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Abstract
In this work we study the properties of rigidly rotating neutral dust solutions in general
relativity. This class of solutions gained relevance recently due to applications to the
dynamics of spiral galaxies. We show that this class could be interpreted as a “rigid
body” in general relativity andwe analyze the different properties respect to the rigidly
rotating disk in special relativity: for example, the general relativistic counterpart
shows no Doppler effect for a light signal emitted and received from any two points
at rest respect to the “rigid body”. This effect can be important to test the validity of
the assumed model for our galaxy. In the second part we approach the problem from
a low energy expansion perspective and we write down a generalization of the virial
theorem for stationary spacetimes. The non-Newtonian contributions can lead to a
re-weighting of dark matter in galaxies.

Keywords General relativistic models for galaxies · Exact solutions in General
Relativity
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1 Introduction

In the work [1] a tensor of deformations P̃ is introduced to define covariant equations
for “rigid-body”motions in special relativity.Using this definition it is possible to show
that a body which is rigidly rotating around an axis satisfies the “linear speed-distance
law” (2.17). We will use a different definition for the deformation tensor respect to
[1], eventually reaching same conclusions. In the first part we review this construction
in order to study a generalization of the definition of rigid rotation around an axis
in a general relativistic context. To do this, we use dust as source for the Einstein’s
equations

T = ρ u ⊗ u, (1.1)

where u is the four velocity field of the rotating body and ρ its density.
The class of solutions under consideration has gained relevance recently due to

applications to spiral galaxy models [2–4]. Our analysis shows that these solutions are
rigidly rotating even if they do not satisfy r−1v = constant, where the velocity v is
measured by the “zero angular momentum observers” (ZAMO) [5].
In the second part we consider again dust solutions in general relativity, without impos-
ing the condition of rigid rotation. As well as writing down exact solutions, one can
describe these systems taking a gravito-magnetic expansion approach as in [6] and
[7]. In fact, in the second part we will approach stationary solutions from a “low
energy” expansion perspective and we will provide a generalization of the Newtonian
virial theorem in this general relativistic context,which can be useful for galactic and
extra-galactic applications. Interestingly the relativistic modification of the theorem
presents an extra term which can reduce the required matter density to sustain the
motion of the dust compared to the Newtonian version of the same theorem.
In what follows we take c = 1,G = 1 and the signature is mostly plus.

2 Considerations on rigidly rotating dust

Here we consider a rotating disk around an axis in special relativity, therefore neglect-
ing its gravitational field.
Given a coordinate system xμ, in [1] the tensor of deformations P̃ is defined as

P̃μν := 1

2

(
uμ;ν + uν;μ + uμ;αuαuν + uν;αuαuμ

)
, (2.1)

where uμ is the four velocity field of the body. The condition for rigid rotation adopted
in [1] is P̃μν = 0:

(
uμ;ν + uν;μ + uμ;αuαuν + uν;αuαuμ

) = 0. (2.2)
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We are here taking a different perspective, eventually reaching the same conclusions.
We define the tensor of deformations P as

P(u) := Lu(g) = (uμ;ν + uν;μ)dxμ ⊗ dxν, (2.3)

and its representation in covariant components read

Pμν = uμ;ν + uν;μ. (2.4)

If we now directly impose the nullity of P

uμ;ν + uν;μ = 0, (2.5)

we obtain the Killing vector equations. If we want u to be the four-velocity of a real
element of the body, then (2.5) must be supplemented by the condition uμuμ = −1.
In fact, the combination of these two set of equations give the geodesic equation

uμuν
;μ = 0. (2.6)

The class of solutions for P = 0, plus the obvious condition uμuμ = −1, is a family
of particles moving on straight lines. Although this is clearly a rigid body motion, the
condition P = 0 is too strong and does not allow for rigid rotation.
Let us now take a step back and consider the vector field given by the four velocity of
the body

u = uμ ∂

∂xμ
. (2.7)

As it is well known, this vector field naturally defines a projection operator on tensor
fields at every point x . Its action on a vector X is given by

Pt (X) := −uμXμ, Ps(X) := X + Pt (X). (2.8)

For obvious reasons we can call Pt (X) and Ps(X) respectively the temporal and the
spatial projections of the vector field X respect to u. This action can be trivially
extended on tensors with two indices if we clearly state which index we are acting
upon. In this sense, since we take under consideration the deformation tensor field
Pμν in Eq. (2.4) which is symmetric, the action of u is

