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Abstract: By comparing measurement-induced classical
Fisher information of parameterized quantum states with
quantumFisher information,we study the notion of Fisher
concord (as abbreviation of the concord between the
classical and the quantum Fisher information), which
is an information-theoretic measure of quantum states
and quantum measurements based on both classical and
quantum Fisher information. Fisher concord is de�ned by
multiplying the inverse square root of quantum Fisher in-
formationmatrix tomeasurement-induced classical Fisher
information matrix on both sides, and quanti�es the rel-
ative accessibility of parameter information from quan-
tum measurements (alternatively, the e�ciency of quan-
tum measurements in extracting parameter information).
It reduces to the ratio of the classical Fisher information
to quantum Fisher information in any single parameter
scenario. In general, Fisher concord is a symmetric ma-
trix which depends on both quantum states and quantum
measurements. Some basic properties of Fisher concord
are elucidated. The signi�cance of Fisher concord in quan-
tifying the interplay between classicality and quantum-
ness in parameter estimation and in characterizing the ef-
�ciency of quantummeasurements are illustrated through
several examples, and some information conservation re-
lations in terms of Fisher concord are exhibited.
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1 Introduction
The notion of Fisher information plays a pivotal role in
parameter estimation and signal detection, in both the
classical and the quantum scenarios [1–5]. In the classical
scenario, the celebrated Crámer-Rao bound sets a funda-
mental limit to the precision of parameter estimation, and
the limit is achievable via the maximum likelihood esti-
mator in the asymptotic sense. However, in the quantum
scenario, the situation changes radically due to interfer-
encebetweendi�erent optimalmeasurements for di�erent
parameters [3–5]. In quantum information theory, signals
as parameters are mathematically described by numbers
and physically encoded in quantum states (operators). To
extract the signal information from parameterized quan-
tum states, we have to perform quantum measurements
on quantum states and process the data obtained from
the outcome probabilities [3–21]. The fundamental di�er-
ence between the classical and the quantum scenarios lies
in that the operators representing various quantum states
and quantum measurements are not commutative in gen-
eral.

For parameterized quantum states, quantum Fisher
information sets a fundamental bound to the estimation
precision via the quantum Cramér-Rao inequality, which
may not be achievable in multiparameter cases [3–5]. In
this work, we will employ quantum Fisher information
as a basic quantity of the total information about the pa-
rameter, including both accessible and inaccessible ones.
The accessible one can be extracted by quantummeasure-
ments, while the inaccessible one cannot be extracted by
any quantum measurement (i.e., has to be destroyed by
quantummeasurement). The quantumFisher information
will serve as a prior information andwill be comparedwith
measurement-induced classical Fisher information in as-
sessing e�ciency of information extraction via quantum
measurement.

For parameterized quantum states with single param-
eter, when we perform quantum measurements on the
states, the measurement-induced classical Fisher infor-
mation quanti�es the information amount that is acces-
sible through quantum measurements. Taking optimiza-
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tion over all quantum measurements, we get the maxi-
mal accessible information. Braunstein and Caves proved
that quantum Fisher information sets a fundamental up-
per bound to themeasurement-induced classical Fisher in-
formation, and this bound is achievable [8]. That is, for
the single parameter case, quantum Fisher information
is just the maximal accessible information in the sense
thatwe can�ndmeasurements such that itsmeasurement-
induced classical Fisher information equals to its quantum
Fisher information. However, the optimal measurements
may depend on the parameter, and thus are not in general
uniform (i.e., not independent of the parameter).

Inspired by the notion of quantum discord [22–24],
which is a measure of the quantumness of correlations
de�ned by the di�erence between the total correlations
(quantum mutual information) and the classical correla-
tions (the correlations extractable via quantum measure-
ments), we exploit the relation between quantum Fisher
information (which quanti�es the total information in pa-
rameters) and the measurement-induced classical Fisher
information (which quanti�es the accessible information
in parameters) in order to quantify the e�ciency of quan-
tum measurements in extracting the parameter informa-
tion. Instead of subtracting measurement-induced classi-
cal Fisher information from quantum Fisher information
which leads to Fisher discord (i.e., Fisher information ana-
logue of quantum discord), here we use a ratio of the
former to the later to de�ne a measure for relative clas-
sicality of Fisher information in parameterized quantum
states, and call it Fisher concord, whose precise de�ni-
tion will be given in the next section. For the single pa-
rameter case, Fisher concord is a dimensionless quantity
lying in the unit interval, achieving the maximal value 1
when the measurement-induced classical Fisher informa-
tion equals the quantum Fisher information, i.e., when
these two quantities of Fisher information are in maximal
concord, andachieves theminimal value0when these two
quanti�es of Fisher information are in minimal concord
(maximal discord). Its complement (i.e., 1 minus Fisher
concord) quanti�es the intrinsic loss of Fisher information
inquantummeasurement andmayalsobe regardedessen-
tially as a kind of Fisher discord.

