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Abstract

We introduce the notion of AdS preons as the AdS version of BPS preons, the
conjectured fundamental constituents of M-theory. The AdS preon definition is
given by a deformation of its ‘M-algebraic’ version. This leads to a non-commutative
deformation of the original M-algebra, which we call the AdS-M-algebra and which
turns out to be osp(1|32). This is also supported by the fact that the D = 4,6, 10
counterparts of the D = 11 BPS preon may be identified with wavefunctions which
describe a tower of free, massless, conformal higher spin fields.

1 Introduction

Preons were introduced [1] as the possible fundamental constituents of M-theory. They
are defined as BPS states that preserve all supersymmetries but one. For D=11, this
means 31 supersymmetries out of 32, and hence a preon is labelled as

|BPS , preon >= |BPS, 31/32> . (1)

As it was shown in [1], a k/32-BPS state for k < 32 may be considered as a composite of
n = 32 — k preons. Fully supersymmetric BPS states (k = 32) do not contain any preons
and, hence, they are preonic vacua (‘vacua of vacua’, since all the supersymmetric BPS
states are stable and are considered themselves as different M-theory vacua); a preon is
the simplest excitation over such a fully supersymmetric vacuum. At the other extreme,
a non-supersymmetric (and, hence, non BPS) state, breaking all 32 supersymmetries, is
a composite of the maximal number, 32, of independent BPS-preons.

The preon definition [1] also applies to arbitrary D [2]. In D= 4,6,10 BPS preons can
be associated [2,3] with an infinite tower of free higher spin fields (see [4,5]). This identifi-
cation can be established through the quantization [3,6] of the generalized superparticle [7]
which provides a dynamical model for a point-like or 0-brane preon [2].

The standard realization of M-theory BPS states is provided by supersymmetric solu-
tions of the equations of motion for the D=11 or type II D=10 supergravities, which are
the low energy limits of M-theory!. A k/32-BPS state corresponds to a solution preserving
k of the 32 supersymmetries. The k-supersymmetric bosonic solutions are characterized

!We will not consider here the N=1, D=10 supergravity-SYM interacting systems describing the low
energy limits of the two heterotic string and type I ‘corners’ of M-theory.
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by k bosonic Killing spinors associated with the preserved supersymmetrics. These obey
the generalized Killing spinor equations

De,® i=de," + te, Tus®w™® — €, t55=0, (0) €"Mag=0,(0) I=1,...,k.(2)

1%
In eq. (2a), D =d —w = d—w — t is the generalized covariant derivative involving the
generalized connection wg® = wpg” +15, where wy s = %wL“bF“w“ is the spin connection
and tg* is a tensorial contribution which, as the matrix Mg in the algebraic equation
(2D), is constructed fromn the fluxes (the field strengths of the gauge fields) and scalars in
the supergravity multiplets. In D=11 supergravity (8] cq. (2b) is absent and the tensorial
contribution in (2a) reads t3® = ﬁe“Fa_bl,,ZbaI"“'“"“ﬁ" + ﬁ'da‘lrublbzbmﬂ“F”""-’bS”", where
Fy=dCs = ie“ A...ANeE, ., is the field strength of the three-form gauge field Cj.

A hypothetical preonic supergravity solution would have 31 Killing spinors, ¢,%. Since

there is only one bosonic spinor A, orthogonal to all of them,
€% =0, T=Tss5v;8L; w=1555582 5 (3)

a preonic solution may also be characterized by such a preonic spinor A,.
Algebraically, any £/32 is allowed for a BPS state [9,10]. However, only solutions for
the following number of preserved supersymmetries have been found at present

k=0,1,2,3,4,5,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32

(sce e.g. [11]); the preonic solution is conspicuously missing in this list.

