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I. INTRODUCTION

There has been much progress in the past year in understanding the microstates of black
"~holes through D-brane physics. The Bekenstein-Hawking entropy of certain extremal and
near-extremal black holes can be understood through the counting of D-brane microstates
[1-5]. Furthermore, the Hawking radiation from a black hole was shown in many cases to
- agree with the calculation of the corresponding process calculated in the D-brane picture
[6-22].

However, there is still a puzzle as to why these correspondences occur. The D-brane
calculations are carried out in perturbative string theory, which requires weak coupling.
The relevant coupling is actually g.sr = g@Q where @) is the charge of the black hole. As
emphasized in [10], the perturbative picture is valid for gess < 1, whereas the semiclassical
analysis is only valid for g.ss > 1. Therefore, there is no reason to expect agreement between
the two calculations.

To explain why these correspondences occur, an argument was proposed in [24] based
on a non-renormalisation theorem. It turns out that the objects that carry entropy are
" hypermultiplets on the D-brane world-volume. The hypermultiplet moduli space is not
~corrected at strong coupling. Based on this fact, it was argued that the interactions in
the D-brane regime would be the same as those in the black hole regime, as long as one
stayed in the moduli space approximation, which is equivalent to low frequencies. Thus the
cross-section for Hawking radiation calculated in the D-brane picture should reproduce the
semiclassical calculation for very low frequencies. This was shown to occur for minimally
coupled scalars in [10], where the authors showed that even the greybody factors of the black
- hole could be reproduced in the D-brane picture, for low frequency emission.

Noti’@ll‘ scalars, however, are minimally coupled. There are other scalars which couple to
the charges and the background moduli. Examples of these are the ‘fixed’ scalars considered
~in [23,14], which have a different cross-section from minimally coupled scalars. There is yet

a third type of scalar, which we call an ‘intermediate’ scalar, which is different from both



minimally coupled and fixed scalars.

The emission of intermediate scalars occurs at a higher order in the hypermultiplet
interactions. Thivs interaction vertex is not protected by a nonrenormalization theorem.
j The arguments of [24] thus do not apply to this scalar and there is no reason to expect the
semiclassical calculation to match the D-brane calculation.

In this paper, we will compute the semiclassical absorption cross-section of an interme-
diate scalar and compare it with the D-brane prediction of [14]. We will show that there is
indeed a difference between the two cross-sections. This is indirect support for the arguments
of [24]. Other discrepancies between the D-brane model and the black hole description have
been pointed out in [20,22,31].

We will first review the calculation of [10] of the absorption coefficient of a minimally
coupled scalar. Some technical problems with this calculation were pointed out in [22]. We
will attempt to clarify these problems so that we can find the range of parameters for which
the calculation is valid.

We then turn to intermediate scalars. The computation of the semiclassical cross-section
is somewhat difficult technically and we will do this in detail. First we review the calcula-
tion of the D-brane cross-section which was performed in [14]. We then derive the classical
. .equation of motion for the intermediate scalar. We then calculate the semiclassical absorp-
btion cross-section in two different parameter ranges and show that they disagree with the

D-brane computation. Finally we present our conclusions.

II. THE D-BRANE MODEL

The five-dimensional black hole that we will consider is a near-extremal black hole with
three cggrges. These correspond in ten-dimensional type IIB string theory to @5 five-branes,
Q1 one:branes and N units of momentum. We will take the 5-branes to be oriented along
" 5, T, T7, Ty, T9, the 1-branes to be oriented along z5, and the momentum to be along zs.

To reduce this solution to five dimensions, we compactify x5 on a circle of length 27 R



and each of zg, 27, T, xg9 on a circle of length 27V14, Define the new parameters
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In terms of these parameters, we can write the five dimensional solution in the simple

form (3,8,10],

ds? = A3 fdt® — N3(f1dr? 4 2dQ?)
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In the D-brane model, we restrict ourselves to the range rg,r, < r1,75. This is called
. the dilute gas region [10] and is the region where the D-brane computation is expected to be
- valid. In this range, we can use the effective string description in which we ignore antibranes
~ and nonextremality comes only from the presence of both right and left moving momenta

on the string. The number of left- and right- movers is constrained by

Ny—Ng=N (4)
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- where E is the ADM mass.
To zeroth order, the left and right movers can be treated as independent gases at tem-

peratui‘es Ty, Tr.These are determined by requiring the average total momenta to be Np,

- and Vg respectively, and are
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Interactions cause open strings to combine to closed strings and escape from the brane.
This is interpreted as Hawking radiation. The Hawking temperature can be calculated to

be [10]
| 1 1,71 1
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III. MINIMALLY COUPLED SCALARS

In [10], Maldacena and Strominger calculated the absorption cross-section of a minimally
coupled scalar incident on this black hole. We redo their calculation, emphasizing the
questions of the validity of the approximations made.

