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Abstract 

We introduce the notion of AdS preons as the AdS version of BPS preons, the 
conjectured fundamental constituents of M-theory. The AdS preon definition is 
given by a deformation of its 'M-algebraic' version. This leads to a non-commutative 
deformation of the original M-algebra, which we call the AdS-M-algebra and which 
turns out to be osp(1[32). This is also supported by the fact that the D = 4, 6, 10 
counterparts of the D = 11 BPS preon may be identified with wavefunctions which 
describe a tower of free, massless, conformal higher spin fields. 

1 Introduction 

Preons were introduced [1] as the possible fundamental constituents of M-theory. They 
are defined as BPS states that preserve all supersymmetries but one. For D=ll, this 
means 31 supersymmetries out of 32, and hence a preon is labelled as 

IBPS, preon >= IBPS, 31/32 > . (1) 

As it was shown in [1], a k/32-BPS state fork< 32 may be considered as a composite of 
n = 32 - k preons. Fully supersymmetric BPS states (k = 32) do not contain any preons 
and, hence, they are preonic vacua ('vacua of vacua', since all the supersymmetric BPS 
states are stable and are considered themselves as different M-theory vacua); a preon is 
the simplest excitation over such a fully supersymmetric vacuum. At the other extreme, 
a non-supersymmetric (and, hence, non BPS) state, breaking all 32 supersymmetries, is 
a composite of the maximal number, 32, of independent BPS-preons. 

The preon definition [1] also applies to arbitrary D [2]. In D= 4,6,10 BPS preons can 
be associated [2,3] with an infinite tower of free higher spin fields (see [4,5]). This identifi­
cation can be established through the quantization [3,6] of the generalized superparticle [7] 
which provides a dynamical model for a point-like or 0-brane preon [2]. 

The standard realization of M-theory BPS states is provided by supersymmetric solu­
tions of the equations of motion for the D=ll or type II D=lO supergravities, which are 
the low energy limits of M-theory1

. A k/32-BPS state corresponds to a solution preserving 
k of the 32 supersymmetries. The k-supersymmetric bosonic solutions are characterized 

1 We will not consider here the N=l, D=lO supergravity-SYM interacting systems describing the low 
energy limits of the two heterotic string and type I 'corners' of M-theory. 
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by k bosonic Killing spinors associated with the preserved supersymmctries. These obey 
the generalized Killing spinor equations 

'Df 1 ":=df 1 "+~f/f0b1J"w0h-f/ti/'=O, (ci) E1"M"1i=O, (b) l = l , ... ,k.(2) 

In eq . (2a) , D = d - u: = d - w - t is the generalized covariant derivativl' involving the 
generalized conuec:tion WiJ" = wr,1,'' + t[/', where w1,µ" = ~wr, abrabB" is the spin <·onnection 
<1nd tfJ" is a tensorial contribution which, as the matrix MnB in the algebraic equation 
(2b), is constructed from the fluxes (the field strengths of the gauge fields) and scalars in 
the suprrgravity multiplets. In D=ll supergravity [8] cq. (2b) is absent and the tensorial 
<:ontrihution in (2a) reads t/' = fse° Fo.b1b,b,rb,b,li,,ri'' + 1 .;./~ "C,b 1 1,,b,b,/1" pbibzb,b,,, where 
F1 = dC3 = tee'/\ ... /\ ec' Fc, ... r., is the field strrngth of the three-form gauge field C3 . 

A hypothetical preonic supergravity solution would have 31 Killing spin01s, €1". Since 
there is only one bosonic spinor ,\" orthogonal to all of them, 

€,",\fl = () , l=l, ... ,31, a= 1, ... , 32 (3) 

a preonic solution may also be characterized by such a preon'ic spinor ,\". 
Algebraically, any k/32 is allowed for a BPS state [9, 10]. However, only solutions for 

the following number of preserved supersymmetries have been found at present 

k = u, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32 

(sec e.g. [11]); the preonic solution is conspicuously missing in this list. 
The interest on the possible existence of 31/32-supersymmetric i.e. preonic solutions, 

began around 2003 [12--14]. Recently, a series of no-go results have been obtained for 
the 'free', classical D=ll and D=lO type II supergravities [15-18] (see [19] for a review 
and further references2

