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Flavor-changing neutral-current transitions such as b — sy are absent at tree level in the
Standard Model and can only occur via loop diagrams. Several new physics models may
enhance the rate of these transitions. This document presents searches for the exclusive
decays B — KTvv and BY — K2, which have a predicted theoretical branching fraction
of (3.8752) x 1075, The presence of two neutrinos in the final state makes recognition of
the signal challenging, so the full reconstruction of one B meson in the semileptonic decay
channel B — D®][v is used to facilitate the search for the signal in the recoiling B. This
analysis uses approximately 420 fb™* or 460 million BB pairs collected over runs 1-6 with
the BABAR detector at the PEP-II B factory. This analysis finds 90% confidence level upper
limits on the branching fractions of 1.3 x 107 for B- — K*vw, 5.6 x 107° for B} — K%,
and the first upper limits on the partial branching fractions for B — K*vv of 3.1 x 107°
for K™ CMS momentum < 1.5 GeV/c and of 0.89 x 1075 for K CMS momentum > 1.5
GeV/c. These results improve upon the previous best upper limits, which came from the
Belle experiment, of 1.4 x 107 for B} — K*vw and 16 x 107° for B} — K%w. They
also rule out a new physics model of scalar dark matter for scalar particle masses below

1.7 GeV/c%
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1 Introduction

The Standard Model (SM) [1, 2, 3, 4, 5] of particle physics provides the foundation
for understanding the interactions of particles and fields. It describes three forces: elec-
tromagnetism, the strong force that gives stability to atomic nuclei, and the weak force
that mediates radioactive decay. These forces are tied to particles termed bosons: photons
carry electromagnetism, gluons carry the strong force, and charged W bosons and neutral Z
bosons carry the weak force. Two additional groups of particles, the leptons and quarks, are
organized into pairs that come in three generations. The first generation of leptons includes
the familiar electron and its partner, the electron neutrino. The latter two generations of
charged leptons, the muon and the tau, have higher mass and are unstable. They both
have partner neutrinos. Neutrinos are different from other leptons and quarks in that they
only interact through the weak force, which means they are nearly undetectable, except by
large, specialized neutrino detectors. The first generation of quarks includes the stable up
(u) and down (d) quarks. The latter two generations are more massive and unstable: they
are the charm (¢) and strange (s) quarks, and the top (¢) and bottom (b) quarks. Quarks
and leptons occur in two forms: particle and antiparticle, the latter having the same mass
as the particle but being opposite in some properties like charge. Antiparticles are denoted
by a bar over the particle symbol.

Quarks are bound to each other by the strong force, which increases with distance so that
lone quarks are never found experimentally. Instead, pairs of quarks form mesons, which
are always unstable, and trios of quarks form baryons. A meson is always composed of a
quark and an anti-quark of some type. The mesons most relevant to this dissertation are the
T(4S5), composed of b and b; the B* meson, composed of b and u; the B® meson, composed

of b and d; the K+ meson, composed of 5 and u; and the K° meson, composed of 5 and d.



Replacing each quark in a meson with its antiparticle (or vice-versa) creates the anti-meson,
though, in some cases like the 7°(4S5), the meson and anti-meson are identical.

Quarks can change flavor via a charged current governed by the weak interaction’s charged
W boson. The parameters that govern these transitions can be placed in a 3x3 unitary
matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [6, 7]. These values must
be determined experimentally since they are not predicted by the SM. In contrast to the
charged current, quark interactions with the neutral Z boson do not change flavor. Despite
the fact that the flavor mixing caused by the weak interaction means that weak eigenstates
differ from mass eigenstates, for quark interactions with the Z, the mixing cancels out via
the Glashow-Iliopoulis-Maiani (GIM) mechanism [8], so that weak eigenstates and mass
eigenstates become identical, and no flavor changes can occur. The GIM mechanism is a
reflection of the unitarity of the CKM matrix.

A powerful tool to help determine the rate of an interaction is the Feynman diagram [9].
The total interaction rate can be calculated, in principle, by summing all possible Feynman
diagrams for the interaction. In loop diagrams, like those in Figure 1, all possible particles
that could propagate through the loops should be considered. In the SM, there is a limited
set of particles that can be found in the loops. However, if the SM is incomplete, if there
are more particles beyond the SM, then these new-physics particles could also appear in the
loops, and interaction rates calculated under the SM might not match those observed in
experiments.

In fact, there are many indications that the SM is incomplete. Neutrinos are assumed
to be massless by the SM, but there is now compelling evidence neutrinos have small
masses [10]. In addition, there is strong evidence for dark matter (DM) in the universe, but
no particles in the SM can account for it [11]. Furthermore, the mass of the Higgs boson,

the only particle predicted by the SM but not yet observed, is divergent when calculated



under the SM, so corrections to the mass calculation due to new-physics effects are expected
to make the Higgs mass finite and compatible with other SM constraints [12]. Additionally,
there is the general problem that the SM not only does not include gravity, but it is also
actually incompatible with general relativity. All these indications point to the need to look
for new physics beyond the SM.

A prominent candidate for resolving some of the problems of the SM is a theory called
Supersymmetry, which posits that each fundamental SM particle has a supersymmetric
partner. There are many variations of supersymmetry, with one called the Minimal Su-
persymmetric extension of the Standard Model (MSSM) serving as foundation for most of
the others [12]. Arising naturally out of many supersymmetric models is a stable, massive
particle that interacts with SM particles only via the weak force. Such a Weakly Interacting
Massive Particle (WIMP) is a good candidate for a DM particle.

The BABAR experiment [13] at the SLAC National Accelerator Laboratory utilized the
PEP-II accelerator and BABAR detector to create a large data set of B meson decays. For
most of the accelerator’s run, it was tuned to produce the 7°(4S) resonance, which decays
almost entirely into BB pairs. This large data set provides the opportunity to search for
very rare decays of the B meson. One such rare decay is B — Kvv, which is an attractive
target of study due to its theoretical simplicity in the Standard Model. An enhancement in
the rate of this decay could be an indication of new physics. In addition, since the signature
of this decay is a kaon with missing energy, the search for it could also capture decays that
produce undetected dark matter particles. This thesis documents the search, using the full
BABAR data set, for the exclusive decays B” — KTvv and B} — Kovv with the use of a
B-tagging technique where the second B of the pair is reconstructed as a semileptonic decay.

As a flavor-changing neutral-current (FCNC) decay, B — Kvv cannot occur at tree level

in the SM but requires at least one-loop diagrams like the penguin and box diagrams shown



in Figure 1. It is one of the theoretically cleanest of FCNC decays, which provide powerful
insights into the flavor dynamics of the SM, such as quark masses and mixing. The loops in
the decay diagrams include quarks, leptons, and vector bosons, making these decays sensitive

to many SM parameters.

Figure 1: Lowest-order Standard Model diagrams for b — svv.

Predictions for the branching fraction of B — Kvv, according to two recent theoretical

models, BHI(2001) [14] and ABSW(2009) [15], are:

B(B — Kvv) = (3.8%52) x 107¢ [14] (1)
B(B — Kvv) = (4.54+0.7) x 107 [15] (2)

This rate is the rate for the sum of all three neutrino flavors, and it is predicted to be
the same for both B — K™vv and B} — K%w. The rate for B — K2vv is predicted
to be exactly half of the BY — K rate, with the other half being B} — K%vv, which is
extremely difficult to reconstruct. The differences between the BHI and ABSW models are
discussed in Section 2.

The current best experimental upper limits for these decays are (at the 90% confidence

level):

B(Bf — Ktvp) < 1.4x107° [16] (3)



B(B) — K%w) < 16 x 107° [16] (4)

These results derive from using a hadronic B tag on 535 million BB events in the Belle
experiment.

Another theoretically clean FCNC decay, K — wvv, is targeted by two proposed experi-
ments: K°T'O for K — 7°vv [17] and NA62 for K+ — 7w [18]. The Feynman diagrams
for K — mvv are nearly identical to those for B — Kvv, but, with a branching fraction
on the order of 1071%, this mode presents experimental challenges. Since the physics of the
two modes are nearly the same, the search for B — Kvv provides a promising additional
avenue for exploring FCNCs in the SM by using existing data sets while the new K — mvv

experiments are still in the process of being approved and constructed.



2 Theory

A B meson decay involves interactions at two energy scales: the short distance, perturba-
tive, electroweak interaction of the decaying quark, and the long-distance, non-pertubative,
quantum chromodynamics (QCD) interactions. Different theoretical approaches are required
for each energy scale. The Operator Product Expansion (OPE) conveniently separates the
effects at each scale [19, 20].

An effective Hamiltonian can be constructed using the OPE. For B — Kvv, the basic

form of Hamiltonian under the SM is:

Heff = OEMOL Wlth OL = <§L’}/#bL)(17’7“<1 — ’75)1/) [21] (5)

A more detailed version of the effective Hamiltonian is:

G
Hepp = =LV Vi Clsy™ (1 — 42) b0, (1 — 4°)w + hee. [22] (6)
27?\/5

G is the Fermi constant, « is the fine structure constant,V;, V% are the CKM matrix elements
for the quark transitions in the decay, and CYj is the short-distance Wilson coefficient related
to the weak interaction [19]. The remaining terms can be seen as a four-fermion operator,
which is the local operator representing long-distance, non-perturbative, QCD effects.

CY, is also the Wilson coefficient for K — mvv decays, which shows the close relation
between B — Kvv and K — 7vw. (Y, is sometimes labelled C7 or X (when multiplied
by a constant). It is an electroweak V-A (Vector minus Axial vector) Wilson coefficient,
with a value dependent upon the top quark mass [23]. Some theoretical calculations for the
value of CY,, are —6.38 £0.06 [15], —6.6 [14], and —7 [24]. The theoretical uncertainty in the
value of Cf, is small because of the absence of long-distance effects and the fact that QCD

corrections are quite small [25]. The main uncertainty comes from uncertainty in the value



of the top quark mass.

From the Hamiltonian, the di-neutrino invariant-mass decay spectrum can be derived as:

dI'  Gho’*mby

T = T VAP IOl A (e, 5) £ 5) (2] ™

A=1+7%+5% =25 —2rg(1+38), s=m2,/my, TK=my/mp (8)

mp is the mass of the B meson, mg is the mass of the kaon, A represents the kinematic
terms, and f, is the form factor, which represents long-distance QCD effects.
A rough calculation of the branching fraction using Equation 7 gives a result within an

order of magnitude of the more precise values given by Equations 1 and 2:

Gr=12x10"a="73x10" mp =53 GeV,Vy, = 1, V;, = 0.04,C%, = —6

Ip=1/1.6 x107"s, h = 6.6 x 107?°GeV s. Assume A ~ O(1), f; ~ O(1).

_ -5, —3\2 .k 25 . 2 —12
p - Doomos o (12X107°-7.3x 10792587 0.042 36 16 x102GeVs
I'p 2875 6.6 x 10-25GeV s

As seen in Equations 1 and 2, the ABSW and BHI models have slightly different predic-
tions for the B — Kvv branching fraction, due largely to the fact that they use different
form factor models. The form factors are calculated with light-cone sum rules, but the two
models use the results of different papers; ABSW uses [26], while BHI uses [27]. The BHI
model is older, is referenced by the B — Kvv literature, and provides a basis of compari-
son with previous B — Kvv results, while the ABSW model was not published until 2009
and uses an improved form factor model that includes one-loop radiative corrections to the
expansion of the OPE. The ABSW and BHI models differ in the distribution of the differ-

ential branching fraction across values of m?, — the ABSW model predicts more events with



high values of m?2,, as shown in Figure 2. (The phase-space model included on the plot is
described in Section 5.1.2. It is not fully realistic but its simplicity provides a baseline for

comparison with the other models.)

| m2vV for Different Models |

Signal Models

—— Phase space
|« BHI(2001)
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Figure 2: The di-neutrino invariant mass squared for the three signal models. For the two
theoretical models, the theoretical uncertainties are shown by open markers of the matching
shape. The theoretical uncertainties are due to uncertainties in the form factor models. Note
that low values of the di-neutrino invariant mass squared correspond to high values of the
signal kaon momentum, and vice-versa. See Section 5.1.2 for a description of the phase-space
model.

B — Kuvv has several theoretical features that make it an important target of study. With
only one Wilson coefficient and operator, theoretical uncertainties are limited to the value of
a single Wilson coefficient and form factor, rather than multiple interfering coefficients and
operators seen in other decays. In addition, the transition to neutrinos is a very clean process
lacking long-distance effects. Third, if the branching fraction could actually be measured, the

low theoretical uncertainties could allow a calculation of the important V;; CKM parameter.

Alternatively, the branching fraction could be used to provide an experimental value of Cf,



which is shared by the K — mvv decay, and then significant CKM parameters could be
calculated if the K — mvv branching fraction could be measured. Finally, there are only
two specific ways for new physics to change the B — Kvv decay: either a change in the
value of C};, or the addition of a new Wilson coefficient and operator [21], as explained below.

