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ABSTRACT: We calculate the pressure of massless ¢*-theory to order ¢®log(g) at weak
coupling. The contributions to the pressure arise from the hard momentum scale of order
T and the soft momentum scale of order ¢7'. Effective field theory methods and dimensional
reduction are used to separate the contributions from the two momentum scales: The hard
contribution can be calculated as a power series in g? using naive perturbation theory with
bare propagators. The soft contribution can be calculated using an effective theory in three
dimensions, whose coefficients are power series in g?. This contribution is a power series in
g starting at order g®. The calculation of the hard part to order g% involves a complicated
four-loop sum-integral that was recently calculated by Gynther, Laine, Schréder, Torrero,
and Vuorinen. The calculation of the soft part requires calculating the mass parameter in
the effective theory to order ¢° and the evaluation of five-loop vacuum diagrams in three
dimensions. This gives the free energy correct up to order g’. The coefficients of the
effective theory satisfy a set of renormalization group equations that can be used to sum
up leading and subleading logarithms of 7'/¢gT. We use the solutions to these equations to
obtain a result for the free energy which is correct to order ¢®log(g). Finally, we investigate
the convergence of the perturbative series.
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In recent years there has been significant progress in our understanding of thermal field

theories in equilibrium [1-4]. Part of the progress is based on the developement of the

calculational technology necessary to perform loop calculations beyond the first correction.

The motivation to carry out such difficult higher-order calculations of e.g. the pressure in

thermal QCD is its relevance to heavy-ion collisions and the early universe. The pressure in

nonabelian gauge theories has been calculated perturbatively through order g# in ref. [5, 6],

to order ¢° in refs. [7, 8], and to order g%log(g) in ref. [9]. There are three momentum scales

that contribute to the pressure in thermal QCD - hard momenta of order 7', soft momenta



of order ¢T', and supersoft momenta of order ¢>T. The next order — order ¢ — is the
first order at which all three momentum scales contribute to the pressure and it is also
the order at which perturbation theory breaks down due to infrared divergences [10, 11].
The pressure contains a nonperturbative contribution from the supersoft scale that can be
estimated numerically [12-14]. It also contains a presently unknown contribution from the
hard scale. This contribution can be calculated by evaluating highly nontrivial four-loop
vacuum diagrams with unresummed propagators. As a step in this direction, Gynther,
Laine, Schroder, Torrero, and Vuorinen considered the simpler problem of ¢*-theory at
finite temperature and calculated the free energy to order ¢ [15]. A difficult part of
the calculation was to evaluate the four-loop triangle sum-integral, using the techniques
developed by Arnold and Zhai in refs. [5, 6].

In hot field theories at weak coupling, the momentum scales in the plasma are well
separated and it is advantageous to use effective field theory methods to organize the
calculations of the pressure into separate contributions from the hard, soft and supersoft
scales. The basic idea is that the mass of the nonzero Matsubara modes are of order T
and heavy. Since these modes are heavy, they decouple from the light modes, i.e. the
static Matsubara modes. In particular, all fermionic modes decouple since their masses are
always of order T'. The contributions from the nonzero Matsubara modes to thermodynamic
quantities can be calculated using bare propagators and are encoded in the parameters of
the effective theory. Integrating out the hard scale T, i.e. integrating out the nonzero
Matsubara frequencies, leaves us with an effective dimensionally reduced theory for the
scales gT and ¢T [8]. In the case of QCD, the effective theory is an SU(N) gauge theory
coupled to an adjoint Higgs. The process is known as dimensional reduction [16-20]. The
next step is to construct a second effective theory for the scale g7 by integrating out the
scale ¢gT from the problem [8]. It amounts to integrating out the adjoint Higgs and this
step can also be made in perturbation theory. This effective theory is a nonabelian gauge
theory in three dimensions, which is confining with a nonperturbative mass gap of order
g*T [11]. This theory must be treated nonperturbatively and gives the nonperturbative
contribution to the pressure mentioned above.

In the present paper we consider the thermodynamics of massless ¢*-theory and cal-
culate the pressure through order ¢®log(g) in a weak-coupling expansion using effective
field theory. Calculations in scalar field theory are simplified by the fact that the supersoft
scale ¢>T does not appear and so we only need to construct a single effective theory for the
soft scale g7'. This theory is infrared safe to all orders in perturbation theory due to the
generation of a thermal mass of order g7'. Compared to the g%-calculations of ref. [15], the
next order requires the matching of the mass parameter to three loops and the evaluation of
some five-loop vacuum diagrams in the effective theory. The matching involves a nontrivial
three-loop sum-integral that was calculated recently in ref. [21].

The paper is organized as follows. In section II, we briefly discuss effective field theory
and determine the coefficients of the dimensionally reduced theory. In section III, we use
the effective theory and calculate the soft contributions to the pressure. In section IV,
we present and discuss our final results for the pressure. In section V, we summarize. In
appendix A and B, we list the necessary sum-integrals and integrals. In appendix C, we



calculate explicitly some of the new three-dimensional integrals that we need.

2 Effective field theory

In this section, we briefly discuss the three-dimensional effective field theory and the
matching procedure used to determine its coefficients. For a detailed discussion, see e.g.
refs. [19, 20].

The Euclidean Lagrangian density for a massless scalar field with a ®*-interaction is

1 g°
= (0,92 + =d* + A 2.1
L=3500.2)" + ;2" + AL, (2.1)

where ¢ is the coupling constant and AL includes counterterms. This term reads
1 1
AL = §AZ¢(6M<I>)2 + ﬂAg2q>4 . (2.2)

In the present case we need the counterterm Ag? to next-to-leading order i ¢2. It is given by

3 9 17
AP = | 2ot [ -0 q2| 22 2.
g [26a+ <4€2 126) “ ] g (23)

where a = g?/(4m)%. We denote by ¢(z) the field in the effective theory. It can be approx-
imately, i.e. up to field redefinitions, be identified with zero-frequency mode of the field ®
in the original theory. The Lagrangian of the effective theory can be then be written as

Lo = S(VOP + 3mPe+ Bt o (2.4)
¢ 2 2 24 ’

where m is the mass of the theory and gg is the quartic coupling. The dots indicate an
infinite series of higher-order operators consistent with the symmetries, such as rotational
invariance and the discrete symmetry ¢ — —¢. In eq. (2.4), we have omitted a coefficient
f of the unit operator. Its interpretation is that it gives the contribution to the free energy
from the hard scale T'.

