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Abstract

To harness the potential of quantum computing, increasing the number of quantum units,

a process known as scaling, is critical. Whereas qubits have traditionally been used as the

units for quantum computing, the development of multi-level systems (qudits), which offer

larger Hilbert spaces and advantages over qubits in cryptography and circuit complexity

reduction, requires new methods to characterise the quality of quantum gates and ensure

safe scaling. Randomised benchmarking offers a simple and inexpensive method for this

characterisation. This thesis reports advances in the characterisation of universal single-

and multi-qudit gates.

I introduce the characterisation of universal qutrit gates through the definition of an

optimal scheme that requires similar experimental resources as the standard method for non-

universal gates. The feasibility of my qutrit scheme is tested numerically using parameters

from experimental qutrit implementations. I then generalise my qutrit results and devise a

general scheme for a qudit system with arbitrary d. Because using the same construction for

qudits with d > 3 as in the qutrit case leads to more than two parameters, a different strategy

was necessary. I note that my qudit characterisation obtains an estimate of the average error

per gate; thus, this characterisation is collective. A more realistic characterisation requires

estimating the average gate fidelity of a single non-Clifford gate. In the last part, I generalise

my qudit method to individually, in contrast to the previous collective result, characterise

non-Clifford gates.

My schemes are relevant to at least two communities: experimental groups with a qudit

platform, as my work effectively characterises a complete gate set, and randomised bench-

marking theorists, who may be interested both in the gate set I introduce and in the schemes

I developed.
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Preface

Chapter 4 contains work published in the article by David Amaro-Alcalá, Barry C.

Sanders, and Hubert de Guise, “Universal qutrit randomised benchmarking”, “Phys. Rev.

A 109, 012621 (2024)”. Chapter 5 consists of work accepted in the “New Journal of Physics”:

David Amaro-Alcalá, Barry C. Sanders, and Hubert de Guise, “Randomised benchmark-

ing for universal qudit gates” “New J. Phys. (2024)”. The section on interleaved benchmark-

ing in Chapter 6 was accepted for the conference on multi-valued logic, where the author of

this thesis presented the work. The work is published on the preceedings: David Amaro-

Alcalá, B. C. Sanders and H. de Guise, “Qudit non-Clifford interleaved benchmarking,”

2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL), Brno, Czech

Republic, 2024. Additionally, the author expects to submit a collaborative paper on the

results of cycle benchmarking, which is discussed in §6.3.
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Chapter 1

Introduction

The motivation behind this thesis is to develop schemes capable of characterising qudit ex-

perimental implementations, of which there has been a recent increase in platforms and

applications. This thesis addresses two challenges: generalising dihedral benchmarking and

concocting schemes to characterise universal qudit gates; the term dihedral comes from the

fact that the set of unitary matrices used in the scheme forms a representation of the di-

hedral group [2, 3]. By adopting an algebraic approach, I use tools from representation

theory, ring theory, and previous randomised benchmarking (RB) schemes to develop my

generalisation of dihedral benchmarking. I also use quantum channels and previous experi-

mental implementations of randomised benchmarking schemes to assert the feasibility of my

schemes. Furthermore, the gate set resulting from this research is an approximation of a

unitary 2 design for qudits, potentially benefiting the study of t-designs.

1.1 Introduction

In this section, I summarise the content of this chapter, which itself is a summary of this

thesis. The underlying topic of this work is quantum computing [4]. Quantum computers

surpass, currently only in a theoretical proposal, classical machines in several tasks [5].

Crucial to realising this “advantage” are the operations, or gates, within the computer.
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There are two essential characteristics of a set of gates: quality and universality. Quality is

the maximum error rate among the gates, and universality is the capacity to approximate,

by arbitrary composition of members of the gate set, any unitary gate.

As indicated by the quantum threshold theorem [6], the quality of gates determines

the capabilities of a quantum computer. Accordingly, characterising gates is of essential

importance. Universality is also fundamental since, according to the Gottesman-Knill the-

orem [7, 8], a non-universal gate set implies that a quantum computer can be efficiently

simulated on a classical machine.

Definition 1.1 ([9]). By benchmark, [it is meant] a set of quantum circuits (a test suite)

together with instructions for how to run them (an experimental design), an analysis proce-

dure for processing the raw results, and finally an interpretation rule for drawing high-level

conclusions.

Definition 1.1 generality is necessary to embrace the wide range of benchmarking schemes

currently developed and in use. For specificity, I decrease the generality of Definition 1.1

and introduce the definition of benchmarking that is more appropriate for my thesis. Note

that, to avoid awkward sentences, I use characterising as a synonym for benchmarking.

Definition 1.2. A gate or set of gates is considered characterised if either the average gate

fidelity or an estimate of the average gate fidelity is assigned to the gate or gates.

I delay the introduction of a definition of a benchmarking scheme to Chapter 3, so

as to have several examples of randomised benchmarking schemes, therefore, avoiding a

complicated definition detached from the literature.

In this thesis, I study quality and universality within the framework of randomised bench-

marking schemes. Specifically, my research is about the characterisation of universal gate

sets through generalisations of randomised benchmarking [10]. Next, I discuss the content of

the present introductory chapter, which expands on the topics mentioned in this paragraph.

2



In Sec 1.2, on state-of-the-art, I discuss the current knowledge regarding the characteri-

sation gates acting on qudits, which are d-level systems [11], as well as the context in which

randomised benchmarking emerged.

In Sec. 1.3 I detail the schemes I aim to generalise and the gate sets that my schemes

characterise. Specifically, I discuss the characterisation of non-Clifford qudit gates using

different schemes, highlighting the pros and cons of each scheme. I also outline the constraints

I impose on my schemes to ensure they are faithful extensions; faithful, meaning the scheme,

reduced to the qubit case, is a known scheme. Furthermore, I comment on the computational

tools I employed during my research.

Then, in the section on my results—Sec. 1.4, I describe my schemes, highlighting the gaps

they addressed. In brief, my schemes represent a generalisation of dihedral benchmarking,

interleaved benchmarking, and cycle benchmarking. I specify the gates my schemes char-

acterise, the trade-offs between different schemes, and the specific challenges I overcome in

their design.

1.2 State-of-the-art

In this section, I discuss several concepts: a qudit, the historical context of randomised bench-

marking, the quantity that randomised benchmarking schemes estimate, and the vanguard

of randomised benchmarking schemes to characterise non-Clifford qudit gates.

Most studies in quantum computation focus on qubits [4]. Recently, however, systems

with more than two levels have gained interest, and multiple implementations—meaning an

experimentally-controlled manipulation of qudit systems, have been reported [12, 13, 14, 15].

Unadorned examples of d-level systems correspond to spin systems and truncated harmonic

oscillators [16].

Present qudit implementations include ion traps (for instance, an array of 40Ca+ atoms) [14],

neutral atoms [12], superconductors [13], semiconductors [15], and photons [17]. The appli-

3



cations of qudits are varied, including quantum communication [18], quantum teleporta-

tion [19, 20], quantum memories [21, 22], Bell-state measurements [23], spin chains [24,

13, 20, 25, 23, 26], in enhancing quantum error correction techniques [27, 28], in encoding

qubits [29] and qudits [30], simulation of many-body systems [31], quantum key distribu-

tion [32, 33, 34], simulation of high-energy physics [35, 36, 37, 38, 39, 40, 41, 42, 43], and

quantum computing [17, 44].

With the introduction of qudit systems, qubit-oriented methods need to be extended.

Overall, qudit generalisations of qubit techniques are not straightforward—as an example

(outside the scope of this thesis) consider the determination of SIC POVM, where the solution

to the problem for six-level systems is an open problem [45]. Among the tasks that need

generalisation, the characterisation of quantum gates is crucial.

The importance of gate set characterisation emerges from the damage of noise to quantum

computing [46] and, more directly, the quantum threshold theorem [6]. This theorem limits

the number of operations that can be implemented given a certain “error rate”: estimating

the error rate is key. If the noise is completely known, as achieved by quantum process

tomography, then the computation of the error rate is known [47].

Back in 2008, the characterisation of gates was carried out using quantum process to-

mography (QPT) [48]. In QPT, gates are reconstructed [48]; the reconstructed matrix is

then used to compute the error rate, the quantity used in the quantum threshold theorem

to asses the maximum depth circuits can be safely implemented on a given platform.

QPT, however, is practical only for a few qubits [49]; for systems with a large number of

qubits, the reconstruction of the noise requires an exponential amount of resources. More-

over, it assumes state preparation and measurement (SPAM) errors to be insignificant [50].

Therefore, to characterise systems with a large number of qubits, an alternative is needed:

that alternative is now available. It is called randomised benchmarking.

With the advent of randomised benchmarking in 2008 [49, 51], the two limitations of QPT

were addressed. The characterisation of the Clifford group, done by randomised benchmark-
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ing, is unaffected by SPAM errors and requires significantly fewer samples [52]. Whereas

in tomography, the noise is reconstructed, effectively estimating d4 − d2 parameters, in ran-

domised benchmarking, a single parameter is estimated: the average gate fidelity [53]. Intu-

itively, the average gate fidelity quantifies the similarity between the image of a noisy and

ideal gate acting on a randomly sampled pure state.

Existing randomised benchmarking schemes are applied to characterise universal qubit

gates and qudit Clifford gates [54, 2]. However, due to issues with the quantity estimated by

the original RB [55], RBS have been modified to obtain other figures of merit or to simplify

experimental requirements, or both [56, 57].

A recent key contribution to the randomised benchmarking ecosystem further supports

the utility of these schemes. The technique known as randomised compiling transforms most

forms of noise into a Pauli channel [58]. This result not only increases the usefulness of

RBS but also links the average gate fidelity to the worst-case characterisation, given by the

error rate [59]. This is especially relevant for the construction and design of fault-tolerant

devices [6].

The original randomised benchmarking scheme, along with its assumption that every gate

has the same noise, estimates the average quality over a gate set. Most implementations,

however, make use of composite primitive gates. In practice, there are multiple reasons why

this assumption is invalid, e.g. different gates are implemented using different combinations

of primitive gates. To address this limitation, interleaved benchmarking was introduced [60].

Interleaved benchmarking estimates the average gate fidelity of a target gate. By using

an auxiliary gate set with known average gate fidelity, interleaved benchmarking estimates

the average gate fidelity of the composed noise between the auxiliary gate set and the target

gate. From the fidelity of the composition of noise, the average gate fidelity of the target

gate. The gate that is wanted to separately characterise, is derived.

There are methods within typical randomised benchmarking schemes to characterise an

arbitrary gate set [61, 56]. These schemes, however, are feasible only for a low number of
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qubits. The reason is that the statistical methods required for such methods are unfeasible

for higher-level systems or for multi-qudit systems or both [56].

Another set of theoretical proposals, which I label as single-parameter models, study

randomised benchmarking from a matrix theory perspective [62]. These schemes ignore the

group structure of the gate set and prove the conditions for which the fidelity has a single

parameter. These schemes are important because they show when the group structure of

the group is superfluous. Nevertheless, these schemes fail to provide an unbiased character-

isation, as these schemes require high fidelity fidelity gates.

Randomised benchmarking schemes can also be used to estimate other quantities. For

instance, the amount of leakage, loss, and coherence of quantum gates [63, 64, 65]. How-

ever, these studies are mostly relevant for Clifford gates, since these gates are commonly

implemented with respect to other gate sets. Therefore, I do not discuss them in detail.

1.3 Approach

In this section, I discuss the approach of my thesis. I list the tools and methodology I use

to attain my goals; I include a brief motivation for their application.

My scheme aims to characterise non-Clifford gates [2, 66]. To achieve this, I first gener-

alise dihedral benchmarking [2], which characterises a gate set featuring a T gate [55]. To

obtain a separate and more precise characterisation of a non-Clifford gate, I extend cycle

benchmarking [67]. The techniques I require to extend dihedral benchmarking and cycle

benchmarking differ, although both characterise a non-Clifford gate.

To ensure that my schemes characterise any diagonal qudit T gate, I investigate the most

general form of a diagonal T gate; that is, any diagonal non-Clifford gate that, together with

the Clifford gate set, generates a universal gate set. I use the T gates I identify in my

construction of the gate set that generalises the dihedral group. Because of this constraint,

my schemes characterise any diagonal T gate.
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I make my results practical to most forms of noise by using two representations of quan-

tum channels widely discussed in textbooks [4, 68]. Specifically, I use the Pauli-Liouville

and Kraus representations to analyse my schemes [69, 70]. Additionally, I use the χ-

representation [48] to approximate the fidelity as the composition of channels, which I apply

in my generalisation of interleaved benchmarking.

I use group theory and representation theory of semidirect products [71]. Using the

semidirect product, I specify a natural generalization of the dihedral group. Furthermore,

through my investigation, I provide a novel simplification of a result from the theory of

induced representations [71].