For the single parameter scenario, by the elegant
Braunstein-Caves theorem [8], Fisher concord can indeed
achieve the maximal value 1. That is, the parameter infor-
mation encoded in the states can be fully extracted via op-
timal quantum measurements (which may depend on the
parameter) as precise as possible.

For the multi-parameter scenario, both quantum
Fisher information and measurement-induced classical
Fisher information are matrices. For each parameter, the

quantum Cramér-Rao bound can be saturated asymptoti-
cally. However, due to the noncommutativity of di�erent
optimal measurements for di�erent parameters, in gen-
eral, there does not exist a uniformmeasurement that can
fully extract the information about all parameters simul-
taneously [3, 12, 13]. We have to consider the interference
between di�erent measurements for di�erent parameters.
Inspired by the idea of conditional density operators [26–
28], we may interpret Fisher concord as a kind of condi-
tional density operator, with the prior being the quantum
Fisher information. The o�-diagonal elements in the ma-
trix of Fisher concord encode the interference between dif-
ferent parameters.

The remainder of the article is organized as follows.
In Section 2, we investigate Fisher concord and discuss
its basic properties. In Section 3, we illustrate Fisher con-
cord through several examples includingpurequbit states,
mixed qubit states with three di�erent kinds of parame-
terizations, and two-qubit states. Then we derive several
information conservation relations in terms of Fisher con-
cord. Finally, we conclude with discussion in Section 4.

2 Fisher Concord
To motivate our approach to quantifying accessibility
of parameter information via quantum measurements in
terms of Fisher information, let us �rst recall quantumdis-
cord [22–25]. Consider a bipartite state ρab shared by two
parties a and b with reduced states ρa = trbρab , ρb =
traρab , the total amount of correlations in it are well quan-
ti�ed by the quantummutual information [29–32]

I(ρab) = S(ρa) + S(ρb) − S(ρab)

where S(ρa) = −trρalogρa is the von Neumann entropy.
However, the quantum mutual information may not be
fully extractable via quantum measurement. The amount
of extractable correlations via the von Neumannmeasure-
ment Πb = {Πbi } on party b is the classical correlations
de�ned as I(Πb(ρab)), where

Πb(ρab) =
∑
i
(1a ⊗ Πbi )ρab(1a ⊗ Πbi )

is the post-measurement state. Now the measurement-
dependent discord

D(ρab|Πb) = I(ρab) − I(Πb(ρab))

is the di�erence between the total correlations and the
classical correlations, and quanti�es the inevitable loss of
correlations caused by the quantum measurements. The
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quantum discord is further de�ned as theminimal discord
D(ρab) = minΠb D(ρab|Πb) where the minimization is over
all von Neumann measurements Πb over party b. In this
paper, we will only be concerned with the measurement-
dependent discord D(ρab|Πb).

In the parameter estimation scenario, the quantum
Fisher information resembles the quantum mutual infor-
mation, while the measurement-induced classical Fisher
information resembles the classical correlations. To make
this analogy more explicit, consider the parameterized
quantum states ρ(θ), which depend on parameters θ =
(θ1, . . . , θp). Recall that quantum Fisher information (ma-
trix) of parameterized states ρ = ρ(θ) (we suppress θ for
later convenience) is the n×n real symmetricmatrixQ(ρ) =
(Qij) with matrix elements Qij de�ned as [4, 5]

Qij =
1
2 tr ρ(LiLj + LjLi).

Here the symmetric logarithmic derivative operators Li for
the parameter θi are determined implicitly by

∂
∂θi

ρ = 1
2(Liρ + ρLi).