The loops in the decay diagrams for B — Kvv (Figure 1) provide opportunities for the
appearance of new physics, if new particles were to appear in the loops. One new physics
model that could increase the B — Kwvv branching fraction is the MSSM [15, 24]. In
this model several new supersymmetric particles can contribute to the decay: the charged
Higgs(H*), the chargino (¥F), the neutralino (¥°), the gluino (§), and squarks (4, ¢, , d, 3, ).
Figures 3 and 4 show Feynman diagrams with the new particles. With reference to Equation

5, the effective Hamiltonian becomes:

Heff = CLOp 4+ CrOpg with O = (ER’YMbR)(D’YM(l - 75)’/) (9)

The new particles contribute to the new Wilson coefficients C}, and Chk:

CL=CM 4+ I+ CF +cf + o (10)

Crp=Ch+C% +CY +CH* (11)

Among these contributions, only those from the chargino are likely to be comparable
to the SM. The rest are constrained by experimental limits from b — sy and By, — putpu~

decays. The modified B — Kvv branching fraction is:
3.5x107° < B(Bf — KTvw) < 58 x 107°° [15] (12)

This branching fraction range is based upon the MSSM parameter values shown in Table 1,

with parameter set I giving the higher value and parameter set II the lower.
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u,c,t

Figure 3: New-physics Feynman diagram for b — s decay that has charged Higgs bosons in
the box.

—_ ' — ~ ~0
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Figure 4: Feynman diagrams for b — s decay that have new physics particles in the loops.
The emission of the Z boson from the loop is omitted for simplicity. The left diagram shows
a charged Higgs, the middle shows a chargino and squarks, and the right shows a gluino or
neutralino and squarks.

Another new physics possibility is scalar WIMP dark matter [28, 29]. Like neutrinos,
stable DM particles would leave no tracks in a detector, so the decay of a B to a kaon and DM

could give a signature similar to B — Kvv. Thus, a branching fraction measurement for B —

Kvv could include the DM decays. However, there could be significant differences between

Table 1: MSSM parameters used to calculate the branching fraction range in Equation 12.
tanf is the ratio of the vacuum expectation values of the two neutral Higgs fields. p is the
supersymmetry-conserving higgsino mass parameter. A5 is the Wino mass. mg and my; are
the masses of the left- and right-handed up-type squarks, respectively. A; is the trilinear
coupling of the stop squark. (0%F)s, is the helicity- and flavor-changing mass insertion.
Dimension-full quantities are in GeV.

Parameter Set | tanf8 | p | My | mg | mg | A (6FLY,,
I 5 500 | 800 | 500 | 400 | -800 0.75
II 5 120 | 700 | 400 | 800 | -700 -0.5




11

the two decay processes, such as differences in the kaon angular or momentum distribution,
that could greatly diminish any contribution from DM decays to a search sensitive only to
specific features of B — Kvv decays.

Figure 5 shows Feynman diagrams for the DM decay. The matrix element for this decay
is shown in Equation 13. With a sufficiently high value of the DM Wilson coefficient Cp,y,
based upon the parameter A\/m3, the DM decay could could increase the branching fraction
by up to two orders of magnitude. However, Figure 6 shows how branching fraction upper
limits already constrain this decay and the allowed mass of the DM particles. These con-
straints are calculated by multiplying the upper limit by a ratio involving the phase-space
integral shown in Equation 14. This ratio is F'(mg) calculated with no experimental mini-
mum kaon momentum over F(mg) calculated with a minimum kaon momentum determined
by the experiment.

A 3GEVE Vi mi

%) with Cpy = — 13
e folq®) wi DM me 64m2  m3, (13)

2 2
mp — Mk

M kss = Cpump
my is the b quark mass, and m, is the s quark mass, fy is the form factor, A is the scalar
DM coupling constant, my, is the Higgs boson mass, m, is the top quark mass, and my is
the W boson mass.

-1

F(ms) = / m Fo(8)21(3,ms)d3 [ / m fo(8)21(3,0)d3 (14)

with § = (pg — px)? and

1 1
I(8,mg) = [§2 — 2§(m?3 + m%) + (m?3 — m%)ﬂ 2 [1 — 4m§/§} 2

myg is the mass of the scalar DM particle, pp is the lab-frame momentum of the B, and py is

the lab-frame momentum of the kaon. §,,;, is determined by mg, while §,,,,, can be set based
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upon the lowest kinematically allowed kaon momentum or the minimum kaon momentum
to which a particular experiment is sensitive. Note that F(0) = 1 and F(mg) = 1 for

mg > %(mB —MmK).

Figure 5: Feynman diagram for b — s decay that produces two scalar DM particles.
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Figure 6: Branching fraction of B — K + missing energy vs. the mass of a scalar DM
particle described by [28]. The model’s allowed region is between curves A and B, which are
determined by calculations of cosmic DM abundance. Curve I is the limit set by an early
BABAR B} — K*vv result [30] with 82 fb~!, an upper limit of 7.0 x 107°, and a cutoff of
px > 1.5 GeV/c. Curve II is an estimated limit projected for 250 fb~! of BABAR data, with
an upper limit of 2.1 x 107° and a cutoff of px > 1.0 GeV /c. Curve III is the limit set by a
CLEO result [31], with an upper limit of 24 x 1075 and a cutoff of px > 0.7 GeV /c.
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Figure 7 shows the effect on the B — Kvv differential branching fraction of a generic
scalar DM model with mg = 1.1 GeV/c? [15]. The plot shows that the scalar contribution to
the differential branching fraction only turns on when there is sufficient energy to produce

the scalar particles; that is, at low kaon momentum.

o —
< W
T T T

w
T

10° x dBR(B*>K* Ei,)/dsy

SB

Figure 7: Differential branching fraction for B — K + missing energy [15]. sp is the
invariant mass squared of the undetected particles, either neutrinos or scalar DM, divided by
the square of the B mass. The thick gray curve is the theoretical prediction for B} — Ktuvp,
and the grey shading around that curve indicates the theoretical uncertainty. The dotted
red curve is Bt — K155, and the solid red curve is the sum of the two.

Some other new physics models that could also affect this decay include the following.
Unparticle models [32] and WIMP-less dark matter [33] would produce invisible unparticles
or DM that could increase the apparent branching fraction of B — Kvv. The current
experimental upper limit of 1.4 x 107° from Belle already constrains these models, and
stronger limits will further constrain their parameters. Models with a single universal extra
dimension [34] change the Wilson coefficient and are currently constrained by the 1.4 x 1075
Belle upper limit to exclude 1/R < 100 GeV, where R is the radius of the compactified extra
dimension.

Other decays similar to B — Kvv also can place limits on new physics but lack some
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of the advantages of B — Kvv. For example, B — K/{T{~ is very similar to B — Kuvp,
but it has three Wilson coefficients combined in its decay rate, which makes it difficult
experimentally to determine their individual values. Also, there are irreducible charmonium-
resonance backgrounds that overwhelm significant parts of the decay’s ¢? distribution. On
the other hand, the charged leptons from the decay leave clear tracks in a detector, which
make it possible to fully reconstruct the event. In fact, the decay has been observed even
though its branching fraction is ten times less than that of B — Kvv, and the measurement

is in agreement with the SM prediction:

B(B — KT¢7) = (0.394700% £ 0.020) x 107¢ [35] (15)

In comparison, B — Kvv is very difficult to measure experimentally but has the advan-
tage of theoretical cleanness and simplicity, with only one Wilson coefficient contributing to
the decay rate and no resonances obscuring the main decay. New physics signals might show

up more clearly in B — Kvv than in others like B — K{1(~.
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3 PEP-II and the BABAR Detector

The PEP-II collider and the BABAR detector are designed for the study of CP violation
and rare decay processes in the B meson system and for measuring CKM parameters. CP
violation is the breaking of a usual physical symmetry. Physical laws are invariant under
certain transformations, like rotation. Charge conjugation (C) is the replacement of a particle
with its antiparticle (or vice-versa), and the parity transformation (P) is the replacement of
a right-handed particle with a left-handed one (or vice-versa). Together they are a symmetry
of most particle interactions; however, certain interactions violate CP. Studying CP violation
can shed light on the mystery of large CP violation and baryon number violation in the early
universe that was necessary to produce the predominance of matter over antimatter in the

universe today.

3.1 PEP-II

PEP-II is an asymmetric e*e™ collider, which collides 9.0 GeV electrons and 3.1 GeV
positrons from its high-energy and low-energy storage rings. These rings are fed by the
SLAC Linac. The beams are precisely tuned to produce a center-of-mass energy equal to
the mass of the 7(4S) particle (10.58 GeV/c?), which has a branching fraction to B meson
pairs of nearly 100% [12]. The asymmetric beam energies cause the 7°(4S) system to be
Lorentz-boosted by a factor 3y = 0.56, which is important for studying time-dependent C'P
violation, but much less so for analyses of rare decays.

The Lorentz boost allows measurement of the time difference in the decays to certain
final states of the two B’s produced by the 7'(4S). Since the center-of-mass system (CMS)
is moving in the lab frame, this time difference creates a separation between the decay
vertices along the longitudinal axis of the detector, and measurement of this separation

allows calculation of an important CKM parameter and also indicates the amount of CP
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violation.

Another important feature of PEP-II is the high number of collisions (also called lumi-
nosity) it has been able to produce. This high luminosity has been enabled by the high
currents produced by the linear accelerator and the separate storage rings for the electron

25~1 four times its

and positron beams. PEP-II achieved a peak luminosity of 1.2 x 103*cm~
design luminosity, and a total luminosity of 557 fb~! over the full lifetime of the experiment.
Table 2 shows the luminosity and number of BB pairs used for this analysis. In the search

for a very rare decay like B — Kvw, this high luminosity has been essential.

3.2 The BABAR detector

BABAR [13] has many design features important to this B — Kvv analysis: hermeticity,
ability to tolerate high beam luminosity, and high accuracy of particle-energy reconstruction
and kaon identification. It is composed of five sub-detectors: the Silicon Vertex Tracker
(SVT), the Drift Chamber (DCH), the Detector of Internally Reflected Cherenkov Light
(DIRC), the Electromagnetic Calorimeter (EMC), and the Instrumented Flux Return (IFR),

all shown in Figures 8 and 9.
3.2.1 Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) is a five-layer, double-sided silicon detector. It provides
vertexing information and tracking and pattern recognition. The geometry of the layers is
shown in Figure 10, with a design intended to maximize the angular acceptance. Figure 11
shows a side view of the SVT.

The inner three layers have a hit resolution in z of about 15 pm, while the outer layers
have a resolution of 40 pm, which compares favorably to the ~ 250 yum mean Az separation

between the decay vertices of the two B mesons produced in an event.



17

I
0 Scale

‘ BABAR Coordinate System

|
cutaway|section X
SUPERCONDUCTING
colL
Il
Il

EMC

IFR BARREL

DCH

SVT

IFR CYLINDRICAL RPCs
CORNER PLATES

isih
EARTH QUAKE i
TIE-DOWN \

—— GAP FILLER
PLATES

3500

EARTH QUAKE
ISOLATOR

FLOOR

1
]

Figure 8: End view of the BABAR detector.

3.2.2 Drift Chamber

The drift chamber (DCH) measures particle momentum and energy loss (dE/dz). Fig-
ure 12 shows how dFE/dz can distinguish particle types. The DCH has forty layers and is
filled with a combination of helium and isobutane gas. The inert helium, being the sec-
ond lightest element, minimizes energy loss in the DCH so even lower-energy particles can
get through and reach the outer detectors. The basic unit of the DCH is a hexagonal cell
composed of a central sense wire surrounded by six ground wires, and there are 7104 such
cells in total. About half of the cells are oriented at angles to the z-axis in order to provide
longitudinal tracking information. Figure 13 shows the inside of the DCH.

The track-finding efficiency of the DCH, averaged over momentum and angle, is about

96%, relative to the tracks found by the SVT. The highly effective tracking of particles
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Figure 10: Layout of layers in the SVT.

provided by the SVT and DCH is essential to this analysis, which requires the reconstruction

of B mesons from tracks in the events.



19

Carbon-fiber endpiece N, 2 i | \
) ¥ | L |

Kevlaricarbon-fiber support rib Si detectors T

Cooling ring
Upilex fanouts
Hybrid/readout ICs

Carbor-fiber
support cone
Beam pipe 30° " i -7 350mr

i P i et o i
ﬁ-w“““ 30cm Pt 40 cm L
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Figure 12: Energy loss in the DCH vs. track momentum.

3.2.3 Detector of Internally Reflected Cherenkov Light

The detector of internally reflected Cherenkov light (DIRC) measures the Cherenkov an-

gle, track angle, and momentum of charged particles to determine their mass. Total internal
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Figure 13: View of the DCH during assembly.

reflection in the quartz crystals of the detector sends the Cherenkov rings to photo-multiplier
tubes, as shown in Figure 14. The Cherenkov angle 6., defined in Equation 16, is combined
with the track momentum and angle to help identify the particle. These measurements
are particularly effective at separating charged kaons from pions at lab momenta above 0.7
GeV/e, as illustrated in Figure 15. This momentum range is where kaons from B — Kvv

are expected to be found, so the DIRC makes an important contribution to this analysis.

cos(0c) = ﬁ_ln (16)

where 3 = v/c of the particle and n = 1.473, the index of refraction of quartz.
3.2.4 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) measures the energy of particles. Figure 16

shows the energy resolution of the EMC. Its channels are sensitive to energies down to
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Figure 14: Geometry of the DIRC.

1 MeV, and 96% of photons above 20 MeV are detected. This combination of low noise and
high sensitivity is crucial to the search for B — Kvv since the key characteristic of this
decay is the absence of any remaining energy in the detector after all expected particles have
been reconstructed.

