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Abstract We show that a particle, with positive orbital angular momentum,
following an outgoing null/timelike geodesic, shall never reach the closed timelike
horizon present in the (4 + 1)-dimensional rotating Godel black hole space-time.
Therefore a large part of this space—time remains inaccessible to a large class of
geodesic observers, depending on the conserved quantities associated with them.
We discuss how this fact and the existence of the closed timelike curves present
in the asymptotic region make the quantum field theoretic study of the Hawk-
ing radiation, where the asymptotic observer states are a pre-requisite, unclear.
However, the semi classical approach provides an alternative to verify the Smarr
formula derived recently for the rotating Godel black hole. We present a system-
atic analysis of particle emissions, specifically for scalars, charged Dirac spinors
and vectors, from this black hole via the semiclassical complex path method.

Keywords G0, delHawking radiation, Closed timelike horizon

1 Introduction

The Godel universe [1] is a cosmological solution of Einstein’s equations in
4-dimensions with pressureless dust satisfying weak energy condition, and a
negative cosmological constant

ds* = —dr* +dp* + o® (sinh* p —sinh? p) dy? +dz* — 2v2a sinh?p dtdy,
(D

where p is a dimensionless radial variable, y is the coordinate along a Killing field
whose orbits are closed curves. ¢ is a parameter determined by the energy density
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of the dust and the cosmological constant. The space—time (I)) is spatially homo-
geneous but unlike the FRW cosmological solutions, it has a rotation parametrized
by « [[1]. In fact, a universe with rotation was the principal motivation to this solu-
tion. As can be seen in the metric , there exist naked and closed time like curves
(CTCs) when gy < 0. On the other hand, since this space—time is spatially homo-
geneous, at each point of the space—time there is a CTC [1]]. For discussions on
various geometric properties of (I) see [2;3].

A few years ago a solution of Einstein’s equations without any cosmologi-
cal constant in the (4 4 1)-dimensional minimal supergravity was found [4]. The
bosonic part of the matter consists of a U(1) Chern—Simons gauge field in 5-
dimensions. The metric and the U (1) gauge 1-form (A,) are

2 2 )
ds* = —di* +dr* + rzdez + <r4 — j*r*cos? 9) do* + <r4 —j2r4) dy?

2
+2 <r4 cos 0 — j2r4) cos Odody — 2 jrdidy — 2jr? cos 0did¢, (2)

Ay = ? JrP[(dy)a +cos8(do).], 3)
where (6, ¢, y) are polar angles with y being periodic, and j is a parameter. As
shown in [4], this solution mimics the salient features of the 4-dimensional Godel
universe (I)). The solution (2) is homogeneous and has a rotation parametrized by
J- Moreover it is evident from Eq. (2)) that the Killing field (dy)?, whose orbits are
closed curves, is timelike for r > 2 Since the solution (2) is homogeneous, we
get an infinite and continuous sequence of CTCs throughout the space—time as in
the 4-dimensional Godel space—time.

An extreme Reissner-Nordstrom black hole solution embedded in the 5-
dimensional Godel universe was found in [5]]. A solution, with the same mat-
ter content and without requiring to preserve any supersymmetry, representing a
rotating black hole embedded in the 5-dimensional Godel universe (2)) was imme-
diately found [6]

A
A(r)
2

2 2
+2 (h(r) + ;) cos 0dddy + rz de’+ <h(r) cos® 6 + r4> de¢?

dr?

ds* = —u(r)dt* —2g(r) (cos 0 dodr + dydr) +

r

+ | A(r)+ - dy?,
(10+5)

4
where
oM M Ma?
u(r): 1—"—27 g(r):jr2+T2a7 h(r):—jzrz(rz—i—ZM)—l- 2;12 ’
A(r) = r* —2Mr* +8jM(a+2jM)r* + 2Md>. S