I rediscover a mathematical identity between the Bell numbers as the average over par-

titions of an integer [72]. I use tools from combinatorics in my proof [72, 73]. Specifically,

I employ generalised generating functions, requiring the manipulation of series, where each

term is, in turn, an infinite product.

I consider an extension, of dihedral benchmarking or cycle benchmarking, successful

based on two criteria: fewer gates required than Clifford randomised benchmarking and only

two parameters needed to estimate the average gate fidelity. Both constraints are critical for

the scalability of the scheme. The restriction on the number of parameters is motivated by

the following observation: using an arbitrary gate set, the number of parameters increases

as O(d2n) [56, 10], where n is the number of qudits.

To produce a feasible scheme, I need to estimate the number of samples required in each

experiment. I use tools from statistics to estimate this number in a randomised benchmarking

experiment. In particular, I apply Hoeffding’s inequality and Chernoff bound [74] to estimate

the sampling required to obtain confidence intervals for the average gate fidelity.

Also, to ensure the feasibility of my schemes, I investigate and extract the experimental

resources required from reported implementations [13]. I study the experimental capabil-

ities, such as maximum circuit depth, number of repetitions per circuit, the time a gate

takes to apply, and so forth, that experimental groups report. I use these results, along
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with my numerical simulations, to ensure my scheme is feasible with current experimental

implementations.

I employ fundamental notions of ring theory, which I need to study non-prime level

systems. In particular, I use a generalization of row-reduction for matrices with entries in a

ring. I apply this procedure to construct of the generators of the gate set I propose [75]; this

generalization is not a straightforward adaptation for complex matrices: various key steps

of the algorithm are not applicable in the ring case [75]. I use this row-reduction scheme to

compute the minimal generating set of a group. I also use the language of C∗-algebras and

bounded operators for finite-dimensional spaces to present my results in the most general

form and do not depend on a specific representation.

1.4 Results

My first result is a scheme to characterise any diagonal qutrit T gate. By using the natural

generalisation of the X gate and any diagonal T gate, I provide the resulting randomised

benchmarking scheme, which includes: circuit design, number of samples required, and data

analysis.

My second achievement is the development of a gate set, akin to the dihedral group for

qubits but tailored for qudits. I call this gate set the real hyperdihedral group (rHDG). An

outstanding property of the gate set is that its Pauli-Liouville (PL) representation decom-

poses into three real irreducible representations; this property is unaffected by the dimen-

sional of the system and the number of qudits. This property is fundamental for my next

result.

My third result is the generalisation of dihedral benchmarking for single and multi (con-

trolled) qudit gates. This is my most important result. My scheme, using the rHDG, faith-

fully generalises dihedral benchmarking; ‘faithfully’ means that it shares all the properties

of the original scheme except being d-dimensional instead of two-dimensional.
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Next, I designed a scheme to characterise a T gate individually; ‘individual’ means I

assume the noise of the T gate is different from the rest of the gates. My previous three

results characterised a gate set that included a T gate; for this result, I now only characterise

the T gate, not the entire gate set. The characterisation is more precise.

Then I present some issues in the literature: the misuse of a representation of the ququart

Clifford gate set. These issues are important since these schemes are being used [54, 14] and

reported. However, as I show here, the characterisation resulting from these schemes is

flawed.

1.5 Organisation

The thesis is logically organised as follows. Chapters 2 and 3 contain background material.

Chapters 4 through 6 are about my results. Chapter 5 is the most important since it

presents the main result and positively answers the original research question: Can dihedral

benchmarking be extended to qudit systems?

In a bit more of detail, the content of each chapter discuss the following topics:

• The problem of characterising gates, and current methods (Chap. 3) shows the need

to characterise T gates and the need for the

• HDG for qutrits (Chap. 4), which does not generalize so well to qudits so we move to

• rHDG for qudits (Chap. 5), which actually works so well that we move to

• applications of rHDG to other schemes (Chap. 6).

Each step in the sequence comes with a peer-review publication, either already published or

accepted for publication.

In the last chapter, I present a summary of my results and a list of open problems.

These open problems go beyond randomised benchmarking by shedding light on practical

limitations of quantum computing, such as universal gate sets for qudit systems.
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Chapter 2

Characterisation of quantum channels

2.1 Introduction

In this first background chapter, I discuss the mathematical methods and figures of merit that

randomised benchmarking schemes estimate. I review the twirling procedure, which is critical

in randomised benchmarking schemes. Next, I discuss how a randomised benchmarking

scheme estimates the quality of quantum gates. I follow with a discussion on the parameters

estimated by a randomised benchmarking scheme. I conclude with an exposition of the

link between the sequence fidelity and the average gate fidelity and the role of the twirling

procedure in this relation. I also discuss the scheme called gate set tomography and cross-

entropy benchmarking to compare the pros and cons of using randomised benchmarking for

gate characterisation; for historical context, I discuss process tomography. Throughout this

section, I use the notation that will be used later in the thesis.

2.2 Representation of quantum channels

In this section, I swiftly review quantum channels [68]. Then I discuss the representations

of quantum channels that are used in randomised benchmarking schemes.

As my thesis focuses on finite Hilbert spaces h, it is known that linear operators acting
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on h can be expressed as d× d matrices [76]. In quantum mechanics, this can be done more

explicitly. The bra-ket notation ϱ = |ψ⟩⟨ψ| highlights that the density operators reside in a

tensor space formed by the pair state |ψ⟩ and its dual ⟨ψ|, which represents the set of linear

mappings from h to C.1

Now, I discuss the sets of states and mappings between states that I use in my thesis.

Let h′ denote the Hilbert space with elements given by d × d complex matrices and inner

product tr
(
uv†
)

for any u, v ∈ h′, where † denotes the Hermitian conjugation operation. The

set of density matrices is defined as

h := {ϱ ∈ h′ : tr ϱ = 1, ϱ ≥ 0, ϱ is Hermitian}. (2.1)

Next, I define the set of completely positive and trace preserving (CPTP) mappings from h′

to h′, which I denote B(h′). For any E ∈ B(h′) there is a finite set of d× d complex matrices

A = {A0, . . . , Ar} (0 ≤ r < d2) satisfying
∑

A∈AA
†A = I, such that for any ϱ

E(ϱ) =
∑
A∈A

AϱA†. (2.2)

These matrices A are known as Kraus matrices, and the mapping E is used to compute the

representations of semigroups in the case of quantum channels, as discussed in the following

sections.

In randomised benchmarking schemes, two ubiquitous representations of quantum chan-

nels are commonly used: Pauli-Liouville and Kraus-operator representation. In this subsec-

tion, I review the Pauli-Liouville representation, which is the representation most commonly

used in randomised benchmarking schemes.

Before discussing the representation, I review the set of qudit Pauli matrices, which forms

a basis for d-square complex matrices. For qubits, the Pauli group forms the foundation of

1Consider the ordered basis for h be {|i⟩ : i ∈ {0, 1, . . . , d− 1}}. The mapping ϕ, which maps the linear
operator |i⟩⟨j| to the matrix δi,j , where all entries are zero except for the i, j entry, which equals one, is an
isomorphism.
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the stabiliser formalism [4]. This formalism efficiently represents certain classes of states and

their evolution with respect to the normaliser of the Pauli group, known as the Clifford gate

set.

Moreover, error-correcting schemes exploit this efficiency to study noise in the form of

Pauli channels [4]. These schemes leverage the compact representation provided by the

stabiliser formalism to simplify the analysis and correction of errors. Now, I use the Pauli

group to define a representation of matrices; the Pauli group also appears in my discussion

of the Clifford group.

The first ingredient to define the Pauli-Liouville representation is the pair of matrices X

and Z, known as clock and shift matrices, introduced by Sylvester [77] and re-introduced,

among others, by Schwinger [78]. These matrices are defined in terms of their action on the

computational basis:

X |i⟩ := |i+ 1⟩ and Z |i⟩ := ωi
d |i⟩ , (2.3)

where i ∈ [d] and

ωd := exp(2πi/d). (2.4)

Using X and Z, the d2 Heisenberg-Weyl matrices are defined as

Wd(i−1)+j := X iZj; (2.5)

the matrices Wi are the unitary generalisation of the Pauli matrices [79, 4]; a Hermitian

generalisation is the set of generalised Gell-Mann matrices [80].

Definition 2.1 ([70]). Let E be a CPTP mapping. Then the Pauli-Liouville representation

of E is a matrix Γ(E) with entries

Γ(E)i,j := d−1/2 tr(W †
i E(Wj)). (2.6)

Definition 2.1 should be applied for a channel E in its Kraus form; otherwise, applying
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Eq. (2.6) is invalid. This issue can be seen in the computation of the Pauli-Liouville repre-

sentation of the depolarising channel.

Now, I verify that the mapping Γ is a homomorphism. Consider two channels, E0 and

E1. The composition of two channels is a channel with action E0 ◦ E1(ϱ) := E0(E1(ϱ)), where

I use ◦ to denote composition. From the definition of the Pauli-Liouville representation [68],

it can be verified that for any pair of channels E0 and E1, Γ satisfies:

• Γ(E0 ◦ E1) = Γ(E0)Γ(E1).

• Γ(E†) = Γ(E)†.

Since the set of channels forms a semigroup, calling Γ a representation is justified.

With respect to the Pauli-Liouville representation, I also need to define a representation

of the states. Thus, I implicitly define the representation for a density operator ϱ with

respect to the Heisenberg-Weyl basis as

|E(ϱ)⟩⟩ = Γ(E)|ϱ⟩⟩; (2.7)

the entries

|ϱ⟩⟩i := d−1/2 tr
(
W †

i ϱ
)
. (2.8)

This concludes the description of the Pauli-Liouville representation.

The next representation, which I call the Kraus representation [81], is more useful in

the context of representation theory since it appears naturally in the isomorphism between

the set of endomorphisms of h and the tensor product of h and its dual. Computing this

representation requires the Kraus matrices in Eq. (2.2) and the vectorisation of density

matrices, which I now discuss.
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For any ϱ with entries

ϱ =


ϱ0,0 . . . ϱ0,d−1

...
. . .

...

ϱd−1,0 . . . ϱd−1,d−1

 , (2.9)

the reshaping operation vec yields

vec(ϱ) := (ϱ0,0, . . . , ϱ0,d−1, . . . , ϱd−1,0, . . . , ϱd−1,d−1). (2.10)

Note that from Eq. 2.10 vec(|i⟩⟨j|) = |ij⟩. Consider three d × d matrices A, ϱ, and C.

The vectorisation in Eq. 2.10 yields

vec(AϱC) = A⊗ C⊤vec(ϱ). (2.11)

Now, I prove Eq. (2.11).

vec(ABC) = vec(
∑
ij

(ABC)ij |i⟩⟨j|) (2.12)

= vec(
∑
ijk

(AB)ikCkj |i⟩⟨j|) (2.13)

= vec(
∑
ijkl

AilBlkCkj |i⟩⟨j|) (2.14)

=
∑
ijkl

AilBlkCkj vec(|i⟩⟨j|) (2.15)

=
∑
ijkl

AilBlkCkj |ij⟩ . (2.16)
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On the other hand,

(A⊗ C⊤) vec(B) = (A⊗ C⊤) vec(
∑
ij

Bij |i⟩⟨j|) (2.17)

=
∑
ij

Bij(A⊗ C⊤) |ij⟩ (2.18)

=
∑
ij

Bij((
∑
uv

Auv |u⟩⟨v|)⊗ C⊤) |ij⟩ (2.19)

=
∑
ij

Bij((
∑
uv

Auv |u⟩⟨v|)⊗ (
∑
kl

Ckl |l⟩⟨k|)) |ij⟩ (2.20)

=
∑

ij,uv,kl

Bij((Auv |u⟩⟨v|)⊗ (Ckl |l⟩⟨k|)) |ij⟩ (2.21)

=
∑

ij,uv,kl

BijAuvCkl |ul⟩⟨vk| |ij⟩ (2.22)

=
∑

ij,uv,kl

BijAuvCklδv,iδk,j |ul⟩ (2.23)

=
∑
ij,u,l

BijAuiCjl |ul⟩ (2.24)

by re-labelling the dummy indices:

=
∑
ij,l,k

BlkAilCkj |ij⟩ , (2.25)

which is equal to Eq. (2.16). Therefore, the identity written in Eq. (2.11) is proven.

Now, I illustrate the application of the vectorisation operation in the study of quantum

channels. Using the vectorisation of a matrix ϱ in Eq. (2.10), the Kraus representation of E

is implicitly defined by

vec(E(ϱ)) =
∑
A∈A

AϱA† =
∑
A∈A

(A× Ā) vec(ϱ) = ΓK(E)|ϱ⟩⟩K, (2.26)

where ΓK(E) :=
∑

A∈AA × Ā, the bar ¯ denotes complex conjugation, and × denotes the

Kronecker product. The vectorisation consistent with the Kraus representation is computed
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as

(| |ψ⟩⟨ψ|⟩⟩K)(i−1)d+j := ⟨i|ψ⟩ ⟨ψ|j⟩ . (2.27)

Next I discuss how to obtain ΓK from Γ.

