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Abstract We give a large class of supersymmetric Janus
solutions in ω-deformed (dyonic) SO(8) maximal gauged
supergravity with ω = π

8 . Unlike the purely electric coun-
terpart, the dyonic SO(8) gauged supergravity exhibits a
richer structure of AdS4 vacua with N = 8, 2, 1, 1 super-
symmetries and SO(8), U (3), G2 and SU (3) symmetries,
respectively. Similarly, domain walls interpolating among
these critical points show a very rich structure as well. In this
paper, we show that this gauged supergravity also accom-
modates a number of interesting supersymmetric Janus solu-
tions in the form of AdS3-sliced domain walls asymptotically
interpolating between the aforementioned AdS4 geometries.
These solutions could be holographically interpreted as two-
dimensional conformal defects within the superconformal
field theories (SCFTs) of ABJM type dual to the AdS4 vacua.
We also give a class of solutions interpolating among the
SO(8), G2 and U (3) AdS4 vacua in the case of ω = 0
which have not previously appeared in the presently known
Janus solutions of electric SO(8) gauged supergravity.

1 Introduction

Janus solutions of D-dimensional gauged supergravity take
the form of AdSD−1-sliced domain walls. Regular solutions
of this type are asymptotic to AdSD geometries on both
sides of the AdSD−1 slice. According to the AdS/CFT cor-
respondence [1–3], these configurations are dual to (D− 2)-
dimensional conformal interfaces or defects in the (D − 1)-
dimensional CFT dual to the AdSD vacuum. Since the origi-
nal Janus solution found in [4] by considering a deformation
of the AdS5 × S5 geometry in type IIB theory, a number of
works have studied this type of solutions both in type IIB
theory and five-dimensional gauged supergravity along with
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the corresponding conformal interfaces in the dual N = 4
super Yang–Mills theory, see for example [5–14] for more
recent results.

In this paper, we are interested in supersymmetric Janus
solutions of dyonic SO(8) gauged supergravity in four
dimensions constructed in [15], see also [16]. This gauged
supergravity is a deformation of the original SO(8) gauged
supergravity constructed long ago in [17] by an electromag-
netic phase usually called ω. For ω = 0, a number of Janus
solutions have been given in [18], see [19–25] for Janus solu-
tions in four-dimensional gauged supergravities with differ-
ent numbers of supersymmetries and [26–34] for solutions
in other dimensions.

The SO(8) gauged supergravity with ω �= 0 exhibits a
richer structure of supersymmetric AdS4 vacua [35] com-
pared to the ω = 0 theory. In particular, there exist new N =
1 supersymmetric critical points with G2 and SU (3) symme-
tries in addition to the SO(8), G2 andU (3) ∼ SU (3)×U (1)

critical points with N = 8, 1, 2 supersymmetries which have
ω = 0 counterparts. Holographic RG flow solutions interpo-
lating between these critical points have been investigated in
[36,37], see also [38], and also show a richer structure than
the ω = 0 analogue. We then expect that Janus solutions will
exhibit a much richer structure with many possible solutions
as well. We will see that this is indeed the case.

Janus solutions given in [18] only involve the SO(8) and
G2 critical points resulting in SO(8)/SO(8), SO(8)/G2 and
G2/G2 interfaces. The N = 2U (3) critical point is however
not present in the two-scalar truncation considered in [18].
Since in this paper, we study solutions in the full SU (3)

invariant scalar sector, we also consider Janus solutions with
ω = 0 that involve all AdS4 critical points with SO(8), G2

and U (3) symmetry. The resulting solutions could hopefully
provide the missing part in the list of known Janus solutions
in electric SO(8) gauged supergravity. To the best of our
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knowledge, all the solutions with ω �= 0 have not previously
appeared.

The paper is organized as follows. In Sect. 2, we review the
construction of four-dimensional N = 8 gauged supergravity
with dyonic SO(8) gauge group and the corresponding AdS4

vacua. BPS equations for Janus solutions in SU (3) invariant
sector are also given. In Sects. 3 and 4, we give numerical
Janus solutions for ω = 0 and ω = π

8 cases, respectively.
Conclusions and comments on the results are given in Sect. 5.