Quantum Fisher information sets a fundamental upper
bound to the estimation precision via the celebrated
Cramér-Rao inequality [3–5], and can be regarded as a
measure to quantify the total information concerning the
parameters θ = (θ1, . . . , θp) encoded in the states ρ = ρ(θ).

To extract the parameter information, we have to per-
form quantum measurements on the states. A quantum
measurementM is describedby apositive-operator-valued
measure (POVM) such that M = {Ml|Ml ≥ 0,

∑
l Ml = 1}.

If we perform quantummeasurementM on the states ρ(θ),
then a parameterized classical probability pl = pl(θ) arises
with

pl(θ) = tr ρMl .

For this family of measurement-induced classical
probability distributions, we have the classical Fisher in-
formation (matrix) C(ρ|M) = (Cij) which is also a p × p real
symmetric matrix with matrix elements [1, 3, 8]

Cij =
∑
l
pl
∂ ln pl
∂θi

∂ ln pl
∂θj

=
∑
l

1
pl
∂pl
∂θi

∂pl
∂θj

.

The Braunstein-Caves theorem states that [8]

C(ρ|M) ≤ Q(ρ), (1)

Furthermore, when p = 1, this bound is saturated after op-
timizing over all POVMs. In contrast to the quantumFisher

information as a measure of total information for the pa-
rameters, themeasurement-induced classical Fisher infor-
mation canbenaturally interpreted as the accessible infor-
mation of the parameters information via the POVM M.

A natural question arises: How to quantify the e�-
ciency of quantummeasurements in extracting the param-
eter? Or alternatively, how to quantify the information loss
caused by the quantum measurements? In the single pa-
rameter case for which both the classical Fisher informa-
tion and quantum Fisher information are numbers, moti-
vated by quantum discord, it is tempting to take Q − C or
CQ−1 as candidates. Here we choose the latter, a dimen-
sionless quantity, to quantify the e�ciency of quantum
measurements.

For the single parameter scenario, when Q(ρ) ≠ 0, by
dividing Q(ρ) from both sides of equation (1) directly, we
have

C(ρ|M)
Q(ρ) ≤ 1. (2)

By use of the ratio ofC(ρ|M) toQ(ρ), we can assign a rate to
any POVM M, which signi�es the relative e�ciency to ex-
tract the parameter information from the quantum states.
In this way, the power of di�erent measurements is com-
parable. For example, the measurement N that satis�es
C(ρ|N)/Q(ρ) = 1/2 has only half the power of the mea-
surement M with C(ρ|M)/Q(ρ) = 1. If we regard quan-
tum Fisher information as a representative of prior infor-
mation of this parameter encoded in the states, then the
ratio C(ρ|M)/Q(ρ) may be interpreted as a kind of condi-
tional “probability”.

When passing to the multi-parameter scenario, quan-
tum Fisher information plays the role of prior “density
operator” (we ignore the unit trace condition of den-
sity operator). The problem is how to incorporate this
prior information into a quantity of measurement e�-
ciency. In general, the naive expression of C(ρ|M)Q−1(ρ)
is not Hermitian. As inspired by di�erent quantum ex-
tensions of conditional probability [26–28], to obtain a
Hermitian matrix, we modify the single parameter case
by splitting Q−1(ρ) into two equal parts and putting
them on both sides of C(ρ|M) in a symmetric fash-
ion, that is, Q− 1

2 (ρ)C(ρ|M)Q− 1
2 (ρ). Of course, another ver-

sion is C 1
2 (ρ|M)Q−1(ρ)C 1

2 (ρ|M). In this work, we choose
Q− 1

2 (ρ)C(ρ|M)Q− 1
2 (ρ) as our candidate. Consequently, we

come to an information measure depending on a param-
eterized states ρ = ρ(θ) and a POVM M performed on the
states:

F(ρ|M) := Q−
1
2 (ρ)C(ρ|M)Q−

1
2 (ρ). (3)

We call it Fisher concord, which encodes the di�erence
between quantum Fisher information and measurement-
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induced classical Fisher information. If the quantum
Fisher information matrix is degenerate, then there must
exist some parameters whose quantum Fisher informa-
tion is zero, which means that these parameter informa-
tion can not be encoded into this states. Therefore, we just
omit these parameters, and only consider the case that the
quantum Fisher information is invertible. Note that Zhu
has studied such a kind of quantity as the metric-adjusted
complementarity chamber from a di�erent perspective in
Ref. [33]. In this work, we focusing on the interpretation
of this quantity as a concord of Fisher information and a
measure of e�ciency for quantummeasurements, and in-
vestigate its fundamental properties.