The Pauli-Liouville representation is linked to the Kraus representation by changing the

basis used in the computation of the representation. Given a channel E , Γ(E) can be obtained

by replacing the HW matrices in Eq. (2.6) with the matrices δi,j. Having the representations

Γ and ΓK, the next step is to review the twirling procedure.

In the following section, I study how to reduce the number of parameters in a channel.

This reduction is fundamental for the practicality of randomised benchmarking schemes.

2.3 Representation theory

In this section, I introduce several notions related to representation theory that are used

in my thesis. I start with basic definition of reducible and irreducible irreps, followed by

the celebrated Schur’s lemma. Then I conclude with the rearrangement theorem and the

importance of inequivalent irreps in my thesis.

In this section, every definition starts with the most formal version, and I conclude

with a simplified version that reduces the tediousness. I do so to define a group and a

representation. A group is a pair G, •, where G is a finite set, and • is a binary mapping

(takes two arguments) such that:

• for any a, b, c ∈ G, a • (b • c) = (a • b) • c.

• there is some e ∈ G such that for every g ∈ G e satisfies g • e = e • g = g.

• for every element g ∈ G there is some g−1 such that g • g−1 = g−1 • g = e.

In the remainder of this thesis, I do not use the pair to denote a group; instead, I only use

G.
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Let ρ be a mapping taking as arguments elements of a group G to the set of linear

mappings on a vector space V . Then ρ is a representation of G if it satisfies, for any

a, b ∈ G,

ρ(ab) = ρ(a)ρ(b), (2.28)

which makes ρ a homomorphism.

A representation ρ is reducible if there is a non-trivial subspace Σ ⊂ V such that for all

g ∈ G and for all v ∈ Σ, ρ(v) ∈ Σ, which is concisely written as

ρ(Σ) ⊂ Σ. (2.29)

A representation is irreducible if the only subspaces Σ that satisfy Eq. (2.29) is the complete

and the null subspaces. For example, consider a representation ρ acting on V such that

V = Σ0 ⊕ Σ1, (2.30)

where Σ0 and Σ1 are two minimal invariant subspaces. Minimal means that any other

invariant subspace W is either Σ0 or Σ1 or W strictly contains Σ0 or Σ1. Similarly to the

decomposition of vector spaces, the mapping ρ is decomposed. I denote the decomposition

with the same symbol as for vector spaces:

ρ = ρ0 ⊕ ρ1, (2.31)

where ρi is the restriction of ρ into Σi, with i ∈ {0, 1}.

In physics, the subspace on which a representation ρ acts is also called a representation.

In particular, the minimal invariant subspaces are also known as irreducible representations

or irreps, for short. This abuse of language, for the term representation, comes in handy

in the study of representation decomposition. Decomposition of a representation refers to

identifying the invariant subspaces, and for each invariant subspace, a basis. The basis of
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each subspace is then used as a basis for the whole Hilbert space, and the states are labelled

according to the invariant subspace they belong. Then, it is said that ρ decomposes into two

irreps Σ0 and Σ1.

A somehow simple result from group theory is useful in many parts of this thesis. Consider

a group G. The rearrangement theorem states that, considering any ordered list of elements

of G:

(g0, g1, . . . , g|G|), g0, g1, . . . , g|G| ∈ G (2.32)

multiplying, without loss of generality, by the left each element of the sequence with another

fixed element of G, say h ∈ G, only results in a permutation of the group elements

h • (g0, g1, . . . , g|G|) = (h • g0, h • g1, . . . , h • g|G|) = (gσ(0), gσ(1), . . . , gσ(|G|)), (2.33)

where σ is some permutation.

The next item in the representation theory agenda is Schur’s lemma. Consider a linear

mapping M acting on a vector space V . Given an irrep ρ of a group G, Schur’s lemma states

that if for any g ∈ G

ρ(g)M = Mρ(g), (2.34)

then M is a multiple of the identity: M = αI [82].

Now, I construct a linear mapping that is used in randomised benchmarking. Again ,

consider a linear mapping M acting on a vector space V . Now for a representation ρ compute

[M ]ρ :=
∑
g∈G

ρ(g)Mρ(g)−1. (2.35)
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Now, I prove that [M ]ρ commutes with any representative ρ(h):

ρ(h)[M ]ρ =
∑
g∈G

ρ(h)ρ(g)Mρ(g)−1 =
∑
g∈G

ρ(h • g)Mρ(g)−1, (2.36a)

=
∑
g∈G

ρ(h)ρ(g)Mρ(g)−1 =
∑
g∈G

ρ(h • g)Mρ(h−1 • h • g)−1 (2.36b)

=
∑
g∈G

ρ(h)ρ(g)Mρ(g)−1 =
∑
g∈G

ρ(h • g)Mρ(h • g)−1ρ(h−1)−1 (2.36c)

= [M ]ρρ(h). (2.36d)

This shows that [M ]ρ is a multiple of the identity for any M . Thanks to the cyclic property

of the trace, I can compute the proportionality constant.

Compute the trace of [M ]ρ:

tr[[M ]ρ] =
∑
g∈G

tr
[
ρ(g)Mρ(g)−1

]
=
∑
g∈G

tr[M ] = |G| tr[M ]. (2.37)

By Schur’s lemma, on the other hand, I know that tr[[M ]ρ] = αd, where d is the dimension

of V . Thus αd = |G| tr[M ], therefore

α =
|G|
d

tr[M ], (2.38)

thus now [M ]ρ is completely known.

Now, I discuss the version of the previous result (the form of the operator [M ]ρ ) that

is used in randomised benchmarking. I need to discuss the concept of inequivalent irreps

in the decomposition of a representation. For this discussion, a representation refers to the

mapping and not to the vector space on which it acts. Two irreps are inequivalent if they

are not isomorphic; that is, one cannot be transformed into the other by a change of basis.

A representation decomposes into inequivalent irreps if each irrep in the decomposition is

non-isomorphic to the rest of irreps.
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Let ρ decompose into n irreps ρi, with i ∈ {0, . . . , n− 1}, such that

V = V0 ⊕ · · · ⊕ Vn−1, (2.39)

where each ρi acts invariantly on Vi. Then, for any linear operator M ,

[M ]ρ = α0I⊕ · · · ⊕ αn−1I, (2.40)

where αi := |G|
di

tr[M ], i is the dimension of Vi. In following sections, unless explicitly

mentioned, the subspaces V are obviated and only the representation ρ is used. Additionally,

I use Σi to denote the subspaces instead of Vi to keep the notation that I used in my papers.

I conclude this section with a brief review of the basic groups that appear later in this

thesis. These groups are cyclic, symmetric, and dihedral groups [3]. To avoid dealing with

unnecessary abstract definitions for a group, the groups I use in my thesis are introduced

with either a geometric representation or an algebraic representation, whichever is simpler.

Let n ∈ N. The elements of the cyclic group Cn are powers of exp(2πi/n). The symmetric

group Sn is the group of all permutations of n elements. The dihedral group Dn is the group

of transformations that leave a regular polygon with n sides invariant.

2.4 Clifford hierarchy

In this section I explain the Clifford hierarchy. Clifford gates have as motivation the tele-

portation scheme. In this scheme, the operations that can be teleported are Clifford op-

erations [83]. The Pauli operations are denoted by C1. The Clifford gate set is defined

as

C2 := {U ∈ U(d) : UPU † ∈ C1}. (2.41)

The set C2 is also known as the normaliser of the Pauli gate set. In the teleportation scheme,

the normalisation property is exploited to apply the gate U to the teleported state. In the
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same fashion, the next level of the Clifford hierarchy can be defined as

C3 := {U ∈ U(d) : UPU † ∈ C2}. (2.42)

Note that any gate G in C3 but not in C2 requires the composition of two teleportation circuits

to apply G. In this thesis, my primary objective is to introduce a scheme to characterise

operations in C3 \ C2, that is, operations in the third level of the Clifford hierarchy that are

not Clifford.

2.5 Twirl

In this section, I discuss the context in which the averaging process known as twirling

emerged. Then I provide the definitions and notations used in the rest of this thesis for

mappings between channels.

The procedure known as twirling was introduced in the context of entanglement purifi-

cation [84]. In entanglement purification, the goal is to use several copies of a noisy bi-qubit

state to obtain a high-fidelity Bell state. In this procedure, a state invariant under any bi-

qubit unitary transformation is required. Consider a state ϱSS′ on a bi-partite system SS ′.

Then, ϱSS′ is invariant under any bi-qubit unitary transformation iff

ϱSS′ = (U ⊗ U)ϱSS′(U † ⊗ U †),∀U ∈ U(2). (2.43)

As consequence of the rearrangement theorem discussed on Eqs. (2.36), the invariance with

respect to any bi-qutrit unitary can be achieved by averaging over the conjugates of the state

ϱ with respect to each group representative.

[ϱSS′ ]O = E
U∈O

UϱSS′U †, (2.44)
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where the notation Es∈S refers to the average over the uniform measure over S:

E
s∈S

f(s) :=
1

|S|
∑
s∈S

f(s). (2.45)

This procedure is known as twirling, and [ϱSS′ ]O is the twirl of ϱSS′ with respect to the group

representatives of O, where representative means the image of a representation [82]. Now, I

discuss another role in which twirling appears in the context of quantum information.

The concept of a superselection rule in quantum mechanics, that emerges to explain the

lack of experimental evidence of certain transitions between states in a physical system.

While standard quantum mechanics, based on the three “modern” postulates [4, 85], allows

transitions between states with different eigenvalues, such as transitions between states of

different charges, this has not been observed in practice. For instance, consider a system

with a charge operator: although quantum mechanics allows transitions between states of

different charges, no experimental evidence supports these transitions. A consequence of this

is that states being in a linear superposition of states with different charge are prohibited.

This discrepancy is addressed by the introduction of superselection rules, which are moti-

vated by the need to exclude unphysical phenomena. A superselection rule ensures that only

transitions between states with the same eigenvalue (such as charge) are allowed, thereby

prohibiting transitions between states of different eigenvalues. Consequently, this prohibition

becomes a defining characteristic of superselection rules for a given physical system [86].

In the context of quantum information, the lack of a reference frame (an undefined phase,

for example) induces a superselection rule [87]. The superselection rule, in this case, is to

forbid transitions between states with different phase. One consequence of a superselection

rule is that the states must commute with some symmetry operators. As in the previous case

of entanglement purification, a state that commutes with every operator in the symmetry

group is constructed by twirling [87].

In this subsection, I discuss the role of twirling in randomised benchmarking schemes. I
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highlight the Kraus representation and its relation to the twirl, as well as the importance

of non-degenerate representations. In the rest of the thesis, I assume representations with

no multiplicity, meaning, only inequivalent irreps, which is a concept introduced in Sec. 2.3,

appear in the decomposition of a representation [3]. Designing schemes with multiplicity-free

representations simplifies the study and is also a constraint that I impose on my schemes.

The twirling procedure requires four ingredients: a Hilbert space h, a group G, an irrep γ

of G acting on h, and a matrix M acting on h. Before proceeding further, I introduce a

notation I use throughout this thesis. Consider a finite set S := {s0, . . . , sl} and a mapping

f : S → C. If the set S is known from the context, I omit writing it and just write Es. Then

the twirl of M by γ is, as computed in Eq. (2.38),

[M ]G := E
g∈G

γ(g)Mγ(g)† = I tr(M); (2.46)

the identity I should be seen as the projector onto h.

Now, I compute the form of the twirl using the concepts introduced in Sec. 2.3. Suppose

instead γ is reducible and decomposes into two inequivalent irreps: γ = γ0 ⊕ γ1, such that

γ0 and γ1 are inequivalent. If the irreps are equivalent, then, as I discuss in the section on

my qutrit results, the sequence fidelity has an oscillatory contribution, which is difficult to

statistically recover requiring more sophisticated fitting resources [56]. This decomposition

implies γ has two invariant subspaces in end(h), namely h0 and h1:

end(h) = h0 ⊕ h1. (2.47)

I label the projectors from end(h) onto hi as Πi. The twirl of M with respect to γ is

[M ]G = E
g∈G

γ(g)Mγ(g)† =
∑
i

Πi
tr(ΠiM)

dim(hi)
=
∑
i

Πiηhi(M), (2.48)

which for a single irrep decomposition simplifies to Eq. (2.46). The value of ηhi is ob-
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tained similarly to the one in Eq. (2.38). Originating in randomised benchmarking for

gate-dependent noise [88, 89], the quantity

ηhi(M) :=
tr(ΠiM)

dim(hi)
(2.49)

is known as the eigenvalue associated with irrep hi [88]. These eigenvalues, as I discuss later,

are proxy quantities to estimate the average gate fidelity.