The gauge 1-form A, is given by Eq. (3). The solution has two spherically
symmetric horizons (ry, rip) defined by A = 0. Also it is evident from the metric
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that gy = 0 at some r = rc, i.e., the orbits of (dy)? are closed time like curves for
r > rc. We shall call r¢ as closed time like horizon (CTH); also known as velocity
of light surface (VLS) [7]. M is the mass parameter of the black hole whereas
a characterizes its angular momentum. When M = 0 = a, the metric (4) reduces
to the 5-dimensional Goédel universe . When j = 0 it reduces to a (4 + 1)-
dimensional Kerr black hole with two equal rotation parameters. We shall call
space—time (4] as Kerr—Gddel black hole. A charged generalization of this solution
can be seen in [8]]. As can be seen from the metric, the Kerr—Gddel black hole
asymptotically reaches the 5-dimensional Godel space—time (2)).

To avoid any breakdown of causality by the presence of the CTCs at least for
finite r, and also recalling the results in connection to the stability analysis [9], we
shall assume weakly rotating Godel background, i.e., &(j?) terms will be ignored
for finite r in our analysis. It can be seen in Eq. (4) that by doing this one pushes
the CTCs off to large distances.

The Kerr-Godel black hole has two horizons (ry, rin) defined by A = 0. In the
small j approximation they take the form

1
= {M(l —4aj)+\/M2(1 —8aj)—2Ma2}2,
%)

Fin = {M(1—4aj)—\/M2(1—8aj)—2Ma2}é.

Here ry is the black hole event horizon, and r;, < ry is the inner horizon. We will
be concerned only with ry. The surface gravity (k) of the event horizon is
22

K= rH — rin (6)

rH\/rf‘fIJrZMaz

The space—time also has an ergosphere defined by g, =0, i.e., at r = \/2M.

The Godel kind of solutions are interesting in the context of string theory.
In [5] the 5-dimensional extreme Reissner—-Nordstrom—Gddel black hole was
uplifted to type IIB supergravity. Later applying T-duality, the pure Godel solu-
tion was shown to be related to pp-waves [10]. For discussions of various
exotic properties of Godel kind of solutions in the context of gauged supergrav-
ity and string theory see e.g. [6; [11; [125 (13} [14]. In [9] the massless scalar field
perturbation of a Schwarzschild-Gédel black hole (a = 0, in Eq. (@) was stud-
ied showing that stable quasinormal modes exist only in the small j limit. The
parameter space of the Kerr—Godel black hole was analyzed numerically in [15].
In [16; [17] the gray-body factor for the effective potential for a massless scalar
field was estimated for the Kerr—G6del black hole.

Since the Kerr—Godel space—time (4) is not asymptotically flat, the computa-
tion of conserved charges and their variations are more subtle than the usual. This
issue was addressed in [18] where the resulting Smarr formula was shown to be
in full agreement with the first law of black hole thermodynamics. Therefore it
would be highly interesting to get further insight into Hawking radiation [19; 20]
for various particle species in Kerr—Godel space—time. However, the motion of the



4 S. Bhattacharya, A. Saha

emitted particle in this space—time should be much different than that in asymp-
totically flat ones. It is not difficult to anticipate that the most non-trivial feature
of this motion will be related to the presence of the CTH. In this paper we show
that the outgoing particles, at least those having positive angular momentum, fol-
lowing a null/timelike geodesic, shall never reach the CTH and hence a large part
of this space—time remains inaccessible to a large class of geodesic observers. The
degree of inaccessibility depends on the conserved quantities corresponding to
various Killing fields, associated with these observers. Consequently, the notion
of asymptotic observers becomes unclear in Kerr—Godel space—time. This makes
the construction of a quantum field theory of the Hawking radiation, where the
asymptotic observer states are a pre-requisite, problematic. This feature of the
Godel space—time motivates us to apply the semiclassical treatment. We present
a systematic analysis of the Hawking radiation, specifically for scalars, charged
Dirac spinors and vectors, from rotating Godel black hole via this semiclassical
method.