2 N = 8 gauged supergravity with dyonic SO(8) gauge
group

We first give a brief review of N = 8 gauged supergravity in
four dimensions with dyonic SO(8) gauge group constructed
in [15,16] to which we refer for more detail. We mostly fol-
low the conventions of [36] with (− + ++) signature for
the space-time metric. The only supermultiplet in N = 8
supersymmetry is given by the supergravity multiplet with
the field content

(eμ̂
μ, ψ I

μ, AAB
μ , χI J K , �I J K L). (1)

This multiplet consists of the graviton eμ̂
μ, 8 gravitini ψ I

μ, 28

vectors AAB
μ = −ABA

μ , 56 spin- 1
2 fields χI J K = χ[I J K ] and

70 scalars �I J K L = �[I J K L].
Before moving on, we first state the conventions on vari-

ous indices used throughout the paper. Space-time and tan-
gent space indices are denoted by μ, ν, . . . = 0, 1, 2, 3
and μ̂, ν̂, . . . = 0, 1, 2, 3, respectively. The N = 8 super-
gravity admits global E7(7) and local composite SU (8)

symmetries with the corresponding fundamental represen-
tations are respectively described by indices M,N, . . . =
1, 2, 3, . . . , 56 and I, J, K , . . . = 1, 2, 3, . . . 8. Indices
A, B, . . . = 1, 2, 3, . . . , 8 refer to fundamental indices of
SL(8) ⊂ E7(7). The scalars �I J K L are encoded in the
E7(7)/SU (8) coset manifold and can be described by the
coset representativeVM

M. The local SU (8) indicesM,N, . . .

will further be decomposed as M = ([I J ],[I J ] ). Similarly,
the global E7(7) indices M,N, . . . will be decomposed in the
SL(8) basis as M = ([AB],[AB] ). The scalars �I J K L are
self-dual

�I J K L = 1

4!εI J K LMN PQ�MN PQ (2)

with � I J K L = (�I J K L)∗ and εI J K LMN PQ being the invari-
ant tensor of the SU (8) R-symmetry.

The action of the global E7(7) symmetry includes electric-
magnetic duality with the vector fields AAB

μ together with
the magnetic dual AμAB transforming in the fundamental 56
representation. In general, the Lagrangian of the ungauged
N = 8 supergravity will exhibit only particular subgroups
of E7(7) depending on the electric-magnetic or symplectic

frames. On the other hand, the full E7(7) symmetry is real-
ized through the field equations together with the Bianchi
identities. The most general gaugings of the N = 8 super-
gravity can be described by the so-called embedding tensor
	M

α which introduces a minimal coupling to various fields
in the ungauged supergravity via the covariant derivative

Dμ = ∇μ − gAM

μ 	M
αtα (3)

with ∇μ being the usual space-time covariant derivative
including the SU (8) composite connection (if any). tα are
E7(7) generators with α = 1, 2, 3, . . . , 133. Supersymmetry
requires the embedding tensor to transform as912 representa-
tion of E7(7). In addition, the gauge generators XM = 	M

αtα
must form a closed subalgebra of E7(7). The latter imposes
the quadratic constraint on the embedding tensor of the form

�MN	M
α	N

β = 0 . (4)

�MN is the symplectic form of the duality group Sp(56,R)

in which E7(7) is embedded. The quadratic constraint can be
rewritten in terms of the gauge generators as

[XM, XN] = −XMN
PXP (5)

with XMN
P = 	M

α(tα)N
P and (tα)N

P being the E7(7) gen-
erators in the fundamental representation.

In this paper, we are interested mainly in the solutions with
only the metric and scalars non-vanishing. We will from now
on set all the other fields to zero to simplify the presentation.
The bosonic Lagrangian of the N = 8 gauged supergravity
can be written as

e−1L = 1

2
R − 1

12
P I J K L

μ Pμ
I J K L − V . (6)

The scalar potential is given in terms of the fermion-shift
matrices as

V = −3

4
g2A1I J A

I J
1 + 1

24
g2A2I

J K L AI
2 J K L (7)

with AI J
1 = (A1I J )

∗ and A2I
J K L = (AI

2 J K L)∗. A1 and
A2 matrices can be defined in term of the T-tensor by the
following relations

AI J
1 = 4

21
T I K J L

K L and A2I
J K L = 2TMI

M JK L . (8)

The T-tensor is in turn obtained from the embedding tensor
via

TMN
P = VM

MVN
NVP

PXMN
P (9)

with VM
M = (V−1)M

M
.

The supersymmetry transformations of ψ I
μ and χI J K ,

which are needed in finding supersymmetric solutions, are
given by

δψ I
μ = 2Dμε I + √

2gAI J
1 γμεJ , (10)

δχ I J K = −2
√

2P I J K L
μ γ μεL − 2gA2L

I J K εL . (11)

123



Eur. Phys. J. C           (2021) 81:801 Page 3 of 21   801 

The covariant derivative of ε I is defined by

Dμε I = ∂με I + 1

4
ωμ

μ̂ν̂γμ̂ν̂ε
I + 1

2
Qμ

I
J ε

J . (12)

The composite connection Qμ
I
J = (QμI

J )∗ and the viel-
bein P I J K L

μ on the E7(7)/SU (8) coset are given by

QμI
J = i

3
(VABI K ∂μV J K − V AB

I K ∂μVAB
J K ), (13)