PtPt (P) := uμPμνu
ν = 0, (2.9)

Pt (P) := uμPμν = uμuν
;μ. (2.10)

Therefore we can define the “spatial part” of the deformation tensor P the tensor

1

2

(
uμ;ν + uν;μ + uμ;αuαuν + uν;αuαuμ

)
, (2.11)
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which is exactly P̃μν in Eq. (2.1). The term “spatial part” clearly refers to the fact that
it is orthogonal to u, in fact

uμ P̃μν = 0, (2.12)

holds identically. The condition for rigid motion adopted in [1] is equivalent to require
that the projection perpendicular to u of the deformation tensor P is zero, i.e. P̃μν = 0.
Fromour perspectivewe are imposing the rigid body condition on the space orthogonal
to the four-velocity u of the elements of the rigid body.

In an inertial frame using cylindrical coordinates (t, r , z, φ), the circular motion of
a particle around the φ-axis can be described as

u0 =
√
1 + σ 2r2, ux = −σ y, uy = σ x, (2.13)

where σ = σ(r) and r2 = x2 + y2. As explained in [1], inserting this into Eq. (2.2)
we get

dσ

dr
= σ 3r , (2.14)

which has for its solution

σ = ω√
1 − ω2r2

, (2.15)

provided that ω is a constant. We can get the three dimensional velocity v using

vγ :=
√

(u1)2 + (u2)2 = σr , (2.16)

which gives the usual Newtonian relation

v = ωr , (2.17)

to which before we referred to as the “linear speed-distance law”.
The coordinates transformation from the inertial reference frame in cylindrical

coordinates to the rigidly rotating frame is given by

φ → φ + ωt, (2.18)

while the other coordinates remain the same. As it is well known, we arrive at the
Born line element

ds2 = −(1 − ω2r2)dt2 + 2ωr2dtdφ + r2dφ2 + dr2 + dz2, (2.19)

in what follows will be useful to interpret this as a stationary gravitational field 
C =
−ω2

2 r2.

123



Rigid rotation in GR and a generalization… Page 5 of 17    63 

Auseful class of observers in the followingdiscussion are the “zero angularmomentum
observers” (ZAMO) [5, 8]. They are orthogonal to the constant time spacelike hyper-
surfaces and their orthonormal frame in the case we are considering here, described
in terms of the coordinates in (2.19) is

e(t) = dt, e(φ) = dφ + ωdt, e(r) = dr , e(z) = dz. (2.20)

Of course, in this specific case the ZAMO is in every point the inertial reference frame,
which is a rotating frame as seen from the rigidly rotating frame defined by (2.18)
with angular velocity ω. In fact, the inverse of the transformation (2.18) sends back
the frame (2.20) of the ZAMO to

e(t) = dt, e(φ) = dφ, e(r) = dr , e(z) = dz. (2.21)

The rigidly rotating metric (2.19) written on the basis of the orthonormal frame of the
ZAMO (2.20) is

ds2 = −dt2 + r2 (dφ + ωdt)2 + dr2 + dz2. (2.22)

2.1 Rigid rotation in general relativity

Now we pass to consider the same problem in a general relativistic context, without
neglecting the energy-density of the matter. We will be a little more general and
consider neutral stationary, axysimmetric dust coupled to Einstein equations. The
matter is assumed to flow along the Killing vectors ∂t and ∂φ and depends only on
the coordinates which are not associated to Killing vectors (r , z). Denoting the matter
density with ρ, in cylindrical coordinates the energy momentum tensor is given by

Tμν(r , z) = ρ(r , z)uμ(r , z)uν(r , z), uμ(r , z) = ut (r , z) (1, 0, 0,�(r , z)) ,

(2.23)

where �(r , z) = dφ
dt = uφ

ut . Here we are interested in the case of constant angu-
lar velocity �(r , z) = �. For constant �, we can perform a rigid rotation of the
coordinates to rewrite the four velocity of the dust as

u = ∂t . (2.24)

The dust is now at rest compared to these new coordinate set and the class of solution
is now given by [9]

ds2 = − (dt − ηdφ)2 + r2dφ2 + eμ
(
dr2 + dz2

)
, (2.25)