For the calculation of the pressure to order ¢g®log(g), we need to know f and the mass
parameter m? to order ¢® and the coupling constant g§ to order g%, i.e. we consider ¢*-
theory in three spatial dimensions.! This theory is superrenormalizable and only the mass
needs renormalization [22]. The parameters in the effective Lagrangian (2.4) are determined
by calculating static correlation functions in the two theories at long distances R, i.e.
R > 1/T, and demanding that they be the same [19]. In the matching calculations, we are
employing strict perturbation theory [19]. This amounts to doing perturbative calculations
in power series in g2 in which we treat the mass parameter as a perturbation in the effective
theory. The Lagrangian is therefore split into a free and an interacting part according to

1
L = 5(Vo)* (2.5)

. 1 92
int _ - 2,2 3 4
Log = 5 ¢ +—24<;5 +- (2.6)

!Power counting tells one that the operator (¢#V¢)? contributes to the free energy first at order g®.



Figure 1. One-loop Feynman graph that contributes to the coupling g3 in the effective theory.

Strict perturbation theory gives rise to infrared divergences in the calculation that phys-
ically are cut off by the generation of a thermal mass m. The same infrared divergences
appear in the loops in the full theory and so they cancel in the matching calculations.
The incorrect treatment of the infrared divergences and the physics on the scale g7 is not
problematic since this will be taken care of by calculations in the effective theory. The
matching calculations treat the physics on the hard scale correctly and the physics on that
scale is encoded in the parameters of the three-dimensional effective Lagrangian.

However, the matching calculations of the parameters in L.g are complicated by ul-
traviolet divergences. Those divergences that are associated with the full four-dimensional
theory are removed by renormalization of the coupling constant g. The remaining di-
vergences are cancelled by the extra counterterms that are determined by the ultraviolet
divergences in the effective theory. These divergences are regulated by introducing a cutoff
A. The cutoff A can be thought of as an arbitrary factorization scale that separates the
scale T' from the scale gT" (or smaller) which can be treated in the effective theory [19].
The parameters in the effective theory therefore depend on the cutoff A in order to cancel
the A-dependence of the loop integrals in the effective theory.

2.1 Coupling constant

To leading order in the coupling g%, we can simply read off the coupling gg from the
Lagrangian of the full theory. Making the replacement ® — \/T'¢ in the Lagrangian (2.1)
and comparing foﬁ dr L with Leg, we conclude that g% = ¢*T. The one-loop graph needed
for the matching of the coupling 932, to next-to-leading order in ¢* is shown in figure 1.
Since the loop correction vanishes in the effective theory due to the fact that we are using
massless propagators, the matching equation reduces to

3 1
9 = ¢°T — 594T piT Ag°T (2.7)
P

where A1g? is the order-g* coupling constant counterterm in eq. (2.3). After renormaliza-

tion, we find

B0) = 2T [1- 2 (log 4 4) -
(4m)? AxT
39 [ po o
ESE (10%2 T TElspm g ) (28

where g2 = ¢g?(u) is the coupling constant at the scale p in the MS scheme and we have
kept the order-€ terms in g% for later use. We have used the renormalization group equation



Figure 2. One-loop vacuum diagram.

Figure 3. Two-loop vacuum diagram.

for the running coupling constant g2,

—a = 3a” — —a” , 2.9

“on 3 (2.9)

to change the scale from A to p. The right-hand side of eq. (2.8) is independent of A. In

fact, since the coupling gg does not require renormalization in three dimensions, it satisfies
the renormalization group equation

0

3=0. (2.10)

2.2 Coefficient of unit operator

The partition function in the full theory is given by the path integral
7 = /D<1> = Iy dr [ &L (2.11)

and the pressure is then given by P = T'log Z/V, where V is the volume of the system. In
terms of the effective theory, the partition function can be written as

Z =1V /Dgzaefd%ﬁeff . (2.12)
The matching then yields

log Z = —fV 4+ log Zes (2.13)

where Z.g is the partitition function of the three-dimensional theory. Equivalently, we
can write F = Fhard + Fsoft, Where Frarg = fT and Fyorp = —T log Zeg/V. Now since
calculations in strict perturbation theory in the effective theory is carried out using bare
propagators, there is no scale in the vacuum graphs. This implies that they vanish in
dimensional regularization and that log Z.g = 0. Eq. (2.13) then tells us that f is given by
a strict loop expansion in four dimensions.

The vacuum diagrams through four loops are shown in figures 2-5.



(a) (0)

Figure 4. Three-loop vacuum diagrams.
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Figure 5. Four-loop vacuum diagrams.

We can then write
Foara = F& + FW 4 7D 4 7 4 70 4 70 4 F0 4 F

£ h) g
+?(A192 + Dog?) + 2 % + % Arg?, (2.14)

where A1¢? and Agg? are the order-g* and order-¢® coupling constant counterterms, re-
spectively, given in eq. (2.3). The superscript h indicates that the expression gives the hard
contribution to the free energy. The expressions for the diagrams are

F %%li log P? | (2.15)
F0 %gz (i %)2 ’ (2.16)
F _%94 (i %)Eéé, (2.17)
P = ‘%g%w P2Q2R2(P1+ Q+R)*’ 2
F 3%576 (%Li %)2 (#@ é)z 7 (2.19)
i ()




© _ 1 g Lg[ 1 2.21
‘7:30 _249 ijQ KQRK4Q2R2(K+Q+R)2’ ( )
1
Fap = 4—8962,( [P, (2.22)
P

where the symbol Y is defined in eq. (A.1) and the self-energy II(P) is defined in eq. (A.13).
The expressions for the sum-integrals are listed in appendix A. After renormalization, the
final expression is [15]