PμI J K L = i

2
(VABI J ∂μV AB

K L − V AB
I J ∂μVABK L) (14)

with

P I J K L
μ = 1

4!ε
I J K LMN PQ PμMN PQ . (15)

We finally note that the kinetic term and the scalar potential
can be written in term of the symmetric scalar matrix

MMN = VM
MVN

NηMN with ηMN =
(

0 I28

I28 0

)
(16)

as

− 1

12
P I J K L

μ Pμ
I J K L = 1

96
∂μMMN∂μMMN (17)

and

V = g2

672

(
XMN

RXPQ
SMMPMNQMRS

+7XMN
QXPQ

NMMP

)
. (18)

MMN is the inverse of MMN.

2.1 Dyonic SO(8) gauging

In general, both electric and magnetic vector fields can par-
ticipate in the gauging. We now consider gauging of a sub-
group G ⊂ SL(8) ⊂ E7(7). The SL(8) generators take a
block-diagonal form, and various components of the embed-
ding tensor corresponding to the gauge group G are given
by

X[AB][CD][EF] = −8δ
[E
[A θB][Cδ

F]
D],

X[AB][CD]
[EF] = 8δ

[C
[AθB][Eδ

D]
F] ,

X [AB][CD]
[EF] = −8δ

[A
[C ξ B][Eδ

F]
D],

X [AB][CD][EF] = 8δ
[A
[E ξ B][Cδ

D]
F] . (19)

The quadratic constraint gives rise to the condition

θξ = 1

8
Tr(θξ)I8 (20)

which implies

ξ = cθ−1 . (21)

The tensors θ and ξ are symmetric and can be diagonalized
to have eigenvalues 0,±1. This leads toCSO(p, q, r) gauge

group with p + q + r = 8 for p, q and r being numbers of
eigenvalues 1, −1 and 0, respectively. It is also convenient
to define another parameter ω by the following relation

ω = Arg(1 + ic) (22)

with c = 0 (ω = 0) and c = ∞ (ω = π
2 ) leading to purely

electric and purely magnetic gauge groups, respectively. The
former is the original SO(8) gauged supergravity of [17].
It has been shown in [15,35,39,40] that the values of ω are
equivalent under the identifications ω → −ω and ω → ω +
π
4 . This results in inequivalent values of ω in the range [0, π

8 ].
In this paper, we are only interested in the case of θAB =
ξ AB = δAB corresponding to the SO(8) gauge group.

2.2 SU (3) truncation

In order to make things more manageable, most results on
N = 8 gauged supergravity are obtained by truncating the
70-dimensional E7(7)/SU (8) manifold to lower-dimensional
submanifolds invariant under certain subgroups of the gauge
group. In this work, we are interested in scalar fields that are
singlets of SU (3) ⊂ SO(8) [35] following the discussion in
[36]. The embedding of SU (3) can be identified by decom-
posing the 8v representation of SO(8) to 1 + 1 + 3 + 3̄ of
SU (3). Accordingly, the fundamental SU (8) index I splits
as I = (1, a, 1̂, â) for a = 2, 3, 4 and â = 2̂, 3̂, 4̂.

After the truncation, there are six scalars parametrizing
the coset space

SL(2)/SO(2) × SU (2, 1)/U (2) (23)

and two gauge fields corresponding to U (1) × U (1) gauge
group. The unbroken supersymmetry in the truncated the-

ory is given by ε1 and ε1̂ which are singlets of SU (3). The
resulting theory is N = 2 gauged supergravity coupled to
one vector multiplet and one hypermultiplet.

Under SO(8) gauge group, the 70 scalars �I J K L decom-
pose into self- and anti-self-dual parts �±

I J K L in repre-
sentations 35s and 35c, respectively. The 35s and 35c
can be rewritten in terms of real and imaginary parts of
35 complex scalars which are identified respectively with
scalars and pseudoscalars. For the ω = 0 case with known
eleven-dimensional origin, the former arise from the eleven-
dimensional metric while the latter come from the three-form
potential. They are respectively dual to boson and fermion
bilinear operators in the dual N = 8 SCFT.

