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1 .  INTRODUCTION 

These last years fascinating speculations on the consequences of 
phase transitions , within the context of Grand Unifiec Theories , 
in the early universe have been set forth and "predict" numerous 
phenomena which might occur at temperatures as high as 1015GeV . . .  
a temperature far beyond present experimental possibilities . 
Moreover , although Grand Unified Theories do represent a natural 
generalization of the presently admitted theories ( essentially , 
the Weinberg-Salam model and Quantum Chromodynamics ) they unify 
theories whose experimental basis is not as rich as it should be 
( think to the Higgs ' particles , for instance ) ,  whose theoretical 
content is far from being understood ( e . g .  the basic problem of 
quark confinement is as yet unsolved )  ; where calculations are 
quite difficult to work out , owing to an intrinsic non-linearity , 
and hence to be compared with high energy experiments ; and , fi­
nally , where approximations are not undercontrol . 

However , at a less - slightly less - speculative level , one 
may consider the state of matter at densities and/or temperatures 
more in accordance with what is known at our laboratory scale : 
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in the early universe this would involve temperatures ranging from 
� . 1  GeV to � 100 GeV . 

At these temperatures and/or densities the hadrons become 
gradual ly close-packed ( fig . 1 )  and next transform into a quark 
soup or , in more elegant words into a hot quark plasma . 

This transition from hadrons to quarks ( i . e .  going back in 
time ) is generally assumed to be a phase transition and more speci­
fically a first order phase transition ( fig . 1 ) . Needless to say 
that it could well be that there does not exist any such phase 
transition whatsoever : think , for instance , to the analogy with 
the ionization process of a neutral gas ; all thermodynamic quan­
tities vary continuously from the atomic state ( �  haQrons ) to the 
plasma state ( �  quarks ) and there is no phase transition at all .  

It  should be clear that , in order to get a definite and con­
vincing answer to this question , the basic theoretical problems of 
Quantum Chromodynamics must be solved . Therefore , we have to assum.::_ 
the existence of such a first order phase transition . 

The usual way to handle such a transition consists in calcu­
lating the equation of state of the quark plasma , t�e equation of 
state of the hadron phase (with another set of theoretical assump­
tions ) and finally l ink both curves via a Maxwell plateau ( equali­
ty of pressures and chemical potentials in both phases ; see 
fig . 2 ) . 

The essential interest of phase transitions in the early uni­
verse - but not the only one - lies in the fact that they are asso­
ciated with violent fluctuations which might subsequently be at the 
origin of galaxy clusters or , more modestly , of galaxies , or even 
more modestly , of stars beolonging to the so-called "population I II "  
or , at least ,  " seeds" for an eventual creation of  galaxies ( in the 
latter case , the mechanism for such a creation remains to be found ; 
see e . g .  ( 1 ) . 

It fol lows that two main problems are to be considered . The 
first one deals both with the critical temperature at which the 
transition occurs ( or ,  equivalently , at what time it occurs ) and 
also with is  duration . It is clear . indeed , that one cannot create 
objects more massive than the mass contained ins ide the horizon : 
hence , the size of the horizon and the energy density at the time 
of the transition play a basic role . Furthermore ,  the duration of 
the transition determines in part the possibilty for the fluctu­
ations to grow sufficiently . The second problem deals with the 
spectrum of the fluctuations , a quantity generally put by hand at 
the onset of galaxy creation models . 

To these two main problems we should also add the question of 
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Fig1:1re 1 Various densities of the hadron fluid .  
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Typical phase diagram for a first order phase transition ; 
curve ( 1 )  provides the transition region while  curves 
( 2 )  represent the usual Maxwell plateau ;  curve ( 3 )  cor­
responds to the quark phase ; curve ( 4 )  represents a 
typical thermodynamical path of the early universe .  The 
intersection of curves ( 1 )  and ( 4 )  is the critical tempe­
rature we are looking for . 
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the nucleation of droplets of hadrons ( possibly by " impuri ties" ; 
see e .g .  ( in another context ) ( 27 )  in the quark plasma during the 
phase transition and also their dynamics . 

Surprisingly enough the number of articles devoted to quarks 
in the early universe is quite limited , and particularly those 
which are connected with the quark/hadron phase transition . They 
deal either with a zero-temperature universe ( 3 ) , ( 4) 1  or with 
the standard model ( 5 )  and , in the latter case the quarks may be 
partially confined ( 6 ) , ( 7 ) , ( 8 ) , ( 9 )  and ( 10 )  or ful ly confined 
( 1 1 ) , ( 12 ) , ( 13 ) , ( 14 )  and ( 15 ) . 

In this talk , all these questions will be considered and dis­
cussed in a phenomenological way , the only reasonable  one - in our 
opinion - when taking into account the present status of the theory . 
More specifically , we shall be concerned essentially with Olive ' s  
approach . 

