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Abstract 

For minimally coupled scalars at low frequencies, the D-brane model has 

the same spectrum of radiation as the Hawking radiation from a black hole. 

We perform a similar comparison for another type of scalar which we call an 

intermediate scalar. In this case, we find that there is a discrepancy between 

the D-brane model and the black hole even for very low frequency scalars. This 

suggests that the model is only valid within the moduli space approximation. 
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I. INTRODUCTION 

There has been much progress in the past year in understanding the microstates of black 

holes through D-brane physics. The Bekenstein-Hawking entropy of certain extremal and 

near-extremal black holes can be understood through the counting of D-brane microstates 

[l-5]. Furthermore, the Hawking radiation from a black hole was shown in many cases to 

agree with the calculation of the corresponding process calculated in the D-brane picture 

[6-221. 

However, there is still a puzzle as to why these correspondences occur. The D-brane 

calculations are carried out in perturbative string theory, which requires weak coupling. 

The relevant coupling is actually geff = gQ where Q is the charge of the black hole. As 

emphasized in [lo], the perturbative picture is valid for ge.f << 1, whereas the semiclassical 

analysis is only valid for geff >> 1. Therefore, there is no reason to expect agreement between 

the two calculations. 

TO explain why these correspondences occur, an argument was proposed in [24] based 

on a non-renormalisation theorem. It turns out that the objects that carry entropy are 

, - 
hypermultiplets on the D-brane world-volume. The hypermultiplet moduli space is not 

corrected at strong coupling. Based on this fact, it was argued that the interactions in 

the D-brane regime would be the same as those in the black hole regime, as long as one 

stayed in the moduli space approximation, which is equivalent to low frequencies. Thus the 

cross-section for Hawking radiation calculated in the D-brane picture should reproduce the 

semiclassical calculation for very low frequencies. This was shown to occur for minimally 

coupled scalars in [lo], where the authors showed that even the greybody factors of the black 

_ hole could be reproduced in the D-brane picture, for low frequency emission. 

Not all scalars, however, are minimally coupled. There are other scalars which couple to +. - 

the charges and the background moduli. Examples of these are the ‘fixed’ scalars considered 

in [23,14], which have a different cross-section from minimally coupled scalars. There is yet 

a third type of -scalar, which we call an ‘intermediate’ scalar, which is different from both 
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minimally coupled and fixed scalars. 

The emission of intermediate scalars occurs at a higher order in the hypermultiplet 

interactions. This interaction vertex is not protected by a nonrenormalization theorem. 

The arguments of [24] th us d o not apply to this scalar and there is no reason to expect the 

semiclassical calculation to match the D-brane calculation. 

- In this paper, we will compute the semiclassical absorption cross-section of an interme- 

diate scalar and compare it with the D-brane prediction of [14]. We will show that there is 

indeed a difference between the two cross-sections. This is indirect support for the arguments 

of [24]. Other discrepancies between the D-brane model and the black hole description have 

been pointed out in [20,22,31]. 

We will first review the calculation of [lo] of the absorption coefficient of a minimally 

coupled scalar. Some technical problems with this calculation were pointed out in [22]. We 

will attempt to clarify these problems so that we can find the range of parameters for which 

the calculation is valid. 

We then turn to intermediate scalars. The computation of the semiclassical cross-section 

is somewhat difficult technically and we will do this in detail. First we review the calcula- 
r _ 

tion of the D-brane cross-section which was performed in [14]. We then derive the classical 

equation of motion for the intermediate scalar. We then calculate the semiclassical absorp- 

tion cross-section in two different parameter ranges and show that they disagree with the 

D-brane computation. Finally we present our conclusions. 

II. THE D-BRANE MODEL 

The five-dimensional black hole that we will consider is a near-extremal black hole with 

three charges. These correspond in ten-dimensional type IIB string theory to Qs five-branes, 
+. - 

- 

Qi one-branes and N units of momentum. We will take the 5-branes to be oriented along 

. x5,2s,x7,5g, x9, the 1-branes to be oriented along x5, and the momentum to be along 25. 

