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Abstract We give a large class of supersymmetric Janus
solutions in w-deformed (dyonic) SO (8) maximal gauged
supergravity with @ = %. Unlike the purely electric coun-
terpart, the dyonic SO(8) gauged supergravity exhibits a
richer structure of AdSs vacua with N = 8,2, 1, 1 super-
symmetries and SO (8), U(3), G, and SU(3) symmetries,
respectively. Similarly, domain walls interpolating among
these critical points show a very rich structure as well. In this
paper, we show that this gauged supergravity also accom-
modates a number of interesting supersymmetric Janus solu-
tions in the form of Ad S3-sliced domain walls asymptotically
interpolating between the aforementioned Ad S4 geometries.
These solutions could be holographically interpreted as two-
dimensional conformal defects within the superconformal
field theories (SCFTs) of ABJM type dual to the Ad Sy vacua.
We also give a class of solutions interpolating among the
SO(8), G2 and U(3) AdS4 vacua in the case of o = 0
which have not previously appeared in the presently known
Janus solutions of electric SO (8) gauged supergravity.

1 Introduction

Janus solutions of D-dimensional gauged supergravity take
the form of AdSp_1-sliced domain walls. Regular solutions
of this type are asymptotic to AdSp geometries on both
sides of the AdSp_ slice. According to the AdS/CFT cor-
respondence [1-3], these configurations are dual to (D — 2)-
dimensional conformal interfaces or defects in the (D — 1)-
dimensional CFT dual to the AdSp vacuum. Since the origi-
nal Janus solution found in [4] by considering a deformation
of the AdSs x S° geometry in type IIB theory, a number of
works have studied this type of solutions both in type IIB
theory and five-dimensional gauged supergravity along with
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the corresponding conformal interfaces in the dual N = 4
super Yang—Mills theory, see for example [5—14] for more
recent results.

In this paper, we are interested in supersymmetric Janus
solutions of dyonic SO(8) gauged supergravity in four
dimensions constructed in [15], see also [16]. This gauged
supergravity is a deformation of the original SO (8) gauged
supergravity constructed long ago in [17] by an electromag-
netic phase usually called w. For @ = 0, a number of Janus
solutions have been given in [18], see [19-25] for Janus solu-
tions in four-dimensional gauged supergravities with differ-
ent numbers of supersymmetries and [26—34] for solutions
in other dimensions.

The SO (8) gauged supergravity with @ # 0 exhibits a
richer structure of supersymmetric AdSs vacua [35] com-
pared to the @ = O theory. In particular, there exist new N =
1 supersymmetric critical points with G, and SU (3) symme-
tries in addition to the SO (8), Gpand U (3) ~ SUB) x U (1)
critical points with N = 8, 1, 2 supersymmetries which have
w = 0 counterparts. Holographic RG flow solutions interpo-
lating between these critical points have been investigated in
[36,37], see also [38], and also show a richer structure than
the @ = 0 analogue. We then expect that Janus solutions will
exhibit a much richer structure with many possible solutions
as well. We will see that this is indeed the case.

Janus solutions given in [18] only involve the SO (8) and
G, critical points resultingin SO (8) /SO (8), SO (8)/ G, and
G,/ G, interfaces. The N = 2 U (3) critical point is however
not present in the two-scalar truncation considered in [18].
Since in this paper, we study solutions in the full SU(3)
invariant scalar sector, we also consider Janus solutions with
w = 0 that involve all Ad Sy critical points with SO (8), G
and U (3) symmetry. The resulting solutions could hopefully
provide the missing part in the list of known Janus solutions
in electric SO(8) gauged supergravity. To the best of our
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knowledge, all the solutions with w # 0 have not previously
appeared.

The paper is organized as follows. In Sect. 2, we review the
construction of four-dimensional N = 8 gauged supergravity
with dyonic S O (8) gauge group and the corresponding Ad S4
vacua. BPS equations for Janus solutions in SU (3) invariant
sector are also given. In Sects. 3 and 4, we give numerical
Janus solutions for @ = 0 and w = % cases, respectively.
Conclusions and comments on the results are given in Sect. 5.

