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Abstract

There are two quantum loopholes in the Singularity Theorems of General Relativity: viola-
tions of the classical energy conditions and quantum �uctuations of the spacetime geometry.
In this dissertation, we study the �rst loophole and approach Singularity Theorems through
the energy condition. We review the algebraic approach of Quantum Field Theory for the
Klein-Gordon �eld and, within it, we review the derivation of a quantum energy inequality
for Hadamard states on globally hyperbolic spacetimes. However quantum energy inequali-
ties cannot be directly applied to Singularity Theorems, we show that generalized Hawking
and Penrose Theorems are proven considering weakened energy conditions inspired by them.
Hence, Singularity Theorems do hold under subtle quantum e�ects. The question of whether
interaction or backreaction e�ects could break them is still open; there are reasons to expect
both answers.

Keywords: Singularity Theorems; General Relativity; Negative energy; Quan-
tum energy inequalities; Algebraic Quantum Field Theory.





Resumo

Há duas brechas quânticas nos Teoremas da Singularidade em Relatividade Geral: violações
das condições clássicas de energia e �utuações quânticas da geometria do espaço-tempo.
Nesta dissertação, estudamos a primeira brecha e abordamos os Teoremas da Singularidade
através da condição de energia. Revisamos a abordagem algébrica de Teoria Quântica de
Campos para o campo de Klein-Gordon e, neste formalismo, revisamos a derivação de uma
desigualdade quântica de energia para os estados de Hadamard em espaços-tempos global-
mente hiperbólicos. Apesar das desigualdades quânticas de energia não poderem ser aplicadas
diretamente nos Teoremas de Singularidade, mostramos que generalizações dos Teoremas de
Hawking e Penrose são provadas considerando condições de energia enfraquecidas inspiradas
por elas. Assim sendo, os Teoremas de Singularidade continuam valendo se considerarmos
efeitos quânticos sutis. A questão de se efeitos de interação ou efeitos de �backreaction�
poderiam quebrá-los ainda está em aberto; há razões para se esperar ambas as respostas.

Palavras-chave: Teoremas de Singularidade; Relatividade Geral; Energia Neg-
ativa; Desigualdades quânticas de energia; Teoria Quântica de Campos Algébrica.
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1

A Question: Singularity Theorems

under the Light of Quantum Physics

Where we see what lead us to the problem of �nding quantum energy inequalities in the context of

Algebraic Quantum Field Theory.

The Standard Cosmological Model gives us the following information: the universe had a
beginning some 14 billion years ago. This model lies in the realm of General Relativity and
corresponds to the Friedman-Lemaître-Robertson-Walker solution to the Einstein equations.
The �beginning� of the universe is leisurely known as �Big Bang�, and academically referred
to as �cosmological singularity�. In fact, there are two types of singularities within General
Relativity, besides the cosmological one, there are the Black Hole ones�which correspond to
the Schwarzschild solution of the Einstein equations. Both these solutions rely on symmetry
hypotheses: the cosmological solution assumes an homogeneous and isotropic universe and
the Black Hole solution assumes spherical symmetry. For many years, these symmetries were
hold suspect for causing the singular behaviour of these solutions.

Actually, a solution to the Einstein equations is just a metric�it does not �x the topology
of the spacetime. So, let's call the pair metric and spacetime, a spacetime solution; to obtain
one of these�which is not necessarily unique�we �rst need to choose a matter model, solve
Einstein equations and then chose a spacetime: for a vacuum model without cosmological
constant we get Minkowski spacetime (or, for example, its compacti�cation into a torus),
for a vacuum around a spherical mass model we get Schwarzschild spacetime, for a perfect
�uid universe we get Friedman-Lemaître-Robertson-Walker spacetime. These solutions are
somewhat simpli�ed models. Yet, even if we knew all types of matter, their proportions in
the universe and the equations of motion governing it, it would be impossible to know the
exact form of Tµν and obtain the geometry of our universe.

Singularity Theorems are two things, at least. First, they constitute a way of obtaining
information about the geometry of the spacetime without specifying a matter model or
solving Einstein equations. If we impose physically reasonable conditions on the energy-
momentum tensor�called energy conditions�by the Einstein equations we can translate this
to a condition on the curvature tensors and get something out of it. Second, the Singularity
Theorems exonerate the symmetries of the particular solutions as being the cause of their

11



12 A Question: Singularity Theorems under the Light of Quantum Physics

singular behaviour and clari�ed, within a general well-de�ned formalism, su�cient conditions
that lead to singular spacetimes.

The strong energy condition is the one of Hawking Singularity Theorem, which corre-
sponds to the Cosmological singularity, and the null energy condition is the one of Penrose
Singularity Theorem, which corresponds to the Black Hole singularity; the strong and the
null energy conditions are examples of classical energy conditions�classical in the sense that
they are non-quantum�and these are all constructed by physically reasonable assumptions;
basically, each of them answers in a di�erent way the question: where and for whom is energy
positive?

On the other hand, Quantum Field Theory gives us several examples of violations of the
classical energy conditions. We can explicitly construct states with negative local energy
densities and we can actually measure the Casimir e�ect. Thus, one way of considering
quantum e�ects on Singularity Theorems is through the energy condition.

We �rst review Singularity Theorems, in section 1.1, to understand what they are, their
connection with particular solutions of Einstein equations and their general role in the study
of singularities in General Relativity. Then, we study the existence of negative energy, in
section 1.2, to accept that all classical energy conditions are violated within Quantum Field
Theory. Yet, Quantum Field Theory also restrict these violations; bounds on the duration
and magnitude of negative energy can be directly derived from its formalism�these bounds
are called quantum energy inequalities, and are introduced in section 1.2.3.

The study developed here is within a semi-classical analysis, we are considering quan-
tum matter on a classical background, and in order to de�ne a quantized energy density
and search for quantum energy inequalities on general curved spacetimes, we go to the al-
gebraic approach of Quantum Field Theory�the transition from Minkowski spacetime to
general curved spacetimes is justi�ed in section 1.3. And a review of the algebraic ap-
proach of Quantum Field Theory for the Klein-Gordon �eld, as well as the mathematical
preliminaries�regarding Microlocal Analysis�is given in chapter 2.

The goal of this �rst chapter is to set the problem and this is done in an informal way;
moreover, I assume the reader is familiar with both General Relativity and Quantum Physics,
for example with the terms: Einstein equations, spacetime, wave-functions, Hilbert spaces.
On the other hand, chapter 2 is mathematically rigorous and more self-contained.

In chapter 3, we understand how we can use the quantum energy inequalities to study
singularities in General Relativity; �rst, in section 3.1, we use the formalism of chapter 2
for the derivation of the quantum energy inequality on general curved backgrounds, as done
by Fewster [32] in 2000. Then, by reviewing Fewster and Galloway's work [37] of 2011, we
see two generalized Singularity Theorems: in the cosmological context and in the black hole
context; in the end of this chapter, we can �nally answer the question:

�Do Singularity Theorems hold if we consider quantum e�ects?
There are two ways of interpreting the search for an answer to that. One is (expecting

a negative answer): singularities are not a disaster for General Relativity since at Planck
scale we must consider also Quantum Physics, hence if all works out �ne at this scale with
both theories, then they are both �ne. The other possible way is: General Relativity does
break, we do need a new theory and to settle the ground for this new theory, we can start
working with the interaction between General Relativity and Quantum Physics. Either way,
it is relevant to study this interaction.
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1.1 Singularity Theorems in General Relativity..

Where we understand the nature of Singularity Theorems and the impact of the ones from the 60's

on the debate concerning singularities in General Relativity.

The study of singularities in General Relativity emerged concomitantly with General Rel-
ativity itself. A few months after Einstein's publication �On the general theory of relativity�
in November 1915, Schwarzschild obtained the �rst exact solution to Einstein equations�
which indeed already presented a singularity. It took a long debate, from 1916 to 1973,
until singularities gained a mathematical precise de�nition and Singularity Theorems, a well-
de�ned structure. This debate on singular solutions to the Einstein equations was marked by
works of too many scientists to �t in this dissertation, among them were Friedman, Lemaitre,
Raychaudhuri, Penrose and Hawking.

The Singularity Theorems of Penrose [88] and Hawking [71] from the 60's made it clear
that singularities should be accepted as endemic of General Relativity�singularities are a
part of generic solutions. Their mathematical precise de�nition of singularity, however, did
not solve the debate. There is not a correct de�nition for a singularity in General Relativity;
the consensus on that is, seemingly, that we cannot have one1. In this section, I will use the
term singularity in a broadly manner�as indicating some mathematical irregularity or some
physical quantity blowing up or the vanishing of spacetime itself�until we de�ne it formally.

First, I will give a brief description of the debate on singularities in General Relativity,
using as an example the cosmological singularity�the one of the now known as Friedman-
Lemaître-Robertson-Walker solution. We will see how, within a di�erent formalism, Hawking
obtained a cosmological singularity without a (high)symmetry hypothesis or even solving
Einstein equations. Furthermore, we will establish the nature of a Singularity Theorem by
constructing a statement of a �Pattern Singularity Theorem�.

To illustrate the debate on singularities in General Relativity, we will see the evolution
of the debate on the cosmological singularity, by discussing the following results2:

1922 Friedman obtained a dynamical solution that vanished in �nite time [58];

1932 Lemaître argued that anisotropy could not prevent it [82];

1955 Raychaudhuri highlighted a geometrical identity [95];

1965 Penrose introduced the concept of closed trapped surface [88];

1966 Hawking's theorem settled the debate on the symmetry hypothesis [71].

Friedman, inspired by Einstein and De Sitter solutions, studied, in 1922, the possible
spacetime solutions3 such that for each constant time t, corresponds a three dimensional
spherically symmetric space:

1In appendix A, one can �nd a discussion on this topic based on Geroch's article �What is a singularity
in General Relativity?�, published in 1968.

2The history of singularities in General Relativity is an extensive one, for a nice review see [30].
3A curiosity for a not-in-a-hurry reader: General Relativity was suppose to be a Theory of Gravitation�

in the sense that the equations were suppose to describe the movement of things, and not to give us weird
spacetime solutions. In spite of that, Einstein tried to show that his equations were compatible with the
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ds2 = R2(dx2
1 + sin2 x1dx

2
2 + sin2 x1 sin2 x2dx

2
2dx

2
3) +M2dx2

4;

where R is a function of time x4 = t and M is an arbitrary function. For each t, space
has curvature constant on x1, x2, x3; but, since R = R(x4), space curvature has a time
dependence. He showed that this is a non-stationary generalization for Einstein and De
Sitter solutions: replacing R2 → −R2

c2
, it reduces to Einstein solution for M = 1 and to De

Sitter solution for M = cosx1.
There is another possible solution. Setting M = 1 (without loss of generality), the

Einstein equations gives a set of two ordinary di�erential equations for R in terms of T00 and
Λ. By an analysis of this set, Friedman found that�for certain values of Λ, let's conveniently
consider it zero�R goes to zero in a �nite time. Thus, if we allow a dynamical solution,
Einstein equations tell us that spacetime itself will vanish.

Independtly of Friedman, Lemaître also obtained a dynamical solution in 1927 [81] that
was a non-stationary generalization of Einstein and De Sitter solutions; furthermore, he used
the expanding universe model to explain the observational data that Hubble obtained in 1926
of distances and radial velocities of galaxies4. In the 30's, the expansion of the universe was
widely accepted, but the singularity of the spacetime solutions was still controversial5.

Friedman singular solution was taken as a mathematical artifact due to the symmetry
hypothesis. Under Einstein suggestion, Lemaitre studied, in 1932, if anisotropy could avoid
this �catastrophic� vanishing of a dynamical spacetime; he considered the line segment:

ds2 = −b2
1dx

2
1 − b2

2dx
2
2 − b2

3dx
2
3 + b2

4dx
2
4;

where b1, b2 and b3 are functions of time t = x4. De�ning R by:
√
−g = b1b2b3 = R3,

Lemaître found that

3
R̈

R
=
κ

2
(T 1

1 + T 2
2 + T 3

3 − T 4
4 )− 1

3
I2;

where κ = 8πG is a constant and I is a function of b1, b2, b3 and its �rsts derivatives. Thus,
I represents the anisotropy of space.

If T 1
1 +T 2

2 +T 3
3 −T 4

4 is negative�which was assumed to hold for all physically reasonable
spacetimes6�then R̈ is negative. Therefore, if Ṙ is negative, then R will be zero at some
time and the spacetime volume will vanish. Furthermore, the equation above indicates that
anisotropy, beyond not preventing the collapse, could actually enhance it.

existing conception of the universe (imutable and eternal)�to obtain this static universe compatibility, he
introduced the cosmological constant Λ. But then, De Sitter obtained a solution for the adapted equation�
with Λ�by setting Tµν = 0. Einstein was not fond of that because General Relativity was suppose to
establish the relation between matter and gravity, so a curved vacuum solution was not reasonable.

4Lemaître also calculated a rate of expansion of ∼ 600km/s/Mpc, which Hubble calculated to ∼
500km/s/Mpc with some new data two years later and which nowadays is said to be ∼ 70km/s/Mpc.
With this new data, Hubble was able to con�rm the linear relation that is now known as �Hubble law�.

5The use of the word �widely� in this sentence is justi�ed by the fact that even Einstein proposed, in
1931, a model for an expanding universe�known nowadays as �Einstein-Friedman model�. This also justi�es
the use of the word �controversial� at the end, because this model corresponds to an universe that does not
collapses to a singularity�it restarts expanding. A nice historical reference for Einstein's reactions to the
dynamical models is [86].

6This holds if we consider the strong energy condition for the perfect �uid universe, for example.
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An interesting feature of this argument is that Lemaître did not use a matter model;
he assumed a condition on Tµν and for this, the result above could be called a primordial
Singularity Theorem.

The basis, however, of all Singularity Theorems was Raychaudhuri's work in 1955. He�
like Lemaître�argued that anisotropy could not keep spacetime from collapsing, but Ray-
chaudhuri's proof was highly geometrical and for this, Raychaudhuri's result is often consid-
ered the �rst Singularity Theorem. His major contribution was to notice the importance of
a geometrical identity known today as Raychaudhuri equation, which is a crucial part of the
mathematical formalism of Singularity Theorems.

Consider a congruence of timelike geodesics and let V µ be the tangent vector �eld of
this congruence with V µVµ = −1. The gradient of V µ can be split into three quantities: a
symmetric traceless part, an antisymmetric part and the trace part. The symmetric traceless
part is called the shear σµν := ∇(µVν) − 1

3
θhµν , where hµν := gµν + VµVν is the metric of the

space orthogonal to V µ; the antisymmetric part is the vorticity ωµν := ∇[µVν] and the trace
is the expansion (also called divergence) θ := ∇µV

µ. Raychaudhuri equation characterize the
�ow of this congruence:

θ̇ = −1

3
θ2 − σµνσµν + ωµνω

µν −RµνV
µV ν . (1.1.1)

If θ̇ ≤ 0, we have geodesic focusing. The equation above tell us that the shear acts in
favor of the focusing, while rotation acts against it7. Focusing by itself, however, does not
generally lead to a singularity.

What Raychaudhuri equation represents is a way of obtaining information about the
movement of a certain con�guration of free particles without solving the Einstein equations. If
we represent the trajectories of these free particles with the geometrical object V µ, then their
movement is always characterized by the geometrical identity (1.1.1)�the term RµνV

µV ν is
the one that contain particular information of the spacetime on which these particles are. In
this picture, �geodesic focusing� is intuitively equivalent to �gravity is attractive�. We can
think of a dust model for the universe with this intuitive interpretation and expect to obtain
information about a possible spacetime collapse.

Raychaudhuri considered the case of an irrotational dust, so: ωµν = 0. Moreover,
RµνV

µV ν ≥ 0�known as convergence condition�is trivially satis�ed for the dust model,
since T00 ≥ 0 . Then, Raychaudhuri equation implies:

θ̇ +
1

3
θ2 ≤ 0.

For a synchronous coordinate system for the dust �ow8:

θ =
∂

∂t
ln
√
−g,

thus θ → −∞ implies g → 0.
7This is expected by an analogy with centrifugal forces. Moreover, Gödel showed that rotation could

prevent singularity formation in the sense that he found a singularity-free exact solution by considering a
rotating universe [65].

8This is nicely explained in [66, Pg281]
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After Raychaudhuri's publication9, physicists undertook clarifying the following question:
how does g → 0 connect with a singularity in spacetime? A �at spacetime (which is naturally
non-singular) can have focal points or caustics of geodesic congruences. In the early 60s, the
notion of a spacetime singularity was de�nitely not clear, the de�nition of singularity came
only after Penrose and Hawking Theorems, with a backwards analysis.

Penrose's theorem from 1965 is considered the Singularity Theorem of greatest impact
in General Relativity; it was the �rst singularity result that did not rely on any symmetry
hypothesis. Penrose introduced the concept of closed trapped surfaces�which was crucial
for many of the subsequent results on Singularity Theorems and on other subjects�a nice
reference for understanding the impact of this concept and this theorem is [107].

Theorem 1.1. [72, Pg261,Thm1](Penrose Singularity Theorem) If the spacetime M
contains a non-compact Cauchy surface S and a closed future-trapped surface T , and if the
convergence condition holds for null V µ, then there are future incomplete null geodesics.

The idea of the proof is: if M is null geodesically complete, then the boundary of the
future of T is compact and this is inconsistent with S being non-compact. Implicitly, Penrose
introduced the notion of geodesic incompleteness as de�ning a singularity10:

The existence of a singularity can never be inferred (...) without an assumption
such as completeness of the manifold under consideration[88, Pg58,Col2].

Since the 60's, geodesic incompleteness of the spacetime has been taken as signaling a
singularity�the de�nition follows.

De�nition. A spacetime is singular if it is not geodesically complete, i.e. if the geodesics
cannot be extended to arbitrarily large parameter values.

By using Penrose Theorem, Hawking �nally settled the symmetry hypothesis question
on the cosmological singularity. A few months after Penrose's publication, Hawking proved
that any expanding universe close to the homogeneous and isotropic model have a closed
trapped surface [71]. The existence of a trapped surface does not rely on coordinate systems
or symmetry assumptions; it is de�ned by an inequality�thus, it is stable under small pertur-
bations. In the subsequent years, Hawking published several results on Singularity Theorems.
In 1970, he and Penrose published a general version that compacti�ed all their previous work
[72, Pg266,Thm2]. The following theorem is one of Hawking Singularity Theorems, analogous
to [72, Pg272,Thm4] in the cosmological context.

Theorem 1.2. [66, Thm8.9](Hawking Singularity Theorem) Consider a spacetime
with a matter model such that

Tµνu
µuν − 1

2
gµνTµν ≥ 0 for all timelike unit uµ,

9and Komar's publication in 1956, who had obtained�apparently independently of Raychaudhuri�
similar results.

10Another curiosity for a not-in-a-hurry reader: physicists �rst assumed that Penrose's singularity implied
divergence of density or something like that, but, in fact, it did not! Then Hawking an Ellis published a
theorem analogous to Penrose, for a homogeneous model generalizing Shepley's result for perfect �uid. It
continued unclear what was indeed being demonstrated in these singularity theorems. Then Geroch published
his dialog and the conclusion was �ok, we will continue in this unclear state.�
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and suppose that the expansion satis�es θ ≤ θ0 < 0 on a Cauchy hypersurface. Then the
spacetime is singular. If we consider θ ≥ θ0 > 0, we get a singularity to the past of S��The
Big Bang�.

The above condition on Tµν is called strong energy condition, which is one of the classical
energy conditions we will discuss in the establishment of the Pattern Singularity Theorem.
For now, let's just take it as a convergence condition that allows us to use Raychaudhuri
equation.

Proof. This is a one-paragraph sketch of the proof, to illustrate.
Let spacetime be a 4-dimensional globally hyperbolic Lorentzian manifold denoted by

(M, g) and let it be singular if it is not geodesically complete. Let S be a Cauchy hypersurface
in M and let p be a point in S for which the expansion (divergence of a congruence) is a
negative constant θ0. If (M, g) satis�es the strong energy condition, geometrically we have
for the Ricci tensor: Ric(V, V ) ≥ 0, for any smooth vector �eld V over M . The condition
on the Ricci tensor impose a condition on the expansion of synchronized observers; we can
then prove, using Raychaudhuri's equation, that a timelike geodesic cp passing through p and
orthogonal to S contains a conjugate point to S not far from S, at a distance of at most
− θ0

3
to the future. Therefore, we know that cp does not maximize length between S and a

point q further from the conjugate point. This contradicts the fact that we should have a
maximizing timelike geodesic orthogonal to S. Which lead us to conclude that no future-
directed timelike geodesic orthogonal to S can be extended further from that conjugate point.
∴ (M, g) is singular.

The results shown here are to illustrate the debate on singularities in General Relativity
and to show the power of the Singularity Theorems. By 1973, all ingredients of a Singularity
Theorem had been clari�ed; a remarkable review on the status of the art at that time is [72].
Singularity Theorems can be generalized by the following:

Theorem 1.3. [106, Pg796](Pattern Singularity Theorem) If a spacetime, obeying
Einstein equations, satis�es:

i) an Initial/Boundary Condition;

ii) an Energy Condition;

iii) a Global Causal Condition;

then, it is singular.

Let's understand the ingredients of this Pattern Singularity Theorem.

i) An Initial/Boundary Condition

An initial/boundary condition is necessary to ensure that geodesics start focusing. In the
more physical point of view, it characterizes what kind of situation is being considered. Some
examples of possible condition i):
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1. The entire universe is strictly expanding at the moment, i.e. the expansion of the
geodesics orthogonal to a hypersurface is positive�this suits the cosmological model,
as we saw in Raychaudhuri's and Hawking's results11;

2. There exists a closed trapped surface and a non-compact Cauchy surface�this suits
the collapsing of a star, as used by Penrose;

3. The universe is spatially �nite�this suits a closed universe.

The idea of an initial/boundary condition is to give a set that is or will become a closed
trapped surface; example 1 is actually saying that the universe had a closed trapped surface
in the past. If the set does not become trapped, then there is incompleteness. If the set
does become trapped and if the future Cauchy development of the initial set is not the entire
future, then the boundary of the domain is non-compact and there is incompleteness too.
Let's see the de�nition of a closed trapped surface, as given by Wald in [99, Pg239].

De�nition 1.4. (Closed trapped surface) A closed trapped surface T is a compact,
smooth, spacelike, two-dimensional surface such that the expansion θ of both sets (i.e. �ingo-
ing� and �outgoing�) of future directed null geodesics orthogonal to T is everywhere negative.

Note that an open trapped surface is not an useful concept: any point in Minkowski
spacetime lies in an open trapped surface. Also, the compactness in the de�nition above is
crucial, since, intuitively, something trapped at in�nity does not make sense.

ii) An Energy Condition

In the �rst half of the 19th century, energy conditions were used indiscriminately�just as
physically reasonable conditions. After Raychaudhuri's work, energy conditions leveled up
to convergence conditions. By 1973, energy conditions were given names and became one of
the ingredients of Singularity Theorems.

Some condition on the energy-momentum tensor is needed since every smooth Lorentzian
manifold satis�es the Einstein equations for some energy-momentum tensor. The energy
conditions are not derived from any physical theory12, they impose where and for whom
�energy is positive�. By the Einstein equations we can consider the energy conditions as
geometric conditions and, as we saw before, together with Raychaudhuri's equation they
constrain the geodesics expansion and enforce them to focus.

The classical energy conditions�extensively used in the last century�are characterized
for being conditions given at points of the spacetime. A singularity theorem that has a
classical energy condition as condition i) is called a Classical Singularity Theorem. Let's
take a look at these conditions.

The simplest energy condition is the weak energy condition(WEC). It is a natural
condition within classical physics and states that the local energy density is non-negative in

11One could wonder how reasonable it is to impose an initial or boundary condition on the entire universe;
yet, this is a personal question that will not be addressed here. My answer is implicit in this dissertation.

12We will see that this is not the nature of quantum inequalities�these are derived within QFT, since
within QFT we choose Tµν .
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every observer's rest frame, i.e. �All observers see non-negative energy� ⇒ T00 ≥ 0. It holds
in any frame if it holds in one frame for any con�guration, so:

Tµνu
µuν ≥ 0 for all timelike uµ. (1.1.2)

The weakest energy condition is the null energy condition(NEC), which, in spite of
not having the same intuitive interpretation as the WEC, is obtainable up to a normalization
by taking the light-like limit from the above:

Tµνk
µkν ≥ 0 for all null kµ. (1.1.3)

A stronger one is the dominant energy condition(DEC), which we can interpret as
�All observers see a causal �ux of energy-momentum�:

Tµνu
µvν ≥ 0 for all future-pointing timelike uµ and vν . (1.1.4)

The strong energy condition(SEC) implies that the sum of the local energy density
and the local pressures is non-negative. It has a misleading name since it neither implies
WEC nor NEC and states that:

Tµνu
µuν − 1

2
gµνTµν ≥ 0 for all timelike unit uµ. (1.1.5)

For a perfect �uid universe�as the FLRW spacetime�we have the following diagram:

DEC ⇒ WEC
⇓

NEC ⇐ SEC

A good review on Energy Conditions is [24] and on their Cosmological Implications, [113].

iii) A global causal condition

A causality condition is needed to forbid backwards time travel and to guarantee the existence
of maximal geodesics. Gödel's pathological model of a rotating and complete universe with
closed timelike curves made the former necessary. If condition iii) is the existence of a Cauchy
surface S, then one can prove that between any two points of the the Cauchy development of
S, which is globally hyperbolic, there is a geodesic with maximizing propper time. Maximal
geodesics cannot have focal points and this guarantees the contradiction between conditions
i) and iii).

A spacetime contains a Cauchy surface if and only if it is globally hyperbolic; equiva-
lently13, if and only if the causality condition holds and that the intersection of the causal
past of a point with the causal future of another point is always compact. Intuitively, we
are trying to say that there are no naked singularities in spacetime�the global hyperbolicity
hypothesis is also known as the strong cosmic censorship conjecture (or in words not so used
anymore �a strong form of the principle of determinism� [84, Pg118]).

13These de�nitions and equivalences are discussed in appendix B, Theorem B.18.
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Proof. (symbolic proof for the symbolic Theorem 1.3)
Condition i) starts the focusing of geodesics, condition ii) ensures the focusing continues

to a focal point. Condition iii) forbids focal points, then there is geodesic incompleteness.

To �nd a stronger version of a singularity theorem, one must weaken some hypothesis.
The initial/boundary condition is essential, but just for the beginning of the focusing of
geodesics; the global causal condition is less restrictive than the others, physically intuitive
and mathematically convenient. Therefore, to weaken the energy condition sounds a good
idea. Furthermore, it is known that, within quantum physics, energy can assume negative
values in a sense to be made precise. This is a well-funded way to justify the analysis and
the weakening of the energy condition.

Before discussing negative energy in the next section, let's pause for a quote that illustrates
the impact of Singularity Theorems:

�The situation has changed since the discovery of Penrose (and later by Hawking
and Geroch), of new theorems which reveal a connection between the existence of
a singularity (of unknown type) and some very general properties of the equations,
which bear no relation to the choice of reference system.�[78, Pg78]

1.2 Negative Energy within Quantum Field Theory

Where we are convinced we need to consider negative energies if we take Quantum Field Theory into

account�but not too negative, and not for too long...

General Relativity alone cannot describe nature for lengths smaller than the Planck scale,
so what if we try to see Classical Singularity Theorems under the light of Quantum Physics?14

It is well-known that all classical energy conditions are violated within Quantum Field The-
ory: Quantum Physics says negative energy exist, at least for some time. First, we convince
ourselves that negative energy must be taken into account. In section 1.2.1, we review a
clear proof of the existence of negative energy within Local Quantum Field Theory given
by Epstein, Glaser and Ja�e [31] in 1965; and in section 1.2.2, we discuss the most noto-
rious example of a classical energy condition violation�the Casimir e�ect [22]�which has
strong experimental support [80]. Then, in section 1.2.3, we understand the transition of
abandoning the classical energy conditions and searching for a quantum energy inequality.

1.2.1 A simple formal proof within Local Quantum Field Theory

Where we see a simple and clear proof of the existence of negative energy in the context of Local

Quantum Field Theory.

In 1964, Wightman and Streater published the book �PCT, Spin and Statistics and all
that� [111] on which they gathered concisely the known results of Local Quantum Field
Theory. In the same year, Wightman showed, in [118], that �elds cannot be de�ned at points

14A nice reference on quantum loopholes in Singularity Theorems is [50].
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of spacetime. He proved that in every local quantum �eld theory with a vacuum there exists
a point associated with a trivial algebra of observables. Henceforth, Wightman justi�ed the
characterization of �elds as distributions. What is calledWightman �elds are operator valued
generalized functions over (usually) the Schwartz space S or the space of smooth compactly
supported functions D . The framework of both [111, 118] is known nowadays as Wightman
Axioms and has several similar versions.

In this context of Local Quantum Field Theory, in 1965, Epstein, Glaser and Ja�e [31]
gave a simple and clear proof of the existence of negative energy density. In this section, we
review how this was done. We take a look at the framework, some de�nitions, a theorem
and two lemmas to prove the main result; although this take a few pages to do it carefully,
it is important to justify the search of a quantum inequality that is studied in this dissertation.

Framework: Wightman Axioms, as stated in [31]

Axiom 1: ∃H a Hilbert space with a dense subspace D0. Pure states are unitary rays in H;

Axiom 2: ∃ a continuous unitary representation U(a, 1) of the group of translations in
L (H), with U(a, 1)D0 ⊂ D0;

Axiom 3: P µ is de�ned by U(a, 1) = exp(iP µaµ) and satis�es a stability condition�also
called spectrum condition: its spectrum must be in the future cone15 V +. In particular,
P 0 is positive; yet, we will see that even so, T 00 is not positive �not even if smeared
with a positive function;

Axiom 4: ∃ one or several local �elds ϕ1, . . . , ϕN . The de�nition of a local �eld follows.

