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Abstract. This notes expose results of applying the LPLDE method to some nonlinear
periodic problems as the Duffing equation, the sextic and octic oscillators and the Van der
Pol equation.

1. Introduction

Relevance of new approximation methods to find the solutions to nonlinear problems comes
along with the role this kind of phenomena plays in nature. The LPLDE method, proposed by
Amore and Aranda in [1], works by combining the ideas of two methods, the Lindsted-Poincare
method (LP) and the Linear Delta Expansion method (LDE).

The first rescales the time and expresses the solution and the (unknown) frequency as series
in a small parameter ε. After substituting such expansions in the problem and collecting power
like terms of ε, is necessary to solve recursively the resulting set of equations. Corrections of
the frecuency are chosen in such manner that secular terms are avoided when each equation is
solved.

The second is a nonperturbative method, whose idea is to transform the insoluble original
equation into a soluble one dependent on two arbitrary parameters: λ and δ, in such a way that
for δ = 1 the transformed equation becomes again the original. Dependence on λ is minimized
by applying the Principle of Minimal Sensibility (PMS).

2. Duffing equation

We first consider the motion equation of a particle with unitary mass in a potential of the form

V (x) =
x2

2
+ μ

x2N

2N
. (1)

For N = 3 and N = 4 such equations correspond to the sextic and octic oscillators, for N = 2
we get the Duffing equation

d2x

dt2
(t) + x(t) = −μx3(t). (2)

According to the LPLDE method we rearrange the original equation by rescaling time, τ = Ωt,
and introducing λ and δ as follows

Ω2 d2x

dt2
(τ) + (1 + λ2)x(τ) = δ

[
−μx3(τ) + λ2x(τ)

]
(3)

Institute of Physics Publishing Journal of Physics: Conference Series 37 (2006) 147–153
doi:10.1088/1742-6596/37/1/026 IX Mexican Workshop on Particles and Fields

147© 2006 IOP Publishing Ltd



0 10 20 30 40 50
n

-40

-30

-20

-10

0

L
og

10
 |κ

n|

0 10 20 30 40 50
m

-40

-30

-20

-10

0

L
og

10
 |β

nm
|

β
0m

β
1m

β
2m

β
3m

β
4m

40 42 44 46 48 50
-40

-35

-30

-25

Figure 1. Numerical coefficients κn and βn in Equation (9) and Equation (10) decay
exponentially with the order of expansion. The line corresponds to the fitting κn =
0.0663e−1.46225n.

Notice that if δ = 1 we get back Equation Equation (2). Now if we substitute the expressions

Ω2 =
Nmax∑
n=0

δnαn, x(t) =
Nmax∑
n=0

δnxn(τ), (4)

by collecting terms proportional to δk we obtain the equation of order k, (k = 0 . . . Nmax), and
by imposing the resonant contributions to order n to vanish we obtain the coefficients αn.

By proceeding in this manner, once the expressions for the solution and frequency to the
order of approximation required Nmax have been obtained, we calculate the optimal value of λ
by applying the PMS condition ∂Ω2/∂λ = 0 and solving it for λ. Although this last equation
could not be solved analytically, the optimal value of λ (denoted λPMS) to the third order

λPMS =

√
3μA2

4
, (5)

approximates very well the optimal values of λ to any other order, this allows to obtain fully
analytical expressions.

Since the solutions xn(τ) have the form

xn(τ) =
n∑

m=0

c̄nm cos(2m + 1)τ (6)

we can write the expression in Equation (4) equivalently as

xapprox(t) =
Nmax∑
n=0

c(approx)
n cos[(2n + 1)Ω(approx)t] (7)

where

c(approx)
n =

Nmax∑
m=0

c̄nm. (8)

The coefficients αn, as well as the approximate Fourier coefficients obtained with the LPLDE
method, follow a pattern. The αn can be written as

α0 = 1 +
3
4
A2μ, α2n = − κ2n(A2μ)2n

(1 + 3
4A2μ)2n−1

, α2n+1 = 0 (9)
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Figure 2. Logarithm of the error defined in Equation (11). Left: A = 10 and positive μ. Right:
Negative μ and A=0.5,0.9 and 0.99.
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Figure 3. Comparison of the Fourier coefficients for the Duffing case with μ = 104 and A = 10.
Right: Ratio of the exact and the approximate coefficients.

whereas the c̄nm coefficients can be written as

c̄nm =
βnmA(A2μ)n

(1 + 3A2µ
4 )n

. (10)

Both, κ2n and βnm, are purely numerical coefficients decaying exponentially with the order of
the expansion (Figure 1).

We now define the error

Δ =

∣∣∣∣∣Ω
2
approx − Ω2

exact

Ω2
exact

∣∣∣∣∣ × 100. (11)

For the case of positive μ, corresponding to a single well potential, the error is practically
unaffected with the size of μ. This could have been expected since the coefficients αn go to 0
faster than κn for μ > 0 (Figure 2, left).

