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Abstract

The Ft center in CaO consists of an electron trapped in an oxygen
vacancy. The interaction between the electron and the even normal
modes of the surrounding octahedron of calcium ions can be
represented by an approximate Hamiltonian possessing an oscillator
term of U(5) symmetry and an interaction term of O(3) symmetry.

To separate repeated angular-momentum quantum numbers L 1n the
symmetric irreducible representations of O(5), four independent
methods have been studied. A remarkable coalescence of these
approaches in the case of L=6 suggests a natural way to make

the separation.
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1. INTRODUCTION

The Jahn-Teller (JT) effect refers to the spontaneous distortions
that symmetric molecular complexes undergo when the associated
electronic state is degenerate.1 A system of particular interest
to us is the Ft center in CaO, which consists of an electron
trapped in an oxygen vacancy. The immediate environment ot the
electron is an octahedron ot calcium ions. The two even modes,
which are labelled by the appropriate irreducible representations
€ and 72 of the octahedral group, possess almost exactly
coincident angular frequencies w ; moreover, the coupling of both
modes to the electronic p state is approximately the same.z'3
As a consequence of these accidents, the two components of ¢ and
the three components of Tz can be combined to form a spherical

d phonon whose five components are created by the second-rank

tensor ar. The Hamiltonian can be written
H = %ho)(af-a + a-af) + T(z)-(aT + a),

where the dot means the formation of an O(3) scalar. The first
term is an oscillator Hamiltonian for which the symmetry group
is U(5): the second term represents phenomenologically the
coupling between the phonons and the electron. Its magnitude is
determined by the amplitude ot the second-rank tensor T(z), which
acts only in the space of the p electron.

To solve tor the energies and eigenstates of H, we may use
a basis determined by either the first or second terms in H,

These choices correspond to the weak and strong JT limits respec-

tively. The latter has been recently described in detail.4
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For present purposes, we take the opposite point of view, and
consider the group-theoretical aspects of starting trom the weak
JT limit. This is the approach of O'Brien,3 who first showed
that the structure ot the line s » p could be accounted for by a

Hamiltonian of the form of H.
2. GROUPS

If we decide to work within the basis provided by the oscillator
part of H, then we are led naturally to the scheme

U(5) > 0(5) > 0(3),
in which the five-dimensional irreducible representation [1] of
U(5) leads down to (10) of O{(5), and thence to (2) of O(3),
corresponding to a single d phonon. Since phonons are bosons, we
have only to consider the symmetric representations [N] of U(5)
and (w0) of O(5). Now, the representations (w0) possess a rather
unusual property:5 under the reduction O(5) —» O(3), the sequence
of L values, taken in order of increasing L, tends to a well-
defined pattern as w— oo . Thus, if w is exactly divisible by 3,
the low-L structure (expressed in the traditional spectroscopic
labels) is S, F, G, I, I, K,.... If w is not a multiple of 3, the
structure fs D, G, H, I, K,.... Most of the previous theoretical
work on the F+'center has concentrated on states whose total
angular momentum J is 1, and such states can only arise by coupling
the p electron to either S or D. However, as soon.as states of
higher J are studied, multiplicity difficulties associated with
the internal labelling problem arise. The earliest instance of
this occurs for Lz6, corresponding to the two I states in the first

of the two L structures listed above. Because of the comparative
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simplicity of this case, it was decided to make a detailed study
of the various ways in which the two I states can be separated.
The aim is not merely to tormally define two distinct I states,
but rather to find an approach that makes their separation a
natural one. Such a result, if it could be obtained, would point

the way to a general method for resolving the internal multiplicities
3. FRACTIONAL PARENTAGE COEFFICIENTS

In the weak JT limit, the oscillator part of H is diagonal with
respect to the basis. Our attention is thus directed to a
calculation of the matrix elements of al and a. The reduced
matrix elements of al are related to the coefficients of fractional

parentage (cfp) by the equation
1
(¥ Il at gy = [Nz dy),

where ) is a state of dN with orbital angular momentum L.