To reduce this solution to five dimensions, we compactify x5 on a circle of length 27rR 
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and each of x6, x7, 58, x9 on a circle of length 27rV1j4. Define the-new parameters 

(1) 

Define also the functions 

In terms of these parameters, we can write the five dimensional solution in the simple 

form [3,8,10], 

ds2 = Xm2i3fdt2 - X1i3( fm1dr2 + r2dR2) 

fn 
R2 = mRzc 

fl 

‘/=7’/” 5 
(3) 

In the D-brane model, we restrict ourselves to the range rg, r, << r1, r5. This is called _ 

. _ the dilute gas region [lo] and is the region where the D-brane computation is expected to be 

valid. In this range, we can use the effective string description in which we ignore antibranes 

and nonextremality comes only from the presence of both right and left moving momenta 

on the string. The number of left- and right- movers is constrained by 

NL-NR = N (4) 

E = 621Rrn+Q5R~V, + 1 
9 9 

&NL+'~R) 
03 

where E is the ADM mass. 
._ 

To zeroth order, the left and right movers can be treated as independent gases at tem- 
+. - 

peratures TL,7’~.These are determined by requiring the average total momenta to be NL 

. and NR respectively, and are 

1 
-= 
TL 

%( J--r,) 

?i 

1 
-= 
TR 

y( Jm+.rn) 
0 
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Interactions cause open strings to combine to closed strings and escape from the brane. 

This is interpreted as Hawking radiation. The Hawking temperature can be calculated to 

be [lo] 

(6) 

III. MINIMALLY COUPLED SCALARS 

In [lo], M a Id acena and Strominger calculated the absorption cross-section of a minimally 

coupled scalar incident on this black hole. We redo their calculation, emphasizing the 

questions of the validity of the approximations made. 

The equation of motion of a minimally coupled scalar of frequency w in this metric is 

f -$(fr3&Q) + w 2(1+$) (I+$) (1+$Iko PI 

. We are taking ro, r, << r1, r5 and wr5 << 1. 

This equation is not analytically solvable. To solve it, Maldacena and Strominger used 

. _ the standard method of solving the equation in two regions and matching the two solutions 

together smoothly on an overlap region. They called their regions the near and far regions 

respectively (th ese regions are defined more precisely below.) We will carry out their proce- 

dure of solving in the two regions and matching, paying special heed to the validity of the 

approximations made. 

For r >> r,, ro, the equation simplifies to 

-$$(r3&@) + w2 (1+$) (1+$D=o 

Defining @ = rv3i2Q, we find 

p. - 

(8) 

We see that the term w 2v is always small compared to $ and can hence be dropped for 

any value of r. 

. 
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The far region is defined as the region where we can also drop-the -$ term. This requires 

w2r,2r,2 
$7 * r >> wrlr.5.. (10) 

Thus the far approximation is valid for r > wrlr5. In this region the equation of motion 

simplifies t 0 

with the solution 

-$.(r3&@l) + w2Ql = 0 

a1 = J- ~[d(wr) + Phil( 

The near horizon region is defined as the region where we can drop the terms proportional 

to w2ro and w2rW2. 

As we said earlier, the term proportional to w2re2 can always be dropped. The term w2 

can be dropped provided 

A >> w2 * r << 1 
4r‘ \ , 

W 

This condition is definitely satisfied when r << rl,r5. In this region the equation of 

motion simplifies to 

f --p&( f r3dTQ2) + y 

(13) - 

with the solution [lo] 

Q2= A(1 - u)- i(a+b)‘2F(-ia, -ib, 1 - ia - ib, 1 - u) 

2 
TO W 

v= - 

r2 a=a 
b-.ff- 

~T~TR 

( i 1,: c&=0 

(15) - 

We+see that the near horizon approximation is definitely valid for r < rl, r5, whereas 

the far approximation is valid for r >> wrlr5. There is a large overlap region where both 

solutionsare valid.We therefore expect a smooth matching of these two solutions without 

the need for an intermediate solution. 