Coefficients c
(approx)
n of the approximate solution Equation (7) are compared with the Fourier

coefficients of the exact numerical solution (Figure 3)

xexact(t) =
∞∑

n=0

c(exact)
n cos[(2n + 1)Ω(exact)t]. (12)

It can be noticed that the first can be reproduced with great accuracy. The coefficients with
higher frequency, although poorly approximated, do not influence too much in the approximation
because of their small contributions.
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Figure 4. Left: Exact (numerical) and approximate solutions computed up to order 50, with
μ = −1 and A = 0.99. Right: The difference of exact and approximate solutions x(t)− x(t, 50).
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Figure 5. Comparison of the Fourier coefficients for the Duffing case with μ = −1 and A = 0.99.
Right: Ratio of the exact and the approximate coefficients.

The case of negative μ corresponds to a double wall potential, with maxima at amplitudes ±1,
the points of unstable equilibrium, and oscillatory behaviour exist only for amplitudes between
them.

Although in this case the error decaying rate is more dependent to the amplitude (Figure
2-right), the approximation is good as well (Figure 4). This dependent behaviour could have
been expected, because the size of the denominator in equation is smaller and changing with
the order.

3. Sextic and Octic Oscillators

An analogous analysis for sextic and octic oscillators shows that the LPLDE method works
very well also for these anharmonic potentials, for both positive and negative values of μ.
Computations are carried out similarly to those of the Duffing equation.

Figure 6 shows the decaying behaviour of the error for the octic oscillator and a comparison
of Fourier coefficients; sextic oscillator analogous plots are alike to these but not displayed here.

As for the Duffing case, the optimal values of λ to any order, once the PMS condition has
been applied, are well approximated with the values of λ to the third order of expansion

λsextic =

√
211A4μ

312
, λoctic =

√
10885A6μ

16896
(13)

obtaining fully analytical expressions when they are used, like is for the Duffing equation.
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Figure 6. Logarithm of the error Equation (11) for the octic oscillator. Left: For A=10 and
positive values of μ. Right: For μ = −1 and A = 0.5, 0.9 and 0.99.
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Figure 7. Left: For fixed μ = 3 the optimal λ is strongly order dependent. Right: Optimal
value of λ as function μ, to order 44. The dashed line is the fit λ = 0.21599 + 1.17166μ

4. Van der Pol equation

Now we apply the LPLDE method to the Van der Pol equation which corresponds to a
nonconservative system: the term on the right either diminishes or enhances the oscillations
depending upon the size of μ.

ẍ + x = μ(1 − x2)ẋ (14)

In order to tackle this problem we change the original equation by rescaling time and by
introducing arbitrary λ and δ,

Ω2ẍ(τ) + (1 + λ)x(τ) = δ
[
μΩ(1 − x2)ẋ + λ2x(τ)

]
, (15)

where derivatives are now with respect to τ . As in the previous cases we assume the expansions

Ω =
Nmax∑
n=0

δnγn, x(τ) =
Nmax∑
n=0

δnxn(τ) (16)

and substitute them into Equation (15).
Then we make use of δ as order-selecting parameter to get a set of linear equations which,

contrary to previously treated cases, contain not only cosine terms, but also sine terms. As
before, coefficients γn are fixed by imposing that resonant terms at a given order to vanish.

Unlike the Duffing and the oscillators cases, where we estimate the optimal value of λ to any
order with the optimal to the third order, for a given μ, the optimal value of λ is strongly order
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Figure 8. Approximate and exact solutions of the Van der Pol equation computed to order 44
for μ = 3.
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Figure 9. Comparison of Fourier coefficients to the order 44 for μ = 3. Left: Cosine coefficients.
Right: Sine coefficients.

dependent, as it can be observed in the left plot of Figure 7. However, as shown on the right
plot, at a fixed order of expansion (44 in this case) the λPMS is linearly μ dependent. This
allows to obtain expressions for both the period and the solution with the value of λ as the only
numerical estimated term.

We get a maximum error of 12% with μ = 10 for periods obtained with the LPLDE method
compared with exact numerical results from [7]. Smaller errors are obtained with smaller μ’s.

Exact (numerical) and approximated solutions are plotted in Figure 8 for μ = 3. We can
observe there that the LPLDE method applied to order 44 gives a quite good approximation
of the solution which can be improved by taking the expansion to higher orders. Notice that
for such values of μ the LP method is not applicable. Finally, Figure 9 shows a comparison of
Fourier coefficients of the approximate and exact solutions.

The nonperturbative nature of LDE, in the cases presented, allows the LPLDE method to
reach nonperturbative regimes and deal with large nonlinearities, obtaining errors even smaller
than those obtained with the LP only.
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