2 .  DYNAMICS OF QUARK SYSTEMS 

Quantum chromodynamics is generally considered as being the correct 
theory of strong interactions and , as a matter of fact , it is quite 
consistent with present day experiments . However , owing to its in­
trinsic non-linearity calculations are very difficult to perform . 
Also , its vacuum structure is not yet understood and , more speci­
fically , the confinement mechanisms of quarks and gluons are still 
unknown . Thence the thermodynamics of the quark/hadron plasma can­
not be obtained directly from Quantum Chromodynamics as long as its 
theoretical problems remain unsolved . 

Of course , preliminary calculations performed within pertur­
bative expansions2 l have been carried out either at T=0 °K ( 17 ) , ( 18 ) , 
( 19 ) , or at finite temperatures ( 20 )  as to the quark phase . At T=0°K  
the calculations have been pushed to  the fourth-order in  the coup-
1 ing constant while  at T � 0°K  only the third order has been ob­
tained . Unfortunately , these last results are not particularly con-
clusive the more so since the various terms of the perturbative ex­
pansion are of the same order of magnitude , a circumstance that 
casts some doubts on the convergence of the expansion . Moreover , in 
the absence of an admitted confinement mechanism , the hadron phase 
cannot be properly described within this perturbative frame-work . 

Let us add that non-perturbative effects have tentatively been 
considered ( 21 )  but the matter is stil l  in a controversial state . 

Consequently , if  one wants deriving some results in view of 
astrophysiqcal situations - neutron stars , quark stars , quark era 
in the early universe - one must resort to some tractable phenomeno­
logical_ model . Such a model should contain both theoretical ingre-:--
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F igure 3 The quark equation of state and the hadron one , calcu­
lated with different theories , are l inked by a Maxwell 
plateau ( equality of pressures and of chemical poten­
tials ) .  
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dients from Quantum Chromodynamics and also some experimental input 
such as , for instance , a description of confinement . 

Among the various phenomenological possibilities at hand , we 
should mention various bag models and , mainly , the MIT bag model 
( 22 ) . Nevertheless , they are generally as difficult to handle as 
the original quantum chromodynamics .  However ,  and in spite of some 
attempts ( 23 )  it is extremely difficult to evaluate the density and 
temperature dependence of the bag because , precisely , of the absence 
of a convincing model of quark confinement 

2 . 1 .  The quark-quark potential 

The dynamical models considered - at a phenomenological level - in 
this paper are based on the use of an �'!_ hoc potential V ( r ) . Indeed , 
the hadron spectroscopy is quite reasonably well described with a 
potential ( except the pion mass , of course ) inserted in a Schrodinger 
- like equation . Usually , the parameters of the potential are fitted 
so as obtain the �-family and the result is  next checked on the 
Y-family and then applied to other hadrons . In this  way , the phenom­
enological potential adopted is tested between rnugh�y . 1  fm and lfm .  
Numerous potentials can b e  found i n  the litterature and some o f  them 
are listed in Appendix A .  

These phenomenological potentials generally contain essen­
tially two terms : one of them is supposed to take account of quark 
confinement ( it is an ever increasing function of the radial coor­
dinate r ; for instance a power law ) while the second one may cor­
respond to the one- gluon exchange in the static l imit .  

One of the most popular choice i s  

( 1 )  

where a and b are positive constants to be fitted with the use of + the charmonium spectrum and where the eight matrices A .  are the 
well-known Gell-Mann matrices ( the index i ,  in t or fn r , refers 
to the i-th quark ) .  It is sometimes called the "QCd potential6 since its 
Coulombian part corresponds to the one gluon exchange ( in this case , 
a is the QCD fine structure constant ) while the linearly rising term 
- the confining potential - seems to be suggested by lattice calcu­
lations ( or simulations ) .  

It  should be noticed , however , that the confining part of this  
potential ( or of other ones ) is  a little bit pathological . First , 
the t1 . t2 matrix has opposite signs when the quarks 1 and 2 are 
either in a singlet or an octet state , resulting in the absence of 
a zero of energy in this last case ( i . e .  when the coefficient of r 
is negative ) .  Perhaps more important is the fact that , in the singlet 
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state case , arbitrarily high energies can be reached resulting in 
pair creations and hence in a softening of the potential , not so 
simple to handle . A supplementary drawback of the confining term is 
that it  leads to unobserved van der Waals - like forces between 
hadrons ( 24 ) . For instance , a l inearly rising potential would lead 
to long range forces in l/r in nuclear matter . 

Consequently , we should be cautious while using such potentials 
and specially at low densitie s .  

An improvement o f  the potential ( 1 ) , whose Fourier transform 
is 

u < k l  ( 2 )  

( c  being a numerical constant ) ,  has been performed by Richardson 
( 25 )  ( see also ( 26 ) ) who replaced the QCD fine structure constant a 
by the effective one obtained from the renormalization group , i . e .  
by 

a ... 1 
---

( 2/ 2 ,  R.n k /I. } 
( 3 )  

where nf i s  the number of quark flavours that come into play at 
momentum k and where /I. is a scale parameter to be determined by 
experiment ( and this is not an easy task . . .  ) .  This procedure has 
the advantage of embodying the important pro�erty of asymptotic 
freedom , an important theoretical and phenomenological ingredient . 
F inally , a simple interpolation between the two regimes ( low k 
and large k )  leads to 

u ( k l  4 

3 
121! 
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3 )  ( 4 )  

Such a potential has been used by  Schoberl ( 27 )  t o  obtain the hadron 
spectroscopy . 

