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We discuss a possibility that a superconformal dynamics induces the emergence of a global U (1)PQ
symmetry to solve the strong CP problem through the axion. Fields spontaneously breaking the U (1)PQ
symmetry couple to new quarks charged under the ordinary color SU (3)C and a new SU (N) gauge 
group. The theory flows into an IR fixed point where the U (1)PQ breaking fields hold a large anomalous 
dimension leading to the suppression of U (1)PQ-violating higher dimensional operators. The spontaneous 
breaking of the U (1)PQ makes the new quarks massive. The U (1)PQ symmetry is anomalous under the 
SU (3)C but not under the SU (N) so that the axion couples to only the color SU (3)C and the usual 
axion potential is generated. We also comment on a model that the U (1)PQ breaking fields are realized 
as meson superfields in a new supersymmetric QCD.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The strong CP problem is an intriguing puzzle to motivate 
physics beyond the Standard Model (SM). The current upper bound 
on the neutron electric dipole moment constrains the absolute 
value of the QCD vacuum angle θ̄ to be smaller than 10−11 [1,2]. 
Unlike other naturalness problems in the SM, some shifts of θ̄

would not provide a visible change in our world. The most com-
mon explanation for the strong CP problem is the introduction of 
a pseudo-Nambu-Goldstone boson, called axion a [3,4], associated 
with spontaneous breaking of a global U (1) Peccei-Quinn (U (1)PQ) 
symmetry [5] (for reviews, see e.g. refs. [6,7]). Non-perturbative 
QCD effects break the U (1)PQ explicitly and generate a potential of 
the axion whose minimum sets θ̄ to zero. Astrophysical observa-
tions provide a lower limit on the U (1)PQ breaking scale, fa � 108

GeV [8].
A sufficiently small θ̄ requires the U (1)PQ symmetry to be re-

alized to an extraordinary high degree. However, quantum gravity 
effects do not respect such a global symmetry. We naturally ex-
pect U (1)PQ-violating higher dimensional operators suppressed by 
appropriate powers of the Planck scale MPl [9–13]. Although a dis-
crete Zn symmetry can forbid some of the operators, to suppress 
sufficiently higher order terms requires n � 10 which appears very 
contrived. Other solutions to this axion quality problem have been 
explored by many authors. They include composite axion mod-
els [14–22], models with a gauged symmetry (e.g . U (1)) different 
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from the U (1)P Q [23–30], extra dimension models [31–36] and 
heavy axion models [37–43].

In this letter, we explore an alternative approach to the ax-
ion quality problem that a superconformal dynamics induces the 
emergence of the U (1)PQ symmetry. Our model begins with the 
existence of a discrete ZN with N ∼ 5 which ensures that the 
model respects the U (1)PQ symmetry at the renormalizable level. 
We introduce a SU (N) supersymmetric gauge theory with (anti-
)fundamental quarks, some of which are also charged under the 
ordinary color SU (3)C . The ZN symmetry is anomaly-free under 
the SU (3)C as well as the SU (N). All the new quarks couple 
to fields responsible for the spontaneous U (1)PQ breaking. The 
theory flows into an IR fixed point where the U (1)PQ breaking 
fields hold a large anomalous dimension. Then, even if there ex-
ist higher dimensional operators dangerously violating the U (1)PQ
at the Planck scale, those operators are significantly suppressed at 
low-energies. The similar mechanism has been discussed in the 
context of the Nelson-Strassler model to realize quark and lepton 
mass hierarchies [44] (for a more recent development using the 
a-maximization technique [45], see refs. [46,47]). According to the 
AdS/CFT correspondence [48], the approach is similar to that of the 
warped extra dimension model discussed in ref. [34]. However, to 
the best of our knowledge, our model is the first 4D calculable 
realization to utilize a conformal dynamics to suppress U (1)PQ-
violating higher dimensional operators. The spontaneous breaking 
of the U (1)PQ makes all the new quarks massive. The new quarks 
leading to a large anomalous dimension of the U (1)PQ breaking 
fields also play the role of the so-called KSVZ quarks [49,50]. Since 
the U (1)PQ symmetry is anomalous under the SU (3)C but not un-
der the SU (N), the axion couples to only the color SU (3)C and the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The charge assignments under the SU (N) gauge group, the U (1)PQ

(and ZN ) and the anomaly-free U (1)R which determines anomalous 
dimensions of the fields. Here, m = 1, · · · , N f /2 and k = N f /2 +
1, · · · , N f where N f is even.

