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Abstract: An extensive review of recent results concerning the quantum field theory of particle

mixing in curved spacetime is presented. The rich mathematical structure of the theory for both

fermions and bosons, stemming from the interplay of curved space quantization and field mixing,

is discussed, and its phenomenological implications are shown. Fermionic and bosonic oscillation

formulae for arbitrary globally hyperbolic spacetimes are derived and the transition probabilities are

explicitly computed on some metrics of cosmological and astrophysical interest. The formulae thus

obtained are characterized by a pure QFT correction to the amplitudes, which is absent in quantum

mechanics, where only the phase of the oscillations is affected by the gravitational background. Their

deviation from the flat space probabilities is demonstrated, with the aid of numerical analyses. The

condensate structure of the flavor vacuum of mixed fermions is studied, assessing its role as a possible

dark matter component in a cosmological context. It is shown that the flavor vacuum behaves as a

barotropic fluid, satisfying the equation of the state of cold dark matter. New experiments on the

cosmic neutrino background, as PTOLEMY, may validate these theoretical results.

Keywords: particle mixing; quantum field theory in curved space; dark matter; neutrino physics

1. Introduction

Field mixing, the mechanism by which particles of a given species (“flavor”) can trans-
form into particles of a distinct species, concerns both the bosonic sector (neutral meson os-
cillations [1–4], axion–photon oscillations [5–9]) and the fermionic sector (neutrinos [10–26]).
Flavor oscillations are overtly a phenomenon beyond the standard model (SM) of parti-
cles [27–32], especially when it comes to neutrinos, which by themselves offer several
challenges to the SM [33–35] where they were originally conceived to be strictly massless.
Many of the fields that are characterized by mixing are so important in astrophysical en-
vironments and in cosmology that a serious analysis of their properties cannot disregard
their interaction with the gravitational background. Axions and more generally axionlike
particles [36–43], although still hypothetical, are among the best motivated components of
dark matter. Neutrinos, on the other hand, literally pervade the universe, and are deemed
to play a fundamental role in its primordial stages [44–47]. In the guise of mass-varying
neutrinos [48,49], they are also linked to the dark energy puzzle [50,51]. It is then desirable
that field mixing, be it bosonic or fermionic, be formulated in a setting that is capable
to deal with gravitational backgrounds. The most reliable framework that we currently
have at our disposal is that of Quantum Field Theory (QFT) in curved spacetime [52–60].
In this work, we give an extensive and self-contained review of the QFT of mixed fields
on curved backgrounds as developed in the references [61–63]. The theory combines the
inherent ambiguity of quantization in curved space with the peculiarities of field mixing,
unveiling a rich mathematical structure and a remarkable phenomenology. The latter
includes generalized oscillation formulae that, depending on the underlying manifold, may
significantly deviate, in amplitude and phase, with respect to their flat space counterpart.
The theory also features a non-trivial vacuum state, the flavor vacuum, endowed with a
peculiar condensate structure. In virtue of condensation, the flavor vacuum carries energy
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and momentum. In particular, the flavor vacuum for mixed fermions offers an intriguing
and economic explanation for dark matter.

Dark matter [64–71] represents to date one of the most important open problems
in cosmology. This additional matter is required to explain the rotation curves of spiral
galaxies and the gravitational stability of galaxy clusters, constituting the prevalent form of
matter in the universe (about 25% of the total energy density [72] against the 5% of baryonic
matter). As such, it is one of the fundamental ingredients in the standard cosmological
model [73]. The composition of dark matter is debated. Possible components include
axions and axionlike particles, WIMPs, supersymmetric particles and massive compact
objects such as primordial black holes [74]. Through the appearance of the condensed
flavor vacuum, the theory of field mixing provides a pure QFT candidate for dark matter,
without invoking new matter fields. An indication for this role of the flavor vacuum was
first discussed in flat space [75] and more recently it has emerged from a curved spacetime
analysis [62]. Possible experimental tests, aimed at probing the dark-matter-like properties
of the flavor vacuum have also been put forward [76,77]. In particular, it has been proposed
that experiments devoted to the detection of cosmic neutrino background, as PTOLEMY,
may be able to observe effects related to the flavor condensate [77].

In the present review, we retrace the whole construction of the QFT of mixed fields in
curved space, giving a thorough account of its theoretical features and of its phenomeno-
logical implications. We discuss the energy-momentum content of the flavor vacuum and
prove that it behaves as a cold dark matter component also in a cosmological background.
The paper is structured as follows. Section 2 introduces the canonical quantization of
free fermionic and bosonic fields in curved space, with an emphasis on the ambiguities
that arise in the particle interpretation. This introductory section fixes the notation and
includes an analysis of the solutions of the relevant equations (Dirac and Klein–Gordon) on
some spacetimes of interest. Section 3 develops the quantization of the flavor fields, dis-
cussing the oscillation formulae for both fermions and bosons. The formalism is applied to
Friedmann–Robertson–Walker (FRW) metrics and to the Schwarzschild spacetime. The flat
space and quantum mechanical limits are also discussed. Section 4 is fully devoted to the
study of the flavor vacuum, with a detailed exposition of the associated energy-momentum
tensor, culminating in the derivation of the dark-matter-like equation of state. In Section 5,
we draw our conclusions.

2. Mass Fields in Curved Space

The diagonalization of the mass term in the field Lagrangian yields N free fields,
whose masses are the eigenvalues of the mass matrix. In the following, we shall exclusively
deal with N = 2 flavors, but the analysis can be easily extended to more flavors. The total
Lagrangian is the sum of two free Lagrangians, so that the action is

SF = ∑
j=1,2

∫

d4x
√

−g

{

i

2

[

ψ̄jγ̃
µ(x)Dµψj − Dµψ̄jγ̃

µ(x)ψj

]

−mjψ̄jψj

}

(1)

SB = ∑
j=1,2

∫

d4x

√−g

2

{

gµν∂µφ†
j ∂νφj −m2

j φ†
j φj

}

, (2)

respectively, for fermions and bosons. The index j = 1, 2 labels the mass fields, g = det(gµν)
is the determinant of the metric gµν, and gµν is its inverse. Notice that the boson fields are
assumed charged and the adjoint symbol † is used in place of complex conjugation, so
that the same action holds in the quantized theory. The fermion action of course assumes
the choice of a tetrad frame e

µ
A(x) provides a basis for the tangent space at x. The basic

properties of the tetrads are given by contraction of the spacetime µ or Lorentz A indices as
(with ηAB = diag(1,−1,−1,−1) the Minkowskian metric)

ηABe
µ
A(x)eν

B(x) = gµν , gµνe
µ
A(x)eν

B(x) = ηAB. (3)
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The spin connection is defined as

ωAB
µ = eA

ρ Γ
ρ
νµeνB + eA

ρ ∂µeρB (4)

with Γ
ρ
νµ the Christoffel symbols. The gamma matrices in curved space are expressed in

terms of their flat space counterpart γA as γ̃µ(x) = e
µ
A(x)γA. To complete the description

of the fermion action, the Dirac adjoint spinor is ψ̄ = ψ†γ0 (notice that only the flat space
γ0 enters here) and the spin derivative acts as

Dµψ =
(

∂µ + Γµ

)

ψ , Dµψ̄ = ∂µψ̄− ψ̄Γµ (5)

where Γµ = 1
8 ωAB

µ [γA, γB]. For the purpose of quantizing the theories of Equations (1)
and (2), we shall assume that the underlying spacetime is globally hyperbolic, admitting a
foliation by Cauchy surfaces Στ , τ ∈ R. These surfaces play the same role as the equal time
surfaces in Minkowski space when imposing the canonical (anti-)commutation relations.
The volume element induced by the metric on Στ shall be written dΣµ

√−g = dΣnµ
√−g,

with nµ the unit timelike vector normal to Στ . We define a surface-wise Dirac delta
by
∫

Στ
dΣ′ f (x′)δΣ(x, x′) = f (x) for any f defined on Στ and x, x′ ∈ Στ . The conjugate

momenta as computed from the actions (1) and (2) are, respectively, Πj = i
√−gψ†

j and πj =√−gg0ν∂νφ†
j . Quantization then proceeds by imposing the equal-τ (anti-)commutation

relations
{

ψj(x),
√

−g(x′)ψ†
k (x′)

}

= δjkδΣ(x, x′);
[

φj(x), πk(x′)
]

= iδjkδΣ(x, x′), (6)

where it is understood that x, x′ ∈ Στ for a given τ and all the other (anti-)commutators vanish.
A fundamental aspect of the actions (1) and (2) is that both Lagrangians are invariant

under global U(1) transformations ψj → eiαψj and φj → eiαφj. This invariance is associated
with the Noether currents

J µ
F = ∑

j=1,2

J µ
F,j = ∑

j=1,2

ψ̄jγ̃
µψj ; J µ

B = ∑
j=1,2

J µ
B,j = −i ∑

j=1,2

(

φ†
j ∂µφj − ∂µφ†

j φj

)

, (7)

which immediately lead to the charges

QF(τ) =
∫

Στ

dΣµ

√

−gJ µ
F ; QB(τ) =

∫

Στ

dΣµ

√

−gJ µ
B . (8)

Conservation means that QF(τ) and QB(τ) are independent of τ. It is worth noting
that also the single components QF,j and QB,j for j = 1, 2 are conserved, because the La-
grangians are actually invariant under independent U(1)j rotations of the fields, e.g., ψj →
eiαj ψj. We will also write Q = ∑j=1,2Qj for both bosons and fermions. From Equation (8)
descend the natural definitions of the Dirac and Klein–Gordon inner product

(a, b)τ =
∫

Στ

dΣµ

√

−gāγ̃µ(x)b (9)

for spinors a, b and

( f , h)τ = −i
∫

Στ

dΣµ
√

−g
(

f ∗∂µh− h∂µ f ∗
)

(10)

for scalars f , h. Of course, they yield (generally complex) spacetime scalars. Note that
we use the same symbol for both the products: it will be clear from the context if we are
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referring to the fermionic or the bosonic product. Finally, the field equations resulting from
the actions (1) and (2) are, respectively,

(iγ̃µ(x)Dµ −mj)ψj = 0 (11)

and
1√−g

∂µ

(√

−ggµν∂νφj

)

+ m2
j φj = 0 (12)

with j = 1, 2.

2.1. Field Expansions

Consider a complete set of solutions to Equation (11)
{

Uk,s;j(x),Vk,s;j(x)
}

and Equation (12)
{

Wk;j(x),W∗k;j(x)
}

with k being a generalized momentum index and j being the field label

as usual. It is important to stress that at this stage we make no hypothesis on k, which may
be either discrete or continuous and may or may not be related to the physical momentum
of the particle. The spinor solutions clearly carry an additional spin index s which may
refer to helicity, spin projection, or any other suitable spin-related quantity. We require that
the solutions for each j be formally the same and differ only for the exchange of masses: the
modes 2 are the same as the modes 1 with m1 replaced with m2. This kind of compatibility
requirement will ensure, upon introducing mixing, that the same species of particle, i.e.,
described by the same set of quantum numbers, is mixed. We refer to either of the sets as a
mass basis, or, with a slight abuse of terminology, a mass representation.

The first entries of the two sets, Uk,s;j(x),Wk;j(x) are “positive energy” (particle) so-
lutions with respect to some specified timelike vector field. Likewise, the second entries
Vk,s;j(x),W∗k;j(x) are “negative energies” (antiparticle) solutions. This choice of “positive

energy” solutions is by no means unique and we will discuss below how the theory is
changed for changes of the mass representation. The bases are orthonormal with respect to
the corresponding inner product (Equations (9) and (10)):

(

Uk,s;j,Uq,r;j

)

τ
= δkqδrs =

(

Vk,s;j,Vq,r;j

)

τ
;
(

Uk,s;j,Vq,r;j

)

τ
= 0

(

Wk;j,Wq;j

)

τ
= δkq = −

(

W∗k;j,W∗q;j

)

τ
;
(

Wk;j,W∗q;j

)

τ
= 0. (13)

We may well drop the τ label in the above equations, since the inner products clearly
do not depend on τ. Notice, however, that this is true only for inner products involving
modes with the same index j; inner products of solutions with different j depend generally
on τ. We can now expand the fields as

ψj(x) = ∑
k,s

(

ak,s;jUk,s;j(x) + b†
k,s;jVk,s;j(x)

)

φj(x) = ∑
k

(

ck;jWk;j(x) + d†
k;jW∗k;j(x)

)

(14)

where all the spacetime dependence is within the solutions, the operator coefficients
being constant. It is a simple exercise to show that the expansions of Equation (14) fulfill
the canonical (anti-)commutation relations of Equation (6) if the coefficients satisfy the
canonical algebras

{

ak,s;j, a†
q,r;l

}

= δkqδsrδjl =
{

bk,s;j, b†
q,r;l

}

[

ck;j, c†
q;l

]

= δkqδjl =
[

dk;j, d†
q;l

]
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with all the other (anti-)commutators vanishing. The bosonic and fermionic vacuum are
defined by

ak,s;j |0F
m〉 = 0 = bk,s;j |0F

m〉 ; ck;j |0B
m〉 = 0 = dk;j |0B

m〉 ∀ k, s, j (15)

and the subscript m denotes that these are the mass vacuum states as defined by the mass
representation of Equation (14). The Fock spaces HF

m,HB
m are constructed as usual by

repeated application of the creation operators on the corresponding vacuum. The U(1)
charges take the simple form

QF,j = ∑
k,s

(

a†
k,s;jak,s;j − b†

k,s;jbk,s;j

)

, QB,j = ∑
k

(

c†
k;jck;j − d†

k;jdk;j

)

. (16)

As anticipated above, the mass representation is not unique, not even in flat spacetime.
The ambiguity is worsened in curved space, because there is generally no unique definition
of energy (not even up to Lorentz transformations). In turn, such an ambiguity affects
the notion of particles (the “positive energy” solutions) and represents the source of the
known particle creation phenomena in curved space (Parker effect [55,56] and Hawking

radiation [57,58] ). One is always free to consider a different mass basis
{

Ũk,s;j(x), Ṽk,s;j(x)
}

and
{

W̃k;j(x), W̃∗k;j(x)
}

, providing an alternative expansion (Equation (14)) of the fields

with coefficients ãk,s;j, b̃k,s;j, c̃k;j, d̃k;j. Of course, no specific relation is assumed between
the labels of the tilded and untilded representations. It is nonetheless the case that the
new coefficients are always related to the old coefficients by Bogoliubov (i.e., linear and
canonical) transformations as a consequence of the completeness of the two bases. To see
this, consider the scalar product

ãq,r;j =
(

Ũq,r;j(x), ψj(x)
)

τ
= ∑

k,s

{

ak,s;j

(

Ũq,r;j,Uk,s;j

)

τ
+ b†

k,s;j

(

Ũq,r;j,Vk,s;j

)

τ

}

. (17)

Notice that the scalar products in (17) are independent of τ, since they involve solutions

with the same field index. Therefore, setting Xq,r;k,s;j =
(

Ũq,r;j,Uk,s;j

)

τ
=
(

Vk,s;j, Ṽq,r;j

)

τ

and Yq,r;k,s;j =
(

Ũq,r;j,Vk,s;j

)

τ
= −

(

Uk,s;j, Ṽq,r;j

)

τ
one has

ãq,r;j = ∑
k,s

(

Xq,r;k,s;jak,s;j + Yq,r;k,s;jb
†
k,s;j

)

. (18)

In the same way one finds that

b̃q,r;j = ∑
k,s

(

Xq,r;k,s;jbk,s;j −Yq,r;k,s;ja
†
k,s;j

)

. (19)

The mass Bogoliubov coefficients X, Y satisfy

∑
p,s′

(

X∗q,r;p,s′ ;jXk,s;p,s′ ;j + Y∗q,r;p,s′ ;jYk,s;p,s′ ;j

)

= δqkδrs (20)

for each j = 1, 2. The situation is similar for bosons. Putting Xq;k;j =
(

W̃q;j,Wk;j

)

τ
and

Yq;k;j =
(

W̃q;j,W∗k;j

)

τ
we obtain

c̃q;j = ∑
k

(

X∗q;k;jck;j −Y∗q;k;jd
†
k;j

)

d̃q;j = ∑
k

(

X∗q;k;jdk;j −Y∗q;k;jc
†
k;j

)

. (21)
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We use the same symbols for both the bosonic and fermionic mass Bogoliubov coeffi-
cients, but no confusion may arise, since they carry different indices. The bosonic analogue
of Equation (20) is

∑
k

(

X∗q;k;jXp;k;j −Y∗q;k;jYp;k;j

)

= δqp. (22)

The tilde representations define alternative Fock spaces H̃F,B
m , and in particular alter-

native mass vacua |0̃F,B
m 〉 annihilated by the tilde operators. The states in the tilded and

untilded representations have different particle content. It can be shown [52–54,60] that the
untilded vacuum appears as a condensate of tilded particles, and vice-versa. To formalize
the relation between the two representations, we introduce the (mass) generators

RF
j = exp

{

∑
q,k,r,s

(

λ∗q,k,r,s;ja
†
q,r;jb

†
k,s;j − λq,k,r,s;jbq,r;jak,s;j

)

}

RB
j = exp

{

∑
q,k

(

σ∗q,k;jc
†
q;jd

†
k;j + σq,k;jdq;jck;j

)

}

with λq,k,r,s;j = Arctan
(

Yq,r;k,s;j

Xq,r;k,s;j

)

and σq,k;j = Arctanh
(

Yq;k;j

Xq;k;j

)

. We also introduce the total

mass generators RF,B = RF,B
1 ⊗ RF,B

2 . These generators realize the mass Bogoliubov
transformations as

ãq,r;j = RF−1aq,r;jRF , b̃q,r;j = RF−1bq,r;jRF

c̃q,r;j = RB−1cq,r;jRB , d̃q,r;j = RB−1dq,r;jRB

and provide a map between the Fock spacesRF,B : H̃F,B
m −→ HF,B

m . In particular, the mass
vacua are related by

|0̃F,B
m 〉 = R(F,B)−1 |0F,B

m 〉 . (23)

We shall see below how the field mixing is affected by changes in the mass representa-
tion operated by the generatorsRF,B.

