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Abstract

In this note, an analysis done on test-beam data collected with a series module
of the ATLAS liquid Argon calorimeter is presented. Various methods of S-shape
correction are presented and the resolution along η calculated. The vertex and
pointing resolution in the ATLAS reference frame are also presented.

It is well known that the finite granularity of pad detectors gives rise to a systematic
shift of the shower centre of gravity toward the centre of the cell. In the case of the
ATLAS accordion calorimeter, this is especially true in the η view, whereas in the φ view
the accordion waves induce a better energy sharing between neighbouring cells. This effect
can be observed in the test-beam data, where the reconstructed shower barycentre can be
plotted against the “true” position measured by a set of beam chambers. The resulting S-
shapes can be fitted and used to correct the barycentre position and subsequently calculate
the position resolution as a function of energy and (η, φ) direction.

Once the best method of calculating the S-shape correction is defined, it is possible
to consider the module in the ATLAS (Z, R) reference frame and calculate vertex and
pointing resolution.

1 Experimental setup

The beam tests of the ATLAS barrel modules were carried out on the CERN H8 beam line.
Electron or positron beams, as secondary and tertiary beams, with energies ranging from
10 to 245 GeV were used. The module considered in this analysis, P13, was tested in July-
August 2002. It covered an angle of 2π

16
in φ and the region between 0 and 1.475 in η. Cells

were numbered from 0 to 15 along φ and from 0 to 56 along η. A detailed description of
one of the modules along with the test beam setup can be found in reference [1]; however,
in order to better understand the variation in η of some quantities, it is useful to recall that
the accordion absorbers are made of lead sheets 1.53 mm thick for η < 0.8 (i.e. cell 32)
and 1.13 mm thick for η > 0.8. They are glued between two 0.2 mm thick stainless steel
sheets by resin-impregnated glass fibre fabric; the fabric compensates for the difference in
thickness of the two types of lead plates so that the nominal thickness of an absorber is
2.2 mm.

The test beam layout is shown in figure 1. The beam line was equipped with three
scintillators in front of the calorimeter for triggering purposes. The size of the last two
(4 × 4 cm2) defined the beam acceptance; the beam divergence was measured to be less
than 0.1 mrad. The beam line was also instrumented with four multi-wire proportional
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chambers [2]. The first two were read out via threshold discriminators, whereas the oth-
ers were read out via constant fraction discriminators to achieve better resolution. The
cryostat housing the module was mounted on a remote controlled table, that allowed
movements in η and φ while ensuring nominal incident angles as in ATLAS in all posi-
tions. However, the distance of the calorimeter face from the last beam chamber was kept
constant within a few centimetres. For this reason, and to take into account the uncer-
tainty in the exact positioning of the cryostat, in the following the resolution is measured
in units of pseudorapidity and, except when the ATLAS reference frame is considered
(section 5), it does not show the expected cosh η behaviour. For the same reason, the
beam chambers resolution is independent on the absolute value of η.

2 Event selection and correction technique

2.1 Data quality

To perform this analysis, only data taken with module P13 were used. For reasons of
economy, only odd-numbered cells at φ = 10 were considered. The η-scan was done at an
electron energy of 245 GeV. Cells for which no optimal filtering coefficients were available
were excluded from the analysis; the scanned region was therefore reduced to 1 ≤ η ≤ 45,
in cell units. In addition, for three cells at φ = 11, η = 13, 27, 38, a large number of
events was accumulated; these cells were therefore used to calculate the variation of the
resolution within the cell (see section 4.1).

Data were processed using the EMTB-1-9 package [3]; the event energy and position
were reconstructed with a cluster size ∆η×∆φ of 3×1 cells for the front and 3×3 cells for
the middle layer. The energy deposited in each cell was reconstructed using the optimal
filtering technique [4]. Random, muon- and pion-like events were discarded using trigger
and scintillation counters information. To ensure the best pion rejection, it was required
that −2 < (Epeak − E)/σ < 3, where Epeak was the fitted peak value of the Gaussian
energy distribution and σ the width of the Gaussian (figure 2). Other constraints were
imposed on the signal coming from the four beam chamber TDCs to guarantee a good
track reconstruction and accidental background rejection. Finally, the reconstructed η
and φ barycentres were required to lie within a single cell of the middle compartment. In
general, about 12% of the events satisfied all the requirements at the end of the selection
routine, as summarised in table 1.