Once a potential is  chosen and its free parameters fitted with 
high energy data , one assumes that it  is  st�ll as good for quark-+ ... . 
quark interactions ( apart from unessential factors >.1 . >.2 ) what-
ever their flavor ( the c and b quarks used to fit the parameters 
are heavy ) . 

2 . 2 .  Quark masses 

The next dynamical question to be discussed is the one of the quark 
masses . Which one should be  introduced in the Schrodinger equation ? 
Is it  the constituent mass ( most authors ) ? the current mass ( ( ll ) ,  
( 12 ) , ( 1 5 ) , . etc . . .  ) ? the running mass ( 8 )  ? In fact there is  no 
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clear answer and the problem is quite delicate and complex .  This 
is the reason why , in Appendix A ,  the potentials given are gener­
ally accompanied with the masses used in the fitting of the para­
meters . 

In our opinion , in order to be consistent with e . g .  the QCD 
potential ( 4 )  - where results arising from the group renormaliza­
tion equations have been inserted - the running mass should be 
used , perhaps in such a way as to reduce to the current mass at 
high momenta and to the constituent mass at low momenta . 

In fact ,  the renormalization group equations ( see e . g .  ( 28 ) ) 
provide such a running mass ; unfortunately , they provide asymptotic 
forms only ( exactly as for the effective coupling constanti--and ,�-� 
moreover , they have !wo solutions . One of them is 

m ( p )  1 '\, ------
y 2 2 

Q,n ( p I A l 
while the other one , reads 

m ( p )  "' 2 p 

( with m "' 300 MeV ) where 
0 

12 y = 
33-2nf 

Theoretical arguments based on a possible 
chiral symmetry led H .  Pagels et al . ( 29 )  
solution ( 6 )  which they parametrize as 

m ( p )  = m ( o ) l\2 
2 2 l\ +p 

( 5 ) 

( 6) 

( 7) 

spontaneous breakdown of 
to favour the second 

( 8 )  

The fact that the renormalization group equations provide asymptotic 
forms only renders extrapolations to low momenta somewhat doubtful , 
owing to the fact that this corresponds to the non-perturbative 
region where our present knowledge fails . However , near p "' o ( or 
a few hundred MeV ) and at a phenomenological level , m ( p )  is prac­
tically constant , at least as a kind of average ( see fig . 3 ) . This 
property is valid  for the range of energies where the predicted 
spectroscopy of hadrons is correctly described . For instance , for 
the Richardson ' s  potential ( 4 ) , the constituent mass appears to be 
a valid approximation for a few hundreds MeV . 

To these considerations let us also add that non-perturbative 
effects , such as instantons , lead to other forms for m ( p )  ; for 
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Figure 4 Various quark masses to be ( possibly ) used in quark 
phase calculations . 
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instance , the use of instantons ( 21 ) provides 

12 m ( p )  "' 1 /p . 

2 . 3 .  Discussion and possible imp�ovements 

R. HAKIM AND S. COLLIN 

( 9) 

We first notice that most of the potentials used in  the l ittera­
ture coincide more or less between . l fm and 1 fm , i . e .  where they 
are actually tested ; more specifically , in the region where the 
potential is approximately linear . This might perhaps be an indica­
tion that at low densities such a phenomenology of dense matter 
could possibly contain some truth 

However , at higher densities - of the order of "' ( 1/ . 2fm ) 3 -
where the various potentials deviate from each other , different 
results can be obtained . 

On the other hand , this approach suffers from a number of draw­
backs which m�y be more or less cured . 

( 1 )  At high densities or equivalently , at short distances or at 
high momenta , relativistic effects should be taken into account and 
thus a Schrodinger equation approach is not adequate : a static 
approximation has to be corrected . This can be done either by 
taking account of relativistic corrections ( 30 )  or writing a two­
body Dirac equation for semi-relativistic quarks ( 31 ) . Among many 
other possibiliti es , it is also possible to write a Bethe-Salpeter 
equation ( in the ladder approximation ) where the gluon propagator 
is replaced by 

( 10) 

2 2 +2 ( where k = w - k , in equation ( 10 ) ) and where the vertex is  re-
placed by an "effective" one , i . e .  where a is in fact aeff ( k2 ) as 
given by Eq . ( 3 )  above . 

( 2 )  As important as the preceding point is a possible depen­
dence of various physical quantities , aeff ' V ( r ) , m ( k ) , etc . . .  on 
density and temperature . 