The cfp factorize:
QIR | A (INWI[N-1]W' + [l}(lO))(W{QLI w'a'L' + (10)a),

where W and W' are irreducible representations of O(5), and
repeating values of L and L' are distinguished by ‘3 and A'.
The two factors on the right-hand side of this equation are
isoscalar factors; for example, the second factor is just a
Clebsch-Gordan (CG) coefficient for O(5) with the CG coefficient
for O(3) extracted. For simplicity, we pick the special case
defined by W'={w-1, 0), W=(w0), and N=w, for which the first
isoscalar factor is 1.

Many ot the cfp for which a given L and L' occur once in

W and W' possess a strikingly simple form. They can be found by
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applying tensorial techniques to evaluate matrix elements whose
values are known from general grounds. For example, all matrix

)(3)

elements of (d%ar)(l) and (aTaT are zero, since there are no
P or F states in dz. A number of cfp have been calculated by
O-'Brien7 by methods such as these. A typical example of a cfp

for which no multiplicity complications arise is
1
(d¥(wo)K {1 a" Y(w-1, O)M) = [77(u-2)(u-13)/306u(u-1)] 2, (1)

where w is a multiple of 3, and u=2w+1l. When w=6, for which a
K state exists in (60) but there is no M state in (50), the cip
automatically vanishes.

The problem of distinguishing multiply-occurring L values
would be ideally solved if cfp of a comparable simplicity’to‘the
one above could be introduced to define the states. It seems that
this is too much to hope for. The various options open to us will

now be considered with particular reference to the repeating I states
4. GODPARENTS

Perhaps the simplest way of constructing a specific I state is to
pick a multiplicity-free state of (w-1, 0) and couple a creation
operator to it. For example,

(atran®  Gren e, G e, (k) (o)

are I states corresponding to the godparents G, H, I, and K. When
w is a multiple of 3, the (w0) parts of the four I states above is
a linear combination of the two possible I states. It is easy to
see that the choice of a particular godparent |L) for one I state,
say I

implies (12i|L)=0 for the orthogonal companion I Th1is

17 2°

condition is enough to determine all remaining cfp for I1 and T_.
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At first sight, there is not much to choose between the
various godparents. All four lead to high primes in the denom-
inators of the cip. (For w=6, the primes are 251, 2113, 157, and
53 respectively.) This is not suggestive of a simple algebraic
structure. However, one godparent turns out to be much more
significant than the others. It is the G state, in terms of

which we now separate the Il state from the I2 state by means of

1l = . 2
We can now show that

1
[3U/718u(u-1)272,

(1,416) =

(r, {H) = 8(u-15)[(u-?)(u-2)/130u(u-1)Ul%,
(1,41H) =  10022(ut4) (u+6) (us11)/91(u-1)V1,
(1, 4n = 8(u+9)f:(u+4)(u-7)/u(u-1)U}%,
(1,411) = -220(u-2) (ut6) (wb11)/35(u-1)U1%,

etc., where U=z=61utlu+13)+1470. Although U does not break up into
two linear factors with rational coefficients, its presence in
the cfp does not detract too much from our ideal form.

Our definition of Il and I2 coincides with the ostensibly

. 8 .
arbitrary separation that Hecht made for the special case for

which w=6.
5. INTRINSIC STATES

The problem of defining the angular-momentum states of (w0) has
been studied by Williams and Pursey9 by extending the notion of
intrinsic states that Elliottlo used for SU(3). Although this

approach leads to non-orthogonal components, it is of considerable
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interest to us because it leads to an equivalent definition of IZ'

Consider the (unnormalized) state
13> = aDHP2aI )2 o)

of d¥, where w=3n. The subscripts to al denote magnetic quantum

numbers, the total value of which is given by

Moo= 2n+2 + (-2)(n-2) = 6.
According to the method of Wiiliams and Pursey, | &> is one of
the two intrinsic states that separate the I terms. It is only

necessary to rotate | §) through some angle defined by the Euler
triad {1, thereby giving li??n , and then project out an I term

by forming the Hill-Wheeler integral

= o) 18y, aq, (3)

(37)

where the double tensor D is related to the rotation matrices

by the equation11

(33) J-N_ . i *
Dy (1) = (1T 2nen? B L )T

I1f, now, the annihilation tensor a is applied to |I), only those

(22)_(20),(02) (22) _(20),(02)
(b ""a Yo1 2 Yo, -2

frame give a residue when they act on I%?)ﬁ. In doing so, they

introduce as coefficients D(fz) or D{%g).