η,rr + η,zz − η,r

r
= 0, μ,r = (η,z)

2 − (η,r )
2

2r
, μ,z = −η,rη,z

r
, (2.26)

where we used the notation ∂/(∂a)( f ) := f,a with a = r , z.
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To compare this metric with the metric of the rigidly rotating frame (2.22) we must
rewrite (2.25) in terms of the vierbein of the ZAMO. The ZAMO’s orthonormal frame
in this case is

e(t) = 1√
1 − v2

dt, e(φ) = r
√

(1 − v2) (dφ − χdt) , e(r) = eμ/2dr ,

e(z) = eμ/2dz, (2.27)

where

χ = −v

r

(
1

1 − v2

)
, v(r , z);= η(r , z)

r
(2.28)

The function v(r , z) is the velocity of the dust as judged from the ZAMO, defined by

−e0μu
μ := 1√

1 − v2
. (2.29)

Note that the definition of ZAMOconsistently satisfies the requirement of zero angular
momentum gφφ χ + gφt = 0. The rotating dust metric (2.25) written in the basis of
the vierbein of the ZAMO is

ds2 = − 1

1 − v2
dt2 + r2(1 − v2) (dφ − χdt)2 + dr2 + dz2. (2.30)

We now want to show that in the limit of ρ → 0, this class of solutions approach the
rigidly rotating disk solution. The energy density ρ(r , z) is given by [9]

8πGρeμ = (η,r )
2 + (η,z)

2

r2
, (2.31)

therefore we are interested in taking the limit for little v. If we expand themetric (2.30)
in powers of v we see that the expansion up to order v is exactly the metric of the
rigidly rotating frame (2.22). This reflects the fact that we are describing the general
relativistic solution in the coordinates of a rigidly rotating frame. This rigidly rotating
frame is at rest compared to the dust and it is in free falling with it.

From the metric (2.30) written in terms of the vierbein of the ZAMO, we can read
the gravitational potential, which is


N = v2

2
, (2.32)

and gives the heuristic interpretation of the solution: the gravitational potential due to
the presence of the dust exactly balance the gravitational potential of the non inertial
force given by the rigidly rotation of the reference frame. In fact the centrifugal force
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in the rigidly rotating disk, with angular velocity χ , is
C = −χ2

2 r2 and then we have
the usual balance equation


N + 
C = v2

2
− χ2

2
r2 = 0 + O(v2), (2.33)

where we used Eq. (2.28) up to order v

χ = −v

r
+ O(v2). (2.34)

The compensation of the two stationary gravitational forces is also the reason why
gtt = −1 everywhere in the full solution (2.25), which allows us to choose a preferred
time.

This class of rotating dust solutions has interesting properties, now we investigate
the structure in more detail.

The dust has four velocity

u = ∂t , (2.35)

obviously, being ∂t aKilling vector Eq. (2.5) is satisfied. Therefore, all the components
of the tensor of deformations vanish:

P = 0. (2.36)

This condition shows again that the dust is in rigid rotation even though r−1v is not
constant in general. The condition P = 0 is stronger than the analog condition for
the rigidly rotating disk in special relativity, for which only the “spatial part” P̃ of the
tensor of deformations is zero.

The rigid rotation (actually the nullity of P) has another interesting implication
for astrophysical measurements, since it allows for the existence of a timelike Killing
vector for which gtt = gμν(∂t )

μ(∂t )
ν = −1. Let us imagine that a light signal is

emitted from a generic element of the body and it is received from another element
of the body, the measured redshift (or blueshift) is 0, there is no shift in the frequence
of the light! The reason is that for every element composing the body the measured
frequency ν is

kμuμ = −ν (2.37)

but u = ∂t is the same for every observer at rest respect to the rigid body. Again this
reflects the compensation in Eq. (2.33). The same experiment performed on a rigidly
rotating disk in special relativity, where the metric is defined by Eq. (2.19), would
yield the following result for the frequency shift between two the emitter (E) and the
receiver (R) [10]
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νE

νR
=

√
1 − ω2r2R

√
1 − ω2r2E

, (2.38)

then it is different from 1 if they are at different radious.
The nullity of the light frequency shift can be important for applications to real

galaxies. If we are co-rotating with a rigidly rotating galaxy and we try to apply
the special relativistic formula of the doppler shift, therefore neglecting the effect of
gravity, the results would be completely wrong. There is no shift between a light signal
emitted and received at any two points of the rigid body and this effect does not depend
on the regime of application.