2.2. Mode Functions in Flat FRW

The solutions to the Dirac and Klein–Gordon Equations (11) and (12) for a general
metric are not easily found analytically, and exact solutions are available only for some
special cases. However, there is a special class of metrics for which both Equations (11) and
(12) can be solved fairly easily. These are the spatially flat FRW metrics, whose general
form reads

ds2 = dt2 −A
2(t)

(

dx2 + dy2 + dz2
)

(24)

in a rectangular coordinate system. They are specified by the scale factor A (t) and can
describe, according to the shape of A (t), various stages in the evolution of a spatially flat
and isotropic universe. For this reason, the metrics of the form (24) are paradigmatic in
cosmology. The metric becomes Minkowskian for A(t) = 1 and is conformally equivalent
to the Minkowskian metric for the generic scale factor. Indeed, introducing the conformal
time coordinate dτ = dt

A (t)
, one obtains

ds2 = A
2(τ)

(

dτ2 − dx2 − dy2 − dz2
)

(25)

which is manifestly a conformal equivalent of the Minkowski metric. Let us discuss the
field Equations (11) and (12) for the metric of Equation (25). We start with the (slightly
more involved) fermion case. A standard choice of tetrad is

eA
µ (τ) = A (τ)δA

µ , (26)
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and the only non-vanishing Christoffel symbols are

Γτ
ττ = Γi

τi = Γτ
ii = A

−1(τ)∂τA (τ) (27)

for any i = x, y, z. These yield the spin connection

ωAB
τ = 0 ; ωAB

i = A
−1∂τA

(

δA
i δB

0 − δA
0 δB

i

)

, (28)

so that Γi =
∂τA

4A

[

γ0, γi
]

and Γ0 = 0. Finally, the Dirac equations read

(

iγ0∂τ +
3i∂τA

2A
γ0 + iγl∂l −mjA

)

ψj = 0, (29)

where l runs over the spatial indices and only the flat space gamma matrices appear.
The spatial dependence of Equation (29) suggests to seek solutions of the form

ψj = A
− 3

2 (τ)Fppp,j(τ)e
ippp·xxx. (30)

It is important to stress that ppp is not the momentum instantaneously carried by the par-
ticles, which instead is the comoving momentum

ppp
A

. This can be easily seen in coordinate
time, where the Dirac equation, inserting the plane wave ansatz, takes the form

[

iγ0

(

∂t +
3i∂tA

2A

)

− γl pl

A
−mj

]

ψj = 0

and
ppp
A

can be clearly interpreted as the instantaneous momentum, by comparison with
the flat space Dirac equation. The first factor of Equation (30) removes the second term in
Equation (29), yielding the equation for Fppp,j

(

iγ0∂τ − γl pl −mjA

)

Fppp,j(τ) = 0. (31)

It is now convenient to write the four-spinor Fppp,j in terms of the helicity two-spinors
ξλ(p), defined as the eigenspinors of the helicity operator

σσσ · ppp
p

ξλ( p̂) = λξλ( p̂) (32)

with λ = ±1 and p̂ the unit three-vector in the direction of ppp. We shall later need the
property

ξ†
λ( p̂)σσσξλ( p̂) = λ p̂. (33)

The proof of Equation (33), along with additional details on the helicity spinors can be
found in the Appendix A. We write

Fppp,j(τ) =

(

fp,j(τ)ξλ( p̂)
gp,j(τ)λξλ( p̂)

)

, (34)

where fp,j and gp,j depend only on the modulus p = |ppp| and on conformal time. Using the
definition of the helicity spinors, the Dirac Equation (31) is translated into the linear system
of equations

∂τ fp,j = −imjA fp,j − ipgp,j

∂τ gp,j = imjA gp,j − ip fp,j. (35)
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We can combine the equations to obtain a second order equation for fp,j

∂2
τ fp,j +

(

imj∂τA + p2 + m2
j A

2
)

fp,j = 0 (36)

that can be solved once A is specified. For fp,j chosen to correspond to the positive energy
solutions with respect to some specified vector field, the function of Equation (30) corre-
sponds to the particle solutions with three-momenta pppA −1 and helicity λ. The antiparticle
solutions can be obtained by charge conjugation. We then write

Uppp,λ;j(x) = eippp·xxx
A
− 3

2 (τ)

(

fp,j(τ)ξλ( p̂)
gp,j(τ)λξλ( p̂)

)

;

Vppp,λ;j(x) = eippp·xxx
A
− 3

2 (τ)

(

g∗p,j(τ)ξλ( p̂)

− f ∗p,j(τ)λξλ( p̂)

)

, (37)

respectively, for the particle and antiparticle solutions. Notice that the antiparticle
solution with label ppp, by our conventions, carries instantaneous momentum −pppA −1. It can
be easily verified that Uppp,λ;j(x) and Vppp,λ;j are indeed muthually orthogonal solutions to the
Dirac Equation (29), provided that the system of Equations (35) is obeyed. In order to fix
the normalization, we compute the inner products on a surface of constant conformal time.
Recalling that for the metric of Equation (25), −g = A 8, and our choice of tetrads, we have

(

Uppp,λ;j,Uqqq,λ′ ;j

)

τ
=

∫

Στ

d3x A
3U †

ppp,λ;jUqqq,λ′ ;j

=
∫

Στ

d3x e−i(ppp−qqq)·xxxξ†
λξλ

(

f ∗p,j fq,j + λλ′g∗p,jgq,j

)

= (2π)3δ3(ppp− qqq)δλλ′
(

| fp,j|2 + |gp,j|2
)

.

Here, we have used the orthonormality of the helicity spinors and the fact that the
constant τ hypersurfaces are isomorphic to R3 as manifolds. The same result is obtained
for the inner product of the antiparticle modes. Then, the normalization

| fp,j|2 + |gp,j|2 = (2π)−3 (38)

suggests itself. By analogous simple calculations, one also shows that the set of solutions of
Equation (37) is complete, in the sense that

∑
λ

(

Uppp,λ;jU †
ppp,λ;j + Vppp,λ;jV†

ppp,λ;j

)

= (2πA )−3
I (39)

for all ppp and j, with I the 4× 4 identity matrix. Finally, we remark that compatibility among
the modes for j = 1 and j = 2, as spelt out above, holds by construction for the solutions of
Equation (37).

Up to now, all our considerations have been made for arbitrary scale factor A . Let
us consider the De Sitter form A (t) = eH0t, which is apt to describe inflationary and
accelerated expansion stages. The constant H0, with dimensions of mass, is also known
as Hubble parameter. In this case, τ = −H−1

0 e−H0t and A (τ) = −(H0τ)−1. Notice that
the conformal time is, in this metric, always negative, with the late time limit t −→ ∞

corresponding to τ −→ 0−. The Equation (36) reads

τ2∂2
τ fp,j +

(

p2τ2 +
imj

H0
+

m2
j

H2
0

)

fp,j = 0 (40)
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and is conveniently brought to a Bessel-like form by the change of variable s = −pτ ( ≥ 0)

s2∂2
s fp;j +

(

s2 +
imj

H0
+

m2
j

H2
0

)

fp;j = 0. (41)

This equation is solved [78] by the Bessel functions of order νj =
1
2 −

imj

H0
in the general

combination
fp;j(s) = s

1
2

(

C1,j Jνj
(s) + C2,j J−νj

(s)
)

(42)

for some complex constants C1,j and C2,j. Due to the normalization condition of Equation (38),
there is only one independent integration constant. We shall consider two distinct choices.
The first is C2,j = 0, which has the advantage of simplifying many computations, and will be
employed for the derivation of the oscillation formulae in the De Sitter metric. Solving the
first of Equation (35) for gp,j, one obtains, by using the properties of the Bessel functions [78],

gp,j = −iC1,js
1
2 Jνj−1(s). (43)

The remaining constant C1,j is fixed by normalization to be C1,j =
1

4π

√

cosh
( πmj

H0

)

. The sec-

ond choice we shall employ stems from the requirement that the modes of Equation (42) be
positive energy with respect to ∂s at early times (τ −→ −∞, s→ ∞):

fp;j = Cjs
1
2

(

Jνj
(s)− ie

πmj
H0 J−νj

(s)

)

(44)

so that

gp;j = Cjs
1
2

(

−i Jνj−1(s) + e
πmj
H0 J1−νj

(s)

)

. (45)

The overall constant Cj is again fixed by normalization and reads Cj =
e
−

πmj
2H0

4
√

2π cosh
( πmj

H0

) .

Explicit analytical solutions can be found also for the radiation-dominated universe

A (t) = a0t
1
2 and are given in terms of Whittaker functions [79].

Let us now consider the boson field equations for the metric of Equation (25):

∂2
τφj +

2∂τA

A
∂τφj −∇2φj + m2

j A
2φj = 0. (46)

The form of this equation suggests the use of the plane wave ansatz

Wppp;j(x) = (2π)−
3
2 eippp·xxx

A
−1(τ)χp;j(τ), (47)

where the prefactor (2π)−
3
2 is added for later convenience. The same considerations about

the momentum carried by the particle made along Equation (30) hold here. Inserting (47)
in the field equations one finds

∂2
τχp;j +

(

p2 + m2
j A

2 − ∂2
τA

A

)

χp;j = 0. (48)

For the normalization of χp;j, we compute the scalar product (10) on the surfaces of
constant conformal time
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(

Wppp;j,Wqqq;j

)

τ
= −i

∫

Στ

d3x A
4gττ

(

W∗ppp;j∂τWqqq;j −Wqqq;j∂τW∗ppp;j

)

= −i
∫

Στ

d3x
e−i(ppp−qqq)·xxx

(2π)3

(

χ∗p;j∂τχq;j − χq;j∂τχ∗p;j

)

= −iδ3(ppp− qqq)
(

χ∗p;j∂τχq;j − χq;j∂τχ∗p;j

)

(49)

from which the following normalization condition ensues

−i
(

χ∗p;j∂τχp;j − χp;j∂τχ∗p;j

)

= 1. (50)

We can write down explicitly the analytical solutions to Equation (48) for the expo-

nential expansion A (τ) = −(H0τ)−1 and the radiation dominated universe A (τ) =
a2

0τ
2 .

In the first case, we have

∂2
τχp;j +

(

p2 +
m2

j

H2
0 τ
− 2

τ2

)

χp;j = 0 (51)

which is solved by the Hankel functions of order νj =

√

9
4 −

m2
j

H2
0

as

χp;j = (−pτ)
1
2

(

C1,jH
1
νj
(−pτ) + C2,jH

2
νj
(−pτ)

)

. (52)

The requirement that χp;j is positive energy with respect to ∂τ at early times enforces
C2,j = 0. The remaining constant is fixed by normalization to be

C1,j = e
iπ

(

νj−ν∗
j

)

4

√

π

4H0
. (53)

In the second case

∂2
τχp;j +

(

p2 +
m2

j a4
0τ2

4

)

χp;j = 0 (54)

which is solved in terms of Whittaker [63,78] functions Wκj ,µ

(

imja
2
0τ2

2

)

with κj = ± ip2

2mja
2
0

and µ = 1
4 . Imposing normalization and requiring that the modes be positive energy with

respect to ∂τ at early times, one obtains

χp;j =

√

1

4m2
j a2

0τ
e
− πp2

4mja2
0 W
− ip2

2mja2
0

, 1
4

(

imja
2
0τ2

2

)

. (55)

3. The Flavor Fields

The free field actions of Equations (1) and (2) are written in terms of the mass fields,
which diagonalize the mass terms of the Lagrangians. The mass terms are originally written
in terms of the flavor fields ψe, ψµ, φA, φB

LF = −
√

−g
(

meψ̄e(x)ψe(x) + meµψ̄e(x)ψµ(x) + meµψ̄µ(x)ψe(x) + mµψ̄µ(x)ψµ(x)
)

LB = −
√−g

2

(

m2
Aφ†

A(x)φA(x) + m2
ABφ†

A(x)φB(x) + m2
ABφ†

B(x)φA(x) + m2
Bφ†

B(x)φB(x)
)

. (56)

It is the flavor fields which are physically relevant (e.g., ψe, ψµ are the kind of fields that
participate in weak interaction processes) and which, as it is evident from Equation (56),
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display the phenomenon of field mixing. The diagonalization of Equation (56) is performed
by means of an SU(2) rotation

ψe(x) = cos θFψ1(x) + sin θFψ2(x)

ψµ(x) = cos θFψ2(x)− sin θFψ1(x) (57)

and

φA(x) = cos θBφ1(x) + sin θBφ2(x)

φB(x) = cos θBφ2(x)− sin θBφ1(x) (58)

as appropriate for fermions θF = 1
2 arctan

(

2meµ

mµ−me

)

and bosons θB = 1
2 arctan

(

2m2
AB

m2
B−m2

A

)

.

We shall drop the fermion F/boson B label whenever there is no risk of confusion. In quan-
tum field theory, it is convenient to rephrase the mixing transformations of Equations (57)
and (58) in terms of a mixing generator, a map Sθ(τ) which effects the rotation:

ψe(x) = S−1
θF

(τ)ψ1(x)SθF
(τ) ; ψµ(x) = S−1

θF
(τ)ψ2(x)SθF

(τ)

φA(x) = S−1
θB

(τ)φ1(x)SθB
(τ) ; φB(x) = S−1

θB
(τ)φ2(x)SθB

(τ). (59)

The rotation of Equation (59) is surface-wise: the points x on both the left hand sides
and right hand sides are all taken to lie on the same surface Στ . The surface dependence
is also reflected in the argument of the mixing generator S(τ). Equation (59) has many
analogues in QFT. In fact, any symmetry transformation can be brought to the same form.
For instance, spacetime translations on flat space fields operate as φ(x + a) = S−1

a φ(x)Sa

with Sa = e−iPµaµ
. Then, Equation (59) is nothing but the statement that the quantum fields

transform according to the vector representation of SU(2), that is

S−1
θF

(τ)

(

ψ1(x)
ψ2(x)

)

SθF
(τ) = R(θF)

(

ψ1(x)
ψ2(x)

)

;

S−1
θB

(τ)

(

φ1(x)
φ2(x)

)

SθB
(τ) = R(θB)

(

φ1(x)
φ2(x)

)

(60)

where R(θF) and R(θB) are the rotation matrices corresponding to Equations (57) and (58).
The form of the mixing generator can be computed with the aid of the Baker–Campbell–
Hausdorff formula and of the canonical (anti-)commutation relations (see Appendix B).
The result is

Sθ(τ) = exp{εθ[(Ψ1, Ψ2)τ − (Ψ2, Ψ1)τ ]} (61)

for both fermions Ψj = ψj and bosons Ψj = φj. The sign factor ε is +1 for fermions and −1
for bosons and it is understood that θ ≡ θF/B depending on the fields involved. To better
understand the features of the mixing generator, let us evaluate its action on the annihilation
operators. We then assume a given expansion of the mass fields (14) and calculate

ak,s;e(τ) = S−1
θ (τ)ak,s;1Sθ(τ) (62)

together with the analogous expressions for b, c, d. It is quite easy to determine these
operators explicitly following the procedure outlined in the Appendix B. For fermions,
we have
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ak,s;e(τ) = S−1
θ (τ)ak,s;1Sθ(τ) = cos θ ak,s;1 + sin θ ∑

q,r

(

∆∗q,r;k,s(τ)aq,r;2 + Ωq,r;k,s(τ)b
†
q,r;2

)

ak,s;µ(τ) = S−1
θ (τ)ak,s;2Sθ(τ) = cos θ ak,s;2 − sin θ ∑

q,r

(

∆q,r;k,s(τ)aq,r;1 −Ωq,r;k,s(τ)b
†
q,r;1

)

bk,s;e(τ) = S−1
θ (τ)bk,s;1Sθ(τ) = cos θ bk,s;1 + sin θ ∑

q,r

(

∆∗k,s;q,r(τ)bq,r;2 −Ωk,s;q,r(τ)a†
q,r;2

)

bk,s;µ(τ) = S−1
θ (τ)bk,s;2Sθ(τ) = cos θ bk,s;2 − sin θ ∑

q,r

(

∆∗k,s;q,r(τ)bq,r;1 + Ωk,s;q,r(τ)a†
q,r;1

)

. (63)

Here, it is understood that θ ≡ θF. For bosons, one has the similar expressions

ck;A(τ) = S−1
θ (τ)ck;1Sθ(τ) = cos θ ck;1 + sin θ ∑

q

(

∆∗q;k(τ)cq;2 + Ωq;k(τ)d
†
q;2

)

ck;B(τ) = S−1
θ (τ)ck;2Sθ(τ) = cos θ ck;2 − sin θ ∑

q

(

∆q;k(τ)cq;1 −Ωq;k(τ)d
†
q;1

)

dk;A(τ) = S−1
θ (τ)dk;1Sθ(τ) = cos θ dk;1 + sin θ ∑

q

(

∆∗k;q(τ)dq;2 + Ωk;q(τ)c
†
q;2

)

dk;B(τ) = S−1
θ (τ)dk;2Sθ(τ) = cos θ dk;2 − sin θ ∑

q

(

∆∗k;q(τ)dq;1 −Ωk;q(τ)c
†
q;1

)

, (64)

where clearly θ ≡ θB. The functions appearing in the above equations are the Bogoliubov
coefficients of the mixing transformation, and are defined as

∆q,r;k,s(τ) =
(

Uq,r;2,Uk,s;1

)

τ
=
(

Vk,s;1,Vq,r;2

)

τ
;

Ωq,r;k,s(τ) =
(

Uk,s;1,Vq,r;2

)

τ
= −

(

Uq,r;2,Vk,s;1

)

τ

∆q;k(τ) =
(

Wq;2,Wk;1

)

τ
= −

(

W∗k;1,W∗q;2

)∗

τ
;

Ωq;k(τ) =
(

Wk;1,W∗q;2

)

τ
= −

(

Wq;2,W∗k;1

)∗

τ
. (65)

Obviously, in the upper two lines of Equation (65), the inner product is the fermionic
one of Equation (9), while in the lower two lines it is the bosonic product of Equation (10).
As we did for the Bogoliubov coefficients of the mass representation, we employ the same
symbol for both bosons and fermions: there is no risk of confusion since they always carry
distinct sets of indices. The name for the coefficients of Equation (65) is justified in that the
transformations of Equations (63) and (64) are canonical, preserving the (anti-)commutation
relations, as a consequence of the fundamental properties

∑
q,r

(

∆∗k,s;q,r(τ)∆k′ ,s′ ;q,r(τ) + Ω∗k,s;q,r(τ)Ωk′ ,s′ ;q,r(τ)
)

= δk,k′δs,s′ (66)

and

∑
q

(

∆∗k;q(τ)∆k′ ;q(τ)−Ω∗k;q(τ)Ωk′ ;q(τ)
)

= δk,k′ . (67)

These properties connote, respectively, fermionic and bosonic Bogoliubov transfor-
mations (compare with (20) and (22)). As suggested by the labels on the left hand side of
Equations (63) and (64), these operators furnish an expansion of the corresponding flavor
field e, µ, A, B on the basis defined by the mass representation. It is indeed immediate to ver-
ify (see also the Appendix B) that such flavor operators are the expansion coefficients with

respect to
{

Uk,s;j(x),Vk,s;j(x)
}

and
{

Wk;j(x),W∗k;j(x)
}

. Equations (63) and (64) remarkably

have the structure of a Bogoliubov transformation nested into a rotation. The appearance
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of the Bogoliubov transformation signals that the representation defined by the flavor
operators is unitarily inequivalent to the mass representation, in the infinite volume limit.
Indeed, it is straightforward to check that none of the flavor operators annihilates the mass
vacuum, either fermionic |0F

m〉 or bosonic |0F
m〉. The flavor operators define an explicitly

τ-dependent vacuum, the flavor vacuum

ak,s;α(τ) |0F
f (τ)〉 = bk,s;α(τ) |0F

f (τ)〉 = 0; ck;β(τ) |0B
f (τ)〉 = dk;β(τ) |0B

f (τ)〉 = 0, (68)

for all k, s and α = e, µ, β = A, B. The one particle states, which we interpret as particles of
flavor α, β with generalized momentum k and generalized spin index s, are defined by the
application of the creation operators on the flavor vacuum

|νk,s;α(τ)〉 = a†
k,s;α |0F

f (τ)〉 ; |Φk;β(τ)〉 = c†
k;β |0B

f (τ)〉 . (69)

The application of b† and d† produces the corresponding one antiparticle states. By re-
peated application of the creation operators, one constructs the flavor Fock spacesHF

f (τ)

andHB
f (τ). It is now clear that the mixing generator yields a map between the mass and

the flavor spaces Sθ(τ) : HF,B
f (τ) −→ HF,B

m and, in particular,

|0F,B
f (τ)〉 = S−1

θ (τ) |0F,B
m 〉 . (70)

As we will see more in detail in the upcoming sections, unitarily inequivalence entails
a different particle content of the theory, and, in particular, endowes the flavor vacuum
with a non-trivial condensate structure [14,61,62]. It is important to remark that also the
flavor representations built at distinct times τ′ 6= τ are mutually inequivalent. This will
have to be taken into account when definining the oscillation probabilities.