De�nition 1.5. (local �eld) A local �eld ϕ(x) is an operator-valued distribution such
that ∀f ∈ D

ϕ(f) =

∫
ϕ(x)f(x)dx is de�ned on D0 and ϕ(f)D0 ⊂ D0;

Axiom 5: For a local �eld ϕ: U(a, 1)ϕ(x)U(a, 1)−1 = ϕ(x+ a) and

[ϕ(x), ϕj(y)] = [ϕ(x), ϕ(y)] = 0 for (x− y)2 < 0 and j ∈ {1, . . . , N};

Axiom 6: ∃!(up to a phase)Ψ0 ∈ D0, called vacuum, such that U(a, 1)Ψ0 = Ψ0.

Remark 1.6. The condition ϕ(f)D0 ⊂ D0 does not have an intuitive physical motivation; is
ad hoc, but allows us to de�ne and work with the objects we need in a simple manner�in
particular, construct polynomials of smeared �eld operators.

De�nition 1.7. (Local quantum �eld theory) A theory that satis�es the Wightman
axioms above will be called here16 a local quantum �eld theory. Note that this version is for
Minkowski spacetime, a framework generalization to curved spacetimes was done in 1978 by
Isham [75].

15i.e. the support of the spectral measure dE(p) of U(a, 1) =
∫
eipadE(p) consists of points p of spacetime

such that p2 > 0 and (p0)2 > 0; a nice reference for irreducible unitarily representations of the Poincaré
group is [108, Sec. 9.4]

16In section 1.3, we comment on the use of the term �Local Quantum Field Theory� in the broad sense
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A local quantum �eld theory gives us a collection of possible measurements; the expecta-
tion value of the observable ϕ smeared with a test function f at the state Ψ ∈ H is represented
by objects like 〈Ψ, ϕ(f)Ψ〉. A compactly supported test function assimilates the conception
that a measurement is always performed by a �nite extention apparatus during a �nite time.
To each open set O of spacetime there is an associated local algebra of observables, say
A(O), that is generated by the local �elds ϕ1, . . . , ϕN smeared with test functions such that
suppf ⊂ O.

Going to the von Neumann algebras context, it is well-known that if a vector Ω is cyclic
for an algebra, say M, then Ω is separating for the commutant algebra M′. For the local
algebras associated with spacetime open sets, the ones which we are considering, we have a
similar result: a cyclic vector for A(O) is separating for each local �eld on O. Let's see what
is a cyclic vector, a separating vector and the statement of the result.

De�nition 1.8. (Ω cyclic for A(O)) A vector Ω ∈ H is said to be cyclic for the local
algebra A(O) if

A(O)Ω = H.
Note that the above is the usual de�nition in the von Neumann algebras context.

De�nition 1.9. (Ω separating for ϕ(x)) A vector Ω ∈ H is said to be separating for a
local �eld ϕ(x) if for any test function f :

ϕ(f)Ω = 0⇒ ϕ(f) = 0.

The following theorem is the well-known result [111, Thm4-3,Pg139]. Recall that, if O
is a region of spacetime, its causal complement O′ is the set of points of spacetime that are
spacelike separated from points in O.

Theorem 1.10. (Cyclic ⇒ separating) Let Ω be a cyclic vector for A(O), where O is an
open set of spacetime such that O′ is not empty and T ∈ A(O), then

TΩ = 0⇒ T = 0.

Proof. The proof is really simple. Take Ψ = P ′Ω for some P ′ ∈ A(O′) and Φ ∈ D0, since
〈Ψ, T ∗Φ〉 = 〈TΨ,Φ〉 = 〈TP ′Ω,Φ〉 = 0 and A(O)Ψ = A(O′)Ψ = H, then TΨ = 0. Since
vectors like P ′Ω span H, we have that T = 0.

It is important to consider cyclic vectors for two reasons. One is that we would like to do
Quantum Physics in terms of vacuum expectation values�which does need a cyclic vacuum.
The other reason is that the Reeh-Schlieder Theorem tells us that if a vector is cyclic for the
algebra A(M), for the whole Minkowski spacetime M , then it is cyclic for A(O), for each
open set O ⊂ M . With this in mind, we can translate the theorem above to our context by
the statement:

If the vacuum Ψ0 is cyclic for the algebra generated by the local �elds ϕ1, . . . , ϕN , then Ψ0

is separating for every local �eld ϕ.

By now, we have a local quantum �eld theory, we have states, an algebra of observables
and a vacuum. We are ready to de�ne an energy-momentum tensor.
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De�nition 1.11. (Energy-momentum tensor) T µν(x) is an energy-momentum tensor for
a local quantum �eld theory if it is a local �eld such that:

i) ∂
∂xµ

T µν(x) = 0.

ii)
∫
σ
T µν(x)dσµ(x) = P ν ∀ spacelike plane σ;

ii') (Ψ0, T
µν(x)Ψ0) = 0.

Property ii) implies ii'), since:

lim
f→1

∫
x0=t

(Ψ0, T
0ν(x)Ψ0)f(x)d3x = (Ψ0, P

νΨ0) = 0

for 0 ≤ f ≤ 1, f ∈ D(R3) tends to 1 in E (R3). Since it holds in any coordinate system,
(Ψ0, T

µν(x)Ψ0) = aµν is independent of x and aµν = 0.
In which sense does this de�nition of T µν(x) can be interpreted as an energy-momentum

tensor? We do not have an operator associated to the amount of energy and momentum in
a volume V of spacetime

P (V ) =

∫
V

T 0ν(t, ~x)d~x,

so we must focus on the object T µν(f). Classical physics would say
∫
T 00(x)f(x) ≥ 0 and a

quantum analogue would be (Φ, T 00(f)Φ) ≥ 0, but this does not hold, not even for a positive
test function f , due to the following result [31, Thm1]:

Theorem 1.12. (Incompatibility) Let T (x) be a local �eld and f a positive test function
in D such that (Φ, T (f)Φ) ≥ 0 ∀Φ ∈ D0. Suppose there exists a vector Ω ∈ D0 and an
integer m such that (Ω, T (f)mΩ) = 0. If Ω and Ψ0 are separating for T , then T = 0.

For the proof, we will need the following two lemmas 1.13 and 1.14, which correspond,
respectively, to [31, Lem1] and [31, Lem2].

Lemma 1.13. Let A be an operator with a dense domain DA such that for all Φ ∈ DA:
(Φ, AΦ) ≥ 0. Let Ω 6= 0 be a vector such that AnΩ ∈ DA, n ∈ N. Assume (Ω, AmΩ) = 0 for
some natural m. Then AΩ = 0.

Proof. Consider the case of an odd exponent (Ω, A2r+1Ω) = 0, for some r ∈ N. ∀Φ,Ψ ∈ DA,
by the Cauchy-Schwartz inequality:

|(Φ, AΨ)|2 = |(A1/2Φ, A
1/2Ψ)|2 ≤ (A

1/2Φ, A
1/2Φ)(A

1/2Ψ, A
1/2Ψ) = (Φ, AΦ)(Ψ, AΨ);

thus (Ψ, AΨ) = 0⇒ (Φ, AΨ) = 0 ∀Φ ∈ DA ⇒ AΨ = 0. For the even case exponent, we have
that if (Ω, A2qΩ) = 0 for some natural q, then ‖AqΩ‖2 = 0, thus AqΩ = 0.

If (Ω, AmΩ) = 0 for some natural m, we can apply the odd and even cases repeatedly
until we obtain AΩ = 0.

Lemma 1.14. Let T be a local �eld and f a positive test function in D , not identically
zero. If T (f)Ψ0 = 0, then T (x)Ψ0 = 0, i.e. T (g)Ψ0 = 0 ∀g ∈ D .
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Proof. Let T (f) = 0 and suppose T (x)Ψ0 6≡ 0. Since

(Ψ0, T (x+ a)T (y + a)Ψ0) = (Ψ0, U(a, 1)T (x)U(a, 1)−1U(a, 1)T (y)U(a, 1)−1Ψ0)

= (U(a, 1)−1Ψ0, T (x)T (y)U(a, 1)−1Ψ0)

= (Ψ0, T (x)T (y)Ψ0),

we can de�ne the distribution F (x− y) ≡ F (x− y, 0) ≡ F (x, y) := (Ψ0, T (x)T (y)Ψ0). Then

T (x)Ψ0 6≡ 0⇒ F (x) 6≡ 0.

Moreover, since

F (x) = (Ψ0, T (x)T (0)Ψ0) = (Ψ0, U(x, 1)T (0)U(x, 1)−1T (0)Ψ0)

= (T (0)U(x, 1)−1Ψ0, U(x, 1)−1T (0)Ψ0)

= (T (0)Ψ0, U(x, 1)−1T (0)Ψ0)

= (Ψ, U(x, 1)−1Ψ), for Ψ := T (0)Ψ0 ∈ D0

=

∫
e−ipx(Ψ, dE(p)Ψ) ≥ 0 by the spectrum condition in Axiom 3, (1.2.1)

then F is of positive type in Hörmander sense [74, Pg38], i.e. F (g) =
∫
F (x)g(x)dx ≥ 0, for

all positive g ∈ D .
Consider the convolution between F and f , which is well-de�ned since suppf is compact:

F ∗ f(x) =

∫
F (x− y)f(y)dy =

∫
(Ψ0, T (x)T (y)Ψ0)f(y)dy;

T (f) =
∫
T (y)f(y)dy = 0 implies F ∗ f(x) = 0. Taking the inverse Fourier transform,

denoted by a tilde, we get:

F̃ (p)f̃(p) = 0, where F̃ (p) =

∫
eipxF (x)dx.

Let's switch the representation of F̃ (p) from the con�guration space to energy-momentum
space. Since F is a positive type distribution in Hörmander sense, then F is a positive measure
[74, Thm2.1.7]; thus F̃ is also of positive type in the Hörmander sense. Moreover, F and
F̃ are also of positive type in the Reed and Simon sense [96, Pg14], i.e. let f̂(x) = f(−x),
∀f ∈ D :

F (f̂ ∗ f)(p) =

∫
F (y)(f̂ ∗ f)(y)dy =

∫
F (y)f̂(y − x)f(x)dxdy =

∫
F (y)f(x− y)f(x)dxdy

=

∫
F (y)f(x− y)f(x)dxdy =

∫
F (x− y)f(y)f(x)dxdy

=

∫
(Ψ0, T (x)T (y)Ψ0)f(x)f(y)dxdy

= (Ψ0, T (f)T (f)Ψ0)

= ‖T (f)Ψ0‖2

≥ 0.
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It is clear that the above implies that F̃ is also of positive type in the Reed and Simon
sense. This means we can apply Bochner-Schwartz Theorem [96, ThmIX.10], thus F̃ is the
Fourier transform of a positive �nite measure µ:

F̃ (p) =

∫
e−ipxdµ(p). (1.2.2)

Equation (1.2.1) implies that suppµ ∈ V +. As done in [118, Pg416], from equation (1.2.2)
with a quick detour through two holomorphic functions and invoking Bogoliubov-Vladimirov
Theorem, we get:

F̃ (0) =

∫
dµ(p) =

∫
P(−ip)dλ(p);

where P(−ip) is a polynomial in (−ip) and λ is a Lorentz invariant measure with support
in V +. Therefore, the support of F̃ , which is Lorentz invariant and is in V +, is a union of
upper sheets of hyperboloids p2 = m2. Furthermore, suppF̃ must be in the set of zeros of f̃ ,
since F̃ (p)f̃(p) = 0. By hypothesis, f ≥ 0, f ∈ D and f 6≡ 0, thus we have for f̃ ∈ S that:

f̃ cannot vanish at zero or in the entire future cone,

since both would imply f̃(0) =

∫
f(x)d(x) = 0⇒ f(x) ≡ 0.

Since, for some m > 0, F̃ is not zero on the upper sheet of the hyperboloid p2 = m2, f̃(p)
must vanish there, i.e. for some m > 0:

f̃(p)δ(p2 −m2)Θ(p0) = 0⇒ 1

i

∫
4+(x− y)f(y)dy = 4+ ∗ f(x) = 0,

where 4+(x − y) is the well-known retarded green solution. Finally, we can �nd a contra-
diction: for spacelike x, 4+(x) is positive; so we can take x large enough such that f(x) is
positive and obtain a positive value for 4+ ∗ f(x), ∴ T (x)Ψ0 = 0.

Proof. (of Theorem 1.13) Given the hypothesis of Theorem 1.12, Lemma 1.13 tell us that
T (f)Ω = 0. Then, if Ω is separating for the local �elds, we have T (f) = 0. Which, if Ψ0

is separating also, is equivalent to T (f)Ψ0 = 0. Lemma 1.14 tells us that T (f)Ψ0 = 0 ⇒
T (x)Ψ0 = 0; thus we have T (g)Ψ0 = 0 for all test functions g, therefore T = 0.

A local quantum �eld theory with an energy-momentum tensor and a cyclic vacuum triv-
ially satis�es the hypothesis of the theorem. The following is a simpli�ed statement of the
main result:

Theorem 1.15. (simpli�ed version of 1.12)Let T µν(x) be an energy-momentum tensor
for a local quantum �eld theory and f ∈ D a positive function such that (Φ, T µν(f)Φ) ≥ 0
for all Φ ∈ D. If Ψ0 is separating for T µν, then T µν ≡ 0 for all µ and ν.

That is, a positive energy density is incompatible with a local quantum �eld theory.
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1.2.2 An experimentally supported example: the Casimir E�ect

Where we see an experimentally supported example of a classical energy condition violation within

the usual approach of Quantum Field Theory.

The Casimir e�ect is the most notorious among the examples of classical energy conditions
violations. In the last section, we learned that positivity of the energy-momentum tensor is
inconsistent with Local Quantum Field Theory and we proved it mathematically. In this
section, we study the Casimir e�ect for three reasons. First, the Casimir e�ect has strong
experimental support, so those who were not convinced by the mathematical proof of the last
section will fell more comfortable in accepting we must consider negative energy if we take
Quantum Field Theory into account. Second, we do the calculations in the usual approach
of Quantum Field Theory, so this section is somewhat more accessible than the previous one.
Third, there are those who argue that negative energy is just a technicality and that not even
the Casimir e�ect leads us to consider it�we must, and we do, discuss this.

We start with a general discussion on the the Casimir e�ect; on which we establish how
we interpret its measurement, its connection to the Van der Waals interaction and what does
it say about the vacuum energy. Then we compute, within the usual approach of Quantum
Field Theory, the energy density for the free neutral massless scalar �eld and we obtain a
negative value. Finally, we see an intuitive argument that shows that we cannot remove this
negativeness by rescalement, i.e. negative energy is seemingly intrinsic of Quantum Field
Theory.

A general discussion on the Casimir e�ect

Casimir predicted, in 1948, that two neutral conducting plates in vacuum would attract each
other. That was not the startling character of his work actually, people had known about
Van der Waals interaction for at least 38 years, since Van der Waals was given the Nobel prize
in 1910 for his work on that. The remarkable feature is that Casimir justi�ed the attraction
between the plates using the concept of zero-point energy, i.e. the idea of vacuum quantum
�uctuations17. The original work of Casimir [22] together with the experimental veri�cation
in 199718 [80] marked the debate on the vacuum concept�in appendix C, one can �nd a
brief overview of the evolution of the vacuum concept, from Democritus to Casimir. A nice
approachable�for Portuguese-readers�reference for a general understating of the e�ect is
[23].

The measurement of the Casimir e�ect is generally19 taken as a veri�cation of the vacuum
�uctuations, as an evidence of the non-null zero-point energy. One can argue that there are
other ways to explain the attraction of the plates and there have been attempts on doing
that, but either the concept of vacuum expectation values is implicitly there (like Milton's

17Zero-point energy refers to the energy of the ground state and vacuum �uctuations are associated to
Heisenberg's uncertainty principle and to justify the fact that the zero-point energy is not zero; they are
indeed di�erent concepts, but since they are fundamentally connected, we use them as synonyms here.

18It was measured for the �rst time at the Phyllips laboratory (where Casimir worked) by Sparnaay, in
1958, yet inconclusively [110].

19�generally� here is an anecdotal evidence based on the correspondences: always≡ 100%, usually≡ 90%,
normally/generally≡ 80%, ..., never≡ 0%.
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approach using Green functions in 1976, as he said in [67]) or it is done in a formalism that
is not so general. For example, more recently R. Ja�e showed that the Casimir e�ect can
be calculated in the S-matrix formalism, using diagrams with external legs with no reference
to vacuum �uctuations [76, SecI]; however an interesting calculation, we cannot yet describe
Quantum Field Theory completely avoiding vacuum expectation values and this formalism
cannot be naturally generalized to curved spacetimes20.

One could also say that the attraction is due to the long range dispersive Van der Waals
interaction between the plates, but this is not necessarily an alternative explanation. Since
two neutral plates would not classically attract each other, the Van der Waals interaction is
also considered a quantum e�ect: the net attraction is taken to be due to the polarization
�uctuations of the plates and as the computations must take under consideration a �nite light
velocity, i.e. a retarded interaction, we can take the Van der Waals interaction as being in the
framework of Quantum Mechanics and Special Relativity�which constitute the framework
of Quantum Field Theory. Thus, it is not so easy to separate theoretically the Casimir and
Van der Waals interactions21. Accordingly, within Quantum Field Theory, we consider that
the vacuum �uctuations intermediate the Van der Waals action-at-a-distance interaction and
we take the measurement of the Casimir e�ect as an experimental veri�cation of the vacuum
�uctuations.

Let's take a look at the original argument of Casimir. Consider a cubic cavity of perfectly
conducting neutral plates of sides L. Now put a perfectly conducting neutral square plate
of side L inside the cavity and calculate the zero-point energy for when the plate is close to
one side (situation 1), and for when it is far (but closer then L/2, situation 2) as illustrated
below.

Situation 1 Situation 2

Figure 1.1: Cubic cavity of side L in the situations we compare: in 1, the plate is close to
one side and in 2, the plate is at a greater distance z < L/2.

For the quantized electromagnetic �eld, the zero-point energy is given by the sum over
all possible frequencies:

E0 =
1

2

∑
ω

hω.

20On the other hand, the Casimir e�ect has been formulated within Algebraic Quantum Field Theory
using the functional formalism in Minkowski spacetime [27].

21Curiously, when asked (in 1972 and in 1983) �Is the Casimir e�ect due to the vacuum �uctuations of
the electromagnetic �eld, or is it due to the Van der Waals forces between the molecules in the two media?�,
Casimir answer began �I have not made up my mind.�; source: [67]
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Since situation 1 and 2 have di�erent con�gurations, they also have di�erent possible fre-
quencies, i.e. di�erent modes of vibration for the vacuum22; yet, they are both in�nite. To
compare these di�erent in�nities, Casimir introduced a cut-o� function f o� rapid decay
such that:

f →

{
1, for large ω;

0, for small ω.

It is a reasonable approximation since we expect the plate not to be an obstacle for the high
frequency modes. By considering the energy di�erence of both situations E0,1 − E0,2 as the
interaction energy between the plate and the closest side of the cavity, Casimir derived and
obtained an expression for an attractive force between them.

This is telling us that if we build a system in situation 2, the plate will move towards
the closest side of the cavity; if the plate move, there is work and if there is work, there is
energy. An interesting question to pose now is: where did that energy come from? Can we
justify it by saying that the necessary energy came from the vacuum? To carefully answer,
we need to examine what we have idealized in the previous argument. We disconsider every
other interaction that is not due to the zero-point energy di�erences.

Consider the following Gedankenexperiment: imagine we build the perfectly conducting
neutral cubic cavity and we create a perfect quantum vacuum inside with our perfect-vacuum
pump�like situation 1 before. Now, imagine a plate popping23 up at distance z from one
face, so we have situation 2 from before. Can we do that without introducing energy into the
system? Well, imagine that instead of making the plate pop up, it was initially overlapped
with one side of the cavity. Then, to put the system in situation 2, we have to drag the
overlapping plate to the z position. In order to separate the plate from the side, we must
hold the side down: we just learned that they attract each other, so we cannot separate
them without introducing energy into the system! We can associate the energy necessary to
separate the plate and the side to the energy of the system of when it is in situation 2. When
we separate the plate from the side, we are deforming the vacuum inside the cavity; thus,
we can also associate the energy of separating them to the energy necessary to impose that
deformation on the vacuum. Therefore, one can say that the energy the plates use to move
is the energy of the vacuum deformation, but keeping in mind that to deform the vacuum
we had to separate the plate from the side and with that, we had to spend the same amount
of energy.

This Gedankenexperiment tells us that we cannot steal energy from the vacuum. If instead
of building a system in situation 2 in a laboratory, we just found a system like that in nature;
maybe we would be able to use vacuum energy. We can use the gravitational interaction
to generate energy, because we know about natural phenomenons that give us systems in
the corresponding �situation 2�. For example, the waterfalls we use in hydroelectrics; we do
not have to drag the water up there to use the energy from when it falls, �nature puts� the

22To see that these are in fact di�erent modes let's do a simple computation. Consider only the z direction,
then the frequencies are inversily proportional to the separation. For situation 1, E0,1 is a sum on ω1 ∝ 1

L and
for situation 2, E0,2 is a sum on the modes on the smaller region ω2 ∝ 1

z and on the larger region ω2 ∝ 1
L−z .

Then E0,2 ∝ ( 1
z + 1

L−z )LE0,1. Setting, for example, z = L/4, we get E0,2 ∝ 16
3 E0,1.

23make the plate �pop up�, or create the plate, is not in a matterial sense of atoms and molecules; we are
considering massless plates, they just represent the other equivalences: plates≡boundary conditions≡deform
the vacuum.
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water up there. Yet, so far, we have not seen a natural phenomenon that gives us �separated
plates� such that we would be able to use the vacuum energy24. Accordingly, and in analogy
with the quark-con�nement conception, we can say that the Casimir interaction seems to be
of color white.

The plate in Casimir argument seen above represent a boundary condition. We can think
of the Casimir e�ect as the �rst example of boundary conditions a�ecting the vacuum with
observable e�ects; this idea is also present, in di�erent levels, in Hawking radiation, quark-
binding in Quantum Chromodynamics25 and even, in the cosmological expansion. It is usual
to refer as �Casimir e�ect� the extrapolations of the electromagnetic Casimir e�ect, seen
above, to other �elds or using di�erent geometrical con�gurations26.

In the next section we impose Dirichlet boundary conditions on the space R3 and we
compute the vacuum expectation value of the energy density for the free neutral massless
scalar �eld. It must be emphasized that the treatment of the next section is informal; for
example, we do not consider smeared �elds to gain technical simpli�cation and the question
of how to impose boundary conditions on distributions will not be adressed.

Vacuum energy for the free neutral massless scalar �eld

Consider the case of a free neutral massless scalar �eld φ satisfying the Klein-Gordon equation
on Minkowski spacetime. With Casimir's original work in mind, we compare the vacuum
energy of when it is de�ned on the whole R3 space with when it is restrained to a region,
say Ω := {(x, y, z) ∈ R3 : 0 < z < L} ⊂ R3. To restrain the system is to impose boundary
conditions, and we consider the so called Dirichlet boundary conditions such that:

suppφ ∈ Ω.

The computations are done here in the Fock representation formalism of usual Quantum
Field Theory; a good reference for this subject is Schweber's book [103], and with more
mathematical details [59]�let's quickly recall what it is.

Consider we have a quantum system of particles on Minkowski spacetime. We can write
the wave functions φ�the solutions of the Klein-Gordon equation�of this system in the
Fock space representation (F , a†, a, |0〉). By constructing the Hilbert space of states of a
one-particle system H(1), which we take it as the space of square-integrable functions L2, we
can construct the Hilbert space H(n) of an n-particle system as the symmetrized (or anti-
symmetrized) subspace of the n-tensor product H(n) ⊂ H(1) ⊗ . . . ⊗ H(1) ≡ H(1)⊗n; if one
is considering bosonic (or fermionic) statistics. By analyzing these spaces, we �nd that we
can write the wave function φn(j1, j2, . . . , jn) ∈ H(n) for an n-particle system, each i-particle
in the state ji, in terms of the (n+1)-particle wave functions or (n−1)-particle wave functions.

24To observe the e�ect, the separation distance must be of order µm�or less. At 10nm separation, the
Casimir e�ect generates a pressure of order 1 atmosphere�if you do not grasp at how strong that is, I
recommend you read about the Magdeburg's hemispheres in appendix C.

25To read about the connection between bag models and the Casimir e�ect, two nices references are [93,
Chp7,Pg185] and [70, Sec. 6.4]; also for bag models, but including several applications of the Casimir e�ect,
a nice and more recent reference is [15].

26There are some interesting analogue models out there; for example, this one with water [3].
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This means we can de�ne operators aj and a
†
j such that [aj, a

†
j] = 1 (or {aj, a†j} = 1) and:

ajφn(j, j1, j2, . . . , jn−1) =
√
nφn−1(j2, . . . , jn),

a†jφn(j1, j2, . . . , jn) =
√
n+ 1φn+1(j, j1, j2, . . . , jn),

a†jajφ = nφ.

By looking at these equations, it makes sense to call aj the annihilation operator, a†j the

creation operator and a†jaj the number operator. The Fock space F is the completion of
F0 = C⊕H(1) ⊕H(2) ⊕ . . .⊕H(n) ⊕ . . .; here, C ≡ aH(1) denotes the scalar �eld common to
all Hilbert spaces H(i), i ∈ N∗. Thus, each wave function φ ∈ F can be written as a sequence
φ = {φ0, φ1(j1), φ2(j1, j2), . . . , φn(j1, j2, . . . , jn), . . .}, up to a limit.

The vector {1, 0, . . . , 0, . . .} ≡|0〉 is called vacuum because it represents a no-particle state
that is annihilated by aj,

a†jaj{1, 0, . . . , 0, . . .} = a†j{0, 0, 0, . . .} = {0, 0, 0, . . .} ≡ 0

and is uniquely de�ned, as a ray in the Fock space, by normalization. This summarizes all
the ingredients of the Fock representation we need in this section.

We can characterize the system de�ned in the whole R3 with the corresponding Fock
representation27:

whole system ≡ (R3,F , a†k, ak, |0〉),

where F is the Fock space associated to the creation and annihilation operators a†k and ak
de�ned on points of momentum space28 such that [ak, a

†
k′ ] = δ(k − k′), and |0〉 is the vector

such that a†k |0〉 = |k〉 and ak |0〉 = 0 called vacuum. If we impose the boundary conditions
(bc) in this whole system we get the restrained system:

whole system
bc→ restrained system≡ (Ω,FL, ã†k, ãk,|0〉L).

When we restrain the space R3 bc→ Ω, our new system will have a di�erent Fock space

F bc→ FL, since we have di�erent solutions φ
bc→ φL and they are associated to di�erent

creation and annihilation operators a†k, ak
bc→ ã†k, ãk such that ã†k|0〉L=|k〉L and ãk|0〉L= 0

holds for a di�erent vacuum |0〉 bc→|0〉L. However, this restrained system is just a subsystem
of the whole system.

Given the whole system (R3,F , a†k, ak, |0〉), constructed in the usual way described above,
we can construct the restrained system as a subsystem in the following way: the Hilbert
space of a one-particle system H(1)

L is taken to be the subset of H(1) of the solutions that
satis�es the boundary conditions φ|bc, i.e.

27The creation and anihilation operators and the vacuum vector are de�ned in respect to a Fock space.
The domain of the solutions in the Fock space already gives us information on where the system is de�ned.
Therefore, we can characterize a system simply with F . The other ingrediends, although intrinsic, are
highlighted there.

28I changed notation from j to k, because I use j for a general characterization of a quantum state, and
k for speci�cally representing momentum.
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H(1)
L = {ψ : ψ = φ|bc, φ ∈ H(1)} ⊂ H(1),

then the Hilbert space of a n-particle systemH(n)
L for n > 1 is the symmetrized (or antissymme-

trized�let's just consider bosons from now on) subspace of the n-tensor product H(1)
L ⊗ . . .⊗

H(1)
L ≡ H

(1)⊗n
L . Since H(1)

L ⊂ H(1), we have that H(1)⊗n
L ⊂ H(1)⊗n and if we take the sym-

metrized subspaces, it holds thatH(n)
L ⊂ H(n). Thus, for F0,L = C⊕H(1)

L ⊕H
(2)
L ⊕. . .⊕H

(n)
L ⊕. . .

and F0 de�ned as before, we have that FL is a closed subset of F .
Remark. Explicitly, let ψ ∈ FL := F0,L, where F0,L = C⊕H(1)

L ⊕H
(2)
L ⊕ . . .⊕H

(n)
L ⊕ . . ., up

to a limit we have:

ψ = {ψ0, ψ1(j1), ψ2(j1, j2), . . . , ψn(j1, j2, . . . , jn), . . .},

where ψn ∈ H(n)
L is of the form ψn = (ψn1⊗ . . .⊗ψnn), up to a symmetrization, and each ψni ,

for i ∈ {n1, . . . , nn}, is a one-particle solution ψni ∈ H
(1)
L . Thus, there are φn1 , . . . φnn ∈ H(1)

such that φni|bc = ψni∀i ∈ {1, . . . , n}. Since φ|bc ∈ H(1) ∀φ ∈ H(1) and then φn|bc ≡
φn1 |bc ⊗ . . .⊗ φnn|bc ∈ H(n), we can write

ψ = {ψ0, φ1|bc(j1), φ2|bc(j1, j2), . . . , φn|bc(j1, j2, . . . , jn), . . .} ∈ F .

If {1, 0, . . .} ∈ FL ⊂ F , then how can we have di�erent vacua for the whole system
and for the restrained system? Well, recall that we call a vector |0〉 vacuum, in the Fock
representation, if it corresponds to a no-particle state�and the operators de�ned on FL are
di�erent than those on F . Thus, let's take a look at the creation and annihilation operators.