The EMC is composed of 6580 thallium-doped cesium iodide crystals (see Figure 17)
connected to photodiodes, and the scintillation showers in the crystals help identify particles.
Shower shape and energy deposition in the EMC distinguish photons, electrons, and hadrons,

and allow the reconstruction of neutral pions.
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Figure 16: EMC energy resolution vs. photon energy.
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Figure 17: Side view of the crystal geometry in the electromagnetic calorimeter.

3.2.5 Instrumented Flux Return

The instrumented flux return (IFR), shown in Figure 18, is designed to identify muons
and neutral hadrons. It contains resistive plate chambers (RPCs) and limited streamer tubes
(LSTs) interleaved with steel layers to detect the passage of muons and the showers created
by hadron collisions in the steel. The outputs from the IFR, along with the other detectors,
are used by muon selectors to recognize muon tracks. The performance of two BABAR muon

selectors in shown in Figure 19.
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right curve (red stars) is for the decision tree muon selector, and the left curve (blue stars)
is for the older neural network selector. Their performance for muon identification and pion
rejection is assessed using a control sample of J/W events.
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4 Analysis Overview

This analysis uses a blind analysis protocol to ensure that the final results are unbiased.
This protocol requires that real data events that could include the desired signal be excluded
from the analysis until after all analysis procedures have been developed and validated. The
major steps of this analysis are as follows. This sequence is followed for both the B}" — K*vw

and BY — K2vv modes.

1. Two types of simulated events are produced: signal events and background events.

2. From these sets, those events are selected whose reconstruction makes them appear

signal-like.

3. Decision trees are trained on these selected sets to select signal events and reject

background.

4. A signal region is defined based on the decision tree output, and for this signal region,

a background prediction with statistical and systematic uncertainties is made.

5. The decision trees are validated by verifying that their performance on real data and
simulated events is the same, with any small discrepancies accounted for as systematic

uncertainties.

6. Unblinding of the signal region can now occur since the analysis method has been
finalized and validated. Real data events possibly containing the signal are classified

by the decision trees.

7. The number of data events in the signal region is obtained and compared with the

predicted background, and upper limits are calculated.

The following sections detail these steps.
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5 Event Selection

5.1 Event Samples
5.1.1 BABAR Data Samples

The full BABAR data set of runs 1-6 (release 22d) is used in this analysis. This data set

contains 459 million BB pairs (see Table 2).

Table 2: Number of BB decays and integrated luminosity in the real data sample by run.
These values are for R22dv06.

Run No. BB (millions) On-res [ £ (fb™")

1 224 204
2 67.4 61.1
3 35.6 32.3
4 110.4 100.3
5 147.2 133.3
6 76.0 70.3
Total 459.0£5.1 417.7

5.1.2 Simulated Data Samples

The Monte Carlo (MC) simulated event samples (Tables 3-4) used here are from the
SP8 production. The MC is generated by the EvtGen software package [36], and then
it is processed through the GEANT4 detector simulation [37]. Six distinct classes of MC

simulated events are relevant to this analysis:

e Bf — K'uv signal events, which are generated with a phase-space model for the
charged kaon momentum. This simple model imposes no structure upon the distri-
bution of daughter particle momenta other than that required by basic conservation

laws.
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Table 3: Number of MC simulated signal events and the ratio of the number of BB decays
in data to the number simulated.

Mode (SP) B(/10=%)  Events  Data/MC (/1073)

KTuw(2227) 3.8 [14] 7845000 0.22
K%p(3152) 1.9 [14] 3943000 0.22
K+.J/0(989) 120 13431000 0.41

e BY — K2uvv signal events, which are also generated with a phase-space model for the

neutral kaon momentum. This signal MC includes both K3 — 77~ and K3 — 7%7°.

e Bf — K*TJ/U,J/¥ — [*]~ signal events, used to validate the signal efficiency and

derive the systematic uncertainty for the signal efficiency.

e Generic continuum events (Table 4). The samples of generic continuum events are

scaled to the appropriate cross sections.

e Generic BB events (Table 4), which are used to study combinatorial backgrounds. The

generic B samples are scaled run-by-run to the B-counting statistics.

e Double-tag events, where both B’s decay semileptonically.

From the above data samples two more sub-samples are derived: a wrong-tag sample for
classifier validation, and an a; signal sample used for background validation. See Section 7

for details.

5.2 Semileptonic Tag Skim

The target of this analysis is a B decaying to a kaon with missing energy. This decay
provides no strong signature, since kaons are produced by many types of decays. For the

missing energy to be identifiable, both B’s coming from the 7°(4S) need to be reconstructed.
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Table 4: Number of MC simulated generic events and the ratio of the number of BB decays
(or, for continuum events, scaled cross-section) in data to the number simulated.

Mode (SP) Nominal Cross-sec. (nb) Events Data/MC
Generic BB~ (1235) 0.55 702714000 0.327
Generic BYB° (1237) 0.55 692626000  0.332
Continuum c¢ (1005) 1.30 1088218000 0.499
Continuum uds (998) 2.09 903912000 0.966
Continuum 77 (3429) 0.919 382614000 1.00
Double tag (3159) n/a 39017000 n/a

A typical analysis strategy, followed by this analysis, is to reconstruct one B in a common,
well-known decay mode, and then search through the remainder of the event for the signal.
This first B is called the tag B, and the recoiling tracks remaining in the event after its
reconstruction are checked to see whether they meet the requirements for the signal mode.
This analysis utilizes the semileptonic tag [38, 39], defined below. In all of the following, the
term “signal” should be considered synonymous with “recoiling”; that is, the signal B is the
B that recoils from the tag B.

The semileptonic tag B is reconstructed in three steps. First, a subset of events meeting
loose criteria for semileptonic decay is created. Next, this subset, which is called the BToD1nu
skim, is subjected to two steps of refinement, described in Sections 5.3 and 6, that serve to
select the events with the best reconstructed tags while also applying signal criteria.

The first step, the skim, is intended to select events with the following semileptonic

decays:
e B— Dlv
e B— D*lv

The skim includes charged and neutral B’s decaying to neutral and charged D’s, respectively.

The lepton can be an electron or a muon. The following shows the D-decay modes that are
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reconstructed and how the events are selected. The listed pion momenta are in the center-

of-mass frame of the 7°(4S).

D*O N DOTI'O

0.135 < mass(D*®) — mass(D°) < 0.175 GeV/c?

7® momentum < 450 MeV/c
o D't — DOxT

0.135 < mass(D*+) — mass(D%) < 0.175 GeV/c?

77 momentum < 450 MeV/c
o Dt — D70

0.140 < mass(D*") — mass(D™) < 0.150 GeV/c?

7® momentum < 450 MeV/c
o D% — Ktm~

reconstructed from K+ and 7~ with mass constraint of +60 MeV/c? of the D° mass
o D° — Ktr—qY

reconstructed from KT, 7=, 7% with mass constraint of £100 MeV/c? of the D° mass
e DV Ktnmhm™

reconstructed from KT, 7=, 77, 7~ with mass constraint of +60MeV/c? of the D°

mass

e DV = Kgntn—, Kg — whm~

reconstructed from Kg, 7, 7+ with mass constraint of 60 MeV/c? of the D° mass
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e DT - Ktntm™
reconstructed from K+, 7, 7~ with mass constraint of 60 MeV/c? of the D™ mass
e D" — Kgnt, Kg = nhm™

reconstructed from Kg, 7, 7+ with mass constraint of #60 MeV/c? of the D™ mass

To be selected by the skim, an event must have a lepton with a CMS momentum greater

than 0.8 GeV/c.

5.3 Tag Refinement and Signal Reconstruction

The skimmed events are processed by a special-purpose software package to create ntuples
where each event has a tag and a signal B. The package performs the following steps to
produce the ntuples.

The first step is to explicitly reconstruct the D* — D~ decays, which the skim fully
includes but does not reconstruct. The photons from the decay have the following require-

ments:

o LAT = [0.0,0.8] (the LAT is the lateral moment of the photon shower). See Figure

160 in Appendix A.6 for a plot of the LAT distribution of a photon control sample.
e Energy in lab frame > 0.1 GeV/c?

D* candidates are then constructed from the photons and D’s from the skim with the

following requirements:
e 0M =10.12,0.17) GeV/c?

e D* mass within 0.5 GeV/c? of nominal value
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The B candidates are then reconstructed from the D*’s, the remaining D’s from the skim,
and the leptons by using TreeFitter with the requirement that the vertex probability of
the x? per degree of freedom be greater than or equal to 0.001.

The next step is to impose various selection requirements:
e Number of charged tracks < 15
e Total charge of the event = [—2, 2]

e B — Dlv tag candidates must satisfy cosfpy = [—5.0,1.5], as defined in Equation 17.

2 2
2L?beam : EDl — M —Mpy

2 ‘le | "V Egeam - mQB

where Fjeqm is the expected beam energy, Ep,; is the combined DI energy, mp is the

cosfpy = (17)

B mass, mp,; is the combined DI mass, and pp, is the combined DI momentum (all
are in the CMS).
e B — D*lv tag candidates have two requirements, calculated in the CMS:
For 6 between the two D* daughters (the D and a pion or photon), 6 < 2
For 6 between the D* and the lepton, cosf < 0

After these steps, there may still be multiple tag candidates. For each event, the candidate

chosen as the tag is the one with highest vertex probability.
5.3.1 Assignment of Signal Mode

Next the signal candidate is constructed, and it is assigned a mode based upon the first
match in the sequence below. Signal candidates from signal MC are also put through this
sequence, with the result that some of them are reconstructed in the wrong mode. The

details of the other modes are explained below in the interests of completeness, but most do
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not play any further role in this analysis because they are cut away, as explained in Section
5.3.2.

The sequence is:

1. Double-tag event: the signal candidate matches all the criteria for a semileptonic tag

as described previously, with no particles shared by both tags.

2. Signal tracks match a K** — K9mdecay, with a reconstructed K* mass within 0.075
GeV/c? of the canonical K* mass. The K3 is reconstructed from two tracks from the

charged tracks list with a mass range of 0.47267 to 0.52267 GeV/c?.
3. Signal tracks match a K*° — K27° decay, with the same restrictions as item 2 above.

4. B® — K2vv signal mode if the K3 is reconstructed in the K2 — 77~ mode, with
the same restrictions for the K3 as in item 2 above, and the additional requirements
that the x? per degree of freedom of the kinematic fit be at least 0.001 and the flight

significance be at least 3o.

5. Signal candidate has three tracks on the charged tracks list, and these tracks are

reconstructed as an af candidate with mass between 0.6 and 2.0 GeV/c?.

6. Signal candidate has two tracks on the charged tracks list, and these tracks match a

K* — K—r* decay.

7. If only one signal track is on the charged tracks list, then the following are checked in

order until the first match is found:
(a) Track matches a K** — K*7% decay.
(b) Track matches a K* — K3nt, K2 — 7°7° decay.

(c) Track matches a p™ — 77 7% decay.
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(d) BT — K*vv signal mode if track is on the high-purity K *list.
8. A signal candidate reaching this step gets labeled with a mode not used in this analysis.

The above requirements do not restrict extra charged tracks or neutrals not attached to
either the signal or tag. The resulting ntuples from this process contain both K and K9
signal events and the other events listed above. The cuts described in Section 5.3.2 select
only those events reconstructed in the desired signal mode. Table 5 shows the breakdown of
the different modes that are reconstructed. Though some signal is lost by only selecting the
correctly reconstructed mode, such selection is essential. Adding even one of the incorrectly
reconstructed modes would increase the number of background events by at least four times
while only marginally increasing the signal. For the Kg mode, only correctly reconstructed
K events can be used because the Kg mass is an important classification variable (see
Section 6.1), and incorrectly reconstructed events have a mass for the first daughter of the
recoiling B which matches its reconstructed identity, not an appropriate Kg mass.

Table 5: Percentages of skimmed signal MC that is reconstructed in the modes described

in Section 5.3.1, for both K+ and Kg signal MC. The Reconstruction Mode refers to the
reconstructed identity of the first daughter of the recoiling B.

Reconstruction Mode | % of K Signal MC | % of Kg Signal MC
Kt 45.0 0.7
Kg 0.6 32.7
ot 18.2 15.5
o 1.3 8.9
DO 9.0 7.5
K*t 4.4 9.2
al 6.5 5.1
Dt 2.0 7.8
D*t 0.06 4.6
K*0 0.8 3.3

v 0.1 3.7
s 11 0.4
et 0.5 0.6
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5.3.2 Preselection Requirements for Each Signal Mode

The next step is to apply cuts to the ntuples to prepare them for use with the event-
selection decision trees described in Section 6.1. Two sets are ntuples are generated: one for
the K™ mode, and one for the K2 mode. These cuts select the desired signal mode with
high efficiency and loosely trim the ntuples of unnecessary background. They are applied to
all ntuples, including data, signal MC, and background MC.

The cuts for the K ntuples are:

e The signal B must have only one daughter, which must be a charged kaon.
e The signal B and tag lepton must have opposite charges.

e No more than two extra tracks are allowed. Extra tracks are those from the charged

tracks list that are left over after the signal and tag are fully reconstructed.
The cuts for the K ntuples are:

e The signal B must have only one daughter, which must be a K2.

e No more than one extra track is allowed.