3.1. Covariance of the Flavor Representation

The construction of the flavor representation rests on the choice of a specific, albeit
arbitrary, expansion of the mass fields. Here we wish to address how the flavor repre-
sentation is changed when the underlying mass representation varies. Our guideline is
the principle of covariance: local observables constructed out of flavor operators should be
independent of the representation chosen. The matrix elements

〈u f (τ)| F[Ψ(τ)] |v f (τ)〉 (71)

for an arbitrary local operator which is a function of the flavor fields Ψ(τ) on the sur-
face τ and for arbitrary states, |u f (τ)〉 , |v f (τ)〉 ∈ H f (τ), must not depend on the rep-
resentation. Consider now two distinct mass bases, the second of which we denote by
{

Ũk,s;j(x), Ṽk,s;j(x)
}

and
{

W̃k;j(x), W̃∗k;j(x)
}

and suppose we perform the flavor construc-

tion on both. This produces the distinct Fock spacesHF,B
f (τ) and H̃F,B

f (τ), related by the

mixing generators to the corresponding mass Hilbert spaces

Sθ(τ) : HF,B
f (τ) −→ HF,B

m ; S̃θ(τ) : H̃F,B
f (τ) −→ H̃F,B

m . (72)

On the other hand, the mass Hilbert spaces are connected by the Bogoliubov transfor-

mation of Equation (23), i.e.,RF,B : H̃F,B
m −→ HF,B

m . Notice that all the maps involved here
are invertible by definition, and thus injective. Then, the generator

RF,B
f (τ) = S−1

θ (τ)RF,BS̃θ(τ) (73)
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provides an invertible map between the two flavor spacesRF,B
f (τ) : H̃F,B

f (τ) −→ HF,B
f (τ).

In particular, the flavor vacua are related by

|0F,B
f (τ)〉 = RF,B

f (τ) |0̃F,B
f (τ)〉 . (74)

Evidently, in order that the matrix elements of Equation (71) be left unchanged, the fla-
vor operators F[Ψ(τ)] must transform according to

F̃[Ψ̃(τ)] = R(F,B)−1
f (τ)F[Ψ(τ)]R(F,B)

f (τ). (75)

For the operators F which are analytical in the flavor fields Ψ = ψe, ψµ, φA, φB, the con-
dition amounts to a transformation law for the latter:

Ψ̃(τ) = R(F,B)−1
f (τ)Ψ(τ)R(F,B)

f (τ), (76)

where Ψ is any of the flavor fields (ψe, ψµ for fermions and φA, φB for bosons). To understand

how the generatorR(F,B)
f (τ) acts, let us consider the Bogoliubov coefficients of the mixing

transformations for the tilded and untilded representations. The first fermionic Bogoliubov
coefficient is

∆̃k,s;q,r(τ) =
(

Ũk,s;2, Ũq,r;1

)

τ

= ∑
k′ ,s′ ,q′ ,r′

(

X∗k,s;k′ ,s′ ;2Uk′ ,s′ ;2 + Y∗k,s;k′ ,s′ ;2Vk′ ,s′ ;2 , X∗q,r;q′ ,r′ ;1Uq′ ,r′ ;1 + Y∗q,r;q′ ,r′ ;1Vq′ ,r′ ;1

)

τ

= ∑
k′ ,s′ ,q′ ,r′

{

Xk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1

(

Uk′ ,s′ ;2,Uq′ ,r′ ;1

)

τ
+ Xk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1

(

Uk′ ,s′ ;2,Vq′ ,r′ ;1

)

τ

+Yk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1

(

Vk′ ,s′ ;2,Uq′ ,r′ ;1

)

τ
+ Yk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1

(

Vk′ ,s′ ;2,Vq′ ,r′ ;1

)

τ

}

= ∑
k′ ,s′ ,q′ ,r′

{

Xk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1∆k′ ,s′ ;q′ ,r′(τ)− Xk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1Ωk′ ,s′ ;q′ ,r′(τ)

+Yk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1Ω∗k′ ,s′ ;q′ ,r′(τ) + Yk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1∆∗k′ ,s′ ;q′ ,r′(τ)

}

. (77)

Here, the first equality is the definition of the first Bogoliubov coefficient in the tilde
representation, while in the second we have expanded the tilded modes in terms of their
untilded counterparts by means of the definition of X and Y (see Equation (19)). Similar
expressions arise for the other Bogoliubov coefficients, namely

Ω̃k,s;q,r(τ) = ∑
k′ ,s′ ,q′ ,r′

{

Xk,s;k′ ,s′ ;2Xq,r;q′ ,r′ ;1Ωk′ ,s′ ;q′ ,r′(τ) + Xk,s;k′ ,s′ ;2Yq,r;q′ ,r′ ;1∆k′ ,s′ ;q′ ,r′(τ)

− Yk,s;k′ ,s′ ;2Xq,r;q′ ,r′ ;1∆∗k′ ,s′ ;q′ ,r′(τ) + Yk,s;k′ ,s′ ;2Yq,r;q′ ,r′ ;1Ω∗k′ ,s′ ;q′ ,r′(τ)

}

, (78)

and

∆̃k;q(τ) = ∑
k′ ,q′

{

X∗k;k′ ;2Xq;q′ ;1∆k′ ;q′(τ)− X∗k;k′ ;2Yq;q′ ;1Ωk′ ;q′(τ)

+ Y∗k;k′ ;2Xq;q′ ;1Ω∗k′ ;q′(τ)−Y∗k;k′ ;2Yq;q′ ;1∆∗k′ ;q′(τ)

}

(79)
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Ω̃k;q(τ) = ∑
k′ ,q′

{

X∗k;k′ ;2X∗q;q′ ;1Ωk′ ;q′(τ)− X∗k;k′ ;2Y∗q;q′ ;1∆k′ ;q′(τ)

+ Y∗k;k′ ;2X∗q;q′ ;1∆∗k′ ;q′(τ)−Y∗k;k′ ;2Y∗q;q′ ;1Ω∗k′ ;q′(τ)

}

(80)

for bosons. Equations (77)–(80) provide a direct bridge between the two flavor representa-
tions. They show that the Bogoliubov coefficients in the new representation are given by
linear combinations of the old ones, weighed by the mass coefficients X, Y. Their impor-
tance is two-fold. Firstly, they provide an immediate insight about the action ofR f (τ)

F,B

on the basic flavor operators and show the transformation laws that the mixing Bogoliubov
coefficients satisfy in order to ensure local covariance. Secondly, they can be useful tools in
deriving approximate oscillation formulae when the solutions of the field equations are
only known asymptotically. This will be shown in detail in subsequent sections. For later
convenience, it is worth showing the form of Equations (77)–(80) in the special case of
diagonal mass coefficients

Xk,s;q,r;j = δk,qδs,rXk,s;j ; Yk,s;q,r;j = δk,qδs,rYk,s;j

Xk;q;j = δk,qXk;j ; Yk;q;j = δk,qYk;j,

for which they reduce to

∆̃k,s;q,r(τ) = Xk,s;2X∗q,r;1∆k,s;q,r(τ)− Xk,s;2Y∗q,r;1Ωk,s;q,r(τ)

+ Yk,s;2X∗q,r;1Ω∗k,s;q,r(τ) + Yk,s;2Y∗q,r;1∆∗k,s;q,r(τ), (81)

Ω̃k,s;q,r(τ) = Xk,s;2Xq,r;1Ωk,s;q,r(τ) + Xk,s;2Yq,r;1∆k,s;q,r(τ)

− Yk,s;2Xq,r;1∆∗k,s;q,r(τ) + Yk,s;2Yq,r;1Ω∗k,s;q,r(τ), (82)

∆̃k;q(τ) = X∗k;2Xq;1∆k;q(τ)− X∗k;2Yq;1Ωk;q(τ)

+ Y∗k;2Xq;1Ω∗k;q(τ)−Y∗k;2Yq;1∆∗k;q(τ), (83)

Ω̃k;q(τ) = X∗k;2X∗q;1Ωk;q(τ)− X∗k;2Y∗q;1∆k;q(τ)

+ Y∗k;2X∗q;1∆∗k;q(τ)−Y∗k;2Y∗q;1Ω∗k;q(τ). (84)

3.2. Flavor Oscillation Formulae

Now that we have an expansion of the flavor fields at our disposal, it is our task to
devise a reasonable definition for the flavor oscillation formulae. The structure of the flavor
representation is such that the standard quantum mechanical definition in terms of the inner
product between states at different surfaces, e.g., 〈νe(τ)| νµ(τ0)〉 or 〈φA(τ)| φB(τ0)〉, cannot
work. Indeed, all such products vanish for τ 6= τ0, given that they belong to mutually
orthogonal Hilbert spaces as a consequence of unitarily inequivalence for distinct surfaces,
in the infinite volume limit. We ought to seek a definition in terms of the matrix elements
of suitable operators. The natural candidates, given the underlying U(1) invariance, are
the Noether charges of Equations (8) and (16). Let us tentatively define analogous “flavor”
charges out of the operators of Equations (63) and (64):
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QF,α(τ) = ∑
k,s

(

a†
k,s;α(τ)ak,sα(τ)− b†

k,s;α(τ)bk,s;α(τ)
)

,

QB,β(τ) = ∑
k

(

c†
k;β(τ)ck;β(τ)− d†

k;β(τ)dk;β(τ)
)

, (85)

where it is understood that α = e, µ and β = A, B. These operators have several desir-
able properties:

• the one particle-states |νk,s;α(τ)〉 and |φk;β(τ)〉 are eigenstates, respectively, of QF,α(τ)
and QB,β(τ) with eigenvalue 1;

• states at different surface argument are not generally eigenstates Q(τ) |ν(τ0)〉 6=
λ |ν(τ0)〉. The expectation values 〈να(τ0)| Qγ(τ) |να(τ0)〉 measure “how much” of
flavor γ, as defined at surface τ, is in the state of flavor α, as defined at surface τ0.

• The sums over all the flavors of Equation (85) are constant, and equal the total Noether
charges of Equation (8)

∑
α=e,µ

QF,α(τ) = ∑
j=1,2

QF,j = QF ; ∑
β=A,B

QB,β(τ) = ∑
j=1,2

QB,j = QB. (86)

It is clear that a sensible definition of the oscillation formulas is

P
α→γ
k,s (τ, τ0) = 〈νk,s;α(τ0)| QF,γ(τ) |νk,s;α(τ0)〉 − 〈0F

f (τ0)| QF,γ(τ) |0F
f (τ0)〉 (87)

with α, γ = e, µ for fermions and

P
β→δ
k (τ, τ0) = 〈φk;β(τ0)| QB,δ(τ) |φk;β(τ0)〉 − 〈0B

f (τ0)| QB,δ(τ) |0B
f (τ0)〉 (88)

with β, δ = A, B for bosons. The last terms of Equations (87) and (88) are subtracted to
achieve normal ordering with respect to the corresponding flavor vacuum. The quantities
thus defined can be indeed interpreted as probabilities, since

∑
γ=e,µ

P
α→γ
k,s (τ, τ0) = 1 = ∑

δ=A,B

P
β→δ
k (τ, τ0) (89)

as a consequence of Equations (86). In due course, we will show that Equations (87) and
(88) reduce to the standard quantum mechanical oscillation formulae in the appropriate
limits, proving that they constitute a proper generalization of the latter. The oscillation
formulae can be computed explicitly with the aid of Equations (63) and (64) and exploiting
the canonical (anti-)commutation relations. The result is

P
α→γ
k,s (τ, τ0) =

sin2 2θ

2

[

1−∑
q,r

Re
(

∆∗k,s;q,r(τ0)∆k,s;q,r(τ) + Ω∗k,s;q,r(τ0)Ωk,s;q,r(τ)
)

]

(90)

for fermions, and

P
β→δ
k (τ, τ0) =

sin2 2θ

2

[

1−∑
q

Re
(

∆∗k;q(τ0)∆k;q(τ)−Ω∗k;q(τ0)Ωk;q(τ)
)

]

(91)

for bosons. As a direct consequence of Equations (66) and (67), it holds that

Pα→α
k,s (τ, τ) = 1 = P

β→β
k (τ, τ), (92)

as it should be for the survival probabilities at an initial time. Furthermore, given that
there is no CP violation by assumption (we are considering two flavor particle mix-
ing), one also has P

µ→e
k,s (τ, τ0) = P

e→µ
k,s (τ, τ0) and PB→A

k (τ, τ0) = PA→B
k (τ, τ0). From the
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Equations (90) and (91), we can immediately extract the quantum mechanical limit. When
all the field theoretic effects can be neglected, one has Ω −→ 0 and |∆| −→ 1, for all the
indices and for both fermions and bosons. The parenthetical terms of Equations (90) and
(91) reduce to phase factors, in agreement with the results obtained in a quantum mechanics
framework [23]. We can now ask whether the probabilities are left unchanged by variation
of the mass and flavor representations. A glance at their definitions (87) and (88) reveals
that they are not local observables: they generally involve operators and states defined on
distinct surfaces τ and τ0. Therefore, we cannot expect them to be invariant on the grounds
of local covariance. It is actually the case that for generic changes of mass representations,
the probabilities are not left invariant. This is because the two representations may not
agree on the quantum numbers, and thus on the interpretation, of the particle states. It
is important to recognize that such a feature is not exclusively related to curved space:
even in flat space we cannot expect to have the same form for the oscillation probabilities
phrased in terms of, say, sharp momentum eigenstates and wavepackets. The probabilities
themselves would indeed have a different physical meaning.

On the other hand, if the two representations agree on the meaning of the particle
states (of course they need not agree on the particle content of the states, the number of
particles or antiparticles they carry), i.e., assign the same set of quantum numbers, the re-
sulting probabilities are identical. For any two such representations, the mass Bogoliubov
coefficients shall be diagonal

Xk,s;q,r;j = δk,qδs,rXk,s;j ; Yk,s;q,r;j = δk,qδs,rYk,s;j

Xk;q;j = δk,qXk;j ; Yk;q;j = δk,qYk;j,

so that the Equations (81)–(84) hold. Then, we have

∆̃∗k,s;q,r(τ0)∆̃k,s;q,r(τ) + Ω̃∗k,s;q,r(τ0)Ω̃k,s;q,r(τ) =
(

∆∗k,s;q,r(τ0)∆k,s;q,r(τ) + Ω∗k,s;q,r(τ0)Ωk,s;q,r(τ)
)(

|Xk,s;2|2|Xq,r;1|2 + |Xk,s;2|2|Yq,r;1|2
)

+
(

∆k,s;q,r(τ0)∆
∗
k,s;q,r(τ) + Ωk,s;q,r(τ0)Ω

∗
k,s;q,r(τ)

)(

|Yk,s;2|2|Xq,r;1|2 + |Yk,s;2|2|Yq,r;1|2
)

(93)

for the fermionic coefficients and

∆̃∗k;q(τ0)∆̃k;q(τ)− Ω̃∗k;q(τ0)Ω̃k;q(τ) =
(

∆∗k;q(τ0)∆k;q(τ)−Ω∗k;q(τ0)Ωk;q(τ)
)(

|Xk;2|2|Xq;1|2 − |Xk;2|2|Yq;1|2
)

+
(

∆k;q(τ0)∆
∗
k;q(τ)−Ωk;q(τ0)Ω

∗
k;q(τ)

)(

|Yk;2|2|Yq;1|2 − |Yk;2|2|Xq;1|2
)

(94)

for the bosonic coefficients. Considering that, by Equations (20) and (22), we have

|Xk,s;j|2 + |Yk,s;j|2 = 1 = |Xk;j|2 − |Yk;j|2

for each j = 1, 2, we conclude that

Re
(

∆̃∗k,s;q,r(τ0)∆̃k,s;q,r(τ) + Ω̃∗k,s;q,r(τ0)Ω̃k,s;q,r(τ)
)

= Re
(

∆∗k,s;q,r(τ0)∆k,s;q,r(τ) + Ω∗k,s;q,r(τ0)Ωk,s;q,r(τ)
)

(95)

and

Re
(

∆̃∗k;q(τ0)∆̃k;q(τ)− Ω̃∗k;q(τ0)Ω̃k;q(τ)
)

= Re
(

∆∗k;q(τ0)∆k;q(τ)−Ω∗k;q(τ0)Ωk;q(τ)
)

. (96)

This is sufficient to prove that the oscillation formulae of Equations (90) and (91) are
identical in the tilded and untilded representations.
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3.3. Neutrino Oscillations in Cosmological Metrics

We can now work out the transition probabilities for a given metric. We start with the
fermionic probabilities in the class of conformally flat metrics of Equation (25). The first,
trivial, example is the flat space metric with A (t) = 1. The solutions to the Dirac equations
are the well-known plane waves. Without loss of generality, we can take the spin index
to represent the eigenvalue of Sz, the third component, while the natural surfaces are
those with t = const.. The mixing Bogoliubov coefficients are fully diagonal for momenta

along the third axis ∆kkk,s;qqq,r(t) = δ3(kkk− qqq)δr,s∆0
kkk(t); Ωkkk,s;qqq,r(t) = δ3(kkk− qqq)δr,s(−1)s− 1

