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Abstract: Accelerating trigger applications on FPGAs (using VHDL/Verilog) at the CMS experi-
ment at CERN’s Large Hadron Collider warrants consistency between each trigger firmware and its
corresponding C++model. This tedious and time consuming process of convergence is exacerbated
during each upgrade study. High-level synthesis, with its promise of increased productivity and
C++ design entry bridges this gap exceptionally well. This paper explores the “single source code”
approach using Vivado-HLS tool for redeveloping the upgraded CMS Endcap Muon Level-1 Track
finder (EMTF). Guidelines for tight latency control, optimal resource usage and compatibility with
CMS software framework are outlined in this paper.
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1 Introduction

Acceleration of trigger applications for the CMS experiment in the Large Hadron Collider at CERN
has been traditionally performed on FPGAs using hardware description languages (HDLs) such
as VHDL and Verilog. Specifics of large-scale high-energy physics experiments require that each
trigger firmware design must be accompanied by a software model that can be used for analyzing its
performance, verification of hardware functionality, and other tasks. These software models must
be designed in C++ and be compatible with the CMS software framework, CMSSW.

SinceCMSupgrades firmware algorithms and trigger hardware at regular intervals, the software
models must be constantly kept synchronized with firmware algorithms. The typical approach is
to write these models independently. Since the trigger firmware designs are substantially complex,
creating and maintaining the software models that exactly match firmware behavior is a major
challenge. The final convergence between the firmware and software models is especially tedious;
it sometimes takes months to find and fix small mismatches.

Since 2002, the CSC (cathode strip chamber) track finder system of the CMS Endcap Muon
Level-1 trigger has maintained the C++/RTL (register-transfer level) model consistency by using a
homemade VPP [1] library which automatically generates high performance C++ and Verilog files
from a single source code written following the VPP guidelines. This approach worked extremely
well for the less complex firmware design of the legacy system, providing full consistency between
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firmware and software model automatically. However, the recent hardware upgrade brought much
larger FPGAs and much more complex firmware algorithms, and VPP has become inadequate in
handling increasing complexities.

Recent advancements in high-level synthesis (HLS) tools hold the promise of high productivity
through the use of design entry in C++ that reduces the difficulty for developing and managing code
complexity at the HDL level. However, the major challenge in using HLS is to be able to use C++
constructs to perform fine-grained control of the generated firmware in such a way that it satisfies
the constraints of CMS trigger applications:

• Stringent latency requirements

• Limited FPGA resources

• Compatibility with CMSSW

In this paper, we present our exploration into using a “single-source code” approach in which
we perform software and firmware co-development using Vivado HLS, a C++-based high-level
synthesis tool used for Xilinx FPGAs. Vivado HLS enables us to have a single-source code, which
can be used as the C++ model for verification by physicists and to generate the RTL model to
synthesize firmware for the FPGA.

2 High-level synthesis languages and tools

High-level synthesis holds considerable promise in mitigating the cost of firmware development.
It allows the designer to orchestrate the synthesis of hardware from a higher level of abstraction.
A typical HLS tool consists of a special type of compiler which allows the designer to implement
their designs using a high-level language and then translates the high-level language description
into a RTL description such as VHDL/Verilog. Due to the possibility of using mainstream software
languages such as C/C++ as the design entry, it enables developers to speed up design space
exploration while increasing flexibility and reducing development time.

There are many HLS tools available today and the choice of any HLS tool depends on a broad
set of criteria such as source language, ease of implementation, tool complexity, support for data-
types, verification, latency, and resource usage after synthesis. Some of the HLS tools that were
evaluated for our research were Altera OpenCL for FPGAs [2], BlueSpec [3], and Vivado HLS [4].
The key evaluation criteria for this project are good latency control, resource usage after synthesis,
compatibility of the source code in CMSSW, and ease of verification. For our development, Vivado
HLS perfectly aligned with the stated requirements.

Vivado HLS is an architecture-aware, directives-driven compiler from Xilinx. The design flow
starts with an algorithmic description in C/C++. The design is then functionally verified using a
C testbench. The Vivado HLS compiler synthesizes the RTL design by extracting the control and
datapaths from the HLS code, and maps it to hardware by using scheduling and binding processes
while considering the directives supplied by the user. Vivado HLS supports bit-accurate validation
and provides a useful feature called C/RTL co-simulation where the C and the RTL design can be
co-simulated and validated.
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A key attribute of Vivado HLS critical for this study is that the user can override the defaults
of the HLS compilation process by adding directives (pragmas) to the developed code to satisfy
performance and other requirements and thereby has excellent control over the synthesized RTL.
Just as importantly, the HLS code is compatible with CMSSW [5].

3 CMS level-1 endcap muon track finder

Figure 1. CMS Endcap Muon system. Figure 2. CSC track finder logic.