). However, for supergravity with quantum (a') corrections and/or 
brane sources the existence of preonic solutions is still open (see [16] and [19] for further 
discu8sion). Moreover, even the possible absence of preonic solutions in the presence of 
quantum corrections and sources from superbranes would not preclude the preon hypoth­
esis, as such a 'preon com;piracy ' would still allow us to consider all supersymmetric BPS 
states as composites of preons (in the same way as, by way of an analogy, quark con­
finement does not. prevent the existence of quarks). However, a dynamical mechanism 
to construct k/32-BPS states out of 31/32-preons is not known. A further study of the 
formal, algebraic properties of preons might shed light in this direction. With this in 
mind, we consider here the AdS version of the BPS preon. 

To motivate the problem, let us begin by noting that the supergravity solutions that 
describe fully supersymmetric BPS states include [21], besides the Minkowski vacuum of 
superPoincare symmetry, the AdS(p+2) x S(D- p- 2) spaces, (D,p) = (11, 2), (11, 5), (10, 3), 
and the pp-wave spaces which will not be considered here. Thus, preons may correspond 
to the simplest excitations over the Minkowski vacuum or over an Ar.ZS x S vacuum. 
However, their original definition was based on the M-algebra [22], which is associated 
with a generalized superPoincare supersymmetry3 . Although the M-algebraic language is 

2 A very recent (20] paper states that the maximal fraction ( # 1) of supersymmetries preserved by a 
solution of the (again, free and classical) type IIB supergravity is 28/32 , 

3 This generalization of the superPoincare algebra is given by the semidirect sum of the M-algebra (22] 
and so(l, 10) (alternatively, one may take GL(32, IR) '1S the M-algebra automorphism group [24]), which 
can be shown to be an expansion (25] of the osp(ll32) superalgcbra. The (32+528)-dimensional M-algebra 
it.self, which is the maximal central extension of the abelian {Q,Q}=O algebra of 32 fcrrnionic generatms 
(see (26]), is a contrnction of the usp(ll32) supeialgebta. Such a contraction is possible because the 
M-algcbra and osp( 1132) have tl1c same dimcll~ion 
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meant to be universal (as suggested i.e. by the study of lvl - and D-brane systems), and 
thus the 1neo11 notion [1] is uot restricted t.o consicleriug excitations over the l'viinkowski 
varnum, it is natural t.o ask omselves whether preons can be defined in terms of an Ac!S­
basc?d p;Pnernlization of the M-algcbra, which we call the AdS-M-algebm. Our conclusion , 
which follows from the AdS preon generalization to be presented below, is that the AdS­
lVI-algebrn is identified with osp(1[32), which in our preonic context appears naturally as 
a dr.fonrw.t·ion of the !VI-algebra (see [23] for pp-wave related superalgebras). The rnsP 
for osp(1[32) as a generalized AclS superalgebra in D=ll had been made in [27- 29] (sec? 
also [30-34] for related considerations). The osp(1[32) superalgebra had already bePn 
singled ont in the original D=ll supergravity paper [8], and also used as a starting point 
for a discussion of the gauge structure of D=ll supergravity (35, 36]; its relevance in 
lvl-theory was put forward in [37] . 

Not surprisingly, our AdS pn~on is related to the description of free massless conformal 
AdS higher spin theories [38, 39] in the generalized AdS superspaces given by the OSp 
supergroup manifolds [40-42]. 

2 BPS preons, preonic supermultiplet and the M-algebra 

As a hypothetical preonic supergravity solution, an abstract BPS preonic state may 
be characterized by one bosonic preonic spinor ,\, 

IBPS, preon >=I A>, (4) 

orthogonal (t,'' Aa = 0, cf. eq. (3)) to the 31 bosonic t,C' spinors that characterize the 
supersymmetries preserved by the BPS preon, 

l=l, ... ,31. (5) 

Due to eq. (3), eq. (5) implies that Q0 i A> ex Aa . This may be expressed as 

(6) 

where [ Al >is a fermionic state (assuming that the original preonic state [ A> is bosonic, 
as befits a state corresponding to a purely bosonic solution of supergravity). The simplest 
preonic supermultiplet contains only two states, I A > and I Al >, 

(7) 

The action of the supersymmetry generator on I Al > can be defined in terms of the same 
bosonic spinor A0 so that 

(8) 