However, a puzzle was pointed out by the authors of [22]. The far region solution behaves 

for small r as 

The near region solution behaves for large r as 

@2= AE(l + gv - abwZn(w)) 

E= I’(1 - ia - ib) 

I’(1 - ia)I’(l - ib) (17) 

g= -$a + b) + ab(1 - 27 - $(l - ia) - $(I - 4) 

where 1c, is the digamma function and y = -$(l). 

These two expansions seem to have different behaviours. In particular, the second ex- 

pansion has a $!$ term which seems to dominate for small r. This is incompatible with the 

earlier statement that there should be a smooth matching. 

For the resolution, we consider a particular case of this problem, when ro = 0. The 

differential equation for @ in the range r << rl, r5 is then 

* _ 
(18) 

with the solution 

62 = gZo(rl, 4 + gzGo(v, a> 
wr5rl wrl r5r, 

’ = - 4r, 
cl!= 

2r2 

As before, we want to match 42 to @i at large r. For large r, i.e. small a, 

(19) 

+. - 

Fo(% 4 --+ Co(rl)Q Goh4 + &(l + 27’Yln(2a)) - --!-- 
WI) 

1 
=+ &2= 91Co(q)Wr;;;rn + g2--- 

C&l) 

In this form, the matching of 62 and Qr is obvious. it is 

92 = Co(q) $; 
i- 

4P 

” = -d~rlr5rnCo(q) 
(21) 

_- 
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However, suppose we first impose the condition that 62 at the horizon is ingoing. Then 

g2 = gl(iFo - Go) 

Snow the large r behaviour of 42 is 

62 = 91 [ iC&)LY - &p + w4w] (23) 

and we see the appearance of the y term. The analysis above shows that this term is 

not to be considered since it appears in conjunction with a constant term and is therefore 

always small. 

The same is true in the more general case when r. # 0. Hence the large r behaviour of 

a2 is not as in (17), but rather 

Cb2 = AE(l + gw) 

which can be matched smoothly onto the solution (16) giving the matching 

7rw3 a 

J 
--=AE - 

2 2 

The absorption amplitude is then 

IdI2 = 1 - ia ; $ 
a 2 

which for small E can be expanded to leading order as 

IdI = -41m t 
0 

(24) 

(25) - 

(26) 

(27) 

The absorption cross-section is then found by 

+. - 

gabs = $/Al2 = (28) 

In this case, we find --(using properties of the digamma function given in the appendix of i 

[22]) that 



This is exactly the cross section obtained in [lo] and agrees with the D-brane calculation of 

PI* 

The only approximation made was that wrg < 1. Hence the D-brane calculation and the 

semiclassical calculation agree in this range. This is consistent with the arguments of [24] - 

that the calculation is correct as long as we are in the moduli space approximation, which 

is wrg << 1. 

IV. INTERMEDIATE SCALARS 

A. Introduction 

We now turn to a different problem of scalar scattering. This involves a new type of 

scalar that we will call ‘intermediate’ scalars. 

The scalars we are considering are ultimately derived from a dimensional reduction of the 

fields of type IIB theory. We shall concentrate on the scalars coming from the dimensional 
1 _ 

reduction of the metric G,,. 

Recall that the five-brane is wrapped along directions zg,xs, 27, ~8, zg and that the one- 

branes are oriented along 25 (the momentum will also be along x5.) In that case, the 

dimensional reduction of the metric G,, p rovides the scalars G;j, ;, j = 6,7,8,9, G55 and 

G5i,i = 6,7,8,9. 