For instance , it  has been shown ( 32 )  that 

a ( O , O )  ( 1 1) 

2 2 where m [ T ]  "' T ; s imilarly , the same authors have calculated in 
a non-perturbative way ( as a self consistent solution of the Dyson -
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Schwinger equations ) the static l imit of the gluon propagator : a 
s imple Fourier transform of the latter quantity gives the potential 
and its density/temperature dependence . 

Another attempt by Zhao Wanyun ( 33 ) , within the context of 
perturbation theory , provides 

v ( r , T )  = o.5/2 3 

321T3 
1 exp . [ -2m [ T l . r ] 

T2r2 ( 12) 

However , these attempts and several others are not yet completely 
conclusive . 

( 3 )  Another importar1t problem linked with the passage from the 
non-relativistic case to the relativistic one , is the following . 
When one considers the Coulomb - like part of the potential ( 1 ) , 
for instance , it  should be considered as the fourth-component of the 
gluon field ( it corresponds to the static l imit of the one-gluon 
exchange term of a perturbative expansion ) .  

On the other hand , it  is well known that either a Lorentz -
scalar potential or a four-vector potential lead to the same kind 
of non relativistic l im it .  Consequently , if the potential is to be 
considered as the fourth component of the gluon field Aµ , it must 
enter the relativistic equation under consideration through the 
gauge invariant combination 

( 13) 

while  if it is  a scalar , i t  must ap_pear in the mass term as 

m + m + gV , ( 14) 

assuming as usual a Yukawa - like coupling with the quark field . 

To these two possib i l ities , one should add a third one , which 
is intermediate : the confining potential might be a Lorentz-scalar 
to be inserted in the quark mass as indicated in E q .  ( 14 )  while the 
" interacting" part - the gluonic one - should be considered as the 
fourth component of a four-vector . 

These three cases may be summarized in the following three 
expressions for the relativistic energy 

( i )  s ( p )  = {p + m2 ( p ) } 1 12 
+ V ( r )  

( V  := A 0 ) 
( i i )  s ( p )  +2 + 2 1/2 {p + [ m ( p )  + V ( r )  J } 

( 1 5) 

( 16) 
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( V  = Lorentz scalar ) 

( i i i )  ( 17) 

( intermediate case ) . 

As to this last point - considered by Boal et- al . ( 1 5 )  - i t  
should b e  noticed that a scalar field i s  introduced-ab initio in 
the SLAC bag model ( 34 )  or in a simplified version ( 35 )  and that its 
treatment is certainly simplier than the use of the hamil tonians ( 16 ) 
or ( 17 ) . However , despite the pseudo-Thomas-Fermi calculation of 
Boal et al . ( 1 5 ) , it  leads to partial confinement only ( 36 ) , ( 37 )  ; 
see also (38 ) : quarks appear to be heavy at low densities and l ight 
at higher ones . In any case , if a scalar field is introduced so as 
to mimic confinement , it should be considered as the result  of a 
complex process ( interactions with scalar gluonic  modes ? )  sterning 
from Quantum Chromodynamics . 

3 .  STATISTICAL DESCRIPTION OF THE QUARK PLASMA 

If the dynamical approach considered above were completely correct 
and trustworthy , we should eventually find the thermodynamical 
parameters that characterize the ( possible ) phase transition from 
hadrons to quarks . This would demand a proper treatment of two­
body and three-body correlations . Usually two-body correlations can 
be handled although with technical difficulties while  three-body 
correlations can be treated - in a non quantum framework - only in 
quite particular cases . Needless to say that this is an almost im­
possible task in this context . However , one might perhaps think of 
these three-body correlations as already included , at least by part , 
in the phenomenological confining potential ? Furthermore ,  while  
three-body forces appear to  play an extremely small role  in hadron 
spectroscopy , at the temperatures where the transition is supposed 
to take place ( � 280 MeV ) only few baryons ( � 3% according to 
Olive ' s  calculations ( 1 1 )  and ( 12 )  are produced . 

Therefore we are led - as other - to deal with the simplest 
tractable statistical approximations essentially mean field ap­
proximations such as Thomas-Fermi ' s ,  Hartree ' s  or Hartree-Fock ( see 
e . g .  ( 39 ) ) which are quite easy to deal with . Fortunately , these 
approximations are generally valid at high densities ( in the Quantum 
Chromodynamic case , the validity of the Hartree approximation at 
high densities has been shown by E .  Alvarez ( 40 ) , l eading thereby to 
a more or l ess correct description of the quark phase . As the density 
is lowered , this kind of approximation is less and less valid es­
pecially in the physical ly interesting region of the quark-hadron 
phase transition ( assumed to exist , of course ) .  
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It fol lows that the hadron phase presumably cannot be described 
from these quark dynamics and statistical approximations and another 
model must be used . This is at least as difficult as for the quark 
phase ( ! )  so that we shall use , for the sake of comparison , the 
very simple  model considered by Olive ( 11 ) 1  ( 12 ) . ( Thomas-Fermi ap­
proximation for hadrons ( mainly TI -mesons ) interacting via the ex­
change of various particles ( w-mesons as to the baryons ) ) .  