2T4
fhard(A) - _7T90
5 15 po 1 31 4¢(-1)  2¢(-3)
1—Sa+—ao? |log—— + = Sl -
X{ T {ngw 3T T3 3] T
+ 208 x
16"
m 0 1084 =) ¢'(=3)
— —12log? — — [ — 2 -1
x[e 8" T < 15 +8ve +3 =) 6((—3)>X
P g2 _Bd 2%, 1 st~
xlog oo + 87 log o — =57 = e — 7 ¢B) + 5
m° 206 ¢'(-1) 16 ¢'(=3)
— — 4 dypm? - = - 8
5 +4VET 9 (=) 3’Yl+ VE <(_3)+
4 (=1 (C’(—1)>2 20¢"(-1)
+= -8 - = —
377¢(-1) ¢(-1)) 3¢
2
_gc{)aﬂ + 2Cﬁ"iangle + 7-‘.QCftbriangle:| + 0(6)} ) (223)

where v = a(p), O,y = 48.7976, O, 00 = —25.7055, and C’friangle = 28.9250. We have
used the renormalization group equation for g2 to change the renormalization scale from A
to u. Note that the final results contains a pole in €. We cancel it by adding a counterterm
T6f [8]. The term 0f can be determined by calulating the ultraviolet divergences in the
effective theory. The triangle diagram in three dimensions has a logarithmic ultraviolet

divergence and the counterterm needed to cancel this divergence is given by

6,2
5f = —BT

1536(4m)te (2:24)

If we express the counterterm in terms of the coupling g of the full theory, we must take
into account that g§ multiplies a pole in € and it therefore picks up finite terms. These
terms will be of order ¢® and can be neglected in the present calculation.? The coefficient
f satisfies the evolution equation

0 = 2
ON'
This follows from the scale dependence of the triangle diagram in three dimensions and the
fact that the A-dependence of f must cancel the scale dependence in the effective theory.

S
A TSRS (2.25)

2Note that minimal subtraction in the full theory and in the effective theory are not equivalent. The
difference is the finite terms mentioned above [8].



Figure 6. Feynman graphs that contribute to the self-energy through three loops.

2.3 Mass parameter

The simplest way of determining the mass parameter m? is by matching the Debye or
screening mass mp in the full theory and in the effective theory [19]. The Debye mass mp
is given by the pole of static propagator, i.e. by

P’ +T(po=0,p) =0,  p*=-mp, (2.26)
where f[(po, p) denotes the self-energy function. In the effective theory, the equation is
P +m’ +1eg(p) =0,  p°=-mp, (2.27)

where Il.g(p) is the self-energy in the effective theory. Since the self-energy in the full theory
is expanded around p = 0, we should do to the same in the effective theory (see discussion
below). The loop integrals are therefore evaluated at zero external momentum and since the
matching is carried out using massless propagators there is no scale in the loop integrals.

They therefore vanish in in dimensional regularization, i.e. Ileg(0) = I z(0) = --- = 0.
Using this fact and equating (2.26) and (2.27), we obtain m? ~ m%3
m% = Il(pg = 0,p = imp) . (2.28)

The diagrams that contribute to the self-energy 1:[(P) through three loops are shown in fig-
ure 6. The self-energy f[(P) is given by
I(P) = Y (P) + 0" (P) + I (P) +

= (h) r7(h)
LY (P I," (P
+7192( )(A192+A2g2)+27292( )Algz. (2.29)

2 is equal to the Debye

3Note that we use the symbol “~” to emphasize that the the mass parameter m
mass m2, only in strict perturbation theory. The interpretation is that m gives the contribution to the

Debye mass from the hard scale T



The expression for the various terms in the self-energy are given by

i0P) = 305 o (2.30)
WP) = 303 i (231)
W) =50, R e TR 232
i) = 2o s (of %)2 , (239
) (py = % 6%{ % (%l[ %)2 (2.34)
IL(P) = i %[ K2%l;R Q'R PiQ +R)2’ (2.35)
1) (P) = 350 6%@3 K4Q2R2(K1 TQER? (2.36)
)P) = 365 ey gpil@r- (237)

Since the leading-order solution to eq. (2.28) gives a value of p that is of the order g7, it is
justified to expand the loop diagrams in a Taylor series around p = 0. We can then write
eq. (2.28) as

my = (0) + TL7(0) + V(0 + T5(0) +-- ., p* = —m} . (238)

or m% = ﬁgh) (0) + ﬁgh) (0) + flgh)(()) — 1, (0)IT5(0) . We then need the two-loop self-energy
diagram Iy, (P) to order p?, while the three-loop self-energy diagrams flgz) (P) and ﬁgz)(P)
can be evaluated at p = 0. This yields

Hgﬁ)(P) = —194%}% m ég4p2§L;R % +0(pY) , (2.39)
1 0) = g[ e %R O Q TR (2.40)
110 = 0°3 Zeln@. (2.41)
The sum-integrals needed are listed in appendix A. After renormalization, we obtain
m2(A) = ng(A)TQ <
fo+ i [t ey *2‘”“22/(( 5 - oy
X E (log 471:T + 7E> — log? % + <£ +57e + 2?;:;;) log 4;\T+
+2886% - %7% - EZVE - @14« 3) =9 + g((:ll)) (% %%)) -



1¢"(~1) 29 , 1 1
= 2202~ 2yplog(2m) + 2log2(27) — —CL 4 =
16D 357 vE log(27) 4 2log™(2m) 24Cball+ 401 +

+ (9(6)} , (2.42)

where g = g(A) and C; = —38.4672. The mass parameter through order g* is known to
order € [9], but we only need it to order ¢’. We notice that the mass parameter contains
uncancelled poles in €. It is advantageous to write the mass term as a sum of a finite piece
m? and a counterterm Am?, where

1
~2ay L oo 2
() = g2 ()17
2 !
g A [ ¢'(=1)
1 dlog —— —3log -t 12— qp+2 -
X{ T [ 08 oy ~ 308 g T 2B 2T
69" o A 3. o M 19 ¢'(=1) H
- dlog? —— — 2102 L 4 (2 —qp 42 1
(477)4[ B T 2 G T\ T ) Bt
A 2851 95 , 119 1
dyplog —— + —— — =% — ——qp — —((3) =T
thplos o 5o T 1808 T 1 T 1aat®) — it
¢(~1) (113 17 1¢"(-1) 25
) - 202~ 2yplog(2
ey g T1E) T iy Tt~ Bmlem
1 1
+210g2(28) = 3Gl + 1C1] +0(0)} (243)
4T2 692 L
Am2(A) = L - |1- <1 N )—
m-(A) 24(471')26[ @n)Z \ 8 g TP
6g° 2 M po o
- log? 1 + 2yplog L + T — 2
(4m)? (Og T TR LT TR 71) 6] ’
24(4m)%e”’ '

where g = g(p) and we have used eq. (2.9) to change the renormalization scale from A to
. The term Am? acts as a counterterm in the effective theory. In fact, the sunset diagram
in three dimensions that contribute to the self-energy is logarithmically divergent, whose
divergence exactly is given by the right-hand side of eq. (2.44) [22]. The mass parameter
m in three dimensions therefore satisfies the evolution equation

9 5 1 g3

Ay = 5T (2.45)

In the remainder of the paper, we will use m instead of m for covenience.