2 N = 8 gauged supergravity with dyonic S O (8) gauge
group

We first give a brief review of N = 8§ gauged supergravity in
four dimensions with dyonic S O (8) gauge group constructed
in [15,16] to which we refer for more detail. We mostly fol-
low the conventions of [36] with (— 4+ ++) signature for
the space-time metric. The only supermultiplet in N = 8§
supersymmetry is given by the supergravity multiplet with
the field content

(el Vi ARP X1k, SikL). ey

This multiplet consists of the graviton e;, 8 gravitini v, 28
vectors AfLB = —AﬁA, 56 spin- fields x;/x = x(7sx) and
70 scalars k1 = Z[1JKL]-

Before moving on, we first state the conventions on vari-
ous indices used throughout the paper. Space-time and tan-
gent space indices are denoted by wu,v,... = 0,1,2,3
and i, ,... = 0, 1,2, 3, respectively. The N = 8 super-
gravity admits global E7¢7y and local composite SU(8)
symmetries with the corresponding fundamental represen-
tations are respectively described by indices M, N, ... =
1,2,3,...,56 and I,J,K,... = 1,2,3,...8. Indices
A, B,... =1,2,3,...,8 refer to fundamental indices of
SL(8) C E7¢7. The scalars X g are encoded in the
E7¢7y/SU(8) coset manifold and can be described by the
coset representative VMM. Thelocal SU (8) indices M|, N, . ..
will further be decomposed as M = ([; J],[I 1. Similarly,
the global E7(7y indices M., N, . .. will be decomposed in the
SL(8) basis as p = (jap],[4B!). The scalars X,k are
self-dual

1
kL = EEIJKLMNPQEMNPQ (2)

with ©//KL = (X7yk0)*and €EIJKLMNPQ being the invari-
ant tensor of the SU (8) R-symmetry.

The action of the global E7(7) symmetry includes electric-
magnetic duality with the vector fields AﬁB together with
the magnetic dual A, 4 g transforming in the fundamental 56
representation. In general, the Lagrangian of the ungauged
N = 8 supergravity will exhibit only particular subgroups
of E7(7) depending on the electric-magnetic or symplectic
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frames. On the other hand, the full E7(7) symmetry is real-
ized through the field equations together with the Bianchi
identities. The most general gaugings of the N = 8 super-
gravity can be described by the so-called embedding tensor
®p* which introduces a minimal coupling to various fields
in the ungauged supergravity via the covariant derivative

Dy =V, — gAMOy 1, (3)

with V,, being the usual space-time covariant derivative
including the SU(8) composite connection (if any). #, are
E7(7) generators witho =1, 2,3, ..., 133. Supersymmetry
requires the embedding tensor to transform as 912 representa-
tion of E7(7). In addition, the gauge generators Xy = On*#
must form a closed subalgebra of E7(7,. The latter imposes
the quadratic constraint on the embedding tensor of the form

Q"MNey*en? = 0. 4)

QMN is the symplectic form of the duality group Sp(56, R)

in which E7(7) is embedded. The quadratic constraint can be
rewritten in terms of the gauge generators as

[Xm, Xn] = —Xmn' Xp (5)

with Xpn® = Op® (t,)nT and (74)nF being the E7(7) gen-
erators in the fundamental representation.

In this paper, we are interested mainly in the solutions with
only the metric and scalars non-vanishing. We will from now
on set all the other fields to zero to simplify the presentation.
The bosonic Lagrangian of the N = 8 gauged supergravity
can be written as

1 1
-1 I1JKL
L= SR— PP V. (6)

The scalar potential is given in terms of the fermion-shift
matrices as

3 1
V=—2gMnAl + 87 A KAy, (7)
4 24
with Al = (A1;)* and Ay/%E = (AL, )" A; and
A, matrices can be defined in term of the T-tensor by the
following relations
4
A{J _ ETIKJL
The T-tensor is in turn obtained from the embedding tensor
via

ke and Ay KL =21y MIKL(8)

TME = VMMvNNV[PEXMNP )

with VM = (V1"