The creation and annihilation operators a†k and ak are de�ned by how they act on the
solutions φ ∈ F . For an n-particle state ψ ∈ FL, the operators ãk and ã†k such that

ãkψ = ãk{0, . . . , 0, ψn(k, k1, k2, . . . , kn−1), 0, . . .} = {0, . . . ,
√
nψn−1(k1, k2, . . . , kn−1), 0, . . .},

ã†kψ = ã†k{0, . . . , 0, ψn(k1, k2, . . . , kn), 0, . . .} = {0, . . . , 0, 0,
√
n+ 1ψn+1(k, k1, k2, . . . , kn−1), 0, . . .},

are just ak and a
†
k restricted to the solutions in FL. Therefore, with the canonical projections

Pn : H(n) → H(n)
L , we de�ne the projection P : F0 → F0,L by

P := ⊕nPn,

and we can write ãk : FL → FL and ã†k : FL → FL as:

ãk = PakP : PF → PF ,
ã†k = Pa†kP : PF → PF .

Also the restrained solutions ψ ∈ FL can be written in terms of the projection as ψ = Pφ for
some φ ∈ F , up to a limit. The vacuum for the restrained system is the vector |0L〉 = P |0〉,
since

ãk|0L〉 = PakP |0L〉 = PakP
2|0〉 = Pak|0〉 = P{0, 0, . . .} ≡ 0;
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that is, even though we can write both vacuums |0〉 and |0L〉 as {1, 0, . . .}, keep in mind
that they are di�erent vectors in di�erent spaces.

In summary, we can see the restrained system (Ω,FL, ã†, ãk,|0〉L) as a subsystem of the
whole system (R3,F , a†k, ak, |0〉), and we can take |0〉L and |0〉 as two states of the same
large physical system. This large physical system is just the whole system equipped with the
projection (R3,F , a†k, ak,|0〉, P ) ≡ (F , P ). This implies that it makes sense to consider the
energy di�erence between the two vacuums:

〈0L|Tµν |0L〉 − 〈0|Tµν |0〉.

Our goal is to discuss negative energy, so we will compute the expectation value for the
energy density for the canonical energy-momentum tensor Tµν for the Klein-Gordon �eld φ.
Tµν depends on objects like φ2, which are not well-de�ned when we consider φ as operator-
valued distributions. We can regularize it by the two-point splitting procedure29:

Tµν(x, x
′) = ∂µφ(x)∂νφ(x′)− 1

2
ηµν∂ρφ(x)∂ ρφ(x′).

Then, for the energy density we have:

T00(x, x′) =
1

2

{
∂0φ(x)∂0φ(x′)+

3∑
j=1

∂jφ(x)∂jφ(x′)

}
,

which we can write30 as:

T00(x, x′) =
1

2

{(
∂0∂0′+

3∑
j,j′=1

∂j∂j′
)
φ(x)φ(x′)

}
;

we can renormalized it by computing the di�erence of the expectation value at some state of
interest |ψ〉 and the vacuum |0〉. With the identi�cation Tµν(x) ≡ Tµν(x, x) in mind, we can
take the coincidence limit, and we get the regularized renormalized expectation value for the
energy density at the state ψ:

〈T00(x)〉ψ =
1

2
lim
x′→x

((
∂0∂0′+

3∑
j,j′=1

∂j∂j′
)(
〈ψ|φ(x)φ(x′)|ψ〉 − 〈0|φ(x)φ(x′)|0〉

))
. (1.2.3)

Let's compute it for the vacuum of the restrained system |0L〉, we will do it analogously to
Fulling's calculations for 〈φ2〉0L [59, Chp5]. This will take some pages, but it is crucial that
we accept negative energy within Quantum Field Theory to search for a quantum energy
inequality in chapter 3.

29which is discussed in more detail in the Hadamard States section in chapter 2.
30by signaling di�erently the index of the partial derivatives that act on φ(x′) with a ′.
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Theorem 1.16. The regularized renormalized expectation value for the energy density at
the restrained system vacuum in given by

〈T00〉0L = − π2

1440L4
− π2

48L4

3− 2 sin2
(
πz
L

)
sin4

(
πz
L

) < 0.

Let's compute the energy density (1.2.3) for |ψ〉 = |0L〉:

〈T00(x)〉0L =
1

2
lim
x′→x

((
∂0∂0′+

3∑
j,j′=1

∂j∂j′
)(
〈0L|φ(x)φ(x′)|0L〉 − 〈0|φ(x)φ(x′)|0〉

))
. (1.2.4)

Recall that expectation values like 〈0L|φ(x)φ(x′)|0L〉 can be written in terms of the Green
functions of the Klein-Gordon equation�in this case, the one called Wightman function,
which we will denote as GL

+(x, x′). Imposing the boundary conditions on the canonical
solutions of the whole system, we get:

φ(t, x) =
1

2π

∫
R2

dk1dk2

∞∑
n=1

1√
ωkL

[ãke
−iωktei(k1x+k2y) sin(k3z) + ã†ke

iωkte−i(k1x+k2y) sin(k3z)],

where k3 = nπ
L
, ω2

k := k2
1 + k2

2 + k2
3 +m2 and [ãk, ã

†
k′ ] = δ(k1 − k′1)δ(k2 − k′2)δn,n′ .

Let's denote x⊥ = (x, y) and k⊥ = (k1, k2); since

ãk|0L〉 = 〈0L|ã†k = 0 and [ãk, ã
†
k′ ] = δ(k⊥ − k′⊥)δn,n′ , we get:

〈0L|ãkãk′+ ãkã
†
k′+ ã†kãk′+ ã†kã

†
k′ |0L〉 = 〈0L|ãkã†k′ |0L〉 = 〈0L|ãkã†k′− ã

†
k′ ãk|0L〉 = δ(k⊥−k′⊥)δn,n′ .

Then, it follows:

GL
+(x, x′) = 1

4π2

∫
d2k⊥

∞∑
n=1

1
ωkL

{
e−iωk(t−t′)eik⊥(x⊥−x′⊥) sin(k3z) sin(k3z

′)
}

For simplicity, let's impose x⊥ = x′⊥; that is, we will take the coincidence limit not in
arbitrary directions, but only in the (t, z) plane. Using that∫

R

|k⊥|
ωk

d|k⊥| =
∫ ∞
k3

dωk

and with usual trigonometric identities, we get:

GL
+(x, x′) =

1

4πL

∞∑
n=1

∫ ∞
k3

dωk

{
e−iωk(t−t′) 1

2
[eik3(z−z′) + e−ik3(z−z′) − eik3(z+z′) − e−ik3(z+z′)]

}
.

(1.2.5)
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Proposition 1.17. [adapted from [59, Pg99,Prop1]]In the distributional sense, modulo
terms supported at the origin, it holds:

a)
∫∞
k
e−iωτdω = 1

iτ
e−ikτ , b)

∞∑
n=1

e−inλ = 1
eiλ−1

≡ F (iλ),

a′)
∫∞
k
ω2e−iωτdω =

(
k2

(iτ)1
+ 2k

(iτ)2
+ 2

(iτ)3

)
e−ikτ , b′)

∞∑
n=1

ne−inλ = eiλ

(eiλ−1)2
= −Ḟ (iλ),

b′′)
∞∑
n=1

n2e−inλ = eiλ(eiλ+1)
(eiλ−1)3

= F̈ (iλ);

where dot denotes di�erentiation with respect to iλ.

To obtain (1.2.4), we must compute the derivatives of GL
+(x, x′). Note that GL

+(x, x′) does
not have any x⊥ = (x, y) dependence, since we already made the simpli�cation x⊥ = x′⊥.
The time derivatives just give a multiplying term ω2

k in the integral and the derivatives in z
and z′ just give a multiplying term k2

3 in the summation and changes the sign of the last two
terms; denoting τ ≡ (t− t′),

λ1 ≡ (t− t′ − z + z′), λ2 ≡ (t− t′ + z − z′
)
, λ3 ≡ (t− t′ − z − z′), and λ4 ≡ (t− t′ + z + z′),

and applying the proposition above, we get that ∂0∂0′G
L
+(x, x′) + ∂z∂z′G

L
+(x, x′) is given by

=
1

4πL

(
1

(iτ)1

π2

L2

)[
F̈
(
i
π

L
λ1

)
+ F̈

(
i
π

L
λ2

)]
+

+
1

4πL

(
1

(iτ)2

π

L

)[
− Ḟ

(
i
π

L
λ1

)
− Ḟ

(
i
π

L
λ2

)
+ Ḟ

(
i
π

L
λ3

)
+ Ḟ

(
i
π

L
λ4

)]
+ (1.2.6)

+
1

4πL

(
1

(iτ)3

)[
F
(
i
π

L
λ1

)
+ F

(
i
π

L
λ2

)
− F

(
i
π

L
λ3

)
− F

(
i
π

L
λ4

)]
.

The following proposition gives us all terms in λ1 and λ2 of the above.

Proposition 1.18. (adapted from [59, Prop2,Pg100]) In the distributional sense, it holds:

F (iλ) =
∞∑
m=0

Bm

m!
(iλ)m−1,

Ḟ (iλ) =
∞∑
m=0

(m− 1)
Bm

m!
(iλ)m−2,

F̈ (iλ) =
∞∑
m=0

(m− 2)(m− 1)
Bm

m!
(iλ)m−3;

where Bm are the Bernoulli numbers B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, . . ..

The terms in λ1 and λ2 depend on (t − t′) and (z − z′), this means we could expand
them directly and consider the coincidence limit to forget about the terms O(λ4

j), O(λ3
j) and
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O(λ2
j), respectively in the above�since they will go to zero faster then the terms τ 3, τ 2 and

τ 1 of expression (1.2.6).
On the other hand, the terms on λ3 and λ4 depend on (t− t′) and (z+ z′); thus, we need

a di�erent approach. De�ne δ ≡ π
L

(t− t′) and ζ ≡ π
L

(z+ z′), these new variables will help us
work with these distributions. We have:

F
(
i
π

L
λ3

)
= F (iδ − iζ) and F

(
i
π

L
λ4

)
= F (iδ + iζ).

If we consider that we only smear �elds with analytics functions, it makes sense to expand
in Taylor for small (t− t′):

F (iδ ± iζ) = F (±iζ) + (iδ)F (±iζ) + 1
2
(iδ)2F̈ (±iζ) + 1

6
(iδ)3

...

F (±iζ) +O(δ4)⇒

F
(
i
π

L
λ3

)
+ F

(
i
π

L
λ4

)
= F (iδ − iζ) + F (iδ + iζ)

= 1[F (−iζ) + F (iζ)] + (iδ)[Ḟ (−iζ) + Ḟ (iζ)] +
1

2
(iδ)2[F̈ (−iζ) + F̈ (iζ)]

+
1

6
(iδ)3[

...

F (−iζ)+
...

F (iζ)] +O(δ4), (1.2.7)

and analogously for Ḟ
(
i π
L
λ3

)
and Ḟ

(
i π
L
λ4

)
. For real λ, we have:

F (iλ) =
1

eiλ − 1
= −1

2
− i sinλ

2(1− cosλ)
= F (iλ)∗ = F (−iλ),

Ḟ (iλ) = +
1

4
csc2

(
λ

2

)
= Ḟ (iλ)∗ = Ḟ (−iλ),

F̈ (iλ) = −1

4
csc2

(
λ

2

)
cot

(
λ

2

)
= F̈ (iλ)∗ = −F̈ (−iλ),

...

F (iλ) = +
1

8
csc4

(
λ

2

)
{3− 2 sin2 λ} =

...

F (iλ)∗ =
...

F (−iλ).

Using the expressions above we get all terms in λ3 and λ4.
To renormalize, we subtract the following. For the whole system vacuum, the massless

case: let G+(x, x′) ≡ 〈0|φ(x)φ(x′)|0〉, from Bogoliubov and Shirkov's work [13, AppI] we
know that G+(x, x′) = −1

4π2[(t−t′)2−(z−z′)2]
; then, in the limit z′ → z:

∂0∂0′G+(x, x′) + ∂z∂z′G+(x, x′) =
2

π2(t− t′)4
. (1.2.8)

Therefore, the regularized renormalized expectation value for the energy density in the re-
strained system vacuum is given by the sum of terms in λ1, λ2, λ3 and λ4 minus (1.2.8):

〈T00〉0L = − π2

1440L4
− π2

48L4

3− 2 sin2
(
πz
L

)
sin4

(
πz
L

) .

One could say that this negative energy is just a technicality; in the next section, we see
that we cannot remove it by rescaling the zero energy�in fact, a negative energy density is
intrinsic of the framework of Quantum Field Theory established here.
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An intuitive argument for: this negative energy is not a technicality.
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Consider we have a quantum system on Minkowski spacetime satisfying the
Klein-Gordon equation just as before (R3,F , a, a†k,|0〉. We can equip it with
a projection P : F0 → F0,L and construct the subsystem (Ω,FL, ã, ã†k,|0〉L)
and we just learned that the expectation value of the energy density at |0L〉
is negative in respect to |0〉, i.e. if we set 〈T00〉0 ≡ E0 → 0, we get, say
〈T00〉0L = −E1. One could think that this negativeness is arbitrary and if we
just translated the energy scale by +E1 we would obtain〈T00〉0L = 0, 〈T00〉0 =
E1 and no negative energy.

�Translate the scale� corresponds to rede�ne the renormalization process;
we would have to rewrite equation (1.2.3) as:

〈T00(x)〉ψ =
1

2
lim
x′→x

((
∂0∂0′+

3∑
j,j′=1

∂j∂j′
)(
〈ψ|φ(x)φ(x′)|ψ〉 − 〈0L|φ(x)φ(x′)|0L〉

))
.

The above is not a good renormalization process�for the general context of
Quantum Field Theory�since the state |0L〉 is not translation invariant. Yet,
let's consider this rescalement just to see that it does not remove the negative-
ness of this particular problem�the Casimir e�ect in the Fock representation.

Note that 〈T00〉0L depends on L, as in Theorem 1.16; then, what if we
consider the projection P2 : F0 → F0,L/2? A projection that restrain the whole
system to a smaller region, say

Ω2 = {(x, y, z) : 0 < z < L/2} ⊂ Ω ⊂ R3,

gives, by Theorem 1.16�considering just the �rst term, for simplicity�
〈T00〉0L/2 ≡ −E2 = 24〈T00〉0 = −24E1�which is negative in respect to both
|0L〉 and |0〉. Then we would have to translate the scale by +E2 to get rid of
the negative energy. We can do this over and over again: take the projection
Pn, compute the vacuum energy density 〈T00〉0L/2n ≡ −En = 24n〈T00〉0 and
translate the energy scale by +En. The problem is: we cannot take the limit
n → ∞. If we repeat this procedure until we obtain an overlap of the plates,
this will correspond to a system for which φ = 0 everywhere! Thus, the limit
of this sequence of states is not a physical state.

This is consistent with quantum mechanics: absolute nothing does not exist, even the
vacuum�the no-particle state�has a non-zero energy. Even if you try to consider a zero
wave function, in the next second you would realize that there would be a zero probability
of �nding a system in that state. So we never get to this limit, it is not a physical state.

We cannot de�ne energy di�erences in respect to this limit, we cannot measure the en-
ergy of this limit, we cannot set it to zero. This means we have to cut o� this subsystem
construction at some point and set the zero somewhere before this limit. Suppose we stop
at subsystem n, then the state |0L/2n+1〉 has negative energy in respect to |0L/2n〉. There-
fore, even though we only measure energy di�erences, negative energy is intrinsic here: if
we cannot de�ne an absolute zero energy state, we must take into account negative energy
states.
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1.2.3 Quantum Energy Inequalities

Where we understand what are these quantum energy inequalities and the role they play here.

By accepting that we must take negative energy into account, the question of whether it
could be arbitrarily negative naturally arises. Ford was the �rst to approach this problem,
in 1978, and he showed that negative energy �uxes lead to a violation of the second law of
Thermodynamics [49]; he also introduced the concept of a quantum inequality: a restriction
on the magnitude and the duration of negative energy; thus, also called quantum energy
inequality (QEI).

Beyond the violation of the second law, some other possible�more exotic�macroscopic
e�ects that could result if arbitrarily negative quantum energy densities were allowed to exist
for extended periods of time have been studied; for example, Alcubierre's warpdrive [4] and
its �unphysical� character [92], as well as traversable wormholes and time machines�two nice
references for this subject are [53, 114]. QEIs are relevant to study exotic e�ects, yet, in this
dissertation they play a more conservative role; in the context of Singularity Theorems under
the light of Quantum Physics, quantum energy inequalities enter as a weakened substitute
of the classical energy conditions.

The problem of weakening the classical energy conditions does not have a unique nor
canonical solution; a �rst attempt was to consider averages along geodesics [112] instead of
the classical pointwise characterization. Let us take the null energy condition (NEC) as an
example; instead of imposing the classical pointlike form

Tµνk
µkν ≥ 0 for all null kµ,

we could consider an average null energy condition (ANEC)∫
γ

Tµνγ
′µγ

′νdλ ≥ 0

{
for a complete (or half-complete) null
geodesic γ with a�ne parametrization.

Remark 1.19. To make sense out of this integral we have to regularize it somehow: we can
interpret it as a lim inf of integrals over a �nite interval (as done by Roman in [100]) or we
can introduce a mollifying function (as done by Wald and Yurtsever in [116])�in this case,
we would take it as a weighted average.

The study of Singularity Theorems under weakened energy conditions is also dated to the
70's; in particular, Singularity Theorems were proven using average energy conditions also by
Ford in [112] and the discussion perpetuated, for example in the later works [16, 100, 116].
Yet, ANEC was also shown to be violated by scalar �elds (even classical scalar �elds). In fact,
the average energy conditions�which were constructed as the classical ones, i.e assumed�
are not free from violations as well.

On the other hand, QEIs are derived within Quantum Field Theory. The bound derived
by Ford in 1978 was based in the uncertainty principle, but since the 90's, QEIs have been
derived directly from QFT formalism, without other assumptions, as in [100, 91] for example.
As Ford said in [53]: �The same laws of physics that allow the existence of this `negative
energy' also appear to limit its behaviour�.
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As an example of a QEI, consider the Klein-Gordon �eld in Minkowski spacetime�it was
found [51, 52] a bound of the form:∫ +∞

−∞
f(t) 〈T00〉ψ dt ≥ −

C

t40
,

where 〈T00〉ψ is the expected energy density at the state ψ smeared with a sampling function
f , which is smooth, vanishes at in�nity and integrate to 1; C is a constant that depends on
〈T00〉ψ and f . The parameter t0 is a sampling time; in the limit t0 → ∞, the bound above
reduces to an average weak energy condition (with a smearing function) and in the limit
t0 → 0, there is no bound�the energy density can be arbitrarily negative. This example
illustrate the nature of a quantum energy inequality.

To summarize: quantum energy inequalities are bounds, within quantum �eld theories,
on the magnitude and duration of negative energy; they are lower bounds satis�ed by the
expectation value�weighted averages�of the energy-momentum tensor and we can see them
as a generalization of the classical pointwise energy conditions.

1.3 The Transition from Flat to Curved Spacetime

Where we answer the questions: if Quantum Field Theory has problems on Minkowski spacetime,

why should we go to curved ones? It should be worst, right?

We can bene�t from the discussion on Singularity Theorems of section 1.1 using it to
illustrate two reasons for pursuing an axiomatic formulation of any theory, since Hawking
and Penrose theorems:

1. do not rely on symmetry hypothesis on the matter content or on counting solutions of
Einstein equations ⇒ within a more general formalism, one has the chance to obtain
stronger results.

2. set the ground for the de�nition of singularity as geodesic incompleteness; in spite of
having its subtleties, this de�nition is clear and enabled us to better comprehend the
nature of singularities in General Relativity ⇒ within a well-de�ned formalism, one
has the chance of a better understanding of fundamental concepts.

The study of an axiomatic formulation of Quantum Field Theory on Curved Spacetimes has,
at least, two particular reasons:

3. it allows the study of the interaction between gravity and other �elds in regions of high
curvature, like near a collapsing star; which has been shown interesting by the Hawking
e�ect, for example.

4. it allows the study of quantum energy inequalities, which is motivated by Singularity
Theorems in this dissertation, but is also interesting to study possible macroscopic
e�ects of negative energy�as shown in the last section.
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Considering reasons 1-4 above, we can also see an axiomatic formulation of Quantum Field
Theory on curved spacetimes as a preliminary work towards a fully quantized theory of
gravity.

The framework of Wightman Axioms, as seen in section 1.2.1, constitutes an axiomati-
zation of Quantum Field Theory on Minkowski spacetime. In the same year of Wightman's
publication, 1964, R. Haag and D. Kastler established another axiomatic approach: they
showed that a purely algebraic formulation of QFT is possible and they explicitly gave a set
of axioms based on the concept of local net of observables [68]. Both of them are axiomati-
zations of QFT, both can be referred to as Local QFT and, in fact, both deal with algebras,
but what is often called Axiomatic QFT is Wightman's version and, Algebraic or Local QFT
is the formalism based on Haag-Kastler Axioms.

Some levels of equivalence between the two frameworks have been developed; for exam-
ple, that we can obtain Wightman Fields within an adapted and generalized Haag-Kastler
framework [56] and the other way around with some extra assumptions [14]. Furthermore,
even though both works [118, 68] are from the same year, Haag and Kastler were familiar
with other previous works of Wightman [117]; also of Araki [6] and of Segal [105]�whose
work was in the context of searching for an algebraic approach. Therefore, we can consider
the Haag-Kastler approach as a generalization of the Wightman framework, in the sense that
it takes the algebra of observables, implicit in Wightman's, and elevate it to fundamental
object.

For completeness, I will state now the Haag-Kastler Axioms; and for convenience, I will
state them for Minkowski spacetime�this also allows direct comparison with the Wightman
framework stated in section 1.2.1. Even though they listed explicitly their framework in [68],
one can �nd several adaptations, simpli�cations or generalizations in literature also referred
to as H-K axioms. The following is basically Fredenhagen's version as in [54].

Let O be a region in the Minkowski spacetime, O′ its causal complement and U(O) its
assigned algebra of observables labeled by a family K of regions and satisfying the isotony
property. The correspondent Haag-Kastler axioms for the local structure are:

Principle of Locality: if O1 ⊂ O′2 ⇒ U(O1) ⊂ U(O′2). This is saying that algebras
of spacelike separated regions are independent, which corresponds to Einstein causality
and introduce the relativistic character of the system.

Covariance: the symmetry operations map U(O) into the algebra of the mapped
region O. Usually, the symmetry consider is associated to the Poincaré group P↑+,
and we can state this axiom then, equivalently as: exits a family of isomorphisms
αOL :U(O) → U(LO) such that for O1 ⊂ O2, we have α

O2
L �U(O1)= αO1

L and such that:
αLOL′ ◦ αOL = αOLL′for the Poincaré transformations L, L′. Sometimes this axiom is also
simpli�ed to a statement on the translations only.

Time-slice: the algebra of a neighborhood of a Cauchy surface of a given region
coincides with the algebra of the full region. This means we can construct the entire
algebra by �nding the observables, of an initial value problem, at a small time interval.

Stability Condition: it exists a strongly continuous unitary representation U of the
translation group, and a representation π of U(K) on some Hilbert space such that:
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U(a)πU(a)−1 = π(αa(A)), a ∈ R4, A ∈ U(K) and the joint spectrum of the generator
of U is contained in the closed forward light cone.31

The above axioms exhibit the representative property of Algebraic QFT:

The fundamental concepts of the theory, as locality, causality, commutations relations and
even, the dynamics one is considering, are introduced in the algebra of observables.

In chapter 2, we study the algebraic approach of QFT for the Klein-Gordon �eld. We con-
sider the notion of �elds as operator-valued distributions, as introduced in 1964 by Wightman
and we explicitly construct the algebra of observables with the solutions of the Klein-Gordon
equation�this procedure has support on the Haag-Kastler framework and the subsequent
prosperity of algebraic QFT. A nice reference for a generalization of Haag-Kastler framework
to curved spacetimes is [57, 4.2].

The crucial advantage of the algebraic approach is the possibility of generalizing it to
curved spacetimes32. Without Poincaré symmetries we lose the notion of particles, of Hamil-
tonian, of vacuum, for example. Yet, in the algebraic formalism, we have Hadamard states,
Radzikowski Theorem, thus the powerful tool of Microlocal Analysis that substitutes the
Fourier transforms and other Fock space techniques. The �gure below highlight the basic
di�erences between the standard and the algebraic approaches.

Figure 1.1: The transition from �at to curved spacetimes.

Furthermore, the fundamental object of a quantum �eld theory is a �eld, thus, to lose
the notion of particle when considering curved spacetimes should not withhold us from for-
malizing QFT in a curved spacetime. Given that, to lose the notion of a preferred vacuum is
natural since, in the Fock representation, it is directly related to the notion of particle. To
corroborate this idea, a nice quote from R. Wald [115, Pg60] comparing the transition from
�at to curved spacetimes with the transition from Special Relativity to General Relativity:

�Indeed, I view the lack of an algorithm for de�ning a preferred notion of `particles'
in quantum �eld theory in curved spacetime to be closely analogous to the lack
of an algorithm for de�ning a preferred system of coordinates in classical general
relativity. (Readers familiar only with presentations of special relativity based
upon the use of global inertial coordinates might well �nd this alarming.).�

31Is common to say that this axiom is intuitively stating that �energy is positive�, which is reasonable, but
one must keep in mind that the positivity here is associated to the support of the generators U , and not to
the energy-momentum tensor or Wick products.

32There are �generalizations of Wightman Axioms�, such as the work of Isham in 1978 and also by Wald
and Hollands in 2008; but they are, in essence, the algebraic approach.
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A Framework: Klein-Gordon Field

in Algebraic Quantum Field Theory

Where we see how we can characterize a quantum system determined by the Klein-Gordon dynamics

in a general curved spacetime within the algebraic approach of Quantum Field Theory.

The algebraic approach of Quantum Field Theory (QFT) allows us to formalize QFT on
curved spacetimes without the particular concepts that arise naturally in �at spacetimes due
to Poincaré symmetries, such as the notion of particles, of a preferred vacuum state and of
Hamiltonian, for example. In fact, it allows us to formalize QFT using only local concepts,
and we can see it as a preliminary work towards a theory of quantum gravity. In Algebraic
QFT (AQFT), the fundamental object is an algebra and, notably, we can introduce all infor-
mation regarding locality, causality, commutation relations and the dynamics of the model
in the algebra of observables. The so called Hadamard states - normalized positive linear
functionals on the algebra that satisfy the Hadamard condition - are considered physically
reasonable states since they give a well-de�ned expectation value for the energy-momentum
tensor (up to local curvature terms). On the other hand, for �elds as distributions, and
given Radzikowski Theorem, we have the powerful mathematical tool of Microlocal Analysis,
which can be seen as a replacement of the Fourier analysis done in the usual Fock space
representation. AQFT is a general, well-de�ned formalism which has shown to be fruitful
and powerful for fundamental topics of Quantum Field Theory on curved spacetimes and for
cosmological applications1.

In this chapter we see how we can formulate quantum �eld theory for the Klein-Gordon
�eld in the algebraic approach with the goal of understanding the framework in which we
derive a general quantum energy inequality in the next chapter.

An ambiguity arises at the starting point: posing the problem. We must choose the
form of the generalized Klein-Gordon equation and where will it be de�ned; this choice of an
equation that couples the Klein-Gordon �eld with gravity in a curved spacetime is restrained
by the condition that it must reduces to the usual equation in �at spacetime.

Consider a free hermitean scalar �eld φ that satis�es the following Klein-Gordon equation:

1There are references for these applications in section Wind-up of chapter 3.

41
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Pφ =̇ (−�+m2 + ξR)φ = 0 where


� = ∇µ∇µ is the D'Alembert operator;

m is the mass;

R is the Ricci curvature;

ξ is the coupling parameter.

(2.0.1)

The equation above is the simplest generalization of the Klein-Gordon equation to a
curved spacetime. Of course we could add other terms to it and still get a functional that
reduces to the Klein-Gordon one in �at spacetimes, but we should also �nd a good reason
to do that2. Fulling gives, in [59, Pg119], two reasons to include the ξR term: conformal
invariance and interaction. First, let n be the dimension of the spacetime, when m = 0
and ξ = n−2

4(n−1)
the equation is conformally invariant. This means that we could work with

rescaled solutions, possibly with simpler calculations. The second and more physical reason
is that it is known that the renormalization of an interacting theory, for example Yukawa,
will impose a counterterm proportional to Rφ2 in the Lagrangian and thus a term like ξR in
the equations of motion. Therefore, we have a mathematical and a physical reason to include
the term ξR in the generalization of the Klein-Gordon equation.

Although not the most general background, here, we will pose the problem on globally
hyperbolic spacetimes for three reasons:

1. Particular justi�cation: the goal of this dissertation is to approach Singularity Theorems
through the energy condition, so we can keep the causality condition on the spacetime
as being �global hyperbolicity�;

2. Physical intuition: for the well-posedness of Einstein equations as an initial value prob-
lem, spacetime should be predictable from initial data and, thus, globally hyperbolic;

3. Technical convenience: it is well-known that normally hyperbolic operators constitutes
a well-posed Cauchy Problem in globally hyperbolic spacetimes.

In appendix B, one can walk towards the spacetime de�nition�an n-dimensional connected
time-orientable Lorentzian manifold�and recall some properties of Lorentzian Geometry.

The generalized problem we face in this chapter is then Equation (2.0.1) on globally
hyperbolic spacetimes. We study �rst the Classical Dynamics of it, in section 2.1; we see
that it is, indeed, a well-posed Cauchy problem and we determine the Poisson bracket on
which we apply Dirac quantization when constructing the quantized algebra of observables
in section 2.2. This algebra admits too many states, so in section 2.3 we analyse properties
we would expect states to satisfy to say they are physically reasonable. In this last section we
also review basic tools of Microlocal Analysis crucial to derive a quantum energy inequality
in chapter 3.