Two of the six singlets in (23) can be gauged away by
the U (1) ×U (1) gauge symmetry [41]. The remaining four
scalars can be described by the four-form �I J K L of the form

� = ξ cos φ(�+ + �∗+) + iξ sin φ(�− − �∗−)

−ζ cos χ J+ ∧ J+ − iζ sin χ J− ∧ J− (24)

123
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in which the real and complex two-forms J± and �± are
defined by

J± = ± i

2
dz1 ∧ dz̄1̄ + i

2

4∑
a=2

dza ∧ dz̄ā (25)

and �+ = dz1 ∧ dza ∧ dzb ∧ dzc,

�− = dz̄1̄ ∧ dza ∧ dzb ∧ dzc . (26)

The complex coordinates zi = (z1, za) and their complex
conjugate z̄ī = (z̄1̄, z̄ā) are given in terms of a real vector
(x1, . . . , x4, x1̂, . . . , x4̂) of 8v as

zi = xi + i xî and z̄ī = xi − i xî (27)

Components of �I J K L given in (24) can be used to construct
the scalar coset representative VM

M.
In this SU (3) truncation, the scalar kinetic term can be

written as

Lkin = −3∂μζ∂μζ − 3

4
sinh2(2ζ )∂μχ∂μχ

−4∂μξ∂μξ − sinh2(2ξ)∂μφ∂μφ . (28)

The resulting components of the AI J
1 tensor split into

(A11
1 , Aaa

1 , A1̂1̂
1 , Aââ

1 ) and take the form of

AI J
1 = eiωAI J+ + e−iωAI J− . (29)

A11
1 and A1̂1̂

1 correspond to the unbroken N = 2 supersym-
metry giving rise to the superpotentials W1 and W1̂. The
scalar potential can be written in term of the real superpoten-
tial W = |W1| = |W1̂| as

V = 1

3

∂W

∂ζ

∂W

∂ζ
+ 4

3 sinh2(2ζ )

∂W

∂χ

∂W

∂χ

+1

4

∂W

∂ξ

∂W

∂ξ
+ 1

sinh2(2ξ)

∂W

∂φ

∂W

∂φ
− 3W 2 . (30)

In our convention, the superpotentialsW1,1̂ are related to A11
1

and A1̂1̂
1 by

W1 = √
2gA11

1 and W1̂ = √
2gA1̂1̂

1 . (31)

It should be noted that this definition is different from that
used in [36] in which W1,1̂ are directly defined by A11

1 and

A1̂1̂
1 . This results in different numerical factors for some

expressions, but the final result is the same.

The explicit form of A11
1 and A1̂1̂

1 is obtained from A11±
and A1̂1̂± given by

A11+ = 3

2
e2i(χ+φ) cosh ζ sinh2 ζ sinh2(2ξ)

+ cosh3 ζ(cosh4 ξ + e4iφ sinh4 ξ), (32)

A11− = 3

2
e2i(χ+φ) cosh ζ sinh2 ζ sinh2(2ξ)

+e3iχ sinh3 ζ(cosh4 ξ + e4iφ sinh4 ξ) (33)

Table 1 Supersymmetic AdS4 vacua of SO(8) gauged supergravity
with ω = π

8 . The first three critical points have ω = 0 counterparts
while the last two are genuine critical points of the dyonic SO(8) gauged
supergravity without the ω = 0 analogues. For N = 1 critical points,
we also note which superpotential among W1 and W1̂ corresponds to
the unbroken supersymmetry

SupersymmetryResidual symmetry (ζ, χ, ξ, φ)

N = 8 SO(8) (0, 0, 0, 0)

N = 2 U (3) ∼ SU (3) ×U (1)(0.315, 0.171π, 0.375,± π
2 )

(0.315, 1.329π, 0.375, 0)

(0.315, 1.329π, 0.375, π)

N = 1 W1 G2 (0.329, 0.373π, 0.329,±0.373π)

(0.329, 0.373π, 0.329,±1.373π)

W1̂ (0.329, 1.127π, 0.329,±1.127π)

(0.329, 1.127π, 0.329,±0.127π)

N = 1 W1 G2 (0.242,− π
4 , 0.242,∓ π

4 )

W1̂ (0.242,− π
4 , 0.242,± 3π

4 )

N = 1 W1 SU (3) (0.275, 3π
4 , 0.573,± π

4 )

W1̂ (0.275, 3π
4 , 0.573,∓ 3π

4 )

with

A1̂1̂± = A11± (φ → −φ). (34)

Since the explicit form of the scalar potential is rather com-
plicated, we refrain from giving it here but simply refer to
[36].

A number of supersymmetric AdS4 vacua of the scalar
potential have been identified, and some of them do not have
counterparts in the ω = 0 case. Before considering super-
symmetric Janus solutions, for convenience, we collect all of
the known supersymmetric AdS4 critical points for ω = π

8
in Table 1.

2.3 BPS equations for Janus solutions

We are now in a position to analyze the fermionic super-
symmetry transformations and find the corresponding BPS
equations. The analysis closely follows that given in [18],
see also [19], to which the reader is referred for more detail.