Q m Q̄ m Q k Q̄ k � �̄

SU (N) N N N N 1 1
U (1)PQ (ZN ) +1 0 −1 0 −1 +1

U (1)R
N f −N

N f

N f −N
N f

N f −N
N f

N f −N
N f

2N
N f

2N
N f

usual axion potential is generated. The SU (N) finally confines and 
predicts the existence of SU (N) glueballs.

While the U (1)PQ breaking fields are introduced as elementary 
fields in the main part of the present work, we will also comment 
on a possibility that they are realized as meson superfields in a 
new supersymmetric QCD (SQCD). Interestingly, in the magnetic 
picture of the theory [51,52], the coupling of the U (1)PQ breaking 
fields to dual quarks is automatic.

2. The model

Let us consider a supersymmetric SU (N) gauge theory with 
N f vector-like pairs of chiral superfields in the (anti-)fundamen-
tal representation, Q I , Q̄ I (I = 1, · · · , N f ). Here, N f is assumed 
to be even. We focus on 3

2 N < N f < 3N where the theory is in 
conformal window [52]. To implement the QCD axion, we intro-
duce two SU (N) singlet chiral superfields �, �̄ charged under the 
U (1)PQ symmetry. They are coupled to the new SU (N) quarks in 
the superpotential,

W Q = λ�Q m Q̄ m + λ̄�̄Q k Q̄ k , (1)

where λ, λ̄ denote dimensionless couplings, m runs from 1 to 
N f /2 and k runs from N f /2 + 1 to N f . These terms explic-
itly break the original SU (N f )L × SU (N f )R flavor symmetries in 
the theory into SU (N f /2)1 × SU (N f /2)2. A subgroup SU (3) ⊂
SU (N f /2)1 is weakly gauged and regarded as the ordinary color 
SU (3)C in the SM.1 Barring the effect of this SU (3)C , the cou-
plings flow into λ = λ̄ at low-energies. The charge assignments 
under the U (1)PQ symmetry are summarized in Table 1. The 
U (1)PQ symmetry is not anomalous under the SU (N) but has the 
U (1)PQ − SU (3)C − SU (3)C anomaly whose coefficient is given by 
AU (1)PQ−SU (3)C −SU (3)C = N . Then, an anomaly-free discrete symme-
try ZN ⊂ U (1)PQ is realized, which leads to the U (1)PQ symmetry 
at the renormalizable level. Below, we will discuss Planck-scale 
suppressed U (1)PQ-violating operators, but those operators must 
respect the ZN symmetry. The fields �, �̄ obtain a non-zero vac-
uum expectation value (VEV) via the superpotential,

W ′
X = κ ′ X(2��̄ − f ′2) , (2)

which breaks the U (1)PQ symmetry spontaneously. Here, X is a 
singlet chiral superfield, κ ′ is a dimensionless parameter and f ′ is 
a constant with a mass dimension.2

The gauge theory is in conformal window and believed to have 
a non-trivial IR fixed point. Here, let us assume the SU (N) gauge 
coupling g , λ and λ̄ approach values at the fixed point and the 
theory is in the conformal regime between the energy scales �
and Mc (� > Mc). We will demonstrate the existence of the IR 
fixed point later. In this regime, the conformal dynamics generates 

1 We can gauge a subgroup SU (5) ⊂ SU (N f /2)1 to accommodate the SU (5)

grand unified theory. The following discussion is the same for this possibility.
2 The superpotential W ′

X explicitly breaks the anomaly-free U (1)R symmetry in 
the gauge theory. We assume that κ ′ does not enter a fixed point.
2

a large anomalous dimension of �, �̄ through the superpotential 
terms of Eq. (1). The wave function renormalization factor of �
(and �̄) at IR is given by