2 Ω0
kkk(t),

and the flat space coefficients satisfy ∆0
kkk(t) = |∆0

kkk |e
i(ωkkk;2−ωkkk;1)t; Ω0

kkk(t) = |Ω0
kkk |e

i(ωkkk;2+ωkkk;1)t,

with ωkkk;j =
√

kkk2 + m2
j . The moduli are

|∆0
kkk | =

√

(

ωkkk;1 + m1

)(

ωkkk;2 + m2

)

4ωkkk;1ωkkk;2

(

1 +
kkk2

(

ωkkk;1 + m1

)(

ωkkk;2 + m2

)

)

|Ω0
kkk | =

√

(

ωkkk;1 + m1

)(

ωkkk;2 + m2

)

4ωkkk;1ωkkk;2

(

|kkk|
(

ωkkk;2 + m2

) − |kkk|
(

ωkkk;1 + m1

)

)

. (97)

Inserting these expressions in the general formula Equation (90), we find

P
e→µ
kkk,s

(t, 0) = sin2 2θ

[

|∆0
kkk |2 sin2

(

(

ωkkk;2 −ωkkk;1

)

t

2

)

+ |Ω0
kkk |2 sin2

(

(

ωkkk;2 + ωkkk;1

)

t

2

)]

, (98)

which coincides with the flat space result [14] and with the Pontecorvo probability in the
ultrarelativistic limit |Ω0

kkk | → 0 and |∆0
kkk | → 1. Before moving on to less trivial examples,

let us work out the flat space probabilities in a different mass representation, given by the
common eigenstates of energy and total angular momentum, namely

Uω,κJ ,µJ ;j(t, r, θ, φ) = e−iωt

√

ω + mj

2ωr2





PκJ

(

λjr
)

HκJ ,µJ
(θ, φ)

√

ω−mj

ω+mj
PκJ

(

λjr
)

H−κJ ,µJ
(θ, φ)





Vω,κJ ,µJ ;j(t, r, θ, φ) = eiωt

√

ω + mj

2ωr2





−
√

ω−mj

ω+mj
PκJ

(

−λjr
)

HκJ ,µJ
(θ, φ)

PκJ

(

−λjr
)

H−κJ ,µJ
(θ, φ)



. (99)

They solve the flat space Dirac equation in spherical coordinates with energy ω,
third component of the total angular momentum µJ and generalized spin-orbit quantum
number κJ . The orbital quantum number is denoted µJ in order to avoid confusion with the
masses mj: J is the total angular momentum, while j is the mass field label. The functions
Hκ,µ are the two component spherical spinors [80], while the radial functions have the
form Pκj

(λjr) = rjκj
(λjr) with jn(r) the spherical Bessel functions of order n [78] and

λj =
√

ω2 −m2
j the radial momentum. Of course, one has the intrinsic constraint on

the energy ω ≥ mj. The computation of the Bogoliubov coefficients is straightforward,
and only requires the completeness relation of the spherical Bessel functions. The result is

∆ω′ ,κ′J ,µ′J ;ω,κJ ,µJ
(t) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|∆0
ω,ω′ |ei(ω′−ω)t

Ωω′ ,κ′J ,µ′J ;ω,κJ ,µJ
(t) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|Ω0
ω,ω′ |ei(ω′+ω)t. (100)
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Here, ∆m2 = m2
2 −m2

1 and

|∆0
ω,ω′ | =

√

(ω′ + m2)(ω + m1)

4ω′ω

(

1 +

√

(ω′ −m2)(ω−m1)

(ω + m1)(ω′ + m2)

)

|Ω0
ω,ω′ | =

√

(ω′ + m2)(ω + m1)

4ω′ω

(
√

ω′ −m2

ω′ + m2
−
√

ω−m1

ω + m1

)

. (101)

It is immediately seen that the coefficients of Equation (101) are numerically the same

as the coefficient of Equation (97) when ω
′2 −m2

2 = ω2 −m2
1 = kkk2, which is exactly the con-

dition imposed by the delta functions in Equation (100) for some given kkk2. The interesting
feature of the coefficients of Equation (100) is that they are not diagonal: they connect states

of mass 1 with energy ωkkk;1 with the states of mass 2 with energy ωkkk;2 =
√

ω2
kkk;1

+ ∆m2, just

as we would expect. Yet, they are “pseudo”-diagonal, in the sense that they only connect
mass 2 modes with one specific mass 1 mode, and vice-versa. This is the reason why the
resulting probabilities are exactly the same as Equation (98), except for a relabeling kkk→ ω,

with ω =
√

kkk2 + m2
1 referred to mass 1, and ωkkk;2 →

√
ω2 + ∆m2. In flat space, the shift

from momentum to energy eigenstates only leads to a fancier way to write down the same
probabilities. Nonetheless, the expansion in terms of the angular momentum eigenstates of
Equation (99) is very useful when Cartesian three-momentum is not a natural quantum
number and spherical coordinates represent the natural choice for the description of the
metric. We will meet such a case explicitly for the Schwarzschild black hole spacetime.

Let us now consider A (t) = eH0t. We have derived the Dirac modes in the previous
sections, so that we only need to compute the Bogoliubov coefficients and plug them in the
general Equation (90). We use the boundary condition of Equation (43) and compute the
inner products on constant t (or equivalently constant τ) surfaces. The result is

∆kkk,s;qqq,r(t) = δs,rδ3(kkk− qqq)
πku

2
√

cos( iπm2
H ) cos( iπm1

H )

(

J∗ν2
(ku)Jν1(ku) + J∗ν2−1(ku)Jν1−1(ku)

)

(102)

Ωkkk,s;qqq,r(t) = δs,r(−1)s− 1
2 δ3(kkk− qqq)

πku

2
√

cos( iπm2
H ) cos( iπm1

H )

(

J∗ν1
(ku)J−ν2(ku)− J∗ν1−1(ku)J1−ν2

(ku)
)

(103)

where u = −τ = e−H0t

H0
. Inserting these expressions in Equation (90), we obtain

P
e→µ
k,s (t, t0) =

sin2 2θ

2

{

1− π2k2u0u

4 cos( iπm2
H ) cos( iπm1

H )

×Re

[

[

Jν2(ku0)J∗ν1
(ku0) + Jν2−1(ku0)J∗ν1−1(ku0)

][

J∗ν2
(ku)Jν1(ku) + J∗ν2−1(ku)Jν1−1(ku)

]

+
[

Jν1(ku0)J∗−ν2
(ku0)− Jν1−1(ku0)J∗1−ν2

(ku0)
][

J∗ν1
(ku)J−ν2(ku)− J∗ν1−1(ku)J1−ν2

(ku)
]

]}

. (104)

where, as before, u = e−H0t

H0
and u0 = e−H0t0

H0
. Although the expression may look quite

complicated, it really amounts to an amplitude varying oscillatory behaviour. This can
be neatly seen from Figure 1 where Equation (104) is plotted for sample values of masses
and momenta.
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Figure 1. (color online) Plots of the oscillation formulae of Equation (104) for different sample values

of masses and momenta (in units of H). (Left panel) The values are sin2 θ = 0.3, k = 30, m1 = 1,

m2 = 80 and t0 = 0. (Right panel) Comparison of Equation (104) (blue solid line) and the Pontecorvo

formula (orange dashed line) with sin2 θ = 0.3, k = 20, m1 = 1, m2 = 15 and t0 = 0.

For the radiation dominated spacetime A (t) = a0t
1
2 , we have the Bogoliubov coefficients

∆kkk,s;qqq,r(t) = δs,rδ3(kkk− qqq)
1

4
√

4m1m2t2
e
− πk2(m1+m2)

4m1m2 a2
0

{

W∗
κ2 , 1

4
(−2im2t)W

κ1 , 1
4
(−2im1t) (105)

+
4k2

m1m2a2
0t

[

1

4
W∗

κ2 , 1
4
(−2im2t)− 1

8

(

1 +
ik2

m2a2
0

)

W∗
κ2−1, 1

4
(−2im2t)

][

1

4
W

κ1 , 1
4
(−2im1t)− 1

8

(

1− ik2

m1a2
0

)

W
κ1−1, 1

4
(−2im1t)

]}

Ωkkk,s;qqq,r(t) = δs,r(−1)s− 1
2 δ3(kkk− qqq)

k

4

√

2m1(2m2)3a4
0t2

e
− πk2(m1+m2)

4m1m2 a2
0

{

W∗
κ1, 1

4

(−2im1t)W−κ2, 1
4
(2im2t) (106)

+
k2

m1m2a2
0t

[

1

4
W∗

κ1, 1
4

(−2im1t)− 1

8

(

1 +
ik2

m1a2
0

)

W∗
κ1−1, 1

4

(−2im1t)

][

W−κ2, 1
4
(2im2t) +

2im2a2
0

k2
W−κ2+1, 1

4
(2im2t)

]}

where Wκ,µ(z) are the Whittaker functions [78] and κj =
1
4

(

1 + 2ik2

a2
0mj

)

for j = 1, 2. The

resulting transition probabilities are

P
e→µ
k,s (t, t0) =

sin2 2θ

2

{

1− Re

[

1√
4m1m2t0t

e
− πk2(m1+m2)

2m1m2 a2
0

{

W
κ2 , 1

4
(−2im2t0)W

∗
κ1 , 1

4
(−2im1t0)

+
4k2

m1m2a2
0t0

(

1

4
W

κ2 , 1
4
(−2im2t0)−

1

8

(

1− ik2

m2a2
0

)

W
κ2−1, 1

4
(−2im2t0)

)(

1

4
W∗

κ1 , 1
4
(−2im1t0)−

1

8

(

1 +
ik2

m1a2
0

)

W∗
κ1−1, 1

4
(−2im1t0)

)

}

×
{

W∗
κ2 , 1

4
(−2im2t)W

κ1 , 1
4
(−2im1t)

+
4k2

m1m2a2
0t

(

1

4
W∗

κ2 , 1
4
(−2im2t)− 1

8

(

1 +
ik2

m2a2
0

)

W∗
κ2−1, 1

4
(−2im2t)

)(

1

4
W

κ1 , 1
4
(−2im1t)− 1

8

(

1− ik2

m1a2
0

)

W
κ1−1, 1

4
(−2im1t)

)

}

+
k2

√

2m1(2m2)3a4
0t0t

e
− πk2(m1+m2)

2m1m2 a2
0

{

W
κ1 , 1

4
(−2im1t0)W

∗
−κ2 , 1

4
(2im2t0)

+
k2

m1m2a2
0t0

(

1

4
W

κ1 , 1
4
(−2im1t0)−

1

8

(

1− ik2

m1a2
0

)

W
κ1−1, 1

4
(−2im1t0)

)(

W∗−κ2 , 1
4
(2im2t0)−

2im2a2
0

k2
W∗−κ2+1, 1

4
(2im2t0)

)

}

×
{

W∗
κ1 , 1

4
(−2im1t)W−κ2 , 1

4
(2im2t)

+
k2

m1m2a2
0t

(

1

4
W∗

κ1 , 1
4
(−2im1t)− 1

8

(

1 +
ik2

m1a2
0

)

W∗
κ1−1, 1

4
(−2im1t)

)(

W−κ2 , 1
4
(2im2t) +

2im2a2
0

k2
W−κ2+1, 1

4
(2im2t)

)

}]}

. (107)
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The equation above is quite involved, but shares the same features of the oscillation
formulae (104): both amplitude and phase vary with time, and can differ significantly from
their flat space counterpart. In Figure 2, we compare Equation (107) with the Pontecorvo
formula in flat space for some sample values of the parameters.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

t (1/a0
2)

P
e
→μ (

t)

Figure 2. (color online) Comparison of Equation (107) (blue solid line) and the Pontecorvo formula

(orange dashed line) with sin2 θ = 0.3, k = 5, m1 = 1, m2 = 20 and t0 = 0.1. Masses and momenta

are meant in units of a2
0.

3.4. Neutrino Oscillations in Asymptotically Flat Manifolds

One remarkable aspect of the spatially flat FRW metrics is that we were able to derive
exact analytical expressions for the transition probabilities (i.e., Equations (104) and (107)),
due to the knowledge of the analytic form of the modes (Section 2) . In most of the metrics,
however, analytical solutions are not available, and we have to resort to some kind of
approximation. Approximate oscillation formulae can be derived in a simple fashion
for spacetimes that admit asymptotically flat regions. To show that, suppose that the
underlying spacetime has two asymptotically flat regions at past and future infinities
TIN =

⋃

τ≤τI
Στ and TOUT =

⋃

τ≥τO
Στ , with τO > τI . This is quite a weak requirement and

is satisfied by several metrics, as is the case, for instance, of the Schwarzschild spacetime.
On TIN and TOUT , the metric is approximately flat, so that approximate solutions to the
Dirac equations are the flat space spinors. Denote the sets of solutions which are positive

(negative) energy in the two regions by
{

U IN
k,s;j(x),V IN

k,s;j(x)
}

and
{

UOUT
k,s;j (x),VOUT

k,s;j (x)
}

,

respectively. Because both are complete, the fields can be expanded in either the IN or
OUT modes, and the two sets are related by the Bogoliubov transformation

UOUT
k′ ,s′ ;j = ∑

k,s

(

X∗k′ ,s′ ;k,s;jU IN
k,s;j + Y∗k′ ,s′ ;k,s;jV IN

k,s;j

)

VOUT
k′ ,s′ ;j = ∑

k,s

(

Xk′ ,s′ ;k,s;jV IN
k,s;j −Yk′ ,s′ ;k,s;jU IN

k,s;j

)

. (108)

Here, the (mass) Bogoliubov coefficients are just the same as in Section 2, given by
the inner products of OUT and IN modes, except that they now connect two special mass
representations: the (locally) flat space representations of TIN and TOUT . Now, suppose
we want to determine the transition probabilities for neutrinos traveling all the way from
the infinite past TIN to the infinite future TOUT . Then, we select τ > τO and τ0 < τI and
compute

P
e→µ
k,s (τ, τ0) =

sin2 2θ

2

[

1−∑
q,r

Re
(

∆OUT∗
k,s;q,r (τ0)∆

OUT
k,s;q,r(τ) + ΩOUT∗

k,s;q,r (τ0)Ω
OUT
k,s;q,r(τ)

)

]

(109)

where we have picked the flavor representation induced by the OUT modes for definiteness
(of course we could have picked the IN representation as well). The mixing Bogoliubov co-
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efficients ∆OUT , ΩOUT are trivial at τ, where they match the flat space coefficients. The same
is not true for these coefficients evaluated at τ0, in the IN region. However, now Equations
(77) and (78) come into play, giving the OUT coefficients in terms of the IN coefficients:

∆OUT
k,s;q,r(τ) = ∑

k′ ,s′ ,q′ ,r′

{

Xk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1∆IN
k′ ,s′ ;q′ ,r′(τ)− Xk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1ΩIN

k′ ,s′ ;q′ ,r′(τ)

+ Yk,s;k′ ,s′ ;2X∗q,r;q′ ,r′ ;1ΩIN∗
k′ ,s′ ;q′ ,r′(τ) + Yk,s;k′ ,s′ ;2Y∗q,r;q′ ,r′ ;1∆IN∗

k′ ,s′ ;q′ ,r′(τ)

}

, (110)

ΩOUT
k,s;q,r(τ) = ∑

k′ ,s′ ,q′ ,r′

{

Xk,s;k′ ,s′ ;2Xq,r;q′ ,r′ ;1ΩIN
k′ ,s′ ;q′ ,r′(τ) + Xk,s;k′ ,s′ ;2Yq,r;q′ ,r′ ;1∆IN

k′ ,s′ ;q′ ,r′(τ)

− Yk,s;k′ ,s′ ;2Xq,r;q′ ,r′ ;1∆IN∗
k′ ,s′ ;q′ ,r′(τ) + Yk,s;k′ ,s′ ;2Yq,r;q′ ,r′ ;1ΩIN∗

k′ ,s′ ;q′ ,r′(τ)

}

. (111)

Now, the IN coefficients are trivial at τ0, so that we can use Equations (110) and (111)
to easily obtain the OUT coefficients at τ0.

In order to see this trick at work, consider the static Schwarzschild metric

ds2 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1

dr2 − r2dΩ(2). (112)

Here, dΩ(2) = dΘ2 + sin2 Θdφ2 is the line element on the sphere. Let
{

ΣOUT
n

}

n∈N
and

{

ΣIN
m

}

n∈N be two sequences of Cauchy surfaces, with each ΣOUT
n lying in the causal

past of the future null infinity J−(I+) and each ΣIN
m in the causal future of the past null

infinity J+(I−) . In simple terms, any causal (timelike or lightlike) curve extending from
the past I− infinity to the future infinity I+ has to meet each of the ΣOUT

n and ΣIN
n at

exactly one point, due to their characterization as Cauchy surfaces. We assume that as
n→ ∞ the surfaces approach, respectively, I+ and I−. The index n is just a bookkeping
variable to formalize such a limiting procedure: the choice of discrete indices is by no
means compulsory, and we could as well use continuous indices to label the sequences.
For large n, the surfaces ΣOUT

n and ΣIN
n span approximately flat regions of the Schwarzschild

spacetime, where the Dirac equation is approximately solved by the flat space solutions of
Equation (99). It follows that the mixing Bogoliubov coefficients, as defined with respect to
the IN modes, take the form of Equation (100)

∆IN
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣIN
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|∆0
ω,ω′ |eiφ−(ω,n)

ΩIN
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣIN
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|Ω0
ω,ω′ |eiρ−(ω,n), (113)

where φ−(ω, n), ρ−(ω, n) are phase factors depending on ω and n. Similar expressions
hold for the OUT Bogoliubov coefficients on the OUT surfaces:

∆OUT
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣOUT
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|∆0
ω,ω′ |eiφ+(ω,n)

ΩOUT
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣOUT
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

|Ω0
ω,ω′ |eiρ+(ω,n). (114)

We need now only to relate the IN and OUT mode via an equation of the form (108).
The misalignment between the IN and OUT modes is here due to the Schwarzschild black
hole, and the Bogoliubov coefficients that relate the two expansions are those characterizing



Symmetry 2023, 15, 807 23 of 46

the Hawking radiation of spin 1/2 particles. The radiation is thermal and determined by
the Hawking temperature TH = 1

8πGM , as derived in [58]. Therefore

Xω′ ,κ′J ,µ′J ;ω,κJ ,µJ ;j = δω,ω′δκ′J ,κJ
δµ′J ,µJ

√

1−F (ω)

Yω′ ,κ′J ,µ′J ;ω,κJ ,µJ ;j = δω,ω′δκ′J ,κJ
δµ′J ,µJ

√

F (ω) (115)

where

F (ω) =
1

e
ω

kBTH + 1
(116)

is the Fermi–Dirac distribution at the Hawking temperature. Notice that the Equation (115)
does not actually depend on the mass index j = 1, 2. We can now plug Equations (114) and
(115) in the inverses of Equations (110) and (111) to find

∆IN
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣOUT
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

{

√

(1−F (ω))(1−F (ω′))|∆0
ω,ω′ |eiφ+(ω,n)

−
√

F (ω)(1−F (ω′))|Ω0
ω,ω′ |eiρ+(ω,n) +

√

F (ω′)(1−F (ω))|Ω0
ω,ω′ |e−iρ+(ω,n)

+
√

F (ω)F (ω′)|∆0
ω,ω′ |e−iφ+(ω,n)

}

and

ΩIN
ω′ ,κ′J ,µ′J ;ω,κJ ,µJ

(ΣOUT
n ) = δ

ω′ ,
√

ω2+∆m2 δκ′J ,κJ
δµ′J ,µJ

{

√

(1−F (ω))(1−F (ω′))|Ω0
ω,ω′ |eiρ+(ω,n)

+
√

F (ω)(1−F (ω′))|∆0
ω,ω′ |eiφ+(ω,n) −

√

F (ω′)(1−F (ω))|∆0
ω,ω′ |e−iφ+(ω,n)

+
√

F (ω)F (ω′)|Ω0
ω,ω′ |e−iρ+(ω,n)

}

.