components (D in the rotated

When these are contracted

with D(bg) in the integrand, the resulting tensors are of the type

D(Lls‘) or DfI_‘g), which implies that Ly 5. Thus <GlalI) = 0,
and so the I state defined by Eq.(3) is identical to IZ'

The second I state that the method of Pursey and Williams

)2n+1(atz)n-1

provides comes from the intrinsic state (ag 10>,

There is no point in developing the state in detail, since it is
not orthogonal to IIZ). However, it is worth noting that the

1
overlap is very small: for w=6 it amounts to only (6845/1064993)2

.
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6. GENERALIZED SENIORITY

For spinless bosons, seniority adds no information above that
provided by the irreducible representations of O(5). However, the
method of generating states of equal seniority by successive

(0)

application of the scalar operator (aTaT) suggests a possible
generalization. An obvious candidate for the new scalar operator
is (iTaTaT)(O), that is, the operator that creates the S5 state of

3 C : +.t,(0)
d”. For not only is it the most elementary extension of (alal) ,
but it connects states of common L in representations (w0) of O(5)
for which the low-L structure is identical.

In fact, (aTaTaT)(O) is equivalent to one of the four

operators that Sharp and Lam12

introduced to distinguish multiply-
occurring L values in the representations (w0) ot O(5). The others
are a;, (arar)éz), and (aTaTaT)g3). Sharp and Lam's idea is to
form stretched products of these operators, subject to the condition
that (aTaTaT)QB) occurs at most once. For example, the ML=6 state

of (60) can be formed 1n two ways, namely

(iraf)gz)(afaT)QZ)(aTar);2)10>, (4)
(afaTaf)(o)aE ag ag |0y, {(5)
and this indicates that an I state occurs twice. If we write
(5) in the form
(afafaf)(o)id3 1%, (6)

we see that it represents an 1 state that has been constructed
by precisely the method that we have in mind.
Of course, the actual states (4), (5), and (6) contain not

only the stretched components, but others as well. For example,
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(6) contains components ot (40)I as well as those of (60)I. When

the former are projected out, it is found, rather unexpectedly
perhaps, that the I state ot (60) is i1dentical to I,. To see why
this should be so, the 3-particle cip (IifIIj, (30)S) are required
(where 1, j = 1, 2). They can be calculated by combining products of

single-particle cfp. A detailed analysis reveals that
(r,{lr,, (30)s) = o. (7)

There is thus no way to form an 12 state by adding the phonon

triad (araTaT)(O) to an I1 state. This shows that a string of I1

states can be formed by writing f(a*afa*)(o)Jp ]d3 I,> and
projecting out all states that do not belong to the irreducible
representation (3p+3, 0) ot O(5).

If (Il{{IZ, (30)S) were zero, similar statements could be made
about the I2 states. This cfp does not, however, vanish; but a

number of remarkable cancellations lead to its being exceptionally

small. In fact,

. gu3 3
Lt (II{IIZ, (30)S)/(12{012, (30)S) = 8u ~(385}°2. {8)
1=ro0

So a string of I, states could be formed in an analogous way in

2

the limit of large u (or w).
7. DIAGONALIZING A SCALAR OPERATOR

A common method used by physicists to resolve multiplicity difficul-
ties is to separate the states by requiring that they be the eigen-
functions of some convenient operator -- perhaps one of physical
interest. The operator must be a scalar in O(3) so as not to mix
different L values. To be effective it cannot be scalar in O(5); nor

can it transform according to {(22) of O(5), since an operator of this
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2

type can be constructed from Casimir's operator for O(5) and L“.

The most elementary operator appears to be the three-body operator

T = (afafa*)(O)(aaa)(O).
By diagonalizing this operator within the I states of (60) we obtain
again the orthogonal pair I1 and 12; and Eqs.{7) and (8) show that
the (1112) separation is also opbtained when T is diagonalized within
the T states ot (w0) in the limit w— 60 . In general, however, we
must content ourseives with irrational eigenvalues.

Communications from Dr. M, C. M, O'Brien and Professor R, T.

Sharp proved very helpful in the work reported here.
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