In this  paper , where mean field approximations are used , a 
quark ( or an antiquark ) i s  moving freely in the average potential 
of the other quarks and antiquarks . As a consequence ,  one can get 
rid off all the A-matrices algebra since 

< U ( r )  > = < t1 . t2 V ( r )  > ( 18 )  

simply reduces to the average q-q potential , owing to the fact that 
the system as a whole  is in a color singlet state . 

3 . 1 .  Statistical description of the quarks 

Let us first consider the statistical state of the quarks , the gluons 
being dealt with later on . There are only five known flavors ( u ,  d ,  
s ,  c ,  b )  and the corresponding quarks differ only by their masses 
( at the temperatures considered , only the u, d,  s quarks play a role 
s ince mu � md � 350 MeV and ms � 550 MeV , while  me � 1 . 5  GeV and 
mb � 4 . o  GeV ) . 

Let us consider the species i its average occupation number 
is 

< n .  ( p )  > 
l 

1 ( 19) exp . [ S (  s . ( p ) -µ ) ] +l ' 
l 

where B = ( kBT ) -l ; where µ is  the chemical potential , which we 
take to be zero in the primordial universe , due to the fact that , 
at high temperatures ,  the quarks coming from the B � 0 matter con­
stitute only a small  " impurity"  compared with the ones produced by 
the background b lackbody radiation . In Eq . ( 19 )  s . ( p )  is the exci­
tation spectrum of the quasi-quarks within the medium . 

( 1 )  In the Thomas-Fermi approximation , first considered by 
Olive in this  context , it  reads 

+2 2 + 1/2 s . ( p )  = {p + m ( p ) }  + V ( d ) , i = 1 , 2 ,  . . .  , 5  l ( 20 )  
where d i s  the average interquark distance , given by 

47f d3 
3 ( 21) 



42 R. HAKIM AND S. COLLIN 

where n is the total quark density , i . e .  including both all spe­
cies , a�l colors and also antiquarks 

i=5 
nQ i; 

i=l 

with 

n .  
l 

< n .  ( p )  > ' 
l 

where gQ is the degeneracy factor 

( 22 )  

( 2 3 )  

gQ = 2 ( particle/antiparticle ) x 2 ( spin )  x 3 ( color ) ( 24 )  
= 12 . 

Here two points are worth mentioning . 

First and unlike what was done by ( 1 1 )  and ( 1 2 ) , d should not 
necessarily be given by Eq . ( 21 ) . For instance , at extremely high 
temperatures , the quark density is s imply proportional to the photon 
density ( there are only free particles in the medium and each of 
them contribute with the number of degrees of freedom they carry ) , 
i . e .  by 

where the photon density is given by 

n y a T3 

( 25 )  

( 26 )  

( a  being the Stefan constant ) ,  so that we could take d as being 

12 1/3 
d = ( gQa11 ) 1 

T ( 27 )  

I n  fact ,  Eqs . ( 21 )  and ( 27 )  represent two extreme cases : the low 
temperature case and the high temperature one , respectively . In 
fact , the correct screening factor d should be calculated from a 
study of the proper oscillation modes of the quark plasma . This is 
evaluated below . 

Next , in Eq .  ( 22 )  or ( 25 )  only quark densities come into play :  
this is due to the fact that a given quark is sensible only to col­
or irrespective of the species considered in the interaction . How­
ever , this has been criticized by Boal et al . ( 15 )  who argued that 
gluon contributions ( and hence gluon density ) should be included in 
the evaluation of d .  Their argument essentially amounts to saying 
that since quarks feel colored states , gluons should necessarily be 
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taken into account . In fact ,  this argument rests also on their sta­
tistical treatment of gluons . Although it  is perfectly right to 
argue that way , we shall take the opposite view for consistency 
reasons which we explain below . 

F inally , Eqs . ( 19 ) , ( 20 ) , ( 22 )  and ( 23 )  lead to the following 
self-consistent equation 

2 
dp p 

exp . [ f3 E; • ( p )  ] + 1 ' l 
( 28 )  

where �pri_ori E; i ( p )  depends on n0 through d .  I ts solution provides 
the total quark density as a function of f3 which , once inserted into 
< n .  ( p )  > ,  allows the determination of the various thermodynamical 

l 
quantities , such as the energy density 

i=5 

p L: p i  i=l 
( 29 )  

with 1/2 gQ ) 2 . [ p  2 2 
dp � + mi ( p ) J 1 V ( d )  p i  + n .  