With these equations, we can compute the oscillation formulae for the propagation
from I− to I+ as (the limit m, n→ ∞ is understood):

P
e→µ
ω;κJ ,µJ

(m, n) ≡ P
e→µ
ω;κJ ,µJ

(ΣIN
m , ΣOUT

n ) ≃ sin2 2θ

2

{

1−

∑
ω′ ,κ′J ,µ′J

Re

(

∆IN∗
ω,κJ ,µJ ;ω′ ,κ′J ,µ′J

(ΣIN
m )∆IN

ω,κJ ,µJ ;ω′ ,κ′J ,µ′J
(ΣOUT

n ) + ΩIN∗
ω,κJ ,µJ ;ω′ ,κ′J ,µ′J

(ΣIN
m )ΩIN

ω,κJ ,µJ ;ω′ ,κ′J ,µ′J
(ΣOUT

n )

)

}

=
sin2 2θ

2

{

1−
√

(1−F (ω))(1−F (ω′))
[

|∆0
ω,ω′ |2 cos

(

A−(ω, m, n)
)

+ |Ω0
ω,ω′ |2 cos

(

B−(ω, m, n)
)

]

+
√

F (ω)(1−F (ω′))|∆0
ω,ω′ ||Ω0

ω,ω′ |
[

cos
(

C−(ω, m, n)
)

− cos
(

D−(ω, m, n)
)]

+
√

F (ω′)(1−F (ω))|∆0
ω,ω′ ||Ω0

ω,ω′ |
[

cos
(

D+(ω, m, n)
)

− cos
(

C+(ω, m, n)
)]

−
√

F (ω)F (ω′)
[

|∆0
ω,ω′ |2 cos

(

A+(ω, m, n)
)

+ |Ω0
ω,ω′ |2 cos

(

B+(ω, m, n)
)

]

}

, (117)
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where ω′ =
√

ω2 + ∆m2 is implicitly a function of ω, and we have introduced the following
combinations of the phase factors

A±(ω, m, n) = φ+(ω, n)± φ−(ω, m)

B±(ω, m, n) = ρ+(ω, n)± ρ−(ω, m)

C±(ω, m, n) = φ+(ω, n)± ρ−(ω, m)

D±(ω, m, n) = ρ+(ω, n)± φ−(ω, m).

Equation (117) attains a simpler form for very high energies ω, ω′, for which |Ω0
ω,ω′ | → 0:

P
e→µ
ω,κJ ,µJ

(m, n) ≃ sin2 2θ

2

{

1−
√

(1−F (ω))(1−F (ω′)) cos(A−(ω, m, n))

−
√

F (ω)F (ω′) cos(A+(ω, m, n))
}

. (118)

The most striking feature of Equations (117) and (118), which is of pure field theo-
retical origin, is the dependency of the oscillation formulae on the Hawking temperature.
Hawking radiation appears naturally within the formalism, via the Fermi–Dirac distri-
butions, modifying the amplitude of the flavor oscillations. As for the case of the FRW
formulae, the modifications in amplitude are a peculiarity of the quantum field theoretical
setting, and have no equivalent in quantum mechanics, where only the phase is affected by
gravitation [21–23]. A plot of Equation (117), as compared to the Pontecorvo formula with
the same sample parameters, is shown in Figure 3.

10
10+1 10

10+5 10
10+9

0.2

0.4

0.6

0.8

t (eV-1)

P
e
→μ (

t)

Figure 3. (color online) e− µ flavor transition probability from Equation (117) (blue solid line) and

from the Pontecorvo oscillation formulae (red dashed line) for the propagation from past to future

infinity and sample values of the parameters. We have chosen, for simplicity, the phases in Equation

(117) in correspondence with their flat space value, i.e., A±(ω, m, n)→ ω2−ω1
2 (t± t0), B±(ω, m, n)→

ω2+ω1
2 (t± t0), C±(ω, m, n)→ ω2

2 (t± t0) +
ω1
2 (t∓ t0), D±(ω, m, n)→ ω2

2 (t± t0)− ω1
2 (t∓ t0), where

t and t0 denote, respectively, the future and past hypersurfaces. It is understood that ω ≡ ω1 and

ω′ = ω2. The parameters are sin2 θ = 0.3, k = 30 eV, m1 = 1 eV, m2 = 20 eV, t0 = 0, kBTH = 10−10

eV and t in the range [1010 + 1, 1010 + 9.5] eV−1.

3.5. Boson Oscillations in Cosmological Metrics

The derivation of the bosonic oscillation formulae in flat FRW metrics only requires
the determination of the (bosonic) mixing Bogoliubov coefficients and their insertion in
Equation (91). For the scale factors A (t) = A DS(t) = eH0t and A (t) = A RAD(t) = a0

√
t,

we have already worked out the solutions of the Klein–Gordon equation in Section 2 (see
Equations (52) and (55)). By computing the inner products on constant conformal time
surfaces, we obtain the following Bogoliubov coefficients:
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∆DS
kkk;qqq (τ) = δ3(kkk− qqq)

iπkτ

4

(

H1∗
ν2
(−kτ)∂τ H1

ν1
(−kτ)− ∂τ H1∗

ν2
(−kτ)H1

ν1
(−kτ)

)

e−
π
2 Im(ν1+ν2)

ΩDS
kkk;qqq (τ) = δ3(kkk− qqq)

iπkτ

4

(

H1∗
ν1
(−kτ)∂τ H1∗

ν2
(−kτ)− ∂τ H1∗

ν1
(−kτ)H1∗

ν2
(−kτ)

)

e−
π
2 Im(ν1+ν2), (119)

and

∆RAD
kkk,qqq (τ) = δ3(kkk− qqq)

i

(a2
0τ)
√

m1m2
e
− πk2

4a2
0(m1+m2)×

[

W∗
− 1

4

(

−2k2

im2a2
0

)

, 1
4

(

im2a2
0τ2

2

)

Ẇ
− 1

4

(

−2k2

im1a2
0

)

, 1
4

(

im1a2
0τ2

2

)

− Ẇ∗
− 1

4

(

−2k2

im2a2
0

)

, 1
4

(

im2a2
0τ2

2

)

W
− 1

4

(

−2k2

im1a2
0

)

, 1
4

(

im1a2
0τ2

2

)

]

ΩRAD
kkk,qqq (τ) = δ3(kkk− qqq)

i

(a2
0τ)
√

m1m2
e
− πk2

4a2
0(m1+m2)×

[

W∗
− 1

4

(

−2k2

im1a2
0

)

, 1
4

(

im1a2
0τ2

2

)

Ẇ∗
− 1

4

(

−2k2

im2a2
0

)

, 1
4

(

im2a2
0τ2

2

)

− Ẇ∗
− 1

4

(

−2k2

im1a2
0

)

, 1
4

(

im1a2
0τ2

2

)

W∗
− 1

4

(

−2k2

im2a2
0

)

, 1
4

(

im2a2
0τ2

2

)

]

,

(120)

where the dot denotes derivative with respect to τ, and we recall that νj =

√

9
4 −

m2
j

H2
0

for

bosons. The evaluation of the probabilities (91) is now straightforward. We find

P
A→B(DS)
kkk

(τ, τ0) =
sin2 2θ

2

{

1− πk2τ0τ

16
e−πIm(ν1+ν2)Re

[

(

H1
ν2
(−kτ0)∂τ H1∗

ν1
(−kτ0)− ∂τ H1

ν2
(−kτ0)H1∗

ν1
(−kτ0)

)

×
(

H1∗
ν2
(−kτ)∂τ H1

ν1
(−kτ)− ∂τ H1∗

ν2
(−kτ)H1

ν1
(−kτ)

)

−
(

H1
ν1
(−kτ0)∂τ H1

ν2
(−kτ0)− ∂τ H1

ν1
(−kτ0)H1

ν2
(−kτ0)

)

×
(

H1∗
ν1
(−kτ)∂τ H1∗

ν2
(−kτ)− ∂τ H1∗

ν1
(−kτ)H1∗

ν2
(−kτ)

)

]}

(121)

for the exponential evolution of the scale factor, and

P
A→B(RAD)
kkk

(τ, τ0) =
sin2 2θ

2

{

1− e
− πk2

2a2
0(m1+m2)

a4
0τ0τm1m2

Re

[

(

W
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

0

2

)

Ẇ∗
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

0

2

)

− Ẇ
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

0

2

)

W∗
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

0

2

)

)

×
(

W∗
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

2

)

Ẇ
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

2

)

− Ẇ∗
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

2

)

W
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

2

)

)

−
(

W
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

0

2

)

Ẇ
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

0

2

)

− Ẇ
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

0

2

)

W
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

0

2

)

)

×
(

W∗
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

2

)

Ẇ∗
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

2

)

− Ẇ∗
− 1

4

(

−2k2

im1 a2
0

)

, 1
4

(

im1a2
0τ2

2

)

W∗
− 1

4

(

−2k2

im2 a2
0

)

, 1
4

(

im2a2
0τ2

2

)

)

]}

(122)

for the radiation dominated universe. In order to gain some insight on the above formulae,
we have plotted them in Figure 4 for sample values of the parameters. As compared to their
flat space counterpart, they show an additional (and generally more involved) variability in
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amplitude and phase. For completeness, we also report the flat spacetime limit (A (t) = 1):

P
A→B(FLAT)
kkk

(t) = sin2 2θ

[

|∆0(B)
kkk
|2 sin2

(

(

ωkkk,2 −ωkkk,1

)

t

2

)

− |Ω0(B)
kkk
|2 sin2

(

(

ωkkk,2 + ωkkk,1

)

t

2

)]

where the bosonic flat coefficients are

|∆0(B)
kkk
| = 1

2

(
√

ωkkk,1

ωkkk,2
+

√

ωkkk,2

ωkkk,1

)

; |Ω0(B)
kkk
| = 1

2

(
√

ωkkk,1

ωkkk,2
−
√

ωkkk,2

ωkkk,1

)

. (123)
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Figure 4. (color online) Boson oscillation formulae in flat FRW spacetimes as a function of conformal

time: (Right panel) for an exponential evolution of the scale factor, Equation (121). The parameters

are sin2 θ = 0.861 and, in units of H0, (blue solid line) m1 = 10, m2 = 20, k = 1, (orange dashed

line) m1 = 5, m2 = 10, k = 1 and (green dotdashed line) m1 = 3, m2 = 6, k = 1. (Left panel) for

the radiation dominated universe. The parameters are sin2 θ = 0.861 and, in units of a2
0, (blue solid

line) m1 = 2, m2 = 4, k = 4, (green dashed line) m1 = 5, m2 = 10, k = 2 and (red dotdashed line)

m1 = 1, m2 = 2, k = 1.

4. The Flavor Vacuum in Curved Space

From now on, we shall restrict ourselves to the fermionic theory. We have previously
claimed that the flavor vacuum has a condensate structure. More precisely, it is a condensate
of particle–antiparticle pairs with definite masses. Computing the vacuum expectation
value (VEV) of any of the mass field number densities, say a†

k,s;1ak,s;1, we obtain

〈0 f (τ)| a†
k,s;1ak,s;1 |0 f (τ)〉 = 〈0m| Sθ(τ)a†

k,s;1S−1
θ (τ)Sθ(τ)ak,s;1S−1

θ (τ) |0m〉
= 〈0m| a†

k,s;e(τ)ak,s;e(τ) |0m〉
= sin2 θ ∑

q,q′ ,r,r′
Ω∗q′ ,r′ ;k,s(τ)Ωq,r;k,s(τ), (124)

where we have used Equations (63) and (70). The same result is obtained for all the other
number densities, so that particles and antiparticles with mass label j populate the flavor
vacuum with condensation density sin2 θ ∑q,q′ ,r,r′ Ω

∗
q′ ,r′ ;k,s(τ)Ωq,r;k,s(τ). Because they carry

energy and momentum, we expect that the flavor vacuum itself carries non-zero energy
and momentum. This can be made precise by analyzing the energy-momentum tensor
derived from the fermionic action (1), which reads

Tµν(x) = ∑
j=1,2

i

2

(

ψ̄jγ̃µ(x)Dνψj + ψ̄jγ̃ν(x)Dµψj − Dµψ̄jγ̃ν(x)ψj − Dνψ̄jγ̃µ(x)ψj

)

. (125)
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The purpose of this section is to compute the VEV of the energy-momentum tensor on
the flavor vacuum at a given time τ0

Tµν(x, τ0) = 〈0 f (τ0)| Tµν(x) |0 f (τ0)〉 . (126)

Notice that the VEV inherits the spacetime dependence x of the energy momentum
tensor operator and an additional surface dependence τ0 from the flavor vacuum. We
shall not impose x0 = τ0 and keep the two time arguments distinct, for the purpose
of generality. The quantities Tµν(x, τ0) define a c-number tensor, which we regard as
the energy-momentum tensor associated to the flavor vacuum at τ0. We shall see that it
encodes, in particular, the energy density carried by the flavor vacuum. The computation
of Equation (126) on a generic manifold is an extremely difficult task and requires some
amount of approximation, especially if the exact solutions to the Dirac equation are not
known. Actually, not even its evaluation for a fixed metric (and thus a fixed form of
the Dirac equation) is allowed in principle. In the semiclassical approach, the energy-
momentum tensor of Equation (126) enters the right hand side of the Einstein field equations
as a source term

Gµν = 8πG
(

TO
µν +Tµν

)

(127)

along with the energy-momentum tensor due to all the other sources TO
µν. In principle, one

should simultaneously solve the field equations for the metric and the Dirac equations for
the modes, so to determine Tµν consistently. We will proceed in two phases. We will first
fix only the general shape of the metric, leaving its specific form unspecified. This will
allow us to derive important results about Tµν valid for all the metrics belonging to the
specified class, and thus, also for the solution of Equation (127). In a second stage, we shall
assume that the energy-momentum tensor due to the other sources is much more relevant
than Tµν

|Tµν| ≪ |TO
µν|, (128)

and consequently neglect the back-reaction due to Tµν: the metric will be given a specific
form, corresponding to the solution of the (reduced) field equations

Gµν = 8πGTO
µν (129)

for some T0
µν, and Tµν will be computed on the specified metric. In both stages, we will

deal with the spatially flat FRW metrics of Equation (24), first leaving the scale factor A

unspecified and then assigning a precise function.

4.1. Auxiliary Tensor

The general solutions to the Dirac equation for the metric of Equation (24) have been
derived in Section 2. We then expand the fields with respect to the modes of Equation (37).
At this stage, neither of the functions fp,j(τ) and gp,j(τ) is specified. For any two Dirac
spinors F, G we introduce the auxiliary tensor functional

Cµν(F, G) = F̄γ̃µ(x)DνG + F̄γ̃ν(x)DµG− Dµ F̄γ̃ν(x)G− Dν F̄γ̃µ(x)G. (130)

Its properties are explored in detail in the Appendix C. In terms of the auxiliary tensor
the energy-momentum tensor operator takes the form

Tµν =
i

2 ∑
j=1,2

∑
λ,λ′=±

∫

d3 p
∫

d3q

{

a†
ppp,λ;jaqqq,λ′ ;jCµν

(

Uppp,λ;j,Uqqq,λ′ ;j

)

+ a†
ppp,λ;jb

†
−qqq,λ′ ;jCµν

(

Uppp,λ;j,Vqqq,λ′ ;j

)

+ b−ppp,λ;jaqqq,λ′ ;jCµν

(

Vppp,λ;j,Uqqq,λ′ ;j

)

+ b−ppp,λ;jb
†
−qqq,λ′ ;jCµν

(

Vppp,λ;j,Vqqq,λ′ ;j

)

}

. (131)
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Here we have suppressed the spacetime dependence for compactness. The c-number
tensors Cµν(F, G) are unaffected by the VEV, for which only the operator part of Equation
(131) is relevant. The typical expectation value that we need to compute is

〈0 f (τ0)| a†
ppp,λ;jaqqq,λ′ ;j |0 f (τ0)〉 = 〈0m| Sθ(τ)a†

ppp,λ;jS−1
θ (τ)Sθ(τ)aqqq,λ′ ;jS−1

θ (τ) |0m〉 (132)

where we have used Equation (70) and inserted the identity. Given that by definition (61)
S−1

θ (τ) = S−θ(τ), each of the operators appearing above has the form

S−1
−θ (τ)appp,λ;jS−θ(τ) , (133)

which compared to Equation (63) indicates that they are the flavor operators for θ → −θ,
i.e., from Equation (63)

S−1
−θ (τ)appp,λ;1S−θ(τ) = cos θappp,λ;1 − sin θ

(

∆∗p(τ)appp,λ;2 + (−1)
λ−1

2 Ωp(τ)b
†
−ppp,λ;2

)

S−1
−θ (τ)appp,λ;2S−θ(τ) = cos θappp,λ;2 + sin θ

(

∆p(τ)appp,λ;1 − (−1)
λ−1

2 Ωp(τ)b
†
−ppp,λ;1

)

S−1
−θ (τ)b−ppp,λ;1S−θ(τ) = cos θb−ppp,λ;1 − sin θ

(

∆∗p(τ)b−ppp,λ;2 − (−1)
λ−1

2 Ωp(τ)a†
ppp,λ;2

)