We begin with the metric ansatz of the form

ds2 = e2A(r)
(
e

2ρ
� dx2

1,1 + dρ2
)

+ dr2 . (35)

This is the domain wall metric with an AdS3 slice rather
than the three-dimensional flat Minkowski space. The latter
is recovered in the limit � → ∞.

With the vielbein components

eα̂ = eA+ ρ
� dxα, eρ̂ = eAdρ, er̂ = dr, (36)

123
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non-vanishing components of the spin connection from the
above metric are given by

ωρ̂ r̂ = A′eρ̂ , ωα̂ρ̂ = 1

�
e−Aeα̂, ωα̂ r̂ = A′eα̂ (37)

where ′ denotes the r -derivative. Indices α, β will take
values 0, 1. The other non-vanishing fields are the scalars
(ζ, ξ, χ, φ) depending only on r .

We will use Majorana representation for gamma matrices
with all γ μ real and γ5 purely imaginary. The two chiralities
of the supersymmetry parameters ε I and εI are then related
to each other by a complex conjugation. We will denote the
Killing spinors corresponding to the unbroken supersymme-

try by ε. In the present case, ε will be ε1 or ε1̂, and ε∗ is
given by ε1 or ε1̂. The supersymmetry conditions δχ I J K = 0
involve only γr̂ since the scalars depend only on r . Following
[18], we impose the projector of the form

γr̂ε = ei�ε∗ (38)

where � is real.
We now consider the supersymmetry transformations δψ I

α̂

which lead to the following conditions

A′γr̂ε + 1

�
e−Aγρ̂ε + Wε∗ = 0 . (39)

The superpotential W is given by
√

2gA11
1 or

√
2gA1̂1̂

1 . Tak-
ing the complex conjugate and iterating the above equation,
we obtain

A′2 = W 2 − 1

�2 e
−2A (40)

for W = |W|.
We now move to the equation coming from δψ I

ρ̂
= 0. This

takes the form

e−A∂ρε + 1

2
A′γρ̂γr̂ε + 1

2
Wγρ̂ε∗ = 0 . (41)

Using (39), we find

∂ρε = 1

2�
ε (42)

which gives ε = e
ρ
2� ε̃ for a ρ-independent ε̃.

Finally, using the γρ̂ projection of the form

γρ̂ε = iκei�ε∗ (43)

with κ2 = 1 and δψ I
r̂ = 0, we can determine the explicit

form of the Killing spinor to be

ε = e
A
2 + ρ

2�
+i �

2 ε(0) (44)

The spinor ε(0) might have an r -dependent phase and satisfies

γr̂ε
(0) = ε(0)∗ and γρ̂ε(0) = iκε(0)∗ . (45)

Using the projector (43) in Eq. (39), we find

ei� = W
A′ + iκ

�
e−A

. (46)

We can then use the projector (38) with this phase in the
δχ I J K = 0 conditions and find the BPS equations for the
scalar fields. The resulting BPS equations can be written in
terms of the superpotential as

ζ ′ = −1

3

A′

W

∂W

∂ζ
− 1

3

2

sinh(2ζ )

κe−A

W�

∂W

∂χ
, (47)

χ ′ = −1

3

A′

W

4

sinh2(2ζ )

∂W

∂χ
+ 1

3

2

sinh(2ζ )

κe−A

W�

∂W

∂ζ
, (48)

ξ ′ = −1

4

A′

W

∂W

∂ξ
− 1

4

2

sinh(2ξ)

κe−A

W�

∂W

∂φ
, (49)

φ′ = − A′

W

1

sinh2(2ξ)

∂W

∂φ
+ 1

4

2

sinh(2ξ)

κe−A

W�

∂W

∂ξ
. (50)

As expected, these equations reduce to those of the RG flows
studied in [36] in the limit � → ∞. It can also be shown that
these equations satisfy the corresponding field equations. The
complete solutions can be obtained by solving these equa-
tions together with (40).

Before giving Janus solutions, we note that the constant
κ = ±1 corresponds to the chiralities of the Killing spinor
on the two-dimensional defects dual to the AdS3 slices. This
can be seen by using γ5ε = ε which implies

γ 0γ 1ε = κε . (51)

In the present case, we will have Janus solutions with only
N = 1 supersymmetry, or (1, 0) or (0, 1) superconformal
symmetry on the defects, since the above BPS equations can
be derived from eitherW1 orW1̂. However, at the SO(8) and
U (3) critical points, supersymmetry will enhance to N = 8
and N = 2 respectively.