The interest on the possible existence of 31/32-supersymmetric 7.e. preonic solutions,
began around 2003 [12-14]. Recently, a series of no-go results have been obtained for
the ‘free’, classical D=11 and D=10 type II supergravities [15-18] (see [19] for a review
and further references?). However, for supergravity with quantum (') corrections and/or
brane sources the existence of preonic solutions is still open (see [16] and [19] for further
discussion). Moreover, even the possible absence of preonic solutions in the presence of
quantum corrections and sources from superbranes would not preclude the preon hypoth-
esis, as such a ‘preon conspiracy’ would still allow us to consider all supersymmetric BPS
states as composites of preons (in the same way as, by way of an analogy, quark con-
finement does not prevent the existence of quarks). However, a dynamical mechanism
to construct k/32-BPS states out of 31/32-preons is not known. A further study of the
formal, algebraic properties of preons might shed light in this direction. With this in
mind, we consider here the AdS version of the BPS preon.

To motivate the problem, let us begin by noting that the supergravity solutions that
describe fully supersymmetric BPS states include [21], besides the Minkowski vacuum of
superPoincaré symmetry, the AdS(, 9y x S®~P~2 spaces, (D,p) = (11,2), (11,5), (10,3),
and the pp-wave spaces which will not be considered here. Thus, preons may correspond
to the simplest excitations over the Minkowski vacuum or over an AdS x S vacuum.
However, their original definition was based on the M-algebra [22], which is associated
with a generalized superPoincaré supersymmetry®. Although the M-algebraic language is

!

2A very recent [20] paper states that the maximal fraction (# 1) of supersymmetries preserved by a
solution of the (again, free and classical) type IIB supergravity is 28/32,

3This generalization of the superPoincaré algebra is given by the semidirect sum of the M-algebra [22)
and so(1,10) (alternatively, one may take GL(32, R) as the M-algebra automorphism group [24]), which
can be shown to be an ezpansion [25] of the 0sp(1|32) superalgebra. The (32+528)-dimensional M-algebra
itself, which is the maximal central extension of the abelian {Q,Q}=0 algebra of 32 fermionic generators
(sce [26]), is a contraction of the osp(1|32) superalgebra. Such a contraction is possible because the
" M-algebra and osp(1]32) have tlic same dimension
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meant to be universal (as suggested i.e. by the study of M- and D-brane systems), and
thus the preon notion [1] is not restricted to considering excitations over the Minkowski
vacuum, it is natural to ask ourselves whether preons can be defined in terms of an AdS-
based generalization of the M-algebra, which we call the AdS-M-algebra. Our conclusion,
which follows from the AdS preon generalization to be presented below, is that the AdS-
M-algebra is identified with osp(1]32), which in our preonic context appears naturally as
a deformation of the M-algebra (see [23] for pp-wave related superalgebras). The case
for 0sp(1|32) as a generalized AdS superalgebra in D=11 had been made in [27-29] (sec
also [30-34] for related considerations). The osp(1|32) superalgebra had already been
singled out in the original D=11 supergravity paper [8], and also used as a starting point
for a discussion of the gauge structure of D=11 supergravity (35, 36]; its relevance in
M-theory was put forward in [37],

Not surprisingly, our AdS preon is related to the description of free massless conformal
AdS higher spin theories [38,39] in the generalized AdS superspaces given by the OSp
supergroup manifolds [40-42].

2 BPS preons, preonic supermultiplet and the M-algebra

As a hypothetical preonic supergravity solution, an abstract BPS preonic state may
be characterized by one bosonic preonic spinor A,

|BPS , preon >=| A >, 4)

orthogonal (¢,%*\q = 0, ¢f. eq. (3)) to the 31 bosonic ¢,“ spinors that characterize the
supersymmetries preserved by the BPS preon,

€°Qul A>=0, I=1,...,31. (5)
Due to eq. (3), eq. (5) implies that Q4| A > o A,. This may be expressed as
Qa|)‘>: )‘al)‘f>= (6)

where | A/ > is a fermionic state (assuming that the original preonic state | A > is bosonic,
as befits a state corresponding to a purely bosonic solution of supergravity). The simplest
preonic supermultiplet contains only two states, | A > and | A/ >,

super “ |)\ >
a5 = (W> . (7)