Z� =
(

Mc

�

)−γ�

, (3)

where γ� = 6 N
N f

− 2 is the anomalous dimension of � which is 
exactly determined in terms of the anomaly-free U (1)R charges 
summarized in Table 1. We now canonically normalize � as

� =
(

Mc

�

)γ�/2

�̂ , (4)

whose hat ˆ denotes a field in the canonical normalization. Then, 
the superpotential (2) is rewritten in terms of the normalized 
fields,

W X = κ

(
Mc

�

)γ�

X(2�̂ ˆ̄� − f 2) , (5)

where κ ∼ κ ′ is dimensionless and f ∼
(

Mc
�

)−γ�/2
f ′ is a constant 

with a mass dimension. The U (1)PQ breaking scale is determined 
by f which also gives the conformal breaking, Mc ∼ f . The wave 
function renormalization factor of Eq. (3) will play a key role in 
suppressing U (1)PQ-violating higher dimensional operators as we 
will see below.

Once the U (1)PQ breaking fields �, �̄ obtain the VEV, all the 
new quarks Q I , Q̄ I become massive, and then the axion-gluon 
coupling is generated in the effective Lagrangian after the integra-
tion of the new quarks,

Leff ⊃ N
a

Fa

g2
c

32π2
GG̃ , (6)

where a denotes the axion, G is the field strength of the gluon, 
G̃ is its dual, gc is the QCD gauge coupling constant and Fa/N =√

2 f /N is the axion decay constant. The same axion-gluon cou-
pling is obtained in the KSVZ axion model [49,50] with N flavors 
of SU (3)C vector-like quarks. Since the U (1)PQ symmetry is not 
anomalous under the SU (N), the terms in Eq. (1) do not lead to 
the axion-SU (N) gluon coupling even after the integration of the 
quarks. The axion potential is obtained via the non-perturbative 
QCD effect,

V ∼ m2
π f 2

π cos

(
N

a

Fa

)
, (7)

where mπ and fπ are the pion mass and the decay constant re-
spectively and m2

π f 2
π = (0.1 GeV)4. Then, the strong CP problem 

is solved in the ordinary way. After the decoupling of Q I , Q̄ I , the 
model becomes a SU (N) pure Yang Mills theory. Because of a large 
gauge coupling of the SU (N) at the fixed point, the theory confines 
just below the conformal breaking scale Mc and predicts heavy 
SU (N) glueballs and their superpartners.

3. Axion quality

To address the axion quality problem, explicit U (1)PQ breaking 
terms must be highly suppressed compared to the axion potential 
generated by the non-perturbative QCD effect (7). The most dan-
gerous Planck-scale suppressed operator respecting the ZN sym-
metry is the superpotential term such as

W��PQ ∼ �N

MN−3
Pl

∼
(

Mc

�

) Nγ�
2 �̂N

MN−3
Pl

, (8)
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which leads to the scalar potential in supergravity with e.g . 
the constant term W = m3/2M2

Pl of the superpotential via V ⊃
−3W W ∗/M2

Pl,

V��PQ =
(

Mc

�

) Nγ�
2 κ��PQ m3/2�̂

N

MN−3
Pl

. (9)

Here, m3/2 is the gravitino mass, κ�PQ is a model dependent coeffi-

cient, and �̂ denotes the scalar component which is the same no-
tation as the chiral superfield for notational simplicity. The U (1)PQ-
violating axion potential is then obtained as

V��PQ ⊃
(

Mc

�

)N(3N/N f −1) κ��PQ m3/2 F N
a

MN−3
Pl

cos

(
N

a

Fa
+ ϕ

)
, (10)

where ϕ denotes a CP phase and γ� = 6 N
N f

− 2 has been used. We 
now define the axion quality factor Q by

V��PQ ≡ Qm2
π f 2

π cos

(
N

a

Fa
+ ϕ

)
. (11)

Assuming ϕ = O(1), the experimental upper bound on the θ̄ pa-
rameter [1,2] requires Q � 10−10 to secure the axion quality.