The equation of motion of a minimally coupled scalar of frequency w in this metric is

2 2 2
;J;ar(frf‘)a,cb) +w? (1 + :—g) (1 + :—;) (1 + %) ® =0 (7)

.We are taking ro,r, < ry,rs and wrs < 1.
This equation is not analytically solvable. To solve it, Maldacena and Strominger used
.. the standard method of solving the equation in two regions and matching the two solutions
together smoothly on an overlap region. They called their regions the near and far regions
 respectively (these regions are defined more precisely below.) We will carry out their proce-
dure of solving in the two regions and matching, paying special heed to the validity of the
approximations made.

For r > r,, rg, the equation simplifies to

1 3 2 ri rs

T—S(‘?,(r 8T<I>)+w 1+7‘_2 1+7'_2 ®=0 (8)
Defining ® = r=3/2¥, we find
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We see that the term w211;t—ri is always small compared to Z% and can hence be dropped for

any value of r.



The far region is defined as the region where we can also drop the - term. This requires

3 w?rir?
o) > r; 2> wrrs.. (10)

- Thus the far approximation is valid for r > wrirs. In this region the equation of motion

simplifies to
L 5,(r%6,81) + w®, = 0 (11)
7_3 T rx1 1 —

with the solution

o, = \/g[aJl(wr) + BNy (wr)] (12)

The near horizon region is defined as the region where we can drop the terms proportional
to w?r® and w?r—2.

2 2

As we said earlier, the term proportional to w?r~2 can always be dropped. The term w

can be dropped provided
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This condition is definitely satisfied when r < ri,7r5. In this region the equation of

. motion simplifies to

wr Ty
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with the solution [10]

By= A(1 — v) O 2F(—ja, —ib,1 —ia — ib,1 — v)
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We*see that the near horizon approximation is definitely valid for r < ry,rs, whereas
_ the far approximation is valid for r > wrirs. There is a large overlap region where both
solutions are valid.We therefore expect a smooth matching of these two solutions without

the need for an intermediate solution.



However, a puzzle was pointed out by the authors of [22]. The far region solution behaves -

for small r as

o, = @_‘*(2_3&_)

2 \2 T7w?r?
The near region solution behaves for large r as
®,= AE(1 4+ gv — abvin(v))

T(1 — ia — ib)
(1 — ia)T(1 — ib)

9= £(a+b) + ab(l — 2y — p(1 —ia) — (1 — ib))

E=

where v is the digamma function and v = —(1).

(16)
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These two expansions seem to have different behaviours. In particular, the second ex-

pansion has a ﬂr}l term which seems to dominate for small r. This is incompatible with the

earlier statement that there should be a smooth matching.

For the resolution, we consider a particular case of this problem, when ro = 0. The

differential equation for ® in the range r < ry,rs5 is then

2
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- with the solution

®, = g1 Fo(n, @) + 92Go(n, a)
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As before, we want to match ®; to ®; at large r. For large r, i.e. small a,

Fo(n,a) = Co(n)a Go(n,a) — (14 2naln(2a)) ~

1
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In this form, the matching of ®, and @, is obvious. it is
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However, suppose we first impose the condition that ®, at the horizon is ingoing. Then

‘i)z = gl(iFo - Go)
‘Now the large r behaviour of @, is
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and we see the appearance of the l—n;(}l term. The analysis above shows that this term is

not to be considered since it appears in conjunction with a constant term and is therefore

always small.