Let's set some notation �rst; let M be a globally hyperbolic spacetime, then:

2A fancy name for this argument is �Occam's razor�: �Numquam ponenda est pluralitas sine necessitate�.
There are, for example, models for graviton or in�ation, which do include other terms.
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� C∞(M,R) denotes the collection of smooth real-valued functions on M equipped with
the usual locally convex topology, i.e. fn → f in C∞(M,R) if the derivatives of fn
converge uniformly to the derivatives of f on all compact subsets of M .

� C∞0 (M,R) denotes the collection of smooth real-valued functions on M with compact
support equipped with the usual locally convex topology, i.e. fn → f in C∞(M,R) if
there is a compact set K ⊂M which contains the supports of all fn and of f and such
that the derivatives of fn converge uniformly to the derivatives of f on K.

� C∞SC(M,R) denotes the collection of spacelike-compact support functions in C∞(M,R),
i.e. for all f ∈ C∞SC(M,R) and all Cauchy surfaces Σ on (M, g) we have suppf ∩ Σ is
compact.

� C∞tC(M,R) denotes the collection of timelike-compact support functions in C∞(M,R),
i.e. for all f ∈ C∞tC(M,R) there exists two Cauchy surfaces Σ1 and Σ2 on (M, g) such
that suppf ⊂ J−(Σ1) ∩ J+(Σ2).

� D′(M,R) denotes the topological dual of C∞(M,R). That is, the space of distributions
which consists of continuous linear functionals C∞(M,R)→ R.

� D′0(M,R) denotes the topological dual of C∞0 (M,R). That is, the space of distributions
which consists of continuous linear functionals with compact support C∞0 (M,R)→ R.

� 〈 . , . 〉 denotes (until said otherwise) the dual pairing of f ∈ C∞(M,R) and u ∈
D′0(M,R) ⊃ C∞(M,R) ⊃ C∞0 (M,R) with compact overlapping support given by:
〈u, f〉 :=

∫
M
dvolg(x)u(x)f(x).

Solutions of a partial di�erential equation do not have to be compactly supported, here they
will be generally functions in C∞(M,R). Yet, measurements are made at a �nite spacial
extention region for a �nite time interval and we can introduce this information by restraining
the analysis to smooth compactly supported functions. These functions, in C∞0 (M,R), are
called test functions and, accordingly, we will interpret them as functions which employ
the localisation of the observables in spacetime. In particular, if a solution is time-compactly
supported, this means that the initial data gets lost somewhere�which seems unreasonable�
thus, within the compactly supported solutions, we will further restrain the construction to
the spacelike-compactly supported ones, i.e. functions in C∞SC(M,R).

2.1 Classical Dynamics

Where we establish that the Klein-Gordon equation constitutes a well-posed Cauchy problem in glob-

ally hyperbolic spacetimes and we �nd a natural Poisson Bracket.

Since we study a scalar �eld, we consider an operator P acting on a space of functions on
the spacetime. In [10, Chp3], one can �nd more general statements, for P acting on sections
of a vector bundle, and their proofs. Yet, keeping this in mind, we can later �trivially
complexify� the results here by considering P acting on C∞(M,R) ⊗ iC∞(M,R). We start
with the classical part, and the construction of the Poisson bracket for classical observables,
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so it is somewhat more intuitive to remain with the real-valued functions for now. Eventually,
we will complexify the solutions, for convenience, and then apply Dirac quantization. This
section is a simpli�ed review of [69, Pg18-25] and [79, Sec2]; another nice reference for the
subjects treated here is [8], and a more compact one is [33].

Let's start by recognizing that the Klein-Gordon operator, of equation (2.0.1), is a nor-
mally hyperbolic operator. The idea is that we can write a linear di�erential operator by
replacing each partial derivative by a new variable, i.e. in terms of symbols ; the highest
order terms of the symbols is called principal symbol. On a Lorentzian manifold, a normally
hyperbolic operator is an operator whose principal symbol is given by the corresponding
metric tensor on the manifold. The d'Alembertian is the canonical example of a normally
hyperbolic operator, and it is easy to see then that the Klein-Gordon operator is of this kind.
Let's formalize this idea. Let α be an n-dimensional multi-index α = (α1, ..., αn), so that
∂α = ∂α1

1 ...∂αnn , where ∂αii := ∂αi

∂x
αi
i

and |α| = α1 + ...+ αn.

De�nition 2.1. (Principal symbol) For the linear di�erential operator P =
∑
|α|≤m

aα(x)∂α,

P (ξ) =
∑
|α|≤m

aα(x)(iξ)α is called the full symbol of P . The homogeneous term with degree m,

σP (x, ξ) =
∑
|α|=m

aα(x)(iξ)α, is called the principal symbol of P .

De�nition 2.2. (Normally hyperbolic operator) A second-order di�erential operator
whose principal symbol is a Lorentzian metric is called a normally hyperbolic operator (or a
generalized d'Alembert operator, for example in [8], or even a wave operator, for example in
[9]). In local coordinates, P can be expressed as P = −gµν∂µ∂ν + Aµ∂µ + B, with smooth
functions Aµ, B and the metric principal symbol −gµν∂µ∂ν .

Evidently, the Klein-Gordon operator is normally hyperbolic. The connection between a
metric principal symbol and this �normal hyperbolic� character is due to the fact that the
zeros of the principal symbol are the characteristics of the associated equation and they give
us information about the solutions and the singularities of it.

It is a well-posed Cauchy Problem

From now on, and until said otherwise, let P : C∞(M,R) → C∞(M,R) be a normally
hyperbolic operator on a globally hyperbolic spacetime M . The results of this subsection are
simpli�ed from [10, Chp3].

Theorem 2.3. [10, Pg85](The Cauchy Problem) Let f ∈ C∞0 (M,R), Σ a Cauchy
surface on M , (u0, u1) ∈ C∞0 (Σ,R)×C∞0 (Σ,R), and let n be the future directed timelike unit
vector �eld of Σ. Then the Cauchy Problem:

Pu = f u �Σ= u0 ∇nu �Σ= u1

has a unique solution u ∈ C∞(M,R). Moreover, the solution depends continuously on the
data and

supp(u) ⊂ J(K), where K := supp(u0) ∪ supp(u1) ∪ supp(f).
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Then, given initial conditions, say data≡ (f,Σ, u0, u1), we can evolve this data contin-
uously, causally and uniquely. So the Klein-Gordon equation describes the dynamics of a
system in the entire spacetime.

Theorem 2.4. [10, Pg87](∃! Fundamental operators solutions) There exist unique�
in the distributional sense�advanced EA and retarded ER Green operators for P . That is,
there are continuous linear maps:

EA,R : C∞0 (M,R)→ C∞(M,R) with


P ◦ EA,R = EA,R ◦ P = idC∞0 (M,R);

suppEA,Rf ⊂ J±(suppf) ∀f ∈ C∞0 (M,R).

Corollary 2.5. Let f, g ∈ C∞0 (M,R). If P is formally self-adjoint, i.e. 〈f, Pg〉 = 〈Pf, g〉,
then EA,R are formally self-adjoint and E is formally skew-adjoint, i.e. 〈f, Eg〉 = −〈Ef, g〉.

Claim 2.6. The Klein-Gordon operator is formally self-adjoint, thus the above Corollary is
interesting for us.

Theorem 2.4 tells us that exist inverses of P in certain regions of spacetime, i.e. the Green
operators for P ; Corollary 2.5 is a crucial property we use later. We can look at EA and
ER as �fundamental operator solutions�: for f ∈ C∞0 (M,R) we have an advanced solution
EAf with support in the causal future of the support of f and a retarded solution ERf , with
support in the causal past. With them, we de�ne the causal propagator E in Theorem 2.7
and state its properties (i-iv).

Theorem 2.7. The causal propagator of P de�ned as E := EA − ER is a continuous map:

E : C∞0 (M,R)→ C∞SC(M,R) such that

(i) for all solutions u of Pu = 0 with compact-supported initial conditions on a Cauchy
surface there is an f ∈ C∞0 (M,R) such that u = Ef ;

(ii) If Ef = 0, then ∃g ∈ C∞0 (M,R) such that f = Pg;

(iii) EC∞0 (M,R) and C∞0 (M,R)/PC∞0 (M,R) are isomorphic;

(iv) 0→ C∞0 (M,R)
P→ C∞0 (M,R)

E→ C∞SC(M,R)
P→ C∞SC(M,R) is exact.

Proof.

item (i): Let u ∈ C∞SC(M,R) such that Pu = 0 and take a cuto� function χ, i.e. χ ≡ 0
in the causal future of some Cauchy surface Σ2 and χ ≡ 1 in the causal past of some
Cauchy surface Σ1, such that Σ2 ⊂ I+(Σ1). Let f ≡ −Pχu, since f has compact
support in I+(Σ2) ∩ I−(Σ1) and:

� suppχu ⊂ I−(Σ2), which is compact, then χu = ERf ;

� supp(1− χ)u ⊂ I+(Σ1), also compact, then (1− χ)u = −EAf .

Hence, u = Ef for some f ∈ C∞0 (M,R).
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item (ii): Ef = 0⇒EAf = ERf . Then, suppEA,Rf ∈ J+(suppf) ∩ J−(suppf), which
is compact, so EA,Rf ∈ C∞0 (M,R). Therefore:

f = P ◦ EA,Rf ∈ PC∞0 (M,R).

item (iii): kerE = RanP since:

f ∈ kerE
(ii)⇒ ∃g : f = Pg ⇒ f ∈ RanP ;

for f ∈ C∞0 (M,R), we have E ◦ Pf = EA ◦ Pf=ER ◦ Pf = f − f = 0 (S), then:

f ∈ RanP ⇒ ∃g : f = Pg
(S)⇒ f ∈ kerE.

Then, by the �rst theorem of isomorphism:

EC∞0 (M,R) ' C∞0 (M,R)/PC∞0 (M,R).

item (iv): an exact sequence is one such that the image of each map is the kernel of
the next map, it holds since:

� The �rst arrow says P is injective: let f ∈ C∞0 (M,R), since f = EA,R ◦ Pf then
f = 0 ⇐⇒ Pf = 0 ∴ kerP = {0}.

� The second arrow is due to item (iii).

� The third arrow corresponds to RanE = kerP , which holds since:

u ∈ kerP
(i)⇒ ∃f : u = Ef ⇒ u ∈ RanE;

for f ∈ C∞0 (M,R), we have E ◦Pf = EA ◦Pf=ER ◦Pf = f − f = 0 (SS), then:

u ∈ RanE ⇒ ∃f : u = Ef
(SS)⇒ u ∈ kerP .

Proposition 2.7 yields a well-de�ned causal propagator that maps test functions onto
solutions with spacelike-compact support.

Let the space of complex test functions be denoted as C∞0 (M) := C∞0 (M,R)⊕ iC∞0 (M,R)
and D′0(M) its dual space; we can extend by C-linearity the operators EA,R and E seen
as linear maps EA,R : C∞0 (M,R) → C∞(M,R) and E : C∞0 (M,R) → C∞SC(M,R) ⊂
C∞(M,R) to continuous linear maps C∞0 (M) → D′0(M), which de�ne�by the Schwartz
Nuclear Theorem�the bidistributions, also denoted EA,R and E:

EA,R(f, g) := 〈f, EA,Rg〉 =

∫
M×M

dvolg(x)dvolg(y)EA,Rf(x)g(y),

E(f, g) := 〈f, Eg〉 =

∫
M×M

dvolg(x)dvolg(y)Ef(x)g(y) for f, g ∈ C∞0 (M,R).
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Since the Klein-Gordon operator is formally self-adjoint, by Corollary 2.5, the bidistribu-
tion E is skew-symmetric:

E(f, g) := 〈f, Eg〉 = −〈Ef, g〉 = −〈g, Ef〉 = −E(g, f);

hence, if the supports of f and g are causally separated, then E(f, g) vanishes. We can
rewrite Theorem 2.4 in terms of integral kernels:

PxEA,R(x, y) = δ(x, y), EA(x, y) = ER(y, x) and E(x, y) = −E(y, x),

and if x and y are causally separated, then E(x, y) vanishes. Accordingly, E(x, y) has the
nature of a commutator function. Indeed, we can use E to de�ne a Poisson bracket in a
suitable space associated to classical observables; that's the subject of the next section.

A natural Poisson Bracket

Let Sol (SolSC) denotes the space of real-valued (spacelike-compact) solutions to the Klein-
Gordon equation:

Sol := {φ ∈ C∞(M,R) : Pφ = 0} and SolSC := Sol ∩ C∞SC(M,R).

Consider the quotient space E := C∞0 (M,R)/PC∞0 (M,R). For each equivalence class [f ] in
E , we can de�ne an observable on the space of solutions Sol through the map:

Sol 3 φ 7→ O[f ](φ) := 〈f, φ〉 .

It is well-de�ned since, for f ∈ C∞0 (M,R), we have 〈f + Pg, φ〉 = 〈f, φ〉 ∀g ∈ C∞0 (M,R)⇒

O[f ](φ) is independent of the representative of [f ].

We can interpret it as the smeared classical �eld φ(f) ≡ O[f ](φ) and setting f = δx we recover
the notion of an observable on con�guration points φ(x). Thus, Sol can be seen as the space
of pure states in the classical context. This means that, using E , we have [f ]-labeled classical
observables or classical �elds smeared with the test function f : O[f ](φ) ∼ φ(f) ∼ 〈f, φ〉.
Then, E is the space of linear on-shell observables of the free neutral Klein-Gordon �eld.

Remark 2.8. In fact, there is a one-to-one correspondence between compactly supported
solutions of the Klein-Gordon equation and initial data on an arbitrary but �xed Cauchy
surface on Σ on the globally hyperbolic spacetime M which implies3 that the algebra A(M)
satis�es the Time-Slice Axiom of the Haag-Kastler framework discussed in section 1.3.

Using the causal propagator E from Theorem 2.7, we can naturally equip E with a
symplectic form τ : E × E → R, as in the following proposition.

Proposition 2.9. (Symplectic Space) Let τ : E × E → R de�ned by τ([f ], [g]) := 〈f, Eg〉,
then (E , τ) is a symplectic space.

3For proofs, check out [11, 19].
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Proof. τ is a symplectic form, since:

τ is bilinear: since 〈., .〉 is bilinear;

τ is well-de�ned: any element f ∈ [f ] can be written as f = h[f ] + Phf , where h[f ] ∈
C∞0 (M,R) is �xed for [f ] and hf ∈ C∞0 (M,R) depends on the chosen representative f .
Since E ◦ P = 0, we have

〈f, Eg〉 =
〈
h[f ] + Phf , E(h[g] + Phg)

〉
=
〈
h[f ], h[g]

〉
+
〈
h[f ], E(Phg)

〉
+
〈
Phf + E(Ph[g])

〉
+ 〈Phf + E(Phg)〉

=
〈
h[f ], Eh[g]

〉
which does not depends on the representatives f and g chosen;

τ is antisymmetric: 〈f, Eg〉 = −〈Ef, g〉 = −〈g, Ef〉 since E is skew-symmetric;

τ is weakly non-degenerate: If τ([f ], [g]) = 0 ∀[g] ∈ E , then

〈f, Eg〉 = −〈Ef, g〉 = 0 ∀g ∈ C∞0 (M,R);

but 〈., .〉 is non-degenerate, so Ef = 0. Thus f
E7→ [f ] = 0;

τ is alternating: since E is skew-symmetric and 〈., .〉 is symmetric

τ([f ], [f ]) = 〈f, Ef〉 = −〈Ef, f〉 = −〈f, Ef〉 = 0;

∴ the pair (E , τ) is a symplectic space.

Proposition 2.10. The causal propagator E : C∞0 (M,R)→ C∞SC(M,R) descends to a bijec-
tive map E : E → SolSC.

Proof. Let E : C∞0 (M,R)→ C∞SC(M,R) and de�ne Ẽ : C∞0 (M,R)/PC∞0 (M,R)→ SolSC as

[f ] 7→ Ẽ([f ]) = Ẽ(h[f ] + Phf ) := Eh[f ].

Since Eh[f ] ∈ C∞SC(M,R) and P (Eh[f ]) = 0, we have that Eh[f ] ∈ SolSC . Furthermore,
Ẽ([0]) = Ẽ(0 + Ph0) = E.0 = 0 and every φ ∈ SolSC can be written as φ = Ef for some
f ∈ C∞0 (M,R), then Ẽ : E → SolSC is bijective; which will also be referred to as E.

De�nition 2.11. (Future and past part) Let χ be a cuto� function, i.e. χ ≡ 0 in the
future of some Cauchy surface Σ2 and χ ≡ 1 in the past of some Cauchy surface Σ1, such
that Σ2 ⊂ I+(Σ1). The future and past part of f ∈ C∞(M,R) are, respectively:

f+ := (1− χ)f and f− := χf .

Proposition 2.12. Let 〈., .〉Sol be de�ned on solutions with compact overlapping support by:

Sol× Sol 3 (φ1, φ2) 7→ 〈φ1, φ2〉Sol :=
〈
Pφ+

1 , φ2

〉
,

then 〈., .〉Sol is well-de�ned and antisymmetric.
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Proof. Let 〈., .〉Sol as above, then it is:

well-de�ned: let φ1,φ2 ∈ Sol and let α and β be two di�erent cuto� functions. Then

φ+
1,α = (1− α)φ1 and φ+

1,β = (1− β)φ1,

〈φ1, φ2〉Sol,α − 〈φ1, φ2〉Sol,β =
〈
Pφ+

1,α, φ2

〉
−
〈
Pφ+

1,β, φ2

〉
= 〈P (β − α)φ1, φ2〉 = 〈(β − α)φ1, Pφ2〉 = 0

because (β − α)φ1 is a smooth function with compact support. Thus 〈φ1, φ2〉Sol is
independent of the cuto� function.

antisymmetric: note that the dual pairing 〈u, f〉 is de�ned for f ∈ C∞(M,R) and
u ∈ D′0(M,R). Furthermore, 〈Pf, φ〉 = 〈f, Pφ〉 = 0 if f has compact support. Also, if
suppφ1 or suppφ2 is compact, then 〈φ1, φ2〉Sol is zero. Let φ1, φ2 ∈ Sol with compact
overlapping support, i.e. suppφ1∩suppφ2 is non-empty and compact, yet not necessarily
suppφ1 or suppφ1 is compact, then: 〈φ1, φ2〉Sol :=

〈
Pφ+

1 , φ2

〉
=

=
〈
P (φ+

1 + φ+
2 ), φ2

〉
−
〈
Pφ+

2 , φ2

〉
=
〈
P (φ+

1 + φ+
2 ), φ1 + φ2

〉
−
〈
Pφ+

2 , φ2

〉
−
〈
P (φ+

1 + φ+
2 ), φ1

〉
=
〈
P (φ+

1 + φ+
2 ), φ1 + φ2

〉
−
〈
Pφ+

2 , φ2

〉
−
〈
P (φ+

1 + φ+
2 ), φ1

〉
−
〈
Pφ+

2 , φ1

〉
+
〈
Pφ+

2 , φ1

〉
=
〈
P (φ+

1 + φ+
2 ), φ1 + φ2

〉
−
〈
Pφ+

2 , φ2 − φ1

〉
−
〈
P (φ+

1 + φ+
2 ), φ1

〉
−
〈
Pφ+

2 , φ1

〉
.

Since supp(φ1±φ2) =suppφ1∩suppφ2 is compact, the �rst three terms on the RHS are
zero.

∴ the pair (SolSC , 〈., .〉Sol) is a symplectic space.

Corollary 2.13. Let f ∈ C∞0 (M,R) and φ ∈ Sol, then 〈f, φ〉 = 〈Ef, φ〉Sol.

Proof. Let f ∈ C∞0 (M,R) and φ ∈ Sol. There is a cuto� function such that (Ef)+ = ERf ⇒

〈Ef, φ〉Sol = 〈P (ERf), φ〉 =
〈
idC∞0 (M,R)(f), φ

〉
= 〈f, φ〉 .

Proposition 2.14. Let f , g ∈ C∞0 (M,R), then τ([f ], [g]) = 〈Ef,Eg〉Sol. Thus (E , τ) and
(SolSC , 〈., .〉Sol) are symplecticaly isomorphic through E.

Proof. If φ ∈ Sol, f ∈ C∞0 (M,R), let g ∈ C∞0 (M,R) such that φ = Eg. Thus:

τ([f ], [g]) := 〈f, Eg〉 = 〈f, φ〉 2.13
= 〈Ef, φ〉Sol = 〈Ef,Eg〉Sol ;

∴ the bijection E : E → SolSC is then a symplectic isomorphism (E , τ)
E' (SolSC , 〈., .〉Sol).
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What the results above show is that through the causal propagator E, we have the

symplectic isomorphism (E , τ)
E' (SolSC , 〈., .〉) that enable us to look at Ou(φ) as the classical

�eld symplecticaly smeared with a test solution u:

O[f ](φ) ∼ Ou(φ) = 〈u, φ〉Sol for some u ∈ SolSC and

(E , τ) ∼= (SolSC , 〈., .〉Sol) ≡ classical phase space.

We can associate to τ a Poisson bracket4:

{φ(f), φ(g)} ∼= τ([f ], [g]) = 〈f, Eg〉 = E(f, g). (2.1.1)

Note, however, that (2.1.1) is written in a covariant form. Let's rewrite it in the equal-time
version of usual QFT, i.e. {φ(x), φ(y)} = E(x, y) has the equal-time equivalent Poisson
brackets of the �eld φ(x) and its canonical momentum ∇nφ(x):

{∇nφ(x)|Σ, φ(y)|Σ} = ∇nE(x, y)|Σ×Σ = δΣ(x, y) and {φ(x)|Σ, φ(y)|Σ} = E(x, y)|Σ×Σ = 0.

Proposition 2.15. Let Σ be a Cauchy surface on (M, g) with unit future-pointing normal
vector �eld n and canonical measure dΣ induced by dvolg(x). Let φ1, φ2 ∈ Sol with spacelike-
compact overlapping support, then:

〈φ1, φ2〉Sol =

∫
Σ

dΣnµ(φ1∇µφ2 − φ2∇µφ1).

Proof. Let f ∈ C∞0 (M,R) such that φ1 = Ef , we have:

〈φ1, φ2〉Sol = 〈Ef, φ2〉Sol = 〈f, φ2〉 =

∫
M

dvolgfφ2 =

∫
Σ+

dvolgfφ2 +

∫
Σ−
dvolgfφ2.

By Stokes theorem and using

0 =

∫
M

dvolgEfPφ2 =

∫
M

dvolg(EA − ER)fPφ2 =

∫
Σ+

dvolgEAfPφ2 +

∫
Σ−
dvolgERfPφ2,

one can easily conclude the proof.

Note that 〈φ1, φ2〉Sol = E(f1, f2) = τ([f1], [f2]).

Proposition 2.16. Let f ∈ C∞0 (Σ,R), then ∇nEf |Σ = f , Ef |Σ = 0. In terms of level of
distributions kernels:

∇nE(x, y)|Σ×Σ = δΣ(x, y) and E(x, y)|Σ×Σ = 0.

Proof. This is a sketch of the proof based on the carefully commented reference [29, Cor1.2].
Let u0, u1 ∈ C∞0 (Σ,R), f ∈ C∞0 (M,R) and Σ be a Cauchy surface on (M, g) such that:

Pu = f , u �Σ= u0, ∇nu �Σ= u1.
4One can justify this identi�cation of the Poisson bracket with symplectic geometry arguments, as done

by Fewster in [34, Pg20].
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De�ne ρ0 and ρ1 as the operators: ρ0u = u0 and ρ1u = u1 with adjoints ρ̄0 and ρ̄1. From
Proposition 2.15: 〈f, u〉 =

∫
Σ
dΣu∇n(Ef)−

∫
Σ
dΣEf∇nu, which can now be written as:

〈f, u〉 = 〈u|Σ,∇n(Ef)〉−〈Ef |Σ,∇nu〉 = 〈ρ0u, ρ1Ef〉−〈ρ0Ef, ρ1u〉 = −〈Eρ̄1ρ0u, f〉+〈f, Eρ̄0ρ1u〉

⇒ 〈f, u〉 = −〈f, Eρ̄1ρ0u, 〉+ 〈f, Eρ̄0ρ1u〉 .
Thus, in the distributional sense u = Eρ̄0u1 − Eρ̄1u0. Therefore:

� Applying ρ0: ρ0u = ρ0Eρ̄0u1 − ρ0Eρ̄1u0 ⇒ ρ0Eρ̄0 = 0 and − ρ0Eρ̄1 = 1.

� Applying ρ1: ρ1u = ρ1Eρ̄0u1 − ρ1Eρ̄1u0 ⇒ ρ1Eρ̄0 = 1 and − ρ1Eρ̄1 = 0.

∴ ∇nEf |Σ = ρ1Eρ̄0f = f and Ef |Σ = Eρ̄0 = ρ0Eρ̄0 = 0.

The above can be compacti�ed in the following sentence:

The space of observables ({φ(f) : f ∈ C∞0 (M,R)}, {., .}) provides a complete dynamical
description of the underlying system since it is also a copy of the phase space.

Now that we have classical observables, we can construct the quantized algebra of observ-
ables as the unital ∗-algebra generated by {φ(f) : f ∈ C∞0 (M)} and impose the (expected)
relations on it. For convenience,we allow smearings with complex functions f ∈ C∞0 (M) ≡
C∞(M,R)⊗ iC∞(M,R), de�ned by:

φ(f) := O[Ref ](φ) + iO[Imf ](φ).

Let's see how this is done.

2.2 Algebra of Observables

Where we construct the quantized algebra of observables. One familiar with the Borchers-Uhlmann

algebra will notice the same essence here.

In this section, we construct the quantized algebra A(M) of linear hermitean observables
that satis�es the Klein-Gordon(KG) equation and the canonical commutation relations(CCR)
from the classical observables we studied in the last section by taking the quotient of the
unital ∗-algebra generated by {φ(f) : f ∈ C∞0 (M)} with the desired relations:

A(M) ≡ unital ∗-algebra generated by the classical observables {φ(f) : f ∈ C∞0 (M)}
Linearity+Hermiticity+KG+CCR

For a review on basic de�nitions�algebra, homeomorphism, involution, ideal, etc�the
reader can check chapter 1 of [8]. For a deeper understaing of operator algebras, there are
Kadison's books, like [77]. Intuitively, we can generate an algebra AG given a set G, whose
elements we call generators, by taking the smallest algebra that contains the elements of G,
products among them and linear combinations. We can de�ne this algebra with a universal
property, as below.
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De�nition 2.17. (Freely generated algebra) An algebra AG is said to be freely generated
by the set G if there is a map γ : G → AG such that, for any other algebra B and map
β : G→ B, there exists a unique algebra homomorphism h : AG → B such that β = h ◦ γ.

Remark 2.18. AG is uniquely determined by G�any two algebras freely generated by G are
isomorphic�and for every setG, there does exist such a pair (AG, γ); thus, the above is a good
de�nition. Actually, we need a ∗-algebra to de�ne adjoints through the involution operation
(φ(f)φ(g))∗ = φ(ḡ)φ(f̄); for a ∗-algebra freely generated by G, just replace �algebra� for
�∗-algebra� everywhere in the de�nition above�which gives a total of three replacements.
For convenience, we will omit the word freely from now on.

Let AG be the unital ∗-algebra generated by: G = {φ(f) : f ∈ C∞0 (M)}. For all
f, g ∈ C∞0 (M) and a, b ∈ C, let R be the following set of relations:

Linearity 0 = φ(af + g)− aφ(f)− φ(g);

Hermiticity 0 = φ(f)∗ − φ(f̄);

Klein-Gordon 0 = φ((−�+m2 + ξR)f);

CCR 0 = [φ(f), φ(g)]− E(f, g)1.

To impose this set of relations R onAG is to make sure that the right-hand side of the relations
are zero, i.e. �R = 0�; since we are not dealing with C∗ or Banach algebras and we have
an explicit set of relations, it su�ces to take the quotient5, symbolically �A(M) = AG/R�.
Formally, each relation r ∈ R corresponds to an ideal Ir of the algebra, so if we take the
intersection of them IR =

⋂
r∈R
Ir, then:

A(M) := AG/IR.

Remark 2.19. The above also specify that R is the only set of relations satis�ed by the
elements of A(M)�it is simple: we can not impose any further relation to it without it
collapsing to a trivial algebra[79, Pg19]. Fortunately, A(M) is not trivial : it is, in fact,

isomorphic to the symmetric tensor vector space
∞⊕
n=0

Sol(M)�n[33, Pg41].

A physical theory always determines measurements

In the algebraic approach, states are normalized positive linear functionals on the algebra
A(M) and the expectation value of an observable a in a state ω is given by ω(a) ∈ C.

De�nition 2.20. (State and expectation value) A state ω on A(M) is a linear functional

ω : A(M)→ C, satisfying

{
positivity ω(a∗a) ≥ 0 ∀a ∈ A(M);

normalization ω(1) = 1.

and ω(a) is called the expectation value of the observable a ∈ A(M) at the state ω.

5[2] is a really nice reference that illuminates this construction; it is about tensor products and it helps
in understanding quotient spaces taken with relations.
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Remark 2.21. Note that the set of states on A(M) is a convex body, that is: if ω1 and ω2 are
states, then the convex linear combination λω1 + (1− λ)ω2, for λ ∈ (0, 1), is also a state on
A(M).

De�nition 2.22. (Pure and mixed states) A state ω is called a pure state, or extremal
state, if ω = λω1 +(1−λ)ω2, for λ ∈ (0, 1), implies ω1 = ω2 = ω; that is, it cannot be written
as a convex linear combination. A state that is not pure is called a mixed state.

Let's see some properties of states, that will be useful in the next section.