Fisher concord enjoys the following properties:
(a) When p = 1 (i.e., single parameter case), F(ρ|M) is

a scale, and ranges from 0 to 1. For di�erent POVMs and
the same states ρ(θ), the larger F(ρ|M) is, the larger e�-
ciency the POVM M has in extracting the parameter infor-
mation from ρ(θ). If F(ρ|M) = 1, the POVMM has the max-
imal capability.

(b) (Monotonicity) If the measurement N re�nes the
measurement M, then

F(ρ|M) ≤ F(ρ|N). (4)

That is, the re�nedmeasurement N has larger e�ciency in
extracting parameter information from the same states ρ
than the measurement M.

(c) (Nontrivial bound of its trace) There is a general
nontrivial bound for the trace of Fisher concord:

trF(ρ|M) ≤ min{p, d − 1}.

Here d is the dimension of the system space of the param-
eterized states ρ(θ).

We now outline the reasoning leading to the above re-
sults.

(a) This follows directly fromequation (2) and the non-
negativity of classical Fisher information and quantum
Fisher information [34].

(b) Let N = {Nl,η} be a re�nement of themeasurement
M = {Ml} in the sense thatMl =

∑
η Nl,η . The outcomes of

M are {l}, while the outcomes of N are {(l, η)}. Each out-
come l for M is further split into several outcomes {(l, η)}
indexed by (l, η) in themeasurement N. The completeness
relation for the measurement M is

∑
l Ml = 1, while that

for the re�ned measurement N is
∑

l,η Nl,η = 1.
Because of the monotonicity of quantum Fisher infor-

mation [34], we know that the measurement-induced clas-
sical Fisher information increases when measurement is
re�ned, that is, if the measurement N re�nes themeasure-
ment M, then

C(ρ|M) ≤ C(ρ|N). (5)

Since Q− 1
2 (ρ) is positive de�nite, by multiplying Q− 1

2 (ρ) to
both sides of the inequality (5) fromboth the left-hand side
and the left-hand side,we get equation (4), themonotonic-
ity of Fisher concord.

(c) By multiplying Q− 1
2 (ρ) on both sides of inequality

(1), we have

F(ρ|M) = Q−
1
2 (ρ)C(ρ|M)Q−

1
2 (ρ) ≤ 1p .

Here p is the parameter number, and 1p is the identity ma-
trix on the p-dimensional Hilbert space. Hence the trace of
Fisher concord has a trivial bound:

trF(ρ|M) = trQ−
1
2 (ρ)C(ρ|M)Q−

1
2 (ρ)

= trQ−1(ρ)C(ρ|M) ≤ p. (6)

On the other hand, form an result of Gill and Massar [35],
we have the following nontrivial bound for the trace of
Fisher concord:

trF(ρ|M) = trQ−1(ρ)C(ρ|M) ≤ d − 1, (7)

with d the dimension of the quantum state space.
Combining inequalities (6) and (7), we obtain a gen-

eral bound for the trace of Fisher concord:

trF(ρ|M) ≤ min{p, d − 1}. (8)

For any mixed density operators in d-dimensional
Hilbert space, thenumber of necessaryparameters to char-
acterize the states is p = d2 − 1, and for pure states,
p = 2d−2. For this kind of parameterized states, the bound
(7) is obviously nontrivial, andGill andMassar proved that
for any POVM M, inequality (7) could be saturated if and
only if all the POVM elementsMl are rank one, and satisfy
tr ρMl ≠ 0 [35, 36].

3 Qubit Systems and Information
Conservation in Terms of Fisher
Concord

In this section, we evaluate Fisher concord explicitly for
single as well as two-qubit systems, which are impor-
tant building blocks for quantum information processing.
From these results we gain amore intuitive understanding
of various features of Fisher concord.