3 Supersymmetric Janus solutions with ω = 0

In this section, we first consider supersymmetric Janus solu-
tions in the SO(8) gauged supergravity with ω = 0. A
number of solutions in the truncation with only two scalars
non-vanishing have already been given in [18]. However,
the solutions involving the N = 2 supersymmetric AdS4

critical point with SU (3) × U (1) symmetry have not been
studied since this vacuum does not arise in that truncation.
In this work, we consider the full SU (3) invariant scalar sec-
tor, so it is possible to accommodate this type of solutions.
Accordingly, we first give solutions with ω = 0 for which
only SO(8), G2 and SU (3)×U (1) AdS4 critical points with
N = 8, 1, 2 supersymmetries exist.

The resulting BPS equations are highly complicated to
look for any analytic solutions. Therefore, we will perform

123
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Fig. 1 SO(8)/SO(8) Janus solutions that flow to G2 and U (3) critical points are given respectively by green and red lines on the contour plot of
the superpotential. The two green and red dots represent equivalent G2 and U (3) critical points

a numerical analysis in finding supersymmetric Janus solu-
tions. In subsequent analysis, we will choose the following
numerical values

g = 1√
2
, � = 1, κ = 1 . (52)

The A′(r) equation involves taking a square root giving rise
to a branch cut. To avoid this and work with a smooth numer-
ical analysis, we follow the procedure carried out in [18] and
instead solve the second order field equations. This process
begins with fixing a turning point of A such that A′(r0) = 0
for particular values of ζ0, ξ0, χ0 and φ0. We will conve-
niently choose r0 = 0 as in [18]. We then determine the
values of A(0), ζ ′(0), ξ ′(0), χ ′(0) and φ′(0) using the pre-
viously obtained BPS equations. This provides a full set of
initial conditions to solve the second order field equations.
After numerically integrating to find the solution, we check
whether the resulting solution satisfies the BPS equations.
For convenience, we will denote a solution interpolating
between AdS4 critical points with G and G ′ symmetries on
the two sides of the interface by G/G ′ Janus.

As in [18], there are solutions describing conformal inter-
faces between SO(8) symmetric phases. These solutions
have been studied extensively in [18], so will not repeat them
here but mainly focus on solutions involving G2 and U (3)

critical points. We first remark that there exist SO(8)/SO(8)

Janus solutions that flow toG2 andU (3) critical points. These
solutions are shown in the contour plot of the superpotential
in Fig. 1. In all the contour plots, as in [37], we denote SO(8),

G2 and U (3) critical points respectively by black, green and
red dots while open dots represent turning points. Profiles
of scalars and the warped factor A as functions of the radial
coordinate r are shown in Fig. 2. We also give the profile of
A′ in order to make the AdS4 critical points involving in the
solution more transparent. These solutions have a very sim-
ilar structure to the solutions given in [22]. The only differ-
ence is that our solutions asymptotically interpolate between
SO(8) conformal phases while those in [22] describe solu-
tions between non-conformal or super Yang-Mills phases.
We also note that for this type of solutions the turning points
are very close to the critical point to which the solutions flow.

There exist solutions interpolating among the three crit-
ical points. Examples of these are shown in Figs. 3 and 4.
The yellow line represents a solution from the SO(8) critical
point that first proceeds to the G2 and theU (3) critical points
and eventually back to the SO(8) critical point. For compari-
son, we also show a solution from the SO(8) critical point to
the two equivalent G2 critical points and back to the SO(8)

critical point by the green line. The latter has already been
given in [18] in which it has been argued that the solution
describes a G2/G2 interface. In this case, the G2 phase on
each side of the interface is generated from the SO(8) phase
by a rapid transition via usual RG flows. Similarly, we inter-
pret our new solution represented by the yellow line as an
interface between the G2 and U (3) conformal phases since
on the two sides, the SO(8) phase undergoes an RG flow to
the G2 phase on one side and to the U (3) phase on the other.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A as functions of the radial coordinate r for SO(8)/SO(8) Janus solutions that
flow to G2 and U (3) critical points are shown by green and red lines, respectively
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(a) (b)

Fig. 3 Janus solutions describing G2/U (3) and G2/G2 interfaces are respectively shown by yellow and green lines on the contour plot of the
superpotential

We also point out that within a larger truncation considered
here, there exists a family of G2/G2 solutions. Examples of
these solutions are shown in Figs. 5 and 6.

We also note here that the two G2 critical points have the
same mass spectra and cosmological constants. Therefore,
they are equivalent within the SO(8) gauged supergravity.
However, upon uplifted to eleven dimensions, the two critical
points give inequivalent eleven-dimensional geometries with
opposite magnetic charges for the three-form potential due to
the opposite signs of the pseudoscalars. Since in this paper,
we will not consider the eleven-dimensional uplift, we simply
consider the two critical points equivalent.