Fig. 1 shows the contours of Q calculated from the potential 
(10) in the m3/2 − Fa/N plane. Here, we take N f = 2 N , Mc =
Fa , κ��P Q = 1, and � = 0.1 MPl. The solid and dashed lines denote 
the quality factor Q = 10−10, 10−8, respectively. The axion decay 
constant Fa/N is constrained from the supernova 1981A observa-
tion, Fa/N � 108 GeV [8]. We can see from the figure that there 
is a parameter space to solve the axion quality problem for N ≥ 5. 
While the case of N = 4 is not shown in the figure, Q = 10−5 is 
obtained for Fa/N ∼ 108 GeV and m3/2 ∼ 1 eV.

Other potentially dangerous U (1)PQ-violating operators are

W ′
��PQ ∼ (Q m Q̄ m)N−k�̄k

M2N−k−3
Pl

∼ (Q̂ m
ˆ̄Q m)N−k ˆ̄�k

M2N−k−3
Pl

(
�

Mc

)γ�
N−2k

2

,

(12)

with k = 0, · · · , N − 1. While these operators will not lead to the 
axion potential by themselves, we must be careful because they 
are enhanced at low-energies due to the negative anomalous di-
mension of Q Q̄ . However, for e.g . N f = 2N , � (�̄) and Q Q̄ have 
the same scaling dimension 3/2, and then Eq. (12) can be rewrit-
ten as

W ′
��PQ ∼

(
Mc

�

) N
2 ˆ̄�N

MN−3
Pl

(
Q̂ m

ˆ̄Q m

ˆ̄� Mc

)N−k(
�

MPl

)N−k

, (13)

which is suppressed compared to Eq. (8) for 〈 ˆ̄�〉 ≈ Mc and � <
MPl. We also note that U (1)PQ-violating operators in the Kähler 
potential are negligible compared to those in the superpotential.

4. The IR fixed point

Let us now discuss the existence of the IR fixed point for the 
SU (N) gauge coupling g and λ, ̄λ in the superpotential (1). We 
first ignore the effect of the SU (3)C gauge coupling and solve the 
renormalization group equations (RGEs) for g , λ and λ̄,
3

Fig. 1. The contours of the quality factor Q calculated from the potential (10) in the 
m3/2 − Fa/N plane. We take N f = 2 N , Mc = Fa , κ��P Q = 1 and � = 0.1 MPl . The solid 
and dashed lines correspond to the quality factor Q = 10−10, 10−8, respectively.

Fig. 2. The RG flows of g and λ from a scale �0 to μ = 10−9�0 for different initial 
values. Blue and red dots correspond to the cases using the one and two-loop RGEs 
for λ, respectively. The arrows show the directions of the flows. We take N = 5, 
N f = 10 and λ̄ = 2 at �0. The blue circle around the center denotes the IR fixed 
point of Eq. (16) which is obtained by comparing the anomalous dimensions at one-
loop (15) to those determined by the U (1)R charges. The anomalous dimensions up 
to the two-loop order (24) are used to find the values of the couplings at the red 
circle.

dg

dt
= − g3

2

b0 + 1
2

∑
m

(
γ 1

Q m
+ γ 1

Q̄ m

)
+ 1

2

∑
k

(
γ 1

Q k
+ γ 1

Q̄ k

)
8π2 − C A g2

,

dλ

dt
= λ

2

(
γ 1

� + γ 1
Q m

+ γ 1
Q̄ m

)
,

dλ̄

dt
= λ̄

2

(
γ 1

�̄
+ γ 1

Q k
+ γ 1

Q̄ k

)
,

(14)

where t = ln(μ/�0) with μ being the RG scale, C A = N and b0 =
3N − N f . Here, we use the exact NSVZ β function [53–55] for the 
RGE of the gauge coupling, while the RGEs of λ and λ̄ are shown 
at the one-loop level. The anomalous dimensions are given by