The semiclassical tunneling method is an alternative approach to model par-
ticle creation by black holes [21; 22} 23; 245 1255 1265 27; 285 [29; 1305 315 (325
335 134 135; 1365 1375 1385 1395 1405 1415 1425 1435 1445 145]]. This method has been suc-
cessfully applied to s-wave scalar emissions for a wide class of black holes e.g.
[29;130; 1315 32], to spinor emissions e.g. [345 13551365 1375 138139 40]mFor a com-
prehensive analysis of scalar emission in rotating black hole background see [44]].
For a general analysis including backreaction see [45]].

The basic scheme of the semiclassical tunneling method is to compute the
imaginary part of the ‘particle’ action which gives the emission probability from
the event horizon. From this emission probability one identifies the temperature
of the radiation. The earliest works in this context can be found in [21} 22]]. Fol-
lowing these works, an approach, called the null geodesic method, was developed
[23;24]). There exists, also, another way to model black hole evaporation via tun-
neling called complex path analysis [[25 265 27] which we wish to apply here. This
method involves writing down, in the semi-classical limit ‘4 — 0’, a Hamilton—
Jacobi equation from the matter equation(s) of motion, treating the horizon as
a singularity in the complex plane (which is a simple pole for all known solu-
tions) and then complex integrating the equation across that singularity to obtain
an imaginary contribution. This method would be quantitatively outlined in due
courses in the following sections.

The paper is organized as follows. In the next section we consider the motion
of an outgoing particle following a geodesic. In Sect. [3| we compute, using com-
plex path analysis, the zeroth order semiclassical tunneling probability and Hawk-
ing temperature for a scalar particle for the Kerr—Godel black hole. In Sect.. [ we
present a suitable basis expansion of the y-matrices in that space-time and com-
pute the tunneling probability and the temperature for a charged spin up/down
Dirac spinor. We also give an outline of the computation with a general 4-
component spinor. Here we show that similar results hold for vectors as well.
We conclude in Sect.. [5] with a brief discussion of our results and suggestions of
future directions of studies. We shall ignore the back reaction of the test matter.
We shall work in a unit in which ¢ = 1 = G, but will retain # throughout.

! For an exhaustive review and list of references on tunneling see e.g. [41]).
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2 Timelike/null geodesics and the CTH

In this section we shall study the motion of an outgoing particle following a
geodesic.

We shall confine our attention, for simplicity, to the equatorial ‘plane’ (6 =
). Tangent to this plane, let v* be the particle’s 4-velocity. We know that if x*

is a Killing field and v is a vector tangent to a geodesic, i.e., v*V,” = 0, the
quantity v*y, is conserved along that geodesic. Thus, we may define the conserved
quantities of motion L, E and Ly with respect to the Killing fields (81,,)“, (d;)" and

(8¢)a respectively for our present space—time by

2
L= (81,,)av” = <h(r) + 4> v —g(ri, E=—(9),v" =u(r)i+g(r)y,

2
Ly = (9) " = 59, )

where the metric functions (u,g,h) are defined in Eq. and the ‘dot’ denotes
derivative with respect to the proper time (an affine parameter) for a timelike (null)
geodesic.

Now, for a timelike/null particle following a geodesic we have

r2 4

2
—u(r)i* —2g(r)iv + (h(r) + 4> v+ quSQ + rZF = —k, (8)

where k =1, 0 for timelike and null particles respectively. Using Eq. @, we
eliminate 7, ¢ and yr from Eq. (8) to get

[E (h+§) —Lgr e [E (h+§) —Lg} [Eg + Lul
e oo

2 Eg+Lu)? 4Ly
+(h+r4> (Eg+ u)2 2+—2¢+%r'2:—k. )
[g2+u(h+%>] "

The CTH is defined by gy = (h(r)+75 ) = 0. Taking (h(r)+7 ) — 0 in Eq.