3 Soft contributions

In this section, we calculate the soft contributions Py to the pressure. This requires the
calculations of vacuum diagrams in the effective theory (2.4) through five loops. In order
to take into account the soft scale g7, we now include the mass term m? in the free part

of the Lagrangian and only the quartic term in eq. (2.4) is treated as an interaction. The

,10,



inclusion of the mass term in the propagators cuts off the infrared divergences that plagues
naive perturbation theory in the full theory.
The one-loop vacuum diagram is shown in figure 2. Its contribution to the free energy

is given by
s 1
j—“é) = iT/log (p2 —|—m2) , (3.1)
P

where the superscript (s) indicates that the expression gives the soft contribution to the

free energy. Using the expression in the appendix B, we obtain

m3T

(s) _
Fo' = 127

(3.2)

The two-loop vacuum diagram is shown in figure 3. Its contribution to the free energy is

(s) 1 1 2
Fi¥) = Zg2T /7 . .
! 893 ( pp2+m2 (3-3)

Using the expression in the appendix B, we obtain

given by

() _ gsm°T (3.4)
! 8(4m)2
The three-loop vacuum diagrams are shown in figure 4. The contribution to the free energy
is given by
(s)
) _ g e, OF 2
F = F) + B+ 87722 Am~, (3.5)

where Am? is the mass counterterm (2.44) in the effective theory and

(s) 1 1\? 1
Faa = ~19%T / / 3.6
2 167 < L2 +m?) (2 +m2)2 (3.6)
1 1 1 1 1
2b 4893 par p2 + m2 q2 + m2 7«2 + m2 (p + q + I')2 + m2 ( )

Using the expression in the appendix B, we obtain

() _ _gsmT
2 96(4)3

A
8log — + 9 —8log2| . (3.8)
2m
We note that all poles in € cancel as they must since there are no divergences from the
hard part proportional to g§m.
The four-loop vacuum diagrams are shown in figure 5. The contribution to the free
energy is given by

(s)
01 A2 (3.9)

F = D A A 7+

— 11 —



where the expressions for the diagrams are

£l _ 1 6T</ 1 >2</ ! )2 (3.10)
3a — 3993 D+ m? o (@2 +m2)?) ’
1 1\ 1
f<s>:_6T</7> /7 3.11
3b — 4593 L2 m2) (2 1 m2)? (8:11)
1 1 1 1 1
FY = - 6T/
o TS PP i m (prq )t m?
1
S e (312
1 1 1 1 1
F) = — 6T/
MRS mE @t w2 md (p R
1 1

: 3.13
St mi(pts)+m? (3:.13)

Using the expressions in the appendix B, we obtain

6
(s) _ _ 93T 2 A 2
6 2
gs1'm
_— 3.14
+1536(47T)46 (3:14)

The pole in € in eq. (3.14) arises from the triangle diagram in eq. (3.13). This pole is
cancelled by the counterterm in eq. (2.24).

The five-loop vacuum diagrams are shown in figure 7. The contributions to the free
energy are given by

FY = FD+FQ A FD + FQ+ FO A FY + FY) + Y+ 7Y+ FP +

4g
+%’Z§(S)A n 1%(&#)2. (3.15)
where the expressions for the diagrams are

2 =gt ([ ) ([ams) 10

3
FO = _$Q§T</p +1m> /q(q +m2 2/ T2+m2 : (3.17)

4
FY = T (/p +m ) /q ; +m2 , (3.18)

1 8T/ 1 1 y
1677 Jogrs (@2 +m2) (p+q) +m?r? +m? (p +1)* +m?

N ! / ! (3.19)
s24+m? (p+s)2+m? [y t2+m?’ '

) 1 1 1 1 1
f( ) — __QST %
4de 48 3 var (pZ + m2)3 q2 + m2 7a2 + m2 (p +q+ I')2 T m2

y </52+;mQ>2 , (3.20)

- 12 —



(9) (h) (4) ()

Figure 7. Five-loop vacuum diagrams that contribute to the soft part of the free energy.

}_(S) 1 8T/ 1 1 1 1 »
= =559
4f 3273 par (P2 +m?)2 (2 4+ m2)2r2+m?2 (p+q+r)?+m?

y </ﬁ>2 7 (3.21)

}_(S) 1 8T/ 1 1 1 1 »
T E e P AMDZ R +m2 2+ m? (p+q+1)2 + m?
></ ! / ! (3.22)
< s2+m2 t(t2+m2)2 ’ :
1 1 1 1 1
g _ 1 ?T/ x
4h 12857 [t @+ m2 (p+ Q)2 T m2 %+ m2 (p +1)° + m?
1 1 1 1

X 3.23
s2+m2(p+s)2+m2t2+m?2 (p+t)2+m?2’ (8.23)

£ _ 1 ST/ 1 / 1 1 1 "
T T » (P2 +m2)? |, 2+ m2r2+m? (p+q+r)?+m?