These supersymmetry transformations may be collected in one compact equation 

xx= 1 ( x = e ~)) , (9) 

in terms of the preonic supermultiplet [ j.A.51
'per > > (7) and a Clifford algebra variable X· 
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Now, assuming that >. 0 is a c-number which, in particular, implies that >.,, commutes 
with the supersymmetry charges, 

(10) 

we conclude that the supersymmetry transformations generate the M-algebra, 

[Pn/31 Q-y] =0, (11) 

Indeed, using (10) we find from (8) that both the BPS preon and its superpartner are 
eigenstates of the generalized momentum PoJJ (here characterized as the most general 
r.h.s. for the {Q", Q/3} anticommutator). The common eigenvalue matrix of I>. > and 
l>.f > is given by the tensor product >.0 >./3 of two copies of the bosonic preonic spinor >., 

(12) 

As >.0 is a c-number (eq. (10) also implies P0 f3A-y = >.-yPaf3), one easily finds that the [P, P] 
commutator on a preonic state or on the preonic supermultiplet is zero ([P, P] I I>. > >= 0). 
We then conclude, if we do not allow the presence of further generators, that [P, P] = 0 
since the possibility [P, P] = cP, allowed by Grassmann parity conservation, is ruled out 
because the preonic spinor is nonvanishing and [P, P] I>. >= c>.>.I>. >= 0 requires c = 0. 

Thus, as we have shown, the original definition of the BPS preon [1] is related to the 
M-algebra (11). This generalizes the superPoincare algebra (see footnote 3) by involving 
the general spin-tensorial generator P0 p = Pp" which includes, in addition to the standard 
translation generator Pm (through f 0 p = Pmf~p), a set of tensorial central charges that 
reflect the existence of extended objects in M-theory: they can be realized as topological 
charges for various branes [43] (see also [26,44]). 

3 AdS preons 

The previous discussion indicates that to find an AdS generalization of the BPS preon 
notion one needs dropping the commutative character ( eq. (10)) of the preonic spinor. 
Indeed, it was using this property that we arrived at a realization of the M-algebra (11) 
on the preonic supermultiplet. 

When looking for the AdS generalization of the BPS preon it is convenient to intro­
duce the radius R of the AdS space to require that in the 'flat' R -7 oo limit the AdS 
preonic supermultiplet becomes the M-algebraic one. Further, we shall assume that the 
supersymmetry generators transform the AdS preon and its superpartner among them­
selves as in (6), but with a noncommuting but still Grassmann even preonic spinor Aa 
which replaces the c-number >.0 , 

(13) 

To have a suitable R -7 oo limit we conclude that [A0 , Ap] ex ~· As the required 
coefficient is a dimensionless antisymmetric spin-tensor, it is natural to identify it with 
C0 p. In such a way we find the following algebra and explicit realization of the Aa spinors: 

(14) 
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Notice that the rr.µlat:emPnt .\,. ---t .\,,can be: treated as passiuµ; to the i\loyal stat product, 

,\; . --1 . \" . = ,\, * 

Sl'!' [-ll] Eqs. (1--1) , (1.i) dC'tl'IllliIH' a dcf<n"/11.al:iou . tll!' lC'Slllt or which is ihl' ll!lll­
l'.llllllllllt.ati\"il~· of the.\,,. In thr• R ---t ·'.Xl limit, t.lw spium .\ 0 bccorncs the rn1uu111la­
tiw pw011ic spinor .\ 0 • Thus, tlH' Hnt. lilllit of the At!S ]Heon reproduces thf' oriµ;inal 
i\l-algnbrnic BPS preon ddiuitiou [l], of which the At!S pn•on is a def01matio11 . 

Denot.iug the AdS pretmic su1wnuultiplct also b~- 11,\Sl'P'''' >>, as in eq. (7). tht• two 
equations iu eq . (13) are rnlll'l'Lf'tl in a single cquatio11 (cf. (9)), 

l\X = 1 (ii). 

which involves the Clifford algelJia element \ (s<'<' <'q. (9)) and tlw non-cm11m11t.ativc! 
prconic spinor J\ 0" eq. (14). 

4 AdS preons and osp(ll32) as the AdS-M-algebra 

Our definition of AdS prcon suggPst.s that I h1• lll 'OlH'I .-\dS generalization of the l'vl­
algebra, the AdS-M-algebra, is giwn by o.,11(ll:t!). 