Now, I describe the connection of a unitary representation with the Kraus representation;

for a given unitary representation γ, the corresponding Kraus representation is

ΓK(g) := γ(g)⊗ γ̄(g) ∈ end(h). (2.50)

Assuming ΓK decomposes as a sum of l (an integer between 1 and d2) inequivalent irreps:

end(h) ∼= h1 ⊕ h2 ⊕ · · · ⊕ hl, (2.51)

the twirl of channel E by a group G with one irrep γ is defined as

[E ]G := E
g∈G

ΓK(g)ΓK(E)ΓK(g)† =
∑
i∈[l]

Πiηhi(ΓK(E)) (2.52)

The decomposition in Eq. (2.52) is key to my investigation.

Twirling by the Clifford and Pauli groups is commonly done in the randomised bench-

marking literature [90]. The twirl of a channel with respect to the Clifford group is a totally

depolarising channel [51]; the twirl with respect to the Pauli group is a Pauli channel [66]. In

representation theory terms, it implies that the Kraus representation of the Clifford group

decomposes into three inequivalent irreps; the Kraus representation of the Pauli group de-

composes into d2 inequivalent irreps.

This is a good place to discuss the semidirect product as it appears in the literature [91]
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and then introduce the way I use it throughout my research. Consider a group N and a

subgroup of the group of automorphisms of N called G. I recall that a member of the group

N is a bijective mapping from G to G. Because N is finite, a member of N is a permutation

over G. The outer semidirect product between G and N is formed as follows. Let g, h ∈ G

and n,m ∈ N , then the product between (g, n) and (h,m) is

(n, g) • (m,h) := (n ◦m,m(g) • h), (2.53)

where n ◦m is the composition of automorphism and m(g) the action of m on g. The set

G × N together with the product defined in Eq. (2.53) is known as the semidirect group

between G and N and is denoted by G⋉N .

Instead of using the abstract definition of the previous paragraph, I use a practical form

with the help of representations; this is the form mostly used by physicists [92]. Consider

a group N with a representation γ. Consider another group G with a representation ρ.

Further assume representations γ and ρ satisfy the following property: for any g ∈ G and

any n ∈ N ρ(g)γ(n)ρ(g)† = γ(n′), for some n′. Then the set of matrices spanned by

{γ(n) : n ∈ N} and {ρ(g) : g ∈ G} is a representation of G⋉N : every element is written as

{ρ(g)γ(n) : (g, n) ∈ G×N}.

Now, I illustrate the definition of a semidirect product based on representatives with the

case of the dihedral group D16 found in the paper on qubit universal benchmarking [2, 66].

Consider the matrices

T =

ω16 0

0 ω7
16

 and X =

0 1

1 0

 (2.54)

where ω16 is exp(2πi/16) and ω16 its complex conjugate. A representation γD16 of the dihedral

group is

γD16(x, t) := XxT t, (2.55)

where (x, t) ∈ C2 ×C16 denotes an element of D16
∼= C2 ⋉C16; I use both x and t to denote
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elements of a cyclic group (C2 and C16) as integers of a ring (Z2 and Z16).

I identify the terms of the representation γD16 according to the notation I introduced in

this section: G = C2, N = C16, γ(x) = Xx, and ρ(t) = T t. The multiplication rule is

Xx1T t1Xx2T t2 = Xx1+x2T (−1)x2 t1+t2 , (2.56)

which is identified using the following algebraic manipulations

Xx1T t1Xx2T t2 = Xx1Xx2X−x2T t1Xx2T t2 , (2.57)

= Xx1+x2(X−x2T t1Xx2)T t2 , (2.58)

by comparison of the entries resulting from conjugating with respect to Xx2 :

= Xx1+x2T (−1)x2 t1T t2 , (2.59)

= Xx1+x2T (−1)x2 t1+t2 . (2.60)

Using the representations γ and ρ, a representation of D16 is constructed.

I conclude this section by defining some notation used throughout my thesis. Firstly, G

denotes an abstract group [91], and g ∈ G is a group element. Given a representation γ of

G, γ(g) is the representative of g.

More importantly, in the context of randomised benchmarking schemes, are the concepts

of noisy and ideal gates. I discuss first ideal gates. Let G be a finite group with elements

{g}. Let ϱ be a density matrix and γ a representation of G. The ideal gate (denoted by a

caret) corresponds to the map

ĝ(ϱ) := γ(g)ϱγ(g)†. (2.61)

Noise models for gates are divided into two categories: gate-independent and gate-dependent,

which refer to whether the error is the same or varies accross the gate set.
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Noisy gates are denoted with a tilde above them, but the explicit form depends on the

application. The most common form of noisy gate is

g̃(ϱ) := Eg ◦ ĝ(ϱ), (2.62)

where the subscript g denotes dependence on the gate; in the case of gate-independent noise,

g̃(ϱ) = E ◦ ĝ(ϱ) (◦ denotes composition). For a T gate (or, generally, any non-Clifford gate),

the noisy gate is of the form

T̃ := T̂ ◦ ET . (2.63)

The inversion in order of application for the T gate is valid and exclusively done by con-

venience [93, 60]. The only condition is to be consistent with the ordering throughout the

analysis. Other forms of including noise are ad-hoc and are discussed in their context.

2.6 Context for the introduction of randomised bench-

marking

In this section, I write down the main actors present during the time of the formulation of

randomised benchmarking. Whereas the notion of twirl is fundamental and thus discussed in

its own section, two main actors were also present: process tomography and unitary designs.

Process tomography [94, 48, 95] is a well-known technique for the reconstruction of quan-

tum operations [4]. This technique requires total knowledge of the input states of the systems

or assumes the input states are ideal. From this assumption, standard state tomography al-

lows for the recovery of the matrix entries of the χ-representation of a CPTP mapping. For

single qudit gates, the tomographic procedure requires estimating d4−d2 real parameters, see

my proof in Appendix B.4. The number of experiments employed in tomographic techniques

scales exponentially with the number of qudits, n, and so becomes rapidly impractical in

terms of resources (such as computing time and lab time) required.
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The motivation for randomised benchmarking becomes clear in light of my summary of

process tomography. The exponential scaling justifies the claim that tomography does not

scale well. One of the main advantages of randomised benchmarking over tomography is its

much better scaling with d and n. Additionally, assuming perfect states is inconsistent and

unrealistic. The reason is that to prepare states, gates are applied to a unique state, usually

|0⟩. Thus, by using process tomography, the characterization becomes inconsistent as it

always relies on either improperly characterised gates or improperly characterised states.

The second important ingredient for randomised benchmarking, as it is currently known,

is unitary 2-designs [96]. Based on spherical designs [97], Dankert et al. introduced the

concept of unitary 2-designs to estimate second moments with respect to the Haar measure of

the unitary group. Furthermore, they realised that the Clifford group, for prime dimensions,

is a unitary 2-design. Notably, twirling with respect to the Clifford group was introduced

earlier by DiVincenzo et al. [98].

A unitary 2-design is formally defined as a finite set of matrices U = {Ui : i ∈ I}, where

I is an index set, that satisfies the following condition:

∫
dUU⊗2 ⊗ (Ū)⊗2 =

∑
i∈I

U⊗2
i ⊗ (Ūi)

⊗2, (2.64)

where dU is the Haar measure over the unitary group. The importance of Eq. (2.64) and

unitary 2-designs in randomised benchmarking can be seen through the vectorisation trans-

formation. For a channel E , let the twirl with respect to the unitary group and a unitary

2-design U be denoted [E ]U(d) and [E ]U, respectively. Then:

[E ]U = E
i∈I

ΓK(Ûi)ΓK(E)ΓK(Ûi)
†, (2.65)

applying the vectorisation operation:

vec([E ]U) = E
i∈I
Ui ⊗ Ūivec(ΓK(E)), (2.66)
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which, by the definition of unitary 2-design:

=

∫
dUU ⊗ Ūvec(ΓK(E)), (2.67)

applying the inverse vectorisation transformation:

∫
dUΓK(Û)ΓK(E)ΓK(Û)† = [E ]U(d). (2.68)

In summary, I have shown that twirling with respect to a unitary 2-design produces the same

operator as twirling with respect to the unitary group.

One result from Dankert et al. [96] is that the Clifford group forms a unitary 2-design.

This fact was later applied to show that twirling any CPTP mapping reduces it to a to-

tally depolarising channel. Showing that twirling results in a totally depolarising channel is

equivalent to the fact that a gate set is a unitary 2-design, as derived by Magesan [99]. This

is particularly relevant in my thesis since, as the totally depolarising channel has only one

parameter, the smallest number of parameters in the twirl of a gate set that is not a 2-design

must be 2. Thus, my goal is to generate a gate set that is close, in the sense discussed above,

to a unitary 2-design.

2.7 Quantum volume

Currently, there are two other schemes as alternatives to randomised benchmarking for

characterising quantum gates: one is the determination of quantum volume, and the other is

gate set tomography. I discuss gate set tomography in the following section. In this section,

I focus on how quantum volume is used and the abstract procedure employed to quantify

the quality of a set of gates on any platform.

To provide more context to the state-of-the-art in quantum gate characterisation, I discuss

quantum volume [100]. Quantum volume corresponds roughly to the number of qubits and
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circuit depth that can implement an arbitrary unitary matrix with decent quality. The figure

of merit for this task is dictated by the heavy output problem, which I will describe.

The heavy output problem takes as input two circuits, U and U ′, which are assumed

to be unitary matrices. The output is a boolean value: true if U ′ is heavy, false otherwise.

Suppose U is an n-qubit circuit. Then compute the following list of probabilities:

p⃗ := {pU(x) : pU(x) := tr
[
|x⟩⟨x| Û(|0n⟩⟨0n|)

]
, x is a string with n binary values }. (2.69)

Consider sorting the values p⃗ from least to greatest: p0 ≥ p1 ≥ · · · ≥ p2n−1. The median

probability is computed as pmed := (p2(n−1) + p2(n−1)−1)/2. From p⃗, a subset is formed as

p⃗H := {p ∈ p⃗ : p > pmed}. Given U , an output x is heavy if pU(X) > pmed. Now, the circuit

U ′ is heavy if the probability of drawing a heavy output x is greater than 2/3.

In practice, U is an ideal unitary matrix, and U ′ is the approximation of U using a

restricted gate set with the gates available on the platform. Additionally, in the context

of estimating the volume, U ′ depends on the number of qubits used; thus, I denote it by

U ′(n). The depth is then increased until a non-heavy label is assigned. The resulting depth

is labelled d(n). Iterating over distinct values of n, a set of pairs {(m, d(m))} is generated.

From this list of values, the quantum volume is implicitly defined as:

log2 VQ = argmax
n

min (n, d(n)) . (2.70)

The interpretation of log2 VQ is the largest n from the list of minimums computed from the

list of pairs (n, d(n)). Current values for quantum volume range from up to 32 for IBM

devices and up to 512 for Quantinuum [101]. IonQ, Oxford Quantum Circuits (OQC), and

Rigetti perform up to 8 for VQ.

While VQ is easy to measure, its appropriateness for determining the quality of quantum

gates is mathematically weak, as it has little connection to the error rate [59]. Therefore,

VQ is useful for benchmarking and comparing distinct platforms but not for ensuring fault-
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tolerant devices, which requires a formal estimate of the error rate of quantum gates [4]. In

the next section, I discuss gate set tomography, which, because it allows the reconstruction

of gate sets, can be used to determine whether a device is fault-tolerant or not.

2.8 Process and gate set tomography

In this section, I discuss process and gate set tomography. These two schemes aim to recon-

struct a gate or gate set. However, the approaches of these methods are quite different, and

recently, process tomography has been considered obsolete in light of gate set tomography.

Nevertheless, gate set tomography is a relatively new technique, and to introduce it properly,

I will also discuss process tomography as a starting point.

Process tomography is a modification of state tomography. By replacing the state with

the image of an imperfect gate E and assuming perfect states and measurements, the matrix

elements of the χ-representation of E are estimated. This procedure requires many mea-

surements. Additionally, process tomography has two main issues. First, the requirement of

perfect state preparation and measurement is unfeasible and inconsistent because preparing

a non-native state requires applying one of the gates being characterised. Second, the num-

ber of experiments required grows exponentially. Remedies such as compressed sensing are

invalid for arbitrary noise [102]. To address the inconsistency issue for process tomography,

gate set tomography was introduced.

