3
8

( r0

r

)14
+

5
16

( r0

r

)21
+

35
128

( r0

r

)28
+ ..... + O

(

( r0

r

)7n
)]

. (44)

Therefore, in this case, the deflection angle is obtained as

α̂ω= 1
6
≃ 16

35

( r0

b

)7
+

429π

16384

( r0

b

)14
+

32768
969969

( r0

b

)21
+

25072875π

4294967296

( r0

b

)28
+

33554432
2917007775

( r0

b

)35
. (45)

We graphically demonstrate the deflection angle α̂ω= 1
6

in Figure 1 (Right). One can
see that this deflection angle has the same behaviors as the deflection angle α̂ω= 1

6
, but it is

smaller in amount compared to α̂ω= 1
3
. In week limit filed approximation, the deflection

angle (SC) of the Schwarzschild black hole = 4M/b, M is the mass of the black hole [142].
From Figure 2, it is clear that the rate of decreasing of our reported deflection angles α̂ω= 1

3
and α̂ω= 1

6
is higher than the rate of decreasing of the deflection angle SC against the impact
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parameter b. Therefore, these deflection angles cannot mimic the deflection angle (SC) of
the Schwarzschild black hole.

r0 = 4

r0 = 5
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SC
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Figure 2. Deflection angle α̂ against the impact parameter b corresponding to ω = 1
3 (Left) and ω = 1

6
(Right) with the deflection angle (SC) of the Schwarzschild black hole for mass M = 1.

3.2.3. Case-III: ω = − 6
5

In this case, the Gaussian optical curvature is found as

Gω=− 6
5
= − r1/6

0

12r13/6 (46)

Then, we find that the deflection angle in terms of the following integral is

α̂ω=− 6
5

=

π
∫

0

∞
∫

rγ

r1/6
0

12r13/6

√

det gop dr⋆dφ, (47)

With the surface element

√

det gop dr⋆ = r

[

1 −
( r0

r

)1/6
]−1/2

dr = r dr

[

1 +
1
2

( r0

r

)1/6
+

3
8

( r0

r

)1/3
+

5
16

( r0

r

)1/2
+

35
128

( r0

r

)2/3
+ .. + O

(

( r0

r

)
n
6
)]

. (48)

Therefore, on using the above result, we find the deflection angle as

α̂ω=− 6
5
≃

6
√

πΓ
(

19
12

)

7Γ
(

13
12

)

( r0

b

)
1
6
+

3
√

πΓ
( 5

3

)

16Γ
( 7

6

)

( r0

b

)
1
3
+

Γ
( 3

4

)2

4
√

2π

( r0

b

)
1
2
+

3
√

πΓ
(

11
6

)

64Γ
(

4
3

)

( r0

b

)
2
3
+

21
√

πΓ
( 23

12

)

704Γ
(

17
12

)

( r0

b

)
5
6
. (49)

This deflection angle also decreases in increasing values of impact parameter b and
increases for increasing values of wormhole throat radius r0 (See Figure 3). Interestingly,
from the above expression, we can conclude that there is no deflection angle for r0 = 0, the
absence of Einstein–Cartan wormholes.

r0=1

r0=1.3

r0=1.6

10 20 30 40 50

0.9
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α

Figure 3. Deflection angle α̂ against the impact parameter b corresponding to ω = − 6
5 (Left) and

ω = − 3
2 (Right).
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3.2.4. Case-IV: ω = − 3
2

The Gaussian optical curvature in this case is found as

Gω=− 3
2
= − r1/3

0

6r7/3 . (50)

Similarly, we find the deflection angle as

α̂ω=− 3
2

=

π
∫

0

∞
∫

rγ

r1/3
0

6r7/3

√

det gop dr⋆dφ, (51)

with

√

det gop dr⋆ = r

[

1 −
( r0

r

)1/3
]−1/2

dr = r dr

[

1 +
1
2

( r0

r

)1/3
+

3
8

( r0

r

)2/3
+

5
16

( r0

r

)

+
35

128

( r0

r

)4/3
+ ... + O

(

( r0

r

)
n
3
)]

. (52)

Therefore, the above result yields the deflection angle as

α̂ω=− 3
2
≃ π3/2

√
3Γ
(

1
3

)

Γ
( 7

6

)

( r0

b

)
1
3
+

π
2
3

4Γ
(

1
6

)

Γ
(

4
3

)

( r0

b

)2/3
+

r0

8b
+

5π3/2

256Γ
( 2

3

)

Γ
( 5

6

)

( r0

b

)
4
3
+

7π3/2

320
√

3Γ
( 2

3

)

Γ
( 5

6

)

( r0

b

)
5
3
. (53)

The deflection angle α̂ω=− 3
2

behaves similarly to the deflection angle α̂ω=− 6
5

with
respect to the impact parameter b and wormhole throat r0; moreover, the deflection angle
α̂ω=− 3

2
is lesser than the deflection angle α̂ω=− 6

5
(See Figure 3 (Right)).