@) we obtain )
A (2LE L*u 4L

r2’

Let us now see the consequences of Eq. (I0). Since E and L are conserved along
the geodesic they would not change their sign anywhere on the geodesic. E, being
energy, is a positive definite quantity. Therefore the quantity within parenthesis in
Eq. (I0) may be negative only when L < 0. On the other hand for L > 0, 7 becomes
imaginary. Thus a geodesic with L > 0 can never reach the CTH whereas those
with L < 0 may reach the CTH when the first term of Eq. (I0) is large enough
to suppress the other terms. A particle with positive angular momentum should
stop moving radially outwards when 7 = 0. Clearly, how far it can move depends
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on the value of the conserved quantities. Note that, our common intuition dictates
that larger the energy of an outgoing particle, further it can move away from the
black hole. But for the present space—time, it is clear from Eq. (I0) that a particle
with positive angular momentum will never reach the vicinity of CTH however
large its energy is. This phenomenon is independent of the small j approximation
and is also valid for the pure Godel space—time (2).

The above analysis not only shows that the Godel space—times are very non
trivial and exotic but also provides an important insight about choosing the pos-
sible method of computing Hawking radiation. The quantum field theoretic study
of Hawking radiation requires a well-defined asymptotic structure or the infinities
[19]. We have seen for Kerr—Godel space—time that only those geodesic observers
having L < 0 may reach an asymptotic region (I0). Even if one manages to
reach radial infinity with some negative value of L the existence of CTCs there
implies non-causal behavior of the space—time, therefore posing a major obsta-
cle in following Hawking’s quantum field theoretic treatment of particle creation
[19]. Hence we cannot make our study as an observer in that asymptotic region.
Neither any point inside the CTH can be considered as infinity. Since different
L > 0 observers have different turning points (owing to the CTH) inside the CTH
depending on their conserved quantities, the general mode of treatment should
have an absolute local senseE] It is this subtlety that motivates us to apply the
semiclassical tunneling method to study Hawking radiation. This method only
explicitly uses the near black hole horizon geometry. In the reminder of this paper
we shall extensively study Hawking radiation of scalar, spinor and vector particles
via tunneling.

3 Scalar emission

We begin by considering the massive Klein—Gordon equation

1 m?
—— 0| V=550, ®(t, 1, 0, 9, +—P=0, 11
\/jga<\/ 880 P( ¢llf)> e (1)
where g is the determinant of the metric. For the ansatz
D1, 1,0, 9, ) =A(t, 1, ,0, ¢, y)expi/t:7 00 ¥, (12)

in the zeroth order of the semi-classical limit ‘2 — 0, Eq. takes the form

A <g“b8a18bl — W) —o. (13)

2 An interesting point to note here is that, the de Sitter black hole space—times also do not
have well-defined asymptotic structure due to the cosmological event horizon. But a quantum
field theory of Hawking radiation can be done at least for eternal de Sitter black holes by treating
each of the past and future horizons as past and future infinities [20]. When one considers the
past black hole horizon as the .# ~, one considers the future cosmological horizon as .# ™ and
vice-versa. But the Kerr—Gddel space time do not have such cosmological horizons to be treated
as infinities.
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Since the space—time (4) has three Killing fields {d;, dy, dy }, we may make the
following ansatz for the mode

I=—Et+m¢+Ay+U(r, 6). (14)

Substituting the ansatz (T4) in Eq. (I3) we obtain the following Hamilton—Jacobi
equation

(‘W>2+4r2 (9’1(“ 9)>2_ L {(#HM&) (E-21Q)

ar A a0 A2
4ANR2 4A (m— 2
B ATrt 4A (m .ACOSO) v (15)
(r4+2Ma2) r231n26

where the function

Q(r):gl:_g’lzw (16)
gtt Sy (r4+2Ma2)

dy

can be interpreted as the coordinate angular velocity (W) , of a particle
¢=const.