Requirement Number of events
No requirement applied 9990

No random events 9145
No muon-like events 9135

No counts on scintillator S3 7311
No counts on pion counter 7197
No hits outside selected cell 6082

Total energy inside selected window 3808
Good vertical BC reconstruction 2289

Good horizontal BC reconstruction 1184

Table 1: List of the requirements applied in the analysis and their effect on the event
selection.
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2.2 Track reconstruction and S-shape optimisation

The four beam chambers were positioned at -31.8 m, -22.7 m, -4.4 m and -2.9 m with
respect to the virtual ATLAS interaction point, i.e. about 1.5 m upstream of the cryostat.
A straight-line fit of the hits allowed the reconstruction of the electron track and its
subsequent extrapolation to the detector. Figure 3 shows the difference between the x
position in the last beam chamber and the same position calculated from a straight-line
fit involving only the first three chambers; the fit with a sum of two Gaussians indicates
that some badly reconstructed tracks remain in the data sample and have to be taken
into account in the calculation of the calorimeter resolution, as pointed out in section 4.

After performing the straight-line fit of the points identified by the beam chambers
for each event, the distribution of the residuals was used to calculate each chamber’s
resolution. A toy simulation was then used to extrapolate the global resolution at the
calorimeter; its value was found to be about 250 µm (i.e. 1.5× 10−4 in units of pseudo-
rapidity).

To allow a direct comparison between the position measured by the beam chambers
and the one measured by the module, the track direction has to be expressed in terms of
pseudorapidity and azimuthal angle. This is done in the track reconstruction routine by
requiring as input the extrapolation distance, i.e. the position in the module along the
beam direction where to stop the track extrapolation. Due to the fact that the electron
beam was “parallel” (as opposed to “divergent” in ATLAS conditions, where the tracks
originate from a single interaction point), different extrapolation distances would result
in different determinations of η.

In order to calculate the optimal extrapolation distance for each run, ηC , the η position
measured by the module in the middle compartment, was plotted against ηBC , the η
position extrapolated by the beam chambers, and the extrapolation distance varied until
the correction to be applied to ηC at the centre and borders of the cell reached its expected
value, i.e. zero (figure 4). It was also checked that this distance corresponded to a
minimum of the position resolution for the middle compartment.

The same technique was applied to the simulation, obtaining for the extrapolation
distance a result that, in general, differed from the one obtained for the data. This can
be explained by pointing out that the position of the cryostat with respect to the beam
chambers reference frame was known with an uncertainty of a few centimetres.

This optimisation method could not be used for the front compartment because of
the higher level of cross-talk between neighbouring cells that distorted the S-shapes. A
detailed description of the material in the accordion module was therefore used1 and
can be seen is figure 5. The front compartment was divided into layers perpendicular
to the beamline direction; a parametrisation of the shower longitudinal development as
function of the incident beam energy and amount of traversed matter [5] allowed the
determination of the shower energy deposit for each layer and therefore the barycentre of
the energy deposit in the compartment for each cell in η.

2.3 Logarithmic weighting

Logarithmic weighting (LW) provides an alternative way of correcting the S-shapes [6].
The standard position reconstruction in EMTB linearly weights the cluster cell positions

1The detector thickness in radiation length units was calculated using GEANT3 as adapted to test-
beam conditions by Gaston Parrour.
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with the cell energy, for each compartment:

ηC =

∑
i wiηi∑
i wi

, (1)

where the index i runs over the cells belonging to a given cluster in a compartment and
wi = Ei, the cell energy.

To keep into account the exponential lateral spread of the shower, it is possible to
introduce a new kind of weighting by using

wi = max(0, w0 + ln(Ei/EC)), (2)

EC being the total energy deposited in a given compartment and w0 a free adimensional
parameter that serves two purposes: first, it defines a threshold on the fraction of the
shower energy that a cell must exceed in order to be taken into account and, secondly,
it sets the relative importance of the tails of the shower in the weighting. In this case
the S-shape modulation disappears and ηC can be directly compared with ηBC without
further corrections. In the present case, the value of w0 was varied until a minimum for
the resolution was reached, at which point it was found to be 2.0 for the front and 4.4
for the middle compartment at φ = 10. Given the granularity of the front compartment,
at different φ positions the energy may be shared between two different φ cells, and the
amount of energy deposited in each cell is therefore smaller. This means that the weights
to be applied change accordingly; in particular, the value of w0 was found to be 2.3 at
φ = 11.

A plot showing the variation of the resolution for the front and middle compartments
as a function of w0 at φ = 10 is shown in figure 6 and 7.