The scalars G;j with both indices in (6789) d irections are minimally coupled and are 

examples of the scalars considered in the previous section. The scalar G55 is a mixture of a 

‘fixed’ scalar and a minimally coupled scalar. Fixed scalars were considered in [23,14]. They 

have akross-section that goes to zero as the frequency tends to zero, unlike the minimally 

coupled scalars which have a nonzero cross-section at zero frequency. 

We will consider the third type of scalar, i.e. G5i, with one index along the one-branes 

and one perpendicular to them. We shall call these scalars ‘intermediate’ scalars. They 

- 
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have an absorption cross-section which is different from both the minimally coupled and 

fixed scalars. 

The fact that this scalar has a peculiar cross-section was already noted in [14], where the 

absorption cross-section for this scalar (as predicted by the D-brane model) was calculated. 

Our purpose here is to calculate the corresponding semiclassical cross-section and see if it 

matches the D-brane prediction. 

The reason that this is an interesting test of the D-brane model will become clear when 

we review the D-brane calculation of [14]. It turns out that unlike the minimally coupled 

scalars, the intermediate scalars do not couple at leading order. The first relevant coupling 

occurs at the next order, and this coupling is not protected by a non-renormalization theo- 

rem. An agreement at this order would indicate a deeper correspondence between the two 

descriptions. 

In fact, we find a disagreement. The semiclassical analysis at very low frequencies (the 

exact meaning of ‘very low’ is defined later) produces a cross-section which goes to zero as a 

power of w. The D-brane model produces a cross-section which goes to a nonzero constant 

at zero frequency. 
. _ 

We emphasize that this is not surprising, since there is no analogue of the nonrenormal- 

ization theorem here. 

We begin by reviewing the D-brane calculation performed in [14], for completeness . We 

then construct the classical equation of motion for the scalar h5i. We will do this in some 

detail, since some nontrivial manipulations are required. 

We then calculate the absorption cross-section from this equation of motion. It turns out 

that this cannot be done exactly for the whole region of parameter space. We will instead 

perform the calculation for two different cases, ro = 0, wri > r‘,, and ro = 0, wrz C rn . we 

can calMate the cross-section analytically in the first case. For the second case, we will not 

be able to find an exact cross-section but we can demonstrate the scaling behaviour. 



B. Intermediate scalars: the D-brane computation 

We review the calculation presented in appendix A of 1141. 

The metric scalars couple to the D-brane world-volume through the Born-Infeld action. 

I = -T,ff 
J 

d2ae -hl J--dety,b -/ab = G,, ( X)&Xp”d&-” (30) 

We shall use indices i,j running over 6,7,8,9 and indices m,n running over 5,6,7,8,9. 

So in this notation, the volume of the 4-torus part of the 5-torus which is orthogonal to the 

one branes is V = det( h;j), while the total volume is det(h,,). 

We expand the Born-Infeld action in fluctuations around flat space G,, = qP,, + h,,. We 

will take only h5i to be nonzero. 

One also needs to specify which fields are held fixed during this variation. This was 

worked out in detail in [14]. It turns out that the correct scalars which one should hold fixed 

are the scalars Gij, the 5-radius R = & and the six-dimensional dilaton $6. 

The first few terms in the resulting expansion in powers of derivatives of X are 

I = 
* _ 

-Teff J (LK + L + L3 + ..) 

Lh’= ;(a+x%xJ 

L1= ;h5@+ + 3-)X; 

L3 = -;htj@Xi(i3+Xa)2 + ~+X”(&X,)“) 

(31) 

where we have introduced new derivatives d+ = 30 + 85, d- = -80 + &. 

The term linear in X is not relevant since it only couples to a scalar which carries 

momentum in an internal direction, i.e. a charged scalar. Note that there is no term 

quadratic in X which couples to h5i. The first relevant term is cubic in X. 