8ty

a
vy 8l,,) , which is orthogonal to

moving along the timelike vector field (8, -

dy)”.
( w%o compute the tunneling probability we have to compute the imaginary part
of U(r,0) [25]. We note that the right hand side of Eq. has singularities at the
black hole event horizon (r = ry), i.e., when A = 0, and/or at 6 = 0, 7. Hence
the imaginary contribution to U (r, ) may come from both the singularities via
complex integration.

In the near horizon limit A — 0, the right hand side of Eq. becomes effec-
tively spherically symmetric (since on the horizon A = 0 everywhere, even the
axial singularities have no contribution). One possible way to make the left hand
side correspond to this spherical symmetry is to assume U (r, 8) =V (r) + W (0)
as r — ry, so that the first term becomes manifestly spherically symmetric whereas

the second term does not. Thus on the horizon we must put avg((ge) = 0. Hence
infinitesimally close to the horizon Eq. (I3)) effectively becomes
av (r) r?
=+—/(r*+2Ma?) (E—-1Q 17
S = (AramMa) (E-A0)| a7
r— rg

where the + (—) corresponds to the outgoing (ingoing) mode. Now we integrate
Eq. across the horizon using complex path analysis [25; 265 27]. We lift the
singularity to complex plane : (r — rig) — (r —rp £ i€) and bypass the event hori-
zon around an infinitesimal semi-circle. For both outgoing and incoming particle
we choose anti-clockwise contours. After complex integrating Eq. around ryg
we find

ruy/ ry+2Ma? el (E — A0
Vi(rH):ﬂ:TCi(E—),.QH)%:i iy~ ( . H) _
™~ i \/Z(M—4Maj—2a2_8a3j)

(18)
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where Qy = Q(ry). Recalling the sign convention for an outgoing or incoming
particle, the ansatz made in Eqgs. and (14)), and the fact that W () is trivial at
the horizon, the emission (absorption) probabilities Pz (Pa) across the horizon are
expressed as

Peoxp |2 (V)] Ao |- 2im(v-(u] . 9)

It follows from Eq. (I9) after using Eq. (I8),

P (E—AQp) (E—2AQy)
P | T ey | TP | . Q0
Py P G P h/2(M—4Maj-20>~8a ) (20)

47trH\/rf4_[+2Ma2 47"}2{

We note from Eq. (@ that Pz << P4. This can be understood as the ‘smallness’ of
quantum effects. In fact by defining proper normalization one may take Py — 1.
The factor (E — A.Qy) appearing in Eq. (20) is the eigenvalue of ifi (J; + Qudy ).

The Killing 1-form (J; + Qudy ), is future directed null at the horizon, and future
directed timelike infinitesimally outside it. Therefore (E —AQy) can be inter-
preted as the energy of the particle as measured by an observer moving along
that Killing field. (E — A Qy) > 0 for a timelike or null emitted particle; whereas
for an incoming particle, (E — AQp) < 0 corresponds to the superrradiant modes
which we shall disregard. With the factor (E — A Q) being regarded as the energy
of the emitted particle, we now identify from Eq. the temperature of the emis-
sion or the Hawking temperature of the event horizon [25], which after using Eq.
(@), takes the form

n

_ _
Anriy [ +2Ma® 2v/2% [M—4Maj+ e (1—8aj)—2Ma2}7}

h(rlz{—r-z) B h(M—4Maj—2a2—8a3j)%

Ty= 1)

One immediately identifies from Eq. @ that Ty = %. Note that when we set
a =0 = rj, in Eq. (ZI) we recover the well known result for a Schwarzschild
black hole : Ty = g [19].