The supersymmetry transformations of W;IL and x7k,
which are needed in finding supersymmetric solutions, are
given by

8y = 2D, +vV2gA yuey, (10)

Sx! K = —2V2Pl KL yte, —2gA5, K EL. (11)
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The covariant derivative of €/ is defined by
| BN 1
Dy’ =d,€el + Zw,ﬂ“me’ + EQ,L’Je’. (12)

The composite connection QMI ;=0 MJ )* and the viel-
bein P!/ KL on the E7(7)/SU (8) coset are given by

i
Q//.IJ = g(VABIKaMVJK — VAB[KBMVABJK)s (]3)

l
Pujkr = E(VABIJBMVABKL —VAB 18, VagkL)  (14)

with
1
4'EIJKLMNPQPMMNPQ . (15)

We finally note that the kinetic term and the scalar potential
can be written in term of the symmetric scalar matrix

IJKL _
PM =

. 01
My = ViV with gy = (st 28) (16)

0
as
1
— PPk = o Lo My M (17)
and
2
== (XMNRXPQSMMPMNQMRS
+7XMNQXPQNMMP> . (18)

MMN s the inverse of M.
2.1 Dyonic SO(8) gauging

In general, both electric and magnetic vector fields can par-
ticipate in the gauging. We now consider gauging of a sub-
group G C SL(8) C E7(7y. The SL(8) generators take a
block-diagonal form, and various components of the embed-
ding tensor corresponding to the gauge group G are given
by

X[AB][CD][EF] = —85 93 CSDJ,

X[AB][CD]

[EF1 = 8‘S[AQBJ[E‘sF]
[AcBJE o F]
—88[05 SD],

A D
XUABICD ) = 8812 EPICS 2L (19)

[EF]
XMABl e p) =

The quadratic constraint gives rise to the condition
1
0§ = gTr(QE)Hs (20)
which implies
E=co". @1

The tensors 6 and & are symmetric and can be diagonalized
to have eigenvalues 0, +1. This leadsto CSO (p, ¢, r) gauge

group with p + g +r = 8 for p, g and r being numbers of
eigenvalues 1, —1 and 0, respectively. It is also convenient
to define another parameter w by the following relation

o= Arg(l1 +ic) (22)

withc =0(w=0)and c = o0 (0w = %) leading to purely
electric and purely magnetic gauge groups, respectively. The
former is the original SO(8) gauged supergravity of [17].
It has been shown in [15,35,39,40] that the values of w are
equivalent under the identifications ® - —w and w — w +
%. This results in inequivalent values of w in the range [0, %].
In this paper, we are only interested in the case of O4p =
£4B = §,p corresponding to the SO (8) gauge group.

2.2 SU(3) truncation

In order to make things more manageable, most results on
N = 8 gauged supergravity are obtained by truncating the
70-dimensional E7(7,/SU (8) manifold to lower-dimensional
submanifolds invariant under certain subgroups of the gauge
group. In this work, we are interested in scalar fields that are
singlets of SU (3) C SO(8) [35] following the discussion in
[36]. The embedding of SU (3) can be identified by decom-
posing the 8, representation of SO (8) to 1 + 14 3 + 3 of
SU3). Accordmgly, the fundamental SU (8) index I splits
as I = (1,a, i ,a)fora=2,3, 4anda =2,3,4.

After the truncation, there are six scalars parametrizing
the coset space

SL(2)/SO(2) x SU2,1)/U(2) (23)

and two gauge fields corresponding to U (1) x U(1) gauge
group. The unbroken supersymmetry in the truncated the-
ory is given by €! and ¢! which are singlets of SU(3). The
resulting theory is N = 2 gauged supergravity coupled to
one vector multiplet and one hypermultiplet.

Under SO (8) gauge group, the 70 scalars ¥ ;g decom-
pose into self- and anti-self-dual parts Efl kL in repre-
sentations 35; and 35., respectively. The 35; and 35,
can be rewritten in terms of real and imaginary parts of
35 complex scalars which are identified respectively with
scalars and pseudoscalars. For the @ = 0 case with known
eleven-dimensional origin, the former arise from the eleven-
dimensional metric while the latter come from the three-form
potential. They are respectively dual to boson and fermion
bilinear operators in the dual N = 8 SCFT.