2 2 exp . [ f3  E; • ( p )  J + 1 2 l 
l 

( 30 )  

where the factor 1/2 occuring i n  the last term i s  due to the need 
of avoiding a double counting of the interaction ( note that in the 
mean field approximations considered in this paper , it appears in 
a natural manner ) .  S imilarly , the pressure is  obtained as 

i=5 
p L: P .  

i=l l 

where 

1 + + P .  < v p > l 3 
the Hami ltonian used shows that 

+ aH v = + 
ap 

+ a [ p2 2 + 1/2 
v + m .  ( p )  J + l ap  

which , in the case where m . ( p )  
l 

( 31 )  

( 32 )  

( 33 )  

( 34 )  

canst . ,  reduces as usual to 
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or 

+ 
v 

P .  
l 

2 1 /2 +/ [ +2 l p p + mi 

3 2 

J p ( a / ap ) [ p  + 
dp 

exp . [ S � . ( P ) 1 l 

2 1/2 
m .  ( p ) ] 

l 

+ 1 

( 3 5 )  

( 36 )  

F inally the whole thermodynamics of the guarks is  comp letly deter­
mined in this approximation and it remains to evaluate the contri­
butions of the gluons . 

( 2 )  In the true Hartree approximation ( see e . g .  ( 39 ) ) ,  the 
average potential is given by 

< V ( r )  > ( 37 )  

which reduces to 

< V ( r )  > = n0 J 3 d r V ( r )  ( 38 )  

i n  the case of a homogeneous thermal equil ibrium , as considered 
here . In this case , the quasi-quark excitation spectrum is s imply 

2 2 112 ) 2 � i ( p )  = [ p  + mi ( p ) ] + 4TI n0 dr r V ( r )  ( 39 )  

I n  fact ,  the integral in this  last equation does not extend to in­
finity but to the screening length d to be taken either from E q .  
( 21 )  as Olive o r  from EQ:"--r27)as-wagnoner et al . ( 7 )  or rather in 
an intermediate way as is done below . 

When one takes Eq .  ( 21 )  for d and in the high density l imit 
n0 >> 1 ,  the last term of Eq. ( 39 )  can be written as 

41T n0 � dr r2 V ( r )  � 41T n0 d3 V ( d ) 

� 4TI n 3 V ( d )  Q 4TinQ 
1/3 

� 3 V [ ( 3/41Tn0 ) ] .  ( 40 )  

Up to the factor 3 ,  this i s  Olive ' s  assumption ( actually , i f  one 
takes his assumption seriously , his potential energy is unde�esti� 
mated by a factor 12 , corresponding to the number of quarks felt by 
a given quark ( i . e .  12  is roughly the average number of spheres 
tangent to a given one in an assembly of equal radius c lose-packed 
spheres ) ) .  
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The thermodynamical quantities are calculated in a similar way 
as previously except for the energy density which reads ( for the 
i-th species ) ( see  ( 3 9 ) ) .  

gQ 

2n2 

so that 
i=5 

p = l: 
i=l 

J +2 1 j 3 
. 

dp p <ni ( p ) >  { t  i ( p )  - 2 nQ . 
d r V ( r ) } ( 41 ) 

j 

gQ 

2n2 

+ 2TI  

1/2 +2 dp p <n . ( p ) >  l 
(2 p + 

2 m .  ( p )  J l 

d 
+ 2TI nQ j n .  

l 

j +2 dp p <n . ( p ) >  l 

2 I �  2 nQ dr r V ( r )  
.Jc 

dr 2 r 

[ +2 p + 

V ( r )  

2 + m .  ( p ) J 
l 

( 42 )  

1/2 

( 43 )  

These last equations show that i n  the Hartree approximation 
there is no need of any particular technique to deal with the double 
counting of the average potential energy . 

( 3 )  The next approximation which we consider in this paper is 
the Hartree-Fock one , because of the particular importance of ex­
change correlations at relatively low densities and/or temperatures .  
Also it has been proposed to deal with nuclear forces as the result 
of exchange forces between quarks ( 41 ) . 

In this case , the excitation spectrum is given by ( 39 )  the 
fol lowing integral equation 

t i ( p )  = t 
�artree ( p )  

'\, 

j d3p 1  V ( p ' -p )  . <ni ( p '  ) >  , \44 ) 

where V is the Fourier transform of the potential under considera-
tion . This self-consistent equation can be solved by iteration and 
the result is used in the calculation of the pressure and of the 
energy density . 

3 . 2 .  Statistical treatment of the gluons 

The statistical analysis given above for the quarks can be repeated 
mutatis mutandis for the gluons . In particular , in our mean field 
approximations , their occupation number < n ( k )  > is  given by g 

< n ( k )  g 
1 > = - ������ 

exp . r riw ( k )  J - 1 
( 45 )  
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where w ( k )  is their excitation spectrum . From Eq .  ( 45 )  the contri­
butions to pressure , energy density and gluon density are found via 
standard formulae ( one should also remember that there are e ight 
kinds of gluons ) .  

The essential problem is thus the one of the derivation of the 
excitation spectrum w ( k ) . Olive ( 11 )  and ( 12 ) , and also Boal et al . 
( 15 ) , chase 

w ( k )  = l k l  + V ( d )  ( 46 )  
which embodies the facts that ( i )  the gluons are massless and ( i i )  
they are interacting via the potential v ( the same as"the quark­
quark potential and with the same Thomas-Fermi approximation , in  
Olive ' s  article ; note that V = bd , the confining potential . in  his  
paper ) which therefore contributes to  the gluon en�rgy w ( k )  by the 
factor V ( d ) . 