Proposition 2.23. (Properties of states) Let ω be a state on A(M), and a, b ∈ A(M),
then:

(a, b) 7→ ω(b∗a) is a positive semi-de�nite, hermitean, sesquilinear form; (2.2.1)

|ω(b∗a)|2 ≤ ω(a∗a)ω(b∗b) (Cauchy-Schwarz inequality); (2.2.2)

ω(a∗) = ω(a); (2.2.3)

ω(a∗a) = 0 ⇐⇒ ω(ca) = 0 ∀c ∈ A(M). (2.2.4)

Proof. By construction, (a, b) 7→ ω(b∗a) is positive, semi-de�nite sesquilinear form. Now, let
c = za+ b for z ∈ C, a, b ∈ A(M), then:

ω(c∗c) = z̄zω(a∗a) + z̄ω(a∗b) + zω(b∗a) + ω(b∗b) ≥ 0⇒ Im[z̄ω(a∗b) + zω(b∗a)] ≥ 0;

setting z = 1 and then z = i we get ω(a∗b) = ω(b∗a), that is, the form in (2.2.1) is hermitean.
For z = −ω(a∗b)/ω(a∗a) in the above, it follows Cauchy-Schwarz inequality. (2.2.3) holds

because A(M) is unital: ω(a∗) = ω(a∗1)
2.2.1
= ω(1∗a) = ω(a). Regarding the last property, we

have that if ω(ba) = 0∀b ∈ A(M), of course it holds ω(a∗a) = 0, since A(M) is closed under
the involution operation. Now suppose ω(a∗a) = 0. By the Cauchy-Schwartz inequality:

∀b ∈ A(M) : |ω(ba)|2 ≤ ω(a∗a)ω(b∗b) = 0⇒ ω(ba) = 0.

By analysing the general form of an element a ∈ A(M) we obtain a crucial symmetry
property of states. Recall that an algebra is a vector space (X,+, . ), over a �eld K, closed
under a binary operation ◦ distributive over +:

(a+ b) ◦ c = a ◦ c+ b ◦ c and c ◦ (a+ b) = c ◦ a+ c ◦ b

for a, b and c in X; and compatible with scalar multiplication:

(αA) ◦ (βB) = (αβ)(a ◦ b)∀α, β ∈ K.

Thus, our algebra A(M), being generated by {φ(f)} and the unit, will contain sums and
products and scalar multiplications of the objects φ(f), for f ∈ C∞0 (M)6, i.e. an element
a ∈ A(M) is a �nite polynomial of the form:

a = c01 +
∑
i1

ci1(1)φ(f
(1)
i1

) +
∑
i1,i2

ci1i2(2) φ(f
(2)
i1

)φ(f
(2)
i2

) + · · ·+
∑
i1...in

ci1...in(n) φ(f
(n)
i1

) . . . φ(f
(n)
in

); (2.2.5)

where ci1...ik(k) ∈ C, f (j)
k ∈ C∞0 (M) and all sums are �nite. From (2.2.5), follows two remarks:

6Note that the adjoints are included in this, since we imposed the hermiticity property.
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1. If ω is a state, then ω(A) is completely characterized by its n-point functions:

C∞0 (M)× . . .× C∞0 (M) 3 (f1, . . . , fn) 7→ ω(φ(f1) . . . φ(fn)) =: ωn(f1, . . . , fn).

This means that if two states have the same n-point functions, they necessarily coincide.
For a continuous ωn, by the Schwartz kernel theorem, we can write the n-point function
in terms of its distribution kernel:

ωn(f1, . . . , fn) =

∫
Mn

ωn(x1, . . . , xn)dvolMn .

2. A(M) is a �ltered algebra: A(M) =
∞⋃
n=0

An(M), where each linear subspace An(M)

contains polynomials of at most n generators φ(fi), i ∈ {1, ..., n}. Since the canonical
comutation relations holds for A(M), permutations of generators φ(f1), . . . , φ(fn) will
not all be independent.

Regarding item 2, let's consider a simple example: a permutation that swap only 1↔ 2. Let
ω be a state, and consider its n-point function on the two observables φ(f1)φ(f2) . . . φ(fn),
φ(f2)φ(f1) . . . φ(fn) ∈ An(M), then:

ω(φ(f1)φ(f2) . . . φ(fn))− ω(φ(f2)φ(f1) . . . φ(fn)) = ω([φ(f1), φ(f2)] . . . φ(fn))

= iE(f1, f2)ω(φ(f3) . . . φ(fn))

⇒ ωn(f1, f2, . . . , fn)− ωn(f2, f1, . . . , fn) = iE(f1, f2)ωn−2(f3, . . . , fn).

This means that the n-point functions of φ(f1), . . . , φ(fn) and φ(fσ(1)) . . . φ(fσ(n)) at ω coin-
cide up to (n−2)-order terms for any permutation of two indices, hence, for any permutation
σ. Equivalently, the n-point functions coincide at the quotient An(M)/An−2(M). Herewith,
for any permutation of the indices i1, . . . , ik, the k-point function coincides at k-order, thus
for the kth−order term in the general element form (2.2.5):∑

i1...ik

ci1...ik(k) φ(f
(k)
i1

) . . . φ(f
(k)
ik

),

we can take ci1...ik(k) to be fully symmetric coe�cients, i.e.

The symmetric part of the n-point functions completely specify a state.

Since we are particularly interested in the energy-momentum tensor, we can focus on the
two-point function, de�ned as the bilinear functional:

ω2 : C∞0 (M)⊗ C∞0 (M)→ C
(f, g) ≡ f ⊗ g 7→ ω2(f, g) ≡ ω2(f ⊗ g).

Proposition 2.24. (Properties of the two-point function). Consider a state ω on
A(M), P the Klein-Gordon operator as before and f , g ∈ C∞0 (M). Then, ω2 satis�es:
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ω2(Pf, g) = ω2(f, Pg) = 0; (2.2.6)

ω2(f, g)− ω2(g, f) = iE(f, g); (2.2.7)

ω2(f, g) = ω2(ḡ, f̄); (2.2.8)

ω2(f, g) =
1

2

(
ω2(f, g) + ω2(g, f)

)
+
i

2
E(f, g). (2.2.9)

Proof. We have that identity

(2.2.6) holds since ω is linear:

ω2(Pf, g) := ω(φ(Pf)φ(g)) = ω(0) = 0 = ω(φ(f)ω(Pg)) =: ω2(f, Pg);

(2.2.7) holds since ω is a state:

ω2(f, g)− ω2(g, f) = ω(φ(f)φ(g))− ω(φ(g)φ(f)) = ω([φ(f), φ(g)]) = ω(iE(f, g)1)

= iE(f, g)ω(1) = iE(f, g);

(2.2.8) holds because of the hermiticity property:

ω2(f, g) = ω(φ(f)φ(g)) = ω((φ(f)φ(g))∗) = ω(φ(g)∗φ(f)∗) = ω(φ(ḡ)φ(f̄)) = ω2(ḡ, f̄);

(2.2.9) follows directly from (2.2.7):

1

2
ω2(f, g) =

1

2
ω2(g, f) +

i

2
E(f, g)⇒ ω2(f, g) =

1

2

(
ω2(f, g) + ω2(g, f)

)
+
i

2
E(f, g).

In the case f and g are real functions we have ω2(g, f) = ω2(ḡ, f̄), then the symmetric part
on the expression above is real and Im(ω2(f, g)) = 1

2
E(f, g).

Although implicit in the previous discussion on the general form of an observable, given
identity (2.2.9) it is manifest that:

All two-point functions have a symmetric state-dependent part and an antisymmetric
common (state-independent) part.

The property above will be crucial in the quantum energy inequality derivation of next
chapter. Now that we are familiar with algebraic states and we saw that, in the algebraic
approach, the expectation value of an observable a of a system at the state ω is simply ω(a),
we should ask ourselves: how this association connects with the usual approach of QFT?
Moreover, if we do measure ω(a), how do we introduce the information that the measurement
was realized? In the next section we state the connection between the algebraic approach
and the usual approach of QFT. A good reference to understand this connection is Wald's
book [115, Chap1-4], where one can �nd all of the subtleties of the subject highlighted and
a nice discussion on the measurement question.
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The connection with standard QFT

The Gelfand-Naimark-Segal Theorem establishes a connection between the algebraic formal-
ism and the usual approach of QFT. It guarantees that for each state ω on a C∗-algebra A
there is a ∗-representation πω acting on a Hilbert space Hω with a cyclic vector Ψω such that
πω(A)Ψω = Hω and ω(a) = 〈Ψω, πω(a)Ψω〉 ∀a ∈ A. Furthermore, for a �xed state ω, the so
called GNS triple (Hω, πω,Ψω) is unique up to unitary equivalences. Consider a system at
a state ω, the probability of a measurement of the self-adjoint observables a1, . . . , an ∈ A,
respectively at times t1, . . . , tn, to yield values inside the intervals I1, . . . , In ⊂ R is de�ned
by:

p := lim
i1,...,in→∞

ω((q1)i1 . . . (qn)in(qn)in . . . (q1)i1), (2.2.10)

where {(qk)ik}k∈N is a sequence of polynomials in ak such that (qk)ik(x) are uniformly bounded
on the spectrum of ak and converges pointwise to the characteristic function of the interval
Ik. Let (Hω, πω,Ψω) be the GNS representation for the state ω, with a simple computation,
we get:

ω((q1)i1 . . . (qn)in(qn)in . . . (q1)i1) =
tr {(qn)in [πω(an)] . . . (q1)i1 [πω(a1)]ρ(q1)i1 [πω(a1)] . . . (qn)in [πω(an)]} .

Where we de�ned ρ := |Ψω〉〈Ψω|. It is easy to see that the intuition behind the de�nition
(2.2.10) above is the procedure in the standard formalism of considering the projections Pk of
ak on the interval Ik and de�ning the probability of a measurement at the state |Ψ〉 as P |Ψ〉

‖P |Ψ〉‖ ,
which give us in the Heisenberg picture: p := tr{Pn . . . P1ρP1 . . . Pn}, where ρ is the density
matrix associated to |Ψ〉. For details, proofs and references, one can check [115, Sec4.5].
Here, the goal is to illustrate that with the GNS Theorem we can recover the usual Hilbert
space representation and the usual probability formalism.

Note that we de�ned the algebra of observables A(M) as a ∗-algebra, not as a C∗-
algebra�working with bounded or unbounded observables is arbitrary since both should
yield the same experimental results: one can measure with a usual ruler r or with its hyper-
bolic tangent ruler tanh r. For the argument on the probabilities above, it was technically
convenient to consider C∗-algebras, but for many analysis, we do not even need a norm.
To derive a quantum energy inequality, for example, we can remain with the more general
∗-algebra structure. In addition, there is a generalized version for the GNS Theorem, given
in [79].

Theorem 2.25. [79, Thm1](The GNS construction for a ∗-algebra) Let ω be a state
on the unital ∗-algebra A. Then, there exists a quadrupole (Hω,Dω, πω,Ψω) such that:

(i) Hω is a complex Hilbert space;

(ii) πω : A → L (Dω) is a ∗-representation of A on Hω with domain Dω;

(iii) πω(A)Ψω = Dω;

(iv) ω(a) = 〈Ψω, πω(a)Ψω〉 ∀a ∈ A.
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Furthermore, if (H′ω,D′ω, π′ω,Ψ′ω) also satis�es (i-iv), then there exists U : Hω → H′ω surjec-
tive, isometric and such that:

(v) UΨω = Ψ′ω;

(vi) UDω = D′ω;

(vii) Uπω(a)U−1 = π′ω(a) ∀a ∈ A.

Proof. The proof of the existence of (Hω,Dω, πω,Ψω) is analogous to the usual GNS theorem:
de�ne N := {a ∈ A : ω(a∗a) = 0} and then de�ne Dω as the quotient A/N ; we can equip
Dω with the well-de�ned inner product 〈[a], [b]〉 := ω(a∗b) and take Hω as the completion of
(Dω, 〈., .〉). The representation is de�ned by πω(a)[b] := [ab], which is well-de�ned since N
is a left ideal by Proposition 2.23. Finally, Ψω is de�ned as the equivalence class [1], thus
πω(a)[1] := [a], then:

ω(a) = ω(1.a) = 〈[1], [a]〉 = 〈Ψω, πω(a)Ψω〉
and the above implies πω(a)† = πω(a∗). For the second part, (v-vii), de�ne U : Hω → H′ω by:

Uπω(a)Ψω := π′ω(a)Ψ′ω ∀a ∈ A. (2.2.11)

Property (iii) implies that U is well-de�ned and surjective since, respectively, any Ψ ∈ Hω can
be approximated by elements like πω(a)Ψω and (iii) also holds for (H′ω,D′ω, π′ω,Ψ′ω); together
with the de�nition (2.2.11), Property (vi) follows immediately. Moreover, since πω(1) = 1,
we have that (v) holds. For Property (vii), we analogously de�ne U ′ : H′ω → Hω, which is
easily checked to be the inverse of U , thus:

Uπω(a)Ψω = Uπω(a)U−1UΨω
(v)
= Uπω(a)Ψ′ω = π′ω(a)Ψ′ω ⇒ Uπω(a)U−1 = π′ω(a)∀a ∈ A.

Finally, U is isometric since 〈Ψω, πω(a)Ψω〉
(vii)
= 〈Ψω, U

−1π′ω(a)UΨω〉 = 〈Ψ′ω, π′ω(a)Ψ′ω〉. This
easy proof show the interesting fact that Properties (v-vii) follow directly from the de�nition
of U , that is: U is completely determined by (2.2.11).

The theorem above guarantees that di�erent GNS representations for the same state are
unitarily equivalent. However, that is not true when we consider GNS representations for
di�erent states ω and ω′: it does not exist, in general, a surjective isometric operator U :
Hω → Hω′ such that Uπω(a)Ψω := πω′(a)Ψω′ ∀a ∈ A. The great advantage of this approach is
that, even though there are unitarily inequivalent Hilbert space representations for di�erent
states, the algebra allows us to not choose a representation: �the algebra has state-equality�.

In this section 2.2, we de�ned our quantized algebra of observables A(M) and studied
properties of its states. We saw that states are determined by their n-point functions and
that the two-point function has a common antisymmetric part determined by the causal
propagator and a state-dependent symmetric part. Finally, by the GNS theorem we saw
that we can recover the Hilbert space formalism associated to a �xed state ω on A(M). As
it happens, the class of states acting on the algebra of observables is too large, in the next
section we analyse which states are physically reasonable in the context of this dissertation,
that is, for which states we can de�ne the energy-momentum tensor7.

7Yet, note that the algebra of observables A(M) is not complete: the energy-momentum tensor itself is
not an element of it.
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2.3 Hadamard States

Where we name the physically allowable states as Hadamard states and we characterize them in two

di�erent ways, equivalent ways by the Radzikowski theorem.

The smeared �eld φ is a distribution and thus, for the Klein-Gordon �eld, Tµν has products
of distributions at the same spacetime point, which is not well-de�ned mathematically. To
deal with this, we apply the two-point splitting procedure to consider the well-de�ned object
φ(x)φ(x′) for x, x′ distinct spacetime points.

Let ω and ω0 be algebraic states acting onA(M). If F (x, x′) := ω(φ(x)φ(x′))−ω0(φ(x)φ(x′))
is a smooth function, then we can de�ne the regularized renormalized expectation value for
the energy-momentum tensor at a state ω as:

〈Tµν〉ω := lim
x′→x
{∇µ∇ν′F (x, x′)− 1

2
gµν((∇l∇l′ +m2)F (x, x′))}. (2.3.1)

This procedure, however, does not make sense for all the states on the algebra. To start with,
F (x, x′) has to be smooth. Furthermore, equation (2.3.1) does not su�ce as a prescription
for a physically meaningful expectation value for Tµν . A good expectation value for the
energy-momentum tensor must be conserved, must be consistent with the local character of
the algebraic approach and, to be consistent with the �at case, must vanish at the Poincaré
vacuum state in Minkowski. These three considerations, plus expression (2.3.1) constitute
the set of axioms given by Wald in [115, Pg89]. In the �rst section we see that 〈Tµν〉ω is
well-de�ned for states ω that satisfy the Hadamard condition, thus the physically reasonable
states in this context are called Hadamard states.

The Hadamard condition restricts the singularity structure of the bidistributions φ(x)φ(x′)
and imposes that it is like the UV -behavior of Minkowski vacuum. On the other hand, recall
that the pointwise product of distributions is only well-de�ned if they somehow �balance
each other�. At the points where their restrictions are smooth, we can, of course, take their
product straightforwardly; but if one is not smooth at x for some direction k, but the other
decays at exponential speed at the opposite direction −k at the same point x, then they
balance each other in such a way that we can also take their product at x. This is known
as Hörmander condition and it is written in terms of the wavefront set, an object that com-
pactify the information of points and directions of non-smoothness of a distribution and is
de�ned in the formalism of Microlocal Analysis. In section 2.3.2, we review some de�nitions
and results concerning distributions and Microlocal Analysis to understand how we associate
the Hadamard condition to the Hörmander condition.

From one side, we get a condition on states being physically reasonable from the process
of de�ning the energy-momentum tensor on curved spacetimes. From the other side, we have
that states are distributions and for distributions we have Microlocal Analysis. Notably,
Radzikowski theorem, which we see in section 2.3.3, allows us to translate the Hadamard
condition to the formalism of Microlocal Analysis, providing us with a powerful mathematical
tool to work with. In fact, this formalism we will use to derive a quantum inequality.
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2.3.1 Hadamard condition from Tµν-considerations

Where we accept that to obtain a regularized renormalized expectation value for the quantized Tµν we

must consider only Hadamard states.

The process of de�ning the energy-momentum tensor in Minkowski spacetime already
has its subtleties. We can directly substitute the classical �elds with the quantum �eld
operators and obtain, straightforwardly, a quantized version of the energy-momentum tensor,
symbolically Tµν(φclassical) → Tµν(φ̂quantum), but two complications emerge here. First, the
zero-point energy is in�nite. This is standardly solved by the regularization process called
normal ordering, which is an ad hoc procedure for �subtracting the vacuum energy�. The other
complication is that �elds cannot be de�ned at points of spacetime, by Wightman's work of
1964 [118], thus we consider smeared �elds φ, that are, in fact, distributions. Henceforth,
Tµν , for the Klein-Gordon �eld, has products of distributions at the same spacetime point,
which is ill-de�ned in general.

In order to deal with the second complication we apply the two-point splitting procedure:
even though φ2(x) is not well-de�ned in general, the bidistribution φ(x)φ(x′) is. Furthermore,
we can reformulate normal-ordering in a literal way that can be naturally generalized to
curved spacetimes. Let's see how this is done to understand how we can generalize the idea
of �subtracting the vacuum energy�; for convenience, let's consider φ(x)φ(x′) instead of Tµν ,
we can then introduce appropriately the derivatives in the expression.

Consider the standard Fock space representation in Minkowski spacetime with creation
and annihilation operators a†~k and a~k; we can write in momentum space:

φ(x) =
1

(2π)3

∫
R3

d~k√
2k0

(a†~ke
ikx + a~ke

−ikx).

Then:

φ(x)φ(x′) =
1

(2π)3

1

(2π)3

∫
R3

d~k√
2k0

d~k′√
2k′0

(a†~ke
ikx + a~ke

−ikx)(a†~k′e
ik′x′ + a~k′e

−ik′x′).

The normal-ordered product : φ(x)φ(x′) : is de�ned by replacing a~ka
†
~k′
by a†~k′a~k on the above

expression, which literally corresponds to:

: φ(x)φ(x′) : := φ(x)φ(x′)− 1

(2π)3

1

(2π)3

∫
R3

d~k√
2k0

d~k′√
2k′0

(a~ka
†
~k′
− a†~k′a~k)e

−ikxeik
′x′ .

Since [a~k, a
†
~k′

] = δ3(~k − ~k′) and 1
(2π)3

∫
R3

d~k
2k0
e−ik(x−x′) is the two-point function ωΩ

2 (x, x′) of
the vacuum state Ω in Minkowski spacetime, we have that normal-ordering is equivalent �to
subtracting the vacuum energy�:

: φ(x)φ(x′) := φ(x)φ(x′)− ωΩ
2 (x, x′).

The point is that, although there is no straightforward generalization for normal ordering
and �elds cannot be de�ned at spacetime points, we can apply two-point splitting and we
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can consider di�erences with respect to a reference state. Let's use this idea to de�ne the
regularized renormalized energy-momentum tensor in Minkowski spacetime; the following
discussion is basically a short review of [115, Chp4]. The goal is to illustrate that we can,
indeed, �nd a well-de�ned 〈Tµν〉 in a general curved spacetime.

Consider states ω of �nite number of particles in the usual Fock space; those are consid-
ered physically reasonable in the standard formalism and they all share the same singular
character that of Minkowski vacuum Ω. Thus, F (x, x′) := 〈φ(x)φ(x′)〉ω − 〈φ(x)φ(x′)〉Ω is a
smooth function and we can take the coincidence limit to de�ne the regularized renormalized
expectation value 〈φ2(x)〉ω as: 〈

φ2(x)
〉
ω

= lim
x′→x

F (x, x′).

Then, we can de�ne the regularized renormalized expectation value of the energy-momentum
tensor at the state ω by:

〈: Tµν :〉ω := lim
x′→x
{∇µ∇ν′F (x, x′)− 1

2
gµν((∇l∇l′ +m2)F (x, x′))}. (2.3.2)

The above discussion shows that we can de�ne 〈: Tµν :〉ω by the two-point splitting process
in a way equivalent to �subtracting the vacuum energy" and that expression (2.3.2) is well-
de�ned only if F (x, x′) is su�ciently di�erentiable. Even though in general curved spacetime
we no longer have a preferred vacuum state, we can choose a reference state ω0 to consider

F (x, x′) := 〈φ(x)φ(x′)〉ω − 〈φ(x)φ(x′)〉ω0
,

and, for distincts algebraic states ω and ω0 that have a common singular part, we can de�ne
〈: Tµν :〉ω by the equation above.

Remark 2.26. We should identify the tangent spaces at x and at x′ before taking the coinci-
dence limit. This is done by parallel transport through the unique geodesic joining x and x′.
For it to make sense at general spacetimes, x′ must be close enough to lie in a causal convex
normal neighborhood of x.

If we consider further physical conditions on the energy-momentum tensor, we can guar-
antee its uniqueness up to local curvature terms. Wald sets up the following four axioms.

Wald's axioms on the energy-momentum tensor:

1. If 〈φ(x)φ(x′)〉ω1
− 〈φ(x)φ(x′)〉ω2

is smooth, then 〈Tµν〉 is given by (2.3.2).

2. Locality: Let (M, g) and (M ′, g′) be two globally hyperbolic spacetimes and let Σ and Σ′

be Cauchy surfaces for M and M ′, respectively. Suppose there are globally hyperbolic,
open neighborhoods O ⊂ M of p ∈ M , with Cauchy surface of the form O ∩ Σ, and
O′ ⊂ M ′, with Cauchy surface of the form O′ ∩ Σ′. Suppose there is an isometry
i : O → O′ and denote p′ ≡ i(p). This isometry allows us to identify the subalgebras
AO ⊂ A for M and AO′ ⊂ A′ for M ′. If the states ω on A and ω′ on A′ such that their
restrictions onto the subalgebras, respectively AO and A′O′ , are equal, then, we require
that 〈Tµν〉ω at p equals 〈Tµν〉ω′ at p′.
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3. Conservation: ∇µ〈Tµν〉 = 0 for all states.

4. Minkowski: 〈Tµν〉Ω = 0 at Minkowski vacuum state Ω.

Axiom 1 is just the previous discussion. Axiom 2 is to guarantee the consistency with the local
character of the algebraic approach and axiom 4 is to guarantee that it reduces consistently
to the �at case. Axiom 3 is the usual conservation law required. Notably, these axioms
guarantees the following theorem.

Theorem 2.27. [115, Thm4.6.1] Let 〈Tµν〉 and 〈T̃µν〉 denote two prescriptions for the
expectation value of the energy-momentum tensor which satis�es axioms above. Then tµν =
〈Tµν〉 − 〈T̃µν〉 is a conserved local curvature term, i.e. tµν is independent of the state ω,
satis�es ∇µtµν = 0, and its value at any given event p depends only upon the spacetime
geometry in an arbitrarily small neighborhood of p�with tµν(p) = 0 if the geometry in a
neighborhood of p is �at.

If there is a prescription for 〈Tµν〉, Theorem 2.27 guarantees it is unique up to conserved
local curvature terms. Fortunately, a suitable prescription does exist due to Hadamard's
work on constructing local bidistributional solutions of elliptic and hyperbolic equations in
the beginning of last century. In fact, only axioms 1 and 2 are needed for the proof of the
theorem above to guarantee uniqueness of 〈Tµν〉; axioms 3 and 4, by the Hadamard algorithm,
restrain the singularity structure of the states for which 〈Tµν〉 makes sense.

Recall that for the free neutral scalar Klein-Gordon �eld, the two-point function at
Minkowski's vacuum is:

〈Ω|φ(x)φ(x′)|Ω〉 =
1

4π2σ2
+

m2

16π2
logm2σ2 + . . . .

Based on this singular character and by the Hadamard algorithm, we can construct the local
bidistribution8:

H(x, x′) =
U(x, x′)

4π2(σ2 + 2iε(t− t′) + ε2)
+ V (x, x′) ln(σ2 + 2iε(t− t′) + ε2) +W (x, x′),

where U, V,W are smooth functions on (x, x′) and U(x, x) = 1. These functions are deter-
mined by imposing that H(x, x′) satis�es the Klein-Gordon equation both at x and x′.

In Minkowski spacetime H(x, x′) has the same UV -behavior of the vacuum; by requiring
that 〈φ(x)φ(x′)〉 have the same UV -behavior of H(x, x′), then

F (x, x′) := 〈φ(x)φ(x′)〉 −H(x, x′)

is smooth and axioms 3 and 4 holds. Thus, it follows the de�nition below.

De�nition 2.28. (Hadamard States) The states ω acting on A(M) whose two-point
function are of the form

ω2(x, x′) =
U(x, x′)

4π2(σ2 + 2iε(t− t′) + ε2)
+ V (x, x′) ln(σ2 + 2iε(t− t′) + ε2) +W (x, x′), (2.3.3)

with the functions as explained above, are called Hadamard states. We say they satisfy
the Hadamard condition (2.3.3) and they are the ones for which we can use the prescription
above to de�ne 〈Tµν〉.

8One should introduce a parameter inside the logarithm, for dimensional reasons.
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2.3.2 Distributions and the Wavefront Set

Where we review Microlocal Analysis to be able to translate the Hadamard condition into a condition

on the wavefront set of the two-point function in the next section.

We learned that considerations on the energy-momentum tensor induce a condition on
the singularity structure of the quantum states�the Hadamard condition. In this section, we
review Microlocal Analysis: the study of distributions and their singular character. We see
only the necessary de�nitions and results to understand and invoke Radzikowski theorem in
the next section, and derive a quantum energy inequality in the next chapter. For a detailed
study on distributions and Microlocal Analysis, the capital reference is [74], on which the
following review is based.

The concept of a distribution arose to extend the notion of di�erentiable functions with
the motivation of establishing the existence of solutions to di�erential equations; they evolved
from the notion of weak solutions and the �rst rigorous formalization was done by Sergey
Sobolev in 1936 and later developed and highlighted by Schwartz in the 40's, 50's. Distri-
butions are de�ned as continuous linear functionals acting on a space of functions, which is
called test functions. If we take the in�nitely di�erentiable compactly-supported functions
C∞0 equipped with the usual topology as said in page 43 as the test functions space, the
distributions acting on it are the standard distributions. If we take the Schwartz space, the
distributions acting on it are called tempered distributions�these are the ones for which the
Fourier transform is always well-de�ned. The duality between smoothness of functions and
decay of its Fourier transform seen in Fourier analysis plays a crucial role in this section; this
duality equipped with the local characterization of distributions gives us Microlocal Analysis.

Let's �rst review the formalism on Rn, and then we extend it to smooth manifolds.

De�nition 2.29. (Distribution on Rn) Let X be an open set in Rn. A distribution in X is
a linear form u : C∞0 (X)→ C that satis�es the continuity condition, i.e. for every compact
K ⊂ X there are constants C and k such that:

|u(φ)| ≤ C
∑
|α|≤k

sup |∂αφ| ∀φ ∈ C∞0 (K). (2.3.4)

Moreover:

� The set of all distributions in X is denoted D ′(X)9 and is the topological dual of
C∞0 (X): the subspace of continuous linear functions in the algebraic dual of C∞0 .

� The condition (2.3.4) is equivalent to the usual continuity condition:

lim
k→∞

u(φk) = u( lim
k→∞

φk) for any convergent sequence {φk}k∈N in C∞0 .

� If f ∈ C∞(X) and φ ∈ C∞0 (X), then fφ ∈ C∞0 (X) and we can naturally de�ne the
product of a distribution by a smooth function as:

fu(φ) = u(fφ).
9Because Laurent Schwartz denoted C∞0 (X) by D(X).
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Example 2.30. To every locally integrable function u on Rn, we can associate the distribu-
tion

u(φ) =

∫
u(x)φ(x)dnx, for any φ ∈ C∞0 (X).

By integration by parts, and since φ is compactly supported, we have

u(φ′) =

∫
u(x)φ′(x)dnx = −

∫
u′(x)φ(x)dnx ≡ −u′(φ).

Inspired by the example above, we de�ne the derivative of u ∈ D ′(X) with respect to a
di�erential operator Dα of order |α| by

Dαu(φ) = (−1)|α|u(Dαφ), φ ∈ C∞0 (X).

Let u ∈ D ′(X) and let N be an open set in X, the distribution u|N de�ned as the restriction
of u to N is given by

u|N(φ) = u(φ), φ ∈ C∞0 (N).

If every point in X has a neighborhood on which u|N = 0, then u = 0. This means that,
although not poinwisely de�ned, distributions do have a local nature since we can characterize
a distribution on X by its restrictions on an open covering of X. With this is mind, we
de�ne the support of a distribution u ∈ D ′(X) as the set of points in X on which there is no
neighborhood N ⊂ X such that u|N = 0; we denote it by suppu and, clearly, its de�nition
implies that u vanishes at X r suppu.