γ 1
Q m

= γ 1
Q̄ m

= − 1

8π2

(
2C2 g2 − λ2

)
,

γ 1
Q k

= γ 1
Q̄ k

= − 1

8π2

(
2C2 g2 − λ̄2

)
,

γ 1
� = 1

8π2
λ2N N f /2 ,

γ 1
�̄

= 1

8π2
λ̄2N N f /2 ,

(15)

with C2 = N2−1
2N . We also calculate the RGEs for λ and λ̄ at the 

two-loop level whose expressions are summarized in appendix. 
Fig. 2 shows the RG flows of g and λ from a scale �0 to μ =
10−9�0 for different initial values as a demonstration. We take 
N = 5, N f = 10 and λ̄ = 2 at �0. Blue and red dots correspond 
to the cases using the one and two-loop RGEs for λ, respectively. 
The figure illustrates both couplings flow into a non-trivial IR fixed 
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Fig. 3. Left panel: The flow of γ 2
� for gc = 0, 1, 2 and g = λ1 = λ2 = λ̄ = 2 at �0 denoted by the black solid, red dashed, green dotted lines, respectively. Right panel: The flow 

of the wave function renormalization factor Z� for gc = 0, 1, 2 and g = λ1 = λ2 = λ̄ = 2 at �0. The color code and the line style are the same as those of the left panel.
point. The blue circle around the center denotes the values of g
and λ obtained by comparing the anomalous dimensions at one-
loop (15) to those determined by the U (1)R charges in Table 1,

g2∗
8π2


 N

N2 − 1

γ�

2

(
1 + 2

N N f /2

)
,

λ2∗
8π2


 γ�

(N f /2)N
,

(16)

where γ� = 6 N
N f

− 2. The anomalous dimensions up to the two-

loop order (24) are used to find the values of the couplings at the 
red circle. We also plot the anomalous dimension of � at two-loop 
γ 2

� in the left panel of Fig. 3 (black solid). We take N = 5, N f =
10 and g = λ = λ̄ = 2 at the initial scale �0. The figure indicates 
that γ 2

� converges to γ� = 6 N
N f

− 2 = 1. Therefore, the theory is 
expected to enter the conformal regime in the IR region as we 
have assumed in the above discussion.

The IR fixed point can be disturbed by the SU (3)C gauge cou-
pling. To discuss this effect, we first decompose the superpotential 
term in Eq. (1) as

W Q ⊃ λ Q m Q̄ m → λ1 �Q a Q̄ a + λ2 �Q α Q̄ α , (17)

where Q a, Q̄ a (a = 1, 2, 3) denote the fundamental and anti-
fundamental representations of the SU (3)C gauge group, Q α, Q̄ α

(α = 4, · · · , N f /2) are the quarks that are not charged under the 
SU (3)C and λ1,2 are dimensionless couplings. The anomalous di-
mensions including the SU (3)C effect at the two-loop level are 
summarized in appendix. We use the one-loop RGE for the SU (3)C

gauge coupling,

dgc

dt
= − 1

16π2
g3

c b3 , (18)

which is solved as

4π

g2
c

= 4π

g2
c

∣∣∣∣
μ=Mc

+ b3

2π
ln(μ/Mc) , (19)

where we take b3 = 3 − N for μ > Mc by assuming all the new 
quarks have masses around Mc . Here, the factor 3 is from the 
MSSM particles and the factor −N is from the Q a, Q̄ a quarks. For 
N = 5, the SU (3)C gauge coupling becomes asymptotic non-free. 
In this case, we obtain gc ≈ 1 around μ = 1017 GeV for the spec-
trum of the MSSM particles at about 10 TeV and 4π/g2

c |μ=Mc ≈ 20
at Mc = 108 GeV. We numerically solve the two-loop RGEs from 
a scale �0 to μ = 10−9�0. The left panel of Fig. 3 shows the 
flow of γ 2

� for gc = 1, 2 at �0 denoted by the red dashed and 
green dotted lines, respectively. The initial values of the couplings 
at �0 are g = λ1 = λ2 = λ̄ = 2. We also plot the flow of the 
wave function renormalization factor Z� for gc = 0, 1, 2, 3 and 
g = λ1 = λ2 = λ̄ = 2 at �0 in the right panel of Fig. 3. From the 
4

figures, we can confirm that γ 2
� converges into the one without 

the SU (3)C effect and the smallness of Z� enables to solve the 
axion quality problem.