The works [3] and [4] propose this class of rigidly rotating solutions as a model for
our galaxy. The validity of the model can be confirmed if the measurements actually
reproduce the nullity of the light frequency shift from the other stars in our galaxy.

3 Low energy expansion and a virial theorem for gravitomagnetism

In this section we reintroduce the constants c and G. We want to study the system of
stationary neutral dust coupled to Einstein equations as in the last section, but now
we address the problem starting from a low energy expansion. Then, as the standard
procedure, we assume the existence of global coordinates (t, xi ) in which the metric
reads

gμν = ημν + hμν, |hμν | � 1. (3.1)

These coordinates select a preferred reference frame I, defined by the family of curves
t =variable. In this reference frame all thematter content is slow compared to the speed
of light. To do this, we perform an expansion in power of 1/c and we will consider
the leading orders. We write the solution of Einstein field equations in weak-field and
slow-motion approximation exploiting awell known analogywithMaxwell equations:
this is the so-called gravitoelectromagnetic formalism (see e.g. [11, 12]); accordingly,
the line element describing this solution is

ds2 = −c2
(
1 − 2




c2

)
dt2 − 4

c
Aî dx

î dt +
(
1 + 2




c2

)
δi j dx

î dx ĵ . (3.2)

The coordinates are splitted as {î, ĵ} = {x, y, z} are the spatial indices. Accordingly,
we must choose a form of the energy momentum tensor suitable for such expansion
of the geometry. For the four-velocities and the energy-momentum tensor of matter
Tμν we assume the following approximation

u0 =1 + O(c−2), uî = v ĵ + O(c−3), (3.3)

T 00 =ρ + O(ρc−2), T 0î = ρv ĵ + O(ρc−3), T ĵk̂ = ρv ĵvk̂ + O(ρc−4). (3.4)
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In the above equation the gravitoelectric (
) and gravitomagnetic (Ai ) potentials, in
stationary conditions, are solutions of Poisson equations

∇2
 = −4πG ρ, (3.5)

∇ ∧
(
∇ ∧ �A

)
= 8πG ρ

�v
c
, (3.6)

where �A and �v clearly refer to the components of the respective vectors. Usually in
the Newtonian limit, one assume that the dominant contribution to gravitation comes
from T00 and then neglect the (0, î) components of the Einstein equations under the
assumption A ∼ O(c−1). Introducing

Bî := ε
ĵ k̂

î
∂ ĵ Ak̂, (3.7)

allows us to express the time and spatials components of the local conservation equa-
tion Tμν

;ν = 0 respectively as

∂ρ

∂t
+ ∂

(
ρvî

)

∂x ĵ
= 0, (3.8)

ρ
dvî

dt
= −ρ

(



,î + 2ε î ĵ k̂
v ĵ

c
Bk̂

)
, (3.9)

where we defined d/dt := ∂t + v ĵ∂ ĵ . These equations are well known, the first one
is the continuity equation and the second one is the analogue of the Lorentz force law
[7].

We note that

−2ρε î ĵ k̂
v ĵ

c
Bk̂ = − 1

4πG
ε î ĵ k̂ Bk̂ε

ĵ l̂ ŝ∂l̂ Bŝ = (3.10)

= 1

4πG

(
B ĵ∂ î B ĵ − B ĵ∂ ĵ B

î
)

= − 1

4πG
∂ ĵ

(
B ĵ Bî − 1

2
δ î ĵ Bk̂ Bk̂

)
,

(3.11)

where we used the following consequences of Eqs. (3.6) and (3.7)

∂ ĵ

(
ε î ĵ k̂ Bk̂

)
= 8πG

c
ρv î , Bî

,î
= 0. (3.12)

Thanks to these results it is useful to define the two stress pseudo tensors

tN |î ĵ := 1

4πG

(



,î
, ĵ − 1

2
δî ĵ
,k̂
,k̂

)
, (3.13)

tJ |î ĵ := 1

4πG

(
Bî B ĵ − 1

2
δ î ĵ Bk̂ Bk̂

)
, (3.14)
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such that 

,î = ∂î
. We can rewrite the equation of motion for the matter (3.9) as

ρ
dv î

dt
= −∂ ĵ

(
tN |î ĵ + tJ |î ĵ

)
, (3.15)

or, equivalently

∂

∂t

(
ρvî

) +
(
tN |î ĵ + tJ |î ĵ + ρvîv ĵ

)