We now compare the approximated deflection angles with their exact numerical values
using graphical representation. In order to carry this out, we have solved Equation (36) using
a numerical technique corresponding to r0 = 1 and ω = {1/3, 1/6,−6/5,−3/2} with step
length = 1. The approximated deflection angles for all the cases ω = {1/3, 1/6,−6/5,−3/2}
associated with r0 = 1 are slightly lower than their respective exact numerical values, as is
clear from Figure 4.
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Figure 4. Analytical and numerical deflection angles α̂ against the impact parameter b corresponding
to the above panel: ω = 1

3 , r0 = 1 (Left) and ω = 1
6 , r0 = 1 (Right); below panel: ω = − 6

5 , r0 = 1 (Left)
and ω = − 3

2 , r0 = 1 (Right).
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4. Dark Matter’s Influence on Deflection Angle

Here, we are willing to study the influences of dark matter on the weak deflection
angle of light in the spacetime of Einstein–Cartan wormholes. In this regard, we consider
the refractive index for the dark matter medium, defined as [143]

n(ξ) = 1 + βA0 + A2ξ2 (54)

where ξ is the frequency of light, β = ρ0/4m2ξ2 and ρ0 are the mass density of the scattered
dark-matter particles, A0 = −2ϵ2e2, and A2 ≥ 0.

The optical geometry of the Einstein–Cartan wormholes with the effect of the dark
matter can be given as

dt2 = n2(ξ)

[

1 −
( r0

r

)
ω+1

ω

]−1

dr2 + n2(ξ)r2dϕ2 (55)

For the above optical geometry, we obtain the Gaussian optical curvature GDM with
the dark matter influence as follows:

GDM = − (ω + 1)r
ω+1

ω
0

2ω(1 + βA0 + A2ξ2)
2
r

3ω+1
ω

. (56)

Imposing the above result in the formula of the deflection angle (36), we obtain the
deflection angles in the following forms:

α̂DM
ω= 1

3
≃ 3π

16Ψ

( r0

b

)4
+

35π

1024Ψ

( r0

b

)8
+

231π

16384Ψ

( r0

b

)12
+

32175π

4194304Ψ

( r0

b

)16
+

323323π

67108864Ψ

( r0

b

)20
, (57)

α̂DM
ω= 1

6
≃ 16

35Ψ

( r0

b

)7
+

429π

16384Ψ

( r0

b

)14
+

32768
969969Ψ

( r0

b

)21
+

25072875π

4294967296Ψ

( r0

b

)28
+

33554432
2917007775Ψ

( r0

b

)35
, (58)

α̂DM
ω=− 6

5
≃

6
√

πΓ
(

19
12

)

7Γ
(

13
12

)

Ψ

( r0

b

)
1
6
+

3
√

πΓ
(

5
3

)

16Γ
(

7
6

)

Ψ

( r0

b

)
1
3
+

Γ
(

3
4

)2

4
√

2πΨ

( r0

b

)
1
2
+

3
√

πΓ
(

11
6

)

64Γ
(

4
3

)

Ψ

( r0

b

)
2
3
+

21
√

πΓ
(

23
12

)

704Γ
(

17
12

)

Ψ

( r0

b

)
5
6 , (59)

α̂DM
ω=− 3

2
≃ π3/2

√
3Γ
(

1
3

)

Γ
( 7

6

)

Ψ

( r0

b

)
1
3
+

π
2
3

4Γ
(

1
6

)

Γ
(

4
3

)

Ψ

( r0

b

)
2
2
+

r0

8Ψb
+

5π3/2

256Γ
( 2

3

)

Γ
( 5

6

)

Ψ

( r0

b

)
4
3

+
7π3/2

320
√

3Γ
( 2

3

)

Γ
( 5

6

)

Ψ

( r0

b

)
5
3
, (60)

where Ψ = A2
0β2 + 2A0 A2βξ2 + 2A0β + A2

2ξ4 + 2A2ξ2 + 1. Here, we can find that the de-
flection angles through the dark matter around the Einstein–Cartan traversable wormholes
have been increased compared to the deflection angles by Einstein–Cartan traversable
wormholes in general cases.