The objective of the CMS [6] Level-1 Muon Trigger is to detect and efficiently retain muons
with the lowest possible transverse momentum (PT ) that meets the rate reduction requirement of
less than 100 kHz out of a 40MHz input rate.

The CMS endcap region consists of 4 stations (figure 1) and each station is comprised of
cathode strip chambers (CSC). For ease of processing, the endcap region is divided into six 60
degree azimuthal sectors. The track finder logic [7] in each sector, as shown in figure 2, has 10
modules which reconstruct tracks from the track segments a muon registers when it traverses all
4 muon stations. The track finder logic looks for track segments in predefined patterns across all
4 stations.

The CMS Endcap Muon Level-1 track finder (EMTF [8]) module is a part of the Level-1
trigger architecture with a stringent latency requirement. As the design and algorithmic complexity
of trigger algorithms have steadily increased with each upgrade study, the prototyping and validation
processes have also grown increasingly complex. Also, a major challenge for the trigger algorithms
is the uncompromising latency constraint. The permitted latency of the EMTF is 15 clock cycles
at 25 ns per cycle. To satisfy the stringent latency requirement, it is necessary to control the
low-level RTL constructs from the higher abstraction layer. Our study aims to develop the EMTF
firmware using Vivado HLS such that the firmware complies with the uncompromising latency and
compatibility requirements while increasing the design productivity and flexibility considerably.

– 3 –
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4 Increased productivity and flexibility using HLS

High-level synthesis with its automation and refinement of the algorithmic description to the RTL
level reduces the burden of code development and verification drastically. The amount of code
reduces dramatically, saving time and minimizing the probability of mistakes. The higher level
of abstraction eases the handling of increased design complexity and opens avenues for extensive
design space exploration with less effort. The following lessons learned from our study illustrate
the productivity features of HLS.

4.1 Increasing throughput using HLS

Performance throughput of a design can be limited through several reasons such as memory bot-
tleneck, limited pipelined design, false dependencies, and so on. Attaining maximum throughput
for any design requires the developer to systematically analyze the code and optimize it to obtain
the best possible design throughput. The following example describes how Vivado HLS features
can be used to achieve a throughput constraint of 1 output per clock cycle in the Trigger primitive
conversion module (from figure 2).

Consider the for-loop in figure 3 from the Trigger primitive conversion module which is the
first step in figure 2. The for-loop contains 9 iterations, with each iteration being independent from
each other and each iteration accesses a look-up table (LUT) called “params”. The synthesized
design, without any optimization directives (pragmas), resulted in a design with a throughput of 1
output in 9 clock cycles. Also, the default behaviour of the Vivado HLS compiler is to implement
the LUT (declared as a 1-D array in the HLS code) as a Block-RAM (BRAM), thus resulting in a
memory bottleneck which schedules each of the 9 iterations sequentially. To improve the design
throughput, we had to resolve the bottlenecks and coerce the compiler to synthesize a parallelized
design. This was accomplished using the following approach.

Figure 3. Example HLS code illustrating loop unrolling.

1. The operation of the for-loop was parallelized using the HLS UNROLL directive, which
conveys to the compiler that the user wants to have multiple copies of the for-loop body in
the synthesized RTL.

2. The ARRAY_PARTITION directive (figure 4) partitions and resolves the N-element memory
array into N individual registers (FF’s). The result is a design that contains N individual
registers, which effectively removes the memory bottleneck.

3. The HLS PIPELINE directive pipelines the entire design to obtain a throughput of 1 output
per clock cycle.

– 4 –
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#pragma HLS ARRAY_PARTITION variable=params complete dim=1

Figure 4. Array partitioning.

Using a simple set of directives, multiple iterations are unrolled, each having its own loop body
without the designer needing to worry about synchronization issues as required in an HDL design.
The throughput of the design has now improved from 1 output in 9 clock cycles to 1 output per
clock cycle. Furthermore, the corresponding HDL design would require the designer to manually
pipeline the design and individually create and track register assignments.

4.2 Flexibility — instantiation of multiple identical modules

The nature of trigger algorithms is such that they demand massive parallelization. Handling of
extremely large problem instances and processing immense data sizeswhile guaranteeing throughput
establishes the need for parallelization. Such a design in the Phi pattern detector module of the
EMTF algorithm in figure 2 requires 488 separate instances of a function with an additional need
that all variables inside each function instance be persistent. This seemingly onerous task (in HDL)
was accomplished effortlessly by adopting an object-oriented approach (OOPS) using Vivado HLS.

Figure 5. Example HLS code to achieve massive parallelism.