,13,



x/ ! ! ! (3.24)
s 2 +m2t2+m?(p+s+t)2+m?’ '

£ 1 sp / 1 1 1 1 1
SR pgrst @ +m% (P +q)2 +m2 (p+1)2 +m? (t +1)2 +m?r? +m?
1 1 1
. 3.25
s tm? (st +m2s2tm? (3:25)
Using the expressions in the appendix B, we obtain
8T
Fe 93
4 288m(dny
A1 A 15 3 9
x |log? o + 1 (1— 810g2)10g2— i ng + 77210g2+
23 ) ]1 4

+ log2 + 6log”2 — 6log 3 — 1—6C(3) +5Lia(7) +9Cy4| , (3.26)

where Cy; = 0.443166. We note that all poles in € cancel as they must since there are
no divergences from the hard part proportional to ¢g§/m. Adding eqgs. (3.2), (3.3), (3.8),
(3.14), and (3.26) as well as the counterterm eq. (2.24), we obtain the soft contribution to
the free energy through five loops

3 2,2
(s) m>T  gsmT gsmT A
= — 81 9 — 8log 2
Fortraea+e 127 T R@m? T oe(an |0 %% am T o8
6
95T
+768(477)4 8
A
X |—4(4 — )10g——4+1610g2—42§( )+ 2(1—1—210g2)]—
93T
—— X
288m (4m)°
L, A 1 A 15 3 9
logZ — + - (1 — 8log2)log — — — — =72 + —7%log 2
X |log” g, + g (1= 8log2)log o0 — G — g+ g log 24

23 81
o log 2 + 6log®2 — 6log 3 — EC(?’) + 5Lig (1) + 904& . (3.27)

Using the evolution equations for g3 and m?, it easy to check that the free energy, eq. (2.23)
plus eq. (3.27) is independent of the factorization scale A.

By expanding the coupling g3 (2.8) and the mass parameter m? (2.43) to the appro-
priate orders in the various terms in (3.27), we obtain the soft contribution through order
¢”. This yields

w274
fSOft = - 90 X
5V 6 15 15 2
X{Tf“w‘?f 1578 oo log 475 — 3 loga + G5 —
1
_15 s
16
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p ¢'(=1) 2
16 — 32yp — 84¢(3) + 8 + 16log =
T oy e ¢(3) +8+16log o+

X [—48 log

2 A
+16loga + 72 [ 2+ 121log2 — 4log = — 4log o + 8log — | | +
3 47T

NELXER

oo /221 2 4 2 4¢(-1) 4 u
log? 2 4 (22 2 Z10gf — 25T P ea ) log A
. [Og 47TT+<135+37E 39837 3¢(—1) 38 Y) BT

+<2 L8 w2

-2z 1
15 45¢(-1) 457715

+ 07} } : (3.28)

where the constants C5 and C7 are defined below.

4 Results and discussion

The full pressure is given by minus the sum of eq. (2.23) and eq. (3.27). The strict
weak-coupling result for the pressure through order ¢” is minus the sum of eq. (2.23)
and eq. (3.28). This yields

P = Pideal X
x{l - goﬂ— %6043/2 + %oﬂ[log 47/:T +C4} -
— %ﬁoﬁ/z [bg# — gloga—i-cg} —
N 47450‘3 [IOgZ 47TLT N % (% ~ 2B - SCCI((—_ll)) * 444,((:;));) log 4:T *
+%(4—7T2)10g0z+06} +
2258\/6&7/2
X [logQ#—i— <%+§7E—§log§—§%—gbga> log# +

2 8 ((-1) 52 8 2 4,
2 2 Zlog 2 )1 0 C 41
+<15+45 (1) " mE T gploeg )lesat plostat Crl g, (41)

where Pigeal = 727%/90 and where the constants Cy — C are

Ci= -2 4 Sypts _z 4.2
4 5 + 3B + 3¢(=1)  3¢(=3) (4.2)
5 1 2.2 2((-1)
Cs =24 =yp—=log= — = , 43
555 + 3VE ~ 31085 — 3 e (4.3)
! o, 2 103 1, 1 2 . 4 511
Cs = 5(4 — %) log ster T Ecball - Ecgriangle - Ectriangle tgn—1gE Tt
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25 o,  br% 72 175 1\ (=1 2 /¢(=1)\?
- = log 2 _c_Z z
T3pTE T 5y~ gE T log2 ( 54 97E> REREAE Y
5¢"(=1) 2 ('(=3) 2267
= - 3 4.4
+3 1) " 37FCCe) 5, C(3) (4.4)
1457 1 2 749 56 11 2 ¢"(~1)
Cr=——— b —Cly— —=Cr + — Ty - a4 =
! 810 a5 bl T T T o ET M T 50" T s ) T
16 16 52 2 19¢(=1) 38 (/(-1)
log(2m) — 1= log(2m) — oyplog 5 — o2 = vp
T og(2m) 15 %8 ?(2m) 15 VE 08 3 T on = ) 15 &) +
4 ((-D)\? 34, 2 )
— " log = log 2 —1 1 2 —
+45 (C(—l) +15 3—|—57T og 2+ og? 3+ og?
8 ¢'(—1) 6., 97 , 16
log = — — Lig (1 —Cy 4.5
15 45g( )Og C(Hg (1) +gpE+ 5y (49)
where Cgrlangle = —25.7055 and Ctbrlangle 28.9250. The numerical values of Cy — C7 are
Cy = 1.09775 , (4.6)
Cs = —0.0273205 , (4.7)
Cs = —6.5936 , (4.8)
C7 = —0.862 . (4.9)

Note that the A-dependence cancels in the result (4.1). Using eq. (2.9) for the running of
a, it is straightforward to check that the final result eq. (4.1) is RG invariant up to higher-
order corrections. The order-g* result was obtained by Frenkel, Saa, and Taylor [23], the
order-g® result by Parwani and Singh [24], the order-¢°log(g) result by Braaten and Ni-
eto [19], and the order-g® result by Gynther et al. [15]. The latter was later reproduced in
ref. [21] using screened perturbation theory [25-27] by taking the weak-coupling limit for
the mass parameter, m = g7'/v/24.

An expansion of the pressure in powers of g is given in eq. (4.1). It is accurate up to
corrections of order g®log(g). A more accurate expression can be obtained by using the
fact that our short-distance coefficients satisfy a set of evolution equations. The solutions
to the evolution equations are

g3(A) = g3(27T) (4.10)
2.6
wg3(2nT) A
A) = f(2rnT) —
F8) = pieem) - THE s
4
g3(2nT) A
1 . 4.12
6(4m)? 8 onT (412)
If we substitute the short-distance coefficients (4.10) and (4.12) into eq. (3.27) and add
the short-distance contribution (4.11), setting A = ¢7'/v/24 everwhere, and expand the
resulting expression in powers of g, we obtain the complete result for the pressure, which

(4.11)

m?(A) = m?(2nT) +

is correct up to order g®log(g). The contributions to the free energy F of order ¢®log(g)
come from (4.11) and from using (4.12) to expand the gZm?7T term in (3.27). This yields

8
Fovse) = iy (1082 = 25) (4~ 7 log(g) (113)
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Figure 8. Hard contributions Ppaq to the pressure P normalized to Pigea to order g2, g%, and ¢b.
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Figure 9. Soft contributions P to the pressure P normalized to Pigear to order g2, ¢, ¢°, g5,
g7, and g% log(g).