Remark 2.31. a family of distributions ui de�ned in an open covering of X = ∪Xi such that
they are compatible in the intersections, i.e. ui = uj at Xi ∩Xj, have a unique distribution
u ∈ D ′(X) compatible with it; this validates the discussion above and one can �nd a proof
here: [74, Thm2.2.4].

Furthermore, since, intuitively, distributions are generalizations of smooth functions, and
given their local nature, it makes sense to consider the following de�nition.

De�nition 2.32. (Singular support) Let X ⊂ Rn be an open set. The singular support
of a distribution u ∈ D ′(X) is the set of points in X having no neighborhood to which the
restriction of u is a smooth function and its denoted by sing suppu. Note that this means
that u|X\sing suppu is a smooth function.

Let's now review the duality between smoothness and decay we see in Fourier Analysis,
mentioned in the beginning of this section, to understand how we can characterize the singular
structure of distributions by it. We choose the non-symmetric convention for the Fourier
transform, so for an integrable function f : R→ C it is given by:

f̂(k) =

∫
eik.xf(x)dnx. (2.3.5)

Let E ′(Rn) denotes the subset of D ′(Rn) of the compactly supported distributions and
S ′(Rn) denotes the space of tempered distributions. It holds that E ′ ⊂ S ′ ⊂ D ′. Although
the Fourier transform is not de�ned for any distribution in D ′, it is a linear isomorphism on
the Schwartz space into itself, thus it is always well-de�ned there and the following de�nition
makes sense.
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De�nition 2.33. (Fourier Transform) For tempered distributions u ∈ S ′(Rn), the Fourier
transform of u is simply û(f) := u(f̂), where f̂ is the Fourier transform of f as de�ned in
equation (2.3.5). For a compactly supported distribution u ∈ E ′(Rn) and setting ek ≡ χeik.x

for a function χ ∈ C∞0 (Rn) which is 1 at suppu, the Fourier transform of u is:

û(k) := u(ek).

If u originated from a smooth compactly supported function, which we will also denote u,
the above reduces to the standard form (2.3.5):

û(k) =

∫
u(x)eik.xdnx.

To illustrate the idea of the duality, let's see two examples. For the Dirac delta distribution
on R de�ned by ∫

φ(x)δ(x− x0)dx = φ(x0) for φ ∈ C∞0 (R),

its Fourier transform at x0�where it is not smooth�is δ̂(k) = 1√
2π
e−2πikx0 which shows no

decay at ∞. Furthermore, it is known that

f ∈ C∞0 (Rn)⇒ for each N ∈ N, ∃CN : |f̂(k)| ≤ CN
1 + |k|N

as k →∞, (2.3.6)

where f̂ is the Fourier transform of f . Equation (2.3.6) is telling us that a compactly
supported function is smooth only if its Fourier transform decays as rapidly as indicated by
the inequality of the right hand side of the implication above. This inspire de�ning a rapid
decay Fourier transform of f , which is intuitively saying �rapidly enough for f to be smooth�.
The wavefront set contains this kind of information: which relates the smoothness and decay
duality illustrated above. It combines the location of the singularities�given by the singular
support�with the directions of the high frequencies causing them�given by the singular
directions set. Let's formalize this idea.

De�nition 2.34. (Cone) A cone with apex at zero is a subset V ⊂ Rn such that: if k ∈ V
then λk ∈ V for all λ ≥ 0.

De�nition 2.35. (Rapid decay) Let X ⊂ Rn be an open set and u ∈ D ′(X). If there is a
function φ ∈ C∞0 (Rn) such that φ(x) 6= 0 and if there is a cone V ⊂ Rn such that

∃CN ∈ R : |φ̂u(k)| ≤ CN
1 + |k|N

, ∀k ∈ V , ∀N ∈ N,

then k is said to be a direction of rapid decay for u.

De�nition 2.36. (Singular directions) Let X ⊂ Rn be an open set. The singular di-
rections set of a distribution u ∈ D ′(X) is the complement in Rn

∗ ≡ Rn \ {0} of the set of
directions of rapid decay, i.e.

Σ(u) := {η ∈ Rn
∗ : @ a conic neighborhood V such that û(η) is of rapid decay for η ∈ V }.
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It does not increase under the product by a smooth function:

Σ(φu) ⊂ Σ(u), for φ ∈ C∞(X), (2.3.7)

so we can de�ne the singular directions of u at a point x, using compactly supported functions:

Σx(u) :=
⋂

φ∈C∞0 (X)

φ(x)6=0

Σ(φu).

It is easy to see that Σ(φu) → Σx(u) if φ ∈ C∞0 , φ(x) 6= 0 and suppφ → {x}. Hence
Σx(u) = ∅ ⇐⇒ φu is smooth for some φ ∈ C∞0 with φ(x) 6= 0�that is, if x /∈ sing suppu.

Now we can compactify the above in the wavefront set.

De�nition 2.37. (wavefront set of a distribution on Rn) Let X ⊂ Rn be an open set.
The wavefront set of a distribution u ∈ D ′(X) is the closed subset of X × Rn

∗ :

WF (u) := {(x, k) ∈ X × Rn
∗ : k ∈ Σx(u)}.

The de�nition above does compactify the information on the singularity structure of the
distribution u, since the projection of WF (u) in the �rst variable is sing suppu, and on the
second variable is Σ(u).

Remark 2.38. By the de�nition above, we have that WF (u) = ∅ ⇐⇒ u ∈ C∞(X). Recall
that for Hadamard states di�erences between their two-point functions are smooth functions,
thus, when we de�ne the wavefront set on manifolds, this property (which still holds) implies
that, for all states, the wavefront sets of the two-point functions are equal.

Example 2.39. For the Dirac delta distribution at x0 on R, WF (δ) = {(x0, k) : k ∈ R∗}.

Example 2.40. Consider the Heaviside distribution on R, de�ned by:∫
R
φ(x)Θ(x)dx =

∫
R+

φ(x)dx;

It is equivalent to the principal value: Θ(x) = 1
2πi

∫ +∞
−∞

eiλx

x−i0+dx. So, for T (φ) =
∫ +∞
−∞

φ(x)
x−i0+dx,

we have T̂ (k) = 2πiΘ(k). Hence: WF (Θ) = {(0, k) : k > 0}.

The wavefront set also does not increase under taking partial derivatives. Let u ∈ D ′(X)
and χ ∈ C∞0 (X). Since χu ∈ S ′(X), the Fourier transform of ∂jχu is simply the Fourier
transform of χumultiplied by a factor (ikj); this means that if k ∈ Σ(Dαχu), then k ∈ Σ(χu),
i.e.

Σ(Dαχu) ⊂ Σ(χu). (2.3.8)

By the de�nition of the singular directions set at a point:

Σx(D
αu) ⊂ Σ(χ̃Dαu) for χ̃ ∈ C∞0 (X), with χ̃(x) 6= 0. (2.3.9)
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Choosing χ̃ ∈ C∞0 (X) with χ̃ = 1 at a neighborhood of x and χ ∈ C∞0 (X) such that χ = 1
at the support of χ̃, it holds:

Σx(D
αu)

(2.3.9)
⊂ Σ(χ̃Dαu) = Σ(χ̃Dαχu)

(2.3.7)
⊂ Σ(Dαχu)

(2.3.8)
⊂ Σ(χu).

Taking suppχ→ {x}, then Σ(χu)→ Σx(u), i.e. Σx(D
αu) ⊂ Σx(u) and thus

WF (Dαu) ⊂ WF (u).

For a partial di�erential operator with smooth coe�cients P , since

WF (αu+ βv) ⊂ WF (u) ∪WF (v) for v ∈ D ′(X), α, β ∈ C,

it follows from the above that:
WF (Pu) ⊂ WF (u).

In fact, for the operator P as above, it holds:

WF (Pu) ⊂ WF (u) ⊂ WF (Pu) ∪ CharP , (2.3.10)

where CharP is the characteristic set of P de�ned by

CharP := {(x, k) ∈ Rn × Rn
∗ : pm(x, k) =

∑
|α|=m

aα(x)kα = 0}. (2.3.11)

For a proof, one can check [74, Thm8.3.1]. This result is crucial for our understanding of the
microlocal spectral condition.

We have all ingredients of Microlocal Analysis necessary for the next section, we just
have to take them onto a general manifold. This is naturally possible due to the local
characterization of distributions on Rn and the behaviour of it, and of the wavefront and the
characteristic sets, under coordinate changes. Given a di�eomorphism ϕ : U → Ũ between
open sets of Rn and a function f on Ũ , then we de�ne ϕ∗f such that, at p, it gives the
value of f at ϕ(p) by ϕ∗f = f ◦ ϕ. If we have a distribution u ∈ D ′(U), we de�ne ϕ∗u by
ϕ∗u(f) = u(f ◦ ϕ) and thus

WF (u) = {(x, kDϕ|x) : (ϕ(x), k) ∈ WF (ϕ∗u)};

where kDϕ|x is the action of the dual map to Dϕ|x on k (which is the composition of k and
Dϕ|x as linear maps). That is, the wavefront set transforms as a subset of the cotangent
bundle under coordinate changes.

De�nition 2.41. (Distribution on manifolds) Let M be an n-dimensional smooth man-
ifold equipped with the di�erentiable structure A = {(Uα, ϕα)}α∈Λ, where ϕα : M ⊃
Uα → Ũα ⊂ Rn are the homeomorphisms between the open sets Uα and Ũα. If for every
parametrization ϕα we have a distribution uα ∈ D ′(Ũα) and if ∀α, β ∈ Λ it holds that uβ =
uα ◦ (ϕα ◦ ϕ−1

β ) on Uα ∩ Uβ then the family of local representatives uα de�nes a distribution
u on M through: uα = u ◦ ϕ−1

α .
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The proof that this is a consistent de�nition can be found in [74, Thm6.3.4], that is: u
is unique in the distributional sense and it falls back to De�nition 2.29 when M is an open
set X in Rn. Let's see an example that shows that a distribution de�ned as above, at least,
exists in spacetimes.

Example 2.42. Every spacetime (M, g) has a natural density de�ned through its metric
ρ =

√
| det g| and there is canonical way of de�ning a distribution on an n-dimensional

smooth manifold M with a smooth density ρ. For any u ∈ C∞(M):

u(φ) =

∫
dnxρ(x)φ(x)u(x) for any φ ∈ C∞0 (M).

This is well-de�ned because if we consider ρ with di�erent chart expressions ρα(x) for x ∈
ϕα(Uα) and ρβ(x) for x ∈ ϕβ(Uβ), supported on Uα ∩ Uβ, it holds that∫

ϕα(Uα)

ρα(x)dnx =

∫
ϕβ(Uβ)

ρβ(x)dnx.

If there is a smooth map ϕ : X → Y between the smooth manifolds X and Y , there is a
corresponding linear map between the cotangent bundles ϕ∗ : T ∗Y → T ∗X, which is called
pullback. Since the wavefront set of a distribution u ∈ D ′(Rn) is a subset of the cotangent
bundle T ∗Rn, we can use the pullback to de�ne the wavefront set of a distribution on a
smooth manifold.

De�nition 2.43. (Wavefront set of a distribution on a manifold) Let (Uα, ϕα) be a
chart of an n-dimensional smooth manifoldM . Let u ∈ D ′(M), then u◦ϕ−1

α is a distribution
on Rn. Hence, the wavefront set of u is de�ned as the following subset of the cotangent
bundle:

WF (u) := ϕ∗αWF (u ◦ ϕ−1
α ) := {(x, (Dϕα(x))tk) : (ϕα(x), k) ∈ WF (u ◦ ϕ−1

α )},

where (Dϕα(.))t is the transpose of the derivative of ϕα.

Let ϕ : X → Y be a smooth map between the smooth manifolds X and Y . The pullback
of a smooth function f : Y → Rn by ϕ is given by ϕ∗f := f ◦ ϕ : X → Rn. For u ∈ D ′(X),
we can also de�ne the pullback of the distribution u if a condition on the wavefront set of u
and the set of normals of ϕ,

Nϕ := {(ϕ(x), k) ∈ Y × Rn : (Dϕ(x))tk = 0},

is satis�ed. This is due to the following theorem.

Theorem 2.44. [73, Thm2.5.11'] Let ϕ : X → Y be a smooth function between manifolds
X and Y , with set of normals Nϕ. Let u ∈ D ′(Y ). If Nϕ∩WF (u) = ∅, we can uniquely de�ne
the pullback ϕ∗u such that: if u is continuous, then ϕ∗u = u ◦ ϕ; and ϕ∗ : D ′Γ(Y ) → D ′(X)
is sequentially continuous for any closed cone Γ ⊂ T ∗(Y ) \ {0} with Γ ∩Nϕ = ∅. Moreover,

WF (ϕ∗u) ⊂ ϕ∗WF (u) = {(x, (Dϕ(x))tk) : (ϕ(x), k) ∈ WF (u)}.
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Those are almost all ingredients we need to invoke Radzikowski Theorem and to show
that the quantized energy density is well-de�ned in chapter 3; we only need one more crucial
result regarding distributions of positive type.

Theorem 2.45. [32, Thm2.2] Let X and Y be smooth manifolds equipped with smooth
positive densities σX and σY , and suppose γ : Y → X is smooth. If u ∈ D ′(M ×M) is of
positive type and Nϕ ∩WF (u) = ∅, where ϕ(y, y′) = (γ(y), γ(y′)), then ϕ∗u is of positive
type.

To see that the result above is indeed useful to us, recall that every spacetime has the
natural energy density given by

√
| det g| and note that, since states ω on A(M) are positive

hermitean functionals, their two-point functions satisfy ω2(f̄ , f) ≥ 0∀f ∈ C∞0 (M)�then the
distribution ω2 is said to be of positive type.

2.3.3 Radzikowski's Theorem

We take the simplest path to understand how to translate the Hadamard condition into
a condition on the wavefront set, following the argument of the lecture notes [33]. First,
we discuss the wavefront set of the bisolutions of the Klein-Gordon operator. Then, by
comparing it with the wavefront set of the two-point function for the Minkowski vacuum, we
generalize the Hadamard condition by invoking Radzikowski Theorem.

Let P be the Klein-Gordon operator de�ned on a globally hyperbolic spacetime (M, g).
Since its principal symbol is p2(x, k) = −gµν(x)kµkν , its characteristic set, de�ned by (2.3.11),
is just the bundle of non-zero null covectors on M :

CharP = N := {(x, k) ∈ T ∗M : k is non-zero null at x}.

Then, for any solution u ∈ D ′(M) of the Klein-Gordon equation, Pu = 0, by property
(2.3.10) we have WF (u) ⊂ N . Since we are particularly interested in the two-point function,
let's consider bisolutions U ∈ D ′(M ×M):

(P ⊗ 1)U = (1⊗ P )U = 0.

Let 0 denotes the zero-section of T ∗M , that is 0 := {(x, 0) ∈ T ∗M} : x ∈M). The principal
symbol of (P ⊗ 1) is p2(x, k;x′, k′) = −gµν(x)kµkν , hence

Char(P ⊗ 1) = N0 × (T ∗M \ 0);

analogously, we have
Char(1⊗ P ) = (T ∗M \ 0)×N0.

Therefore,
WF (U) ⊂ Char(P ⊗ 1) ∩ Char(1⊗ P ) ⊂ N0 ×N0. (2.3.12)

For the Minkowski's vacuum state Ω, (2.3.12) implies WF (ωΩ
2 ) ⊂ N0 × N0. Consider

φ(x, x′) = φ1(x)φ2(x′), for φ1, φ2 ∈ C∞0 , then

φωΩ
2 (x, x′) =

1

(2π)3

∫
R3

d3k

2k0

e−ik(x−x′)φ1(x)φ2(x′)
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and, taking the Fourier transform in both variables:

F
(
φωΩ

2 (x, x′)
)

(l, l′) =

∫
R3

d3k

2k0

1

2ω
φ̂1(l − k)φ̂2(l′ + k). (2.3.13)

Since both functions φ1 and φ2 are in C∞0 , φ̂1 and φ̂2 are of rapid decay�recall the duality
given in expression (2.3.6). Then, the greater contributions to F

(
φωΩ

2 (x, x′)
)

(l, l′) corre-
sponds to simultaneous small values of (l − k) and (l′ − k); where �small� here corresponds
to a scale determined by the functions.

The integral is only on the spatial components, so if we �x k0 ≤ 0, then the argument
(l0 − k0) → ∞ when l0 → ∞. In this case, the contribution of φ̂1 goes to zero rapidly and
F
(
φωΩ

2 (x, x′)
)

(l, l′)→ 0 independently of l′. This is illustrated in the �gure below, which is
a clone of [34, Pg35,Fig4].

Figure 2.1: : If l0 →∞ in the shaded region, then F
(
φωΩ

2

)
(l, l′)→ 0 rapidly.

Note that the shaded region in the �gure above does not correspond only to negative
values for k0, that's because we only need the argument (l−k) to be �big�, so �small� positive
values for k0 are still ok. On the other hand, if we �x k0 ≥ 0, the contribution of φ̂2 goes to
zero for l′0 →∞.

Accordingly, (x1, k1;x2, k2) is a regular direction for (2.3.13) if (k1)0 ≤ 0 or (k2)0 ≥ 0.
Since the wavefront set of the two-point function of the vacuum is in N0 ×N0, we have that

WF (ω2) ⊂ N+ ×N−, (2.3.14)

where N+(−) = {(x, k) ∈ N : k is future(past) directed}. This condition on the wavefront
set is more than a property satis�ed by the Minkowski vacuum, it de�nes the microlocal
spectrum condition, as follows.

De�nition 2.46. (µSC) Let N be the bundle of nonzero null covectors of M . A state ω is
said to satisfy the microlocal spectrum condition (µSC) if

WF (ω2) ⊂ N+ ×N−.
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Recall that is was necessary that di�erences between expectation values were smooth
functions, to provide us a well-de�ned energy-momentum tensor. In fact, the µSC su�ces
to garantee it: if ω and ω′ obeys the µSC, then

ω2 − ω′2 ∈ C∞(M ×M);

which means that all two-point functions that satis�es the µSC have equal wavefront sets.
Moreover, given that all two-point functions have a common antissymetric part, i

2
E, we

obtain that

WF (ω2) = WF (E) ∩WF (N+ ×N−);

this last property allows us to write the wavefront set of ω2 as

WF (ω2) = {((x1, k1), (x2,−k2)) ∈ T ∗M \ 0× T ∗M \ 0 : (x1, k1) ∼ (x2, k2), k1 ∈ N+},

where the equivalence relation above is de�ned by: (x1, k1) ∼ (x2, k2) ⇐⇒ (x1, k1) = (x2, k2)
for null k1 or there is a null geodesic γ connecting x1 and x2 such that k1 is cotangent to γ
at x1 and k2 is the parallel transport of k1 from x1 to x2 along γ.

The following is a simpli�ed version of Radzikowski's Equivalence Theorem [94, Thm5.1].

Theorem 2.47. (Equivalence Theorem) Let (M, g) be a globally hyperbolic spacetime,
P the Klein-Gordon operator, A(M) the algebra of observables as in section 2.2 and ω a
state acting on it. Then

ω is Hadamard ⇐⇒ ω2 satis�es the µSC.

Remark 2.48. Radzikowski used the de�nition of Globally Hadamard, which is in fact weaker
then the one we used here; then, his Equivalence Theorem is stronger than the one stated
above. Yet, for our purposes, it su�ces as it is.

Radzikowski theorem says that a state ω is Hadamard if and only if the two-point function
ω2 satisfy the microlocal spectrum condition. But the Hadamard condition only holds for
free theories, while the µSC can be generalized to more general theories; in this sense,
Radzikowski theorem is saying that the microlocal spectrum condition is more fundamental
than the Hadamard condition.
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An Answer: Quantum Energy

Inequalities in Singularity Theorems

Where we derive a quantum energy inequality for the Klein-Gordon �eld within Algebraic Quantum

Field Theory and (...) obtain generalizations of Hawking and Penrose Singularity Theorems.

Let's recall what this dissertation is about. In chapter 1, we reviewed the problem to
be discussed: we saw that Singularity Theorems are strong results within General Relativity
that gives us su�cient conditions on the spacetime for it to be geodesic incomplete; these
results relied on a powerful geometric formalism that prevented us of having to impose a
particular matter model and yet, they do rely on some consideration on the matter content�
the energy condition. Then, we saw that the classical energy conditions are all violated within
Quantum Field Theory and we accepted the search for quantum energy inequalities, to enter
as weakened substitutes of the classical conditions. Given the need to do this search on
general curved spacetimes, in chapter 2 we saw the formalism of Algebraic Quantum Field
Theory.

Now we can derive quantum energy inequalities on general curved spacetimes. A nice
introduction into the subject is [34] and a recent review is [35]. In section 3.1, by reviewing
[32], we derive �a general worldline quantum inequality� for the Klein-Gordon �eld on globally
hyperbolic spacetimes for Hadamard states�a bound satis�ed by weighted averages of the
energy-momentum tensor along the worldline of observables. This bound, however, cannot
be directly applied to Singularity Theorems.

Although there are not quantum energy inequalities analogues for the classical strong
and null energy conditions that recovers Hawking and Penrose classical theorems1, in 2011,
Fewster and Galloway showed that Singularity Theorems can be obtained by QEI-inspired
hypotheses [37]. The idea is that exponentially damped energy conditions can be obtained
from hypotheses inspired by quantum energy inequalities and generalizations of Hawking and
Penrose Theorems can be obtained by exponentially damped energy conditions with an extra
lower bound consideration. The weakened energy condition imposed is of the form:

1In fact, there is not a QEI generalization for NEC, as proved by Fewster in [43], not even for Minkowski
spacetime.
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∫
γ

e−a.λTµν γ̇
µγ̇νdλ− b is �nite and �strong enough2�

for some constants a, b > 0 and γ : [0,+∞)→M , a future-complete null geodesic with a�ne
parametrization λ. Note that it combines ideas from two di�erent weakening approaches: it
is similar to ANEC with an exponential damping�a mollifying function, as seen in Remark
1.19�with a further imposition of a lower bound3

The goal of this chapter is to clarify three things: how can we derive a quantum energy
inequality within Algebraic Quantum Field Theory, how can they inspire energy conditions
which also yield Singularity Theorems and in which sense can we say that Singularity Theo-
rems hold under subtle quantum e�ects; to accomplish it, after the QEI derivation, we review
Fewster and Galloway's results of [37] in sections 3.2 and 3.3.

3.1 A general worldline quantum energy inequality

For the free neutral scalar Klein-Gordon �eld with minimal coupling on a globally hyper-
bolic spacetime, with dimension greater than 2, (M, g), such that (+,−, ...,−) is the metric
signature, ∇a as a�ne connection compatible with g, and m ≥ 0 is the mass parameter, the
classical energy-momentum tensor is given by4:

Tab = ∇aφ∇bφ−
1

2
gabg

cd∇cφ∇dφ+
1

2
m2φ2gab.

Let's write it in a quantization-friendly form; for that, we need the notion of tubular neigh-
borhood and thus, of normal bundle.

De�nition 3.1. (Normal bundle) Let N be a submanifold of M equipped with a metric
h and such that dim N < dim M . Let 〈., .〉 be the usual scalar product on N induced by h.
The normal space at x in N is given by:

T⊥x N = {v ∈ TxM : 〈v, w〉 = 0,∀w ∈ TxN)

The disjoint union of all the normal spaces at points in M is called the normal bundle,
denoted by T⊥N .

De�nition 3.2. (Tubular Neighborhood) Let M and N as above. An open set Ω ⊂ M
containing N is called a tubular neighborhood if there is a neighborhood Z of the zero section
of T⊥N and a di�eomorphism f : Z → Ω such that f(0x) = x for any zero vector 0x in T⊥N
corresponding to x in N .

2in a sense to be made precise: dominates the initial expansion.
3This other weakening approach can be seen in [16], for example.
4I will use latin letter for convenience, they still run through 0 and n− 1.
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Tubular Neighborhood

Let's try to understand these two de�nitions. The nor-
mal space at x ∈ N is the collection of the tangent vectors
in TxM which are orthogonal to all tangent vectors of TxN .
The ones which are not included are the ones not orthog-
onal to all vectors in TxN , thus they are proportional to
some vector in TxN . Which means that the normal bun-
dle is de�ned by the quotient T⊥x N = TxM/TxN by doing
that we are identifying the vectors of TxN with the zero
vector 0x. Now, to understand the idea behind a tubular
neighborhood, let's look at an example. Take a smooth
curve on R2, unless it is a straight line, perpendicular curves to it will intersect each other.
A tubular neighborhood of it would be a cut of these perpendicular curves close enough to
the the curve so that it does not have intersections. It is a way to make sure we can walk on
one of the perpendicular curves of the normal bundle further way from the curve and walk
back towards the same starting point. Below, one can see a drawing of this.

Consider an observable traveling freely in spacetime, described by a smooth timelike
geodesic curve γ(τ), with velocity u(τ) ≡ γ̇(τ). In a tubular neighborhood Γ of γ(τ), we can
de�ne the orthonormal frame {va0 , ..., van−1} such that va0 = ua and vaµ are mutually orthonor-
mal with respect to the scalar product induced by g, that is, for ηµν := diag[1,−1, ...,−1],
we have gab = ηµνvaµv

b
ν in Γ . Then, it holds

uaubgab = uaubηµνv
µ
av

ν
b = va0v

b
0ηµνv

µ
av

ν
b = δµ0 δ

ν
0ηµν = 1.

With these de�nitions, it is easy to see that the classical energy density measured by the
observer along γ, de�ned as T (τ) := uaubTab(γ(τ)), is given by:

T (τ) =
1

2

( n−1∑
µ=0

vaµv
b
µ

)
∇aφ∇bφ+

1

2
m2φ2.

Explicitly, we have the friendly-form:

T (τ) =
1

2

( n−1∑
µ=0

vai (γ(τ))vbi (γ(τ))
)
∇aφ|(γ(τ))∇bφ|(γ(τ)) +

1

2
m2φ2(γ(τ)),

and applying two-point splitting on it:

T (τ, τ ′) =
1

2

( n−1∑
µ=0

vai (γ(τ))vb
′

i (γ(τ ′))∇aφ
∣∣
γ(τ)
∇b′φ

∣∣
γ(τ ′)

)
+

1

2
φ(γ(τ))φ(γ(τ ′)), (3.1.1)

from which we recover the energy density by taking τ ′ = τ and identifying T (τ) = T (τ, τ).
Let ω be a Hadamard state on the algebra of observables A(M) associated to the Klein-

Gordon �eld, as de�ned in chapter 2. The expectation value for the energy density in the state
ω is, intuitively, given by �ω(T (τ))�; T (τ) is not an element of A(M). Yet, with this idea and
the de�nition of the two-point function in mind we can de�ne the quantized energy density
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by associating the �rst term in (3.1.1) to a sum of elements like
(
vai∇a, v

b′
i ∇b′

)
ω2(γ(τ), γ(τ ′))

and the second term, to ω2(γ(τ), γ(τ ′)). In fact,

1

2

( n−1∑
i=0

(
vai∇a, v

b′

i ∇b′
)
ω2(γ(τ), γ(τ ′)) +

1

2
m2ω2(γ(τ), γ(τ ′))

de�nes a bidistribution on M ×M . Then, we use the pullback ϕ∗ : D ′(M ×M) → D ′(R2)
induced by ϕ : R2 → M ×M de�ned by ϕ(τ, τ ′) := (γ(τ), γ(τ ′)) to take it to R2. Thus, we
get the following de�nition.

De�nition 3.3. (Energy density) For a Hadamard state ω, the quantized energy density
is the bidistribution on R2 given by

〈T 〉ω :=
1

2

n−1∑
i=0

ϕ∗((vaµ∇a, v
b′

µ∇b′)ω2) +
1

2
m2ϕ∗ω2. (3.1.2)

Proposition 3.4. The quantized energy density above is

1. well-de�ned;

2. of positive type;

3. of rapid decay as α→∞.

Proof. For the energy-density as in (3.1.2), we have:

1. Given Theorem 2.44, it is enough to show that Nϕ ∩WF (ω2) = ∅.
For (k, k′) ∈ T ∗(γ(τ),γ(τ ′))(M ×M), we have:

Dϕ(τ, τ ′)t(k, k′) =

[
∂γ1

∂τ
· · · ∂γn

∂τ
∂γ1

∂τ ′
· · · ∂γn

∂τ ′

] k1 k
′
1

...
...

kn−1 k
′
n−1

 = (γ̇a(τ)ka, γ̇
b′(τ ′)k′b′)

That is,Dϕ(τ, τ ′)t is a linear map onto R2 such thatDϕ(τ, τ ′)t(k, k′) = (ua(τ)ka, u
b′(τ ′)kb′).

Therefore, the set of normals for ϕ is

Nϕ = {(γ(τ), k; γ(τ ′), k′) : kau
a(τ) = kb′u

b′(τ ′) = 0}.

Now, let (x, k;x′, k′) ∈ Nϕ ∩WF (ω2). Since (x, k;x′, k′) ∈ Nϕ, we have that x = γ(τ),
x′ = γ(τ ′) for some τ, τ ′ and kaua(τ) = kb′u

b′(τ ′) = 0. Yet, since (x, k;x′, k′) ∈ WF (ω2),
k and k′ must be both null.

Those two conditions are incompatible: non-zero timelike and null vectors cannot be
orthogonal. Since uν is timelike, there is a Lorentz frame where it has zero spatial
components and there we can write:

gµνk
µuν = k0u0 = 0 ⇐⇒ k0 = 0,

which contradicts the fact that kµ is null.

∴ Nϕ ∩WF (ω2) = ∅ and ϕ∗ω2 is well-de�ned.
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2. Since (vaµ∇a, v
b′
µ∇b′)ω2(f̄ , f) = ω2(∇a(vaµf),∇b′(v

b′
ν f)) and ω2 is of positive type, then

ϕ∗ω2 is of positive type by Theorem 2.45.