With some careful investigation and experimentation, a design technique (figure 5) based on
OOPS was developed to successfully satisfy the specified requirements. The technique consists of
the following 3 steps:

1. An array of objects is defined with the keyword “static”.

2. The array of objects is partitioned completely using the ARRAY_PARTITION directive.

3. The for-loop that schedules the multiple instances of the function is completely unrolled using
the HLS UNROLL directive.

– 5 –
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The static keyword on the object makes all the member variables persistent over different function
invocations. The ARRAY_PARTITION and the HLS UNROLL directive helps create multiple
independent instances. Thus, by adopting our developed method, we were able to attain massive
parallelism in the Phi pattern detectors module without worrying about synchronizations or keeping
track and updating of innumerable variables to have persistence as required in a VHDL/Verilog
implementation.

5 Fine-grained control using HLS constructs

A major challenge in using HLS for firmware development is to be able to use high-level HLS pro-
gramming constructs to perform fine-grained control of the generated firmware to satisfy stringent
constraints. For example, in the Level-1 trigger, exercising complete control over the latency of
the design is of paramount importance. While it is indeed challenging to control the lower level
RTL implementations from the HLS level, the task is not as strenuous as one might imagine. To
exercise strong control over the latency of the generated design, some novel coding guidelines and
design techniques were devised in the process of our study. The following examples show how we
were successful in exacting control from the Vivado HLS compiler and emulate HDL-like control
employing these schemes.

5.1 Latency control — scheduling of functions and operations

The Sorter module of the EMTF algorithm outputs the 3 best-quality tracks from each of the 4
zones in an azimuthal sector. In simpler words, the module operation consists of selecting the 3
highest numbers from an unsorted array. The baseline Verilog code implements the module by
constructing a comparison tree, retrieving the highest number in the first clock cycle, the second
highest in the second clock cycle, and so on. The latency of the baseline Verilog implementation
is hence 3 clock cycles. This corresponds to 3 separate function calls in HLS. In addition, it is
desirable to reduce the latency of the new design from 3 to 2 clock cycles. The following two
approaches were investigated:

1. A synthesis of the design with the directives (like PIPELINE, UNROLL, etc.) for maximum
throughput still resulted in a latency of 3 clock cycles, with each invocation of the “sort”
function needing 1 clock cycle.

2. Our next approach to optimize the latency was to allow the compiler to optimize the design in
any way it saw fit (using the INLINE1 directive) but with a hard-line latency upper bound of 2
clock cycles (specified using the LATENCY directive). It was observed that after synthesis,
the compiler tries to fit the entire design in 1 clock cycle, resulting in the critical path delay
exceeding the clock period. Further analysis revealed that the undesired behaviour was the
result of the INLINE1 directive, which performed optimization at its own discretion.

It was noted in our investigation that neither having full control nor allowing HLS to take full control
of the synthesis process was instrumental in improving the latency. Hence, a method as shown in
figure 6 was devised that partially gave the control to the compiler and partially to the user:

1INLINE- An in-lined function in C++ instructs the compiler to insert the function definition wherever it is called
thus maximizing optimization opportunities for the HLS compiler.

– 6 –
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1. A duplicate version of the sort function was created and renamed “sort_1”. This is essentially
the same “sort” function albeit with a different name.

2. The first function call to “sort” was not in-lined, but the next two function calls were in-lined.

Figure 6. Example HLS code illustrating scheduling of functions.

By not in-lining the first call, we restrict the HLS compiler from optimizing it in any undesired
manner and hence forcing the compiler to schedule it in a separate clock cycle; i.e., the 1st clock
cycle. The next two function calls that are in-lined allow the HLS to optimize it and schedule them
both in the 2nd clock cycle. Thus, by striking the right balance between the amount of control
given to the HLS compiler and the amount of control retained by the user, we were able to control
the scheduling of the operations. As a result, the latency of the sorter module was improved to 2
clock cycles, saving a valuable cycle in the EMTF algorithm, as opposed to 3 clock cycles in the
corresponding Verilog implementation.

5.2 Construction of a clocked delay line

A shift register is one of the most widely used digital components in a data processing system.
Designing a shift register involves controlling operations and scheduling on each clock edge thus
requiring very fine-grained control. The Polar angle coordinate delay module employs a similar
design to implement a delay line for the outputs generated from the Trigger primitive conversion
module for use in the Patterns to primitive matching module. Realizing a shift register at the HLS
level of abstraction is not trivial, as it requires tight latency control.

Our first attempt at synthesizing a shift register yielded a design where all the intermediate
registers between the input and the outputs were eliminated (i.e., synthesized away). Careful
investigation revealed that the Vivado HLS compiler thinks that the intermediate registers are just
redundant assignments and hence removes them.

A simple coding technique was developed to force the HLS compiler to consider/preserve every
intermediate assignment. This is accomplished by adopting the approach shown in figure 7.