Gate set tomography2 estimates the Pauli-Liouville representation of a gate set from

experimental data [103]. The Pauli-Liouville representation of the gates to be characterised

is parametrised in such a way that the specific type of noise affecting the gates can be

studied. The input consists of a set of gates and the preparation and measurement of

some state ϱ. In contrast to process tomography, gate set tomography is robust against

SPAM (state preparation and measurement) issues, so having an unknown initial state is

2This section is not an exhaustive exposition of gate set tomography. This method already includes
several optimisations, which could hide a fair comparison with randomised benchmarking. The purpose of
this section is to highlight the differences and similarities with randomised benchmarking.
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not problematic. In this description, I assume the fitting procedure is given and do not go

into detail, but I highlight that eliminating SPAM issues increases the classical computational

cost. Even reconstructing two-qubit gates can be challenging for standard computers [104].

The procedure is divided into two parts: short sequences and long sequences of gates.

The minimisation process uses empirical frequencies from experiments for each sequence

and compares them with simulated probabilities using the original model. This is repeated,

with the previous set of parameters used in the next iteration of the minimisation. The basic

unit for constructing a sequence is not usually a single gate but rather a germ. A germ is

a sequence of gates that, when repeated, amplifies particular parameters. Since arbitrary

germs may not lead to amplification, an optimisation procedure is necessary to select germs

that amplify specific parameters. This optimisation process is numerical and based on the

computation of singular vectors of a Jacobian matrix obtained from the partial derivatives

of each matrix with respect to the parameters.

The first estimate proceeds as follows. Let s′ label a particular measurement correspond-

ing to a germ gs composed L > 0 times, with initial and final states |fi⟩ and ⟨fj|. Then

fs′ = tr[|fj⟩⟨fj| gs′(|fi⟩⟨fi|)] = tr
[
|fj⟩⟨fj| gLs (|fi⟩⟨fi|)

]
. The χ2 statistic is given by

χ2
s′ = N

(ps′ − fs′)2

ps′
+N

(ps′ − fs′)2

1− ps′
, (2.71)

= N(ps′ − fs′)2
(

1

ps′
+

1

1− ps′

)
, (2.72)

=
N(ps′ − fs′)2

ps′(1− ps′)
, (2.73)

where ps′ is computed as fs′ but using the model for the germs, and N is the number of

repetitions used to estimate each fs′ . Summing over each possible sequence of germs (for

a fixed L), we obtain χS :=
∑

s′ χ
2
s′ . Minimising χ2

S yields an estimate of the parameters,

which is used in a subsequent estimate of χ2
S, with the model based on the gate set resulting

from the previously estimated parameters.

The output of the minimisation over χS, repeated over different L values, provides the set
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of parameters. These parameters are used in the next stage of the scheme. Having explained

the minimisation with respect to χ2, it is now simpler to explain the second estimate. The

only difference is that L is larger, often ranging from hundreds to thousands of repetitions.

The expression to maximise is:

logLS =
∑
s′∈S

logLs′ , (2.74)

where logLs′ = Nfs′ log(ps′) + N(1 − fs′) log(1− ps′). Similar to the χ2 minimisation,

the maximisation of logLS is iterated to reduce the error in the parameters. From this

procedure, the parameters of each germ are estimated, and from the germs, a set of gates is

reconstructed.

Due to the large number of measurements required, this method is primarily intended

for use with up to two qudit gates. Increasing the number of levels or qudits increases the

number of parameters, requiring many more experiments. Another cost is associated with

choosing the germs. If the rank of the Jacobian is not equal to the number of parameters,

the set of germs needs to be modified, incorporating one germ into another and verifying

again that the Jacobian satisfies the rank constraint.

The Pauli-Liouville representation serves as the common ground for both randomised

benchmarking and gate set tomography. In randomised benchmarking, the estimate is the

trace of the Pauli-Liouville representation, while in gate set tomography, the entire gate

representation is estimated. The number of parameters (real and independent quantities) in

a Pauli-Liouville representation is d4n − d2n, where n is the number of qudits. This can be

seen by imposing the trace-preserving condition [93]. In contrast, randomised benchmark-

ing estimates a single parameter. This, once again, shows that randomised benchmarking

should be used as a first test for the quality of gates, followed by another characterisation

mechanism. I also need to clarify that the two parameters my scheme aims to estimate are

used to calculate the average gate fidelity, which is a single parameter of the Pauli-Liouville

representation.

A one-to-one comparison of the number of experiments required (classical complexity)
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might suggest process tomography is better since it does not require optimisation techniques.

Nevertheless, as mentioned earlier, process tomography is inconsistent and should not be

used. On the other hand, gate set tomography allows for the incorporation of knowledge

about the noise affecting the gates, which could reduce the number of experiments required.

2.9 Randomised benchmarking and the quantum thresh-

old theorem

In this section I discuss the characterisation carried out by a randomised benchmarking

scheme. I review concepts from quantum information such as error rate and fidelity; quan-

tities used to characterise quantum gates. I conclude the section with a discussion of the

effects of different kinds of noise on the average gate fidelity.

The importance of randomised benchmarking schemes is that—by their use—an exper-

imental group estimates the quality of their gates inexpensively compared to tomography.

Why is it relevant to know the quality of quantum gates?—the reason is the quantum thresh-

old theorem (QTT) [59]. The QTT is stated as follows [4, 59]:

Theorem 2.2 ([6]). Consider a quantum circuit Q, with depth t (number of time steps),

size s (number of one and two qubit gates), and with n (number of qubits). If the worst

local error rate [lower-bounded by the diamond distance] η is below a threshold η0, then, for

all ε > 0, there is a quantum circuit Q′ with a polylog overhead in t, s, n, and 1/ε, such

that the [diamond distance] between Q and Q′ is less than ε.

What is the relation between randomised benchmarking schemes and QTT? The estimate

of η. The quality of gates, corresponding to the diamond distance of the noise with respect

to the identity map necessary for the application of the QTT, is estimated with the diamond

distance between the ideal gate Eid and the actual gate Eac. This quantity is known as the

error rate [59].
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The experimental estimate of the diamond distance requires the reconstruction of the

gates via quantum tomography. However, as discussed before, the implementation of tomog-

raphy does not scale [105]. A convenient method to characterise quantum gates is randomised

benchmarking.

Randomised benchmarking arises as a method to estimate an alternative quantity that

still provides a sense of quality: the average gate fidelity [106]. I now discuss the figures of

merit motioned in this introduction and then discuss the adequacy of the average gate fidelity

to characterise gates. The average gate fidelity is defined for a pair of quantum channels,

E and E ′. Let dψ denote the Fubini-Study measure over pure states in a d-dimensional

system [107]. Then the average gate fidelity between E and E ′ is [107]

F (E , E ′) :=

∫
dψ tr(E ′(|ψ⟩⟨ψ|)E(|ψ⟩⟨ψ|)). (2.75)

Now, I review a simpler formula to compute the average gate fidelity for finite dimensional

systems [53]. Let E be a channel. Then, the average gate fidelity of E is

F (E) := F (E , I) =
d tr(Γ(E)) + d2

d2(d+ 1)
=
d tr(ΓK(E)) + d2

d2(d+ 1)
. (2.76)

Now, I proceed to prove the equality of Eq. (2.76). First, I note that the integral over the

measure of states is equivalent to integrating over the Haar measure of the unitary group.

Therefore, the first step in my proof is

F (E , E ′) =

∫
U

dU tr
[
E ◦ Û(|0⟩⟨0|)E ′ ◦ Û(|0⟩⟨0|)

]
. (2.77)

The next step is to show that the twirl with respect to the unitary group is present in
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Eq. (2.77).

∫
dU⟨⟨E ◦ Û(|0⟩⟨0|)||E ◦ Û(|0⟩⟨0|)⟩⟩ =

∫
dU⟨⟨0|Γ(E ◦ Û)†Γ(E ′ ◦ Û)|0⟩⟩ (2.78)

=

∫
dU⟨⟨0|Γ(U)†Γ(E)†Γ(E ′)Γ(U)|0⟩⟩ (2.79)

Here, I identify the twirl as the integral with respect to U :

= ⟨⟨0|
(∫

dUΓ(U)†Γ(E)†Γ(E ′)Γ(U)

)
|0⟩⟩ (2.80)

= ⟨⟨0|[E† ◦ E ′]U(d)|0⟩⟩. (2.81)

Now, the twirl with respect to the unitary group of a channel E is a depolarising channel

with depolarising parameter pE [53], which is given by

pE :=
d2 − tr[Γ(E)]

d2 − 1
. (2.82)

F (E , E ′) = ⟨⟨|0⟩⟨0| |[E† ◦ E ′]U(d)| |0⟩⟨0|⟩⟩ (2.83)

= (1− pE) +
pE
d

=
d tr(Γ(E† ◦ E ′)) + d2

d2(d+ 1)
, (2.84)

This concludes the proof.

The formula in Eq. (2.76) is widely used in randomised benchmarking schemes; twirling

does not change the trace, which is related to the average gate fidelity [53]. Therefore, if

twirling “simplifies” the noise channel (reducing the number of independent entries), then

the estimate of the average gate fidelity is simpler by using the “twirled” noise. In this

thesis, a gate is considered as characterised if it has been assigned an average gate fidelity. I

use the word assigned since some schemes, particularly cycle benchmarking, by construction

estimate an approximation of the average gate fidelity.

The average gate fidelity can differ, for most forms of noise, from the error rate (the
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diamond distance between the noise and the identity) by several orders of magnitude [59]. In

general, there is no direct relationship between these quantities: the error rate neither bounds

nor is bounded by the average gate fidelity. This discrepancy poses a significant challenge

to randomised benchmarking schemes since the ultimate goal of any characterisation scheme

should be to approximate or establish a lower bound for the error rate.

However, a solution to this problem is now available. The technique known as randomised

compiling [58] converts any CPTP mapping into a unital3 Pauli channel. Because there is a

known relationship between the average gate fidelity and the error rate for Pauli channels [59],

this result is crucial. Now, if the randomised compiling scheme can be applied, any form of

noise can be characterised and correlated with the error rate.

The benefits of randomised compiling extend beyond linking the error rate with the

average gate fidelity. Transforming arbitrary noise, and particularly coherent noise, into a

Pauli channel is also advantageous. It has been demonstrated that coherent noise leads to

worse scaling, in terms of the decay of fidelity for deeper circuits, compared to incoherent

noise [59]. Thus, applying the randomised compiling scheme allows to mitigate the decrease

in fidelity characteristic of coherent noise [108, 58].

2.10 Interpretation of the parameter estimated

In this section I discuss the figure of merit estimated by randomised benchmarking schemes.

I go over the original example, which assumes gate-independent noise, and then contrast it

against the gate-dependent noise scheme [106, 88]. I discuss how the average gate fidelity

is estimated from the sequence fidelity as done in the original formulation of randomised

benchmarking. I conclude this section and chapter by explaining the link between the twirl,

the trace of the Pauli-Liouville representation, and the average gate fidelity.

The first formulation of randomised benchmarking schemes assumes that every member of

the gate set to characterise has the same noise [106, 2]. Under this assumption, the quantity

3A unital channel is defined as a CPTP map that maps the identity to the identity [68].

37



estimated by randomised benchmarking is the average gate fidelity of each gate set member.

In the earlier randomised benchmarking schemes [51], it was suggested to use a perturbative

approach to weaken the assumption of gate-independent noise [60]; I only discuss it briefly in

this paragraph. Such a suggestion involved adding a small gate-dependent perturbation to

the “average” noise E . Due to the more complicated expression for the sequence fidelity, the

perturbation method is no longer discussed in the literature. Moreover, it has been shown

to be superfluous [55, 89].

What does the original randomised benchmarking estimate for the gate-dependent case?

From the analysis done with gate-dependent noise [88, 89], two conclusions can be drawn.

First, the average gate fidelity estimated does not, in general, correspond to the average

fidelity over a gate set; second, the average gate fidelity remains gauge-dependent. Gauge-

dependent means that depending on a similarity transformation the characterisation could

change. Therefore, randomised benchmarking probably should only be used for gate sets

with similar noise.

The Fourier method, also known as the convolution method [88], is a theoretical argument

that, even in the presence of gate-dependent noise, a single-exponential decay curve should

be obtained for the sequence fidelity. In this subsection I discuss the main points of the

gate-dependent formulation, enough to later justify that my schemes are compatible with

it. The Fourier transform method [88, 89] (a different method than the one discussed at the

back of a well-known textbook [4]) justifies the similarity of the average (over the gates in the

gate set) of the average gate fidelity and the value estimated from randomised benchmarking

experiments.

Now, I discuss the gate-dependent noise scheme following Wallman’s [89]. Consider a

set of CPTP mappings labelled by elements of the Clifford gate set G; I denote the noisy

representatives (of G) by g̃ and the ideal representatives by ĝ. Two matrices l and r are
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computed to obtain a gate-dependent approximation of g̃:

g̃ := l̂g ◦ ĝ ◦ r̂g ≈ l̂ ◦ ĝ ◦ r̂; (2.85)

which means having a gate-independent approximation to the gate-dependent problem; note

that l̂ and r̂ do not depend on the gate and could not even be channels, just mappings, since

these mappings could fail to be completely positive or trace preserving.