The effect of these cuts on efficiency is shown in Tables 6 and 7.
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Table 6: Efficiency and signal significance for K signal MC and all generic background MC
at each step of the analysis process. The steps are skimming, the reconstruction of the signal
mode and refinement of the tag, the preliminary cuts for ntuple production, and a cut on
the BDT classifier output. The efficiencies are the total efficiencies, including all previous
steps. The signal significance measure is Equation 18. See Section 6.1 for explanation of the

BDT cut.

Step K+ Efficiency | KT Significance | K Background Efficiency
BToDlInu Skim 0.0694£0.0001 0.01 (9.28£0.00) - 102
Signal/Tag Reconstruction | 0.0148+0.0000 0.007 (5.9240.00) - 10~
Preliminary Cuts 0.006724+0.00003 0.05 (2.1140.01) - 107°
Primary BDT Cut 0.00175=0.00001 0.7 (7£2)- 107

Table 7: Efficiency and signal significance for Ko signal MC and all generic background MC
at each step of the analysis process. The steps are skimming, the reconstruction of the signal
mode and refinement of the tag, the preliminary cuts for ntuple production, and a cut on
the BDT classifier output. The efficiencies are the total efficiencies, including all previous
steps. The signal significance measure is Equation 18. See Section 6.1 for explanation of the

BDT cut.

Step Kg Efficiency Kg Significance Kg Background Efficiency
BToDInu Skim 0.0578+0.0001 0.003 (9.33+0.00) - 10~2
Signal/Tag Reconstruction | 0.0117+0.0001 0.003 (5.9640.00) - 10—
Preliminary Cuts 0.0033340.00003 0.01 (4.2140.01) - 107°
BDT Cut 0.00060£0.00001 0.3 (1.6+0.8) - 1079
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6 Decision Trees for Signal/Background Separation

6.1 Bagger Decision Trees

A StatPatternRecognition (SPR) [40] Bagger Decision Tree (BDT) [41] is used to select
likely signal events and reject background ones. To build, optimize, and use a decision tree,

the following steps are necessary:

1. Create a training set of events along with a disjoint set of events for testing.
2. Choose a list of classification variables and SPR tree parameters.

3. Build a tree using the training set and the choices from Step 2.

4. Use the testing set to evaluate tree performance by some criterion.

5. Go back to Step 2 and repeat process with new choices until performance is optimal.

The training and testing sets are composed of MC events: signal, B°B°, B*B~, c¢, uds,
77, and double-tag background, which are events in which both B’s undergo semileptonic
decay. The total set of events is divided in half randomly to yield the training and testing
sets, with a 50% chance that any event will be put into the training set. This random
division avoids any bias that a deterministic division might introduce. If the above process
is performed with only one tree, any small changes in tree performance caused by different
choices of tree parameters can be overwhelmed by stochastic variations related to the random
division of events into the training and testing sets. In other words, a new random division
into training and testing sets can change performance more than a change in tree parameters.

To reduce the effect of this variation, twenty training and testing sets are generated. The
random division of the training and testing sets is performed twenty times, so each of the

twenty trees has its own training set and completely disjoint testing set. The performance
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results from the twenty trees are averaged (as explained below) to give a more accurate
measure of the performance due to the choice of classification variables and SPR parameters
than would be provided by only one tree. Many cycles of tree building and evaluation are the
basis for the choices of classification variables and SPR parameters described in the following
paragraphs.

The choice of the number twenty for the size of the set of trees is based upon the ob-
servation that fewer than twenty trees still show significant stochastic variation, while more
than twenty creates substantial overhead in disk usage and processing time with little further
reduction in stochastic variation.

The use of twenty trees also largely eliminates the problem of bias in choosing tree
parameters with a particular testing set. If only one tree were used, the practice of breaking
the event set into three parts might be necessary: a training set, a testing set to find the
optimum parameters, and a validation set to assess performance without any bias. The
danger with one tree is that, because it is optimized for the testing set, the performance of
the testing set will not be representative of the tree’s performance with an independent set
like data. However, in this analysis, with twenty trees using the same tree parameters, it is
very unlikely that the twenty trees are each optimized for their testing sets, so the average
performance of the testing sets is likely to be a valid measure of the tree performance. In
addition, validation is performed to show that tree performance with MC matches that with
data (see Section 7). Furthermore, due to the relatively small size of the event set, it is
advantageous to split it only twice, into training and testing sets, rather than three ways
into training, testing, and validation sets.

Three kinds of trees are trained (with twenty of each kind as explained above): a primary
K*vv signal tree, a subset K*vv signal tree that is less effective but is used for signal

efficiency validation, and a K2vv signal tree. Each of the three types has its own list of
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classification variables, as shown in Tables 9 to 11, with Table 8 showing the definitions of
the variables. The next page gives a description of the variables used. Signal and background
histograms and data/MC comparisons for each variable are shown in the appendix. The
primary KT tree uses 26 classification variables, the subset tree uses 15, and the K2 tree
uses 38. Tables 12 and 13 show rankings of the classification power of the variables for the
primary K and K2 trees.

In addition to the classification variable list, there are three SPR parameters that affect
a tree’s performance: the choice of the figure of merit for tree building, the minimum leaf
size in the tree, and the number of training cycles. SPR decision trees offer a number of
different figures of merit that can optimize tree performance for particular applications. The
figure of merit called the Gini index, which is —2p(1 — p) where p is the fraction of correctly
classified events, works very well for this analysis and is used by all the trees. The best leaf
size for the two K™ trees is 50, while for the K§ tree it is 35. For all three kinds of trees,
the optimal number of cycles is 150.

The process of optimizing the SPR tree parameters requires a performance criterion. An
SPR tree classifies events by computing a classifier output value from 0 to 1 for each input
event, with values near 0 indicating background events and values near 1 indicating signal
events. Figure 20 shows histograms of the classifier output for MC signal and background
events in the testing set. Counting the classified events from the testing set that exceed some
cut value in the classifier output gives a yield of signal and background events. Since there
are twenty trees in a set, a single classifier output cut value will not work. Instead, a desired
total signal efficiency is chosen. Then a cut value that yields this total signal efficiency is
computed for each tree by using the testing events. Applying this cut gives a background
yield for that tree, and the background yields for the twenty trees can be averaged to give a

measure of the performance for that set of trees.
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Description of classifier variables for both trees

signal kaon lab momentum;
cosine of the polar angle of (i) total missing CMS momentum and (ii) signal X CMS momentum;

cosine of the opening angle between the signal K candidate and (i) the event thrust vector and (ii) the
tag DI thrust vector;

missing energy and momentum in the lab and CMS frame;

tag B and D masses;

tag D and lepton CMS momenta;

tag D decay mode;

x?2 value of tag B vertex fit;

cosfpy (Equation 17)

total lab energy;

total energy of all non-tag and non-signal charged and neutral candidates;
number of (i) 7%, (ii) Kz, and (iii) all non-tag neutral candidates;
number of tracks not used in signal or tag reconstruction;
normalized second Fox-Wolfram moment;

minimum mass constructed from any three tracks.

Two additional variables are used only for the K+ BDT:

signal kaon CMS momentum;

number of K ’s identified in the muon system.

Several additional variables are used only for the Kg BDT:

signal K2 mass, CMS energy;
polar angle of missing CMS momentum using just tag B and signal K candidates;
net charge of (i) the event, (ii) tracks matched to a calorimeter energy deposit;

uncertainties in x of the signal K’s point of closest approach to the eTe™ interaction point, in both
3-d and a plane perpendicular to the beamline;

cosfpy calculated by adding a single photon to the DIv candidate such that M (D° ~) — M (DY) is
100 — 150 MeV/c?;

tag B CMS momentum;
tag D number of daughters;
tag lepton lab momentum;

error on the x coordinate of the tag D leading pion daughter’s point of closest approach to the beam
spot;

7'(4S) momentum and polar angle cosine.
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Table 8: Definitions of the classification variables used by the three trees.

CosThMissCM cosine of the polar angle of the missing center-of-mass momentum
d_decaymode decay mode of the tag D
EMiss missing energy in the lab frame
EMissCM missing energy in the center-of-mass frame
etotobs total observed energy in the event (beam energy minus missing energy)
extrapiOs the number of extra 7°’s in the event
e_extra_all total extra energy from neutral clusters and charged tracks lists
NetCharge net charge of the event
NetChargeVisibleE net charge of the event computed using only visible energy
PMiss missing momentum in the lab frame
PMissCM missing momentum in the center-of-mass frame
R2Al second Fox-Wolfram moment of the event divided by the 0"
sigbcosththrust cosine of the polar angle between the signal K and the event thrust vector
sigbcosththrustdl cosine of the polar angle between the signal K and the DI thrust vector
sigbmin3dinvmass

minimum invariant mass that can be constructed from any three tracks in event

sigbn_extraneutrals

number of extra clusters in the EMC

sigbn_extra_emckl

number of extra Kp,’s detected in the EMC

sigbn_extra_ifrkl

number of extra K’s detected in the IFR

sighn_extra_tracks

number of charged tracks that aren’t used for either signal or tag

sigbpmissthetacm polar angle of momentum missing from signal and tag B’s in center-of-mass frame
sigkcosthcm cosine of the polar angle of the signal kaon’s center-of-mass momentum vector
sigkecm center-of-mass energy of the signal kaon
sigkmass reconstructed mass of signal Kg
sigkp3 lab three-momentum of the signal kaon
sigkp3cm

center-of-mass three-momentum of the signal kaon

sigkpocaxy_cxx

XX covariance matrix element using the xy projection for the signal K’s point of
closest approach to the beam spot

sigkpoca_cxx

xx covariance matrix element for signal K’s point of closest approach to beam spot

tagbchi2 x? value of tag B vertex
tagbcosby cosBY of the tag B
like tagbcosby, but whose value has been improved (made larger) by adding the
tagbcosbyphotonadd left-over photon which best improves cosBY and makes m(D° + photon) — m(D°)
lie between 100-150 MeV/c?
tagbmass mass of the tag B
tagbp3cm center-of-mass three-momentum of the tag B
tagdmass mass of the tag D
tagdndaus number of daughters of the tag D
tagdp3cm center-of-mass three-momentum of the tag D
taglp3 lab three-momentum of the tag lepton
taglp3cm center-of-mass three-momentum of the tag lepton
tagpipoca_xerr error on the x coordinate of the tag pion’s point of closest approach to the beam spot
ycosth cosine of the polar angle of the lab momentum of the 7°(4S)
yp3

lab momentum of the 7°(4S)




Table 9: Classification variables for the primary KTvv tree.

CosThMissCM | sigbn_extraneutrals
d_decaymode sighn_extra_emckl
EMiss sighn_extra_ifrkl
EMissCM sighn_extra_tracks
etotobs sigkcosthcm
extrapi0s sigkp3
e_extra_all sigkp3cm
PMiss tagbchi2
PMissCM tagbcosby
R2All tagbmass
sigbcosththrust tagdmass
sighcosththrustdl tagdp3cm
sighmindinvmass taglp3cm
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Table 10: Classification variables for the Kovw tree. Variables shared with the primary

K1vv tree are in bold.

CosThMissCM sigbmin3invmass tagbmass

d_decaymode sigbn_extraneutrals tagbp3cm
EMiss sigbn_extra_emckl tagdmass
EMissCM sigbn_extra_tracks tagdndaus
etotobs sigbpmissthetacm tagdp3cm
extrapiOs sigkcosthcm taglp3
e_extra_all sigkecm taglp3cm
NetCharge sigkmass tagpipoca_xerr
NetChargeVisibleE sigkp3 ycosth
PMiss sigkpocaxy_cxx yp3
PMissCM sigkpoca_cxx
R2All tagbchi2
sigbcosththrust tagbcosby

sigbcosththrustdl | tagbcosbyphotonadd
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Table 11: Classification variables for the subset tree.

d_decaymode sigbn_extra_tracks
etotobs tagbchi2
extrapi0s tagbcosby
e_extra_all tagbmass
R2All tagdmass
sighn_extraneutrals tagdp3cm
sighn_extra_emckl taglp3cm
sigbn_extra_ifrkl

A limitation of the primary K™ tree is that it excludes events with low signal-kaon
momentum, as shown in Figure 92. Such events are of theoretical interest because the partial
branching fraction could be strongly enhanced in the low-kaon-momentum region according
some new physics models [15]. The exclusion of these low-momentum events is the result of
the predominance of background in this momentum region (as seen in Figure 58) and not due
to any explicit cut. To address this issue, a separate low-momentum measurement is made
using the primary K trees but limited to events with sigkp3cm < 1.5 GeV/c. This value
appears to be the approximate limit below which nearly no events appear in the primary
K signal region, which is explained below. Under the ABSW signal model [15] (see Section
6.2.4) 40% of the K signal MC events fall within the low-momentum limit, while 60% have
higher momenta.

With values for the signal and background yields, a signal significance can be computed.
Then the choice of targeted signal efficiency, and resulting background yield, can be optimized

to maximize the signal significance.
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Table 12: Signal/background discrimination effectiveness (as reported by SPR) of classifica-
tion variables for the primary KTvv tree. Delta FOM indicates how much that variable
contributes to the improvement of the figure of merit used by the decision tree to assess
signal/background discrimination. Splits indicates the number of splits made by the tree
on that variable. These values are averaged for the twenty trees used.