5. Maxwell’s Fish Eye Matter Influences on Deflection Angle

In this section, we discuss the effect of Maxwell’s fish eye (MFE) matter influences on
the obtained deflection angles in the Einstein–Cartan wormhole spacetime. For that, we
consider the refractive-index profile of the MFE-like medium, defined as [144]

n =
z0

1 + z2 (61)

where z0 is a constant and z is the complex coordinate of the wave propagation in a two-
dimensional Cartesian (x, y) plane. Now, we find the Gaussian optical curvature for optical
metric with the refractive-index profile of the MFE-like medium as follows:
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GMFE = −d(ω + 1)
(

z2 + 1
)2( r0

r

)1/ω

2ωz2
0r3

. (62)

The deflection angles corresponding to the above Gaussian optical curvature are
obtained as

α̂MFE
ω= 1

3
≃ 1

z0
α̂ω= 1

3
+

2z2

z0
α̂ω= 1

3
, (63)

α̂MFE
ω= 1

6
≃ 1

z0
α̂ω= 1

6
+

2z2

z0
α̂ω= 1

6
, (64)

α̂MFE
ω=− 6

5
≃ 1

z0
α̂ω=− 6

5
+

2z2

z0
α̂ω=− 6

5
, (65)

α̂MFE
ω=− 3

2
≃ 1

z0
α̂ω=− 3

2
+

2z2

z0
α̂ω=− 3

2
, (66)

From the above results, we can see that the deflection angles of the photon through
the MFE matter around the Einstein–Cartan traversable wormholes are higher than the
general cases. It is noted that the above deflection angles reduce to the deflection angles of
general cases for z0 = 1 and z = 0, in the absence of MFE matter.

6. Deflection Angle Using the Keeton and Petters Method

In the year 2006, Keeton and Petters [114,115] introduced a completely new method
to compute the deflection angle in the asymptotically flat spacetime of static spherically
symmetric astrophysical objects. The Keeton and Petters (KP) method determines the
deflection angle of light using the post-post-Newtonian (PPN) coefficients corrected up to
the third order.

Let us consider that the light is propagating in a static spherically symmetric spacetime,
defined by

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2). (67)

Now, at the equatorial plane θ = π/2, the above metric reads as

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dϕ2. (68)

It is noted that whenever A(r) → 1, B(r) → 1 and C(r) → r2 i.e., in the absence of the
lens, the spacetime metric becomes flat. Furthermore, at the equatorial plane θ = π/2, the
Einstein–Cartan traversable wormhole metric becomes

ds2 = −dt2 +

[

1 −
( r0

r

)
ω+1

ω

]−1

dr2 + r2dϕ2, (69)

Comparing the last two Equations (68) and (69), we obtain the metric coefficient as

A(r) = 1, and B(r) =

[

1 −
( r0

r

)
ω+1

ω

]−1

. (70)

Furthermore, the general form of the PPN series for the coefficient metric can be
expressed as [115]
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A(r) = 1 + 2a1

(

ϕ

c

)

+ 2a2

(

ϕ

c

)2

+ 2a3

(

ϕ

c

)3

+ ... + O

((

ϕ

c

)n)

, (71)

B(r) = 1 − 2b1

(

ϕ

c

)

+ 4b2

(

ϕ

c

)2

− 8b2

(

ϕ

c

)3

+ ...... + O

((

ϕ

c

)n)

, (72)

where ϕ represents the three-dimensional Newtonian perspective, and ai and bi are called
the PPN coefficients. To determine the PPN coefficients, we compare the PPN series with
the Taylor series form of the metric functions. In this order, we take

ϕ

c
= −

( r0

r

)
ω+1

ω
. (73)

Therefore, we find the values of PPN coefficients as

a1 = a2 = a3 = 0 and b1 = −1
2

, b2 =
1
4

, b3 = −1
8

. (74)

Now, the Keeton and Petters method yields the deflection angle of light in the
following form:

α̂KP = F1

(m

b

)

+F2

(m

b

)2
+F3

(m

b

)3
+ O

(m

b

)4
. (75)

where

F1 = 2(a1 + b1), (76)

F2 =

(

2a2
1 − a2 + a1b1 + b2 −

b2
1

4

)

π, (77)

F3 =
2
3

(

35a3
1 + 15a2

1b1 − 3a1

(

10a2 + b2
1 − 4b2

)

+ 6a3 + b3
1 − 6a2b1 − 4b1b2 + 8b3

)

. (78)

To compute the desired deflection angle, we consider m = r0 and calculate the values
of the coefficients of bending angle using the above equations, obtained as

A1 = 1, A2 =
3π

16
, and A3 =

1
16

. (79)

Finally, the Keeton and Petters method provides the deflection angle of light in the
gravitational field of the Einstein–Cartan traversable wormhole as

α̂KP =
( r0

b

)

+
3π

16

( r0

b

)2
+

1
16

( r0

b

)3
+ O

( r0

b

)4
. (80)

From the above expression, we can conclude that the deflection angle is directly
proportional to wormhole throat radius r0 and inversely proportional to the impact
parameter b.