5. A model with the dual picture

So far, we have discussed the model where the U (1)PQ breaking 
fields are introduced as elementary fields, but here let us comment 
on a possibility that they are realized as meson superfields in a 
new SQCD. Consider a SU (N f − N) SQCD with N f vector-like pairs 
of quarks whose dual magnetic picture is given by a SU (N) SQCD 
with the same number of flavors Di, D̄i (i = 1, · · · , N f ) [51]. In 
the magnetic theory, there also exist meson chiral superfields Mi

j
which are coupled to the dual quarks through the superpotential,

Wmag = y Mi
j Di D̄ j , (20)

where y is a dimensionless coupling. For 3
2 N ≤ N f ≤ 3N , this 

gauge theory is in conformal window for both the electric and 
magnetic pictures and flows into an IR fixed point. We now gauge 
a diagonal SU (3) subgroup of the SU (N f )L × SU (N f )R flavor sym-
metry in the theory and identify it as the SM color gauge group. 
For notational convenience, we decompose the mesons Mi

j into

Mi
j =

⎛
⎜⎝

Ma
1b Ma

4β Ma
6 j̄

Mα
5b Mα

2β Mα
8 j̄

Mī
7b Mī

9β Mī
3 j̄

⎞
⎟⎠ , (21)

where a, b (= 1, 2, 3) denote the color SU (3)C indices, α, β =
4, 5, 6 and ī, ̄j = 7, · · · , N f . The U (1)PQ charges are, for example, 
assigned as shown in Table 2. With these assignments, the U (1)PQ

symmetry is not anomalous under the SU (N) but is anomalous 
under the SU (3)C . With the decomposition of Eq. (21), we can see 
that the superpotential (20) contains the terms similar to those in-
troduced in Eq. (1),

Wmag ⊃ y M1 Da D̄a + y M2 Dα D̄α . (22)

Here, we have defined M1 ≡ 1
3Ma

1a and M2 ≡ 1
3Mα

2α . Note that 
M1,2 are color singlet but U (1)PQ charged. Once they obtain non-
zero VEVs, we get the axion-gluon coupling (6). As before, the 
U (1)PQ symmetry at the renormalizable level is ensured by an 
anomaly-free ZN ⊂ U (1)PQ. Explicit U (1)PQ-violating higher dimen-
sional operators are suppressed due to large anomalous dimen-
sions of M1,2.

Several comments are in order. The IR fixed point can be dis-
turbed by the SU (3)C gauge interaction. In order to keep the elec-
tric/magnetic duality reliable, the values of the couplings in both 
electric and magnetic pictures at the fixed point must be much 
larger than the QCD gauge coupling, which requires the theory to 



Y. Nakai and M. Suzuki Physics Letters B 816 (2021) 136239

Table 2
The matter content of the magnetic picture of the model and the charge assignments under the color SU (3)C and the U (1)PQ (and ZN ). 
Here, a (= 1, 2, 3) denotes the color SU (3)C index, α = 4, 5, 6 and ī = 7, · · · , N f .

Da D̄a Dα D̄α Dī D̄ ī M1 M2 M3 M4 M5 M6 M7 M8 M9

SU (3)C 3̄ 3 1 1 1 1 Adj. + 1 1 1 3 3̄ 3 3̄ 1 1
U (1)PQ (ZN ) +1 0 0 −1 0 0 −1 +1 0 0 0 −1 0 0 +1
be near the middle of conformal window, N f ≈ 2 N . Extra meson 
and quark chiral superfields must get masses appropriately. In par-
ticular, SU (3)C -charged mesons must be stabilized at the origin to 
avoid the color breaking. If M3 ≡ 1

N f −6Mī
3ī

obtains a non-zero 
VEV, all the quarks become massive. Below the scales of M1,2,3
VEVs, the model becomes a confining SU (N) pure Yang Mills the-
ory. Further explorations of this model are left to a future study.

6. Conclusions and discussions

We have considered a possibility that a superconformal dy-
namics helps to solve the strong CP problem through the ax-
ion with a sufficient quality. The U (1)PQ breaking fields are cou-
pled to the new quarks charged under the SU (3)C and the new 
SU (N). The theory flows into a non-trivial IR fixed point where the 
U (1)PQ breaking fields hold a large anomalous dimension leading 
to a strong suppression of explicit U (1)PQ breaking operators. The 
U (1)PQ is anomalous under the SU (3)C but not under the SU (N)

so that the usual axion potential is generated by non-perturbative 
QCD effects.