Now, I discuss an issue affecting randomised benchmarking schemes, which is known as

gauge-dependence [55]. Neglecting a gauge transformation in the SPAM leads to confusing a

similarity transformation with coherent errors [55]. This misunderstanding results in orders

of magnitude differences between the average gate fidelity and the parameter fitted. I discuss

two attempts to address this issue.

The quantity known as circuit fidelity [109] was introduced to provide meaning to the

parameter estimated in randomised benchmarking schemes. To discuss circuit fidelity, con-

sider a gate set G. For g := (g0, . . . , gm) ∈ Gm define Ŝ := ĝ0 ◦ · · · ◦ ĝm and S̃ := g̃0 ◦ · · · ◦ g̃m.

Thus, the circuit fidelity for the gate set G at depth m is defined as:

F (G;m) := E
(g0,...,gm)∈Gm

F (Ŝ, S̃). (2.86)

This quantity is what is now believed to be estimated by randomised benchmarking schemes [109].

Now, I discuss how the sequence fidelity is used to estimate the average gate fidelity;

this is a basic task in any randomised benchmarking scheme [56]. Moreover, I discuss how

the sequence fidelity can be approximately estimated from an experiment with low design

complexity. Given a sequence of gates g, the inversion gate ĝinv is the composition and then

the inverse of the elements of g. As an observation, for ideal gates, the composition of g

and ĝinv results in the identity gate; in the presence of noise, only an approximation of the

ideal gate is obtained. This is the most explicit description of a randomised benchmarking

scheme in my thesis.
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One of the two important quantities in a randomised benchmarking scheme is sequence

fidelity. Here I introduce the sequence fidelity for a set of gates with same noise, which is the

configuration used in Chapters 2 and 3. Consider a sequence of m noisy gates g (concluding

with an inversion gate) with noise E , an initial state |ψ⟩, and a measurement ⟨ϕ|. The

sequence fidelity associated with the previous ingredients is

P (m;g, |ψ⟩ , ⟨ϕ|) := tr (|ϕ⟩⟨ϕ| E ◦ ĝinv ◦ E ◦ ĝm · · · E ◦ ĝ0(|ψ⟩⟨ψ|)) . (2.87a)

Given a gate set G and considering the average over G for each ĝi we obtain

P (m;G, |ψ⟩ , ⟨ϕ|) := E
g∈G×m

tr (|ϕ⟩⟨ϕ| E ◦ ĝinv ◦ E ◦ ĝm · · · E ◦ ĝ0(|ψ⟩⟨ψ|)) . (2.87b)

In an abuse of language, both Eqs. (2.87) are called sequence fidelity, with the average in

Eq. (2.87b) understood from context.

Now, I describe a run of a randomised benchmarking experiment and discuss the quantity

that the measurement approximates. The computations presented in this section are an

intrinsic part of any randomised benchmarking scheme [106, 2], which I introduce using the

notation from this chapter. I present these computations here because in later chapters I

discuss modifications to them.

1. Prepare state |0⟩; I call this the input state.

2. Randomly draw m group elements g← (g0, . . . , gm−1).

3. Compute the inverse of the ideal sequence ĝinv ← (g0 · · · gm−1)
−1.

4. Apply the sequence (including the inversion gate) of noisy gates onto the initial state:

ϱ← g̃inv ◦ g̃0 ◦ · · · ◦ g̃m−1(|0⟩⟨0|).

5. Measure ϱ with respect to the initial state, which is |0⟩.

6. Repeat the above steps K times.
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7. Average the results of the repetitions.

Let me denote by Gm the multiset—as there could be repetitions—of sequences g with every

sequence of depth m. Note that g is a tuple and ginv a group element. The quantity thus

estimated in the previous procedure is

P (m; |0⟩ , ⟨0| , E) := E
g∈Gm

tr{|0⟩⟨0| g̃inv ◦ g̃0 ◦ · · · ◦ g̃m−1(|0⟩⟨0|)}, (2.88a)

= E
g∈Gm

⟨⟨0|Γ(g̃inv ◦ g̃0 ◦ · · · ◦ g̃m−1)|0⟩⟩, (2.88b)

= E
g∈Gm

⟨⟨0|Γ(E)Γ(ĝinv)Γ(E)Γ(ĝ0) · · ·Γ(E)Γ(ĝm−1))|0⟩⟩, (2.88c)

where E is the noise accompanying the ideal application of the accompanying gate gi or ginv.

I now show Eq. (2.88a) averaging over gi results in the expression for the sequence fidelity.

Consider first the average over each gi

P (m; |0⟩ , ⟨0| , E) = E
g
⟨⟨0|Γ(E)Γ((ĝm−1 ◦ · · · ◦ ĝ0)−1)Γ(E)Γ(ĝ0) · · ·Γ(E)Γ(ĝm−1)|0⟩⟩; (2.89a)

note here the fact the inversion gate is a member of the gate set. Therefore, I can assign the

same noise E to (g0 · · · gm−1)
−1. Now, I expand the inversion operation over the gates

P (m; |0⟩ , ⟨0| , E) = E
g
⟨⟨0|Γ(E)Γ(ĝm−1)

† · · ·Γ(ĝ0)
†Γ(E)Γ(ĝ0) · · ·Γ(E)Γ(ĝm−1)|0⟩⟩. (2.89b)

Averaging over g0 we obtain

P (m; |0⟩ , ⟨0| , E) = E
g
⟨⟨0|Γ(E)Γ(ĝm−1)

† · · ·Γ(ĝ1)
†[E ]GΓ(E)Γ(ĝ1) · · ·Γ(E)Γ(ĝm−1)|0⟩⟩. (2.89c)

The operator [E ]G commutes with every gi:

P (m; |0⟩ , ⟨0| , E) = E
g
⟨⟨0|Γ(E)Γ(ĝm−1)

† · · · [E ]GΓ(ĝ1)
†Γ(E)Γ(ĝ1) · · ·Γ(E)Γ(ĝm−1)|0⟩⟩. (2.89d)
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Averaging over g1:

P (m; |0⟩ , ⟨0| , E) = E
g
⟨⟨0|Γ(E)Γ(ĝm−1)

† · · · [E ]2GΓ(E)Γ(ĝ2) · · ·Γ(E)Γ(ĝm−1)|0⟩⟩. (2.89e)

Continuing averaging over each gate in the sequence, I obtain the twirl:

P (m; |0⟩ , ⟨0| , E) = ⟨⟨0|Γ(E)[E ]mG |0⟩⟩. (2.89f)

This is the final reduction of the expression P (m; |0⟩ , ⟨0| , E). Depending on the form of

the twirl [E ]G the expression changes; if the gate set is Clifford, then the expression is of

the form 1
2

+ 1
2
η(E)m. For a general gate set the expression is more complicated and is a

combination of more than one exponential [56].

2.11 Non-Markovianity

Whereas non-Markovianity is usually associated with noise dependent on time or previous

gates applied, a formal description is that noise at different steps is correlated and thus cannot

be described as a CPTP mapping acting only on the system of interest. This condition means

that channels can only be written as acting on a tensor product between the system and an

environment.

Non-Markovian gate-independent noise means that the noise associated with a gate inter-

acts with an environment; that is, the action of the mapping is not restricted to the intended

system. This form of noise can modify the expressions for sequence fidelity. In the Marko-

vian approximation, as outlined in the original formulation of randomised benchmarking,

the sequence fidelity is limited to being a sum of exponentials [56]. On the contrary, non-

Markovian noise allows complicated forms, such as the ones reported by Figueroa-Romero

et al [110].

The process-tensor framework [111, 112] provides a general formalism to separate the
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‘uncontrollable’ interactions and the gates to be implemented. Using the process-tensor

framework, it is possible to write formal expressions, similar in construction but not in

simplicity, for the sequence fidelity under non-Markovian but gate-independent noise [111].

Contrary to Markovian randomised benchmarking, the sequence fidelity expression is too

complicated to extract information related to the average gate fidelity. Among other issues,

it is proven that the sequence fidelity expression contains SPAM contributions dependent

on the circuit depth. Therefore, non-Markovian randomised benchmarking aspires only to

detect signatures of non-Markovianity.

The detection of signatures of non-Markovianity is formally done by computing the min-

imal distance between the actual implementation and every possible Markovian circuit. In

practice, this is impossible, and the comparison is restricted to sensible candidates.

The most tangible signature of non-Markovianity is a non-exponential form of the se-

quence fidelity [111]. Although, in principle, there could be non-Markovian noise that is

capable of an exponential sequence fidelity, in that case, Markovian randomised benchmark-

ing is applicable. This gives rise to a justification for applying randomised benchmarking: if

the sequence fidelity follows, approximately, an exponential decay, randomised benchmarking

offers a valid characterization. I apply this rule of thumb in future examples.

Finally, I must highlight that randomised compiling has been shown to mitigate non-

Markovian noise effects [110, 58, 113]. Therefore, even under such adverse conditions, tra-

ditional randomised benchmarking remains useful, although with more overhead on the ex-

perimental side.

2.12 An ion trap qudit platform

In this section, I discuss in detail the implementation by Ringbauer et al. [14] of an ion trap

qudit platform. My discussion of this platform is to illustrate the state-of-the-art of qudit

implementations. Later, in Sec. 3.5, I also use this platform to justify my claims that the
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assumptions of randomised benchmarking are currently satisfied by state-of-the-art qudit

platforms.

I chose this qudit ion-trap platform for two reasons. First, ion-trap platforms are a fa-

miliar implementation, which facilitates describing them and assessing their physical work-

ings [114]. Second, it has available a universal set of gates with state-of-the-art fidelity.

Additionally, as is the nature of ion-trap platforms, the long coherence time allows us to

implement long circuits, which helps in computing many values for the sequence fidelity.

Also, the particular implementation I discuss explicitly reports the statistical details of their

randomised benchmarking implementation.

This platform uses a 40Ca+ ion as the physical qudit. The system is called an ion trap

because it confines ions for prolonged periods [115]. Due to Earnshaw’s theorem, maintaining

the position of ions requires the use of a non-constant (time-dependent) electromagnetic

field. Imposing mechanical equilibrium of the ions leads to conditions in the expression

required for the electric field potential. However, the conditions on the electric potential from

the mechanical condition are incompatible, for static electromagnetic fields, with Laplace’s

equation. Therefore, a time-dependent electric potential is required [116, 117, 118].

I discuss a classical picture of the system. Computing the force ions feel, from a time-

dependent electric potential, leads to Mathieu’s equation. Thus, the system can be modelled

as a set of spring-coupled of multi-level systems. Each member of the string is used as a

qudit and the collective motion, via normal modes, is used for entangling gates.

I discuss the encoding, the way states are labelled, used in Ringbauer et al. [14]. The

states are labelled by the hyperfine Zeeman states; the splitting is caused by a magnet close

to the atoms. A set of magnets generates a magnetic field splitting S1/2 into two levels and

D5/2 into six levels. The first two levels are encoded in |0⟩ = S1/2,−1/2 and |1⟩ = D5/2,−1/2.

The allowed transitions are ∆m = 0,±1,±2, and these transitions form the basis for the

native single-qudit gates.

Four stages of preparation are used. First, Doppler cooling and polarization gradient

44



cooling are used to put the system in one of the normal modes with lowest energy. The

other two preparation procedures are optical pumping and resolved sideband cooling, these

methods are used to reach a specific Zeeman sublevel.

The Hamiltonian describing the interaction between the laser and a single atom is [119,

120, 121]

H = ℏΩσ+e
−i[(ω−ωeg)t−φ]eiη(ae

−iνt+a†eiνt) + H.c., (2.90)

where ω and ϕ denote the laser frequency and phase, ν is the motional mode frequency,

ωeg is the qudit transition frequency being addressed, and “H.c.” denotes the Hermitian

conjugates. Other parameters are Ω for the Rabi frequency associated with the transition, η

is the Lamb-Dicke parameter, a† is the phonon creation operator, and σ+ denotes the atomic

spin. In the Lamb-Dicke approximation or regime [121], evolution due to H is a unitary

operation for a single qudit U(α) = e−i(α/2)n⃗·σ⃗.

For some appropriate values of the values n⃗ and α, the native single-qudit gates are

Ri,j = exp
(
−θσi,j

ϕ /2
)
;

i and j label different states and σi,j
ϕ = (cos(ϕ)σi,j

x ± sin(ϕ)σi,j
y ), σx and σy are two qubit

Pauli matrices embedded into a d× d matrix, where the acting on the rest of the level is the

identity operation.