The action of the supersymmetry generator on | A/ > can be defined in terms of the same
bosonic spinor A, so that

Qol A>=Xa| M >, QoM >=X 2> . (8)
These supersymmetry transformations may be collected in one compact equation

1. super 0 1
Qal| AP >>= x Ao || NP >> | xx =1 <x= (1 0)) 3 9)

in terms of the preonic supermultiplet [|A**P¢" >> (7) and a Clifford algebra variable x.
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Now, assuming that A, is a c-number which, in particular, implies that )\, commutes
with the supersymmetry charges,

Qpra = Aalp , (10)
we conclude that the supersymmetry transformations generate the M-algebra,
{QﬂvQﬂ}:Paﬂv [PaﬂvQ"/]:O’ [Pﬂﬁ7P75]:O‘ (11)

Indeed, using (10) we find from (8) that both the BPS preon and its superpartner are
eigenstates of the generalized momentum P,y (here characterized as the most general
r.h.s. for the {Qa, Qp} anticommutator). The common eigenvalue matrix of |A > and
[/ > is given by the tensor product A,Ag of two copies of the bosonic preonic spinor A,
Paﬁ|/\ >= /\&’\ﬁ|/\ 2,

o Pog||ATPET >>= X Ag|| AT >> | 12

{Pagl/\f >= )\a)\gl)\j>, 019” BH ( )

As )\, is a c-number (eq. (10) also implies PagAy = Ay Pag), one easily finds that the [P, P]
commutator on a preonic state or on the preonic supermultiplet is zero ([P, P]||A >>= 0).
We then conclude, if we do not allow the presence of further generators, that [P, P] = 0
since the possibility [P, P] = ¢P, allowed by Grassmann parity conservation, is ruled out
because the preonic spinor is nonvanishing and [P, P]|A >= ¢AA|X >= 0 requires ¢ = 0.

Thus, as we have shown, the original definition of the BPS preon [1] is related to the
M-algebra (11). This generalizes the superPoincaré algebra (see footnote 3) by involving
the general spin-tensorial generator Pog = P, which includes, in addition to the standard
translation generator Py, (through Pup = PnI'ly), a set of tensorial central charges that
reflect the existence of extended objects in M-theory: they can be realized as topological
charges for various branes [43] (see also [26,44]).

3 AdS preons

The previous discussion indicates that to find an AdS generalization of the BPS preon
notion one needs dropping the commutative character (eq. (10)) of the preonic spinor.
Indeed, it was using this property that we arrived at a realization of the M-algebra (11)
on the preonic supermultiplet.

When looking for the AdS generalization of the BPS preon it is convenient to intro-
duce the radius R of the AdS space to require that in the ‘flat’ R — oo limit the AdS
preonic supermultiplet becomes the M-algebraic one. Further, we shall assume that the
supersymmetry generators transform the AdS preon and its superpartner among them-
selves as in (6), but with a noncommuting but still Grassmann even preonic spinor A,
which replaces the c-number A,,

QalA>=AA >, QuldT>=Ad) >,  [As, Ag] #0. (13)

To have a suitable R — oo limit we conclude that [A,, Ag] o< %. As the required

coefficient is a dimensionless antisymmetric spin-tensor, it is natural to identify it with
Cup. In such a way we find the following algebra and explicit realization of the A, spinors:

7 g

7
[An ) Aﬁ] = _ﬁ aff Aa = )\a - ZI‘{‘C&ﬂ W (14)
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Notice that the replacement A, — .\, can be treated as passing to the Moyal star product,
Ao 2 Na = Aox (15)

see [H1). Eqs. (14), (15) determine a deformation. the result of which is (he non-
commutativity of the \,. In the I — oo limit, the spinor .\, becomes the comnnila-
tive preouic spinor A,. Thus, the flat limit of the AdS preon reproduces the original
M-algebraic BPS preon definition [1], of which the AdS preon is a deformation.