Two of the six singlets in (23) can be gauged away by
the U (1) x U(1) gauge symmetry [41]. The remaining four
scalars can be described by the four-form X; jx 1 of the form

Y =£&cosp(Zy + Z5) +iksing(T_ — XF)
—ccosxJTAJT —icsinyJ AT (24)

@ Springer
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in which the real and complex two-forms J* and X are
defined by

. . 4
n i _ i _

J* = Eodz Adi + E;dza AdZ (25)
and 2+ = dZ] VAN dZa N de A\ dZCv

Y_=dzg Ndzg ANdzp Adze. (26)
The complex coordinates z; = (z1, z5) and their complex
conjugate z; = (Zj, Zg) are given in terms of a real vector
(1 ey Xa, X7, 005 X5) of 8, as

zi=xi+ix; and Z=x —ix; (27)

Components of X;jx . givenin (24) can be used to construct
the scalar coset representative Vi,
In this SU (3) truncation, the scalar kinetic term can be

written as
3
Liin = —38,£0"¢ — 1 sinh?(2£),, x 9" x
—49,E0"E — sinh®(2£)9,69" . (28)

The resulting components of the A{J tensor split into
(A”, AT, A}l, A‘I’[’) and take the form of

Al = Al 4 e Al (29)

A{l and A{l correspond to the unbroken N = 2 supersym-
metry giving rise to the superpotentials W, and W;. The
scalar potential can be written in term of the real superpoten-
tial W = [W| = [W;]| as

10w oW 4 AW W
"~ 39¢ 8¢ 3sinh2(2¢) dx dx
1OW aW 1 oW aw
ST T 3w (30)
4 98 9&  sinh?(2&) d¢ 3¢

In our convention, the superpotentials VW, ; are related to A }1

and A}i by
Wi =v2gAl"  and W, = V2gall. G1)

It should be noted that this definition is different from that
used in [36] in which W), ; are directly defined by A}' and

Al This results in different numerical factors for some
expressions, but the final result is the same.

The explicit form of A}l and A}i is obtained from A]il
and A} given by
3 ..
Alrl = 562’()( +9) cosh ¢ sinh? ¢ sinh?(2§)
+ cosh® ¢ (cosh* & 4 ¢*? sinh* £), (32)
3 ,.
All = EeMX +9) cosh ¢ sinh® ¢ sinh?(2€)

+¢ % sinh? ¢ (cosh* £ + ¢ sinh* &) (33)

@ Springer

Table 1 Supersymmetic AdSs vacua of SO (8) gauged supergravity
with w = % The first three critical points have w = 0 counterparts
while the last two are genuine critical points of the dyonic S O (8) gauged
supergravity without the @ = 0 analogues. For N = 1 critical points,
we also note which superpotential among W and W; corresponds to
the unbroken supersymmetry

SupersymmetryResidual symmetry (¢, x. &, ¢)
N=28 SO(8) (0,0,0,0)
N=2 U@B3)~SU@B) x U(1)(0.315,0.171x, 0.375, £7)
(0.315, 1.3297, 0.375, 0)
(0.315, 1.3297, 0.375, )
N=1W Gr (0.329, 0.373m, 0.329, +0.3737)
(0.329, 0.373m, 0.329, +1.3737)
W; (0.329, 1.127m, 0.329, £1.127x)

(0.329, 1.1277, 0.329, £0.1277)
(0.242, —,0.242, F1)

W; (0.242, —%,0.242, £37)

N=1W,  SU®) (0.275, 3%,0.573, 1)

W; (0.275,3,0.573, 3

with

All — 4! - 34
+ =AL (@ —> —9). (34)

Since the explicit form of the scalar potential is rather com-
plicated, we refrain from giving it here but simply refer to
[36].

A number of supersymmetric AdS4 vacua of the scalar
potential have been identified, and some of them do not have
counterparts in the @ = 0 case. Before considering super-
symmetric Janus solutions, for convenience, we collect all of
the known supersymmetric Ad Sy critical points for @ = T
in Table 1.