This approach can be questioned on several points . First ,  when 
considered inside matter , the gluons become massive , although one 
could distinguish ( see e . g .  ( 32 ) ) between an "electric" and a "mag­
netic" mass ( in fact ,  they are of the same order of magnitude ) . 
Next , the gluons do not appear as such within the medium but only 
as modes ( or quasi-gluons or plasmons ) propagating in the quark 
plasma . 

\le are thus faced with two problems : ( i )  how to confine the 
gluons and ( i i )  how to calculate the modes ( i . e .  the dispersion 
relation ) of the quark plasma ? 

In fact , as to the first problem , there is no particular need 
to confine the gluons since they are j ust modes propagating in the 
quark plasma : if the quarks are confined ( below a critical tempe­
rature ) there is no longer any possible modes ! Hence , no quarks 
implies no gluons . 

The second problem is much more difficult to deal with essen­
tially because of the lack of control of the approximations used . 
For instance , the Hartree approximation and the use of color singlet 
states as physical states lead to an excitation spectrum ( 37 )  s im­
ilar to the one of a quantum elctrodynamical plasma ( 42 )  and ( 43 ) . 
Other non-perturbative approachs provide other results ( 32 ) . In the 
spirit of the approach used by Olive or by Boal et al . ( 1 5 )  as well 
as in this article , we should actual ly use a spectrum derived from 
our dynamical model ; this would be consistent with what was done 
previously and does not present any technical difficulties . 

However , a common characteristic of most of the spectra ob­
tained is that they are of the form 
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2 + 2 +2 w ( k )  � w + k ' p 

47 

( 47 )  

2 where the plasma frequency w may differ slightly from model to 
model and also for "electricfl and for "magnetic"  modes . E q .  ( 47 )  
may sometimes b e  a good approximation in the two l imiting cases of 
long and short wavelengths . For the plasma frequency wp , instead of 
the relativistic quantum p lasma frequency ( 42 )  and ( 43 ) . 

2 w . p l  
411a 
m ) < n . ( p ) > 

l 
( 48 )  

a natural generali zation including both the results o f  the renor­
malization group equations and the excitation spectrum adopted for 
the quarks , can be used ; it reads 

2 w . = 411 pl ) Cl ( p ) 
m .  ( p )  

l 
< n .  ( p )  > 

l 
( 49 )  

Note also that there exists as many gluonic modes as quark flavors 
and , usually , with a third order degeneracy . 

Finally , we are in position to come back to the screening 
length d which should be  derived directly from the quasi-gluons ex­
citation spectrum . In fact , K .  Kaj antie et al . ( 3 2 )  found in their 
non perturbative QCD approach 

d � ( 1/aT2 ) elect . 

d mag . 

1/2  

1 3/2 1/2  
(-) } 2 

Cl 

( 50 )  

-1 which both behave as T , showing thereby that Eq .  ( 27 )  is not a so 
bad approximation . A more phenomenological approach for cases inter­
mediate between the cold and the hot case is , more conventionally , 

( 51 )  

where Vth is a relativistic thermal velocity ( see e . g .  J . L .  Synge 
( 44 )  or R .  Hakim et al . ( 45 ) ) .  

4 .  FLUCTUATIONS 

The calculation of fluctuations for various physical quantities of 
importance in cosmology , such as densi ty or energy dens ity ,  can be 
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performed in a particularly simple way within the framework of our 
mean field approximations . In particular , their spectrum can be 
obtained quite easily and also the typical coherence length asso­
ciated with them . 

Let us focuse our attention on the case of baryon number 
fluctuations or , equivalently , on the fluctuations of the quark 
density . Their spectrum < on2>w , k  can b e  obtained from the spectrum 
of the quasi-quarks , <on2>8 , k • propa�ating within the plasma and 
from its "dielectric" constant E ( w , k )  ( see e . g .  ( 46 )  and ( 39 )  ; 
the relativistic case has been considered by H .  Sivak ( 47 ) ) through 

2 0 
<on > w , k  
I d w , k l I 

while the k-spectrum is given by 

r ) dw 

2 0 
<on > w , k  
I d w , k l I 

( 52 )  

( 53 )  

It should be noticed that this last equation actually contains two 
terms : one of them represents the coherent fluctuations , i . e .  of 
the plasma waves , corresponding to the implicit  pole terms in the 
denominator I E ( w , k )  I while the other one is nothing but the thermal 
fluctuations . The quasi-quark spectrum < on2>0 is essentially a 
quasi-free fermian spectrum and has been cal�D�ated by H .  S ivak ( 47 )  
in the relativistic case as 

a x ( o 1-<n ( p ) > )  . o [ E + iE +aw ] x 9, p p 

2 +2 
r w -k 2 ] x �-2� + 2Ep + 2 awE

P 

In this equation , one has set 

E - E ( p )  p 
Ea - E ( p+ak ) . p 

x 

( 54 )  

( 5 5 )  
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Moreover , the o - term represents a vacuum term which has to be 
dropped in our �fienomenological approach . It can also be remarked 
that the term corresponding to i=l being a high frequency term can 
be dropped in our cosmological context since we are essentially 
interested in more or less static modes and/or low wave lengths . 