Additionally, the platform is capable of implementing the following entangling gate:

MSi,j = MSi,j(θ, ϕ) = exp

(
−i
θ

4

(
σi,j
ϕ ⊗ I + I⊗ σi,j

ϕ

)2)
.

This gate is realised by coupling the levels of each individual atom with the normal modes

of the chain. The realisation uses spin-dependent optical dipole forces [114]. The laser

parameters are chosen to ensure the motional state is independent of the spin states (internal

states of the atom) at the end of the interaction [121, 122, 123]. With access to any unitary
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operation and the entangling gate MSi,j, the platform has access to a universal gate set.

2.13 Summary

In this first background chapter, I introduced the main tools and concepts in randomised

benchmarking schemes. However, my presentation is clearly biased towards a representa-

tion theory approach. In a reductionist fashion, randomised benchmarking is a method to

estimate the trace of the Pauli-Liouville representation of the noise affecting quantum gates.

In this chapter, I showed the tools that are used to achieve this purpose: every randomised

benchmarking scheme at least uses one of the ingredients I mentioned here. The star of this

chapter, this thesis, and randomised benchmarking schemes is the procedure of twirling; the

goal of twirling is to reduce the number of parameters required to estimate the trace. In

the next chapter, which is also a background chapter, I discuss the many ways in which the

tools of the present chapter are used to characterise gates for different gate sets.
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Chapter 3

State-of-the-art methods

3.1 Introduction

In this chapter, I describe the state-of-the-art benchmarking schemes. These schemes char-

acterise qudit gates or universal gates, or both. First, I discuss the qudit randomised bench-

marking scheme that characterises a Clifford and qudit gate set. Then I discuss four schemes

to characterise a C3 \ C2 gate.

For brevity’s sake, I use the phrase “a randomised benchmarking characterises a gate (or

a gate set)” to refer to the following process: an experimental group conducts the randomised

benchmarking experiment using the circuit, states, measurements, and sampling specified by

the scheme. Next, a data analysis, following the scheme specification, is done; the outcome

is the average gate fidelity of either a gate or a gate set.

Before starting my survey, I introduce terminology to standardise the language present

in different sources. The terminology refers to either individual or collective characterisa-

tion; the distinction is based on the noise associated with the gates used in the randomised

benchmarking scheme for characterisation.

The aim of a collective characterisation is to determine the average gate fidelity of every

gate in a gate set; this kind of characterisation is based on the assumption that each gate
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has the same noise. By contrast, in an individual characterisation, all but one gate have the

same noise. The gate with distinct noise is called the target gate. The rest of the gates are

called the auxiliary gate set. The aim of an individual scheme is to estimate the average

gate fidelity of the target gate assuming the auxiliary gate set has been characterised, i.e.,

the average gate fidelity of the auxiliary gates is known.

3.2 Characterisation of Clifford gates

3.2.1 Qubit randomised benchmarking

In this subsection, I discuss the first scheme to estimate the average gate fidelity of a gate set.

In particular, I discuss the assumptions of the scheme, the circuit design, and the quantities

estimated. The notation I follow differs from the original [50].

The assumptions of the scheme include the ability to sample an arbitrary multi-qubit

gate U from the Haar measure of the unitary group. Additionally, it assumes the inversion

gate is prepared on demand. The noise E is considered to act between the two gates. Let U

be the drawn gate. The circuit is mathematically described as:

Û ◦ E ◦ Û †; (3.1)

that is, the noise of both gates is combined into a single channel E .

I now explain the procedure and the figure of merit obtained. The fidelity between the

initial state |0⟩⟨0| and Û ◦ E ◦ Û †(|0⟩⟨0|) is given by:

tr
[
Û ◦ E ◦ Û †(|0⟩⟨0|)

]
. (3.2)

Since the result of twirling with respect to the Clifford gate set is a depolarising channel,
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the average fidelity over U becomes:

E
U

tr[|0⟩⟨0|S(|0⟩⟨0|)] = p+
1− p
2N

, (3.3)

where N is the number of qubits and

p :=
tr[Γ(E)]− 1

2N − 1
. (3.4)

Note that the average is computed with respect to the Haar measure of the unitary group.

Similar to current schemes, randomly sampled unitary operations are composed, and the

fidelity between the initial state and the final state is obtained. In this case, the gate set

is the whole unitary group. In Emerson et al. work, two distinct forms of the sequence

of operations are introduced. First, I define them and then discuss how they are used to

estimate the fidelity and the assumptions imposed.

Given a set of m unitary matrices {Ui : i ∈ {0, . . . ,m− 1}}, the first kind of sequence is

S(0)({Ei, Ui}) := Û †
m−1 ◦ Em−1 ◦ Ûm−1 ◦ · · · ◦ Û †

0 ◦ E0 ◦ Û0. (3.5)

To avoid confusion with the sequence fidelity in randomised benchmarking schemes, I call

the following quantity the S(0)-fidelity:

P (0)({Ei, Ui}) = tr
[
ϱS(0)({Ui})(ϱ)

]
. (3.6)

Assuming each Ei is the same (for all i, Ei = E), the resulting average S(0)-fidelity is

E
Ui

P (0)({E , Ui}) = pm tr
[
ϱ2
]

+
1− pm

2N
. (3.7)

The procedure to obtain Eq. (3.7) is the same as in the Clifford case; see Sec. 2.9. Therefore,

by using circuits of the form of Eq. (3.5), a characterisation of the whole unitary group can
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be done.

The next sequence requires applying all the gates in sequence and then the inverse of

each element in reverse order. The sequence has the form

S(1)′(E , {Ui}) := E ◦ Û †
0 ◦ E ◦ Û

†
1 ◦ · · · ◦ E ◦ Û

†
m−1 ◦ E ◦ Ûm−1 ◦ · · · ◦ E ◦ Û1. (3.8)

The authors of this study claim [50], based on numerical evidence, that instead of using S(1)′ ,

the following sequence can be used instead with little deviation from the resulting fidelity:

S(1)(E , {Ui}) := Û †
0 ◦ Û

†
1 ◦ · · · ◦ Û

†
m−1 ◦ Em−1 ◦ Ûm−1 ◦ · · · ◦ E0 ◦ Û0. (3.9)

Defining

P (1)({Ei, Ui}) = tr
[
ϱ0S

(1)({Ui})(ϱ0)
]
, (3.10)

and assuming each Ei has the same parameter p (but not necessarily the same noise), the

averaged S(1)-fidelity is

E
Ui

P (1)({Ei, Ui}) = pm +
1− pm

2N
. (3.11)

Thus, a list of pairs {(m,P (1)({Ei, Ui}))} can be experimentally estimated. Fitting an expo-

nential then it is possible to estimate the parameter p, which is a proxy quantity to estimate

the average gate fidelity over the unitary group.

Therefore, by preparing |0⟩⟨0|, randomly sampling unitary matrices Ui, and measuring

with respect to |0⟩⟨0|, one can estimate the average gate fidelity over the unitary group. The

error in this estimation is of order O(1/
√

2N) [50]. Compared to contemporaneous methods,

this scheme promotes average gate fidelity as a figure of merit for quantum gates and ex-

plicitly relies on twirling. For that reason, this scheme is the first randomised benchmarking

scheme.
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3.2.2 Qudit randomised benchmarking for prime-level systems

In this section, I discuss Clifford randomised benchmarking for qudits [54]; this family of

schemes is the latest method for characterising qudit gates. Only in this section, d is a prime

number, whereas in the original work d is taken to be any positive integer; certain issues

discussed herein require restricting d.

A representation of the Clifford group is spanned by two d-dimensional matrices [124,

125]:

Cd := ⟨Fd, Sd⟩, (3.12)

where Fd and Sd have entries

(Fd)i,j := (ωd)
ij/
√
d, (3.13)

(Sd)i,j := δij(ωd)
i(i−1)/2; (3.14)

note that F2 is the Hadamard gate for qubits. The matrices Fd and Sd normalise the qudit

Pauli group constructed from the clock and shift matrices; thus, the group generated by Fd

and Sd normalises the Pauli group.

In the qudit Clifford randomised benchmarking scheme, the gate set C2 of Eq. (3.12)

is collectively characterised. The circuit design is the same as that of qubit randomised

benchmarking [106]. Thus, I do not discuss it. The twirl of an arbitrary channel with respect

to Cd is a totally depolarising channel [53]. Since the totally depolarising channel depends on

a single parameter, the expression for the sequence fidelity is a single exponential [106, 54].

Moreover, under the gate-independent noise assumption, the scheme is robust against SPAM

errors; the fidelity of the initial state and measurement is irrelevant to the characterisation.

For a gate set that includes non-Clifford elements, the twirl is no longer a totally depo-

larising channel [2, 56]. This occurs because the unitary representation of the gates is not

a unitary 2-design [2, 56]. Therefore, any scheme aiming to characterise a non-Clifford gate

set has to deal with more than one parameter to estimate the average gate fidelity.
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3.3 Characterisation of non-Clifford gates

3.3.1 Single-qubit dihedral benchmarking

In this section, I review the dihedral benchmarking scheme, which is a method to characterise

a qubit non-Clifford gate. This section serves to illustrate the characteristics that I aim to

retain from the qubit case in my qudit generalisation.

The dihedral benchmarking scheme aims to collectively characterise a gate set including

a specific kind of qubit C3 \ C2 gate, as defined in Sec. 2.4. In dihedral benchmarking, the

matrix

T ′ =

ω16 0

0 ω15
16

 (3.15)

is used. This representation T ′ is not the standard T presented in textbooks [4]. The

standard1 qubit T is

T =

1

ω8

 . (3.16)

In this section, I continue using T ′.

The following representation γ, mapping D16 elements to elements in ⟨X,T ⟩, is irre-

ducible [126, 2, 66]:

γ(x, t) = Xx(T ′)t, (3.17)

with

X =

0 1

1 0

 . (3.18)

To compute the decomposition of the Pauli-Liouville representation of γ, I use the charac-

ter table for this small group; see [127]. From the character table and the orthogonality

between characters of irreps [82], I identify three distinct irreps: hI, h0, and h+. From this

1This T gate satisfies the most general definition: it is not Clifford and conjugating a Pauli matrix returns
a Clifford matrix.
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decomposition, I derive expressions for the sequence fidelity and average gate fidelity.

The first step is to discuss the form of the twirl with respect to D16. From the irreps

mentioned in the previous paragraph, for any channel E , the twirl with respect to γ in

Eq. (3.17) is

[E ]γ =



1 0 0 0

0 η0(E) 0 0

0 0 η+(E) 0

0 0 0 η+(E)


= ΠI + Π1η0(E) + Π+η+(E), (3.19)

where

ΠI :=



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,Π0 :=



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


,Π+ :=



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


, (3.20)

η0 = tr[Γ(E)I0], (3.21)

and

η+ = tr[Γ(E)I+]/2. (3.22)

From the expression of the twirl of Eq. (3.19), I compute the sequence fidelity and the average

gate fidelity.

To compactly write the sequence fidelity and average gate fidelity, I define the state
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|+⟩ := H |0⟩, where H is the Hadamard matrix.

P (m; E , |ϖ⟩ , ⟨ϖ|) = ⟨⟨ϖ|Γ(E)[E ]mγ |ϖ⟩⟩, ϖ ∈ {0,+}, (3.23)

by the form of the twirl in Eq. (3.19) (3.24)

= Aϖ +Bϖηϖ(E)m, (3.25)

where Aϖ and Bϖ are constants irrelevant to the characterisation. Also, using the form of

[E ]γ, the average gate fidelity is

F (E) =
2 tr[[E ]γ] + 2

12
=

1

6
(1 + η0(E) + 2η+(E)) +

1

3
. (3.26)

The bi-parametric form of the sequence fidelity is one of the features I seek to generalise.

I have now stated the characteristics of dihedral benchmarking that I aim to extend;

I discussed them to avoid repeating them for each scheme. The three characteristics my

scheme aims to retain are: the bi-parametric form of the sequence and average gate fidelity

as in Eq. (3.26); the parameters are accessible via two pure states that are easy to write,

such as |0⟩ and |+⟩; each parameter can be estimated by fitting a single exponential as in

Eq. (3.25).

A potential problem arises if, because of noise in the preparation of the initial state,

the initial state ϱ is not orthogonal to either |0⟩ or |+⟩. Such an issue can give rise to a

multi-exponential form for the sequence fidelity, leading to inaccurate characterisation. In

the following subsection I describe a method devised to mitigate this practical issue.

Removing the constant due to SPAM

The constant that appear in Eq. (3.23) makes estimating the parameter p more difficult.

Therefore, removing the constant would increase the quality of the fit. Now, I show the

method developed by Harper et al [128] to remove this constant. This technique is only

valid for qubit randomised benchmarking schemes.
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I recall the form of the sequence fidelity and of the constant.