Indeed, on the preonic supcrmullip!t•t llH• _-\dS SllJH'Isymmetry gcneratots are repre­
sented by Q"' = xAo., Eq. (16a). Comput.iuf!; t lH• ;111tit·o111rnutator of two charges, one easily 
finds that it gives a noncommutatiw set of g111wrat.ors, 1Wafl := { Q,,, Qfl} = 2A(r.ArJ)l the 
commutation relations of which determine the i;µ(n) algebra. 

Thus the AdS preonic superrnultiplet is associated with t.he following representation 

(17) 

of the generators of osp( 1132), 

2 
{Qo., QIJ} = Af0 f3, [ MafJ, Q,] = RC-r(nQfJ), 

2 
[ Mo{J, M,o] = R(C,(oM(3)6 + c5(o.lvl{J),) . (18) 

Now, the special role of the BPS preon in the classification of the !'>'I-theory BPS stateH 
[l] indicates that the the appropriate AdS generalization of the M-algebra, the AdS­
M-al_qebra, is the orthosymplectic osp(l 132) superalgebra, Eq. (18), as also argued in 
[27-29,37] from va1ious points of view 

Notice that our guiding principle has been the existence of an AdS counterpart of the 
l'vl-algrbraic definition of thr BPS preon, rather than the presence of central charges 1• 

Since the AdS preon turns out to be a noncommulative deformation of the BPS one, it 
i~ natural that the associated AdS-lvl-algebra be a non-commutative deformation of thr 
M-algcl>rn. Imleed, the the M-algebra (11) is obtained by a contraction of osp(ll32) (18) 

'1 This last point of view was aclopted in [33] to look for a possible AdS generalization of the iVl-algebra 
by tryiur; to iucorporatc the tcns01fal central charr;cs (treated as topological charr;e' of superbraucs) iuto 
the AdS

1
, x 3V-p supcralgcbra (i.e. the superalgebra associated with thr. supersymmctry of supcrnpaces 

with bosonic bodies give11 by ArLS,, x 5D-,, for fixed D and p), but. this lPads to an infinite dimensional 
st 1 pcralgcbrn. 
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(scl~ footnote 3). Reciprocally, osp(ll32) is a deformation of the lvl-algehra characterized 
by tlw radius ddormation parameter R in (18). 

In matrix form, tlw preouic represent.at.ion of the osp(ll32) genrrnt.orn it. writt.Pn as 

H = (2A(nAIJ) 0 . ) 1 
" 11 (J 2A A . (n /l) 

(19) 

The basic cmrmrntation relations of An together with Llw 111nfJ l'CJlll'Sentation in (17) arc~ 

collec:t.ed in the mnltiplic:ation rule 

(20) 

Tlw AdS prcon may be described by a scalar superficld on the OSp(l 132) supergroup 
manifold. We will discuss this elsewhere [49], and only mention herr that this superfield 
is then= 32 (D = 11) element of a family of scalar field theories on OSp(lln) manifolds, 
tlw n. = 4 representative of which, OSp(l 14), describes the higher spin theory in AdS1 

spacetirne; the n = 8 and n = 16 cases, 0Sp(ll8) and 0Sp(ll16), likely describe the 
corresponding massless conformal higher spin theories on the AdS6 and AdS 10 spaces5 . 

5 Conclusions and discussion 

In this contribution we have presented the Ac\S version of the M-algebraic definition 
of the BPS prcon. Although the M-algebra language is supposed to be universal, and so 
it is the preon concept [1], the question of the AdS generalization arises naturally when a 
preon is considered as an excitation over a completely supersymmetric AdS vacuum. 

Our AdS preon is described by a non-commutative deformation of the M-algebra 
BPS preon definition in [1] (eq. (16) is a deformation of (9), see also (15)). This is 
supported by the observation that the D = 4, 6, 10 counterparts of the BPS preon can be 
identified [2, 46] with the tower of all the free massless, conformal higher spin fields in the 
corresponding fiat Minkowski spaces [3,6,45] . Then, as far as the AdS generalization of the 
tensorial superspace higher spin equations is also known [41, 42, 46], we may identify the 
wavefunction of AdS preon state with the OSp(l 132) counterpart of the scalar superfield 
on the OSp(l 14) supermanifold which describes [41, 42, 46] all the conformal higher spin 
fields in AdS4 space. As the generalized AdS geometry of the free AdS higher spin fields 
is formulated on the OSp(lln) supergroup manifolds (see footnote 5), our construction 
indicates that the AdS-M-algebra is given by osp(ll32) [27-29,37]. This osp(ll32) appears 
as a deformation of M-algebra associated with the non-commutative AdS deformation of 
the M-algebraic definition of the BPS preon [1 ]. 