For qubit systems, we can parameterize any rank-one
POVM, which includes the optimal measurement for Gill-
Masaar bound [35]. Therefore,wewill calculate Fisher con-
cord with respect to any rank-one POVM for pure qubit
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states, mixed qubit states with three di�erent kinds of pa-
rameterizations. However, for two-qubit system, it is di�-
cult to write down any POVM. Sowe only study two special
POVMs investigated in Ref. [21] to calculate the Fisher con-
cord for parallel spins and antiparallel spins, respectively,
and the Bell measurement for Bell-diagonal states around
maximally mixed states.

3.1 Single qubit systems

We start from pure qubit states. For a pure qubit state ρ =
|n〉〈n| with

|n〉 =
(

cos θ2
eiϕsin θ2

)
in the standard basis with amplitude parameter θ ∈ [0, π]
and phase parameter ϕ ∈ [0, 2π), the quantum Fisher in-
formation can be evaluated as

Q(ρ) =
(

1 0
0 sin2 θ

)
,

which is a diagonal matrix. Consequently, Qθ(ρ) = 1 and
Qϕ(ρ) = sin2 θ.

To evaluate themeasurement-induced classical Fisher
information, we have to write down the POVMs on qubit
system. Since rank-one POVMs are the most re�ned POVM
for qubit systems and can saturate theGill-Massar inequal-
ity (7), we only consider these POVMs. Any rank-one POVM
M = {Ml} on a qubit can be parameterized as [37]

Ml = al

(
cos2 θl

2 e−iϕl cos θl2 sin θl
2

eiϕl cos θl2 sin θl
2 sin2 θl

2

)
, (9)

with al ∈ (0, 1], θl ∈ [0, π], and ϕl ∈ [0, 2π). In terms of
these parameters, the completeness condition reduces to∑

l
al =2, (10a)

∑
l
al cos θl =0, (10b)

∑
l
al sin θl sinϕl =0, (10c)

∑
l
al sin θl cosϕl =0. (10d)

The probability pl of the outcome labeled by l after per-
forming the POVM M on the states ρ is

pl = trρMl

= al
2
(
1 + cos θ cos θl + sin θ sin θl cos(ϕl − ϕ)

)
.

We denote the parameter (θ, ϕ) by (θ1, θ2) for later con-
venience. By de�nition, the �rst diagonal element of

the measurement-induced classical Fisher information
C(ρ|M) = (Cij) is just the classical Fisher information of the
probability distribution {pl}with respect to the parameter
θ:

C11 = Cθ(ρ|M)

=
∑
l

a2l
4pl

(sin θ cos θl − cos θ sin θl cos(ϕl − ϕ))2.

The other diagonal element is the classical Fisher informa-
tion with respect to the parameter ϕ:

C22 = Cϕ(ρ|M) =
∑
l

a2l
4pl

sin2 θ sin2 θl sin2(ϕl − ϕ).

Hence, we have the Fisher concord F(ρ|M) = (Fij) of the
pure qubit state ρ = |n〉〈n| after performing the POVM M,
with matrix elements

F11 =
∑
l

a2l
4pl

(sin θ cos θl − cos θ sin θl cos(ϕl − ϕ))2,

F22 =
∑
l

a2l
4pl

sin2 θl sin2(ϕl − ϕ),

F12 =F21 = 0.

By use of the completeness conditions (10), we obtain
for any rank-one POVM M,

trF(ρ|M) = Cθ(ρ|M)
Qθ(ρ)

+
Cϕ(ρ|M)
Qϕ(ρ)

= 1, (11)

which is consistent with the Gill-Massar result (7). This ex-
hibits a complementary relation between the two parame-
ters θ and ϕ and the conservation of Fisher concord: The
Fisher concord for θ and that for ϕ sum to one. For the op-
timal POVM M with respect to the parameter θ, we have
Cθ(ρ|M)/Qθ(ρ) = 1, which means that the information
about θ can be fully extracted. However, in this situation,
we can gain nothing about the other parameter ϕ in the
sense that Cϕ(ρ|M)/Qϕ(ρ) = 0. This can be regarded as
a kind of uncertainty relation with respective to di�erent
parameters. Furthermore, this tradeo� relation (11) holds
for any rank-one POVM. Thus typically di�erent measure-
ments could be chosen in order to choose parameterwhich
should be estimatedwith larger precision at the expense of
the other one.