3. Let (τ, ξ; τ ′,−ξ′) ∈ WF (ϕ∗ω2), then, by Theorem 2.44 and item 1 here, there are k, k′

such that
(ξ,−ξ′) = (Dϕ(τ, τ ′))t(k, k′) = (ua(τ)ka,−ub

′
(τ ′)kb′),

and (γ(τ), k; γ(τ ′), k′) ∈ WF (ω2). Also, for a Hadamard state, the microlocal spectrum
condition says that (γ(τ), k) ∼ (γ(τ ′), k′), k,k′ are future-pointing. Since the velocities
are also future-pointing, we have that ξ is positive.

Let g ∈ C∞0 (Rn), then WF (g 〈T 〉ω) ⊂ WF (〈T 〉ω). Then:

Σ(g 〈T 〉ω) ⊂ Σ(〈T 〉ω) ⊂ {(ξ,−ξ′) : ξ, ξ′ > 0}.

Therefore, the Fourier transform of g 〈T 〉ω, denoted by [g 〈T 〉ω]�(−α, α) , decays rapidly
in all directions as α→ +∞.

Given Proposition 3.4, it is simple to prove the following theorem, which is the main result
of [32], and states the general worldline quantum energy inequality.

Theorem 3.5. [32, Thm4.1](General-QEI) Let ω and ω0 be states on A(M) with glob-
ally Hadamard two-point functions and de�ne the normal ordered energy density relative to
ω0 by 〈: T :〉ω = 〈T 〉ω − 〈T 〉ω0

. Then 〈: T :〉ω is smooth, and the quantum inequality∫
dτ(g(τ))2 〈: T :〉ω (τ, τ) ≥ −

∫ +∞

0

dα

π
[(g, g) 〈T 〉ω0

]∧(−α, α) (3.1.3)

holds for all real-valued g ∈ C∞0 (M,R) (and the right-hand side of (3.1.3) is convergent for
all such g).

Proof. We must show that 〈: T :〉ω is smooth, that the inequality holds and that the right
hand side converges to a �nite limit. That 〈: T :〉ω is smooth is trivial, since Hadamard states
share the singular part of the two-point function it follows that the energy density is smooth
by de�nition.
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The inequality holds, since:∫
dτ(g(τ))2 〈: T :〉ω (τ, τ) =

∫
dτ ′
∫
dτg(τ)g(τ ′) 〈: T :〉ω (τ, τ ′)δ(τ, τ ′)

=

∫ +∞

−∞

dα

2π

∫
dτ

∫
dτ ′g(τ)g(τ ′) 〈: T :〉ω (τ, τ ′)e−iα(τ−τ ′)

=

∫ +∞

−∞

dα

2π
〈: T :〉ω (g−α, gα) where gα(τ) = g(τ)eiατ

=

∫ +∞

0

dα

π
〈: T :〉ω (g−α, gα) since 〈: T :〉ω is symmetric

=

∫ +∞

0

dα

π
〈: T :〉ω (ḡα, gα) since g is real: ḡα = g−α

≥ −
∫ +∞

0

dα

π
〈T 〉ω0

(ḡα, gα) since 〈: T :〉ω is of positive type.

Let e(α,α′)(τ, τ
′) = ei(ατ+α′τ ′), then 〈T 〉ω0

(ḡα, gα) = 〈T 〉ω0
((g, g)e(−α,α)) = [(g, g) 〈T 〉ω0

](e(−α,α)).
Hence, by item 3 of Proposition 3.4,

〈T 〉ω0
(ḡα, gα)

def.
= [(g, g) 〈T 〉ω0

]∧(−α, α) (3.1.4)

does converge for α ∈ (0,∞).

We can do an analogous derivation considering any partial di�erential operator Q with
smooth coe�cients. For the Klein-Gordon �eld, let's see a sketch of it�this example is from
[34]. Let γ(τ) : R → M be a smooth timelike curve, τ the proper time parameter, and Q a
partial di�erential operator with smooth real coe�cients. To de�ne the point-split quantity

G(τ, τ ′) = 〈Qφ(γ(τ))Qφ(γ(τ ′))〉ω

for any Hadamard state ω, recall section 2.3.3 and consider ϕ as in last section (page 74),
then the quantity above corresponds to

G(τ, τ ′) = (ϕ∗(Q⊗Q)ω2)(τ, τ ′);

let G0 be the above evaluated at the reference Hadamard state ω0 The di�erence F = G−G0

is a smooth function whose diagonal is F (τ, τ) ≡ 〈: (Qφ)2 :〉ω (γ(τ)). By the same arguments,
for any real valued g ∈ C∞0 , the positivity of G implies:∫

dτ(g(τ))2
〈
: (Qφ)2 :

〉
ω

(γ(τ)) ≥ −
∫ +∞

0

dα

π
G0(ḡα, gα)ω. (3.1.5)

From equation (3.1.5), we can obtain bounds on the energy density�like Theorem 3.5�
and on any other quantity that depends on �nite sums of quantities of the form : (Qφ)2 :.
Expression (3.1.5) is completely analogous to expression (3.1.3).

It is important to note that the de�nition 3.3 of the energy density used depends on the
frame chosen; not on the whole tubular neighborhood Γ, but on its restriction to the curve γ.
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Thus the bound derived here depends, so far, on the observables worldline γ, the weighting
function g and the reference Hadamard state ω0; however, one can get rid of the dependence
on the reference state by de�ning the renormalized energy density in a distinct way: instead
of considering di�erences with respect to a reference state, one can subtract a Hadamard
parametrix (2.3.3), which is locally constructed, as described in section 2.3. For a careful
description of these �absolute quantum inequalities�, see [44].

By reviewing Fewster's work [32], we derived the expression (3.1.3)�a lower bound for
a weighted average of the energy-momentum tensor expectation value for the Klein-Gordon
�eld on globally hyperbolic spacetimes; from now on, let's call it �general QEI�, for sim-
plicity. We proved it in the mathematically rigorous formalism of Algebraic Quantum Field
Theory without any other assumptions�like the uncertainty principle�and di�erently from
the previous bound for the static case [45], which relied on the positivity of the product of
an operator with its adjoint, the derivation of the general QEI relied on the positivity of the
pullback of a positive distribution, thus on the �distributional positivity� of the two-point
function. The general QEI is indeed a generalization of previous works, since it does reduce
to the bounds for the �at [36] and the static [45] cases�the compact form it assumes in the
case of stationary spacetimes can be checked also in [32].

Since the bound for the static case [45] is stronger than the bound of [51] by a factor of 4
and Flanagan's optimal bound of [46] is stronger than [51] by a factor of 6, then the bound
in [45] is weaker than Flanagan's one by a factor of 3/2.

We infer that the general QEI�which does reduce to [45]�is not an optimal bound. Yet,
Flanagan's work [46]� which considered two-dimensional Minkowski spacetime and was later
generalized to two-dimensional curved spacetimes [47]�relied on particular properties of the
two-dimensional �eld and, thus, a direct generalization to higher dimensions is not possible.
On the other hand, the general QEI holds for globally hyperbolic spacetimes of n > 2
dimensions, and even for n = 2 with some extra care5.

The general QEI, however de�ned on globally hyperbolic spacetimes, cannot be directly
applied in Singularity Theorems; nevertheless, quantum energy inequalities inspire weakened
Singularity Theorems, as we see in the next two sections.

3.2 QEI-inspired hypotheses

Where we see how quantum energy inequalities inspire exponentially damped energy conditions.

Recall that Singularity Theorems have a pattern structure, as we saw in section 1.1 by
establishing Theorem 1.3; their proofs also have a characteristic structure: they are by con-
tradiction and based on a geometrical argument that relies on Raychaudhuri equation. The

5The massless two-dimensional �eld has well-known pathologies and it does require separate treatment
(for example, see [119]).
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proofs in [37] of the Singularity Theorems from weakened energy conditions�and from QEI-
inspired hypotheses�are also like that, yet, they rely on results regarding the nonexistence
of global solutions for initial value problems involving the more general Riccati equations.
The thing is that Raychaudhuri equation can be seen as a particular Riccati equation, and
we can obtain results of geodesic incompleteness by translating, to the General Relativity
context, these results on Riccati equations.

A Riccati equation is of the form:

ż(t) = q0(t) + q1(t)z(t) + q2(t)z2(t) (3.2.1)

where q0(t) 6= 0 and q2(t) 6= 0. If q0(t) = 0, then (3.2.1) is a Bernoulli equation; if q2(t) = 0,
it is a �rst order linear ODE. If we set q0(t) = Ric(γ′, γ′) + 2σ2, q1(t) = 0, q2(t) = 1

n−1
and

z = −θ, we recover Raychaudhuri equation�for an irrotational dust:

θ̇ = −Ric(γ′, γ′)− 2σ2 − θ2

n− 1
. (3.2.2)

Since we are indeed interest in the case of equation (3.2.2), let's simplify the general
equation (3.2.1) by setting q0(t) = r(t), q1(t) = 0, q2(t) = s; we thus consider the following
initial value problem (i.v.p.):

ż = z2

s
+ r

z(0) = z0

}
where r(t) is continuous on [0,∞) and s > 0 is constant. (i.v.p.)

To obtain geodesic incompleteness, the basic idea is to �nd conditions that guarantee
that the (i.v.p) above has no solution on all of [0,∞). In fact, the exponentially damped
energy conditions play exactly this role. First, I sketch how we obtain the QEI-inspired
hypotheses from quantum energy inequalities in Minkowski spacetime; then, I illustrate how
these exponentially damped energy conditions are obtained from it. In the next section, we
study Hawking and Penrose Singularity Theorems generalizations based on the ideas here.

Let's start by writing the general QEI (3.1.3) in the �at case. For the massless Klein-
Gordon �eld φ in the four dimensional Minkowski spacetime, the energy density is simply
T00 = 1

2

∑3
µ=0(∂µφ)2; so just consider Q = 2−1/2∂µ, µ = 0, ..., 3 in the example of expression

(3.1.5). Take the standard vacuum state as the reference state ω0; in Fourier representation
its two-point function is given by

ω2(x, x′) =

∫
d3~k

(2π)3

1

2ω
e−ik(x−x′);

along an inertial trajectory γ(τ) = (τ, ~x), we have

〈T00〉ω0
(τ, τ ′) =

∫
d3~k

(2π)3

|p(k)|2

2ω
e−iω(τ−τ ′);

where p(k) is given by Qeikx = p(k)eikx; then

〈T00〉ω0
(ḡα, gα) =

∫
d3~k

(2π)3

|p(k)|2

2ω
ˆ̄g(−ω − α)ĝ(ω + α).
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By equation (3.1.4), we can substitute the above in the general QEI (3.1.3) and, after a
simple computation, we obtain6:∫ ∞

−∞
g(t)2 〈: T00 :〉ω (τ, ~x)dt ≥ − 1

16π2

∫ +∞

−∞
(g′′(t))2dt (3.2.3)

for any smooth compactly supported real-valued function g and any Hadamard state ω.
We can read expression (3.2.3) as:

The averaged expectation value of the energy density is lower bounded by a term on some
L2-norm of the second derivative of the weighting function;

That is, using the notation of the (i.v.p.) and using the correspondence between Riccati and
Raychaudhuri equations, the bound above reads:∫ +∞

−∞
(r(t)− r0(t))f(t)2dt ≥ −Q2 ‖f ′′‖2 (QEI-inspired)

for some constant Q2 ∈ [0,∞), a test-function f and a �xed continuous function r0(t) which
corresponds�in the QEI analogy�to the quantity r(t) evaluated at a reference Hadamard
state; symbolically: "(r(t)− r0(t)) ≡: r(t) : ". If we further read (3.2.3), more generally, as:

The averaged expectation value of the energy density is lower bounded by a term that
depends on L2-norms of derivatives of the weighting function;

then, we can consider imposing on the (i.v.p) the most-inspired bound of:∫ +∞

−∞
f(t)2(r(t)− r0(t))dt ≥ −‖|f |‖2 (QEI-most-inspired)

for any Sobolev semi-norm:

‖|f |‖2 :=
L∑
l=1

Ql

∥∥f (l)
∥∥2

,

where Ql ∈ [0,∞), L ∈ N and ‖.‖ is any L2-norm.
The bounds (QEI-inspired) and (QEI-most-inspired) above came straightforwardly from

the form the quantum energy inequalities assume in four dimensional �at spacetime (3.2.3);
by imposing them, we implicitly assume that there is a scale on which averages on general
curved spacetimes can be well-approximated by these ��at QEIs�. Indeed, we suppose there
is a timescale τ0 for which they hold for all f ∈ C∞0 ((0,∞)) with support of length less or
equal to, say, 2τ0; and we can take τ0 as way smaller than local curvature length scales7. Now,
in order to regularize the average integral over longer timescales, we will soon introduce a
bump function to obtain a partition of unity on R.

As already mentioned, the interesting feature of these inspired bounds is that they give
us exponentially damped energy conditions; accordingly, due to the following lemma.

6Note that the rescalement gτ (t) = τ−1/2g(t/τ) gives us the illustrative bound of section 1.2.3.
7This is indeed reasonable�for examples, check out [48].
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Lemma 3.6. [37, Lem2.3] If there exists c ≥ 0 such that

z0 −
c

2
+ lim inf

T→+∞

∫ T

0

e
−2ct/sr(t)dt > 0 (3.2.4)

then (i.v.p.) has no solution on all of [0,∞).

On the other hand, if we assume (QEI-inspired), we obtain expression (3.2.5), and then
we also get a result of the nonexistence of global solutions for the (i.v.p.).

Suppose that r(t) is nonconstant and let r0 be a �xed continuous function such that (QEI-
inspired) holds for any f ∈ C∞0 ((0,∞)) supported in an interval of length at most 2τ0 > 0.
Let g be a �xed real-valued compactly supported smooth function that is non-increasing on
R+ and such that g(t) = 1 on [0, 1]; let c ≥ 0 and h ∈ C∞(R), such that supph ⊂ [−τ0,∞)
and h(t) = e−ct/s on [0,∞). Then

fτ (t) =

{
e−ct/sg(t/τ) t > 0

h(t) t < 0,

de�nes a test function for each τ . Then, for any c > 0, it holds

lim inf
τ→∞

∫ ∞
0

r(t)g(t/τ)2dt ≥ lim inf
τ→∞

∫ ∞
0

e−2ct/sr0(t)g(t/τ)2dt−
∫ 0

−τ0
(r(t)− r0(t))h(t)2dt

−Q
(
‖h′′‖2

+
1

2

(c
s

)3

+
‖ψ′′‖

τ 3
0 (1− e−2cτ0/s)

)
, (3.2.5)

where ψ is a bump function from which we obtain a partition of unity on R. Furthermore, if
the previous considerations hold and if, for some c > 0, we have

z0 ≥
c

2
− (RHS of (3.2.5)), (3.2.6)

then (i.v.p.) has no solution on all of [0,∞).
Regarding the more general (QEI-most-inspired) bound, there is the following analogous

result.

Theorem 3.7. [37, Thm4.1] Let r0 be a �xed continuous function and suppose r(t) obeys
(QEI-most-inspired) and is nonconstant. Suppose there exist c > 0 and h ∈ C∞(R) with
supph ⊂ [−τ0,∞) and h(t) = e−ct/s on [0,∞), for which

z0 −
c

2
+ lim inf

τ→∞

∫ ∞
0

e−2ct/sr0(t)g(t/τ)2dt ≥
∫ 0

−τ0
h(t)2(r(t)− r0(t))dt+ ‖|h|‖2 (3.2.7)

then (i.v.p.) has no solution on all of [0,∞).

The proof of Theorem 3.7 is given in details in [37]; for it, a generalization of Wald and
Yurtsever's argument [116] of 1991 is given as Lemma [37, Lmm3.1] and then: if there is a
solution, there is a contradiction; so the (i.v.p) has no solution on all of [0,∞).
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Note that, as mentioned before, there is a scale τ0 of relevance and that the dependence on
the values of r(t)�which, in the General Relativity context, represents the matter content�is
only on [−τ0, 0].

In addition, if the initial contraction z0 is strong enough, there will be a focal point.
This is reasonable due to the way the problem is posed. If we look at this with Singularity
Theorems in mind, note that we are already assuming Raychaudhuri equation holds, we are
implicitly assuming we can use Einstein equations to translate (QEI-inspired) to a condition
on the curvature of spacetime and the information regarding the �initial/boundary condition�
is already in the condition (3.2.7).

Interesting is to see the consistency of this bound (3.2.7) with the nature of quantum
energy inequalities: larger positive energies at some instant allows larger negative energies
at some later instant; to compensate this possible future larger violations, a stronger initial
contraction is in order�and that is exactly what is going on in (3.2.7): greater values of z0

are needed for greater positive values of (r(t)− r0(t));
In this section we saw that exponentially damped energy conditions can be obtained from

(QEI-inspired) bounds and, additionally, how these conditions yield Singularity Theorems
by looking at Raychaudhuri equation as a particular Riccati equation and using results re-
garding nonexistence of global solutions. In the next section, we see how generalizations
of Hawking and Penrose Singularity Theorems can be derived from exponentially damped
energy conditions.

3.3 ..Generalizations of Hawking and Penrose

Singularity Theorems

Where we answer the question: do Singularity Theorems hold if we consider quantum e�ects?

Let's see how exponentially damped energy conditions yield generalizations for Hawking
and Penrose Singularity Theorems. First, I sketch the proof for the cosmological context,
and then, I state the theorem in the Black Hole context in the end, for completeness.

Let M be a globally hyperbolic spacetime of dimension n ≥ 2, and let S be a smooth
compact spacelike Cauchy surface for M . Suppose along each future complete unit speed
timelike geodesic γ : [0,∞)→M issuing orthogonally from S, there exists c ≥ 0 such that,

lim inf
T→∞

∫ T

0

e−
2ct
n−1 r(t)dt > θ(p) +

c

2
(3.3.1)

where r(t) := Ric(γ̇(t), γ̇(t)) = Rµν γ̇
µγ̇ν(t) and θ(p) is the expansion (i.e., mean curvature)

of S at p = γ(0).
Let's prove that under these hypothesis, we get a singular spacetime. The steps we follow

are: construct an S−ray, around which Raychaudhuri equation holds, then we show that is
has no solution.

We can equip any n−dimensional smooth manifold M with a Riemannian metric h.
A canonical way for that is to take the induced metric from R2n, by Whitney embedding
theorem. Of course, the pair (M,h) is not unique�for example, we can embed S2 into R3 as
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a sphere or as a cube and that gives us di�erent induced metrics8. Moreover, to any smooth
Riemannian manifold, there is a complete Riemannian manifold conformally equivalent to
it9�this follows from a result by Nomizu and Ozeki [85].

With a complete Riemannian background metric, take a sequence of points qn in J+(S)
such that this Riemannian distance from S to qn goes to in�nity as n → ∞. Since M is
globally hyperbolic, the Lorentzian distance is �nite, continuous and satis�es the Avez-Seifert
property, i.e. for any pair of causally related distinct points p and q, there is a causal geodesic
from p to q with length equals to d(p, q). Since S is a Cauchy surface, pn ∈ S and qn ∈ I+(S),
then there is a timelike geodesic segment γn from pn in S to qn that realizes the Lorentzian
distance from S to qn.

Since S is compact, we can take γ as the limit of γn for n → ∞, then γ is a future
inextendible timelike geodesic emanating from p ∈ S such that from each of its points, it
realizes Lorentzian distance to S, i.e. γ is an S−ray and has no focal points and no focal
cut points10; then ρ is smooth in a neighborhood U of γ. Moreover, U can be foliated by
geodesics orthogonal to S and the tangent vectors to these geodesics yield a unit timelike
smooth vector �eld given, by the Gauss Lemma, by u = −∇ρ. Then, Raychaudhuri equation
holds in U�for the irrotational case, equation (3.2.2).

To show that it has no solution we just use Lemma 3.6; assuming (3.3.1) holds and setting
z = −θ, r = Ric(γ′, γ′) + 2σ2, s = n − 1 and z(0) = −θ(p), by Lemma 3.6, we get that
Raychaudhuri equation has no solution on all of [0,∞) and thus, γ must be incomplete. That
is, we obtain the following theorem.

Theorem 3.8. [37, Thm5.1](Generalized Hawking Singularity Theorem): Let M
be a globally hyperbolic spacetime of dimension n ≥ 2, and let S be a smooth compact
spacelike Cauchy surface for M . Suppose along each future complete unit speed timelike
geodesic γ : [0,∞)→M issuing orthogonally from S, there exists c ≥ 0 such that,

lim inf
T→∞

∫ T

0

e−
2ct
n−1 r(t)dt > θ(p) +

c

2
(3.3.2)

where r(t) := Ric(γ̇(t), γ̇(t)) = Rµν γ̇
µγ̇ν(t) and θ(p) is the expansion (i.e., mean curvature)

of S at p = γ(0). Then M is future timelike geodesically incomplete.

Theorem 3.8 is, indeed, a generalization of Hawking Singularity Theorem 1.2, since (3.3.2)
holds if we assume SEC holds. If (3.3.2) holds for c = 0:

lim inf
T→∞

∫ T

0

r(t)dt > θ(p),

8A more interesting example: the �at and the donut torus R2
/Z2 with the induced metric from R2 and

R3, respectively, are di�eomorphic (equals, as smooth manifolds); yet, as Riemannian manifolds, they are
not equivalent.

9 A conformal map is one that preserves angles (and thus, shapes of in�nitesimally small things), but not
necessarily volume and curvature.

10The cut locus of a point p, a concept of Riemannian Geometry, is the set in TpM on which the geodesics
de�ned by the (radial isometries of the) exponential map are minimizing.
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then, if θ < 0 on S, r(t) can be globally negative and still satisfy the hypothesis. Now,
if we assume the strong energy condition and that S is mean contracting�both Hawking
Singularity Theorem hipotheses�then, obviously r(t) ≥ 0 ⇒ r(t) ≥ θ(p) ⇒ (3.3.2) holds
and we recover the Cosmological singularity of Hawking's Theorem. The analogous argu-
ment holds for the generalized Singularity Theorem in the Black Hole context; although
it deals with diverse geometrical objects, for example: an S-ray is not considered, rather
a�nely parametrized future inextendible null geodesics are constructed by the generators of
the achronal boundary ∂J+(Σ); the contradiction argument that concludes the incomplete-
ness is also based on Lemma 3.6. For completeness, the statement of the generalization of
Penrose Singularity Theorem 1.1 follows.

Theorem 3.9. [37, Thm5.2](Generalized Penrose Singularity Theorem): Let M
be a spacetime of dimension n ≥ 3 with a noncompact Cauchy surface S. Let Σ be a smooth
compact acausal spacelike submanifold of M of codimension two, with null expansion scalars
θ± associated to the future directed null normal vector �elds l±. Suppose along each future
complete a�nely parameterized null geodesic η : [0,∞) → M , issuing orthogonally from Σ
with initial tangent l±, there exists c ≥ 0:

lim inf
T→∞

∫ T

0

e−
2ct
n−2 r(t)dt > θ±(p) +

c

2
(3.3.3)

where r(t) = Rµν η̇
µη̇ν(t) and p = η(0). Then M is future null geodesically incomplete.

Analogously, Theorem 3.9 is a generalization of Penrose Singularity Theorem, since (3.3.3)
holds when Σ is trapped and NEC holds.

It is interesting to point out that the statements of these generalizations, however similar
to the Pattern Singularity Theorem 1.3, do not have the same ingredients. Note that there
is not an initial/boundary condition�which is compensated by the fact that the own energy
conditions includes a term on the expansion (indeed, θ is on the RHS of expressions (3.3.2)
and (3.3.3)). Furthermore, there is an extra condition in Theorem 3.8: the compacity of the
Cauchy surface S; yet, if we consider the observable universe, this condition is reasonable.

In addition, in [37], Fewster and Galloway applied to the Einstein-Klein-Gordon theory the
results decribed in the last section; their methods were then used in [18] for the derivation of
a �Hawking-like Singularity Theorem� considering the massive non-minimally coupled Klein-
Gordon �eld. Basically, if there is su�cient initial contraction, a singularity is inevitable.
But how strong must be the initial contraction? In a recent work [18], Brown, Fewster and
Kontou gave a nice discussion regading this and argued that for a model whose �eld mass is
taken to be of an elementary particle, a teeny tiny initial contraction would be required11.

Now that we understand how quantum energy inequalities inspired Singularity Theorems
from weakened energy conditions that generalizes Hawking and Penrose's Theorems, we can
�nally answer the question posed in chapter 1;

11For the Higgs mass 125GeV/c2, it would be necessary a minimum contraction of 10−14s−1; also, in the
model they considered, this is compatible with a maximum temperature of order 1013K�which corresponds
to the Universe temperature at time 0, 0001s.
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3.4 Wind-up

Where we give an answer to: do Singularity Theorems hold if we consider quantum e�ects?

In this dissertation we deal with the question of whether quantum e�ects could elude
a singularity in General Relativity. If singularities are a disaster for General Relativity
is still controversial, an observable singularity would break causality and would leave us
without predictive power. Whence, physicists have always been trying to elude them: �rst,
by considering them just a mathematical artifact, then by blaming the (high) symmetry
hypothesis of the exact solutions and currently, by either checking if quantum e�ects could
prevent a singularity from arising or working with the cosmic censorship conjecture.

�Do Singularity Theorems hold if we consider quantum e�ects?
Within a semi-classical analysis, considering �quantum e�ects� whose manifestations are

represented just by the energy condition and using energy bounds that allow global viola-
tions of the classical energy conditions, there are generalizations of Hawking and Penrose
Singularity Theorems. Hence, an answer is:

�Yes, Singularity Theorems do hold for subtle quantum e�ects;
where �subtle� rules out, for example, backreaction e�ects and interaction e�ects.

One would now wonder, could backreaction or interaction e�ects change everything?
This is a tough question and my answer is: I have no idea, yet:

�Maybe, yes. There are bouncing models, for example, one can explicitly construct a
quantum state for the universe that is consistent with a bouncing model [89], thus obtaining
a non-singular universe. Furthermore, a recent work obtained a quantum No-Singularity
Theorem considering geometric �ows [5]. Thus, it is reasonable to expect that the inclusion
of backreaction or interaction e�ects could elude a singularity from arising.

�Maybe, no. The energy condition is just a lower bound; it is expected that, with
the inclusion of backreaction or interaction e�ects, we still have a lower bound on averages of
the energy density, thus nothing dramatic would happen in the proof showed in this section;
thus, for su�ciently strong initial contraction, we still have a singularity.

Even though there is an answer, there are things to be done�I give a brainstorm list of
them in the next page.
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Things to do, regarding:

∗ the concept of singularity in General Relativity: in 1968, the same year of �What is
a singularity in General Relativity?�, Geroch wrote another article [60] in which he
describes a way to characterize singularities by de�ning equivalence classes of geodesics
and constructing a boundary of singular points�called the g-boundary�which pro-
vides a local description and allow us to study topological properties of a singularity.
Unfortunately, its construction is di�cult and the freedom of the de�nitions used makes
them not so natural. There were some other studies, like the b-boundary of [102] and
the a-boundary of [104], on the local characterization of singularities, also based on this
idea of de�ning a spacetime boundary with singular points, but there is still a lot of
work to be done in this topic until we obtain a mathematically precise and physically
intuitive characterization. In particular, in the study of the topology of these bound-
aries, there were indicatives of weirdness: non Hausdor� interaction between boundary
and interior spacetime points [62];

∗ negative energy within quantum �eld theory�the Casimir e�ect: it has been formulated
in the algebraic approach [27] and I wonder if we can describe the dynamical Casimir
e�ect in this formalism and relate it to analogue moving mirror models for Black Holes.
In fact, Black Hole physics is also studied within AQFT; for example, towards a better
understand of Hawking radiation, there are rigorous analysis of the Hadamard condition
for quantum states on Black Hole spacetimes as [26], and recently [20];

∗ quantum energy inequalities: with Singularity Theorems in mind, study the asymptotic
behaviour of quantum energy inequalities and the scale on which the ones on curved
spacetimes can be well-approximated by the �at ones. In fact, a quantum energy
inequality version of the SEC is expected soon [18]. Furthermore, several other QEI's
have been derived considering di�erent �elds: for the Electromagnetic �eld [90] and
recently [41], for Dirac �elds [38, 28, 109], for spin-one �elds [42], for the non-minimally
coupled scalar �eld [39, 40] and for the massive Ising model [17]. One could continue this
by searching for quantum inequalities for Rindler, Milner or Schwarzschild spacetimes.
Can we relate it with the Hawking-Unruh e�ect? Check [34, Pgs27-30];

∗ other cosmological applications of Algebraic Quantum Field Theory: towards a bet-
ter understanding of the standard cosmological model and the Cosmological Constant
Problem, one can follow the works of K. Fredenhagen and T. Hack [55] and of C.
Dappiaggi, T. Hack, J. Möller and N. Pinamonti [25]. Both this references consider a
semi-classical analysis, but they consider di�erent averages for the energy-momentum
tensor. It would be interesting to study how the free parameter of [55] can be as-
sociated to Dark radiation and to pursue a comparison between these two analysis.
Furthermore, it would be interesting to consider these formalisms in the regime where
interaction must be taken into account. Indeed, the interaction picture has been devel-
oped, over the last 20 years, in the perturbative formalism of AQFT by several works
of R. Brunetti, K. Fredenhagen, S. Hollands, K. Rejzner, R. Wald and others. To work
towards including the interaction picture in cosmological applications of AQFT, one
could start by studying the monograph [97].





A

What is a Singularity in General

Relativity?

Where we are convinced that a Singularity in General Relativity is di�erent from the usual ones that

appear in Physics and we get an idea of why we de�ne it the way we de�ne it.

Singularity is a common word, so that we can say it has three canonical meanings: one
used by society, one in the science community in general and another one just for relativistics.
Something singular is something unique, di�erent, rare, but this is too broad a de�nition to
be useful for us. In Physics and Mathematics usually a singularity is a point where something
eighter goes to in�nity or is not well-de�ned. Relativistics say that spacetime is singular if
it contains an incomplete geodesic. In this section we will see why relativistics had the need
to rede�ne a singularity.