2.3 BPS equations for Janus solutions

We are now in a position to analyze the fermionic super-

symmetry transformations and find the corresponding BPS

equations. The analysis closely follows that given in [18],

see also [19], to which the reader is referred for more detail.
We begin with the metric ansatz of the form

ds? = AW (ezTﬂdeZ)l + de) +dr?. (35)

This is the domain wall metric with an AdS3 slice rather
than the three-dimensional flat Minkowski space. The latter
is recovered in the limit £ — oo.

With the vielbein components

e = eA+%dxo‘, e = etdp, ¢ =dr, (36)
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non-vanishing components of the spin connection from the
above metric are given by

PP =Ae?,  w¥p = %e_Ae&, W'F = A" (37)
where ' denotes the r-derivative. Indices «, 8 will take
values 0, 1. The other non-vanishing fields are the scalars
(¢, &, x, ¢) depending only on r.

We will use Majorana representation for gamma matrices
with all y# real and ys purely imaginary. The two chiralities
of the supersymmetry parameters €/ and €; are then related
to each other by a complex conjugation. We will denote the
Killing spinors corresponding to the unbroken supersymme-
try by €. In the present case, € will be €' or €!, and €* is
given by €] or €;. The supersymmetry conditions § x /X = 0
involve only y; since the scalars depend only on r. Following
[18], we impose the projector of the form

yie = e'he* (38)

where A is real.
We now consider the supersymmetry transformations Oi
which lead to the following conditions

1
Aype + Ze_Ayﬁe +We* =0. 39)

The superpotential W is given by «/EgA}I or «/EgA}i. Tak-
ing the complex conjugate and iterating the above equation,
we obtain

1 _
A/2 — W2 _ E_ze 2A (40)

for W = |W|.
We now move to the equation coming from v ; = 0. This
takes the form

1 1
e*Aape + EA/J/[)J/;G + EW)/,@E* =0. 4D

Using (39), we find

1
de = — 4
AT (42)

which gives € = % ¢ for a p-independent €.
Finally, using the y; projection of the form

A

ype = ixe' e (43)

with k2 = 1 and 81/1;1 = 0, we can determine the explicit
form of the Killing spinor to be

€ = e%+2’%+i%8(0) (44)
The spinor &(?) might have an r-dependent phase and satisfies

@ = e ang @ = O (45)
)43 Vp

Using the projector (43) in Eq. (39), we find
oA — w

= AT E (46)

We can then use the projector (38) with this phase in the
8x'/K = 0 conditions and find the BPS equations for the
scalar fields. The resulting BPS equations can be written in
terms of the superpotential as

1AW 1 2 —Aaw
;’:--———-—& (47)

1A 4 AW 1 2 ke Aow

X =3y star ox | 3smhan we a0 40

€ =W 5E " TemhaE Wi (49)

, A1 W 1 2 ke AW
¢ = WS TZ0n 96 T 1smhon Wi 9t (50)
sinh“(2&) d¢ ~ 4sinh(2§) W 0&
As expected, these equations reduce to those of the RG flows
studied in [36] in the limit £ — oo. It can also be shown that
these equations satisfy the corresponding field equations. The
complete solutions can be obtained by solving these equa-
tions together with (40).
Before giving Janus solutions, we note that the constant
k = =1 corresponds to the chiralities of the Killing spinor
on the two-dimensional defects dual to the Ad S5 slices. This
can be seen by using yse = € which implies

yoyle = ke. (51)

In the present case, we will have Janus solutions with only
N = 1 supersymmetry, or (1, 0) or (0, 1) superconformal
symmetry on the defects, since the above BPS equations can
be derived from either W, or W;. However, at the SO (8) and
U (3) critical points, supersymmetry will enhance to N = 8
and N = 2 respectively.