S−1
−θ (τ)b−ppp,λ;2S−θ(τ) = cos θb−ppp,λ;2 + sin θ

(

∆p(τ)b−ppp,λ;1 + (−1)
λ−1

2 Ωp(τ)a†
ppp,λ;1

)

(134)

where the Bogoliubov coefficients devoid of delta factors have been introduced

∆ppp,λ;qqq,λ′(τ) = δ3(ppp− qqq)δλλ′∆p(τ) ; Ωppp,λ;qqq;λ′ = (−1)
λ−1

2 δ3(ppp− qqq)δλλ′Ωp(τ). (135)

Notice that the decomposition of Equation (135) is always verified for the plane wave
modes of Equation (37), and that, as a result, the reduced coefficients ∆p, Ωp depend only
on the magnitude of the momentum p. The basic relation of Equation (66) is then simply
|∆p|2 + |Ωp|2 = 1. Of course, this holds regardless of the specific form of the scale factor
A (τ). With the aid of Equation (134), we determine the matrix elements on the flavor
vacuum as

〈0 f (τ0)| a†
ppp,λ;jaqqq,λ′ ;j |0 f (τ0)〉 = sin2 θ|Ωp(τ0)|2δλλ′δ

3(ppp− qqq) , ∀j = 1, 2

〈0 f (τ0)| b†
−ppp,λ;jb−qqq,λ′ ;j |0 f (τ0)〉 = sin2 θ|Ωp(τ0)|2δλλ′δ

3(ppp− qqq) , ∀j = 1, 2

〈0 f (τ0)| a†
ppp,λ;1b†

−qqq,λ′ ;1 |0 f (τ0)〉 = sin2 θ Ω∗p(τ0)∆p(τ0)δλλ′δ
3(ppp− qqq)

〈0 f (τ0)| a†
ppp,λ;2b†

−qqq,λ′ ;2 |0 f (τ0)〉 = − sin2 θ Ω∗p(τ0)∆
∗
p(τ0)δλλ′δ

3(ppp− qqq)

〈0 f (τ0)| b−ppp,λ;1aqqq,λ′ ;1 |0 f (τ0)〉 = sin2 θ Ωp(τ0)∆
∗
p(τ0)δλλ′δ

3(ppp− qqq)

〈0 f (τ0)| b−ppp,λ;2aqqq,λ′ ;2 |0 f (τ0)〉 = − sin2 θ Ωp(τ0)∆p(τ0)δλλ′δ
3(ppp− qqq) . (136)

The VEV of Equation (126) is therefore

Tµν = T
M

µν +T
(0)

µν (137)

with

T
M

µν =
i sin2 θ

2 ∑
λ

∫

d3 p

{

|Ωp(τ0)|2 ∑
j=1,2

(

Cµν

(

Uppp,λ;j,Uppp,λ;j

)

− Cµν

(

Vppp,λ;j,Vppp,λ;j

))

+ Ω∗p(τ0)∆p(τ0)Cµν

(

Uppp,λ;1,Vppp,λ;1

)

+ Ωp(τ0)∆
∗
p(τ0)Cµν

(

Vppp,λ;1,Uppp,λ;1

)

− Ω∗p(τ0)∆
∗
p(τ0)Cµν

(

Uppp,λ;2,Vppp,λ;2

)

−Ωp(τ0)∆p(τ0)Cµν

(

Vppp,λ;2,Uppp,λ;2

)

}

(138)
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and

T
(0)

µν =
i

2 ∑
λ

∫

d3 p ∑
j=1,2

Cµν

(

Vppp,λ;j,Vppp,λ;j

)

. (139)

The second term of Equation (137) comes from the application of the anticommutation
relations to the last term of Equation (126), which induces the second term of Equation (138)
(with a change of sign) and the additional term of Equation (139). The splitting performed

in Equation (137) is not a mere matter of convenience, since T M
µν and T

(0)
µν have different

physical meaning and significance. The first term T M
µν is the proper contribution due to

field mixing, and, being proportional to sin2 θ, it vanishes in absence of mixing θ = 0.
The second term is the expectation value of the energy momentum tensor on the mass
vacuum in another guise:

T
(0)

µν = 〈0m| Tµν |0m〉 (140)

and it is present regardless of mixing. To understand what such a term represents, consider
the flat space limit of its 00 component:

T
(0)

00 −→ −2 ∑
λ

∫

d3 p ∑
j=1,2

ωppp;j. (141)

Clearly, Equation (141) is the vacuum energy density for two free Dirac fields, which
is removed by the normal ordering prescription in flat space. Now, one of the Wald
axioms [59] for a well-behaved energy-momentum tensor in curved space QFT requires
that the energy-momentum tensor operator reduces to its normal ordered form when the
flat space limit is taken. In our case, this is only possible if we remove the term of Equation
(139) from the outset. Therefore, we define the renormalized energy-momentum tensor
operator as

Tr
µν = Tµν −T

(0)
µν . (142)

This satisfies the Wald axiom by construction and has the VEV

〈0 f (τ0)| Tr
µν |0 f (τ0)〉 = T

M
µν (143)

which is only due to field mixing. From now on, we shall ignore T 0
µν and refer only to the

renormalized energy-momentum tensor. We will also drop the subscripts r on the operator
and M on the VEV.

4.2. Properties of the VEV

The introduction of the auxiliary tensor allows not only for a simple organization of
the VEV (see Equation (138)), but is also expedient in the derivation of its fundamental
features. The VEV on the flavor vacuum, for the class of metrics of Equation (25), does
indeed enjoy a number of properties:

• Homogeneity: The tensor Tµν depends only upon conformal time τ and not on the
spatial coordinates

Tµν = Tµν(τ, τ0) . (144)

Its only residual dependency is on the arbitrary reference surface τ0. This property
can be deduced immediately from Equation (138) and from the structure of the modes
of Equation (37). All the possible combinations appearing in the auxiliary tensor are
such that the spatial dependency is wiped out:

Cµν(Fppp, Gppp) ∼ F̄pppGppp ∼ e−ippp·xxxeippp·xxx. (145)
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• Diagonality: All the off-diagonal components of Tµν vanish. In the Appendix C, we
have proven that

Cτi(F, G) = piZF,G(p); Cil(F, G) = pi plWF,G(p) (146)

for any F, G = Uppp,λ;j,Vppp,λ;j and for some functions ZF,G(p), WF,G(p) of the magnitude
p. From Equation (138), we have

Tτi ∝

∫

d3 p piL(p) (147)

with L(p) a function of the magnitude p alone. Clearly, the integral vanishes by
symmetry, since pi is integrated over the even range (−∞,+∞). Similarly

Til ∝

∫

d3 p pi plM(p) (148)

vanishes for i 6= l.
• Isotropy: A special case of Equation (148) is when i = l

Tii ∝

∫

d3 p p2
iM(p) =

∫

d3 p
p2

3
M(p) (149)

where the second equality stems from symmetry. Consider thatM is the same for all
the spatial indices i = 1, 2, 3

T11 = T22 = T33. (150)

All of the above properties are a reflection of the properties of the underlying metric.
The VEV on the flavor vacuum mirrors the symmetries of the metric. Together, they make
Tµν identifiable with the energy-momentum tensor of a classical perfect fluid, with only
two independent components Tττ , Tii. We can fully characterize the energy-momentum
content of the flavor vacuum via the energy density ρ ≡ T τ

τ and pressure P ≡ T i
i . Here,

no sum is intended over the index i, which can be any of 1, 2, 3. Alternatively, we can give
the energy density and the trace T

µ
µ = gµνTµν, since by definition of the latter

Tii =
Tττ − 3A 2T

µ
µ

3
. (151)

Last but not least

• Bianchi identity: The VEV satisfies the Bianchi identity

∇µT
µν = 0. (152)

The proof of this last statement is given in the Appendix D. It ensures that Tµν is
a source consistent with the Einstein field equations. We stress that all the properties
discussed thus far are independent of the precise form of the scale factor A (τ). We
conclude the section by giving the functional form of the two independent components of
Tµν in terms of the basic mode functions of Equation (37). The ττ component is

Tττ

[

fp;j, gp;j

]

= 2iA −2 sin2 θ ∑
λ

∫

d3 p
{

|Ωp(τ0)|2 ∑
j=1,2

(

f ∗p;j∂τ fp;j + g∗p;j∂τ gp;j − ∂τ f ∗p;j fp;j − ∂τ g∗p;jgp;j

)

+ 2iIm
[

Ω∗p(τ0)∆p(τ0)
(

f ∗p;1∂τ g∗p;1 − g∗p;1∂τ f ∗p;1

)

−Ω∗p(τ0)∆
∗
p(τ0)

(

f ∗p;2∂τ g∗p;2 − g∗p;2∂τ f ∗p;2

)]}

, (153)

while the trace is
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T
µ

µ

[

fp;j, gp;j

]

= 4iA −3 sin2 θ ∑
λ

∫

d3 p
{

− i|Ωp(τ0)|2 ∑
j=1,2

mj

(

| fp;j|2 − |gp;j|2
)

+ 2iIm
[

im2Ω∗p(τ0)∆
∗
p(τ0) f ∗p;2g∗p;2 − im1Ω∗p(τ0)∆p(τ0) f ∗p;1g∗p;1

]}

. (154)

Both equations stem from the insertion of the explicit form of the auxiliary tensor
components given in the Appendix C in Equation (138).

4.3. De Sitter Evolution: Equation of State

In the previous sections, we have discussed the general properties of the energy-
momentum tensor associated to the flavor vacuum when the underlying metric has the
flat FRW form of Equation (25). We have learned that the flavor vacuum can effectively
be regarded as an isotropic and homogeneous fluid characterized by an energy density
T τ

τ (τ, τ0) and a pressure T i
i (τ, τ0). This is how far we can get without specifying the

scale factor A (τ). In particular, we cannot extract the equation of the state of the fluid
(associated to the flavor vacuum) without giving A (τ) a precise form.

We now enter the second stage of our discussion, in which we assume that the scale
factor is forced by some other source. The present universe appears to be dominated by
a dark energy source (possibly in the shape of a cosmological constant) that drives an
accelerated expansion. A good description of the accelerated expansion phase is given by a
scale factor of the form

A (t) = eH0t −→ A (τ) = −(H0τ)−1. (155)

This represents an exact solution of the Friedmann equations for a universe dominated
by the cosmological constant. Moreover, if H0 is interpreted as a suitable time average of the

Hubble rate ∂tA

A
, it may also depict other phases in the evolution of the universe. The scale

factor of Equation (155) has also a remarkable analytical advantage. We have already solved
the Dirac equations for this metric in Section 2 (see Equation (42)). For the evaluation of
the VEV, it is appropriate that we employ the second boundary condition described in
Section 2, namely that the modes fp;j be positive energy with respect to ∂s = −p∂τ at early
times τ −→ −∞. This choice leads to the solutions (44) and (45) and corresponds to a
specific choice for the mass vacuum: the so-called adiabatic vacuum, characterized by the
absence of particles (with definite mass) at early times. The mixing Bogoliubov coefficients
are explicitly:

∆p(τ) =
πs

4

e
− π

2H0
(m1+m2)

cosh
(

πm1
H0

)

cosh
(

πm2
H0

)

{

J∗ν2
(s)Jν1 (s) + J∗ν2−1(s)Jν1−1(s) + ie

πm1
H0
[

J∗ν2−1(s)J1−ν1
(s)− J∗ν2

(s)J−ν1 (s)
]

+ ie
πm2
H0
[

J∗−ν2
(s)Jν1 (s)− J∗1−ν2

(s)Jν1−1(s)
]

+ e
π

H0
(m1+m2)[J∗−ν2

(s)J−ν1 (s) + J∗1−ν2
(s)J1−ν1

(s)
]

}

Ωp(τ) =
πs

4

e
− π

2H0
(m1+m2)

cosh
(

πm1
H0

)

cosh
(

πm2
H0

)

{

i
[

J∗ν1
(s)J∗ν2−1(s)− J∗ν1−1(s)J∗ν2

(s)
]

+ e
πm2
H0
[

J∗ν1
(s)J∗1−ν2

(s) + J∗ν1−1(s)J∗−ν2
(s)
]

− e
πm1
H0
[

J∗−ν1
(s)J∗ν2−1(s) + J∗1−ν1

(s)J∗ν2
(s)
]

+ ie
π

H0
(m1+m2)[J∗−ν1

(s)J∗1−ν2
(s)− J∗1−ν1

(s)J∗−ν2
(s)
]

}

, (156)

where the positive variable s = −pτ is used for convenience. While the analytical expres-
sion for these coefficients is quite involved, it is always verified that

|Ωp(τ)| −→ 0 ; |∆p(τ)| −→ 1 (157)

for p −→ ∞. This should not be surprising, as we have already stressed when dealing
with the oscillation formulae, the pure QFT contribution (directly related to the second
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coefficient Ωp) becomes negligible in the ultrarelativistic limit p −→ 0. We can now plug
the exact solutions of Equations (44) and (45) into Equations (153) and (154) to find the
explicit form of the VEV. The ττ component is

Tττ(τ, τ0) = i sin2 θ ∑
λ

∫

d3 p|Ωp(τ0)|2
(

H2
0 p2τ3

16π2

)

∑
j=1,2

e
−

πmj
H0

cosh2
(

πmj

H0

)

{

[

2(J∗νj
Jνj−1 − J∗νj−1 Jν) +

ν∗j − νj

s
|Jνj
|2

+
νj − ν∗j

s
|Jνj−1|2

]

+ ie
πmj
H0

[

2
(

J∗νj
J1−νj

+ J∗−νj
Jνj−1 + J∗νj−1 J−νj

+ J∗1−νj
Jνj

)

+
νj − ν∗j

s
J∗νj

J−νj

+
ν∗j − νj

s
J∗−νj

Jνj
+

νj − ν∗j
s

J∗νj−1 J1−νj
+

ν∗j − νj

s
J∗1−νj

Jνj−1

]

+ e
2πmj

H0

[

2(J∗1−νj
J−νj
− J∗−νj

J1−νj
)

+
ν∗j − νj

s
|J−νj
|2 +

νj − ν∗j
s
|J1−νj

|2
]

}

+
i

2
sin2 θ ∑

λ

∫

d3 p

{

Ω∗p(τ0)∆p(τ0)





H2
0 p2τ3e

− πm1
H0

8π2 cosh2
(

πm1
H0

)





[(

−i(J∗ν1
)2 − i(J∗ν1−1)

2 + i
2ν∗1 − 1

s
J∗ν1

J∗ν1−1

)

+ e
πm1
H0

(

2(J∗ν1
J∗−ν1
− J∗ν1−1 J∗1−ν1

) +
2ν∗1 − 1

s
J∗ν1

J∗1−ν1
+

1− 2ν∗1
s

J∗−ν1
J∗ν1−1

)

+ ie
2πm1

H0

(

(J∗−ν1
)2 + (J∗1−ν1

)2 +
2ν∗1 − 1

s
J∗−ν1

J∗1−ν1

)]

− c.c.

}

− i

2
sin2 θ ∑

λ

∫

d3 p

{

Ω∗p(τ0)∆
∗
p(τ0)





H2
0 p2τ3e

− πm2
H0

8π2 cosh2
(

πm2
H0

)





[(

−i(J∗ν2
)2 − i(J∗ν2−1)

2 + i
2ν∗2 − 1

s
J∗ν2

J∗ν2−1

)

+ e
πm2
H0

(

2(J∗ν2
J∗−ν2
− J∗ν2−1 J∗1−ν2

) +
2ν∗2 − 1

s
J∗ν2

J∗1−ν2
+

1− 2ν∗2
s

J∗−ν2
J∗ν2−1

)

+ ie
2πm2

H0

(

(J∗−ν2
)2 + (J∗1−ν2

)2 +
2ν∗2 − 1

s
J∗−ν2

J∗1−ν2

)]

− c.c.

}

(158)

while the trace reads

T
µ

µ (τ, τ0) = i sin2 θ ∑
λ

∫

d3 p|Ωp(τ0)|2
(

iH3
0 τ3s

8π2

)

∑
j=1,2







mje
−πmj

H0

cosh2
(

πmj

H0

)







{

|Jνj
|2 − |Jνj−1|2

+ ie
πmj
H0

(

J∗−νj
Jνj
− J∗νj

J−νj
+ J∗1−νj

Jνj−1 − J∗νj−1 J1−νj

)

+ e
2πmj

H0

(

|J−νj
|2 − |J1−νj

|2
)

}

+
i

2
sin2 θ ∑

λ

∫

d3 p

{

Ω∗p(τ0)∆p(τ0)





im1sH3
0 τ3e

− πm1
H0

4π2 cosh2
(

πm1
H0

)





[

i J∗ν1
J∗ν1−1 + e

πm1
H0 J∗ν1

J∗1−ν1

− e
πm1
H0 J∗−ν1

J∗ν1−1 + ie
2πm1

H0 J∗−ν1
J∗1−ν1

]

− c.c

}

− i

2
sin2 θ ∑

λ

∫

d3 p

{

Ω∗p(τ0)∆
∗
p(τ0)





im2sH3
0 τ3e

− πm2
H0

4π2 cosh2
(

πm2
H0

)





[

i J∗ν2
J∗ν2−1 + e

πm2
H0 J∗ν2

J∗1−ν2

− e
πm2
H0 J∗−ν2

J∗ν2−1 + ie
2πm2

H0 J∗−ν2
J∗1−ν2

]

− c.c

}

. (159)

In these equations, we have suppressed the argument of the Bessel functions s = −pτ
for notational simplicity and kept the Bogoliubov coefficients implicit. They are still quite
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intractable as they stand. A huge semplification occurs if we focus on the late time τ −→ 0−

behaviour of these quantities, because we can invoke the asymptotic form of the Bessel
functions for small arguments [78] Jν(s) ≃

(

s
2

)ν 1
Γ(1+ν)

. According to the interpretation of

the VEV, Tττ(τ → 0−, τ0) shall represent the energy density at late times due to the flavor
vacuum as defined at a previous time τ0. To lowest order in τ, one has

T
(1)

ττ (τ, τ0) ≃ i sin2 θ ∑
λ

∫

d3 p|Ωp(τ0)|2
(

i
H0τ

2π3

)

∑
j=1,2

mj tanh

(

πmj

H0

)

+
i

2
sin2 θ ∑

λ

∫

d3 p



Ω∗p(τ0)∆p(τ0)





−im1H0τ

2π3 cosh
(

πm1
H0

)



− c.c.





− i

2
sin2 θ ∑

λ

∫

d3 p



Ω∗p(τ0)∆
∗
p(τ0)





−im2H0τ

2π3 cosh
(

πm2
H0

)



− c.c.