The above is in full agreement with the predicted thermodynamic behavior of
the Kerr—Godel black hole [18]]. The 6 independence of Eqs. and can be
understood as the manifestation of the spherical symmetry of the horizon. Calcula-
tion of this temperature by null geodesic method can be found in [[15]]. j =0 in Eq.
recovers the temperature of a 5-dimensional Kerr black hole, whereas a = 0
recovers the result for a Schwarzschild-Godel black hole. Note that here we have
not assumed the usual s-wave nature of the emission, but demonstrated explicitly
how the 0-part
of the modes becomes trivial near the horizon due to the horizon’s spherical sym-
metry. We shall see that this will be true for spinors and vectors as well.
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4 Spinor and vector emissions

The Dirac equation for a massive spinor in a curved space—time (or in the flat
space—time written in an arbitrary coordinate system) is given by

i¥'DY + %‘P ~0. 22)

For a spinor with a charge ¢, minimally coupled to a gauge 1-form A,, the gauge
covariant derivative operator D, is defined as

DW= (aa B - ihqAa> ' (23)

Here d, are the ordinary derivatives and I, are the spin connection matrices

1
L= [ Yoy ). (24)

where o are the Ricci rotation coefficients. For some choice of orthonormal bases
e(u)”s Wu(uy(v) = e(u)bvae(\,)h. For the Godel black hole we are considering, A,
is given by Eq. (). Now and hereafter the Latin indices will represent space—time
and the Greek indices in parenthesis will represent (local) Lorentz frame. So the
y(1) appearing in Eq. correspond to the Minkowski space (which is (4+1)-
dimensional in our case) satisfying the anticommutation relation

{y(li)7 Y(V)} — 27-,(.“)(‘/)1’ (25)

where n(")(V) = diag{—1, 1, 1, 1, 1} is the (4 + 1)-dimensional Minkowskian
metric and I is the identity matrix. On the other hand, the ¥ appearing in Eq. (22))
can be expanded as y* = e(u)“y(‘”. Then, from the definition n(“>(v)e(”)“e(v)b =

g? and from Eq. we obtain a generalized anti-commutation relation
{7,V =2"1 (26)

To proceed further, therefore, we have to choose a suitable representation of
¥ subject to Eq. (26). We choose the following representation for our space—time
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Y=V, y=Vey¥, =gy,

1
ov_gogv)? : oy g0V
yq): g¢¢{g 8" } 7(gt¢)2 ,}/(4)+ {g o } ')/(2>, g0 'y(o)
8 Id {g‘l/‘l’— gn }
C 1 8
12 |2 ty
W (ggn) ] NO f_? /0 on

where 74 is defined to be the fifth spacelike y-matrix in the (4 + 1)-dimensional
Minkowski space—time satisfying the algebra of Eq. (23).
An usual representation of ") (u = {0, 1,2, 3})is

0) _ 0o I 1) _ 0 ol 2)_ 0 o2 3)_ 0 o3
'}’( _(—I 0>’ V< _(61 0 y Y= 62 0 , Y= 63 0 :

The o are the Pauli spin matrices

0 1 0 —i 1 0
Gl—<1 0), 62—(l. O)’ 63—(0 _1>. (29)

We have yet to choose a suitable representation of the fifth spacelike matrix 7%
We simply choose y(4) =7 . ie.,

7 =iy Oy 2, (30)

Now we are ready to look into Eq. (22).
The spin up ansatz for the Dirac particle has the form

At, 1,0, ¢, y)
0 .
ll/(tv T, 6, ¢a III) = B(t, T, 9’ (p’ W) exp |:;ll<t7 r, 67 (P? W):| . (3])

Inserting the ansatz into Eq. and taking the semiclassical limit ‘i — 0’
we get

A(t7 r7 07 ¢7 II/)
0

{~V"0ul +q (VA + 7Y Ay) +m} B( =0, (32)

1, r,0,9¢, V)
0

where Ay and Ay, are the components of the gauge 1-form given in Eq. (E[) Now
making the usual ansatz as before