Variable Delta FOM | Splits
e_extra_all 400.0 8689
sigkp3cm 310.9 7972
tagdmass 265.9 8016
tagbcosby 216.5 7468
sighmindinvmass 166.0 5541
R2All 164.1 4848
PMissCM 155.5 5541
CosThMissCM 145.7 4152
tagbmass 120.7 4967
sigkp3 120.1 4223
tagbchi2 115.7 4115
taglp3cm 109.4 4269
sigkcosthcm 109.3 5383
EMissCM 106.7 4725
sigbcosththrustdl 102.1 3537
EMiss 95.0 3430
sighcosththrust 86.8 2931
tagdp3cm 86.4 4329
PMiss 82.1 2901
sigbn_extraneutrals 45.5 1538
d_decaymode 38.8 1358
extrapils 31.0 782
etotobs 29.9 1054
sighn_extra_emckl 10.5 377
sigbn_extra_tracks 7.1 350
sighn_extra_ifrkl 2.2 239
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Table 13: Signal/background discrimination effectiveness (as reported by SPR) of classifi-
cation variables for the K2vv tree. Delta FOM indicates how much that variable con-
tributes to the improvement of the figure of merit used by the decision tree to assess sig-
nal/background discrimination. Splits indicates the number of splits made by the tree on
that variable. These values are averaged for the twenty trees used.

Variable Delta FOM | Splits
e_extra_all 316.4 5374
sigkecm 204.1 4741
tagdmass 124.7 2973
PMissCM 112.7 3431
tagbp3cm 110.5 3183
R2Al 99.8 2235
tagbmass 89.7 3099
sigkp3 89.0 2660
EMissCM 86.4 3114
tagbcosby 84.2 2633
tagbchi2 79.6 2143
CosThMissCM 78.2 1632
tagbcosbyphotonadd 67.3 1923
sigbcosththrustdl 66.0 1642
taglp3 57.9 1693
sigbcosththrust 53.0 1400
taglp3cm 52.9 1459
tagdp3cm 49.5 2287
tagpipoca_xerr 49.1 1720
ycosth 47.3 1409
sigkcosthcm 46.6 2671
sigbmin3invmass 46.4 1600
sigkmass 40.3 1307
yp3 38.9 966
etotobs 35.1 988
sigkpoca_cxx 34.2 1302
sigbpmissthetacm 33.3 792
PMiss 31.7 748
d_decaymode 27.9 1237
NetCharge 23.8 462
EMiss 17.8 515
sigbn_extraneutrals 17.3 523
extrapilOs 14.7 330
sigkpocaxy_cxx 12.4 619
sigbn_extra_tracks 7.5 125
tagdndaus 7.4 172
NetChargeVisibleE 6.5 192
sigbn_extra_emckl 4.9 164
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Figure 20: Histograms showing the classifier output for MC signal and background events in
the testing set. The left plot is for the primary K tree. The right plot is for the K tree.
Each plot is from one tree that is representative of its twenty-tree set.
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Figure 21: Histograms showing the classifier output for MC events in the testing set. Back-
ground events are too few to show up on these plots. The left plot is for the primary K tree
and shows only signal MC events at the high end of the classifier output. See Figure 20 with
the log scale to see the background in this region. The histogram is sharply peaked at 1,
indicating that the tree has strong discriminating power. The right plot is for the K9 tree at
the high end of the classifier output. See Figure 20 with the log scale to see the background
in this region. The blunter, lower peak at 1 hints that this tree has less discriminating power
than the primary Kt shown at left. Each plot is from one tree that is representative of its
twenty-tree set.
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Three different measures of signal significance are used in this analysis:

S

vVs+b (18)
N,/2+ Vb 19
0.642;:9—1— Vb (20)

where s is the number of signal events, b is the number of background events, €, is the total
signal efficiency (the number of signal events found divided by the total number of signal
events in the sample), and N, is the desired sigma level of discovery. Equation 18 is a rough
measure of signal significance. Equation 19 is the Punzi figure of merit [42], with N, set to 3.
Equation 20 is another version of Equation 19, with the signal efficiency used instead of the
number of signal events in order to remove dependence on an assumed branching fraction,
and with N, set to 1.285, which corresponds to a 90% confidence level.

As shown in Figures 22 to 24, all three measures show wide, flat maxima in the region
of 0.16-0.20% total signal efficiency for the K™ mode or around 0.06% efficiency for the Kg
mode, so the choice of classifier output cut within this region is somewhat arbitrary.

Tables 6 and 7 show the efficiency and signal significance at each step of the analysis
process.

With optimized trees and a total signal efficiency chosen to give the maximum signal
significance for the trees, real data events can be classified. The averaged output of the
twenty trees gives the number of data events in the signal region. Along with the predicted

number background events, this value allows calculation of a limit on the branching fraction.

6.2 Signal and Background Weighting

Data and generic background MC are classified by the trees, and the agreement between

the two is checked for the classifier output up to (but not including) the signal region. The Kg



47

| K+ Signal Significance

0.7 SV LY oW
C A AiA
0Bk
I A A
C i i 6009
05j~A ,,,,,,, [ O,O,OO.‘,,,
- :0
- o
- [¢] :
0.4 i PR
E
0.3 o
E Signal Significances
0.2 A - s/sqri(s+)
C Classifier Output Cut = 0.9764 : O slsgrt(b) + 1.5
0.1 : 1000 * effisqrt(b) + 0.6425
N TR AU PRV AU P B IR B
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Total Signal Efficiency

Figure 22: Measures of signal significance for the primary K™ trees, averaged over the twenty
trees. The red triangles correspond to equation 18, the black circles correspond to equation
19, and the green asterisks correspond to equation 20. The blue line shows the position of
a cut that would approximately maximize signal significance for all three measures. The
classifier output value corresponding to the blue line is shown in the box next to the line.
This plot is based upon the phase-space model.

trees show good agreement (see Section 6.2.3), but the K trees produce large discrepancies.

To fix this problem, a weighting is applied to the MC, as explained in the next section.
6.2.1 Monte Carlo Tuning for the K™ Mode

The data and generic background MC K+ events that result from the preliminary cuts
described in Section 5.3.2 provide the starting point for calculating the MC weighting. The
data events are used to populate a two-dimensional histogram of the variables e_extra_all
and sigkp3. These two classifier variables are shown by Table 12 to be among the most
important variables for tree performance. The binning of the histogram is made as fine as
possible without creating excessively sparse bins. The lowest number of events in a bin turns

out to be 77, which ensures sufficient statistics in all bins. The MC events are then put into
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Low-momentum K+ Signal Significance
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Figure 23: Measures of signal significance for the low-momentum Kt measurement, aver-
aged over the twenty trees. The red triangles correspond to equation 18, the black circles
correspond to equation 19, and the green asterisks correspond to equation 20. The blue line
shows the position of a cut that would approximately maximize signal significance for all
three measures. The classifier output value corresponding to the blue line is shown in the
box next to the line. This plot is based upon the ABSW model [15], since there are more
events in the low-momentum region for that model than in the other two models.
the histogram, and the MC events in each bin are given a weight equal to the ratio in that
bin of the number of data events to the luminosity-weighted number of MC events. Figure
25 shows the histogram with the calculated weights. These weights, which are referred to as
2-D weights in this document, act as an additional factor after the luminosity weighting of
the MC events.

When these weights are applied, data/MC agreement for the primary K classifier output

adjacent to the signal region is very high (see Figures 26 and 27), which provides confidence

that the weighted background MC accurately predicts the background in the signal region.
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Figure 24: Measures of signal significance for the K trees, averaged over the twenty trees.
The red triangles correspond to equation 18, the black circles correspond to equation 19,
and the green asterisks correspond to equation 20. The blue line shows the position of a cut
that would approximately maximize signal significance for all three measures. The classifier
output value corresponding to the blue line is shown in the box next to the line. This plot
is based upon the phase-space model.
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Figure 25: Two-dimensional weighting histogram for the primary K mode, showing the
values of the weights assigned to generic background MC events that fall in each bin on the
left, and the number of data events in each bin on the right.

6.2.2 Data/MC Agreement for the Low-momentum Measurement

The low-momentum K+ measurement also utilizes the 2-D weighting. Figure 28 shows

good data/MC agreement for this measurement, though there is a slight -5% data/MC
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Figure 26: Classifier output for the primary K+ trees for data and generic background MC
events with the 2-D weighting. The left plot shows the range 0.1 to 0.5, and the right shows
0.5 to 0.975, the edge of the signal region. MC matches data very closely.
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Figure 27: Data/MC ratio with the 2-D weighting applied for the primary K classifier
output just below the signal region. Agreement between data and MC is very good.

discrepancy, which is used as a correction to the background prediction.
6.2.3 Data/MC Agreement for the K¢ Mode

As shown in Figures 29 and 30, the classifier output for the Kg mode shows good data/MC

agreement, even without any special weighting. The small +10% discrepancy of data over
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Figure 28: Classifier output for the low-momentum K+ measurement with the 2-D weighting.
The left plot shows data and background MC up to the edge of the signal region. The right
plot shows the data/MC ratio. The fitted line gives the value of the ratio at 0.95 4 0.02, so
a —5% correction needs to be applied to the background prediction for this measurement.
The systematic uncertainty applied to this measurement (see Section 8.2.2) is shown to
demonstrate that it covers the fluctuations of the data/MC ratio.

MC seen in Figure 30 is applied to the Kg background prediction for the signal region.
As discussed in Section 8.2, this value is also used as the systematic uncertainty to the

background prediction.
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Figure 29: Classifier output for the primary Ky trees for data and generic background MC
events. The left plot shows the range 0.1 to 0.5, and the right shows 0.5 to 0.95, the edge of
the signal region. MC matches data very closely.
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Figure 30: Data/MC ratio for the Ky classifier output just below the signal region. The
small +10% data/MC discrepancy is used as the correction to the background estimate and
as the background systematic uncertainty.

6.2.4 Signal Models and Weighting

This analysis uses three models for signal MC: phase space, BHI(2001) [14], and ABSW(2009)
[15]. Phase space is the basic MC model, and BHI- and ABSW-model results are obtained by
weighting the signal MC. Throughout this document the phase-space signal model should be
assumed unless another model is specified. Figure 2 illustrates the three models by showing
the di-neutrino invariant mass squared spectrum for each.

Figure 31 shows the weights used to convert the phase-space signal MC to each of the
two theoretical models. Applying the weights to the signal MC events in the signal region
reduces the signal efficiency compared to the phase-space model: for both the primary K+
and K¢ modes, the BHI model reduces efficiency by 8%, while the ABSW model reduces it
by 19%. Table 14 shows the signal efficiencies for each model. Section 9 gives the measured

upper limits for each model.
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The signal efficiencies for the high-momentum KT measurement are calculated by only
considering events where sigkp3cm > 1.5 GeV/c. The high-momentum classifier output cuts
are the same ones used for the primary K measurement, which means the background
predictions are identical for the two measurements. The only difference between the two is

the signal efficiency.
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Figure 31: Weights for signal MC to convert the phase-space model to the two theoretical
models.

Table 14: Total signal efficiencies in percent under the three signal models. The listed
uncertainties are statistical only.

Phase-space Model | BHI Model | ABSW Model

K+ 0.175 + 0.001 0.161 £0.001 0.141 £0.001
Kg 0.060 £ 0.001 0.055 £ 0.001 0.048 £ 0.001
High-momentum K+ 0.251 =0.001 0.241 =0.001 0.236 = 0.001

Low-momentum K 0.260 = 0.001 0.278 £ 0.001 0.250 £ 0.001
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7 Decision Tree Validation

The decision trees are trained on MC events. Checks are necessary to show that the
trees classify real events similarly to MC events. Three real data samples are used for this

validation as described below.

7.1 Wrong-tag Sample

One check is to compare data and MC events where the tag B has the wrong charge to
produce the signal kaon. For the K™ trees, this tag B is the B°, while for the Kg trees, it
is B*. Such events are pure background.

To achieve the most sensitive check of data-MC discrepancies with multiple trees, it is
desirable to employ a method that ensures that the data-MC discrepancy for one tree is not
canceled out by the discrepancy for another tree when they are averaged together. For this
reason, the absolute data-MC differences for the trees, rather than the data/MC ratios, are
used. In order to separate the effects of the classifier from data-MC discrepancies caused
by skimming and reconstruction, the data-MC difference histograms are unit-normalized, so
they will show only discrepancies caused by the classifier and not those caused by earlier
steps of the analysis process.

For each tree, the normalized histogram of the classifier output for MC events is sub-
tracted from that for data events. Taking the absolute value and averaging over the twenty
trees produces Figure 32, which shows that the discrepancy in the classification of back-
ground B events between data and MC in each bin is always less than 0.6% of the total
number of events. Figure 33 shows the corresponding plot for the Kg trees, in this case us-
ing tag BT events. Figures 34 and 35 show similar plots where the tag particles are plotted
separately from the tag anti-particles (e.g., separate plots for B® and B9).

Figures 36 and 37 show the data/MC difference plotted with bins covering various ranges
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of classifier output values. Figures 38 and 39 are similar but show the signed differences rather

than absolute values.

l BO data minus BO MC, K+ (absolute value, normalized, averaged over 20 trees)
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Figure 32: Normalized histogram of the difference in the classifier output for B® data and
B% MC for the primary KT trees. The plot shows the absolute values of the normalized
differences, averaged over the twenty trees. The data/MC discrepancy in each bin is always
less than 0.6% of the total number of events. See text for more details.