3 Supersymmetric Janus solutions with ® = 0

In this section, we first consider supersymmetric Janus solu-
tions in the SO(8) gauged supergravity with o = 0. A
number of solutions in the truncation with only two scalars
non-vanishing have already been given in [18]. However,
the solutions involving the N = 2 supersymmetric AdSy
critical point with SU (3) x U(1) symmetry have not been
studied since this vacuum does not arise in that truncation.
In this work, we consider the full SU (3) invariant scalar sec-
tor, so it is possible to accommodate this type of solutions.
Accordingly, we first give solutions with w = 0 for which
only SO (8), Ga and SU (3) x U(1) Ad Sy critical points with
N =8, 1, 2 supersymmetries exist.

The resulting BPS equations are highly complicated to
look for any analytic solutions. Therefore, we will perform

@ Springer
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(a)
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0.0
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-010 005 000 005 010 015 020  0.25

(b) (£ cos ¢, € sin ¢) plane

Fig. 1 SO(8)/SO(8) Janus solutions that flow to G, and U (3) critical points are given respectively by green and red lines on the contour plot of
the superpotential. The two green and red dots represent equivalent G, and U (3) critical points

a numerical analysis in finding supersymmetric Janus solu-
tions. In subsequent analysis, we will choose the following
numerical values

k=1. (52)

The A’(r) equation involves taking a square root giving rise
to a branch cut. To avoid this and work with a smooth numer-
ical analysis, we follow the procedure carried out in [18] and
instead solve the second order field equations. This process
begins with fixing a turning point of A such that A’(rg) =0
for particular values of ¢, &y, xo and ¢o9. We will conve-
niently choose r9 = 0 as in [18]. We then determine the
values of A(0), ¢/(0), £'(0), x'(0) and ¢’ (0) using the pre-
viously obtained BPS equations. This provides a full set of
initial conditions to solve the second order field equations.
After numerically integrating to find the solution, we check
whether the resulting solution satisfies the BPS equations.
For convenience, we will denote a solution interpolating
between Ad Sy critical points with G and G’ symmetries on
the two sides of the interface by G/ G’ Janus.

Asin [18], there are solutions describing conformal inter-
faces between SO(8) symmetric phases. These solutions
have been studied extensively in [18], so will not repeat them
here but mainly focus on solutions involving G, and U (3)
critical points. We first remark that there exist SO (8) /SO (8)
Janus solutions that flow to G, and U (3) critical points. These
solutions are shown in the contour plot of the superpotential
in Fig. 1. In all the contour plots, as in [37], we denote SO (8),

@ Springer

G, and U (3) critical points respectively by black, green and
red dots while open dots represent turning points. Profiles
of scalars and the warped factor A as functions of the radial
coordinate r are shown in Fig. 2. We also give the profile of
A’ in order to make the Ad Sy critical points involving in the
solution more transparent. These solutions have a very sim-
ilar structure to the solutions given in [22]. The only differ-
ence is that our solutions asymptotically interpolate between
SO (8) conformal phases while those in [22] describe solu-
tions between non-conformal or super Yang-Mills phases.
We also note that for this type of solutions the turning points
are very close to the critical point to which the solutions flow.

There exist solutions interpolating among the three crit-
ical points. Examples of these are shown in Figs. 3 and 4.
The yellow line represents a solution from the S O (8) critical
point that first proceeds to the G and the U (3) critical points
and eventually back to the S O (8) critical point. For compari-
son, we also show a solution from the SO (8) critical point to
the two equivalent G critical points and back to the SO (8)
critical point by the green line. The latter has already been
given in [18] in which it has been argued that the solution
describes a G/ G, interface. In this case, the G, phase on
each side of the interface is generated from the S O (8) phase
by a rapid transition via usual RG flows. Similarly, we inter-
pret our new solution represented by the yellow line as an
interface between the G, and U (3) conformal phases since
on the two sides, the SO (8) phase undergoes an RG flow to
the G, phase on one side and to the U (3) phase on the other.
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40] &
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025 0.30f
020k 0257
0.20
0.15
0.15
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0.10
0.05 0.05
‘ , ‘ ,
-20 -10 10 20 ' -20 -10 10 20

@ ¢(r) ) &(r)