, ĵ
= 0. (3.16)

At our order of approximation the last equation can be integrated as

d2Iî ĵ
dt2

= 2
∫ (

tN |î ĵ + tJ |î ĵ + ρviv j

)
d3x, (3.17)

where we used the second moment of the system’s mass distribution

Iî k̂ =
∫

ρxî x ĵ d
3x . (3.18)

In this derivation, we made use of the following known result [13, 14]

d

dt

∫
ρ f d3x =

∫
ρ
d f

dt
d3x + O(ρc−2), (3.19)

where f is a generic function.Usually one is interested in taking the time “long”
average of (3.17), in the approximation where this average for the second derivative
of the second moment of the system’s mass distribution is zero

〈∫
tN |i j d3x +

∫
tJ |i j d3x +

∫
ρviv j d

3x

〉
= 0, (3.20)

when we take the trace, this equation becomes

〈∫
ρv2 d3x − 1

2

∫
ρ
 d3x +

∫
tJ d3x

〉
= 0, (3.21)

which can be rewritten in the usual form

〈2K + U − 1

8πG

∫
Hd3x〉 = 0, (3.22)

H :=
(
∂î A ĵ

)2 −
(
∂î A ĵ

) (
∂ ĵ Aî

)
. (3.23)

It is interesting to note that this result can reduce the amount ofmatter needed to sustain
a motion with velocity v compared to the Newtonian version of the same theorem.
A formal discussion of the virial theorem for spherical and stationary axisymmetric
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spacetimes is given in [15]. The approach used here is substantially different and it is
not restricted to axisymmetric spacetimes, although we will see an explicit application
of (3.22) for axisymmetric systems in the next section. More importantly, the specific
chosen expansion allowed for a new explicit result (3.22) that can be directly tested on
real galaxies. Moreover, our result makes clear that the off-diagonal terms h0i , which
have a nice interpretation as “gravito-magnetic” fields, can have the effect of reducing
the energy density content ρ compared to the purely Newtonian case.

This modification respect to the Newtonian version of the virial theorem can have
interesting applications on systems as galaxies or clusters of galaxies. In particular
could lead to a re-evaluation of the amount of required dark matter for such systems.
This aspect deserves further investigations.

The reduction of the needed amount of matter that arise when considering non neg-
ligible off-diagonal terms has been already noted, from an exact solution perspective,
in [16].

The virial theorem can be written in a more suggestive way

〈2
∫

ρv2d3x − 1

8πG

∫ (
E2 + B2

)
d3x〉 = 0. (3.24)

Using the analogy with electromagnetism we see that the second term is the total
energy stored in the gravity fields. Therefore we have the balance equation

2 × energy of free dust (kinetic energy) = energy of gravity. (3.25)

3.1 Explicit example in stationary axisymmetric spacetimes

As an explicit application of the above results, let us take an axisymmetric stationary
system dominated by “angular currents” h0î ≡ Sî which are not time dependent
∂t Sî ∼ 0 in our approximation. We then take a simplified version of the metric

ds2 = −c2
(
1 − 2




c2

)
dt2 − 4

S̃(r , z)

c
dtdφ +

(
1 + 2




c2

) (
r2dφ2 + dr2 + dz2

)
.

(3.26)

We switch to cartesian coordinates (x, y) in the z = 0 plane

rdr = xdx + ydy, (3.27)

r2dφ = −ydx + xdy, (3.28)

and one gets the following form for the metric

ds2 = − c2
(
1 − 2




c2

)
dt2 + 4

S̃(r , z)

c

y

x2 + y2
dtdx − 4

S̃(r , z)

c

x

x2 + y2
dtdy

+
(
1 + 2




c2

) (
dx2 + dy2 + dz2

)
. (3.29)
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With the conventions of the last section we have the identification

Ax = −S̃(r , z)
y

x2 + y2
, Ay = S̃(r , z)

x

x2 + y2
, Az = 0. (3.30)

Then we have from Eq. (3.23)

H = S̃2,z + S̃2,r
r2

. (3.31)