The model respects the anomaly-free ZN ⊂ U (1)PQ, which re-
alizes the U (1)PQ symmetry at the renormalizable level. If the 
U (1)PQ is spontaneously broken after the end of inflation, cosmic 
strings are formed at a temperature close to the U (1)PQ breaking 
scale (see e.g . ref. [56] for a review on axion cosmology). Below 
around the QCD temperature, domain walls attached to the cosmic 
strings are formed. They are stable due to the ZN symmetry and 
cause a cosmological problem. In order to avoid this, the U (1)PQ
symmetry must be broken before the end of inflation. In this case, 
the axion isocurvature perturbation is produced, which leads to a 
constraint on the Hubble scale of inflation, H inf � 107 GeV. Cosmo-
logical aspects might be an interesting future direction.

We may be able to use the same superconformal dynamics to 
realize the quark and lepton mass hierarchies in the same way as 
the Nelson-Strassler model [44]. Such a possibility has been re-
cently discussed in the 5D context [35]. One extra benefit of this 
scenario is that flavor-dependent soft scalar masses are automati-
cally suppressed [57,58] (see also ref. [59]).
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Appendix A. The two-loop RGEs

Here, we summarize the expressions of the two-loop RGEs for 
g , λ1, λ2 and λ̄. The effect of the SU (3)C gauge coupling is in-
cluded. They are given by
5

dg

dt
= − g3

2

b0 + 1
2

∑
i=a,α,k

(
γ 2

Q i
+ γ 2

Q̄ i

)
8π2 − C A g2

,

dλ1

dt
= λ1

2

(
γ 2

� + γ 2
Q a

+ γ 2
Q̄ a

)
,

dλ2

dt
= λ2

2

(
γ 2

� + γ 2
Qα

+ γ 2
Q̄α

)
,

dλ̄

dt
= λ̄

2

(
γ 2

�̄
+ γ 2

Q k
+ γ 2

Q̄ k

)
,

(23)

with the anomalous dimensions at the two-loop level,

γ 2
Q a

= γ 2
Q̄ a

= − 1

8π2

(
2C2 g2 + 2C ′

2 g2
c − λ2

1

)
+ 2

(16π2)2

[
−λ4

1 − 3Nλ4
1 − N(N f /2 − 3)λ2

1λ
2
2

+2g4(C2 SN(R) + 2C2
2 − 3CN(G)C2)

+2g4
c (C ′

2 S3(R) + 2C ′
2

2 − 3C3(G)C ′
2)

+8g2
c g2C2C ′

2

]
,

γ 2
Qα

= γ 2
Q̄α

= − 1

8π2

(
2C2 g2 − λ2

2

)
+ 2

(16π2)2

[
−λ4

2 − (N f /2 − 3)Nλ4
2 − 3Nλ2

1λ
2
2

+2g4(C2 SN(R) + 2C2
2 − 3CN(G)C2)

]
,

γ 2
Q k

= γ 2
Q̄ k

= − 1

8π2

(
2C2 g2 − λ̄2

)
+ 2

(16π2)2

[
−λ̄4 − N f

2
Nλ̄4

1

+2g4(C2 SN(R) + 2C2
2 − 3CN(G)C2)

]
,

(24)

for Q a, Q̄ a (a = 1, 2, 3), Q α, Q̄ α (α = 4, · · · , N f /2) and Q k, Q̄ k

(k = N f /2 + 1, · · · , N f ), and

γ 2
� = 1

8π2

(
3Nλ2

1 + (
N f /2 − 3

)
Nλ2

2

)
+ 2

(16π2)2

[
−6Nλ4

1 − 2λ4
2N(N f /2 − 3)N

+g2λ2
1C212N + g2

c λ2
1C ′

212 + g2λ2
24N(N f /2 − 3)C2

]
,

γ 2
�̄

= 1

8π2
λ̄2N N f /2

+ 2

(16π2)2

[
−2λ̄4N(N f /2) + g2λ̄24N(N f /2)C2

]
,

(25)

for �, �̄, where C ′
2 = 4/3, CN (G) = N , SN(R) = N f , C3(G) = 3 and 

S3(R) = N + 6.
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