3 Monte Carlo samples

GEANT3 adapted to simulate test beam events was used to generate several Monte Carlo
samples, one for each odd cell at φ = 10, consisting of about 3000 events each. Three
samples at φ = 11 containing about 10000 events were also generated to study the cells for
which a large number of events was available (η = 13, 27, 38). The samples were analysed
with the EMTB-1-10 package in which the clustering routine was modified to take into
account electronic noise and cross-talk. The cell noise level for presampler, front, middle
and back compartments was set at 45, 15, 30 and 25 MeV respectively. The cross-talk
was set at 4.1% and 1% between neighbouring cells of the front and middle compartment
respectively.

The agreement between data and Monte Carlo is shown in figure 8, where η∗ is the
ηC normalised value in the cell, i.e. η∗ = mod (ηC , a)/a− 0.5, a being the cell width.

4 Resolution calculation

Unfortunately, the beam chamber information lacked of an absolute measurement of the
incident beam direction. The data contained only an identification of the cell hit by the
electrons and nothing more; it was impossible to know where across the cell the electron
actually impinged. This meant that the η average values calculated by the beam chambers
were shifted with respect to those measured by the module by a fraction of cell. In order
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to overcome this difficulty, a constant value was added to ηBC run by run so that its
average value coincided with ηC , the latter calculated using the logarithmic weighting
method in order to avoid the bias introduced by the S-shape.

Once ηBC − ηC and η∗C were plotted against each other, it was possible to fit the
resulting S-shape for the middle compartment with the function

S(η∗C) = P1 + P2 η∗C + P3 arctan(P4 η∗C), (3)

where η∗C was ηC normalised to the cell width, as illustrated by figure 8. The variation
along η of the fit parameters is shown in figure 9.

The fit was performed on Monte Carlo samples and the resulting correction applied
directly to the data. The corrected value for the barycentre was then confronted with
the one obtained by track extrapolation. The resulting ηcorr− ηBC distribution was fitted
with a sum of two Gaussians, a broad one that took into account the tails due to residual
badly reconstructed events in the beam chambers, and a narrow one that measured the
resolution at the peak, as shown in figure 11. The parameters of the two Gaussians were
defined by

f(x) = P1 e
−1

2
(x−P2

P3
)2

+ P4 e
−1

2
(x−P5

P6
)2

. (4)

The contribution of the beam chambers was finally quadratically subtracted. The result
for the middle compartment is presented in the upper half of figure 12.

Using the value of the pseudorapitity at small η and the appropriate extrapolation
distance for the two compartments, it was possible to give an estimate of 240 µm for the
front and 540 µm for the middle compartment resolution.

For the middle compartment, the use of the logarithmic weighting was also attempted.
This method yielded a resolution that was worse than the one calculated with the S-shape
fit for every cell, as shown in figure 10.

For the resolution calculation in the front compartment, it was found that the analyt-
ical fit of the S-shape and the logarithmic weighting method gave identical results, within
the experimental error. Furthermore, the LW method could be applied to the cells for
which lack of statistics made it impossible to have a good S-shape fit. The resolution for
the front compartment is shown in the bottom half of figure 12. Every point along η was
obtained by averaging the measurements for four different strips to increase the statistics;
the beam chambers contribution was quadratically subtracted.

4.1 Resolution variation within a cell

Using the runs for which a large number of events was accumulated, it was possible to
check how the resolution varied within a single cell of the middle compartment. After
calculating the S-shape correction with a fit on the Monte Carlo sample, the cell was
divided into 10 slices in η and the correction applied. Again, the ηcorr − ηBC distribution
was fitted in each slice with a sum of two Gaussians, and the narrowest width compared
to the prediction from Monte Carlo. The variation of the resolution across a single cell is
shown in figures 16, 17 and 18 for φ = 11 and η = 13, 27, 38, respectively.

4.2 Resolution energy dependence

Several samples were considered at η = 27, φ = 11 and different energies in the range
20 to 245 GeV. The η resolution was calculated as already described, and the resulting
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R1 R2 R3

Strips (0.40± 0.88)× 10−4 (1.91± 0.22)× 10−3 (1.03± 0.13)× 10−2

Middle (1.20± 0.50)× 10−4 (5.05± 0.20)× 10−3 (0.65± 1.14)× 10−2

Table 2: Parameters defined in equation 5 for front and middle compartment.

variation with the energy fitted with a function of the form

R(E) = R1 ⊕ R2√
E
⊕ R3

E
, (5)

E being the beam energy. The result of the fit is presented in figure 19 and table 2.