Now consider a general mixed qubit state

σ = 1
2

(
1 + r cos θ re−iϕ sin θ
reiϕ sin θ 1 − r cos θ

)

with r ∈ [0, 1] being the Bloch vector norm (purity). We
denote the parameter (r, θ, ϕ) by (θ1, θ2, θ3) for later con-
venience. The quantum Fisher information can be directly
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evaluated as

Q(σ) =

 r2 0 0
0 r2 sin2 θ 0
0 0 1

1−r2

 .

Using the parametrization of any rank-one POVM M spec-
i�ed in equation (9), we have the Fisher concord F(σ|M) =
(Fij) with matrix elements

F11 =
∑
l

al
2

(sin θ cos θl − cos θ sin θl cos(ϕl − ϕ))2
1 + r cos θ cos θl + r sin θ sin θl cos(ϕl − ϕ)

,

F22 =
∑
l

al
2

sin2 θl sin2(ϕl − ϕ)
1 + r cos θ cos θl + r sin θ sin θl cos(ϕl − ϕ)

,

F33=
∑
l

al
2
(1 − r2)(cos θ cos θl + sin θ sin θl cos(ϕl − ϕ))2
1 + r cos θ cos θl + r sin θ sin θl cos(ϕl − ϕ)

,

Fij = 0, i ≠ j.

By use of the completeness conditions (10), we have
the Fisher concord conservation relation

trF(σ|M) = Cθ(σ|M)
Qθ(σ)

+
Cϕ(σ|M)
Qϕ(σ)

+ Cr(σ|M)
Qr(σ)

= 1,

which demonstrates the tradeo� relation between estimat-
ing di�erent parameters.

Consider the same state as the above example, but
parameterized di�erently by amplitude θ, phase ϕ, and
phase di�usion δ, as investigated in Ref. [37],

τ =
(

cos2 θ
2 e−iϕ−δ

2
cos θ2 sin

θ
2

eiϕ−δ
2
cos θ2 sin

θ
2 sin2 θ

2

)
.

We denote the parameter (θ, ϕ, δ) by (θ1, θ2, θ3) and get
the quantum Fisher information

Q(τ) =

 1 0 0
0 e−2δ

2
sin2 θ 0

0 0 4δ2 sin2 θ
e2δ2−1

 .

For any rank-one POVM M expressed as equation (9),
we have the Fisher concord F(τ|M) = (Fij) with matrix ele-
ments

F11 =
∑
l

al
2
(− sin θ cos θl + e−δ

2
cos θ sin θl cos(ϕl − ϕ))2

1 + cos θ cos θl + e−δ
2 sin θ sin θl cos(ϕl − ϕ)

,

F22 =
∑
l

al
2

sin2 θl sin2(ϕl − ϕ)
1 + cos θ cos θl + e−δ

2 sin θ sin θl cos(ϕl − ϕ)
,

F33 =
∑
l

al
2

(1 − e−2δ
2
) sin2 θl cos2(ϕl − ϕ)

1 + cos θ cos θl + e−δ
2 sin θ sin θl cos(ϕl − ϕ)

,

Fij =0, i ≠ j.

By use of the completeness conditions (10), we have
the following conservation of Fisher concord for di�erent
parameters

trF(τ|M) = Cθ(τ|M)
Qθ(τ)

+
Cϕ(τ|M)
Qϕ(τ)

+ Cr(τ|M)
Qr(τ)

= 1.

In addition to the above parameterizations of a gen-
eral qubit state, we further consider the parametriza-
tion involving the Bloch vector (x, y, z) satisfying r2 =
x2 + y2 + z2 ≤ 1:

γ = 1
2

(
1 + z x − iy
x + iy 1 − z

)
.

Noting that here (x, y, z) plays the role of (θ1, θ2, θ3), we
get the quantum Fisher information

Q(γ) =1 + 1
1 − r2

 x
y
z

 (x, y, z),

which is not diagonal. By straightforward calculation, we
have

Q−
1
2 (γ) =1 − 1 −

√
1 − r2
r2

 x
y
z

 (x, y, z).

For any rank-one POVM M as expressed in equation
(9), the outcome probabilities are

ql =
al
2 (1 + z cos θl + x sin θl cosϕl + y sin θl sinϕl).