. (160)

Considered that by definition

T
µ

µ = A
−2

Tττ −A
−2

3

∑
l=1

Tll = H2
0 τ2

Tττ − H2
0 τ2

3

∑
l=1

Tll , (161)

the lowest order Tττ ∝ τ corresponds to T
µ
µ ∝ τ3. To this order, the trace is

T
µ(1)

µ (τ, τ0) ≃ i sin2 θ ∑
λ

∫

d3 p|Ωp(τ0)|2
(

iH3
0 τ3

2π3

)

∑
j=1,2

mj tanh

(

πmj

H0

)

+
i

2
sin2 θ ∑

λ

∫

d3 p



Ω∗p(τ0)∆p(τ0)





−im1H3
0 τ3

2π3 cosh
(

πm1
H0

)



− c.c.





− i

2
sin2 θ ∑

λ

∫

d3 p



Ω∗p(τ0)∆
∗
p(τ0)





−im2H3
0 τ3

2π3 cosh
(

πm2
H0

)



− c.c.



. (162)

We can now obtain the spatial components from Equation (151)

T
(1)

ii = 0 −→ T
i (1)

i = P(1) = 0 (163)

i.e., at late times, the pressure associated to the flavor vacuum is zero. In this regime, the
equation of state becomes [62]

w(1)(τ, τ0) =
P(1)(τ, τ0)

ρ(1)(τ, τ0)
=

T
i (1)

i (τ, τ0)

T
τ (1)

τ (τ, τ0)
= 0. (164)

Equation (164) is a core result. It states that at late times the fluid associated to the
flavor vacuum behaves as dust or cold dark matter with w = wCDM = 0. Notice that the
result is independent of the arbitrary fixed time τ0 at which the flavor vacuum is defined.
Equation (164) constitutes the extension to curved spacetime of an analogous statement
obtained in flat space [75] and provides a significant indication that the flavor vacuum
may contribute to the dark matter in the universe on a cosmological scale.

4.4. De Sitter Evolution: Energy Density

We now wish to better characterize the energy density associated to the flavor vacuum.
The momentum integration involved in Equation (160) does not lend itself to a simple
analytical evaluation. Although this does not rule out a numerical computation, we
prefer to follow a different route and evaluate Tττ analytically under some convenient
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approximation. We consider the case in which both τ and τ0 approach the late time limit
τ, τ0 −→ 0−, with the condition τ0 < τ. In such a circumstance, we are entitled to use
the small argument expansion of the Bessel functions, including those appearing in the
Bogoliubov coefficients of Equation (156). This leaves us with an integral over powers of p
that can be solved analytically, but is formally divergent, since the integration extends up
to p→ ∞. The simplest remedy is the introduction of an ultraviolet cutoff Q0. Imposing a
cutoff appears also quite natural for the problem at hand: neutrino mixing is more relevant
at low energy, since oscillations are practically frozen for energy large enough. This is
easily seen in terms of the classical transition frequency ω ∝ 1

E , which vanishes as E→ ∞.
In addition, due to the high p behaviour of the second Bogoliubov coefficient Ωp (see
Equation (157)), each of the terms in the integral of Equation (160) is suppressed at large
p. Given all these considerations, we shall impose a cutoff Q0 = QEW of the order of the
electroweak scale QEW = 246 GeV. Before proceeding, we have to recall that the physical
momentum is not the mere index ppp, but the comoving momentum

ppp
A (τ)

(see the discussion

below Equation (30)). The imposition of the constant cutoff Q0 on the physical momentum,
i.e., Q0 = p

A (τ)
, translates into a comoving cutoff for the mode index ppp:

pCUTOFF = Q0A (τ) = Q(τ) . (165)

The regularized integral can now be computed straightforwardly. The result to lowest
order in τ and τ0 is

T
(1)

ττ =
− sin2 θH0τQ3(τ)

3π2

[

e
π(m2−m1)

H0 + e
− π(m2−m1)

H0

cosh
(

πm1
H0

)

cosh
(

πm2
H0

)

(

m1 tanh

(

πm1

H0

)

+ m2 tanh

(

πm2

H0

))

− 2
m1 tanh

(

πm2
H0

)

cosh2
(

πm1
H0

) − 2
m2 tanh

(

πm1
H0

)

cosh2
(

πm2
H0

)

]

+ sin2 θH0τQ3(τ)

[





m1 tanh
(

πm1
H0

)

+ m2 tanh
(

πm2
H0

)

cosh2
(

πm1
H0

)

cosh2
(

πm2
H0

)





×
(

1

Γ(ν1)Γ∗(ν2)

)2
(

1

3 + 2i m2−m1
H0

)

(−Q(τ)τ0

2

)

2i(m2−m1)
H0

+ c.c.

]

+ i sin2 θQ3(τ)

{[





−im1 H0τe
−πm1

H0

2 cosh3
(

πm1
H0

)

cosh2
(

πm2
H0

)





(

1

Γ(ν1)Γ∗(ν2)

)2
(

1

3 + 2i m2−m1
H0

)

(−Q(τ)τ0

2

)

2i(m2−m1)
H0

−





−im1 H0τe
−πm1

H0

2 cosh3
(

πm1
H0

)

cosh2
(

πm2
H0

)





(

1

Γ∗(ν1)Γ(ν2)

)2
(

1

3− 2i m2−m1
H0

)

(−Q(τ)τ0

2

)

−2i(m2−m1)
H0

]

− c.c.

}

− i sin2 θQ3(τ)

{[





−im2 H0τe
−πm2

H0

2 cosh3
(

πm2
H0

)

cosh2
(

πm1
H0

)





(

1

Γ(ν1)Γ∗(ν2)

)2
(

1

3 + 2i m2−m1
H0

)

(−Q(τ)τ0

2

)

2i(m2−m1)
H0

−





−im2 H0τe
−πm2

H0

2 cosh3
(

πm2
H0

)

cosh2
(

πm1
H0

)





(

1

Γ∗(ν1)Γ(ν2)

)2
(

1

3− 2i m2−m1
H0

)

(−Q(τ)τ0

2

)

−2i(m2−m1)
H0

]

− c.c.

}

. (166)

The energy density ρ is simply obtained by raising one of the indices ρ(1) = A −2(τ)T
(1)

ττ =

H2
0τ2T

(1)
ττ . The behaviour of ρ(τ) in the late time approximation is plotted in Figure 5 for sample

values of the parameters.
The plot shows that the energy density, in this regime, is essentially constant up to

extremely small oscillations.



Symmetry 2023, 15, 807 35 of 46

10
-99

10
-98

10
-97

10
-96

10
-95

10
-94

10
-93

2.9516625945000×10-47

2.9516625950000×10-47

2.9516625955000×10-47

2.9516625960000×10-47

2.9516625965000×10-47

2.9516625970000×10-47
225.65 221.05 216.44

-τ (1/H)

ρ(1) (
G
e
V
4
)

t (1/H)

Figure 5. Logarithmic scale plot of the energy density ρMIX = T
τ(1)

τ from Equation (166) as a

function of conformal time τ for sample values of the parameters. The corresponding coordi-

nate time t is reported above. We have used the cut-off Q0 = QEW = 246 GeV, neutrino masses

m1 = 15.25H0 , m2 = 22.25H0 and the expansion rate H0 = 10−3eV.

5. Conclusions

In this review, we have presented the QFT of field mixing in curved space, for both
bosons and fermions. We have shown that the theory is characterized by an intricate math-
ematical structure emerging from the intersection of quantization on curved backgrounds
and of the inherent features of mixed fields. We have introduced generalized oscillation
formulae for fermions and bosons, and have applied them to some interesting metrics,
including the cosmological FRW spacetimes and the Schwarzschild black hole. We have
exhibited the deviation of the transition probabilities with respect to their flat space and
quantum mechanical counterparts.

In previous studies regarding the propagation of neutrinos on curved backgrounds [21–24],
performed in a quantum mechanical context, it has been shown that only the phase of the
oscillations is modified by gravity. By contrast, our analysis, which generalizes neutrino
mixing to a QFT context, predicts also variations in the amplitude of the oscillations
and new high frequency oscillating terms. This is manifested in the behavior of the
transition probabilities, which are not characterized by a simple sinusoidal oscillatory
shape, but rather show an evolution similar to that of coupled harmonic oscillators. These
peculiar effects are related to the condensate structure present in the QFT of mixed fields.
The latter can be indirectly accessed by the analysis of very low energy neutrinos, as those
of the cosmic neutrino background [77].

The same formalism has been applied to analyze the flavor vacuum in curved space.
Because of its condensate structure, it carries energy and momentum, contributing as a
source term of the Einstein field equations. We have shown that on spatially flat FRW
backgrounds, it is indeed a proper source term, whose associated energy-momentum tensor
satisfies the Bianchi identity and inherits the symmetries of the underlying spacetime. We
have demonstrated that, for an exponential evolution of the scale factor, the flavor vacuum
of mixed fermions behaves as a pressure-less perfect fluid, with equation of state analogous
to that of dark matter. Although the analogy is still not enough to identify the flavor
vacuum as a (cosmological) dark matter component, this is a quite strong indication that it
may, in fact, contribute to it.

There is a fundamental difference between the mechanism proposed here for dark
matter, with respect to the other particle explanations mentioned in the literature [81,82].
Indeed, the flavor condensation effect does not require the introduction of new matter fields
(e.g., axions, WIMPs, sterile neutrinos, supersymmetric particles) in order to produce a
contribution to the cosmological dark matter. The flavor condensation is simply a byproduct
of the structure of QFT for mixed fields and emerges naturally in this context. Moreover,
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the cosmological impact of the flavor vacuum appears to be novel and completely different
from other mechanisms proposed in the past to explain dark matter or other cosmological
open issues [81–84].

In future works, the dark-matter-like behavior of the flavor vacuum will have to be
assessed in other metrics, possibly arriving at the identification of the condensate as a
proper dark matter component on more general grounds. In particular, future studies will
be devoted to the analysis of the flavor vacuum in spherically symmetric metrics which are
suitable to describe astrophysical dark matter. In such a context, the quantitative impact
of the flavor vacuum on the galactical metric may be derived, possibly yielding a precise
quantitative prediction for the relevant parameters.

Nonetheless, the analysis presented here opens up the intriguing possibility to explain
dark matter out of a pure QFT condensation effect, without the need to invoke new fields
other than neutrinos. In addition, according to recent proposals, this hypothesis may be
validated in upcoming experiments, either regarding simulations [76] or direct revelation
of cosmic neutrinos [77]. By exploiting the formal analogy between the QFT of Rydberg
atoms and the QFT of mixed neutrinos, it is possible to reproduce the condensed vacuum
and determine, at least in principle, its thermodynamic properties, including its dark-
matter-like equation of state [76]. On the other hand, the cosmic neutrino background
offers the possibility to test the theory directly, for instance through the neutrino capture
on tritium [77]. It has been shown, indeed, that the capture rate is sensitive to the flavor
condensation effect, and therefore allows to indirectly test the hypothesis according to
which the flavor vacuum energy constitutes a component of dark matter.
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Appendix A. Helicity Eigenspinors

In this appendix, we display the explicit form of the helicity eigenspinors and prove
the identity (33). Given a three momentum ppp, we can write the corresponding unit vector as

p̂ ≡
(

sin θp cos φp, sin θp sin φp, cos θp

)

(A1)

on the spatial axes x, y, z. Evidently, θp = arccos
(

pz
p

)

and φp = arctan
(

py

px

)

. The solutions

to the eigenvalue Equation (32) may be written as

ξ+( p̂) =

(

e−i
φp
2 cos

θp

2

ei
φp
2 sin

θp

2

)

; ξ−( p̂) =

(

e−i
φp
2 sin

θp

2

−ei
φp
2 cos

θp

2

)

, (A2)

respectively, for λ = ±1. Naturally, these are mutually orthogonal. The identity (33) can be
verified by direct calculation. For λ = 1, we have
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ξ†
+σ1ξ+ =

(

ei
φp
2 cos(

θp

2 ) e−i
φp
2 sin(

θp

2 )
)

(

0 1
1 0

)

(

e−i
φp
2 cos(

θp

2 )

ei
φp
2 sin(

θp

2 )

)

= cos(
θp

2
) sin(

θp

2
)
(

eiφp + e−iφp

)

= sin(θp) cos(φp) =
px

p
(A3)

ξ†
+σ2ξ+ =

(

ei
φp
2 cos(

θp

2 ) e−i
φp
2 sin(

θp

2 )
)

(

0 −i
i 0

)

(

e−i
φp
2 cos(

θp

2 )

ei
φp
2 sin(

θp

2 )

)

= cos(
θp

2
) sin(

θp

2
)
(

ie−iφp − ieiφp

)

= sin(θp) sin(φp) =
py

p
(A4)

ξ†
+σ3ξ+ =

(

ei
φp
2 cos(

θp

2 ) e−i
φp
2 sin(

θp

2 )
)

(

1 0
0 −1

)

(

e−i
φp
2 cos(

θp

2 )

ei
φp
2 sin(

θp

2 )

)

= cos2(
θp

2
)− sin2(

θp

2
) = cos(θp) =

pz

p
(A5)

similarly, for λ = −1 we find

ξ†
−σ1ξ− =

(

ei
φp
2 sin(

θp

2 ) −e−i
φp
2 cos(

θp

2 )
)

(

0 1
1 0

)

(

e−i
φp
2 sin(

θp

2 )

−ei
φp
2 cos(

θp

2 )

)

= − cos(
θp

2
) sin(

θp

2
)
(

eiφp + e−iφp

)

= − sin(θp) cos(φp) =
−px

p
(A6)

ξ†
−σ2ξ− =

(

ei
φp
2 sin(

θp

2 ) −e−i
φp
2 cos(

θp

2 )
)

(

0 −i
i 0

)

(

e−i
φp
2 sin(

θp

2 )

−ei
φp
2 cos(

θp

2 )

)

= − cos(
θp

2
) sin(

θp

2
)
(

ie−iφp − ieiφp

)

= − sin(θp) sin(φp) =
−py

p
(A7)

ξ†
−σ3ξ− =

(

ei
φp
2 sin(

θp

2 ) −e−i
φp
2 cos(

θp

2 )
)

(

1 0
0 −1

)

(

e−i
φp
2 sin(

θp

2 )

−ei
φp
2 cos(

θp

2 )

)

= − cos2(
θp

2
) + sin2(

θp

2
) = − cos(θp) =

−pz

p
. (A8)

Appendix B. The Mixing Generator

The purpose of this appendix is to show some important aspects of the mixing genera-
tor. First of all, we demonstrate that it has the claimed form (61)

Sθ(τ) = exp{εθ[(Ψ1, Ψ2)τ − (Ψ2, Ψ1)τ ]} (A9)

for both fermions Ψj = ψj and bosons Ψj = φj. The sign factor ε is +1 for fermions and −1
for bosons. The inner product is of course understood as the Dirac and the Klein–Gordon
one, respectively. We shall need the identity

eABe−A = B + [A, B] +
1

2!
[A, [A, B]] + ... (A10)

where the dots denote the sequence of nested commutators. The basic requirement for the
mixing generator is that it reproduces the mixing relations

ΨA(τ) = S−1
θ (τ)Ψ1Sθ(τ) = cos θΨ1 + sin θΨ2

ΨB(τ) = S−1
θ (τ)Ψ2Sθ(τ) = cos θΨ2 − sin θΨ1
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with the boundary conditions ΨA|θ=0 = Ψ1, ΨB|θ=0 = Ψ2 and ∂θΨA|θ=0 = Ψ2, ∂θΨB|θ=0 =
−Ψ1 which can be read straight off the mixing relations. We now demonstrate that the form
of Equation (A9) does indeed satisfy this requirement. Let us start with the fermion fields
Ψj ≡ ψj, ΨA ≡ ψe, ΨB ≡ ψµ. For fermions, a choice of a tetrad is necessary. On a globally

hyperbolic manifold, the timelike element of the tetrad e
µ
0 (x) induces an obvious foliation

of the manifold by the Cauchy surfaces Στ that have unit timelike normal given by e
µ
0 (x).

The Dirac inner product on such surfaces is

( f , h)τ =
∫

Στ

dΣµ

√

−g f̄ γ̃µ(x)h

=
∫

Στ

dΣ
√

−ggµνe
µ
0 (x)eν

A(x) f †γ0γAh =
∫

Στ

dΣ
√

−g f †h . (A11)

In the last equality, we have used the basic property of the tetrads gµνe
µ
Aeν

B = ηAB and
(γ0)2 = 1. Let us compute the commutator

[ψ1(x), (ψ1, ψ2)τ ] =
∫

Στ

dΣ′
√

−g(x′)
[

ψ1(x), ψ†
1(x′)ψ2(x′)

]

. (A12)

The integrand can be easily computed taking into account the anticommutation rela-

tions (recall that the conjugate momentum has a factor of
√−g)

{

ψj(x),
√

−g(x′)ψ†
k (x′)

}

=

δjkδΣ(x, x′), where δΣ(x, x′) is the Dirac delta on the surface Σ where the anticommutator is
evaluated. The result is simply

[ψ1(x), (ψ1, ψ2)τ ] = ψ2(x) (A13)

where it is understood that all the fields are evaluated on the surface Στ . Similarly, one
finds that

[ψ2(x), (ψ2, ψ1)τ ] = ψ1(x) , [ψ1(x), (ψ2, ψ1)τ ] = 0 = [ψ2(x), (ψ1, ψ2)τ ]. (A14)

Inserting these results in the identity (A10) with B = ψ1 and A = θ[(ψ2, ψ1)τ − (ψ1, ψ2)τ ],
we obtain

S−1
θ (τ)ψ1(x)Sθ(τ) = ψ1(x) + θψ2(x)− θ2

2!
ψ1(x) + ... = cos θψ1(x) + sin θψ2(x) (A15)

and similar for ψ2(x). Let us now show that the same relations arise for bosons Ψj ≡
φj, ΨA ≡ φA, ΨB = φB. The inner product is, in this case

( f , h)τ = −i
∫

Στ

dΣµ
√

−g
(

f ∗∂µg− g∂µ f ∗
)

= −i
∫

Στ

dΣ
√

−gg0ν( f ∗∂νg− g∂ν f ∗) (A16)

where, in the last equality, the Cauchy surfaces have been chosen with unit timelike normal
∂

∂x0
as induced by the choice of coordinates. The commutator

[φ1(x), (φ1, φ2)τ ] = −i
∫

Στ

dΣ′
√

−g(x′)g0ν(x′)
[

φ1(x), φ†
1(x′)∂νφ2(x′)− φ2(x′)∂νφ†

1(x′)
]

(A17)

can be easily computed recognising the conjugate momentum πj(x) =
√

−g(x)g0ν∂νφ†
j (x)

and using the canonical commutation relations
[

φj(x), πk(x′)
]

= iδjkδΣ(x, x′), so to obtain

[φ1(x), (φ1, φ2)τ ] = −φ2(x). (A18)
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Analogously, [φ2(x), (φ2, φ1)τ ] = −φ1(x) while the other combinations are zero. Plug-
ging the commutators in Equation (A10), one finally finds

S−1
θ (τ)φ1(x)Sθ(τ) = φ1(x) + θφ2(x)− θ2

2!
φ1(x) + ... = cos θφ1(x) + sin θφ2(x) (A19)

and similar for φ2. This shows that the form of Equation (A9) generates the mixing relations
for both fermions and bosons. The next step is to derive the expression for the flavor
operators (63). We show the computation for the fermionic operators, but an almost
identical calculation can be carried on to prove the analogous relations for bosonic operators.
Let us write the argument of the exponential in Equation (A9), in terms of creation and
destruction operators, by inserting the expansion (14)

(ψ1, ψ2)τ − (ψ2, ψ1)τ = ∑
k,q,r,s

(

ak,r;1Uk,r;1(x) + b†
k,r;1Vk,r;1(x), aq,s;2Uq,s;2(x) + b†

q,s;2Vq,s;2(x)
)

τ

− ∑
k,q,r,s

(

ak,r;2Uk,r;2(x) + b†
k,r;2Vk,r;2(x), aq,s;1Uq,s;1(x) + b†

q,s;1Vq,s;1(x)
)

τ
=

∑
k,q,r,s

[

a†
k,r;1aq,s;2

(

Uk,r;1,Uq,s;2

)

τ
+ a†

k,r;1b†
q,s;2

(

Uk,r;1,Vq,s;2

)

τ

+bk,r;1aq,s;2

(

Vk,r;1,Uq,s;2

)

τ
+ br,k;1b†

q,s;2

(

Vk,r;1,Vq,s;2

)

τ

]

− h.c.