1. A shift register is explicitly created as shown in the for-loop by assigning the previous element
of the array to the next element and so on.

2. The array which is used to create the shift register is declared as “volatile”. This important
keyword coerces Vivado HLS into synthesizing a shift register by preserving each opera-
tion/assignment involving the “volatile” array.

6 Resource usage comparison

The design flow of a high-level synthesis process provides us with an extra level of enhancement of
our implementation by refining the algorithmic description using the HLS compiler. As a result, our

– 7 –
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Figure 7. Example HLS code illustrating synthesis of a shift register.

design now undergoes two levels of optimization, one during synthesis from HLS code to RTL and
the other from RTL to bitstream. With a mature HLS compiler like Vivado HLS and the efficient
coding practices and techniques developed in our study, it was observed that our HLS design of
the EMTF algorithm occupies less area as compared to the baseline RTL implementation in the
majority of the cases, as shown in table 1.

• The HLS versions of the Phi-pattern detectors, Patterns to primitive matching, and the Polar
Angle Co-ordinates delay modules were observed to exhibit decrease in the resource usage
compared to their corresponding Verilog implementations.

• The rest of the modules were observed to use the same amount of logic resources as their
corresponding Verilog implementations, with only the Trigger primitive conversion module
being an exception. The investigation of this spike in resource usage is very hard because it
needs the knowledge of the design of the HLS compiler and how the HLS compiler analyzes
and implements the design, all of which is proprietary to Xilinx.

7 HLS code compatibility and performance comparison on CMSSW

CMSSW is the collection of all the software developed for CMS built around a framework, an event
data model (EDM) and other services for data analytics. It has an extensive toolkit, which is used
to carry out analyzes of data. The primary objective of CMSSW is to facilitate the development of
software for reconstruction and analyzes. Any software developed for CMS must be compatible in
the CMSSW environment. In simpler words, the HLS code developed must be compatible with a
gcc/g++ compiler.

As stated in section 2, one main reason that Vivado HLS was chosen for this project is that it
is a C/C++-based language, which allows for a simpler path to CMSSW compatibility. The main
challenge to achieve this compatibility is the presence of special data-types in the HLS code called
arbitrary precision data-types, which allow the designer to define input and output ports with an
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Table 1. Resource statistics of EMTF modules.

Module HLS (% LUTs) Verilog baseline (% LUTs)
Trigger primitive conversion 12 % 6%

Zone image formation 1% 1%
Zone hit extender 1% 1%
Phi-pattern detector 11% 16%

Sorter 3% 3%
Polar Co-ordinate delay 0% (uses FFs) 2%

Patterns to primitive matching 10% 16%
Delta phi and delta theta calculation 2% 2%

arbitrary number of bits. A C-based design compiled with a gcc compiler does not recognize these
data-types and hence fails to reflect bit-accurate behavior. However, after some investigation, it was
observed that a C++ based design supports the use of arbitrary precision data-types defined in the
SystemC standard. Thus, by using a C++ based design and headers, the HLS code can be compiled,
without change, using a g++ compiler hence making it compatible with the CMSSW environment.

The performance of the HLS code was also compared to that of the previous manually written
C++ code (emulator code) on CMSSW. It was observed that the emulator code was faster by only
a factor of 2, a tolerable factor. The HLS and emulator code for the Trigger primitive conversion
module were compiled in CMSSW and the execution measured times are shown in table 2.

Table 2. Performance comparison of HLS and emulator code.

HLS execution time (s) Emulator code execution time (s)
Trigger primitive 1.197 e-07 5.836 e-08
conversion module

8 Summary and conclusions

FPGAs remain the indisputable choice today in accelerating trigger applications in CMS and it
is highly unlikely to change anytime soon. The desire for more processing capabilities for CMS
trigger applications with each upgrade study results in an increased design complexity, lengthy code
development time and higher verification effort. High-level synthesis languages and tools provide
us with an excellent opportunity to lower these barriers considerably.

This paper presents the EMTF algorithm as a case study in illustrating the convenience and
advantages of using HLS for firmware development. The paper also outlines several coding
methods and devises techniques to exercise control over the synthesized RTL. Example guidelines
for CMSSW compatibility were also established.
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It was observed that all themodules of the EMTF satisfied the stringent performance constraints.
The resource usage statistics were better than the Verilog implementation in the majority of the
cases. At the time of writing this paper, all 10 modules of the EMTF algorithm (figure 2) have been
verified via simulation. Four out of the 10 modules have been successfully tested in firmware on
the Xilinx Virtex-7 XC7VX690T FPGA for 1000 events containing complete tracks. The hardware
output of the Vivado HLS generated RTL code matches perfectly the output of the baseline Verilog
implementation.
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