Moreover, using the solutions to the flow equations, we are summing up leading logarithms
of the form ¢g?"*3log"(g) and e.g. subleading logarithms of the form ¢*"*5log"(g), where
n = 2,3,.... These terms are obtained by expanding out the m>I" and gng terms
in (3.27), respectively.

In figure 8, we show the various loop orders of Pj..q normalized to Pigear to orders
g%, ¢*, and ¢% where Pya.q is given by minus eq. (2.23).# We have chosen p = 27T and
A = 27T. We notice that the successive approximations are larger than the previous one.
In figure 9, we show the weak-coupling expansion of Py normalized to Pigea) to orders g3,
g*, ¢° 95, g7, and ¢®log(g), where P. is given by minus the sum of eqgs. (3.28) and (4.13).

In figure 10, we show the weak-coupling expansion of the pressure P given by (4.1)
minus (4.13) normalized to Pigear to orders g2, ¢° g*, ¢° ¢% ¢7, and ¢®log(g) . The
convergence properties of the successive approximations of the sum P = Ppara + Prsoft

4Note that we omit the pole in € in eq. (2.23) in the plots of the hard part.
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Figure 10. Weak-coupling expansion of the pressure P normalized to Pigeas to order g2, g3, g%,
9%, ¢° g7, and ¢*log(g).
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Figure 11. Soft contributions Pgo; to the pressure P normalized to Piqear at one through five
loops.

clearly is better than the convergence properties of the successive approximations to Pparq
and Py separately.

In figure 11, we plot the successive loop orders of minus eq. (3.27) normalized to Pjgeal-
In the one- and two-loop approximations, we use the leading-order results for gg and for m?.
At three and four loops, we use the leading-order result for gg and next-to-leading order
result for m?. Finally, at five loops, we use the solutions to the evolution equations for gg, f,
and m?. The renormalization scale is y = 27T and the factorization scale is A = gT'/+/24.
These approximations represent a selective resummation of higher-order terms. Clearly,
the convergence is better than the strict perturbative expansion. In particular, the three-,
four-, and five-loop approximations are very close.

In figure 12, we plot the successive loop orders of the the pressure which is given by the
sum of minus eq. (2.23) minus eq. (3.27), and minus (4.13), normalized to Pigeal, starting

,18,



1.02

1.01
1.00 |
0.99
_P_ Vi“‘**"" ,4’/‘/
Pideal 0.98 ~\.\- /'/
2 loops  ----- =
0.97 {3 loops ——-
0.96 4 loops
5 loops
0.95 . . . .
0 1.0 2.0 3.0 4.0
g(27T)

Figure 12. Successive approximations to the pressure P normalized to Pjqeal at two through five
loops.,

at two loops. We are using the same approximations for gg and m? as in the previous plot.
Again we notice that the convergence of P is better than P..q and Py.g separately. In fact
the convergence is very good as the 3-loop through 5-loop approximations are very close.
It is not surprising that a selective resummation improves the convergence of the series.
This was also notice in screened perturbation theory [21, 25-27].

5 Summary

In the present paper, we have calculated the pressure to order ¢%log(g) in massless ¢*-
theory at weak coupling. The first step is the determination of the coefficients in the
dimensionally reduced effective field theory. This calculation encodes the physics of the
hard scale T. The mass parameter was needed to order ¢° and involves a nontrivial three-
loop sum-integral that was recently calculated in ref. [21]. The second step consists of
using the effective theory to calculate the vacuum diagrams through five loops. All loop
diagrams in the effective theory but one could be calculated analytically with dimensional
regularization. This way of organizing the calculations is more economical and efficient
than resummed perturbation theory.

The parameters of the effective theory, g3, f, and m?, satisfy a set of evolution equa-
tions. The solutions of these equations show that the parameters depend explicitly on the
renormalization scale. This dependence is necessary to cancel the dependence on the scale
in the effective theory [19]. The fact the our final result for the pressure is independent of
the renormalization scale is a nontrivial check of the calculations. Furthermore, by choos-
ing A = ¢gT/+/24 and using the solutions to the evolution equations, we were able to sum
up leading logarithms of the form ¢g?"*3log"(g) and e.g. subleading logarithms of the form
> log"(g), where n = 2,3,.... as well as obtaining the coefficient of the ¢®log(g) term.

As pointed out in ref. [15], it would be advantageous to develop the machinery of cal-

culating complicated multiloop sum-integrals in an automated fashion as has been done for
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Feynman diagrams at zero temperature. Perhaps such techniques could provide analytical
expressions for the constants that today are known only numerically. This is necessary if one
wants to tackle the formidable problem of calculating the hard part of the ¢%-contribution
to the free energy of QCD.
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A  Sum-integrals

In the imaginary-time formalism for thermal field theory, the 4-momentum P = (P, p) is
Euclidean with P? = PO2 +p?. The Euclidean energy pg has discrete values: Py = 2n7T for
bosons, where n is an integer. Loop diagrams involve sums over Py and integrals over p.
With dimensional regularization, the integral is generalized to d = 3—2¢ spatial dimensions.
We define the dimensionally regularized sum-integral by

%1; - <em> > /ff; (A1)

Po=2n7T

where 3 — 2¢ is the dimension of space and p is an arbitrary momentum scale. The factor
(€7 /4m)€ is introduced so that, after minimal subtraction of the poles in € due to ultraviolet
divergences, u coincides with the renormalization scale of the MS renormalization scheme.