X(r) ()
1.0F 10k
08f 05}
06 : : : — 7
-20 -10 10 20
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20+
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15 05
10 s —r
10 20
5,
. 5 S - r
-20 -10 10 20
(e) A(r) ® A'(r)

Fig. 2 Profiles of scalar fields (¢, &, x, ¢) and the warped factor A as functions of the radial coordinate r for SO (8)/S O (8) Janus solutions that
flow to G, and U (3) critical points are shown by green and red lines, respectively
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Fig. 3 Janus solutions describing G2/ U (3) and G2/ G interfaces are respectively shown by yellow and green lines on the contour plot of the

superpotential

We also point out that within a larger truncation considered
here, there exists a family of G,/ G solutions. Examples of
these solutions are shown in Figs. 5 and 6.

We also note here that the two G critical points have the
same mass spectra and cosmological constants. Therefore,
they are equivalent within the SO (8) gauged supergravity.
However, upon uplifted to eleven dimensions, the two critical
points give inequivalent eleven-dimensional geometries with
opposite magnetic charges for the three-form potential due to
the opposite signs of the pseudoscalars. Since in this paper,
we will not consider the eleven-dimensional uplift, we simply
consider the two critical points equivalent.

For other solutions involving the U (3) critical point, there
exists a G,/ G solution that flows to U (3) critical point as
shown by the orange line in Figs. 7 and 8. The red line in
these figures represents an SO (8)/U (3) interface in which
the SO (8) phase undergoes an RG flow to the U (3) phase
on one side. The yellow line in Figs. 7 and 8 can also be
considered as an interface between S O (8) and G, conformal
phases. Unlike the SO (8)/ G, solution found in [18], this
SO(8)/ G, solution flows to the U (3) critical point near the
interface.

4 Supersymmetric Janus solutions with @ # 0

We now look at Janus solutions in the dyonic SO (8) gauged
supergravity with o = %. In this case, there are two addi-

@ Springer

tional N = 1 supersymmetric AdSy critical points with G,
and SU(3) symmetries. The former will be denoted by G5
to avoid confusion with the previous G critical points in the
w = 0 case. All the Ad Sy critical points of the w = 0 case
are also critical points of the w # 0 case with the positions
in field space displaced from the corresponding values with
o = 0 except for the N = 8 SO(8) critical point that is
still located at V = I. With more Ad Sy critical points, there
are more possibilities for Janus solutions describing various
interfaces with different conformal phases on the two sides.
In the contour plot of the superpotential, the critical points
with @ = 0 analogues will be denoted by the same color
code while the G, and SU (3) points will be represented by
dark green and blue dots, respectively.

As in the w = 0 case, there is a family of SO(8)/SO(8)
Janus solutions describing interfaces between SO (8) sym-
metric conformal phases. In addition, there are SO (8) /S O (8)
solutions that proceed arbitrarily close to the G, and G»
points. Some examples of these solutions are shown in Figs. 9
and 11. The SO(8)/SO(8) solution is shown as purple line
which is very similar to the solutions in [18] with @ = 0.
Similar to the G,/G»> Janus solutions in the w = 0 case,
the solution represented by the green line undergoes a rapid
transition between the SO(8) and G, points and between
the SO(8) and G, points on the two sides of the interface.
We then argue that this solution describes a G /62 inter-
face with the G5 and G, conformal phases generated by the
SO (8) phase on the two sides.
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There also exist solutions describing SO(8)/U(3),
SO(8)/Go, S0(8)/52 and SO(8)/SU(3) interfaces as
shown in Figs. 10 and 12. On one side of these interfaces,
the SO(8) phase undergoes an RG flow to the U (3), G2,
G, and SU(3) phases. We should note here that there is an
SO(8)/G, solution that flows to the SU (3) critical point
but we have not included this solution for readability of the
figures. We also note that in SO(8)/G, (dark green) and
SO(8)/SU(3) (blue) solutions, the SO (8) phase is on the
right while in the remaining two solutions, the SO (8) phase
is on the left (Figs. 11, 12). As in the w = 0 case, there are
also SO(8)/SO(8) solutions that flow to U (3), G», G, and
SU (3) critical points as shown in Figs. 13 and 15.