The same is true in the more general case when ro # 0. Hence the large r behaviour of

®, is not as in (17), but rather

O, = AE(1 + gv)

which can be matched smoothly onto the solution (16) giving the matching
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The absorption amplitude is then

la —iB|”

AP =1 1e=l
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which for small g can be expanded to leading order as

A2 = —4Tm (g)

 The absorption cross-section is then found by

-
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In this case, we find -(using properties of the digamma function given in the dppendix of

[22]) that



@

Ty _
.3 2.2 e’n —1
Oabs = T WIrirs —%

(e — 1)(e? — 1)

(20)

This is exactly the cross section obtained in [10] and agrees with the D-brane calculation of

ECE

The only approximation made was that wrs < 1. Hence the D-brane calculation and the
semiclassical calculation agree in this range. This is consistent with the arguments of [24]
that the calculation is correct as long as we are in the moduli space approximation, which

is wry < 1.

IV. INTERMEDIATE SCALARS
A. Introduction

We now turn to a different problem of scalar scattering. This involves a new type of
scalar that we will call ‘intermediate’ scalars.

The scalars we are considering are ultimately derived from a dimensional reduction of the

- fields of type IIB theory. We shall concentrate on the scalars coming from the dimensional

“reduction of the metric G .

Recall that the five-brane is wrapped along directions zs, xe, 7, Ts, £9 and that the one-
branés are oriented along zs (the momentum will also be along zs.) In that case, the
dimensional reduction of the metric G, provides the scalars G;;,:,7 = 6,7,8,9, G55 and
Gsi,t =6,7,8,9.

The scalars G;; with both indices in (6789) directions are minimally coupled and are
examples of the scalars considered in the previous section. The scalar G55 is a mixture of a
~ fixed’ scalar and a minimally coupled scalar. Fixed scalars were considered in [23,14]. They
have a%ross-section that goes to zero as the frequency tends to zero, unlike the minimally
_ coupled scalars which have a nonzero cross-section at zero frequency.

We will consider the third type of scalar, i.e. G5;, with one index along the one-branes

and one perpendicular to them. We shall call these scalars ‘intermediate’ scalars. They



have an absorption cross-section which is different from both the minimally coupled and -
fixed scalars.

The fact that fhis scalar has a peculiar cross-section Wa; already noted in [14], where the
absorption cross-section for this scalar (as predicted by the D-brane model) was calculated.
Our purpose here is to calculate the corresponding semiclassical cross-section and see if it

matches the D-brane prediction.

The reason that this is an interesting test of the D-brane model will become clear when
we review the D-brane calculation of [14]. It turns out that unlike the minimally coupled
scalars, the intermediate scalars do not couple at leading order. The first relevant coupling
occurs at the next order, and this coupling is not protected by a non-renormalization theo-
rem. An agreement at this order would indicate a deeper correspondence between the two
descriptions.

In fact, we find a disagreement. The semiclassical analysis at very low frequencies (the
exact meaning of 'very low’ is defined later) produces a cross-section which goes to zero as a

power of w. The D-brane model produces a cross-section which goes to a nonzero constant

" at zero frequency.

We emphasize that this is not surprising, since there is no analogue of the nonrenormal-
- ization theorem here.

We begin by reviewing the D-brane calculation performed in [14], for completeness . We
then construct the classical equation of motion for the scalar hs;. We will do this in some
detail, since some nontrivial manipulations are required.

We then calculate the absorption cross-section from this equation of motion. It turns out
that this cannot be done exactly for the whole region of parameter space. We will instead
~ perform the calculation for two different cases, ro = 0,wr? > r,,and ro = 0,wr? < r, . We
can caltulate the cross-section analytically in the first case. For the second case, we will not

_be able to find an exact cross-section but we can demonstrate the scaling behaviour.



B. Intermediate scalars: the D-brane compﬁtation

We review the calculation presented in appendix A of [14].

The metric scalars couple to the D-brane world-volume through the Born-Infeld action.
=- eff/d g~ ~det7ab Yab = G (X)0, X0 X" (30)

We shall use indices ¢, 7 running over 6,7,8,9 and indices m,n running over 5,6,7,8,9.
So in this notation, the volume of the 4-torus part of the 5-torus which is orthogonal to the
one branes is V = det(h;;), while the total volume is det(h,).

We expand the Born-Infeld action in fluctuations around flat space G, = ., + h,,. We
will take only hs; to be nonzero.

One also needs to specify which fields are held fixed during this variation. This was
worked out in detail in [14]. It turns out that the correct scalars which one should hold fixed
are the scalars Gy;, the 5-radius R = /G35 and the six-dimensional dilaton ¢s.

The first few terms in the resulting expansion in powers of derivatives of X are

I=—Ts [(L+ It Lo+ )
1
= 504 X°0_X.)