The canonical example of a mathematical singularity is the function 1
x
at x = 0. This

type of singularity appears a lot in physics, for example: the electric �eld of a point charge at
the point charge or the velocity of a �uid vortex at the center of it. Yet, this does not startle
anyone. Considering the Uncertainty Principle, since we could never get in�nitely close to
the electron, it does not make sense to say that this singular point actually exists. Classically,
we could just say that the electric �eld is not de�ned at the charge. And even though we can
watch water spiraling into a drain at our homes, we do not observe any catastrophe. Nature
has turbulance and cavitation and other e�ects that weren't considered in that model, thus
nothing goes wrong at the center here. Both are mathematical singularities, functions with
singular points, yet they do not represent real physical problems1.

A singularity in General Relativity cannot be a point of spacetime. When dealing with
mathematical singularities like the above, one is implicitly using the Minkowski background�
the knowledge of which points the respective quantity could be de�ned on. These points where
the theory cannot be applied are points of the spacetime and they can be called singularities
of the speci�c theory considered on the spacetime background. In General Relativity, we
no longer know where the theory could be applied, since the spacetime itself is part of the
theory. We need to de�ne spacetime and then, on it, deal with peculiar things that arise.

1The singularities in the context of Microlocal Analysis of this dissertation are also mathematical singu-
larities.
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Let's keep in mind that there are two consensuses among physicists : �a singularity is a
place where things go bad� and �Minkowski spacetime is non-singular�. It is important to
note that �something blowing up� is not a consensus, we will discuss the reason for that in
a while. The discussion here is based on [61, 107]. In [61], Geroch argued that there is no
perfect de�nition of singularity in General Relativity after debating the ambiguities of the
concept through a nice Galilean dialogue between Sagredo and Salviati�his conclusion still
holds. In [107], Senovilla and Gar�nkle discussed the types of di�culties one runs into when
trying to construct a de�nition in an extended review of Penrose Singularity Theorem of
1965. Another good reference for this topic is [98].

First, we need to de�ne spacetime2; of course it will be constituted of regular points
because regular points are, by de�nition, those where �physics holds�, where we have enough
di�erentiability to do physics at. That is a restatement for the assertion that a singularity
cannot be de�ned as a point of spacetime.

We have to guarantee that the manifold chosen cannot be extended to another one with
only regular points, for we would not have a reason not to consider these other points also
as constituents of our spacetime. Then, we try to �nd if problematic points or regions were
excluded by this. Yet, what types of regions could have been excluded and are of physical
relevance? Let's see an example.

Consider a spacetime with:

ds2 = −
(1

t

)
2dt2 + dx2 de�ned for t > 0.

The corresponding metric tensor will go to in�nity approaching the point t = 0, but this
is simply a bad choice of coordinates for the Minkowski spacetime(which we do not want to
classify as singular). We should just chose another set of coordinates and include the point
t = 0. In fact, the coordinates of any tensor cannot be used to de�ne a singularity, since
they depend on the basis chosen3. Another canonical example of a non-physical singularity
caused by this would be the Schwarzchild original solution for the spherically symmetric
vacuum universe with the problematic r = 2m surface:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dx2 de�ned for r > 2m;

this r = 2m region is called a coordinate singularity.
The natural attempt after realizing that we cannot characterize a singularity through

some bad behaviour of the curvature tensors, would be to use curvature scalars, since they
are at least independent of basis. Two things need to be considered: �rst, curvature scalars
depend on the point of the manifold, and second, we are considering an inde�nite metric.
Hence, we should consider their behavior along curves on the manifold, in particular on
geodesic curves. Geodesic curves are a�nely parametrized and this gives us a notion of dis-
tance. What can we say, however, about something that goes to in�nity along a geodesic that
also goes do in�nity? Nothing, actually. But we could call a spacetime singular if some cur-
vature scalar goes to in�nity on a �nite a�ne length geodesic. The only question now would

2Take a look at the appendix B for the construction of the de�nition of spacetime.
3In any spacetime with non-constant curvature we can, for every point x, choose coordinates such that

the curvature tensor blows up at x.
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be: can we �nd a collection of curvature scalars to characterize the curvature of a regular
metric? Unfortunately, the answer is no. With an inde�nite regular metric, we cannot �nd
a collection of curvature scalars that characterizes the curvature and remains �nite�so we
cannot characterize a singular behavior by curvature scalars blowing up. Furthermore, there
are pathological examples of spacetimes with vanishing curvature and incomplete geodesics.
In summary: we cannot characterize a singularity through some bad behavior of curvature
scalars.

So what if we just consider incomplete geodesics as signaling a singularity? An incomplete
geodesic also gives an idea of a removed region. Imagine an observer traveling through
spacetime reaching the �end� of a geodesic. It seems reasonable to call that a singular
behavior. In fact, that is the usual de�nition in General Relativity:

De�nition. A spacetime is singular if it is not geodesically complete, i.e. if the geodesics
cannot be extended to arbitrarily large parameter values.

An interesting fact that Geroch shows (also in [61]) is that: null, time and spacelike
geodesic completeness are not equivalent. Moreover, he gives an example of a universe
complete in all three senses but which contains a timelike curve of bounded acceleration
and �nite total length.

We often refer to a singular spacetime as a spacetime that �contains a singularity�; so, in-
formally, we associate the existence of an incomplete geodesic with the idea of a �singularity�,
even if we did not give an ontology to a �singularity� or a �singular point�.

Note that the relation between a singularity and the curvature of the spacetime is not yet
well understood. The conclusion of this topic is that Classical Singularity Theorems, which
uses the de�nition above, do not give us much information, since they do not characterize the
singularity: they only state that there is at least one incomplete geodesic. Their strongness
comes from the fact that not much is asked out of the spacetime in the hypothesis. To
characterize the nature of the singularity, we would need more details on the matter content
of the spacetime.

To end this section, a nice quote from Geroch's PhD thesis:

�What a strange little object is the singularity with its strange properties and
nonexistent de�nition. Yet the singularity promises to remain one of the most
intriguing and disturbing aspects of gravitation theory for a long time to come.
Here is a problem with which we must someday come to grips�at least if we are
ever to understand this phenomenon called gravitation.� [64, Pg145]





B

Towards the Definition of a Curved

General Spacetime

Where we recall the necessary de�nitions to understand the de�nition of a curved general spacetime.

A �rst glance at pure mathematics gives the idea that it is a collection of abstract general
concepts apart from the real world. Whereas every de�nition was inspired by some property
observed in the real world and then generalized and formalized in a consistent fashion. The
goal here is to understand the de�nition of a spacetime, where it comes from and what can
we do with it. Some good references of these subjects are: for an introduction to General
Topology [21], for Functional Analysis [7], for an introduction to Riemannian Geometry [66]
and for Lorentzian Geometry [87].

To de�ne a curved general spacetime we need to consider which properties of the Euclidean
space we would like to maintain. A topological space is a generalization of a metric space,
and a metric space is a generalization of the Euclidean space. Let's �rst take some properties
of the real line1: it is a topological manifold of dimension one, in particular it inherits a
metric topology from its usual distance function and another topology from the fact that it
is a totally ordered set. The real line is a locally compact space and a paracompact space,
as well as second countable and normal, thus Hausdor�. The real line is path-connected and
therefore connected. Also, it can be compacti�ed in a circle by adding a point at in�nity.
Let's keep them in mind.

Let start with a set. Think of it as a collection of points that constitute our spacetime.
We want to be able to say if one point is near another point, we need to understand how the
points in this set connect with each other. This is done with the de�nition of topology. It is a
generalization of the notion of open sets in the real line. The notion of �a point near another�
is analyzed with the de�nition of neighborhoods. Well, with a topology we can study, in a
way, how points connect with each other, how are they �near or far�. In fact, with a topology
we can construct notions of limits, continuity, compacity, convexity, etc.

Now we have a set equipped with a topology (a certain collection of open sets). There
are some minimum requirements we need regarding the �neness of the topology. Every open

1If you dont understand the words in this paragraph, do not worry. We will see these de�nitions in the
following.
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set can be written as a union of elements of the topology. The Euclidean space has the nice
second-countable property. This means that every open set can be written as a countable
union of elements of the topology and we can look at it as a �well-behaviourness� imposition
which we will ask out of our spacetime. On the other hand, if something is convergent,
it is physically reasonable to require that the limit is unique. The Hausdor� separation
property guarantees the latter. By Urysohn's Metrizability Theorem, a second-countable
Hausdor� topological space is metrizable. That is great because we de�nitely want to equip
our spacetime with a distance notion.

We will consider a connected set. By that, we are saying that our spacetime is �whole�,
in the sense that we could not write it as two disjoint subspacetimes. If there is a path
connecting every two points of a set, we call it path-connected. Yet, remember that we
can study how points connect using the topology, and indeed connectedness is a topological
concept that is a generalization of the notion of path-connectedness2.

So far, our spacetime is a set equipped with a topology (def B.1), satisfying the Hausdor�
property (def B.2), second-countable (def B.3) and connected (def B.4). Formally, we have
the following de�nitions.

De�nition B.1. (Topological space) A set X equipped with a topology is said to be a
topological space. A topology on a set X is a collection τ of subsets of X such that:

(i) ∅, X ∈ τ ;
(ii) if A, B ∈ τ ⇒ A ∪B ∈ τ and A ∩B ∈ τ .

We denote the topological space (X, τ) ≡ X and the elements of τ are called open sets.
If U is open, we call its complement U c a closed set. A neighborhood for p ∈ X is an open
set containing p.

De�nition B.2. (Hausdor� topological space) A topological space X is said to be
Hausdor� if for each pair of distinct points p1, p2 ∈ X there are neighborhoods U1, U2 such
that: p1 ∈ U1, p2 ∈ U2 and U1 ∩ U2 = ∅.

De�nition B.3. (Second-contable topological space) A topological space (X, τ) is said
to be second-countable if its topology has a countable basis. A basis for τ is a collection
B ⊂ τ such that: for all p ∈ X and for all open set U 3 p, ∃B ∈ B with p ∈ B ⊂ U . Every
element in τ can be written as a union of elements of its basis B.

De�nition B.4. (Connected topological space) A topological space (X, τ) is said to be
connected if the only subsets of X which are both open and closed are ∅ and X. Equivalently,
a topological space is connected if it cannot be divided into two disjoint nonempty open sets
(or divided into two disjoint nonempty closed sets).

The inspiration for the de�nitions above is the Euclidean space, as said before. But now
we are going to impose something a little stronger. We will say that our spacetime is locally
equivalent to Rn, topologically locally equivalent. This means we can continuously map a
neighborhood of a point of the spacetime into an open set of Rn, and continuously take it
back. This map is called a homeomorphism (def B.5). A homeomorphism is a topological

2The idea of separation of our spacetime in components will come from General Relativity and the
causality notion. It seems reasonable to start with a connected spacetime.
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isomorphism, which means that it preserves topological concepts between the spaces. Two
topological spaces that are homeomorphic, i.e. if there is a homeomorphism between them,
are considered the same. Moreover, adding these homeomorphisms to our second-countable
Hausdor� topological set, our spacetime is called an n-dimensional topological manifold (def
B.6). Precisely, we have the following de�nitions.

De�nition B.5. (Homeomorphism) A bijection f , between topological spaces X and Y ,
is called a homeomorphism if both f and f−1 are continuous. f is continuous if for every
open set U ⊂ Y , the pre-image f−1(U) ⊂ X is an open set.

De�nition B.6. (n-dimensional topological manifold) An n-dimensional topological
manifold M is a second-countable Hausdor� topological space such that each point possesses
a neighborhood homeomorphic to an open subset of Rn.

Let M be an n-dimensional topological manifold, U ⊂ M an open set and ϕ : U →
ϕ(U) ⊂ Rn a homeomorphism. Then, ϕ is called a coordinate system or chart, ϕ−1 is called
a parametrization and the set ϕ−1(U) is called a coordinate neighborhood.

For every point in our manifold, we have at least one neighborhood and one homeomor-
phism from it onto an open set in Rn. What happens when neighborhoods overlapps? We
must be able to transit between charts: we get transition maps. If we further impose that
these coordinate changes are di�erentiable maps, we get the idea of a di�erentiable manifold.

Figure B.1: Parametrizations and overlap maps.

De�nition B.7. (n-dimensional smooth manifold) An n-dimensional smooth manifold
M is an n-dimensional topological manifold eqquiped with a family of parametrizations
ϕα : Uα →M , where Uα ⊂ Rn are open sets, such that:

(i)
⋃
α

ϕα(Uα) = M , i.e. the coordinate neightborhoods cover M .

(ii) for each pair α, β with W := ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅, the transition maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W )→ ϕ−1
β (W ) and ϕ−1

α ◦ ϕβ : ϕ−1
β (W )→ ϕ−1

α (W ) are smooth
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(iii) A = {(Uα, ϕα)} is maximal, i.e. if ϕ̃ : Ũ →M is a parametrization such that
ϕ̃−1 ◦ ϕ and ϕ−1 ◦ ϕ̃ are smooth for all ϕ in A, then ˜(U, ϕ̃) is in A. We call the family A a
maximal Atlas or a di�erentiable structure.

A di�eomorphim is an isomorphism for smooth manifolds. Two n-dimensional smooth
manifolds M and N are considerer the same if there is a di�eomorphism between them, then
we say they are di�eomorphic.

De�nition B.8. (Di�eomorphism) LetM and N be two n-dimensional smooth manifolds
with parametrizations (Uα, ϕα) and (Vβ,Ψβ), respectively. A bijection f : M → N is called
a di�eomorphism if f and f−1are smooth, i.e. if f is smooth at everin every local chart
Ψ ◦ f ◦ ϕ−1 is smooth at ϕ(x) ∈ Rn. Note that f is smooth if

With the global di�erentiable structure and the local euclidean character, we can de�ne
di�erentiable properties of objects locally and independently of parametrizations. We do
that using the de�nition of the tangent space Tp(M) at a point p ∈ M . We can do approx-
imations by locally replacing the manifold by its tangent space�this process is called local
linearization. For us, in this appendix, the notable property of the tangent space is that it
allows us to de�ne vectors and take scalar products between them. There are three equivalent
de�nitions for TpM , using linear functions or the transformation law of coordinate changes
or using the velocities of the curves of the manifold. The one I �nd most intuitive is the last
one.

For a surface S in R3, the tangent space at p ∈ S is the tangent plane TpS. For every
vector v ∈ R, tangent to S at p, there exists a di�erentiable curve c from an interval I ∈ R
into S such that c(0) = p and ċ(0) = v. This is the ideia we use to de�ne�intrinsically�the
tangent space on manifolds. Let M be an n-dimensional smooth manifold, as before, and
consider all curves c passing through p ∈M , then TpM is the vector space generated by the
velocities of c.

De�nition B.9. (Parametrized curve) A parametrized curve is a mapping from I ⊂ R
into M by I 3 t 7→ c(t) ∈ M . If this mapping is di�erentiable, we say it is a di�erentiable
curve (in M).

De�nition B.10. (Velocity of a curve) Let c be a di�erentiable curve in M such that
c(0) = p and let C∞(p) be the space of real functions on M that are smooth at p. For
f ∈ C∞(p), the composite mapping f ◦ c is a function on I di�erentiable at t = 0. The
velocity of the curve c at p is the linear map

C∞(p) 3 f 7→ d(f ◦ c)
dt

(t)
∣∣∣
t=0
≡ vc,p(f).

To see it makes sense to de�ne a velocity as a linear map, imagine the following: con-
sider you walk the around describing a curve c and measuring some quantity�say, the
temperature�which is given by a function f . What you obtain is the function f ◦c that gives
you how the temperature f changes along your movement c. Now, since you can do that

with all quantities�for all f ∈ C∞�and d(f◦c)
dt

(t)
∣∣∣
t=0

is the directional derivative of falong c



Towards the De�nition of a Curved General Spacetime 95

at p, then you know the directional derivatives along c at p of all f . Recall from vector cal-
culus that the directional derivate of a function f is the dot product of the velocity v by the
gradient of the function ∇f , then the idea above is that: given that we know f 7→ v∇f, ∀f ,
then we can recover v.

De�nition B.11. (Tangent space) Let M be an n-dimensional smooth manifold, the
tangent space at p, denoted TpM , is the collection of all velocities at p:

TpM := {vc,p(f) : c is a smooth curve passing through p}.

Figure B.2: On the left, a sphere S ⊂ R3�easy to visualise TpM , we can draw it as the
tangent plane. On the right, a general manifold M and curves passing trough p.

The tangent space TpM is an n-dimensional vector space. Chosing a parametrization

(x1, ..., xn) around p, we obtain that TpM = span

{(
∂
∂x1

) ∣∣∣
p
, ...,

(
∂
∂xn

) ∣∣∣
p

}
. The disjoint union

of all tangent spaces is called the tangent bundle

TM :=
⋃
p∈M

TpM = {v ∈ TpM : p ∈M}.

Moreover, the cotangent space at p, denoted T ∗pM , is the dual space of TpM ; analogously,
T ∗M :=

⋃
p∈M

T ∗pM is the cotangent bundle.

A vector �eld on a smooth manifoldM is the map that to each p ∈M associates a vector
Xp in TpM :

X : M → TM

p 7→ X(p) := Xp ∈ TpM .

Let V be a vector space, and V ∗ its dual space; a (k,m)−tensor is a real multi-linear function
on the product space V ∗ × ...× V ∗ × V × ...× V that has k copies of V ∗ and m copies of V .
The set of all (k,m)−tensors is denoted T k,m(V ∗, V ).

De�nition B.12. (Tensor �eld) A (k,m)−tensor �eld is a map that to each point p ∈M
assigns a tensor T ∈ T k,m(T ∗pM,TpM).

As an example, note that a vector �eld is a (0, 1)-tensor �eld. A metric tensor �eld�
usually called just �metric�, in physics�is a (0, 2)-tensor �eld.
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De�nition B.13. (Pseudo-Riemannian metric) A pseudo-Riemannian metric is smooth
2−tensor �eld g ∈ T 2(T ∗M) on a connected n-dimensional smooth manifold M such that it
holds:

g(v, w) = g(w, v)(symmetry);

g(v, w) = 0∀w ∈ TpM ⇒ v = 0(non-degeneracy).

The signature of g is the pair (p,−q), where p and q are the numbers of positive and negative,
respectively, eigenvalues of the quadratic form associated to g.

De�nition B.14. (n-dimensional Lorentzian manifold) An n-dimensional smooth man-
ifold equipped with a pseudo-Riemannian metric g with signature (1, 1 − n) is called an
n-dimensional Lorentzian manifold, denoted by (M, g)�or just by M .

One could wounder why should the spacetime be smooth. We could de�ne a spacetime
using a k-times di�erentiable manifold, in spite of a smooth one. Indeed, we could have.
Hawking discuss this in [72] and talks about how many degrees of di�erentiability we actually
need. Yet, we could intuitivelly invoke Whitney embedding theorem to feel at ease will the
smoothness imposed.

Given an n-dimensional Lorentzian manifold M and the other structures de�ned above,
we can introduce causality notions. Let g be the Lorentzian metric and p ∈ M ; a non-zero
v ∈ TpM is:

timelike, if g(v, v) < 0;

lightlike, if g(v, v) = 0;

spacelike, if g(v, v) > 0.

Lighlike vectors and the zero vectors are called null vectors ; timelike and lightlike vectors
are called causal vectors. This characterization also applies to curves on M , they herd the
causality notion of their tangent vectors and we use them to take these notions from TM to
M . With this notion, we can de�ne a time-orientation of our spacetime and then, introduce
the notions of causal future(past) and chronological future(past).

Let J be the set of all causal vectors and I the set of all timelike vectors in TM . For each
p ∈M , J ∩ TpM and I ∩ TpM have two connected components;

De�nition B.15. (Time-orientability) A connected n-dimensional Lorentzian manifold
M is time-orientable if J has exactly two connected components. This means we can choose a
time-orientation, that is: choose one component as the causal future J+ and one component
as the causal past J− = −J+.

Time-orientability is equivalent to the existence of a nonvanishing vector �eld on M .

De�nition B.16. (Spacetime) A (n-dimensional) spacetime is a connected time-orientable
n-dimensional Lorentzian manifold.
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We will restrain our study to globally hyperbolic spacetimes. The notion of globally
hyperbolicity allow us to impose causality in the context of, not as the physical considerations
of Special Relativity, but General Relativity�that is causality in the context of di�erential
equations considering the particular case of Einstein equations�and to construct a well-
posed Cauchy problem for the Klein-Gordon �eld, as showed in chapter 2. In fact, it is the
largest class for which the Klein-Gordon Field is a well-posed Cauchy problem. The name
was given due to the hyperbolic character of the solvable equations on spacetimes satisfying
this condition.

De�nition B.17. (Causality and strong causality conditions) A Lorentzian manifold
is said to satisfy the causality condition if it does not contain closed causal curves�and we
sayM is causal. If it further does not contain almost closed causal curves, it is said to satisfy
the strong causality condition.

This is OK!

This is not ok.

Figure B.3: Strong Causality Condition

If M is causal, it's guaranteed the existence of global solutions of linear di�erential op-
erators for suitable initial values (on maximal achronal hypersurfaces). If M is diamond-
compact, i.e. for all p, q ∈ M , JM+ (p) ∩ JM− (q) is compact, then the uniqueness of those
solutions is guaranteed. If M satis�es both these properties, M is said to be globally hyper-
bolic. To impose global hyperbolicity on the spacetime corresponds to impose determinism
on nature�predictability and no time-machines. In 2006, Bernal e Sanchez proved a long-
standing conjecture that allows us to state the following theorem with global hyperbolicity
equivalences.

Theorem B.18. (Global Hyperbolicity equivalences) LetM be a connected time-oriented
Lorentzian Manifold. Then the following are equivalent:

(i) M is diamond-compact and satis�es the strong causality condition;

(ii) There exists a Cauchy surface on M ;

(iii) M is isometric to R× S with metric −βdt2 + gt where β is a smooth positive function,
gt is a Riemannian metro on S depending smoothly on t ∈ R and each {t} × S is a
smooth spacelike Cauchy surface in M .

If M satis�es them, then it is said to be globally hyperbolic.

Proof. [(iii) ⇒(ii)] is trivial. [(ii) ⇒(i)] is well-known. [(i) ⇒(iii)] proved recently by Bernal
and Sánchez[12].
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Figure B.4: Illustration of a global hyperbolic spacetime.

Global hyperbolicity is the Lorentzian analog to Riemannian completeness. We can equip
any manifold with a Riemannian metric, we can associate any Riemannian manifold to a
metric space and, due to minimizing properties of geodesics in Riemannian geometry, Hopf-
Rinow theorem guarantees that a Riemannian manifold is metrically complete if and only
if it is geodesically complete. Within Lorentzian geometry, the last sentence is completely
changed. We can equip a non-compact manifold with a Lorentzian metric, but there is
no metric space associated to it. The non-trivial character of it justi�es de�nition 1.1 of
a singular spacetime as a geodesically incomplete one. Due to causality notions�absent
in Riemannian geometry�there are several types of completeness which are not logically
equivalent: bounded-accelerated curves completeness, b-, timelike, lightlike and spacelike
geodesic completeness. Yet, global hyperbolicity implies the following proposition.

Let d : M ×M → [0,∞] be the Lorentzian distance function, that is: d(p, q) gives the
supremum of the lengths of the future-directed causal curves from p to q.

De�nition B.19. (Avez-Seifert property) For any pair of distincts points p and q in M
such that q ∈ J+(p), there is a causal geodesic from p to q with length equal to the Lorentzian
distance function, i.e there is a maximal curve between p and q.

Proposition B.20. In a globally hyperbolic spacetime M , the Lorentzian distance function
d is �nite, continuous and satis�es the Avez-Seifert property.

This is enough for now. If you want to continue studying this subject, a nice reference
that talks about the transition from Riemannian Geometry to Lorentzian Geometry is [83].
Also, any free time can be �lled with some article from Robert Geroch, for example, regarding
global structures of spacetimes, [63].



C

A short story of the Vacuum

Where we take a quick tour on the evolution of the vacuum concept, stopping at some curious ex-

periments that veri�ed the existence of the vacuum. Since this will not be historically precise, as so

many episodes and subtleties will be left out, and since there will be no references to support it, we

shall call it a short story; like a fabula, it will, hopefully, transmit an idea.

The word vacuum is naturally associated to empty space, to what is left after one removes
all matter. Although, to use the word �naturally� in this �rst sencente is anacronical; through-
out history, our conception of vacuum�of the reasonability of its existence�alternated.
Could we talk about the ontology of the vacuum? Or even this question is contradictory?
Let's take a glance at the debate around the vacuum concept, by checking some of its many
lifes. A nice reference�for portuguese readers�for reviewing �Greek Science� is [1].

The vacuum was born with the atomists answer to the �Problem of Change�: how can
things change? Democritus1(410b.C.) explained it terms of atoms ; di�erent things are due
to di�erent forms, positions and arrangments of these atoms. By postulating the existence of
things�the atoms,�the idea of not-things�nothing, emptyness�arouse. For the atomists,
reality consisted of atoms and emptyness.

The vacuum's �rst life, as a brother of the atom, ended with Aristotle(384-322 a.C.). He
approached the �Problem of Change� di�erently from the atomists, by introducing the notion
of potentiality and actuality. The vacuum concept was dealt by Aristotle in the context of
Dynamics and, for him, the empty space did not exist: there was a medium in touch with
evertything that it contained. With this �lling medium and his law on the velocities of
things2, he introduced the horror vacui idea�i.e �nature abhors vacuum�3. In fact, this idea
perpetuated until the seventeenth century, when it was used to explain the functioning of
the suction pump, used since the roman times.

The works of Torricceli�with the mercury barometer�and Otto von Guericke�with the

1Let's take Democritus as a representative of the atomists equivalence class.
2Check out: Aristotle Physics IV chapters 6 to 9.
3Curiosity: the stoics also denied the vacuum inside the world, but addmitted it as in�nite outside of

the world; the world was �lled, and things could move in the world just like a �sh can move in water. Later
on, the epicurists recovered the atomists conception of reality�Epicurus(341-241 a.C.) was, actualy, also an
atomist.
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Magdeburg's hemipheres�gave the vacuum its second life. In 1630s, italians4 faced failures
in using the sucction pump. Either on wells or on coil mines, the pumps could not rise water
from arbitrarily depths. This mistery was solved by Galileu's discipule Torricceli.

Figure C.1: Gaspar Schott's sketch of Otto von
Guericke's experiment.

In 1644, Torricceli repeated Berti's ex-
periment, using mercury instead�this is ref-
ered to as �the invention of the mercury
barometer�. This apparatus and the expla-
nation of the phenomenon�that we live at
the bottom of an ocean of air�had many
consequences in science, but here, the rele-
vant character is that it suggested that the
vacuum exists. Not only the behaviour of
�uids in tubes denied the horror vacui con-
ception, in the mercury barometer one could
see the vacuum rise. This idea was not ab-
sorved so easily, but in 1657, Otto von Gu-
ericke made another interesting experiment:
the �Magdeburg's hemispheres". He took
two heavy copper hemispheres, put them

aside and made a vacuum inside�with the vacuum pump he invented�and he showed that
not even 30 horses could separate them again. With this, he showed the power of the atmo-
sphere and this experiment was recieved as a demonstration of the existence of the vacuum.

In the eighteenth and ninetheenth century, however, several background mediums�also
called aethers�were proposed to mediate physical interactions, regarding, for example, elec-
tricity, magnetism, heat and gravity. They were all ruled out by experiments, or by the
introduction of the concept of �elds or by the development of the theories. The last aether,
that was suppose to carry the propagation of electromagnetic waves, was showed to be un-
necessary by Michelson-Morley experiment in 1887; with special relativity, the framework
for the electromagnetism was set. Finally, in the beggining of the XX century, within Quan-
tum Mechanics, the vacuum becomes the no-particle state, the ground energy state, which
suprisingly has a non-zero energy�called the zero-point energy.

Let's connect this rambling on the vacuum concept with section 1.2.2. The goal was to
illustrate how rich the debate on the vacuum concept is, in spite of more than two tousand
years of discussion, there were only a handfull of experiments giving us information about
it� the experimental validation of the Casimir e�ect is one them. Thus, the original work of
Casimir [22] and the experimental validation [80] is an important piece on the history of the
vacuum� we could even call it �the Quantum Physics Magdeburg's hemispheres�, as said in
[101, Pg354]. The following poem summarizes the above.

4Leonardo Da Vinci and Galileo Galilei, seemingly.
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Seven lifes

The vacuum was born
because things transform,
to the problem of change,
atoms and vacuum arranje.
The vacuum fade out
because things move around,
a medium must be laid
for nature is afraid.
The vacuum rebirth
because things' moves are absurd,
nature is so brave
and atmosphere, it has weight.
With Torricceli's barometer
one sees vacuum rise,
after Magdeburg's hemispheres,
one creates vacuum as desires.
The vacuum was scrapped
because things interact,
several aethers were nominated
action at-a-distance, intermediated.
Not for planets to swing in5

Not for heat transfering
Not for body's sensations to convey
Not for carring electromagnetic waves
one by one, they passed away.
The vacuum emanates
because things are both
particles and waves, they invoke
a non-empty no-particle state.
This curious energy
we believe that we can see,
by the work of Hendrik Casimir.

5In Encyclopaedia Britanica, Maxwell wrote:

Aethers were invented for the planets to swing in, to consitute electric atmospheres and magnetic
e�uvia, to convey sensations from one part of our bodies to another, and so on, until all space
had been �lled three or four times over with aethers. (...) The only aether which has survived is
that which was invented by Huygens to explain the propagation of light. [Maxwell, James Clerk
(1878), "Ether", in Baynes, T.S., Encyclopædia Britannica, 8 (9th ed.), New York: Charles
Scribner's Sons, pp. 568�572]
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