A.1 One-loop sum-integrals

The massless one-loop sum-integral is given by

1
7, E#—
n PP2n

C(Qn—3+26)F(n—%+e)

— (T ,2)€ 2T 4—2n—2¢ A9
where ((z) is Riemann’s zeta function. Specifically, we need the sum-integrals
I, = # log P?
P
w274
= 14+ O(e)] , (A.3)
T2 ¢ p o\ ¢(=1)
T, = E(H) [1+ <2+2<( 1)> e+
¢(=1) , ,¢"(= )> 2 3 ]
+ 4—|——+4 +2 e+ 0 (e ) A4
( &0 I S R
1 w2 |1 2 9
I = (4m)2 <47TT> L +2ve + < 1 471) + O (e )] ) (A.5)
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T, = g ) + 0 (e) (A.6)

A.2 Two-loop sum-integrals

We need three two-loop sum-integral that are listed below:

1
Fan = %Q PIQ(P + Q)?
— 0 (A7)

P2 + (2/d)p? 3/ pu N[l (5 1 8
pu— —_— —_ 4 — [ —
%';Q PSQA(P+ Q)2 4(4m) (47TT> et gt97) etz at

+1—307E + 4% — 8 + 0(6)] o (A8
P?—(4/d)p* 1 ( w >4e [1 19 } ‘

o PPOPP 1+ QP ~ a(an \anr) | T g T o0

(A.9)

The setting-sun sum-integral was first calculated by Arnold and Zhai in refs. [5, 6]. The
remaining two-loop sum-integrals were calculated by Braaten and Petitgirard [28, 29] using
the techniques developed in [5, 6].

A.3 Three-loop sum-integrals
We need the following three-loop sum-integrals:

1
Foan = %’;QR PIQ’RA(P + Q + R)?
_ T < p )65[1+91 ¢'(=1)

= san? \arr) [T Ty T Ay

+ 0(6)} . (A10)

1
T = 5
P Thor PIQPRA(P +Q + R)?

77 o6 [ 1 17 C(-1)\ 1
= 8! (37 L—z* (E“‘”E”g(—n) o

J%VE (17 + 1578 + 12%) + Chan + 0(6)] ; (A.11)
and
%li % {[H(P)]2 - (4:)26H(P)} _
T2 7 6e
~ 44! <H> .
1 14 _¢(-1)
X{e_2 + € [§ +2C(—1) +4’YE] +
2
* % {46 — 8y — 167 — 104y, — 24y log(2m) + 241log”(27) + 45; +
(=1  ,¢"(=D (1)
+24 = +2 =y + 1675 C(—l)} +C[+O(€)} , (A.12)
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where the self-energy II(P) is defined as

1
P):%m, (A.13)

and C}_; = 48.7976 and C; = —38.4672. The massless basketball sum-integral was first
calculated by Arnold and Zhai in refs. [5, 6]. The sum-integral eq. (A.11) was calculated by
Gynther et al. in ref. [15]. The expression for the sum-integral eq. (A.12) was calculated
in ref. [21].

A.4 Four-loop sum-integrals

We also need a single four-loop sum-integral which was calculated in ref. [15]:

st {mey - ey | -

T4
T 16(dn)A
1 po 10 (1)) 1
— + (4log —— + — +4 — + (21
XL2+< 4T+3+§(—)  * (2log 7o)
6 g .
+ 5_2 E+4 3 210 —+7E)+Ctriangle -
T4 1 m
—— 8log —— +4 C, o A.14
512(471')2 |: + 8log ArT +4vE + trlangle:| + (6) ) ( )
where O, p1e = —25.7055 and C{j, 0. = 28.9250.

B Three-dimensional integrals

Dimensional regularization can be used to regularize both the ultraviolet divergences and
infrared divergences in 3-dimensional integrals over momenta. The spatial dimension is
generalized to d = 3 — 2¢ dimensions. Integrals are evaluated at a value of d for which they
converge and then analytically continued to d = 3. We use the integration measure

¥,,2\ € d3—2€
/E<e“> /73’; (B.1)
» 47 (2m)
The one-loop integral is given by

1
I, = | ————+—
n /p(p2_|_m2)n

B.1 One-loop integrals

3
— i(ewﬁ)eum&?n*% ' (B.2)
= I
Specifically, we need
I, = /log(p2 +m?)
P
m3 oo\ 2 8 52 7?2
i ) 5o (B ) @ vo@] (5:5)
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2

I = —% (%) ‘ [1 + 2+ <4+ %) 10 (63)] , (B.4)
I = ﬁ (%)2 [14—%2624-0(63)] : (B.5)
Iy = 327:7”3 (%)2 {1 f2e+ 40 (63)] , (B.6)
I = 647:m5 <%)2 [1+§e+ <§+%2> 62+O(e3)] (B.7)

B.2 Two-loop integrals

We need the following two-loop integral

1 1 1
I = ) =
wun(p = m) /qr ¢>+m?r?+m? (p+q+r)*+m?

1 ( W )45
= =) x
4(4m)2 \2m
2

1
x [— +6—8log2+ (36 - % — 481og 2 + 8log? 2) e+0(e2)] (B.8)
€

p=im

This integral was calculated to order €” in ref. [19] and to order € in refs. [28, 29].

B.3 Three-loop integrals

We need the following three-loop integrals:

1 1 1 1
Ty —
ball /pqrp2+m2q2+m2r2+m2(p+q+r)2+m2
m I 6e
=———(—) x
(4m)3 (Zm)

1 17
X {—+8—4log2+4<13+4—8772—810g2+10g22>e+(’)(62)] . (B9
€

1 1 1 1
- |
ball oo P24+ m2)2q2+m2r2+m?2(p+q+r)2+m?
1 Ge
= st (3)
8m(4m)3 \2m

1 1
X [—+2—4log2+4<1+4—;772—210g2—|—log22> E+O(62):| . (B.10)
€

1 1 1 1
/= /pqr (@+m22(p+a)?+m? (2 +m2)?2 (p+r)2 +m?
1 M [$13

K_/ 1 1 1 1
par (@ +m2)* (p+@)? +m?r? + m? (p +1)% + m?

1 w6 |1
:W<%> |:€+5—410g2+0(6) . (B.12)
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The massive basketball was calculated in ref. [19] to order €Y, and to order € in ref. [9]. I}
can be obtained by differentiation of [, with respect to m. The 3-loop integrals J and
K are calculated in appendix C.