Usifig this coupling, one calculates the absorption cross-section. The final result is (for 

. rl = r5) 

(32) 



In the extremal limit ro = 0, this reduces to 

o&(w) = 2r2ri ,yii (1+&T) 

If we also take w >> TL, this further simplifies to 

n3w3r6 
gabs = 

1 

8 

On the other hand, for w < TL, the cross section simply becomes 

Crabs = k2ri 

C. The Equation of Motion 

(33) 

(34 _ 

(35) 

We wish to find the classical equation of motion for an excitation of the field h51 E h. 

To compare with the D-brane calculation, we should keep the scalars Gij, G55, ~$6 fixed. 

To simplify the calculation a little, we will instead take the scalars Gij, G55, 4s fixed while 

h is excited. Usually G55 = &- and so the two choices are identical. This is no longer true 

- if off diagonal elements G5i are nonzero. 

We find that the perturbed metric is of the form 

h2 
G55 = R2 + - 

Jv 
Gsl = G15 = h 

G22 = G33 = Gq4 = Gil = fi (36) 

with the inverse metric 

G55 = & h G51 = G15 = ____ 
R22/T7 

($9 = G33 = G44 = 1 

fl - 

G" = & + & (37) +. - 

As we wished, G55 is fixed. We are however forced to vary G55. 

The point is that-- whether we take (Gij, G55, $6) to be constant, or whether we take : 

(Gij, G55,$6) t o b e constant, we get the same equation of motion for the field h. This is 

__. 
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because G55 is varying by an amount of order h 2. The equation of motion for h is linear and 

of the general form 

oh + f(Gj,G55,46)h = 0 (38) 

If we vary Gs5 by an amount of order h 2, this leads to a change in the equation of motion 

which is second order in h and can thus be neglected. We can therefore allow Gs5 + Gs5+-$. 

But as we have seen, this is equivalent to keeping G55 fixed. 

Note that if G;i, G55, C$ 6 are fixed, then so is the four-volume V4 = det(G;j), the five 

volume V5 = det(G,,) and the five-dimensional dilaton $5 = C&E. 

Let us now vary the Lagrangian to find the effective action for h. We will simplify by 

going to the extremal limit ro = 0 and also taking rl = r5. As before r, << rl. The moduli 

fields then take the form 

.fn 
R2 = 7RL v = v, 

1 
(39) 

Since the dilaton is constant, we can work with the string metric. The Lagrangian in 

string metric was derived by Maharana and Schwarz [25] and contains the relevant terms 
* _ 

L = R - ia~,,a~mn - G,, ( F;;“)p) ( F;;“)q) - Gpq Hpvp Hpvq - V5 ( F(5-brane92 w (40) 

First we have the kinetic terms -i8GmndGmn. Using a(V) = 0, we find 

1 (dh)2 -~ 
= L,07R2 

(41) 

(42) 

Due to the presence of cross terms like G5’(H~y5)(Hpv1), we must first integrate out 

HP,,+. After doing so, we also integrate out Hpv5. We also perform a similar operation for 
+. - 

the KK-gauge fields. In the end, we find a potential term [26] 

+I would like to thank A.Tseytlin for pointing this out to me. 
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The full effective action for h is thus 

L 
h 

(43) 

(44) 

The equation of motion is [26] 

R2 
-Xw2h - --$$ (45) 

We want to solve this equation and find the absorption cross-section. Since an analytical 

solution is not available, one must use the standard procedure of solving the equation in 

several regions and then matching these solutions together. 

In this case, even this procedure does not work for all the parameter range. Specifically, 

if wrf << r,, there are ranges of r where even the simplified equation is not analytically 

solvable. We can, however, find out how the cross-section behaves as a function of the 

various parameters r,, rl, ro although the exact numerical factors are unknown. (These can 

however be found numerically). 
. _ 

In the parameter range where wr,2 >> r,, the procedure for finding an approximate 

solution can be carried through and we can find an analytical expression for the cross- 

section. 

V. THE SEMICLASSICAL CALCULATION 

A. High frequencies; w >> TL 

The equation of motion is 

+. - 
4rt 

r2(r2 + ri)2 
h=O (46) 

Recall that R2 = 2RL. 