I=—-Et+m¢p+Ay+U(r, 0), (33)
and using Eqs. 27), 28), (29), (30) we get from Eq. (32) the following set of four
equations after neglecting 0'(j%) terms i

gV gV N 00 (e?)’
—g''B (E—?/l-f—?qu)—\/?B&rU-i—mA-i- g% —
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x (m—gAgy)A=0, (34)
1
1y ry V)2 '
fy%(E7§71+§;ww)+dy%&UfﬁB+ ﬁ¢744§;)777
8 8 <gq/u/_ (g ‘5) >
X (m—qA¢)B:0, (35)
1
oy 1y2\ 2
B |1/g099pU +i g i (qu¢)+i(gww (g ﬁ) )
Vv — (g;', ’)? &
x (A —gAy)] =0 (36)
g¢'4/

For nontrivial solutions of Eq. (22), A and B cannot be identically zero everywhere.
Thus we may eliminate them from (34) and (35) to obtain an expression for

<‘9a—(f) . Next, from either of the Eqgs. 1} and we determine /g% dpU, square

it and add to (%—g) to get the following Hamilton—Jacobi equation

AUN? oo (OU\?

(a,) e (ae)

g" 2 R (m—qAg)’ (g%%)°
TR ) e

- (E-AQ—qAyQ) o Pz W
glt
2

1

“”2 2
- (m—qu,)—l-(gww—(in)) ()L—qAW) . (3%)

The function Q(r) has the same interpretation as in the scalar case.
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To this end we again apply complex path analysis and follow the same proce-
dure as described in the previous section. One can check that Eq. (38) has singular-
ities at the horizon (ry), i.e., when A = 0, and/or at 6 = 0, 7. Let us first consider
the horizon. The A = 0 singularity makes the right hand side of Eq. spheri-
cally symmetric and again we can write U (r, 8) =V (r) + W (8) infinitesimally
close to the horizon. Now using complex integration we find from Eq. (38)

; (39)

2
ITTry E*)LQquA rH) 2y
\V2(M —4Maj—2a% — 843 j)

along with a trivial W(9)|r:m. The + (—) sign corresponds to the outgoing
(incoming) particle and Qg = Q(ry).

Thus recalling the ansatz made in Eqs. (31)) and (33), we see that the emission
(absorption) probabilities Pz (Pa) across the event horizon (ry) have the same

form given in Eq. (I9). So it follows using Egs. and (3)),

PE (E — )u.QH — ?qj}’%{.QH)
“Zoecexp |- : (40)
Pa h\/Z(MfétMa j—2a>—843 )

47”12-1

Equation (40) gives the Hawking temperature (7y) and it is identical to that of the
scalar (Eq.[21). Due to the spherical symmetry of the horizon the axial singularities
0 =0, 7 have no effect on the emission probability from the horizon.

Similar analysis can also be performed for a spin-down particle giving the
same Hawking temperature. However, for completeness, before we end this sec-
tion we give an outline for computation with a general 4-component wave func-
tion. We take the ansatz

Aetll
Ce%IT
Betll
Detlt

W(t’ r, 0,9, W) = (l‘, n 0,0, II/)’ (41)

where the (1) sign refers to spin up and spin down particles respectively. We
know that any difference in the energy eigenvalues of spin up and spin down states
should be &'(%) and hence this difference can safely be ignored in our semiclassi-
cal theory. Thus we may take

Li(t,r, 0,0, )=—Et+mo+Ay+U; (1, 0). (42)

We now substitute this ansatz in Eq. (22)). Making the following definitions

ty ty
w=(h-1), & :@(E—%lf%qf‘w)v (43)
@ |

&1 = /8" Uy, &r=m*S g - (m—aqA),

( Qv — <g;p2 )
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g (o &)
&y = | =VgP0U; +i——"——p (m—qAy) +i| "V — =2 | (A—qAy)|,
(")) ? §
i gVW— P >
[ 1
oy )2\ ?
&) = \/g("“’agUlJrigil (m—qAp) +i (gwl (g”)> (A—qAy) |,
)2\ 2 8
(gW‘Iff (e n) >
L &
44
we obtain the following set of four equations
B(e — &) +Aes, +De%e4T =0, D (& + &) +Ces_ —Be*%&u =0,
A(e1+&))+Bes- +Ce%s4T =0, C (& — &) +De3y +Ae’%e4l =0.
(45)