7.2 af Sample

Events reconstructed in the a signal mode (af — p°n",p° — 7t7~) offer a high-

statistics control sample, which provides an opportunity to study the response of the BDT

to data and MC in the signal region. These events are processed exactly like kaon events,

except the cut from Section 5.3.2 which specifies that the recoiling B has a kaon daughter is

changed to require the daughter be an aj. B* — 777 — a v¥ is the only decay mode that,

when correctly reconstructed, would produce a lone a], but this rare mode will only produce

a fraction of an event in the real data set, compared with thousands of fakes. Most of the
+

a;’s in this sample are reconstruction fakes, with others coming from decays like B — D*0a;

(branching fraction (1.9 +0.5)% [12]).
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l B+ data minus B+ MC, Ks (absolute value, normalized, averaged over 20 trees)
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Figure 33: Normalized histogram of the difference in the classifier output for Bt data and
BT MC for the Kg trees. The plot shows the absolute values of the normalized differences,
averaged over the twenty trees. The data/MC discrepancy in each bin is always less than
0.6% of the total number of events.
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Figure 34: Normalized histograms of the difference in the classifier output for neutral B
data and neutral B MC for the primary K trees. The plots show the absolute values of
the normalized differences, averaged over the twenty trees. The left plot is for B® only (no
BY), while the right plot is for B only. The data/MC discrepancy in each bin is always less
than 1.2% of the total number of events.

Figure 40 shows the data/MC classifier-output ratio for these events with the primary

K trees. The data/MC discrepancy is 1.05+ 0.02, which is similar to the data/MC ratio in
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Figure 35: Normalized histograms of the difference in the classifier output for charged B data
and charged B MC for the Kg trees. The plots show the absolute values of the normalized
differences, averaged over the twenty trees. The left plot is for BT only (no B~), while the
right plot is for B~ only. The data/MC discrepancy in each bin is always less than 0.7% of
the total number of events.
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Figure 36: Plot of the difference in the integrated number of events for different classifier
output values for B? data and B® MC for the Kt trees. Each bin of the plot shows the
average normalized absolute value of the difference in the number of events between B° data
and B® MC for a range of classifier output values that goes from the number at the left edge
of the bin to 1. The data/MC discrepancy in each bin is always less than 0.3% of the total
number of events.
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B+ data minus B+ MC, Ks (absolute value, normalized, upper integral, averaged over 20 trees)
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Figure 37: Plot of the difference in the integrated number of events for different classifier
output values for B* data and BT MC for the Kg trees. Each bin of the plot shows the
average normalized absolute value of the difference in the number of events between B™ data
and Bt MC for a range of classifier output values that goes from the number at the left edge
of the bin to 1. The data/MC discrepancy in each bin is always less than 0.1% of the total
number of events.

the classifier-output sideband (Section 6.2.1). Figure 41 shows the similar ratio for the Kg

trees.

7.3 J/¢ Events

The Bt — KT J/WU,J/¥ — 71~ mode (where the lepton pair can be either electrons or
muons) provides a way to check the reliability of the signal efficiency of the trees. These
events are processed almost like kaon events. To create highly pure K.J/¢ ntuples, the

following cuts are used:

e The signal B must have two daughters, which must be a charged kaon and a J/ .
e The signal B and tag lepton must have opposite charges.

e No more than two extra tracks are allowed. Extra tracks are those from the charged
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BO data minus BO MC, K+ (normalized, upper integral, averaged over 20 trees)
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Figure 38: Plot of the difference in the integrated number of events for different classifier
output values for B® data and B° MC for the K+ trees. Each bin of the plot shows the
average normalized signed value of the difference in the number of events between BY data
and B® MC for a range of classifier output values that goes from the number at the left edge
of the bin to 1. The data/MC discrepancy in each bin is always less than 0.35% of the total
number of events.

tracks list that are left over after the signal and tag are fully reconstructed.
e AFE (Equation 21) must be in the following range: —0.04 < AE < 0.035 GeV.
o mps (Equation 22) must be in the following range: 5.2725 < mpg < 5.285 GeV.

e my (Equation 23) must be in the following range: 3.06 < my; < 3.12 GeV.

AE = ESigB - Ebeam/2 (21)

where Fg;4p is the energy of the signal B and FEj,, is the total beam energy, both in the

center-of-mass frame.
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B+ data minus B+ MC, Ks (normalized, upper integral, averaged over 20 trees) ‘
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Figure 39: Plot of the difference in the integrated number of events for different classifier
output values for B* data and BT MC for the Kg trees. Each bin of the plot shows the
average normalized signed value of the difference in the number of events between B data
and Bt MC for a range of classifier output values that goes from the number at the left edge
of the bin to 1. The data/MC discrepancy in each bin is always less than 0.1% of the total
number of events.
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Figure 40: Data/MC ratio of the classifier output for a] events classified by the primary
K™ trees. The left plot show the full range of values up to the signal region, while the right
plot shows the approximate signal region. On the right, the fitted line gives the value of the
ratio as 1.05 4 0.02.
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Figure 41: Data/MC ratio of the classifier output for af events classified by the Kg trees.
The left plot show the a range of values from zero to near the signal region, while the right
plot shows the vicinity of the signal region. Almost no data events actually reach the signal
region. On the right, the fitted line gives the value of the ratio as 1.05 & 0.02.

E2
mpgs = \/% - p%igB (22)

where pg;gp is the three-momentum of the signal B and FEp,, is the total beam energy, both

in the CMS.

my =/ (Pann + paz)? (23)

where py; and pys are the CMS four-momenta of the two leptons from the J/W.

The result of the of the AE and mpgg cuts described above on the my distribution in
data is shown in Figure 42 .

After reconstruction and the cuts listed above, there are 211 J/¥ data events and
52733 signal MC events, which correspond to a luminosity-weighted value of 216.9 events.
The weighting is calculated using the PDG(2008) branching fraction values as follows:
BT — K*J/¥ BF = (1.00740.035)-1073, J/¥ — e*e™ BF = (5.9440.06)%, J/¥ — utpu~
BF = (5.93+0.06)%. The event numbers give a data/MC ratio of 0.974+0.07, which indi-
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Figure 42: my distribution for J/¥ data events before and after the AE and mpgg cuts
described in Section 7.3 are applied. All the other cuts in that section, except the my cuts,
are already applied to these events.

cates very little discrepancy between data and MC events in skimming and signal and tag

reconstruction. Figure 43 shows the close agreement of data and MC.
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Figure 43: my; distribution for J/¥ data and MC events after the cuts described in Section
7.3 are applied. Data and MC show close agreement.
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Unfortunately, the number of available J/¥ data events is too low to get sufficient statis-
tics in the signal region when the events are classified with the K or Kg trees. To solve this
problem, a less-discriminating subset tree is used, which utilizes a subset of the classification
variables used in the other two trees. The list of classification variables used by the subset
tree is shown in Table 11. The subset tree should reflect the behavior of the K™ and Ky
trees, and it allows study of J/W¥ data events in the same region where K v or Ksvv events
would be concentrated.

Classifying the above events with the subset trees and plotting the data/MC ratio vs. the
classifier output results in Figure 44. The plot shows a data/MC discrepancy of 0.90 4 0.03
in the signal region, which suggests that the systematic differences between data and MC
in skimming, tagging, reconstruction, and BDT classification amounts to a 10% effect on
the signal efficiency. Thus, 10% will be used as the systematic uncertainty to the signal

efficiency.

\ J/Psi K+ Data/MC Ratio for Runs 1-6 \

g
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Data MC/Ratio
=
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T
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Figure 44: Data/MC ratio for J/U events classified by the subset trees. The fitted line
gives the value of the ratio as 0.90 4+ 0.10. The plot covers only the approximate signal
region in order to get a conservative estimate of the systematic uncertainty. The data/MC
agreement is greater outside of the signal region. This plot is obtained by summing the
classifier output histograms from the twenty trees for data and dividing by the corresponding
summed histograms for luminosity-weighted MC.
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8 Systematic Uncertainties

8.1 Signal Efficiency Systematic Uncertainty

As discussed in Section 7.3, processing highly pure J/¥ events provides a way to validate
the signal estimates in this analysis. Signal and tagging efficiency are inextricably linked
in this analysis since the BDTs use many tag-side variables. In addition, kaon PID is part
of the signal efficiency. Thus, the J/U study covers the systematic uncertainty for signal

efficiency, tagging efficiency, and kaon PID, and it gives the value of the uncertainty as 10%.
8.1.1 Theory Systematic Uncertainty of the Signal Efficiency

For values calculated using the ABSW or BHI models (see Section 6.2.4), a theory sys-
tematic uncertainty is necessary. Values based upon the phase-space model have no theory
uncertainty included, but these values are for illustrative purposes only. As mentioned in
Section 6.2.4, the BHI model reduces signal efficiency to 92% compared to phase space,
while ABSW reduces it to 81%. Thus, BHI has a range of +9% with regard to the other two
models, while BHI is 14% above ABSW in terms of signal efficiency. Figure 2 shows that the
theoretical uncertainties of each model are significantly smaller than the differences between
the models. A 10% theory systematic uncertainty for each model conservatively covers the
theoretical uncertainties shown in Figure 2. Added in quadrature with the signal efficiency

systematic above yields a total signal efficiency systematic uncertainty of 14%.

8.2 Background Systematic Uncertainty
8.2.1 Primary Kt Mode Background Systematic Uncertainty

The 2-D weighting described in Section 6.2.1 provides a correction to the background
prediction for the K+ mode. This correction provides a measure of how far off the MC

background prediction may be from the true background in data, and thus, it will be used
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as the systematic uncertainty to the background prediction. Without the 2-D weighting, the
background prediction is 16.7 events; with the weighting, it is 17.6. Thus, the correction is
0.9 events, or 5%, and this value will be used as the systematic uncertainty to the background

prediction for the primary K+ mode.
8.2.2 Low-momentum Mode Background Systematic Uncertainty

The 2-D weighting described in Section 6.2.1 provides a correction to the background
prediction for the low-momentum K+ mode. This correction provides a measure of how far
off the MC background prediction may be from the true background in data, and thus, it
will be used as the systematic uncertainty to the background prediction. Without the 2-D
weighting, the background prediction is 141 events; with the weighting, it is 187. Thus, the
correction is 46 events, or 25%, and this value will be used as the systematic uncertainty to

the background prediction for the low-momentum K mode.
8.2.3 Kg Mode Background Systematic Uncertainty

Similar to the primary K+ mode, the Kg mode has a correction applied to the background
prediction, as discussed in Section 6.2.3. This correction will be used as the systematic
uncertainty to the background prediction, for the same reasons as discussed in Section 8.2.1.

For this mode, the uncertainty is 10%.

8.3 B-counting Systematic Uncertainty

As shown in Table 2, the number of BB pairs includes an uncertainty: 459.045.1 x 10°.
This uncertainty is 1.1%. For the calculation of the sensitivity of the branching fraction
measurement, this uncertainty must be added in quadrature with the signal efficiency sys-
tematic uncertainty from Section 8.1. Since the signal efficiency systematic uncertainty is so

much larger than the B-counting uncertainty, the addition has no real effect, and the total
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systematic uncertainty in the sensitivity turns out equal to the signal efficiency systematic

uncertainty (14%).
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9 Results

9.1 Observations and Upper Limits

Table 15 shows the number of data events found in the signal region after unblinding
for each of the three measurements. The table reflects the statistical uncertainties, cal-
culated by the method in Appendix C, with the uncertainty for a single tree being the
luminosity-weighted number of events over the square root of the number of MC events.
The uncertainties for the numbers of excess events shown in Table 15 are calculated with the
Barlow calculator [43], which is a tool that uses frequentist statistics. These uncertainties
are obtained by finding the lower and upper event-number limits at the 84.1% confidence
level, for a two-sided one-sigma uncertainty, and by finding the 90% confidence level upper
limit. The probability column in the table is also calculated with the Barlow calculator by
finding the confidence level for a lower limit of 0 events (or upper limit in the case of the
low-momentum result since the number of excess events is negative).

Table 16 shows the resulting central values of the branching fractions, including partial
branching fractions.

Tables 17 to 19 show the resulting branching fraction upper limits. The three signal
models used in this analysis (phase space, ABSW, and BHI) produce different upper limits
because the models differ in the distribution of signal events between the low- and high-kaon-
momentum regions, as shown in Figure 2. These different distributions give rise to different
signal efficiencies (see Table 14), which result in different upper limits. Note that upper
limits for the results with a fractional number of observed events are interpolated from the
bounding integer values. For example, the primary K mode has 19.4 observed events, so its
upper limits are interpolated from the limits for 19 and 20 events.

The combined K™ and K° limits shown in Tables 17 to 19 are calculated using the
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frequentist method of the Barlow calculator. The combined limit is higher than the K
limit by itself due to the high K° limit, which comes from the observation of 2.2 excess Kg
events when the SM branching fraction predicts only 0.5 events. In comparison, a Bayesian
method [44] of combining limits will never be worse than the lowest limit, and it can give
a better combined limit if the limits being combined are close to each other. In this case,
because the K limit is so much less than the K° limit, the Bayesian method gives a combined
limit equal to the K limit.
Figures 45 and 46 show histograms of the classifier output for the data events.