1 .
le —2—h5,~(8+ + 8_)X’ (31)

Ls= _ihsi(a—Xi(&Xa)rz + 0, X'(0-X,)?)

where we have introduced new derivatives d; = 0y + 05,0_ = —0 + 0.

The term linear in X is not relevant since it only couples to a scalar which carries
momentum in an internal direction, i.e. a charged scalar. Note that there is no term
quadratic in X which couples to hs;. The first relevant term is cubic in X.

Usifig this coupling, one calculates the absorption cross-section. The final result is (for
_T1=Ts5)

A w(eﬁ—l) )
Fabs(w) = 5 o 8w°Tf + 8n° T 32
o) = T T ST 4 ST ()
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In the extremal limit ro = 0, this reduces to

If we also take w > T, this further simplifies to

71'3(.(137'53

8

Oabs =

On the other hand, for w <« Tp,, the cross section simply becomes

Oabs = 27727"2

C. The Equation of Motion

(33)

(34)

We wish to find the classical equation of motion for an excitation of the field hs; = h.

To compare with the D-brane calculation, we should keep the scalars G;j, Gss, ¢¢ fixed.

To simplify the calculation a little, we will instead take the scalars G;;, G**, ¢¢ fixed while

h is excited. Usually G* = 515: and so the two choices are identical. This is no longer true

~ if off diagonal elements Gs; are nonzero.

We find that the perturbed metric is of the form

h2
G552R2+\/_V Gs1 =G5 =h

G2 = Gz = Guy = G = VvV

with the inverse metric

SS_L 51 _ 15 h

e = ew
G22_G33_G44_L Gll_i_l_h_2

5 o- IV 74 VWV RV

) As we wished, G*® is fixed. We are however forced to vary Gss.

(36)

(37)

The point is that- whether we take (Gij, Gss, ¢6) to be constant, or whether we take

(Gi;, G*, $6) to be constant, we get the same equation of motion for the field h. This is

11



because G5 is varying by an amount of order A%. The equation of motion for A is linear and -

of the general form
Oh + f(Gij, Gss,66)h = 0 (38)

If we vary G'ss by an amount of order k2, this leads to a change in the equation of motion
- which is second order in h and can thus be neglected. We can therefore allow G55 — G55+§—2V.
But as we have seen, this is equivalent to keeping G*° fixed.

~ Note that if G, G*, ¢6 are fixed, then so is the four-volume V; = det(G;;), the five
volume V5 = det(Gpy) and the five-dimensional dilaton ¢5 = ¢6‘Z,:.

Let us now vary the Lagrangian to find the effective action for h. We will simplify by
going to the extremal limit ro = 0 and also taking ry = r5. As before r, < r;. The moduli
fields then take the form

R? = ER; V=V (39)
f1

Since the dilaton is constant, we can work with the string metric. The Lagrangian in

~ string metric was derived by Maharana and Schwarz [25] and contains the relevant terms

L= R [0Gu0G™ ~ Gio(FUSP)(FURI) = GP oy Hos — Vo(ES ™ (40)

y pv
First we have the kinetic terms —20G,,0G™. Using (V) = 0, we find
1 .. 1 h? 1 h
£ 0GdG™ = — {a (EE) B (ﬁ) 20k (mﬂ (41)

1 (9h)
-5

Due to the presence of cross terms like G*'(H,,5)(H,1), we must first integrate out

(42)

H Wﬁ. After doing so, we also integrate out H,,5. We also perform a similar operation for

the KK—gauge fields. In the end, we find a potential term [26]

T would like to thank A.Tseytlin for pointing this out to me.

12



1 (8,']“1)2) h2 ’
— = 43
(2 ) RV (43)
The full effective action for A is thus
1 (9h)? (1 (81~f1)2) h?
Ly, =— — | = 44
"TorywWo\2 2 ) RV (44)
The equation of motion is [26]
R ([ (9:f1)*

We want to solve this equation and find the absorption cross-section. Since an analytical
solution is not available, one must use the standard procedure of solving the equation in
several regions and then matching these solutions together.

In this case, even this procedure does not work for all the parameter range. Specifically,
if wr? < r,, there are ranges of r where even the simplified equation is not analytically
solvable. -We can, however, find out how the cross-section behaves as a function of the
various parameters r,, 71,70 although the exact numerical factors are unknown. (These can
however be found numerically).