For other solutions involving theU (3) critical point, there
exists a G2/G2 solution that flows to U (3) critical point as
shown by the orange line in Figs. 7 and 8. The red line in
these figures represents an SO(8)/U (3) interface in which
the SO(8) phase undergoes an RG flow to the U (3) phase
on one side. The yellow line in Figs. 7 and 8 can also be
considered as an interface between SO(8) and G2 conformal
phases. Unlike the SO(8)/G2 solution found in [18], this
SO(8)/G2 solution flows to the U (3) critical point near the
interface.

4 Supersymmetric Janus solutions with ω �= 0

We now look at Janus solutions in the dyonic SO(8) gauged
supergravity with ω = π

8 . In this case, there are two addi-

tional N = 1 supersymmetric AdS4 critical points with G2

and SU (3) symmetries. The former will be denoted by G2

to avoid confusion with the previous G2 critical points in the
ω = 0 case. All the AdS4 critical points of the ω = 0 case
are also critical points of the ω �= 0 case with the positions
in field space displaced from the corresponding values with
ω = 0 except for the N = 8 SO(8) critical point that is
still located at V = I. With more AdS4 critical points, there
are more possibilities for Janus solutions describing various
interfaces with different conformal phases on the two sides.
In the contour plot of the superpotential, the critical points
with ω = 0 analogues will be denoted by the same color
code while the G2 and SU (3) points will be represented by
dark green and blue dots, respectively.

As in the ω = 0 case, there is a family of SO(8)/SO(8)

Janus solutions describing interfaces between SO(8) sym-
metric conformal phases. In addition, there are SO(8)/SO(8)

solutions that proceed arbitrarily close to the G2 and G2

points. Some examples of these solutions are shown in Figs. 9
and 11. The SO(8)/SO(8) solution is shown as purple line
which is very similar to the solutions in [18] with ω = 0.
Similar to the G2/G2 Janus solutions in the ω = 0 case,
the solution represented by the green line undergoes a rapid
transition between the SO(8) and G2 points and between
the SO(8) and G2 points on the two sides of the interface.
We then argue that this solution describes a G2/G2 inter-
face with the G2 and G2 conformal phases generated by the
SO(8) phase on the two sides.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A for G2/G2 and G2/U (3) Janus solutions as functions of the radial coordinate
r are shown by green and yellow lines, respectively
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(a) (b)

Fig. 5 Examples of a family of G2/G2 Janus solutions on the contour plot of the superpotential

There also exist solutions describing SO(8)/U (3),
SO(8)/G2, SO(8)/G2 and SO(8)/SU (3) interfaces as
shown in Figs. 10 and 12. On one side of these interfaces,
the SO(8) phase undergoes an RG flow to the U (3), G2,
G2 and SU (3) phases. We should note here that there is an
SO(8)/G2 solution that flows to the SU (3) critical point
but we have not included this solution for readability of the
figures. We also note that in SO(8)/G2 (dark green) and
SO(8)/SU (3) (blue) solutions, the SO(8) phase is on the
right while in the remaining two solutions, the SO(8) phase
is on the left (Figs. 11, 12). As in the ω = 0 case, there are
also SO(8)/SO(8) solutions that flow to U (3), G2, G2 and
SU (3) critical points as shown in Figs. 13 and 15.

We end the discussion on various types of possible solu-
tions by considering a number of solutions shown in Figs. 14
and 16. We first look at the blue line which describes aG2/G2

interface that flows to the SU (3) critical point. As in the
ω = 0 case, the initial SO(8) phases on both sides undergo
a rapid transition to G2 phases. The red line corresponds to
a U (3)/U (3) interface with the U (3) phases generated by
the SO(8) phases on each side (Figs. 15, 16). Finally, the
solutions represented by yellow and orange lines describe
respectively G2/G2 and G2/G2 interfaces that flow to the
U (3) critical point.

5 Conclusions and discussions

In this paper, we have studied supersymmetric Janus solu-
tions of four-dimensional N = 8 gauged supergravity with
dyonic SO(8) gauge group in SU (3) invariant sector. For
ω = 0, we have found Janus solutions involving the N = 2
U (3) critical point and SO(8)/SO(8) solutions that flow to
G2 andU (3) critical points similar to solutions between super
Yang–Mills phases given in [22]. In addition to the G2/G2

Janus found in [18], we have found an SO(8)/U (3) Janus
together with SO(8)/G2 and G2/G2 solutions that flow to
the U (3) critical point. All these solutions can be uplifted
to eleven dimensions by the S7 truncation and describe
conformal interfaces between SO(8), U (3) and G2 con-
formal phases of the ABJM theory. These solutions extend
the known solutions of [18] in which only SO(8)/G2 and
G2/G2 Janus solutions have been given. We have also found
a family of G2/G2 Janus solutions in addition to the solution
given in [18].