5 Pointing resolution

From the corrected shower barycentre it was possible to extract the virtual vertex position
and the direction of the incident electron, relying only on calorimeter information, and
check it against the value measured by the beam chambers - for the data, or generated -
for the simulation. In figure 13 the symbols used in the following are explained. Starting
from the barycentre coordinates in a (Z, R) reference frame, where Z is the coordinate
along the ATLAS beam line and R the radial coordinate with respect to the same beam
line, the vertex Z position is given by

Z2 − Zvertex

Z2 − Z1
=

R2

R2 −R1
⇒ Zvertex =

Z1R2 − Z2R1

R2 − R1
. (6)

The direction of the incident electron can be calculated through the formula

θ = arctan
Z2 tan θ2 − Z1 tan θ1

Z2 − Z1
, (7)

where θi are the barycentre angles for the front and middle compartment respectively.
The resulting resolutions are plotted in figure 14 and 15.

The vertex and pointing resolutions as a function of the beam energy were also cal-
culated using the energy scan at η = 27, φ = 11. The results are presented in figure 20
and 21 respectively.

6 Neural network analysis

An attempt was made to correct the S-shapes by using a neural network approach. For
the middle compartment, a perceptron [7] was adopted. In its simplest form, a 2-layer
perceptron, the neurons of the output layer receive synaptic (i.e. neuron to neuron) signals
from those of the input layer but not vice-versa, and the neurons within one layer do not
communicate with each other; the flow of information is therefore strictly directional
and we have a feed-forward network. It is possible to introduce an iterative algorithm
for constructing the synaptic couplings in such a way that a specific input pattern is
transformed into the desired output pattern. The introduction of a hidden layer make it
possible to create algorithms classified as supervised learning: at each step the network
is adjusted by comparing the actual output with the desired output. Such step in the
algorithm is defined as epoch.
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For the S-shape correction in the middle compartment a perceptron was used with
four input variables: ηC , η∗ and the energy fractions deposited in the preshower and
front compartment. 16 were the hidden layers and the required output was the difference
ηBC − ηC .

It was found that, for a given odd-numbered cell, the best resolution could be obtained
using as learning sample the Monte Carlo sample relative to the same cell, after about
6000 epochs and applying the correction directly to the data.

However, contrasting results were found for different cells: for some of them the reso-
lution was better than the one obtained with the ordinary method by as much as 10%, but
for other cells the resolution was worse, as figure 22 shows. A reason for this behaviour
may be the way in which the energy fractions deposited in the calorimeter’s layers were
calculated: there are differences between data and Monte Carlo that have to be taken
into account using a weighting procedure that, at the time of the editing of this note, was
not fully understood.

For a more detailed description of how a perceptron can be used to correct S-shapes,
refer to [8].

7 Conclusions

A study of the position resolution along the η coordinate of a module of the ATLAS
electromagnetic calorimeter was presented.

An S-shape correction strategy based on logarithmic weighting for the front compart-
ment and analytical fit for the middle compartment was used. Some of the difficulties
encountered in this approach were outlined, such as the lack of an absolute measurement
of the incident beam direction, and should be taken into account in the planning of future
tests. The resulting distribution of the position resolution in η for test-beam data and
simulation were found to be in good agreement, and the variation of the resolution with
energy was also shown. The pointing resolution was found to be in agreement with what
was shown in the Technical Design Report [9].

Some results related to a neural network approach to the S-shape correction were also
presented, suggesting that more work in that direction may be fruitful.
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Figure 3: Difference between the x position in the last beam chamber and the same
position calculated from a straight-line fit involving only the first three chambers.
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Figure 15: θ resolution times the square root of the beam energy as function of η in cell
units, calculated using information from the front and middle compartments at φ = 10.
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Figure 16: Variation of η resolution across cell φ = 11, η = 13.
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Figure 17: Variation of η resolution across cell φ = 11, η = 27.
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Figure 18: Variation of η resolution across cell φ = 11, η = 38.
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Figure 19: Variation of η resolution with energy for the middle (closed squares) and front
(open squares) compartment. The results of the fit are presented in table 2.
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Figure 20: Variation of zvertex resolution with energy.
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Figure 21: Variation of the pointing resolution with energy.
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Figure 22: Ratio between the resolution calculated with a neural network (NN) method
for data and with the S-shape fit for data (closed squares) and simulation (open squares).
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