Assuming reflection symmetry z ↔ −z at the equatorial axis z = 0, we can neglect
the z−derivatives and the result in the equatorial z = 0 plane is

Hz=0 = 1

r4

(
x S̃,x + yS̃,y

)2 =
(
1

r2
�r · ∇ S̃

)2

. (3.32)

We can rewrite the virial equation (3.22) as

〈∫
ρv2 − 1

16πG

∫
S̃2,z + S̃2,r

r2
− 1

2

∫
ρ


〉

= 0. (3.33)

As already noted from the general result (3.23), the off-diagonal term affects the
required density. In this particular case of axisymmetric spacetimes the term H in
Eq. (3.31) is always positive and then its presence guarantees the reduction of the
needed matter compared to the purely Newtonian case. The resulting difference from
the Newtonian version of the theorem is essentially the presence of the term

1

r2
�r · ∇ S̃. (3.34)

The same effect can be understood from a different perspective. Let us study the
deflection of light due to the presence of an object whose metric can be written as in
(3.29). We limit the problem to the galactic plane z = 0, when the angular momentum
of the approaching light is different from zero (the impact parameter is �= 0), using an
approach similar to [13]. Here we are neglecting the Newtonian potential 
 because
we want to focus on the effect due to the non-diagonal elements of the metric. We
consider the motion in the galactic plane of a photon coming from far away with initial
velocity

vt = ω̃, vx = ω̃, vy = 0. (3.35)

During its trajectory we suppose that vt = ω̃ and vx = ω̃ remain approximately
constant, while vy depends only on the value of x . The photon arrives from x = −∞,
travel across the gravitational field of the galaxy at a nearly constant value of y = R,
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and then flies away at x = ∞. During this trip the value of vy is increased due to the
bending of the trajectory by the galaxy, and the deflection angle is

�φ = v
y
Final

vxFinal
= v

y
Final

ω̃
, (3.36)

our approximations are justified by the assumption of a small resulting value for the
angle. The geodesic equation is

dvy

dτ
= dx

dτ

dvy

dx
= ω̃

dvy

dx
= −(�

y
tt + 2�y

tx + �
y
xx )ω̃

2, (3.37)

at the first order in S̃, we have

v
y
Final |y=R

ω̃
= −

∫ +∞

−∞
�r · �∇ S̃

r2
dx |y=R = −

∫ +∞

−∞
yS̃,y + x S̃,x

x2 + y2
dx |y=R . (3.38)

4 Final remarks and perspectives

In the first part we studied rigidly rotating neutral dust solutions in general relativity
under the assumptions of stationarity and axysimmetry and we tried to understand
their properties and their difference with well known solutions in special relativity.
We discussed the interpretation of the usually adopted coordinates and the nullity of
the tensor of deformations P for such solutions. The features of the solutions allowed
us to draw some limits of the � = constant model assumed in [3] and [4] as a model
for our galaxy. In this sense, we suggested that a strong indicator for the validity of
this rigidly rotating model for our galaxy is the nullity of the Doppler effect between
any two points (the receiver and the emitter of the light signal) co-rotating with the
dust. This can be important for galactic applications. If this effect is not verified by
the observations one should therefore take under consideration the larger class of� �=
constant as a model for our galaxy. The most general solution for rotating dust under
the assumptions of stationarity and axysimmetry and its application to galaxies was
studied in [16] and more work is in order.

In the second part we did not restrict the discussion to rigid rotation and we
approached the problem from a different perspective. We generalized the virial the-
orem to gravito-magnetism and this provided a new formulation that can be tested
on real objects. Interestingly, this generalized version of the virial theorem reduces
the matter needed to sustain the motion compared to the usually adopted Newtonian
version of the same theorem. In the light of the dark matter problem this additional
contribution can lead to a re-weighting of the contribution of dark matter in galaxies
or in clusters.
In future would be interesting to explicitely write down more general versions of the
virial theorem lowering the number of symmetries of the system.
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More details on gravitomagnetism

We consider the field of a galactic or an extra-galactic source in the linear approxima-
tion of GR. We therefore assumed the metric in the form (3.1). The Einstein equations
can be casted in the form