We end the discussion on various types of possible solu-
tions by considering a number of solutions shown in Figs. 14
and 16. We first look at the blue line which describesa G,/ G,
interface that flows to the SU(3) critical point. As in the
o = 0 case, the initial SO (8) phases on both sides undergo
a rapid transition to G, phases. The red line corresponds to
a U(3)/U(3) interface with the U (3) phases generated by
the SO(8) phases on each side (Figs. 15, 16). Finally, the
solutions represented by yellow and orange lines describe
respectively G,/ G»> and G» /52 interfaces that flow to the
U (3) critical point.

@ Springer

5 Conclusions and discussions

In this paper, we have studied supersymmetric Janus solu-
tions of four-dimensional N = 8 gauged supergravity with
dyonic SO (8) gauge group in SU (3) invariant sector. For
o = 0, we have found Janus solutions involving the N = 2
U (3) critical point and SO (8)/SO(8) solutions that flow to
G2 and U (3) critical points similar to solutions between super
Yang-Mills phases given in [22]. In addition to the G2/ G>
Janus found in [18], we have found an SO(8)/U(3) Janus
together with SO (8)/G; and G,/ G, solutions that flow to
the U (3) critical point. All these solutions can be uplifted
to eleven dimensions by the S7 truncation and describe
conformal interfaces between SO(8), U(3) and G, con-
formal phases of the ABJM theory. These solutions extend
the known solutions of [18] in which only SO(8)/G, and
G2/ G» Janus solutions have been given. We have also found
afamily of G,/ G, Janus solutions in addition to the solution
given in [18].

For w = %, there exist two additional supersymmetric
N = 1 AdSy critical points with G, and SU(3) symme-
tries. We have found a number of Janus solutions describing
conformal interfaces with various possible conformal phases
on each side including solutions that flow to a critical point.
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Fig. 7 An SO(8)/U (3) Janus solution is shown on the contour plot of the superpotential by the red line. The yellow and orange lines represent

SO(8)/G> and G,/ G solutions that flow to the U (3) critical point

With more different phases on each side of the interfaces and
more critical points to which the solutions can flow, super-
symmetric Janus solutions of dyonic SO (8) gauged super-
gravity show a highly rich structure as expected from the
analogous structure of AdSs vacua and domain walls inter-
polating between them. Unlike the v = 0 case, the higher
dimensional origin of the SO(8) gauged supergravity with
o # 0 is presently unknown. Therefore, the uplifted solu-
tions in string/M-theory are currently not possible. The full
holographic interpretation of the resulting solutions is still
unclear as in the case of RG flows studied in [36,37]. How-
ever, by the AdS/CFT correspondence, we expect these solu-
tions to describe conformal interfaces between different con-
formal phases of the dual N = 8 three-dimensional SCFTs.

It would be interesting to uplift the w = 0 solutions involv-
ing the U (3) critical point to M-theory and determine the cor-
responding field theory deformations leading to these inter-
faces. The field theory description of Janus solutions that flow
to a critical point also deserves further study. Embedding the

@ Springer

w-deformed SO (8) gauged supergravity in higher dimen-
sions is clearly desirable both in the holographic context and
in other applications of the dyonic S O (8) gauged supergrav-
ity in string/M-theory. In particular, this would allow uplift-
ing both the RG flows of [36,37] and the Janus solutions
found in this paper to string/M-theory similar to the study in
[42]. It is also interesting to look for similar solutions with
0<w< %. In this case, the two equivalent G, and U (3)
critical points will have different cosmological constants and
become physically inequivalent critical points with the same
mass spectrum and (super) symmetry. With additional two
critical points, there would be many more possible solutions.
Moreover, Janus solutions with w # 0 that describe inter-
faces between conformal and Coulomb phases or between
Coulomb phases dual to boundary SCFTs [43] are also worth
considering. In four-dimensional gauged supergravities, this
type of solutions has been first considered in [20] and later
in [22]in N = 4 and N = 8 gauged supergravities, respec-
tively. We hope to come back to these issues in future work.
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