Table 15: Number of events in the signal region. The second column gives the number of
events observed in data with the statistical uncertainty. The background column includes the
statistical uncertainty, followed by the systematic, with the total uncertainty in parentheses.
The excess events column includes the two-sided, one-sigma uncertainty followed by the 90%

confidence level upper limit uncertainty in parentheses. The probability column shows the
probability the excess events could be attributed entirely to a background fluctuation.

Observed Background Excess Events | Probability
K+ 19.4+4.4 | 17.64£2.6+0.9(2.8) | 1.875%(+8.0) 38%
Low-momentum K+ | 164=+13 1874+10+46(47) —23739(+63) 33%
Kg 6.17579 3.941.3+0.4(1.4) | 2.275%(+5.0) 23%

Table 16: Central values for the branching fractions of each mode under the three signal
models.

Phase-space Model BHI Model ABSW Model

K+ (0.237043) x 107> | (0.2475:39) x 107° | (0.287925) x 10~°

K° (1.6729) x 107° (L7753 x107° | (20737 x 1077

High-mom. K7 partial BF | (0.167331) x 1075 [ (0.1679:5%) x 10~° | (0.177957) x 10~°

Low-mom. K partial BF (=1.9755) x 107° (—1.873%) x 107 | (—2.0733) x 107
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Table 17: Upper limits under the ABSW model [15] on the branching fractions for the
primary KT mode, the K° mode, and the combination of the primary K and K° modes,
plus the low-momentum and high-momentum K™ partial branching fractions. The limits
are shown at the 90% and 95% confidence levels.

CL K+ KY K™ & K° | Low-mom. K+ | High-mom. K+
90% |[1.5x107°|65x107° | 1.6x107° 3.5x107° 0.90 x 10~°
95% | 1.9x107° | 7.9 x107° | 1.9 x 107° 5.1 x 107° 1.1 x10~°

Table 18: Upper limits under the BHI model [14] on the branching fractions for the primary
K*mode, the K° mode, and the combination of the primary K+ and K° modes, plus the
low-momentum and high-momentum K™ partial branching fractions. The limits are shown

at the 90% and 95% confidence levels.

CL K+ K? K* & K° | Low-mom. K* | High-mom. K+
90% | 1.3x107° [ 5.6x107° | 1.4 x 107 3.1 x107° 0.89 x 107
95% | 1.6 x107° | 6.7 x107° | 1.7 x 10~° 4.6 x 107° 1.1 x107°

Table 19: Upper limits under the phase-space model on the branching fractions for the
primary K+ mode, the K° mode, and the combination of the primary K+ and K° modes,
plus the low-momentum and high-momentum K™ partial branching fractions. The limits
are shown at the 90% and 95% confidence levels.

CL K+ K? K* & K° | Low-mom. K | High-mom. K7
90% | 1.2x107°|5.2x107° | 1.3 x 107 3.4 x107° 0.85 x 107
95% | 1.5x107° | 6.2x107° | 1.6 x 10~° 4.9 x 107° 1.1 x10~°
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Figure 45: Data, background MC, and signal MC events in the K signal region. The left

plot shows the primary signal region, with signal MC scaled to the number of excess events
observed. The right shows the low-momentum signal region, with the signal MC scaled
arbitrarily for illustration. These plots show the average number of events for the twenty
trees. Both plots include some sideband below the signal region.
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Figure 46: Data, background MC, and signal MC events in the Kg signal region, with signal
MC scaled to the number of excess events observed. The plot shows the average number of
events for the twenty trees, and it includes some sideband below the signal region.

9.2 Comparison with Previous Experiments

The BHI model provides the baseline for comparison with previous experiments. Figure

47 compares the results of this analysis with the previous limits, which came from the
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previous best BABAR result [45] and the Belle experiment [16]. This analysis improves upon
the previous BABAR result by almost a factor of three, provides a slight improvement over
Belle to the 90% confidence level upper limit for the B} — KTvw, but reduces the upper

limit for the B — K°% mode by a factor of three, compared with Belle.

9.3 Comparison with Theoretical Models

In terms of the theoretical branching fraction under the BHI model of 3.8 x 107°, the
B} — K*vw upper limit of this analysis almost comes within three times of the theoretical

value (the situation is similar with the ABSW model).

D E— B* - K*v¥,90% CL ¢ B° . K°v ¥, 90% CL
— —_ 5 =
BaBar 35IM B B ~— Belle 535M BB
~ Belle535M BB — BaBar 459M BB
~— BaBar 459M BB
[ Buchalia et al. l:| Buchalla et al.

PRD 63 014015(2001) PRD 63 014015(2001) 104
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. . .
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Branching Fraction Branching Fraction

Figure 47: Comparison of BaBar and Belle branching fraction results for the decay modes
in this analysis. Belle’s best results are shown in blue, and the results of this analysis are
shown in magenta just below. The brown box shows the theoretical prediction of the BHI
model. The left plot shows the primary K+ mode, and the right shows the K° mode.

For the model of scalar WIMP dark matter [28] discussed in Section 2 and shown in
Figure 6, the kaon momentum range of the results must be considered. The minimum kaon
momentum included in a result helps determine the position of its curve on the exclusion
plot. The primary K result only covers kaon momentum down to 1.5 GeV/c (in both the
lab and CMS frames). To cover a larger range, the low-momentum and high-momentum K+
results can be combined, which gives a 90% confidence level upper limit on the branching
fraction of 3.6 x 107° (for all signal models). This limit is higher than the other results and

thus is not listed in the tables earlier in this section, but its advantage is that it covers a
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kaon momentum range down to 1.0 GeV/c, as seen in Figure 155. Plotting both results on
the exclusion plot gives Figure 48, which shows that these results, like those of Belle, exclude
dark matter particles with a mass below about 1.7 GeV/c?.

With regard to the MSSM model [15], the result of this analysis is a 90% confidence level
branching fraction upper limit of 1.5 x 10~> under the ABSW signal model, which is still
quite far above the MSSM prediction of 5.8 x 1079, which also uses the ABSW signal model.
Much more data, on the order of 50 ab~!, would be required to obtain an upper limit closer
to the MSSM prediction.

In the case of the other models mentioned in Section 2 (unparticle models [32], models
with a single universal extra dimension [34], and WIMP-less dark matter [33]), the new upper
limit from this analysis of 1.3 x 107 (under the BHI signal model) only slightly increases
the constraints on these new physics models compared to Belle’s upper limit of 1.4 x 1075.

With regard to the K — w7 mode mentioned in Section 1, the lack of any new-physics
signals in the results of this analysis diminish the likelihood of observing new physics in the
very similar K — 77V mode.

In summary, the results of this analysis show consistency with the Standard Model,
confirm and improve upon the Belle results [16], and provide constraints to several new

physics models.
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Figure 48: Branching fraction of B — K + missing energy vs. the mass of a scalar DM
particle described by [28]. The model’s allowed region is between curves A and B. Curve I
is the limit set by an early BABAR B;}" — KTvv result [30] with 82 fb~!  an upper limit of
7.0 x 1077, and a cutoff of px > 1.5 GeV/c. Curve II is an estimated limit projected for
250 fb~! of BABAR data, with an upper limit of 2.1 x 1075 and a cutoff of px > 1.0 GeV /c.
Curve III is the limit set by a CLEO result [31], with an upper limit of 24 x 1075 and a
cutoff of px > 0.7 GeV/c. Curve IV is the result of this analysis with 418 fb~! of data, an
upper limit of 1.3 x 107°, and a cutoff of px > 1.5 GeV/c. Curve V combines the low- and
high-kaon-momentum results of this analysis to give upper limit of 3.6 x 1075 and a cutoff
of px > 1.0 GeV/c.
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10 Conclusion and Outlook

The summary of this analysis is shown in Table 20. All the upper limits in the table are
based upon the BHI model [14] for consistency. A graphical comparison of these results with

the previous best Belle results [16] are shown in Figure 47.

Table 20: Summary of results. The second column gives the number of events observed
in data with the statistical uncertainty. The background column includes the total un-
certainty. Note the high-momentum K measurement has the same number of observed
and background events as the primary mode. The fourth column gives the 90% confidence
level upper limit to the branching fraction, or partial branching fraction for the low- and
high-momentum measurements. The last column shows the corresponding best upper limits
reported by the Belle experiment [16]. All the upper limits in this table are based upon the
BHI model [14].

Observed | Background | 90% CL UL BF | Belle UL

Primary K+ 19.44+4.4 17.6+£2.8 1.3 x107° 1.4 x107°
High-mom. K* | Same 7 Same T 0.89 x 107 N/A
Low-mom. K+ 164+13 187+47 3.1x107° N/A

KO(Ks) 61759 3.94+1.4 5.6 x 107° 16 x 107°

These results rule out a model of scalar dark matter [28] with scalar particle masses of
less than 1.7 GeV/c?, as shown in Figure 48. Other new-physics models have not yet been
ruled out, but this analysis finds no discrepancy with the SM.

In the future, with the full 50 ab~! data set from the proposed SuperB factory at Frascati,
it should be possible to actually make a 5o observation of the B} — KTuvw decay by
combining results using semileptonic tags with those using hadronic tags. The BY — Kovw
mode might be more difficult to observe but might be achievable with improvements in

background rejection.
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Appendices

A Additional Figures

A.1 Signal/Background Plots for Classification Variables

The following are histograms of signal and generic background MC for each classification
variable. Signal and background are each unit-normalized. These MC events constitute the

training and testing sets for the decision trees.
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Figure 49: Signal/background histograms for CosThMissCM on left and d_decaymode on
right.
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Figure 50: Signal/background histograms for EMissCM on left and EMiss on right.
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Figure 51: Signal/background histograms for etotobs on left and extrapiOs on right.

Figure 52: Signal /background histograms for e_extra_all on left and R2All on right.
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Figure 53: Signal/background histograms for PMissCM on left and PMiss on right.
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Figure 54: Signal /background histograms for sigbcosththrustdl on left and sigbcosththrust on
right.
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Figure 55: Signal/background histograms for sigbmin3invmass on left and sigbn_extraneutrals
on right.
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Figure 56: Signal/background histograms for sigbn_extra_emckl on left and sigbn_extra_ifrkl
on right.
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Figure 57: Signal/background histograms for sigbn_extra_tracks on left and sigkcosthcm on

right.
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Figure 58: Signal/background histograms for sigkp3cm on left and sigkp3 on right.
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59: Signal/background histograms for tagbchi2 on left and tagbcosby on right.
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Figure 60: Signal/background histograms for tagbmass on left and tagdmass on right.
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Figure 61: Signal/background histograms for tagdp3cm on left and taglp3cm on right.
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Figure 62: Correlation matrix showing the amount of correlation in signal MC between the
classification variables for the K+ trees.
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Figure 63: Signal/background histograms for CosThMissCM on left and d_decaymode on

right.
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Figure 64: Signal/background histograms for EMissCM on left and EMiss on right.
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Figure 65: Signal/background histograms for etotobs on left and extrapiOs on right.
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Figure 66: Signal/background histograms for e_extra_all on left and R2All on right.
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Figure 67: Signal/background histograms for NetChargeVisibleE on left and NetCharge on

right.
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Figure 68: Signal/background histograms for PMissCM on left and PMiss on right.
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Figure 69: Signal /background histograms for sigbcosththrustdl on left and sigbcosththrust on

right.
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Figure 70: Signal /background histograms for sigbmin3invmass on left and sigbn_extraneutrals

on right.
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Figure 71: Signal/background histograms for sigbn_extra_emckl on left and sigbpmissthetacm

on right.
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Figure 72: Signal/background histograms for sigbn_extra_tracks on left and sigkcosthcm on

right.
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Figure 73: Signal /background histograms for sigkmass on left and sigkp3 on right.
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Figure 74: Signal/background histograms for sigkpocaxy_cxx on left and sigkpoca_cxx on

right.
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Figure 75: Signal /background histograms for tagbchi2 on left and sigkecm on right.
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right.
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Figure 77: Signal /background histograms for tagbmass on left and tagdmass on right.
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Figure 78: Signal /background histograms for tagbp3cm on left and tagdndaus on right.
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Figure 79: Signal/background histograms for tagdp3cm on left and tagpipoca_xerr on right.
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Figure 80: Signal /background histograms for taglp3 on left and taglp3cm on right.
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Figure 81: Signal/background histograms for ycosth on left and yp3 on
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Figure 82: Correlation matrix showing the amount of correlation in signal MC between the
classification variables for the K tree.
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A.2 Signal MC Plots for Classification Variables after the Final
BDT Cut

The following are unit-normalized histograms of signal MC after the final BDT cut for

each classification variable.
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Figure 83: Signal MC histograms for CosThMissCM on left and d_decaymode on right.
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Figure 84: Signal MC histograms for EMissCM on left and EMiss on right.
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Figure 87: Signal MC histograms for PMissCM on left and PMiss on right.
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Figure 88: Signal MC histograms for sigbcosththrustdl on left and sigbcosththrust on right.
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Figure 89: Signal MC histograms for sigbmin3invmass on left and sigbn_extraneutrals on right.
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Figure 91: Signal MC histograms for sigbn_extra_tracks on left and sigkcosthcm on right.
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Figure 92: Signal MC histograms for sigkp3cm on left and sigkp3 on right.
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Figure 93: Signal MC histograms for tagbchi2 on left and tagbcosby on right.
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Figure 94: Signal MC histograms for tagbmass on left and tagdmass on right.
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Figure 95: Signal MC histograms for tagdp3cm on left and taglp3cm on right.
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A.2.2 Kgs Mode
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Figure 96: Signal MC histograms for CosThMissCM on left and d_decaymode on right.
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Figure 97: Signal MC histograms for EMissCM on left and EMiss on right.
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Figure 98: Signal MC histograms for etotobs on left and extrapiOs on right.
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Figure 99: Signal MC histograms for e_extra_all on left and R2All on right.
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Figure 100: Signal MC histograms for NetChargeVisibleE on left and NetCharge on right.
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Figure 101: Signal MC histograms for PMissCM on left and PMiss on right.
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Figure 102: Signal MC histograms for sigbcosththrustdl on left and sigbcosththrust on right.
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Figure 103: Signal MC histograms for sigbmin3invmass on left and sigbn_extraneutrals on
right.
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Ks Signal MC in Signal Region for sighn_extra_tracks \ Ks Signal MC in Signal Region for sigkcosthcm
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Figure 105: Signal MC histograms for sigbn_extra_tracks on left and sigkcosthcm on right.
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Figure 106: Signal MC histograms for sigkmass on left and sigkp3 on right.