The absence of tensorial charges and the appearance of the non-commutative sp(32) 
part Maf3 in osp(ll32) (eq. (18)), replacing the abelian Paf3 of the M-algebra (11), makes 
now not obvious how to describe algebraically the fraction of AdS supersymmetry pre­
served by an Ac\S preon; in contrast, the supersymmetry preservation is typical of a BPS 

5Specifically, free conformal higher spin theories in D=4,6,10 flat, Minkowski spaces may be described 
by means of scalar superfields on flat n=4,8,16 tensorial superspaces (3,6,45]. In the AdS case, the D=4 
massless higher spin theory may be described by a scalar superfield on the 0Sp(ll4) group manifold 
[41, 42). Howevm·, the possibility of describing conformal higher spin theories in the D = 6, 10 AdS 
spacetirnes by means of scalar superfields on 0Sp(ll8), 0Sp(ll16), albeit likely, has still to be proven by 
methods similar to those used in (3] for the flal c:asc. 
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state· wh<·11 st.uclir.d in the l'vI-algr.lirn language. To clarifv this poiut our rnu look at. the 
dnia111i«al [H!'o11ic O-lira1H' mocl1,J on th<• OSp( 1111) snpr.rgroup 111a11ifold [40]. II' hose q11a11-

l.imt io11 i11 tlu· D = 4 = 11. ras<' l<•acls to a srnlai snpcrfidd 011 OSp(ll ·l) 11<-snihillg th<' 
.-\dS 11igl!C'r spin li1!lds ['12] . The SllJH'i s>'lllllJC't rv pn·s<·nwl Ii.\· i llf' ground stnt1· of 1 his 
IJJ()(lc•l is 31-parmnl'tt'ic, n•latC'd to its :H-p1ua111dric 11·-s:vrurnl'try, mnl t.h11s this grouml 
st11il' is a BPS ptr.on (!hr .-\clS pwo11). l!o\l'<'Y<!L t.hc• actiou of this prrscn,·ecl part of the• 
. .\dS snpc•rsYmm<'t.ry on I his pu•ouic st: ate' i., (.\" 8

, fJ1J)- clr.pr.lld<'ut. (as it is the' g1•11c1«1lizc•d 
AclS sup1Ts.vmrnl'tr:v acting 011 OSv( l I 11) s1qw1g10up lllimifolcl) Thus, this presc•rvaticrn 
is cliffirult to SC'<' iu tlw abstract (lHa-ket) quantum uwchanical language. This cxplaills 
\\'h\· th<• ptc•o11ic l'f'JllC'Seut.atiou of the• OS'p supC'rsymmct1y gt'llc1ators (6) callnol lH• obvi­
ousl>· tut11slai<'d ill terms of preserv1Ylsupr.rsymmet.ries. Instead, the' AclS pr<'on dcfinil.ioll 
appears as a dr;fonn.ation of the staterneul that a preou breaks just uuc• s11persyuu11etry, 
\\'hich provides au equivalent definition of a 13PS prcon in tlw M-algelirnic language. 

The not.ion of AdS prcon introduced here suggests that tlw search for a dynamical 
nwchanism 1.0 build k/32-13PS states oul. of BPS preons may be related to tlw problem of 
finding a consistent interaction theory of a tower of massless conformal highc'r spiu fields. 
Illt<~rnc:tiug, massless conf01 mal higlwr spin theories were constrnctccl iu [38]. However in 
0111 pr conic context we ueccl to havr~ such an internctinq higher spiu theory fonnulatcd 
on (curved) tensorial superspaccs (sec [3, G, 45, 46] for the free, flat case). This is still 
Hnknown, alt.hough some progress in this direction has been made [50] by introducing 
higher spin gauge potentials ill the description of free AdS higl1er spin theories 011 OSJJ 
SUJH'rmauifolds. 
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