As to the calculation of the " dielectric" constant E ( w , k )  
there i s  no particular problem i n  this approach , and only relativ­
istic generalization ( 36 ) , ( 49 ) , of the usual calculation ( 46 ) , 
( 48 ) , ( 3 9 )  must b e  considered . 

As a final remark we may notice that , if we admit T . D .  Lee ' s  
( 50 )  suggestions as to the confinement mechanism of a color dielec­
tric constant smaller than one in the hadron phase , then an enhance­
ment of the density fluctuations should result ( as shown an Eq . 52 ) ) 
in the transi tion region . This might be  considered as an indication 
that the potential actually used leads to a confining phase transi­
tion , eventhough higher correlations were not dealt with . 

5 .  CONCLUSION 

The above discussion gives idea of numerous sources of uncertain­
ties occuring in the dynamics and the statistical treatment of the 
quark-gluon plasma : uncertainties on the "correct" quark-quark 
potential ( if any ) ; uncertainties on the quark masses ; difficul­
ties of a treatment of three-body correlations , etc . It should 
also be noticed that the hadron phase is as  uncertain as  the quark 
phase ! 

Consequently - sti l l  assuming the existence of a first order 
quark-hadron transition - it is not surprising that various calcu­
lations , resting on different assumptions , give rise to critical 
temperatures ranging from � 150 MeV to 600 MeV ! On figure 5 we 
have plotted the pressure of the quark-gluon plasma versus the 
temperature and , for the sake of comparison the ideal gas case has 
been drawn . The " error bars" indicate ranges of pressure within 
whi ch pass curves corresponding to different assumptions . Inciden­
tally , some of our curves stop at a given temperature ( of the order 
of 180 MeV to 250 MeV ) where the self-consistent equation for n has 
no solution : they are indicated by dots and a hached region in the 
figure . These temperatures should not be interpreted as the criti­
cal temperatures we are looking for but rather as the indication 
of the breakdown of our statistical approximations . 

Finally , even this phenomenological approach does not give 
credible answers to our question ( as far as cosmology is concerned ) :  
this  will  be our ( pessimistic ) conclusion . 
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Figure 5 

R. HAKIM AND S. COLLIN 

Pre ss ure ( G eV4) 

T em p e r a t ure ( G eV )  
0.3 1.0 

The pressure-temperature diagram of the quark phase 
of the early uni'verse ; the ideal gas case has been 
plotted for the sake of comparison . The "error bars" 
indicate l imits within which pass various curves cor­
responding to several assumptions discussed in the text . 
The dots indicate some points where the self-consistent 
equation for the density has no longer any solution , 
for various assumptions . 
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APPPENDIX : Some phenomenological potentials 

Ther are , at the present moment , dozens of more or less satisfac­
tory phenomenological quark-antiquark potentials and we mention 
only a few among them . 

( 1 )  

( 2 )  

( 3 )  

Pure confinement 

v ( r )  

"QCD" 

v ( r )  

= br 

potential 

a 
= - -

r + br 

Improved "QCD" potential 

v ( r )  81T 
27 A f Ar-f ( Ar ) ) - Ar 

where , 

( 25 )  

f ( t )  1-4 r dq sin qt { 1 

q 

with ( 27 )  A = 430 MeV , mu 

( 4 )  "Gluon condensate" ( 51 )  

4a 8 [ ( 3a ) v ( r )  = - 3r + 5 { 2r 

with a = . 4  and M0 = 330 MeV 

( 5 )  Martin ' s  potential ( 52 )  

2 9-n ( l+q ) 

ma 410 MeV , 

5 2M 2 2 1T 0 r + l 

�} 2 q 

m = s 

1 /2 

v ( r )  = - 8 . 064 GeV + 6 . 870 r ' 1 ( GeV ) 1 · 1 . 

FOOTNOTES 

625 MeV . 

3a 
2r 

1 )  Although this  article deals with the transition to a pion-con­
densed state , most ( if not all ) the results apply to the quark-
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hadron phase transition as wel l .  
2 )  Let us note , however , some Hartree-Fock calculations ( 16 ) . 
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NOTE ADDED : 

Although they are not directly related to the quark-hadron transi­
tion in the early universe ,  we would l ike to mention two interest­
ing papers connected with the subj ect . In the first one ( 53 )  em­
phasis is  put on results from Monte Carlo simulations of gauge 
theories on a lattice which , indeed , do exhibit first order phase 
transition interpreted as a quark-hadron transition . In the second 
article ( 54 )  ( 55 )  s imulations with classical quarks interacting 
via a s impl ified Richardson ( 25 )  potential are used in a study of 
primeval fluctuations . 