The matrix elements of the measurement-induced classi-
cal Fisher information C(ρ|M) = (Cij) can be evaluated as

C11 =
∑
l

a2l
4ql

sin2 θl cos2 ϕl , C22 =
∑
l

a2l
4ql

sin2 θl sin2 ϕl ,

C12 =
∑
l

a2l
4ql

sin2 θl sinϕl cosϕl ,

C13 =
∑
l

a2l
4ql

sin θl cos θl cosϕl ,

C23 =
∑
l

a2l
4ql

sin θl cos θl sinϕl , C33 =
∑
l

a2l
4ql

cos2 θl .

Then we can calculate the Fisher concord F(γ|M) directly.
We omit the tedious expressions. It is remarkable that even
though the quantum Fisher information is not diagonal,
we still get the following information conservation rela-
tion

trF(γ|M) = 1.
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3.2 Two-qubit systems

Now we turn to two-qubit systems, We �rst consider par-

allel spins |n, n〉 with |n〉 =
(

cos θ2
eiϕsin θ2

)
, which can be

represented in vector form

|n, n〉 =


cos2 θ2

1
2 e

iϕsinθ
1
2 e

iϕsinθ
e2iϕsin2 θ2

 .

under the standard basis {|00〉, |01〉, |10〉, |11〉}. Put ρ‖ =
|n, n〉〈n, n|, the quantum Fisher information can be di-
rectly calculated as

Q(ρ‖) =
(

2 0
0 2 sin2 θ

)
.

Since it is di�cult to parameterize all the POVMs (even
rank-one POVMs) on two-qubit systems, we consider some
special but important POVMs as investigated in Refs. [11,
21]. One of them is the von Neumann measurement Φ =
{|Φl〉 : l = 1, 2, 3, 4} with mutually orthogonal projectors
[21]

|Φl〉 =
√
3
2 |nl , nl〉 +

1
2 |Ψ

−〉, (12)

where |Ψ−〉 = (|01〉 − |10〉)/
√
2 denotes the singlet state,

and

|n0〉 =
(

1
0

)
, |n1〉 =

i√
3

(
1√
2

)
,

|n2〉 =
i√
3

(
1

−1+i
√
3√

2

)
, |n3〉 =

i√
3

(
−1

1+i
√
3√

2

)
,

with the corresponding Bloch vectors

n0 =(0, 0, 1),

n1 =
1
3(
√
8, 0, −1),

n2 = −
1
3(
√
2, −
√
6, 1),

n3 = −
1
3(
√
2,
√
6, 1)

actually pointing to the four vertices of a tetrahedron. Note
that the phases of |nl〉 are so chosen such that |Φl〉 de�ned
by equation (12) are mutually orthogonal.

The measurement-induced classical Fisher informa-
tion ρ‖ with respect to the parameters θ and ϕ can be di-
rectly evaluated as

Cθ(ρ‖|Φ) =
∑
l

1
ul

(∂ul
∂θ

)2
= 1,

Cϕ(ρ‖|Φ) =
∑
l

1
ul

(∂ul
∂ϕ

)2
= sin2 θ,

respectively. Consequently, Fisher concord of the parallel
spins ρ‖ is

F(ρ‖|Φ) = Q−
1
2 (ρ‖) C(ρ‖|Φ)Q−

1
2 (ρ‖) =

1
2

(
1 0
0 1

)
,

which implies that

trF(ρ‖|Φ) = 1.

As we can see, the POVM Φ has the same e�ciency in ex-
tracting information from the twoparameters θ andϕ from
the states ρ‖.

Next we consider antiparallel spins

|n, −n〉 =


−12sinθ
eiϕcos2 θ2
−eiϕsin2 θ2
1
2 e

2iϕsinθ


expressed in the standard base {|00〉, |01〉, |10〉, |11〉}. Let
ρ⊥ = |n, −n〉〈n, −n|. The quantum Fisher information of
the antiparallel spins can be evaluated as

Q(ρ⊥) =
(

2 0
0 2 sin2 θ

)
.

