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Fig. 1 Setup of the simulation
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Fig. 2 Spatial distribution of the quasistatic electric field and quasistatic magnetic field at t=0. 16 ps
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Fig.4 Energy spectrum and angular distribution of electrons at t=2.72 ps
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Fig.5 Time evolution of the maximum kinetic energy and the total charge of the electrons in different cases with different ao
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Fig. 6 Time evolution of the maximum kinetic energy, the total charge, and the efficiency of the electrons in different cases with different n
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High-energy collimated electron acceleration from ultra-intense
laser interaction with tube targets

He Wu'?, Zhou Weimin?, Zhang Zhimeng®, Jiao Jinlong’, Shan Lianqgiang®, Jiang Gang'®’®
(1. College of Physical Science and Technology, Sichuan University , Chengdu 610064, China;
2. Science and Technology on Plasma Physics Laboratory s Research Center of Laser Fusion s
CAEP, Mianyang 621900, China;

3. Key Laboratory of High Energy Density Physicss Sichuan University s Chengdu 610064, China)

Abstract: Two-dimensional PIC (particle-in-cell) simulation is used to investigate the interaction between ultra-intense

short-pulse lasers with tube targets. When an ultra-intense super-Gaussian laser pulse propagates at a grazing incidence angle into

the tube target, GeV-class electron acceleration is observed on the inner surface. Fast electrons are confined along the surface by

quasistatic electric and magnetic fields, resulting in a small divergence angle of the generated electron beam. These surface fast e-

lectrons can be accelerated for a long distance along the tube; as a result, the energy conversion efficiency is very high. The influ-

ence of the laser intensity and the transverse profile on the surface electron acceleration process is also discussed in the article.

Key words: ultra-intense laser; tube target; PIC simulation; collimated fast electrons; quasistatic magnetic field;

surface electron acceleration
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