The only terms that have a non-vanishing commutator with ap,s′ ;1 are those involving

an a†
1 term. Recalling the definition of the Bogoliubov coefficients (65), these yield

[(ψ1, ψ2)τ − (ψ2, ψ1)τ , ap,s′ ;1]

=

[

∑
k,q,r,s

(

∆∗q,s;k,r(τ)a†
k,r;1aq,s;2 + Ωq,s;k,r(τ)a†

k,r;1b†
q,s;2

)

, ap,s′ ;1

]

= −∑
q,s

(

∆∗q,s;p,s′(τ)aq,s;2 + Ωq,s;p,s′(τ)b
†
q,s;2

)

. (A20)

Then, inserting into Equation (A10), we find that to first order in θ

S−1
θ (τ)ap,s′ ;1Sθ(τ) = ap,s′ ;1 + θ ∑

q,s

(

∆∗q,s;p,s′(τ)aq,s;2 + Ωq,s;p,s′(τ)b
†
q,s;2

)

. (A21)

The next terms of the sequence of nested commutators are more involved, and require
the use of the basic property of the Bogoliubov coefficients (66). Nonetheless, it is easy to
check that they lead to the expression (63) for ap,s′ ;e(τ). Similar conclusions can be drawn
for the other flavor operators. It is worth mentioning that there exists a much quicker route
to the expressions (63) of the flavor operators, which has also the advantage of highlighting
the role of such operators as coefficients of the expansion of the flavor fields with respect to
the mass modes. Specifically

ap,s;e(τ) =
(

Up,s;1, ψe

)

τ
, ap,s;µ(τ) =

(

Up,s;2, ψµ

)

τ
,

bp,s;e(τ) =
(

ψe,Vp,s;1

)

τ
, bp,s;µ(τ) =

(

ψµ,Vp,s;2

)

τ
. (A22)

and it is a matter of simple algebra, using the properties of the inner product to show that
these expressions are indeed the same as Equation (63).
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Appendix C. The Auxiliary Tensor

In this appendix, we deal with the properties of the auxiliary tensor of Equation (130).
The first property stems directly from the definition

Cµν(F, G) = Cνµ(F, G) , ∀F, G (A23)

and is, of course, inherited from the symmetry of the energy-momentum tensor. From Equa-
tion (126), we can also infer that Cµν(F, F) is pure imaginary for any F. Another useful
identity can be derived for the trace of the auxiliary tensor. Let Fj, Gj be any two solutions
of the Dirac equation with mass mj, then

C
µ
µ(Fj, Gj) = gµνCµν(Fj, Gj) = 2

(

F̄jγ̃
µ(x)DµGj − Dµ F̄jγ̃

µ(x)Gj

)

= −4imj F̄jGj (A24)

where we have employed the Dirac Equation (11). We shall also need the ττ component of
the auxiliary tensor. Considering the standard choice of tetrads (26), this is simply

Cττ(F, G) = 2A (τ)
(

F†∂τG− ∂τ F†G
)

(A25)

for any F, G. It is convenient to derive explicit expressions for the trace and the ττ compo-
nent of the auxiliary tensor evaluated on the modes of Equation (37). We have

C
µ
µ(Uppp,λ;j,Uppp,λ;j) = −4imjŪppp,λ;jUppp,λ;j = −4imjU †

ppp,λ;jγ
0Uppp,λ;j

= −4imjA
−3(τ)

(

f ∗p;jξ
†
λ g∗p;jλξ†

λ

)

(

I 0
0 −I

)(

fp;jξλ

gp;jλξλ

)

= −4imjA
−3(τ)

(

| fp;j|2 − |gp;j|2
)

(A26)

C
µ
µ(Uppp,λ;j,Vppp,λ;j) = −4imjŪppp,λ;jVppp,λ;j = −4imjU †

ppp,λ;jγ
0Vppp,λ;j

= −4imjA
−3(τ)

(

f ∗p;jξ
†
λ g∗p;jλξ†

λ

)

(

I 0
0 −I

)

(

g∗p;jξλ

− f ∗p;jλξλ

)

= −8imjA
−3(τ) f ∗p;jg

∗
p;j (A27)

C
µ
µ(Vppp,λ;j,Uppp,λ;j) = −4imjV̄ppp,λ;jUppp,λ;j = −4imjV†

ppp,λ;jγ
0Uppp,λ;j

= −4imjA
−3(τ)

(

gp;jξ
†
λ − fp;jλξ†

λ

)

(

I 0
0 −I

)(

fp;jξλ

gp;jλξλ

)

= −8imjA
−3(τ) fp;jgp;j = −

(

C
µ
µ(Uppp,λ;j,Vppp,λ;j)

)∗
(A28)

C
µ
µ(Vppp,λ;j,Vppp,λ;j) = −4imjV̄ppp,λ;jVppp,λ;j = −4imjV†

ppp,λ;jγ
0Vppp,λ;j

= −4imjA
−3(τ)

(

gp;jξ
†
λ − fp;jλξ†

λ

)

(

I 0
0 −I

)

(

g∗p;jξλ

− f ∗p;jλξλ

)

= −4imjA
−3(τ)(|gp;j|2 − | fp;j|2)

= −C
µ
µ(Uppp,λ;j,Uppp,λ;j), (A29)

for the traces, and



Symmetry 2023, 15, 807 41 of 46

Cττ(Uppp,λ;j,Uppp,λ;j) = 2A (τ)
[

U †
ppp,λ;j∂τUppp,λ;j − ∂τU †

ppp,λ;jUppp,λ;j

]

= 2A
−2(τ)

[

(

f ∗p;jξ
†
λ g∗p;jλξ†

λ

)

(

∂τ fp;jξλ

∂τ gp;jλξλ

)

−
(

∂τ f ∗p;jξ
†
λ ∂τ g∗p;jλξ†

λ

)

(

fp;jξλ

gp;jλξλ

)]

= 2A
−2(τ)

[

f ∗p;j∂τ fp;j − ∂τ f ∗p;j fp;j + g∗p;j∂τ gp;j − ∂τ g∗p;jgp;j

]

= −Cττ(Vpppλ;j,Vppp,λ;j) (A30)

Cττ(Uppp,λ;j,Vppp,λ;j) = 2A (τ)
[

U †
ppp,λ;j∂τVppp,λ;j − ∂τU †

ppp,λ;jVppp,λ;j

]

= 2A
−2(τ)

[

(

f ∗p;jξ
†
λ g∗p;jλξ†

λ

)

(

∂τ g∗p;jξλ

−∂τ f ∗p;jλξλ

)

−
(

∂τ f ∗p;jξ
†
λ ∂τ g∗p;jλξ†

λ

)

(

g∗p;jξλ

− f ∗p;jλξλ

)]

= 4A
−2(τ)

[

f ∗p;j∂τ g∗p;j − g∗p;j∂τ f ∗p;j

]

= −
(

Cττ(Vppp,λ;j,Uppp,λ;j)
)∗

, (A31)

for the ττ components. Finally, we prove that Cτi, for i = 1, 2, 3 is an odd function of ppp
for all the arguments and that Cil is an odd function of pi and pl for i 6= l = 1, 2, 3. By
definition

Cτi(Uppp,λ;j,Uppp,λ;j) = Ūppp,λ;jγ̃τ DiUppp,λ;j + Ūppp,λ;jγ̃iDτUppp,λ;j − DiŪppp,λ;jγ̃τUppp,λ;j − DτŪppp,λ;jγ̃iUppp,λ;j

= A U †
ppp,λ;j

(

∂i +
1

8
ωA,B

i [γA, γB]

)

Uppp,λ;j −A U †
ppp,λ;jγ

0γi∂τUppp,λ;j

− A

(

∂iU †
ppp,λ;jγ

0 − U †
ppp,λ;j

γ0

8
ωA,B

i [γA, γB]

)

γ0Uppp,λ;j +A ∂τU †
ppp,λ;jγ

0γiUppp,λ;j

= A U †
ppp,λ;j

(

ipi +
∂τA

2A

(

0 σi

σi 0

))

Uppp,λ;j −A U †
ppp,λ;j

(

0 σi

σi 0

)

∂τUppp,λ;j

− A U †
ppp,λ;j

(

−ipi +
∂τA

2A

(

0 σi

σi 0

))

uppp,λ +A ∂τU †
ppp,λ;j

(

0 σi

σi 0

)

Uppp,λ;j

= 2ipiA U †
ppp,λ;jUppp,λ;j +A

[

∂τU †
ppp,λ;j

(

0 σi

σi 0

)

Uppp,λ;j − U †
ppp,λ;j

(

0 σi

σi 0

)

∂τUppp,λ;j

]

= 2ipiA
−2
[

| fp;j|2 + |gp;j|2
]

+A
−2λ

[

∂τ f ∗p;jgp;j + ∂τ g∗p;j fp;j − f ∗p;j∂τ gp;j − g∗p;j∂τ fp;j

]

ξ†
λσiξλ

= pi

{

i

π3A 2
+

λ

pA 2

[

∂τ f ∗p;jgp;j + ∂τ g∗p;j fp;j − c.c.
]

}

. (A32)

Here, we have made use of the normalization condition (38) and of the property (33).
It is clear from Equation (A32) that every γ̃i factor and every spatial derivative ∂i brings
down a factor pi. Therefore, for each F, G = Uppp,λ;j,Vppp,λ;j, it holds that

Cτi(F, G) = piZF,G(p), (A33)

with ZF,G(p) a function of the magnitude p alone. As a special case

Cτi(Uppp,λ;j,Vppp,λ;j) = 0. (A34)

The argument is very similar for the mixed spatial components:

Cil(F, G) = pi plWF,G(p), (A35)

for every F, G = Uppp,λ;j,Vppp,λ;j and WF,G(p) a function of the magnitude p alone.
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Appendix D. Bianchi Identity

We wish to prove that
∇µT

µν = 0 (A36)

with∇µ denoting the covariant derivative. Notice that we employ a distinct symbol for the
spinorial covariant derivative Dµ in order to avoid confusion. Explicitly, Equation (A36) is

∇µT
µν = ∂µT

µν + Γ
µ
µσT

σν + Γν
µσT

µσ. (A37)

where the Christoffel symbols for the metric (25) are given in Equation (27). We treat the
spatial and time equations separately.

• (ν = i) For ν = i, with i = 1, 2, 3 Equation (A37) is

∇µT
µi = ∂µT

µi + Γ
µ
µσT

σi + Γi
µσT

µσ. (A38)

Since T µν is diagonal, this simplifies to

∇µT
µi = ∂iT

ii + ∑
µ

Γ
µ
µiT

ii + ∑
µ

Γi
µµT

µµ, (A39)

with no sum over repeated indices and summations denoted explicitly. The first term
on the right hand side of Equation (A39) vanishes, because T µν depends only on τ.
All the Christoffel symbols appearing in the second and third term are zero (see (27)),
so that overall

∇µT
µi = 0 ∀i = 1, 2, 3. (A40)

• (ν = τ) The proof for ν = τ is slightly more involved. We first write out Equation
(A37) explicitly

∇µT
µτ = ∂µT

µτ + Γ
µ
µσΓστ + Γτ

µσT
µσ

= ∂τT
ττ +

(

Γτ
ττ + ∑

i

Γi
iτ

)

T
ττ + Γτ

ττT
ττ + ∑

i

Γτ
iiT

ii

= ∂τT
ττ + 5Γτ

ττT
ττ + 3Γτ

ττT
ii, (A41)

where we have made use of the diagonality of T µν and of Equation (27). We conve-
niently rephrase Equation (A41) in terms of the covariant component Tττ and of the
trace T

µ
µ by means of Equation (151)

∇µT
µτ = ∂τ

(

A
−4

Tττ

)

+ 6A
−5∂τA Tττ −A

−3∂τA T
µ

µ . (A42)

Now, each of the terms on the right hand side is, according to Equation (138), the mo-
mentum integral of the auxiliary tensor components Cττ and C

µ
µ multiplied by some

coefficients. These coefficients are independent of τ (they only depend on the arbitrary
fixed time τ0, see (138)) and, most importantly, are the same for all the components of
Tµν. Then, in order to prove that Equation (A42) vanishes, it suffices to show that

∂τ

(

A
−4Cττ(F, G)

)

+ 6A
−5∂τA Cττ(F, G)−A

−3∂τA C
µ
µ(F, G) = 0 (A43)

for each F, G = Uppp,λ;j,Vppp,λ;j. For this purpose, we shall use the second order mode
equations

∂2
τ fp;j = −

(

imj∂τA + p2 + m2
j A

2
)

fp;j

∂2
τ gp;j = −

(

−imj∂τA + p2 + m2
j A

2
)

gp;j. (A44)
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The first coincides with Equation (36) and the second is similarly a direct consequence
of the system (35). Let us start with F = G = Uppp,λ;j. Using the expressions derived in
the Appendix C, we find

∂τ

(

A
−4Cττ(Uppp,λ;j,Uppp,λ;j)

)

+ 6A
−5∂τA Cττ(Uppp,λ;j,Uppp,λ;j)−A

−3∂τA C
µ
µ(Uppp,λ;j,Uppp,λ;j) =

2∂τ

[

A
−6
(

f ∗p;j

←→
∂τ fp;j + g∗p;j

←→
∂τ gp;j

)]

+ 12A
−7∂τA

(

f ∗p;j

←→
∂τ fp;j + g∗p;j

←→
∂τ gp;j

)

+4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

=

2A
−6∂τ

(

f ∗p;j

←→
∂τ fp;j + g∗p;j

←→
∂τ gp;j

)

+ 4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

=

2A
−6
(

f ∗p;j∂
2
τ fp;j − fp;j∂

2
τ f ∗p;j + g∗p;j∂

2
τ gp;j − gp;j∂

2
τ g∗p;j

)

+ 4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

=

2A
−6
{

f ∗p;j

[

−
(

imj∂τA + p2 + m2
A

2
)]

fp;j − f ∗p;j

[

−
(

−imj∂τA + p2 + m2
A

2
)]

fp;j

+g∗p;j

[

−
(

−imj∂τA + p2 + m2
A

2
)]

gp;j − f ∗p;j

[

−
(

imj∂τA + p2 + m2
A

2
)]

gp;j

}

+4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

=

2A
−6
{

| fp;j|2
(

−2imj∂τA
)

+ |gp;j|2
(

2imj∂τA
)

}

+ 4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

=

−4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

+ 4imjA
−6∂τA

(

| fp;j|2 − |gp;j|2
)

= 0 .

In the fourth step, we have employed Equations (A44) and their complex conjugates.
Considering that (see the Appendix C) Cττ(Vppp,λ;j,Vppp,λ;j) = −Cττ(Uppp,λ;j,Uppp,λ;j) and

C
µ
µ(Vppp,λ;j,Vppp,λ;j) = −C

µ
µ(Uppp,λ;j,Uppp,λ;j), the same equation holds for the components of

Cµν(Vppp,λ;j,Vppp,λ;j). Likewise

∂τ

(

A
−4Cττ(Uppp,λ;j,Vppp,λ;j)

)

+ 6A
−5∂τA Cττ(Uppp,λ;j,Vppp,λ;j)−A

−3∂τA C
µ
µ(Uppp,λ;j,Vppp,λ;j) =

∂τ

(

4A
−6 f ∗p;j

←→
∂τ g∗p;j

)

+ 24A
−7∂τA

(

4A
−6 f ∗p;j

←→
∂τ g∗p;j

)

+ 8imjA
−6∂τA f ∗p;jg

∗
p;j =

4A
−6∂τ

(

A
−6 f ∗p;j

←→
∂τ g∗p;j

)

+ 8imjA
−6∂τA f ∗p;jg

∗
p;j =

4
[

f ∗p;j∂
2
τ g∗p;j − g∗p;j∂

2
τ f ∗p;j

]

+ 8imjA
−6∂τA f ∗p;jg

∗
p;j =

4A
−6
{

f ∗p;j

[

−
(

imj∂τA + p2 + m2
A

2
)]

g∗p;j − f ∗p;j

[

−
(

−imj∂τA + p2 + m2
A

2
)]

g∗p;j

}

+8imjA
−6∂τA f ∗p;jg

∗
p;j =

−8imjA
−6∂τA f ∗p;jg

∗
p;j + 8imjA

−6∂τA f ∗p;jg
∗
p;j = 0 .

In the fourth step, we have made use of the complex conjugates of Equations (A44). Fi-
nally, recalling properties Cττ(Vppp,λ;j,Uppp,λ;j) = −C∗ττ(Uppp,λ;j,Vppp,λ;j) and C

µ
µ(Vppp,λ;j,Uppp,λ;j) =

−C
µ∗
µ (Uppp,λ;j,Vppp,λ;j), the same equation holds for the components of Cµν(Vppp,λ;j,Uppp,λ;j). This

concludes the proof for ν = τ.
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