Therefore, unlike our previous study with only spin up or spin down ansatz
(Eqs. (34)—(@37)), now the r and 6 derivatives do not give separate equations.
Eliminating the functions (A, B, C, D) from Eq. (45)) we obtain

(67 —€3, —&3 ) (e — &3, +&3,) + (&1 —&2)) (&1 +&2) Enyéy

+ (614 &)) (&1 — €27) €414 + 3165, =0. (46)

We now take the near horizon limit (A — 0) in Eq. (46). As before we can break
Uy (r, ) = V; (r) +W;)(0) and apply the same arguments to obtain

(G 0) (o om)H ()

€]
— 0,V =0, 47
(i), “

- Thus the desired results follow.

along with a trivial W;|(0) |r

Now we give an outline for computation for the vectors. We start with the
following equation of motion

V. F* = m?AP. (48)
Equation ({#8)) can be written as
VoVeAp — RpeA% + V), (VAC) = m* Ay, (49)

Expanding A, in the orthonormal basis i.e., A, = e<“)aA(”) and using the usual

semiclassical ansatz for each A(,) = gy exp%' ) and the identity V,A% = 0, one
can immediately see that Eq. @ reduces to four Klein—Gordon equations in the
zeroth order of the semiclassical theory and hence the result for scalar or spinor is
reproduced.
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5 Discussions

In this work we have discussed the motion of a particle following a null/time-
like geodesic in the Kerr—Godel black hole space—time and shown that at least
the particles having positive orbital angular momentum L shall never reach the
CTH. So it is evident that the notion of asymptotic observers is not clear within
the CTH. Again, beyond the CTH there exists a continuous sequence of CTCs and
hence the causal structure of space—time is lost. These issues pose high obstacles
in formulating a field theory of Hawking radiation in Kerr—Godel space—time.
However, in [[18]] a Smarr formula was derived for the Kerr—Go6del black hole. This
demands an extensive analysis of particle emission in this context. To perform this
task we have done the semiclassical treatment for scalars, charged Dirac spinors
and vectors. The expressions of the emission probability and hence the Hawking
temperature do not contain any parameter (mass, charge, spin) of the matter and
same for all particle species. This is due to the fact that back reaction of the matter
is ignored in our treatment and also because the near horizon limit was taken.
The emission probability and the Hawking temperature turns out to be in full
agreement with [[18]]. This, indeed, verifies the thermodynamic nature of the Smarr
formula.

Another important thing to note is the effect of the rotation of the background
(parametrized by j) on emissions. For simplicity we take a — 0 in Eq. (1)) to get

h
A\ 2M

This shows an increment in the Hawking temperature with j. Thus the scalar or
neutral spinor emission probabilities (given by Eq. (20)) also increase with j. This
can naively be interpreted as the ‘centrifugal’ effect on the particles due to the
rotation of the Godel background.

We have considered the geodesics in the equatorial plane only. It would be
very interesting to study them for the entire space—time. To do that the idea of
Killing tensor as in the 4-dimensional Kerr black hole may be useful. Since a
considerable number of the geodesics cannot be arbitrarily extended due to the
CTH, it may be possible that an outgoing emitted particle following a geodesic
with sufficient kinetic energy may come back and enter the black hole. Note that
this effect will be there along with the usual grey-body effect. This suggests that
the evaporation rate for the Godel black holes may be quite different than the
rotating black holes in asymptotically flat space—times. However this dynamics
requires further study. Also, the construction of a satisfactory quantum field theory
of the Hawking radiation in this space—time remains as an interesting problem.

Ty = (142aj)+ O(j%). (50)
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