To enhance the qualitative aspect of our study, we compare the present deflection
angles obtained in the general case (GC) with dark matter’s influence (DM), with Maxwell’s
fish eye matter influences (MFE), and in Keeton and Petters method (KPM) graphically in
Figure 5 for r0 = 1. It is noted that the DM is depicted for Ψ = 1/2, and MFE is depicted
for z0 = 1 and z = 0.5. For all the values of ω = {1/3, 1/6,−6/5,−3/2}, one can see that
MEF > DM > GC, and hence, the influences of dark matter, as well as Maxwell’s fish eye
matter, increased the deflection angle in spacetime of the Einstein–Cartan wormhole. The
deflection angle obtained in the Keeton and Petters method is also decreasing in nature for
increasing values of impact parameter b, as is clear from Figure 5 (Below Panel (Right)).
From Figure 5, we can also conclude that the deflection angles associated with the matter
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made of phantom energy ω = {−6/5,−3/2}> the deflection angle obtained in Keeton and
Petters method > the deflection angles associated with the normal matter ω = {1/6, 1/3}.

GC

MD

MFE

5 10 15 20
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Figure 5. Deflection angle α̂ against the impact parameter b corresponding to the above panel: ω = 1
3 ,

r0 = 1 (Left) and ω = 1
6 , r0 = 1; below panel: ω = − 6

5 , r0 = 1 (Left) and ω = − 3
2 , r0 = 1 (Right). The

panel below (right) also displays the deflection angle (KPM) obtained using the Keeton and Petters
method for r0 = 1.

7. Time Delay

Here, we focus on discussing the time delay due to the gravitational field of Einstein–
Cartan wormholes. The time delay is the difference in time of the situation where two
photons are released simultaneously from the source but traversing distinct paths toward
the viewer. Let us suppose that the light is propagating in a static spherically symmetric
spacetime (67), then the time delay of the light passing through its gravitational field can
be defined as [145]

∆T = 2
∫ re

r0









1
√

[

A(r)
B(r)

− A2(r)
B(r)C(r)

C(rc)
A(rc)

]

− 1
√

[

1 − r2
c

r2

]









dr + 2
∫ rs

r0









1
√

[

A(r)
B(r)

− A2(r)
B(r)C(r)

C(rc)
A(rc)

]

− 1
√

[

1 − r2
c

r2

]









dr, (81)

where rv and rs represent the distances of the viewer and the source from the considered
astrophysical object, and rc represents the closest approach to that object. We estimate
the time delay in the gravitational field of Einstein–Cartan wormholes filled with normal
matter and matter with phantom energy using the above algorithm.

Now, the total duration for a light signal to travel through the gravitational field of
the Einstein–Cartan wormholes (2), journeying from the viewer (Earth) to the source, and
returning after reflecting from the source, is given as [145]

Ttotal = 2[T(rv, rc) + T(rs, rc)] (82)

where

T(rv, rc) =
∫ rv

rc

[

A(r)

B(r)
− A2(r)

B(r)C(r)

C(rc)

A(rc)

]− 1
2

dr =
∫ rv

rc

(

1 − r2
c

r2

)− 1
2
[

1 −
( r0

r

)
ω+1

ω

]− 1
2

dr, (83)
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and

T(rs, rc) =
∫ rs

rc

[

A(r)

B(r)
− A2(r)

B(r)C(r)

C(rc)

A(rc)

]− 1
2

dr =
∫ rs

rc

(

1 − r2
c

r2

)− 1
2
[

1 −
( r0

r

)
ω+1

ω

]− 1
2

dr. (84)

The integrand of the above integration can be written as

I =

(

1 − r2
c

r2

)− 1
2
[

1 −
( r0

r

)
ω+1

ω

]− 1
2

(85)