For ω = π
8 , there exist two additional supersymmetric

N = 1 AdS4 critical points with G2 and SU (3) symme-
tries. We have found a number of Janus solutions describing
conformal interfaces with various possible conformal phases
on each side including solutions that flow to a critical point.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A for examples of G2/G2 Janus solutions as functions of the radial coordinate r
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(a) (b)

Fig. 7 An SO(8)/U (3) Janus solution is shown on the contour plot of the superpotential by the red line. The yellow and orange lines represent
SO(8)/G2 and G2/G2 solutions that flow to the U (3) critical point

With more different phases on each side of the interfaces and
more critical points to which the solutions can flow, super-
symmetric Janus solutions of dyonic SO(8) gauged super-
gravity show a highly rich structure as expected from the
analogous structure of AdS4 vacua and domain walls inter-
polating between them. Unlike the ω = 0 case, the higher
dimensional origin of the SO(8) gauged supergravity with
ω �= 0 is presently unknown. Therefore, the uplifted solu-
tions in string/M-theory are currently not possible. The full
holographic interpretation of the resulting solutions is still
unclear as in the case of RG flows studied in [36,37]. How-
ever, by the AdS/CFT correspondence, we expect these solu-
tions to describe conformal interfaces between different con-
formal phases of the dual N = 8 three-dimensional SCFTs.

It would be interesting to uplift the ω = 0 solutions involv-
ing theU (3) critical point to M-theory and determine the cor-
responding field theory deformations leading to these inter-
faces. The field theory description of Janus solutions that flow
to a critical point also deserves further study. Embedding the

ω-deformed SO(8) gauged supergravity in higher dimen-
sions is clearly desirable both in the holographic context and
in other applications of the dyonic SO(8) gauged supergrav-
ity in string/M-theory. In particular, this would allow uplift-
ing both the RG flows of [36,37] and the Janus solutions
found in this paper to string/M-theory similar to the study in
[42]. It is also interesting to look for similar solutions with
0 < ω < π

8 . In this case, the two equivalent G2 and U (3)

critical points will have different cosmological constants and
become physically inequivalent critical points with the same
mass spectrum and (super) symmetry. With additional two
critical points, there would be many more possible solutions.
Moreover, Janus solutions with ω �= 0 that describe inter-
faces between conformal and Coulomb phases or between
Coulomb phases dual to boundary SCFTs [43] are also worth
considering. In four-dimensional gauged supergravities, this
type of solutions has been first considered in [20] and later
in [22] in N = 4 and N = 8 gauged supergravities, respec-
tively. We hope to come back to these issues in future work.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A for SO(8)/U (3) Janus together with SO(8)/G2 and G2/G2 solutions that
flow to the U (3) critical point as functions of the radial coordinate r
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(a) (b)

Fig. 9 SO(8)/SO(8) and G2/G2 Janus solutions on the contour plot of the superpotential with ω = π
8 are shown by purple and green lines,

respectively

(a) (b)

Fig. 10 SO(8)/U (3), SO(8)/G2, SO(8)/G2 and SO(8)/SU (3) Janus solutions on the contour plot of the superpotential with ω = π
8 are shown

in red, green, dark green and blue lines, respectively
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A for SO(8)/SO(8) and G2/G2 Janus solutions with ω = π
8 as functions of

the radial coordinate r
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A for SO(8)/U (3), SO(8)/G2, SO(8)/G2 and SO(8)/SU (3) Janus solutions
with ω = π

8 as functions of the radial coordinate r
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(a) (b)

Fig. 13 SO(8)/SO(8) Janus solutions that flow to U (3), G2, G2 and SU (3) critical points with ω = π
8 are shown on the contour plot of the

superpotential by red, green, dark green and blue lines, respectively

(a) (b)

Fig. 14 G2/G2 Janus solutions that flow to SU (3) (blue) and U (3) (yellow) critical points are shown on the contour plot of the superpotential
with ω = π

8 . The red line represents a U (3)/U (3) Janus, and the orange line corresponds to a G2/G2 solution that flows to the U (3) critical point

123



  801 Page 18 of 21 Eur. Phys. J. C           (2021) 81:801 

(a) (b)

(c) (d)

(e) (f)

Fig. 15 Profiles of scalar fields (ζ, ξ, χ, φ) and of the warped factor A for SO(8)/SO(8) Janus solutions that flow to U (3), G2, G2 and SU (3)

critical points with ω = π
8 as functions of the radial coordinate r
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(a) (b)

(c) (d)

(e) (f)

Fig. 16 Profiles of scalar fields (ζ, ξ, χ, φ) and the warped factor A as functions of the radial coordinate r for U (3)/U (3) Janus together with
G2/G2 and G2/G2 solutions that flow to U (3) and SU (3) critical points with ω = π

8
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