We now assume w >> TL i.e. wrt >> r,. 
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For r N r, the equation of motion reduces to 

(l+$j$$hl+(~)l+&-@hl) =o (47) 

Defining hl = 
$--n 

r2+r2Q, wefind 

( ) 1+; 
w2r4 
--$Q + $&(r3&Q) + Q 

dm 

r3 3, 

( 

&aJ~ =o 

) 
(48) - 

n 

The last term is always of order f and can be dropped relative to the first term. The 
7% 

resulting equation is 

which has the solution 

( ) 1 + $ r;’ 2 
~w Q + $&(r”&Q) = 0 

12 
‘@ = c#o(q, 7$)+c2Go(7, +f$) 

rfw 

‘= - 4r, 

Since we require an ingoing wave at the horizon, we require 

, _ 

cl = -ic2 

For r, << r << wrf , the equation of motion is 

w2r4 
-$hz + $%(r&hz) - fh2 = 0 

with the solution 

To match these solutions, we first introduce an auxiliary function [ satisfying 
+. - 

with the solution 

14 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) - 

. ^. 



(55) 

For r > r,, the differential equation (49) for 9 approaches the differential equation (54) 

for ~[. Hence the solutions should match smoothly, in particular, the large r expansions 

should be the same. For large r [30], 

8 --+ clco(q)(r2;; ++c2&)= c$yg) +c2 (J3 

where we have used 77 << 0 to write an approximate expression for Co(q). 

For large r, 

Matching the two solutions, we find 

Similarly for small r, define [ = z. Then we find 

w2r4 
-$d + +$.(n%$) - $ = O 

(56) - 

(58) 

For r << wrf, we can drop the last term. For small r, the differential equation (52) for h2 

then coincides with this equation.. Hence $ should approach ha. In particular, their small 

r limits should be the same. 

For small r, 

(b = [C.&$)+ c6&$)] + C5f$$s (%) $ c6{$sin (%) (60) 

h2 + c3,/$$u (%) +cJ{$sin (%) 

+. - 
giving c5 = c3,c6 = c4. 

. Combining with (58), we find 

c31clJyFi c4=c2J-;‘- : (61) 
- 
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For r1 N r >> wrf, we drop the term with w. 

4r;’ r2(r2 + +,“>” 
h3 = 0 

with the solution 

We match the small r behaviour of h3 to the large r behaviour of ha. 

For small r 

For large r, 

Hence 

c3 2 2 4c4 
c7 = -w rl 

8 
I&=-- 

7rw2rf 
. - 

For r >> rl, the equation of motion is 

w2h4 + $&(r3&h4) = 0 

with the solution 

For small r 

+. - 

h4 = d- 
$[d(wr) 4 /3IVl(wr)] 

h4=\i$(;---&) 

We match this to the large r behaviour of h3 

r: 
h3 ~+ (c7 + Cs) + (C7 - cd--$ 

(62) 

(63) _ 

(65) 

(66) - 

(67) 

(68) 

(69) 

(70) 
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which gives 

7rw3 a 
c7+cs= -- 

J 2 2 

Combining the various matching conditions, we find 

P 
0 

r2w6r6 Im - =-2 
CY 64 

The absorption cross section is then 

r3w3r6 1 
gabs = ~ 

4 

which differs from the D-brane calculation (34), though only by a factor of 2. 

B. Low frequencies; w < TL 

(71) 

(72) _ 

(73) 

We will now consider the case w << TL, i.e. wrt << r,. In this case we have the full 

differential equation 

-(I+$) (1+~)2w2h-r~;:‘++Pe)a(r;j~~r~l’a,h)+(r2~r?~r:)l)h=O (74) - * _ 

We can divide the space into several regions as usual. 