Denoting the AdS preonic supermultiplet also by ||[A**" >> as in eq. (7). the wo
equations in eq, (13) are collected in a single equation (ef. (9)),

— g i 1)

QoA >>= xAo|| AP >> (a), xx=1 (). \i=I—-—=C

iR gy (00 U0)

which involves the Clifford algebra clement y (see eq. (9)) and the non-commutative
preonic spinor A, eq. (14).

4  AdS preons and osp(1/32) as the AdS-M-algebra

Our definition of AdS preon suggests that the proper AdS generalization of the M-
algebra, the AdS-M-algebra, is given by osp(1]32).

Indeed, on the preonic supermultiplet the AdS supersymmetry generators are repre-
sented by Qo = xAa, Eq. (16a). Computing the anticommutator of two charges, one easily
finds that it gives a noncommutative set of generators, Mg = {Qn, Qp} = 2A(Agy, the
commutation relations of which determine the sp(n) algebra.

Thus the AdS preonic supermultiplet is associated with the following representation

Qn = X/\(, ) A/fog = 2A("A/j) (17)

of the generators of osp(1|32),

2
{Qa 5 Qli} - 1"[a[3 3 [A/[o{i) Q’y] — ﬁc'y(aQﬂ) 3
2
[ IVfaﬁ, A/[76] = E(C‘Y(ﬂj\/lﬂ)‘s + Cg(al‘/[ﬁ).y) i (18)

Now, the special réle of the BPS preon in the classification of the M-theory BPS states
[1] indicates that the the appropriate AdS generalization of the M-algebra, the AdS-
M-algebra, is the orthosymplectic osp(1]32) superalgebra, Eq. (18), as also argued in
[27-29,37] from various points of view,

Notice that our guiding principle has been the existence of an AdS counterpart of the
M-algebraic definition of the BPS preon, rather than the presence of central charges'.
Since the AdS preon turns out to be a noncommutative deformation of the BPS one, it
is natural that the associated AdS-M-algebra be a non-commutative deformation of the
M-algebra. Indeed, the the M-algebra (11) is obtained by a contraction of osp(1[32) (18)

! This last point of view was adopted in [33] to look for a possible AdS generalization of the M-algebra
by trying to incorporate the tensorial central charges (treated as topological charges of superbrancs) into
the AdS, x SP=P superalgebra (i.e. the superalgebra associated with the supersymmetry of superspaces
with bosonic bodies given by AdS, x SP=" for fixed D and p), but this leads to an infinite dimensional
superalgebra.
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(sce footnote 3). Reciprocally, osp(1]32) 1s a deformation of the M-algebra characterized
by the radius deformation parameter IR in (18).
In matrix form, the preouic representation of the osp(1]32) generators it written as

0 A, 2 A 0
W= (An 0) " M””:< 0 2A((.Am> ' (19)

The basic commutation relations of A, togethier with the M5 representation in (17) are
collected in the multiplication rule

Aahy = —ﬁc&ﬁ + %M(,ﬂ . (20)
The AdS preon may be described by a scalar superfield on the OSp(1|32) supergroup
manifold. We will discuss this elsewhere [49], and only mention here that this superfield
is the n = 32 (D = 11) element of a family of scalar ficld theoriecs on OSp(1|n) manifolds,
the n = 4 representative of which, OSp(1]4), describes the higher spin theory in AdS,
spacetinie; the n = 8 and n = 16 cases, OSp(1|8) and OSp(1|16), likely describe the
corresponding massless conformal higher spin theories on the AdSgs and AdS,, spaces®.