B.4 Four-loop integrals

We need the following two four-loop integrals

1 1 1 1 1 !
I . pr—
triangle /qu‘S 2+ m?2 (p + q)2 L m27r2 4+ m2 (p + r)Q +m?s?2+m?2 (p+ 5)2 + m?
2

8 |1 84
- 32(7:17r)4 <%) [Z +2+4log2— —((3)+ 0 ()] , (B.13)

1 1 1 1 1 1
! —
riangle /pqm (¢ +m*)? (p+a)?+m?r2+m? (p+1)? +m?s* + m? (p+5)* +m?
2

= m (2) 1400 (B.14)

The triangle diagram was calculated in ref. [30]. The diagram I} follows from the

triangle
triangle diagram upon differentiation with respect to m?.

B.5 Five-loop integrals

1 1 1 1 1 1
I = X
rung /pqrstq2+m2(p+q)2+m2r2+m2(p+r)2+m282+m2(p+s)2+m2

1 1
“ P m? (p+t)2+m?
_#<L>1OE 2log2 — 2¢(3) + O (¢) (B.15)
~ 2m(4n)5 \2m o8 2 /1 )

1 1 1 1
I = 8
doublesun /pqrst (pg + m2)2 q2 + m?2 r2 + m2 (p +q+ r)Q + m2
X ! ! !
s24+m?2t2+m? (p+s+t)2+m?

1 [ 10€
=——(— X
32m(4m)> <2m)

1 1 31
X [—2 + (4 —8log2) — _4+E7T2 —961og 3 + 641log 2 + 104 log? 2
€ €

+80Lix (1) + O (e)} : (B.16)

1 1 1 1 1
L = X
4 /pqrst Z+m?(p+q)2+m?2(p+r)2+m?(t+r)2+m?r2+m?

1 1 1
. (p+s)2+m?(t+s)?2+m?s>+m?
1 ‘u 10e
= m(47r)5 (%> [C4j + O(E)] R (Bl?)

where Cy; = 0.443166. The integrals are calculated in appendix C.
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C Explicit calculations

In this appendix, we calculate explicitly some of the multi-loop vacuum diagrams in three
dimensions.
The three-loop integral J in eq. (B.11) can be written as

7= [ sl ()

p

where

1 1
I = . 2
bubble (P) /q (@ +m2)2 (p+q)2+m? (C2)

By power counting it is easy to see that both J and I} .. are finite in three spatial
dimension. The latter then reduces to

1 1

= C.3
8mm p? + 4m? (C3)

Fupie(P)
Inserting eq. (C.3) into eq. (C.1) and using eq. (B.5) with ¢ = 0 and a mass of 2m. we

obtain eq. (B.11).
The integral K can be calculated by noting the relation

The integral I.ung in (B.15) can be written as

Irung = /Iéubble(p)’ (05)
p

where

1 1
Tyubbie(p) = . C.6
bubbl (p) /qu—i-mQ (p+q)2+m2 ( )

The integrals Irung and Ipybble(p) are convergent in three dimensions. The latter then
reduces to

L P
Thubble(p) = yp arctan o — . (C.7)

Iiung can now be easily found and the result is given by eq. (B.15).
The diagram appearing in F5; can be written as

1
T = [ — = 72 : C.8
doublesun A(pg +m2)2 sun(p) ( )

where Igy,(p) is

1 1 1
o _ C.9
su (p) /Cqu2+m27°2+m2(p+q+l‘)2+m2 ( )
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In order to isolate the divergences in (C.8), we add and subtract Isyn(p = im), and rewrite

it as

1
Toublesun = /p m X
X {[Isun(p) - Isun(p = Zm)]Q + 2Isurl(p)[sun(p = Zm)_
—I2a(p=im)} . (C.10)

sun

We denote the three terms above by Igs1, lqs2, and Igs3. We first consider Igg1. The dif-
ference Isun(p) — Isun(p = im) is finite and can be calculated directly in three dimensions.
We obtain

Isun(p) - Isun(p = Zm) =

1 W\ 4e [ 3m P 1. p?+9m?
= — — —arctan — + - In————— . A1
(47)? <2m) [ D e * 2 " 64m? +0(e) (C.11)

The first term Igq is finite in three dimensions. Using eq. (C.11), we obtain

1 o\ 10 2 (1
Tys1 = S (dn) (%> [6log”2 — 6log 3 + 4log 2 + 5Lis(5) + O(e)] . (C.12)

The second term I4e9 can be written as

. 1 1 1 1
Ids2 = 2Isun(p = Zm)/

. (€13
par (P +m2)? ¢* +m? 12 + m? (p + q +1)* + m? (€19

Using egs. (B.8) and (B.10), we obtain

1 M 10e
S —
ds2 16m(4m)> \2m 8

1 1 )
X [—2+(8—12log2)—+52+ZW2—9610g2+4410g22+(9(e) . (C.14)
€ €

Similarly, I4s3 can be written as

Lis = — I (p = im) 1,

sun
1 10
e ("
32m(47)°> \2m

1 1 2
X {—2 + (12— 16log 2)= + 108 — % —1921og 2+ 8010g? 2 + O(e)| . (C.15)
€ €

Adding egs. (C.12), (C.14), and (C.15), we obtain

1 [ 10
Idoublesun = 32m7(471')5 (%> X

1 1 31
X {—2 + (4 —8log2) - —4+ Eﬂ'Q —96log 3 + 64log 2 + 1041log? 2 +
€ €

+ 80Lis (%) + O(e)] . (C.16)
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Let us finally discuss the five-loop integral appearing in eq. (B.17). It can be written as

Iy =/ Toubbie(p) Mesi(p, 0))° (C.17)
Pq
where
1 1 1
i (p, q) = : C.18
(P, 4) /rr2+m2(p+r)2+m2(q+r)2+m2 (C.18)
The diagram (C.18) is finite in three dimensions and can be written as [31, 32]
arctan(v/D/C)
Mo (p, q) = AWV ETE) C.19
trl(p Q) 87‘[’\/5 ( )
where
2, 2 . A2
c-Lrerpdr i (C.20)
m
202(p — )2 + 4m2[n2a? — (p - q)2
p-PaeP—a)+4m ¢ —(p-q)] (C.21)

4mb

The integral (C.17) can now be evaluated numerically by first averaging over angles and
then integrating over p and ¢. This yields

1 [\ 106
I = s <%> [0.443166] . (C.22)
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