=

(

1 − r2
c

r2

)− 1
2
[

1 +
1
2

( r0

r

)
ω+1

ω
+

3
8

( r0

r

)
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Considering the above approximate values of the integrand I , we find
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Therefore, from Equation (81) we can estimate the time delay in the gravitational field
of Einstein–Cartan wormholes as
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Now, we estimate the delay in time for the cases corresponding to the values of
ω = 1/3, 1/6 (normal matter), and ω = −6/5, 3/2 (matter with phantom energy),
respectively. On using the above result (89), we obtain the following delays in time due to
the gravitational field of Einstein–Cartan wormholes:
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, (90)
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where
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With F[a, b; c; r] as the hypergeometric function. It is noted that the obtained de-
lays in time become zero for r0 = 0, the absence of wormholes, as desired. The time
delay decreases with the increasing values of the closest approach to the lens rc for
ω = {1/3, 1/6,−6/5,−3/2}, as is clear from Figure 6. It is important to note that the
time delay in gravitational lensing is closely connected to the deflection angle, as both are
determined by the light’s path and the gravitational field it traverses. A larger deflection
angle results in a longer, more delayed journey for the light, and the gravitational time
dilation is increased. Interestingly, our results have followed the same relationship, clear
from Figures 5 and 6.
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8. Results and Conclusions

The study of gravitational lensing is one of the most significant tools for observing
the wormhole geometries in the universe. In this article, we have studied gravitational
lensing in the spacetime of the Einstein–Cartan wormholes supported by the normal mat-
ter (ω > 0) or matter with phantom energy (ω < −1) using the Gauss–Bonnet method.
Adopting the weak deflection limit, we have estimated the deflection angle of light by
the Einstein–Cartan wormholes corresponding to ω = 1/3, 1/6 (normal matter) and
ω = −6/5, − 3/2 (matter with phantom energy). The obtained deflection angles for
ω = 1/3, 1/6 are decreasing in nature against the impact parameter, as expected; more-
over, the deflection angle for ω = 1/3 is higher than the deflection angle for ω = 1/6,
i.e., the deflection angle decreases for decreasing values of ω (see Figure 1). In the case
of wormholes filled by the matter with phantom energy, the deflection angles are also
decreasing for the increasing impact parameter; here, it is also found that the deflection
angles have decreasing behavior with the decreasing values of ω (see Figure 3). On the
other hand, the deflection angles by the Einstein–Cartan wormholes supported by the
matter with phantom energy are higher than the deflection angles by the Einstein–Cartan
wormholes supported by normal matter; therefore, matter with phantom energy creates
a higher deflection angle than the normal matter in the spacetime of Einstein–Cartan
wormholes. Interestingly, one can see that all the obtained deflection angles vanish for
r0 = 0, the absence of Einstein–Cartan wormholes. It has been seen that the reported ap-
proximated deflection angles for all the cases ω = {1/3, 1/6,−6/5,−3/2} associated with
r0 = 1 are slightly lower than their respective exact numerical values (see Figure 4). We
have also studied the influences of the dark matter content and Maxwell’s fish eye matter
on the obtained deflection angles. The deflection angles increase with the effect of the dark
matter content, as well as the effect of Maxwell’s fish eye matter. We have also estimated
the deflection angle using the Keeton and Petters method and found that the deflection
angle is directly proportional to the wormhole throat radius and inversely proportional to
the impact parameter. Moreover, we compare the present deflection angles obtained in the
general case (GC), with dark matter’s influence (DM), with Maxwell’s fish eye matter influ-
ences (MFE), and in Keeton and Petters method (KPM) graphically in Figure 5 for r0 = 1.
For all the values of ω = {1/3, 1/6,−6/5,−3/2}, we have found that MEF > DM > GC.
Therefore, the influences of dark matter, as well as Maxwell’s fish eye matter, increased the
deflection angle. Additionally, it has been seen that the deflection angles associated with
the matter made of phantom energy ω = {−6/5,−3/2} > the deflection angle obtained
in Keeton and Petters method > the deflection angles associated with the normal matter
ω = {1/6, 1/3}, as is clear from Figure 5. The expressions for time delays by the consid-
ered wormholes are also calculated corresponding to ω = {1/3, 1/6,−6/5,−3/2}, which
helps to measure the delays in time in the spacetime of the Einstein–Cartan wormholes
filled by normal matter or matter with phantom energy. It is also noted that the time delays
become zero for r0 = 0, i.e., for the absence of Einstein–Cartan wormholes. The time delay
decreases with the increasing values of the closest approach to the lens rc for all the values
of ω = {1/3, 1/6,−6/5,−3/2}, as is clear from Figure 6. Moreover, the matter made of
phantom energy creates a higher time delay than the normal matter case. Especially, one
can see from Figure 6 that ∆T1

6
< ∆T1

3
< ∆T− 3

2
< ∆T− 6

5
.

Finally, the significance of gravitational lensing in astrophysics has piqued our curios-
ity in investigating the deflection angle by the Einstein–Cartan wormholes. The present
study may inspire the scientific community to search the Einstein–Cartan wormholes
observationally and to do fruitful research work on the gravitational lensing by other
astrophysical objects.
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