For an alternative von Neumannmeasurement Ψ = {|Ψl〉 :
l = 1, 2, 3, 4} with [21]

|Ψl〉 =
√
3
2 |Ωl〉 +

1
2 |Ψ

−〉, (13)

where |Ωl〉 = (|nl , −nl〉 + | − nl , nl〉)/
√
2, and |nl〉 are the

same as before, while

| − n0〉 =
(

0
1

)
, | − n1〉 =

i√
3

( √
2
−1

)
,

| − n2〉 =
−i√
3

(
1+i

√
3√

2
1

)
, | − n3〉 =

i√
3

(
1−i

√
3√

2
1

)
,

which guarantee that |Ψl〉 de�ned by equation (13) are
mutually orthogonal. The measurement-induced classical
Fisher information of ρ⊥ with respect to the parameter θ
and ϕ can be evaluated as

Cθ(ρ⊥|Ψ) = 2, Cϕ(ρ⊥|Ψ) = 2 sin2 θ.

The Fisher concord can be directly calculated as

F(ρ⊥|Ψ) = Q−
1
2 (ρ⊥)C(ρ⊥|Ψ)Q−

1
2 (ρ⊥) =

(
1 0
0 1

)
.

The POVM Ψ has the maximal e�ciency for extracting the
information of the parameters θ and ϕ simultaneously. In
this case,

trF(ρ⊥|Ψ) = 2.
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Thus all the p = 2 parameters can be estimated at their
quantum limit, which stands in sharp contrast to the par-
allel spins case.

Finally, we consider the Bell-diagonal states of two
qubits which have the density operators

ρab = 1
4

(
1 +

3∑
i=1

θiσi ⊗ σi
)
, (14)

where σi are the three Pauli matrices, and θ = (θ1, θ2, θ3)
is the parameter vector.

Now we regard Bell diagonal states (14) as a kind of
parametrization around the point θ = (0, 0, 0), and we
want to know the optimal Fisher concord at this center
point.

By direct calculations, we know the quantum Fisher
information at this point is the identity matrix Q(ρab) = 1.
For the Bell measurement β = {|βkl〉 : k, l = 0, 1} with
|βkl〉 :=

(
|0, l〉 + (−1)k|1, 1⊕ l〉

)
/
√
2 being the eigenvec-

tors of the Bell-diagonal states, the measurement-induced
classical Fisher information with respect to the three pa-
rameters θi are Cii = 1 for i = 1, 2, 3. Hence, the
Fisher concord of the Bell-diagonal states at the origin
θ = (0, 0, 0) can be directly calculated as

F(ρab|β) = Q−
1
2 (ρab)C(ρab|β)Q−

1
2 (ρab) = 1.

The Bell measurement has the maximal e�ciency for all
the parameters θ1, θ2, θ3 simultaneously at the point θ =
(0, 0, 0). Correspondingly,

trF(ρab|β) = 3.

The trace of Fisher concord at the point θ = (0, 0, 0)
achieves its maximal value, and all the p = 3 parameters
can be estimated at their quantum limit.

4 Conclusions
Motivatedbyquantumdiscord andconditional density op-
erator, we have introduced the notion of Fisher concord,
which is a measure of e�ciency of quantummeasurement
in extracting parameter information. It is de�ned by com-
paringmeasurement-induced classical Fisher information
with quantum Fisher information, and depends on both
the parameterized states and the quantum measurement
performed on the states. In contrast to quantum discord,
which is intended to quantify the quantumness of correla-
tions in bipartite states, Fisher concord quanti�es the rel-
ative accessibility of Fisher information, and as such, it is
inversely related to the discordmeasure. Large Fisher con-
cord implies small interference betweenmeasurements for

di�erent parameters. Several examples are explicitly ana-
lyzed in terms of Fisher concord, which exhibit interesting
conservation relations of Fisher concord.

In summary, Fisher concord plays a dual role: Firstly,
with focus on quantum states, it quanti�es the accessi-
ble Fisher information in a relative fashion with the quan-
tum Fisher information as the prior. In this sense, it is
a kind of conditional density operator. Secondly, with
focus on quantum measurements, it quanti�es the e�-
ciency of quantum measurement in extracting parameter
information, and summarizes uncertainty relation from
an informational perspective. It may shed light on the
measurement-disturbance tradeo� relations [38–46] and
may be a useful notion in quantummetrology [47–61].
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