For r >> rl, we get 

w2h4 + -$&[r3&h4] = 0 

with the solution 

h4 = /- 
z[d(wr) + pNl(wr)] 

For rl N r >> wrf , we find 
+. - 

r(r2 \ r12)&[r(r2 + @&I - 4r’ r2(r2 + rt)2 
h3 = 0 

with the solution 
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(76) 

(77) - 



h,=,(,+$) +,(I+$)-’ 

As before the matching gives 

7rw3 a 
c7+c8= -- 

J 2 2 

For small r, the second solution h3 behaves as 

h:,+c;($)+c,($) 
In the near horizon region r << r,, the equation becomes 

2 4 2 

yhl + -$&[r3&hl] - fhl = 0 

with the solution 

hl = ; [cJv(w) + c2N+)] 

+e) vzfi 
To get an ingoing wave at the horizon, we require 

* _ 

cl = -icg 

For large r, this solution behaves as 

2 y l?(Y) 

-c2 w 7r (-) -1 
In the intermediate region r - rn, the equation becomes 

-@-‘T+Jr2)& (-&&hi) + $h2 = 0 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84 

(85) 

Finding an analytical form for h2 however seems to be impossible. We will instead use a 

+. - 
weaker scaling argument. 

Defining p = k, the equation for h2 can be rewritten 

p’,t’&,(&ii$h,) --$x0 (86) 
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There are two independent solutions which we call F;(p), i = 1, i. Then h2 = c3Fl + c4F2. 

For small p, the equation becomes 

$&,[p33,,Fi] - F = 0 

Hence Fi N p” wheren=-If&. 

Let us choose Fl to be the solution that behaves as p-l+&, and F2 to be the solution 

that behaves as p-leJs. The n matching with the near solution hl, we find 

A 
c4r, 1+A 

1 rfr,w 

( ) 
2 

- - r(1+$) 4 c1 

l-A_ c3r, 
r(g) 4 + 

---- ( - ) c2 
7r rfr,w 

For large p the equation simplifies to 

ib$[papFi] - T = 0 
P 

(89) 

with linearly independent solutions p2, ,om2. 

So for large p, 
. _ 

Fl = q1p2 + ZI~P-~ F2 = x21p2 +~22P-~ 

where xll, x12, x21, x22 are undetermined constants of order 1. 

Matching to the intermediate solution h3, we find 

(88) 

(90) 

2 
r‘1 

c3x12 + c4x22 = c7- 

ri 
(91) 

n 

CQxll + c4x21 = CS, 
r1 

(92) 

We will henceforth forget about factors of order 1. To this accuracy, we have 
+. - 

Im 
c3xl2 + c4x22 

c3xll + c4x21 
(93) - 

It is now straightforward to calculate the cross section. Upto factors of order 1, we find 



Im(L!) -?Tf$.G(~)Js 

and so the cross section is 

(94) 

(95) 

which disagrees with the D-brane prediction (35). In particular, the expression above goes 

to zero for zero frequency, unlike the D-brane prediction which goes to a nonzero constant. 

VI. CONCLUSIONS 

We have found that for certain scalars, the D-brane model does not reproduce the semi- 

classical calculation. This was also consistent with the nonrenormalization arguments of [24]. 

This suggests that the D-brane model breaks down beyond the moduli space approximation. 

On the other hand, there is at least one case where the D-brane model works beyond the 

moduli space approximation. This is the analysis of [14], w h ere a fourth order hypermultiplet 

interaction was used to calculate the absorption cross-section for a fixed scalar. This was 

* - shown to agree with the semiclassical analysis, at least for rl = r5. A calculation of higher 

angular momentum processes [19], which again goes beyond the moduli space approximation, 

also yielded results which were correct upto unknown constant factors.These results suggest 

that there might be a deeper reason for the D-brane-black hole correspondence. If so, there 

may be a way to reconcile the disagreement pointed out in this paper. 

We emphasize that if the disagreement cannot be resolved, then one can distinguish a 

black hole from a D-brane even at very low frequencies. This may have implications for the 

information paradox in these models. 

+. - 
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