In the parameter range where wr? > r,, the procedure for finding an approximate

~ solution can be carried through and we can find an analytical expression for the cross-

section.

V. THE SEMICLASSICAL CALCULATION
A. High frequencies; w > T

The equation of motion is

e R? r3 4t
2 —
—Mh - — 0, (_R2 6,h) + ST _; 7Q%)zh =0 (46)

Recall that R? = 2= R? .

We now assume w > T, i.e. wr? > ry,.

13



For r ~ r, the equation of motion reduces to

AN
(1 + ‘%) Lhi +
r rt

Defining by = /7?2 + 20, we find
2\ 2.4 /r2+rg
(1+Tg>°"’"lw+ S0(r°0,0) + WY a,(

r

HThe last term is always of order

resulting equation is

which has the solution

AR 1 3

¥ = C]Fo(

¥
2
Tn

2 2 r3
re+r; 5,
7«3 7.2 +

’I"3

o) =

2

r wrn TWrn
)+esGol(n, =5 5~
— _7'1
= 4r,

2+7.n

2

0T =0

and can be dropped relative to the first term.

)

Since we require an ingoing wave at the horizon, we require

c1 = —1Cy

For r, < r <« wr?, the equation of motion is

with the solution

with the éolution

2,.4
wrl

2 2
h2 = C3J2 (—;—) + C4N2 (wrl

)

To match these solutions, we first introduce an auxiliary function ¢ satisfying

2,4
wrl

h2+ 8 (7‘8 hg)—

£+ 8(3&5):0

14
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The

(51)

(54)



{= ‘71j [Cle (T—i‘ﬁ> + ¢V (T%Tw)] (55) |

For r > r,, the differential equation (49) for ¥ approaches the differential equation (54)
" for . Hence the solutions should match smoothly, in particular, the large r expansions
~ should be the same. For large r [30],

2 2

riwr, 1 mriw (riwr, 2r,
o ¥ — 6100(77)( T‘Zﬂ )+ Co Co(n) =C 27}n ( 127'2 ) + Cy ( Wr%w) (56)

where we have used n < 0 to write an approximate expression for Cy(n).

For large r,
2 2
£ — = [csﬂwe i ] (57)
2 Triw
Matching the two solutions, we find
2 2
o = TWriTy, o = ¢, TWriT, (58)
2 2
Similarly for small r, define ¢ = % Then we find
w?ry 1 ¢
- (,ZS -+ ;87-(7'87-¢) - 7"_2 =0 (59)

For r <« wr?, we can drop the last term. For small r, the differential equation (52) for A,
then coincides with this equation.. Hence ¢ should approach h;. In particular, their small
r limits should be the same.

For small r,

2 2 92 2 2 2
= [c5J1(M) + CGNI(M)] — cs Z cos (M> + ¢ ; sin (E) (60)

r r Triw r Triw T

2r riw 2r . (riw
hy — c3 5—C08 +cy S—Sin
Triw T Triw T
giving 25 = C3,Cq = C4.
Combining with (58), we find
' 2 2

= e 7rw;1 Tn = ¢ ww;l Tn (61)

15



For ry ~ r > wr?, we drop the term with w.

Y arag 4ry
' T(T2+T%)8T[r(r +7'1)arh3]

with the solution

r2 r2\ !
h3:C7(1+‘—12')+08(1+—;)
r r

We match the small r behaviour of ks to the large r behaviour of hs.

" For small r

2 2
Ty r
hy — c7 (;«_2) + cg <;?)
w?rf Ar?
hy = cs ( 8r2 ) T (mﬂr‘})

_C3 2 9 . 464
Cr = - WwWTry Cg =

8

For large r,

Hence

Tw2rs

4 7 ( 7 h 1)
r3

with the solution

W

ha = 2r2

lay(wr) + BN (wr)]
For small r

B Twd [« 20
PR tT 2 \2 rwr?

We match this to the large r behaviour of /3

] 2
hs — (e7 + cs) + (67 - Cs);;—

16
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(62)

(64)

(65)

(66)

(67)

(69)

(70)



which gives

TWS o 2
cr+cg =4\ —— C7_68:_ﬂ

2 2

] 71
mwri (71)

Combining the various matching conditions, we find

B\ 72wbr$

The absorption cross section is then

miwr?

4

(73)

Oabs =

which differs from the D-brane calculation (34), though only by a factor of 2.