Ks Signal MC in Signal Region for sigkpocaxy_cxx Ks Signal MC in Signal Region for sigkpoca_cxx

T — T T T
2 - o A
S 025 - 5 0.25 n
> > |
] b m b
s 1 k] 1
s 02 - s -
3 4 g ]
< _ Il m
i ] g ]
015 — 015 —
0.1 - 0.1] .
0.05]— 4 0.05]— -
ol " S Lo, | P N, IR J

0 0.001 0.002 0.003 0.004 0.005 0.006 0 0.001 0.002 0.003 0.004 0.005 0.006
sigkpocaxy_cxx sigkpoca_cxx

Figure 107: Signal MC histograms for sigkpocaxy_cxx on left and sigkpoca_cxx on right.
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Figure 108: Signal MC histograms for tagbchi2 on left and sigkecm on right.
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Figure 109: Signal MC histograms for tagbcosbyphotonadd on left and tagbcosby on right.
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Figure 110: Signal MC histograms for tagbmass on left and tagdmass on right.
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Figure 111: Signal MC histograms for tagbp3cm
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Figure 112: Signal MC histograms for tagdp3cm on left and tagpipoca_xerr on right.
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Figure 113: Signal MC histograms for taglp3 on left and taglp3cm on right.
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Figure 114: Signal MC histograms for ycosth on left and yp3 on right.
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A.3 Data/MC Correspondence for Classification Variables

The following plots show the correspondence between data and generic background MC
for each classification variable. The set of events plotted is the result of the event selection

described in Sections 5.2 and 5.3, and the histograms are unit-normalized.
A.3.1 KT mode

The background MC events in these plots are weighted as described in Section 6.2.1.
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Figure 115: Data/MC histograms for CosThMissCM on left and d_decaymode on right.
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Figure 116: Data/MC histograms for EMissCM on left and EMiss on right.
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Figure 117: Data/MC histograms for etotobs on left and extrapiOs on right.
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Figure 118: Data/MC histograms for e_extra_all on left and R2AIl on right.
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Figure 119: Data/MC histograms for PMissCM on left and PMiss on right.
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Figure 120: Data/MC histograms for sigbcosththrustdl on left and sigbcosththrust on right.
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Figure 121: Data/MC histograms for sigbmin3invmass on left and sigbn_extraneutrals on right.
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Figure 122: Data/MC histograms for sigbn_extra_emckl on left and sigbn_extra_ifrkl on right.
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Figure 123: Data/MC histograms for sigbn_extra_tracks

\

— Data
—MC

K+ sigkp3cm

0.03

0.025

0.02

0.015

0.0.

=

0.005

)

sigbn_extra_tracks

it
t
i

B

— Data
—MC

Figure 124: Data/MC histograms for sigkp3cm on left and sigkp3 on right.
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Figure 125: Data/MC histograms for tagbchi2 on left and tagbcosby on right.
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on left and sigkcosthcm on right.
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Figure 126: Data/MC histograms for tagbmass on left and tagdmass on right.
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Figure 127: Data/MC histograms for tagdp3cm on left and taglp3cm on right.
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A.3.2 Kgs mode
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Figure 128: Data/MC histograms for CosThMissCM on left and d_decaymode on right.
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Figure 129: Data/MC histograms for EMissCM on left and EMiss on right.
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Figure 131: Data/MC histograms for e_extra_all on left and R2AIl on right.
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Figure 132: Data/MC histograms for NetChargeVisibleE on left and NetCharge on right.
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Figure 133: Data/MC histograms for PMissCM on left and PMiss on right.



Ks sighcosththrustdl

0.03

0.025

0.02

0.015

0.0.

=

0.005

|
0.5 1
sigbcosththrustd|

Ks sigbcosththrust

108

1

0.06

0.05

0.04ff-

0.03[1~

0.02—

0.01~

0

— Data
—MC

0.5

[

sigbcosththrust

Figure 134: Data/MC histograms for sigbcosththrustdl on left and sigbcosththrust on right.
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Figure 135: Data/MC histograms for sigbmin3invmass on left and sigbn_extraneutrals on right.
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Figure 136: Data/MC histograms for sigbn_extra_emckl on left and sigbpmissthetacm on right.
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Figure 137: Data/MC histograms for sigbn_extra_tracks on left and sigkcosthcm on right.
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Figure 138: Data/MC histograms for sigkmass on left and sigkp3 on right.
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Figure 139: Data/MC histograms for sigkpocaxy_cxx on left and sigkpoca_cxx on right.
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Figure 140: Data/MC histograms for tagbchi2 on left and sigkecm on right.
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Data/MC histograms for tagbcosbyphotonadd on left and tagbcosby on right.
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Figure 143: Data/MC histograms for tagbp3cm on left and tagdndaus on right.
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Figure 145: Data/MC histograms for taglp3 on left and taglp3cm on right.
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Figure 146: Data/MC histograms for ycosth on left and yp3 on right.
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A.3.3 Extra Energy Detail Plots
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Figure 147: e_extra_all plots for data and generic background MC events with primary K™
classifier output values from 0.9 to 0.975 (close to the signal region). The generic background
MC events have the 2-D weighting. The left plot shows data and MC histograms, while the
right plot shows the data/MC ratio.
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Figure 148: e_extra_all plots for data and generic background MC events with Kg classifier
output values from 0.8 to 0.95 (close to the signal region). The generic background MC
events are luminosity-weighted only. The left plot shows data and MC histograms, while the
right plot shows the data/MC ratio.



K+ e_extra_all for Bagger > 0.5 && Bagger < 0.74 & sigkp3cm <15 |

| —— Data

—MC
S .

iy
N
=]

[
o
=]

Number of Events

®
o

-
e

E I
S — l
f _%—|_ .

60

40

20

_I.
Hi

ol L L b b Ll | e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

e_extra_all

114
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Figure 149: e_extra_all plots for low-kaon-momentum data and generic background MC
events with classifier output values from 0.5 to 0.74 (close to the signal region). The generic
background MC events have the 2-D weighting. The left plot shows data and MC histograms,

while the right plot shows the data/MC ratio.
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Figure 150: e_extra_all plots for background MC events in the signal region. The K back-
ground MC events have the 2-D weighting. The left plot shows the KT background MC
events, which have the 2-D weighting, while the right plot shows the Kg background.
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Figure 151: e_extra_all plots for MC events in the low-kaon-momentum signal region. The
left plot shows signal MC, while the right one shows background MC, which has the 2-D
weighting.
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A.4 Data/MC Correspondence for Neutral Extra Energy
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Figure 152: Correspondence between data and generic background MC for extra-energy
photons for the K ntuples. The MC is luminosity-weighted, but the 2-D weighting is not
applied. The left plot shows data and MC histograms, and the right shows their ratio.
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Figure 153: Correspondence between data and generic background MC for extra-energy
photons for the Kg ntuples. The MC is luminosity-weighted, but the 10% correction is not
applied. The left plot shows data and MC histograms, and the right shows their ratio.
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A.5 Efficiency and m?, Plots
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Figure 154: BDT signal efficiency vs. sigkp3cm for the primary K+ mode on the left and the
Kg mode on the right. This efficiency is for the classifier output cut alone, not any previous
steps.
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Figure 155: BDT signal efficiency vs. sigkp3cm for the low-momentum measurement. This
efficiency is for the classifier output cut alone, not any previous steps.
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Figure 156: BDT signal efficiency vs. di-neutrino invariant mass squared for the primary K™
mode on the left and the Kg mode on the right. This efficiency is for the classifier output
cut alone, not any previous steps.
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Figure 157: Di-neutrino invariant mass squared for the primary K+ mode on the left and the
K mode on the right. These unit-normalized plots include signal and generic background
MC from the testing and training sets.
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Figure 158: Di-neutrino invariant mass squared for the the primary K mode. These unit-
normalized plots include signal and generic background MC from the testing and training
sets.
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Figure 159: Di-neutrino invariant mass squared for the the Kg mode. These unit-normalized
plots include signal and generic background MC from the testing and training sets.
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A.6 Reconstruction Sample
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Figure 160: The lateral moment (LAT) distribution for the photon from the transition
D* — D~. Data and MC are shown for Runs 1-3 in release 18. The signal MC is for the
process B — 7. The top plot shows on- and off-resonance data overlaid on a stack of generic
MC background; the bottom plot shows all reconstructed and reconstructed truth-matched

signal MC.
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A.7 Individual Tree Results
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Figure 161: Individual tree results for the K trees. The number of observed events (red
triangles), the background prediction (black circles), and number of excess events (blue
squares) are shown for each tree, numbered 0 to 19. The average number of excess events
is shown by the solid blue line, with the one-sigma uncertainty marked by the dotted blue
lines. The left plot the primary K measurement, while the right shows the low-momentum
measurement.
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Figure 162: Individual tree results for the Kg trees. The number of observed events (red
triangles), the background prediction (black circles), and number of excess events (blue
squares) are shown for each tree, numbered 0 to 19. The average number of excess events
is shown by the solid blue line, with the one-sigma uncertainty marked by the dotted blue
lines.
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Data Yield Distribution for the Primary K+ Trees Data Yields
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Figure 163: Individual tree results for the twenty K trees. The left plot shows a histogram
of the background predictions for the signal region for the twenty trees. The right shows a
similar histogram of the actual data yields in the signal region.
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Figure 164: Individual tree results for the twenty Kg trees. The left plot shows a histogram
of the background predictions for the signal region for the twenty trees. The right shows a
similar histogram of the actual data yields in the signal region.
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Figure 165: Individual tree results for the low-momentum measurement for the twenty K+
trees. The left plot shows a histogram of the background predictions for the signal region
for the twenty trees. The right shows a similar histogram of the actual data yields in the
signal region.
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B Additional Tables

Table 21: Classifier output cut for each of the twenty primary K trees to achieve the target
efficiency of 0.175% for that tree.

K* Tree Number | Classifier Output Cut
0 0.975837
1 0.975261
2 0.976983
3 0.976564
4 0.975984
5 0.97493
6 0.974588
7 0.978404
8 0.975627
9 0.975758
10 0.9776
11 0.974686
12 0.97473
13 0.975731
14 0.975496
15 0.976173
16 0.976354
17 0.97461
18 0.975836
19 0.976497
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Table 22: Classifier output cut for the low-momentum mode on each of the twenty primary
K™ trees to achieve the target efficiency of 0.25% (under the ABSW model) for that tree.

KT Tree Number | Classifier Output Cut
0 0.742055
1 0.742881
2 0.753606
3 0.749602
4 0.746795
) 0.747271
6 0.746164
7 0.740634
8 0.753032
9 0.744778
10 0.751919
11 0.741404
12 0.748958
13 0.750554
14 0.758296
15 0.74216
16 0.744547
17 0.748664
18 0.740907
19 0.751009
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Table 23: Classifier output cut for each of the twenty K trees to achieve the target efficiency

of 0.060% for that tree.

K, Tree Number | Classifier Output Cut
0 0.963107
1 0.959777
2 0.958332
3 0.961797
4 0.959017
5 0.961977
6 0.960557
7 0.957792
8 0.960667
9 0.959102
10 0.964032
11 0.962522
12 0.963302
13 0.961742
14 0.960317
15 0.961797
16 0.956226
17 0.959057
18 0.962832
19 0.955011
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C Statistical Uncertainty Calculation for 20 Trees

The background MC sample has limited statistics, so it is desirable to exploit its informa-
tion content to the fullest. The technique of bootstrap sampling [46] is one effective method
of doing so. It involves resampling the same set of events to create multiple replicate sets
of the original. In this analysis, twenty bootstrap training and testing sets are generated
for each type of tree. The resulting statistical uncertainty for the output of twenty trees is
smaller than the uncertainty for one tree because the multiple values allow a more accurate
overall measurement. The formula used is given by Equation 24 [47]. This uncertainty is
used for values obtained by averaging the response of twenty trees for the twenty MC testing

sets.

L (X N N
o5 = | N2 (ZU?—I—,OZ Z oia]) (24)
=1

i=1 j=1j#i

where o, is the statistical uncertainty for the 20 trees together, N = 20, p = 0.5, and o; is
the uncertainty for one tree. p reflects the correlation between the testing sets of any two
trees, which is 50%.

This formula is derived from the standard method of combining non-independent uncer-

tainties with correlation p. A full derivation can be found in [47].
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