5 Conclusions and discussion

In this contribution we have presented the AdS version of the M-algebraic definition
of the BPS precon. Although the M-algebra language is supposed to be universal, and so
it is the preon concept [1], the question of the AdS generalization arises naturally when a
preon is considered as an excitation over a completely supersymmetric AdS vacuum.

Our AdS preon is described by a non-commutative deformation of the M-algebra
BPS preon definition in [1] (eq. (16) is a deformation of (9), see also (15)). This is
supported by the observation that the D = 4,6, 10 counterparts of the BPS preon can be
identified [2,46] with the tower of all the free massless, conformal higher spin fields in the
corresponding flat Minkowski spaces [3,6,45]. Then, as far as the AdS generalization of the
tensorial superspace higher spin equations is also known [41,42,46], we may identify the
wavefunction of AdS preon state with the OSp(1|32) counterpart of the scalar superfield
on the OSp(1]4) supermanifold which describes [41,42,46] all the conformal higher spin
fields in AdSy space. As the generalized AdS geometry of the free AdS higher spin fields
is formulated on the OSp(1|n) supergroup manifolds (see footnote 5), our construction
indicates that the AdS-M-algebrais given by osp(1}32) [27-29,37]. This osp(1]32) appears
as a deformation of M-algebra associated with the non-commutative AdS deformation of
the M-algebraic definition of the BPS preon [1].

The absence of tensorial charges and the appearance of the non-commutative sp(32)
part Mag in 0sp(1|32) (eq. (18)), replacing the abelian P,g of the M-algebra (11), makes
now not obvious how to describe algebraically the fraction of AdS supersymmetry pre-
served by an AdS preon; in contrast, the supersymmetry preservation is typical of a BPS

5Specifically, free conformal higher spin theories in D=4,6,10 flat, Minkowski spaces may be described
by means of scalar superfields on flat n=4,8,16 tensorial superspaces [3,6,45]. In the AdS case, the D=4
massless higher spin theory may be described by a scalar superfield on the OSp(1]|4) group manifold
[41, 42]. However, the possibility of describing conformal higher spin theories in the D = 6,10 AdS
spacetimes by means of scalar superfields on OSp(1|8), OSp(1|16), albeit likely, has still to be proven by
" methods similar to those used in [3] for the flat case.
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state when studied in the M-algebra language. To clarify this poiut one can look at the
dynamical preonic 0-brane model on the OSp(1]n) supergroup manifold [40]. whose quan-
tization in the D = 4 = n case leads to a scalar superfield on OSp(1]4) describing the
AdS ligher spin fields [42]. The supersvimmetry preserved by (he gronnd state of this
model is 31-parametric, related to its 31-parametric s-symmetry, and thus this ground
state is a BPS preon (the AdS preon). However, the action of this preserved part of the
AdS supersyiumetry on this preouic state is (X% 6%)- dependent (as it is the generalized
AdS supersynunetry acting on OSp(1|n) supergroup manifold). Thus, this prescervation
is difficult to see in the abstract (bra-ket) quantum mechanical language. This explains
why the preouic representation of the OSp supersymmetry generators (6) cannol be obyvi-
ously translated in terms of preserved supersymmetries. Instead, the AdS preon definition
appears as a deformation of the statement that a preon breeks just one supersynmmetry,
which provides an equivalent definition of a BPS preon in the M-algebraic language.

The notion of AdS preon introduced here suggests that the search for a dynamical
mechanism to build &/32-BPS states out of BPS preons may be related to the problem of
finding a consistent interaction theory of a tower of massless conformal higher spin fields.
Interacting, massless conformal higher spin theorics were constructed in [38]. However in
owr preonic context we need to have such an interacting higher spin theory formulated
on (curved) tensorial superspaces (sec [3,6,45,46] for the free, flat case). This is still
unknown, although some progress in this direction has been made [50] by introducing
higher spin gange potentials in the description of free AdS higher spin theories on OSp
supermanifolds.
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