B. Low frequencies; w < 1

We will now consider the case w < Ty, i.e. wr? < r,. In this case we have the full

differential equation

2 (147 wen o P ET) o (P04 r) dr
~(+3) () - () + (s ) oo

We can divide the space into several regions as usual.

For r > ry, we get

w?hy + :—Bar[r:”arhd =0 (75)
with the solution
ha = /55 ladi(wr) + BN (wr)] (76)
For;l ~ 1> wr{, we find
1 4r]

Or[r(r* 4+ r3)0,ha) — hs =0 (77)

r(r2 +r?) r2(r? 4 r3)?

with the éolution

17



2 F2\ ! ‘
h3:C7 (1'{";‘—;’)‘}'08 (1+1"—;> (78)

As before the matching gives

vl a 2
crteg=\—— cr—cg= —f

2 2

(79)

For small r, the second solution hz behaves as

2 2
hs — ¢z (}%) + cs (2) (80)

In the near horizon region r < r,, the equation becomes

w2r4ri 1 4
T'é h] + ;gar[r387h1] — r—2h1 =0 (81)
with the solution
1
h] = ; [CIJV(U)) + CzN,,(U))]
2

_[riraw _ §

w_(2r2) "= Vi (82)

To get an ingoing wave at the horizon, we require
Cci = —iCQ (83)
For large r, this solution behaves as

=t (5) e () 3

In the intermediate region r ~ r,, the equation becomes

(r+r) g ( r’

r3 r24r2

4

Finding an analytical form for h; however seems to be impossible. We will instead use a
weaker scaling argument.
Defining p = ;=, the equation for £, can be rewritten

2 ) 3
p+1 P 4hy ‘
p3 8,, (p2 + 18,,h2) - ? = 0 (86)

18



There are two independent solutions which we call F;(p),: =1, 2. Then hy = 3By + e .

For small p, the equation becomes

4F;

2

1
p_gap[938pFi] - =0

Hence F; ~ p™ where n = —1 + V5.

(87)

Let us choose F} to be the solution that behaves as p‘1+\/5, and F3 to be the solution

~that behaves as p~1=V5. Then matching with the near solution h;, we find

N

,,,.27. ) 2
1'n
cl

(1132@)( '
e P(é)( L)

2
TiTnw

carltV® =

~

5
2

C2

For large p the equation simplifies to

1 4F;
;8,,[p8,,Fi] —— =0

2

with linearly independent solutions p?, p~2.

So for large p,

Fy = 211p° + 219p72 Fy = 2919° 4+ 292p7?

where x11, 212, 21, 22 are undetermined constants of order 1.

Matching to the intermediate solution ks, we find

2
™
C3T12 + €422 = Sy

n

2

n
€3T11 + CaT1 = s 2

1

We will henceforth forget about factors of order 1. To this accuracy, we have

-~ -

2 \ V5
C3T12 + €422 riw
Im|————— =) ~
C3%11 + €421 Tn

(88)

(90)

(93)

It is now straightforward to calculate the cross section. Upto factors of order 1, we find
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2.4 /.2 \V5 ) :
Im (é) N 7rw2rn (r1w> (94)
and so the cross s.ection is

r2,) V5!
Cobs ~ T (1—) (95)

Tn

which disagrees with the D-brane prediction (35). In particular, the expression above goes

" to zero for zero frequency, unlike the D-brane prediction which goes to a nonzero constant.

VI. CONCLUSIONS

We have found that for certain scalars, the D-brane model does not reproduce the semi-
classical calculation. This was also consistent with the nonrenormalization arguments of [24].
This suggests that the D-brane model breaks down beyond the moduli space approximation.

On the other hand, there is at least one case where the D-brane model works beyond the
" moduli space approximation. This is the analysis of [14], where a fourth order hypermultiplet
interaction was used to calculate the absorption cross-section for a fixed scalar. This was
- shown to agree with the semiclassical analysis, at least for r; = rs. A calculation of higher
angular momentum processes [19], which again goes beyond the moduli space approximation,
also yielded results which were correct upto unknown constant factors.These results suggest
that there might be a deeper reason for the D-brane-black hole correspondence. If so, there
may be a way to reconcile the disagreement pointed out in this paper.

We emphasize that if the disagreement cannot be resolved, then one can distinguish a
black hole from a D-brane even at very low frequencies. This may have implications for the

information paradox in these models.
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