�h̄μν = 16
πG

c4
Tμν, (A.1)

h̄μν = hμν − 1

2
ημνh, (A.2)

where h = gμνhμν after retaining only the terms linear in hμν . As usual, to obtain the
equations in this form, one has to impose the Lorentz gauge condition h̄μν,ν = 0. To
obtain a parallelism with the electromagnetic theory, we choose the metric such that
h̄00 = 4
/c2, h̄0i = −2Ai/c2 and h̄i j = O(c−4), where
(t, x) is the gravitoelectric
potential, A(t, x) is the gravitomagnetic vector potential and we neglect all terms of
order c−4 and lower [11]. From the side of the source, T 00 = c2ρ is the gravitational
“charge” density and T 0i = cj i is the corresponding current. Thus, far from the source


 ∼ GM

r
, A ∼ G

c

J × r
r3

, (A.3)

where M and J are the total mass and angular momentum of the source, respectively.
Under these assumptions, the Lorentz gauge condition can be expressed as

1

c

∂


∂t
+ ∇ ·

(
1

2
A

)
= 0, (A.4)

The spacetime metric involving the gravitoelectromagnetic potentials is then given by
(3.2)

ds2 = −c2
(
1 − 2




c2

)
dt2 − 4

c
Aî dx

î dt +
(
1 + 2




c2

)
δi j dx

î dx ĵ . (A.5)
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At this point we can define the gravito-electro and gravito-magnetic fields

E = −∇
 − 1

c

∂

∂t

(
1

2
A

)
, B = ∇ × A, (A.6)

in close analogy with electrodynamics. It follows from the field equations (A.1) and
the gauge condition (A.4) that

∇ · E = 4πGρ, (A.7)

∇ ·
(
1

2
B

)
= 0, (A.8)

∇ × E = −1

c

∂

∂t

(
1

2
B

)
, (A.9)

∇ ×
(
1

2
B

)
= 1

c

∂

∂t
E + 4π

c
G j , (A.10)

explicitly analogous to the Maxwell equations for the GEM field.
The magnetic parts of Eqs. (A.7) – (A.10) appear with a factor of 1/2 as compared

to standard electrodynamics is due to the fact that the effective gravitomagnetic charge
is twice the gravitoelectric charge.

Under the assumption of stationarity, from the presented equations one obtains (3.5)
and (3.6).
The geodesics of the particles of dust given by (3.9), can be obtained from the varia-
tional principle δ

∫ Ldt = 0, where L = mcds/dt . The lagrangian is

L = −mc

√

−gμν

dxμ

dt

dxν

dt
= −mc2

√

−g00 − 2g0î
dx î

dt
− g ĵ k̂

v ĵvk̂

c2

= −mc2
[
1 − v2

c2
− 2

c2

(
1 + v2

c2

)

 + 4

c3
v · A

]1/2
, (A.11)

which to linear order in 
 and A boils down to

L = −mc2
(
1 − v2

c2

)1/2

+ mγ

(
1 + v2

c2

)

 − 2m

c
γ v · A. (A.12)

The gauge transformations


 → 
 − 1

c

∂ψ

∂t
, A → A + 2∇ψ, (A.13)

leave the GEM fields (A.6) and hence the GEM equations (A.7)–(A.10) invariant. The
Lorentz gauge condition (A.4) is also satisfied provided �ψ = 0.
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The gravitational field corresponding to the metric (A.5) is given by the Riemann
curvature tensor

Rμνρσ = 1

2
(hμσ, νρ + hνρ, μσ − hνσ, μρ − hμρ,νσ ), (A.14)

where

h00 = 2
/c2, hi j = (2
/c2)δi j , h0i = −2Ai/c
2, (A.15)

plus higher order terms. The components of the Riemann tensor may be expressed in
the following form [17]

R =
( E B
BT S

)
, (A.16)

where E and S are symmetric 3 × 3 matrices and B is traceless. These matrices read
explicitly

Ei j = 1

c2
E j,i + O(c−4), (A.17)

Bi j = − 1

c2
Bj,i + 1

c3
εi jk

∂Ek

∂t
+ O(c−4), (A.18)

and the spatial components are given by

Si j = − 1

c2
E j,i + 1

c2
(∇ · E)δi j + O(c−4). (A.19)

They are explicitly invariant under (A.13).
To obtain the generalized virial theorem we defined the tensor tJ |î ĵ in Eq. (3.14),
which again is explicitly invariant under the gauge transformations (A.13), therefore
alsoH ∼ B2 possess the same property.
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