P (m; E , |0⟩ , ⟨0|) = A0η0(E)m +B0, (3.27)

The form of the constant B0 is

B0 := ⟨⟨0|Γ(E)(ΠI + Π0)|0⟩⟩. (3.28)

Repeating the randomised benchmarking experiment but with a measurement with respect

to |1⟩⟨1| = X̂(|0⟩⟨0|) I obtain

P (m; E , |0⟩ , ⟨1|) = A1η0(E)m +B1, (3.29)

with

B0 := ⟨⟨1|Γ(E)(ΠI + Π0)|0⟩⟩. (3.30)

Note that

B0 +B1 = 1. (3.31)

Now, computing the sum

P (m; E , |0⟩ , ⟨0|)− (1− P (m; E , |1⟩ , ⟨1|)) = A0η0(E)m +B0 − (1− A1η0(E)m −B1), (3.32)

= (A0 + A1)η0(E)m +B0 +B1 − 1, (3.33)

= (A0 + A1)η0(E)m. (3.34)

In summary, by summing the sequence fidelity of two similar experiments, one the standard

randomised benchmarking and the other appending an X gate, the constant appearing in

the sequence fidelity can be removed. This technique simplifies the data analysis part of

randomised benchmarking qubit schemes.
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3.3.2 Character randomised benchmarking

By using the characters of an irrep in the decomposition of the Pauli-Liouville representation,

it is possible to recover a single-exponential sequence fidelity, which is particularly useful

when the initial state is difficult to prepare. In this subsection, I discuss character randomised

benchmarking, a method that recovers the SPAM error independence, as is the case of

Clifford randomised benchmarking, to any gate set.

The aim of character randomised benchmarking is to collectively characterise an arbitrary

gate set [129]. Characterising an arbitrary gate set can present an important challenge,

as it may require estimating d2 parameters and each of these parameters could appear in

the sequence fidelity curve; isolating these parameters is key [56]. Character randomised

benchmarking addresses this difficulty by providing a method to obtain a single exponential

for each parameter.

The scheme differs in important ways from standard randomised benchmarking schemes.

In addition to gates and SPAM, character randomised benchmarking requires knowledge of

the character table and irreps of the group associated with the gate set. It is also one of

the first methods that requires mixing analytical data with experimental data, as I describe

later in this section. The number of samples required also increases.

The circuit is similar to that of the original randomised benchmarking. The main change

in this scheme is to add an extra sampling step on top of the random circuit construction.

Here is the list of steps:

1. First draw g ∈ G, in standard randomised benchmarking, G is the Clifford group.

2. Then draw the group elements g0, . . . , gm from G.

3. Modify the last gate in the sequence from gm to ggm.

4. Apply the gates g̃0, . . . , g̃gm.

5. Repeat the draw with g fixed; that is, for l times use the same g but uniformly random
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draw g0, . . . , gm.

6. After those l are repeated, then we sample another group element g.

The circuit is illustrated in Fig. 3.1, (note that g is not used to compute the inversion gate).

· · ·(g0 · · · gm)−1 g0 g1 ggm

Figure 3.1: Family of circuits used in character randomised benchmarking [129].

From the family of circuits explained in the previous paragraph and illustrated in Fig. 3.1

the sequence fidelity is estimated. The estimate is done by preparing the state |0⟩, applying

the drawn gates, and measure with respect to |0⟩; repeating this procedure produces an

estimate of

P (m; |0⟩ , ⟨0|) = E
g

(
E

g=g0,...,gm−1

P (g; g)

)
, (3.35)

where

P (g; g) := tr{|0⟩⟨0| g̃0 ◦ · · · ◦ g̃gm(|0⟩⟨0|)} (3.36)

In a (classical) computer, the approximation of P (g; g) is multiplied by the character of

the irrep and the dimensionality of the irrep. This is the reason behind the name of the

scheme [129]. The procedure is repeated for as many circuit depths as necessary; the depths

required are not discussed, but they are expected to be the same as required for the standard

dihedral benchmarking scheme.

The authors of the original article justify the feasibility by using an argument based

on the number of shots required; no formal argument is presented [129]. The experimen-

tal implementation of the scheme results in a sequence fidelity with the form of a single

exponential. The remaining data analysis is the same as that of the Clifford randomised

benchmarking scheme.
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3.3.3 Multi-qubit dihedral Benchmarking

This subsection addresses the multi-qubit generalisation of dihedral benchmarking, a tech-

nique aimed at characterising controlled-T gates across multiple qubits. This approach is

essential for improving the scalability of benchmarking protocols in quantum computing.

Notably, the method requires estimating only two parameters regardless of the number of

qubits. This efficiency highlights the potential for practical implementation in larger-scale

quantum systems.

In the multi-qubit dihedral benchmarking scheme, the standard randomised benchmark-

ing experiment is employed but with a modified gate set. Accordingly, this section will focus

on explaining the gate set and the expressions for sequence fidelity and average gate fidelity,

which are the scheme’s salient features. By understanding these two components, one gains

insight into the efficiency and scalability of the multi-qubit scheme. This modification al-

lows for more precise characterisation of multi-qubit systems, a critical step in advancing

quantum computing.

The modified gate set corresponds to permutation (or cyclic) gates and T gates on each

qubit; for definiteness, I discuss the bi-qubit case. The group is generated by CNOT, X × I,

I×X, T × I, and I× T , where T is defined in Eq. (3.16). The resulting expressions for the

average gate fidelity and sequence fidelity are [66]

F =
2N(1 + (2N − 1)η0 + (22N − 2N)η+) + 22N

22N(2N + 1)
(3.37)

and

P = aϖη(E)mϖ + bϖ, ϖ ∈ {0,+}, (3.38)

where E is the noise affecting the gates. The initial state and the measurement required to

have access to the parameters are unspecified [129].

The methodology to prove the scalability result goes as follows: one first decomposes any

element of the group into four subgroups. The twirl by the whole group corresponds to a
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sequence of twirls. The first twirl is with respect to the Pauli group, which leads to a Pauli

channel. The subsequent twirls are conducted by analysing the orbits on the set of Pauli

matrices. However, this procedure does not extend to qudits, as it relies on the property

of qubit Pauli matrices, where their square equals the identity—a property not shared by

qudits.

Equations (3.37) and (3.38) show that the characterisation of universal qubit gates scales.

The characterisation is independent of the number of qubits. Also, the standard randomised

benchmarking scheme is sufficient to achieve the characterisation. In the next section, I

discuss an extension of the schemes that I have presented. The extension considers the

target gate to have a different noise than the rest of the gates.

3.3.4 Leakage characterisation

Here, I attempt to give a formal definition of the effect of leakage on a qudit system platform.

Assume a system on a space h = h0⊕h1, with projectors Π0 and Π1. For a state ϱs at step s

defined only on h0; tr[ϱsΠ0] = 1. Then a system suffers the effects of leakage if there are

two steps in a circuit, s and s′ such that tr[ϱsΠ0] ̸= tr[ϱs′Π0] and tr[ϱsΠ1] ̸= tr[ϱs′Π1]. In

other words, the previous definition indicates that a system suffers from leakage if there is

an interchange of probability between two steps in a quantum circuit.

The scheme introduced by Wallman et al. [130] estimates the sum of averages (explained

below) of two quantities: interchange from h0 to h1 and vice versa, averaged over all pure

states. Prepared similarly to randomised benchmarking but without an inversion gate and

using a totally mixed state I/d, this protocol produces a single exponential sequence fi-

delity with the decay parameter being the estimated average. Consequently, it enables the

quantification of leakage in a given system.
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3.3.5 Cross-talk characterisation

In this subsection, I discuss the scheme known as simultaneous randomised benchmarking.

This scheme, meant for multi-qubit platforms, aims to detect signatures of cross-talk across

different registers on a qubit quantum platform. Although not directly related to the primary

objective of this thesis, this scheme demonstrates the versatility of randomised benchmarking

techniques in characterising quantum platforms. Cross-talk errors have many experimental

origins, making it futile to define them uniformly across platforms [131]. From a mathemat-

ical perspective, it is preferable to study these experimental forms of noise in terms of the

observed behaviour in the outcome of a quantum circuit experiment.

Two notions are introduced to study cross-talk noise: independence and locality [131].

To avoid additional complexity, the following notations are introduced for a single and bi-

qudit systems, though their generalisation to controlled gates is straightforward. A platform

is local if every operation that acts on a register k affects only k. A platform is independent

if, at step t in the realisation of a quantum circuit, the operation acting on register k is

unaffected by the application, at step t, of another gate on register k′ ̸= k.

Whereas the method from [131] efficiently signals cross-talk, it does not quantify its

severity. For this purpose, simultaneous randomised benchmarking is used. In simultaneous

randomised benchmarking, three randomised benchmarking experiments are used to estimate

three parameters: rk, rk′ , and rk|k′ , where k and k′ label a qubit register in a given quantum

platform. From the parameters rk, rk′ , and rk|k′ , the additional errors induced on subsystem

k from controlling k′ are computed as

δrk|k′ = |rk − rk|k′ |. (3.39)

The parameters are estimated by applying the randomised benchmarking scheme using

different gate sets:

• rk is obtained by using the randomised benchmarking scheme with gate set C⊗I, where
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C is the single qubit Clifford gate set and C ⊗ I refers to the bi-qubit gates, with the

first register under the action of a Clifford gate and the second the identity is applied.

• rk′ is obtained by using the randomised benchmarking scheme with gate set I⊗ C.

• rk|k′ is obtained by using the randomised benchmarking scheme with gate set C ⊗ C.

Note that the estimate of the last parameter, rk|k′ , requires the preparation of a non-trivial

initial state [132].

To conclude this section, I would like to mention that cross-talk errors can be mitigated

by randomised compiling [108, 58, 113]. Therefore, with little overhead in the experimental

side, randomised benchmarking can be used to characterise quantum gates under the effects

of cross-talking errors.

3.4 Individual characterisation

3.4.1 Introduction

In this section, I discuss the schemes that aim for individual characterisation of a T gate. In

a collective characterisation every gate has the same noise [106, 89]. The estimated average

gate fidelity is then equal for each gate. In most cases this approximation is unrealistic.

Especially for the case of gates acting on encoded qudits; non-Clifford gates are implemented

in a different way than Clifford gates. Assuming equal noise is invalid [133].

In an individual characterisation every gate in the gate set, except one, has the same

noise [60, 90]: the gate with a different noise is the one being characterised. The scheme’s

output is the average gate fidelity of the gate with distinct noise [60, 90, 134]. In practical

randomised benchmarking schemes the auxiliary gate set is either a Pauli or Clifford gate

set; the gate to be characterised is either a Clifford or T gate, respectively [106, 54].
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3.4.2 Interleaved benchmarking

There are four different interleaved benchmarking schemes relevant for my discussion. They

differ in their auxiliary gates, circuit design and data analysis; one scheme is also defined

for multi-qubit (controlled) operations. All of them are different in terms of auxiliary gates,

circuit design, and data-analysis; the only point in common is that they require mixing some

target gate (to be characterised). The aim of three of the four schemes I describe is explicitly

to characterise a T gate.

Notice that in my review, I include one scheme to characterise a Clifford gate; the reason

is that it presents what can be considered the standard protocol for an interleaved bench-

marking scheme. After that, I review the variety of schemes to estimate the average gate

fidelity of a universal non-Clifford gate. For each scheme I only discuss the following points:

target gate to characterise, experimental requirements, physical assumptions of the scheme,

circuit design, protocol, quantity (or quantities) estimated, and any posterior data analysis

that differs from the usual single-exponential case.

3.4.3 Clifford interleaved benchmarking

The aim of Clifford interleaved benchmarking is to characterise a Clifford gate using as

auxiliary gates Clifford gates. Notice the scheme assigns two different noises to the target

gate [90], which obviously is an unrealistic assumption. I explain the procedure to estimate

the composite noise between the auxiliary and target gates.

I start introducing the necessary notation to describe the scheme; I stick to this notation

throughout this thesis. The auxiliary gate set is G and its elements are g ∈ G. Every

member of G has noise E , and the target gate has noise Et; I consider E ̸= Et. The channel

used to estimate the average gate fidelity of the target gate is

S̃target
m := E◦ĝ−1

m ◦ · · · ◦ĝ−1
1 ⃝m

i=1 ĝt◦Et◦E◦ĝi, (3.40)
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(⃝ denotes composition) with circuit representation

Starget
m ≜ · · ·(gm−1 · · · g0)−1 gt g0 gt gm−1 ;

where the symbol ≜ should be read as “corresponds to the circuit”. Applying this circuit

to |0⟩ and measuring, again, with respect to |0⟩ produces a sequence fidelity that is a single

exponential. The decay parameter of the single exponential allows the estimate of the average

gate fidelity for the composition of Et ◦ E . Since F (E) is known, by the approximation of the

composition of the fidelity

F (Et)F (E) ≈ F (Et ◦ E), (3.41)

the fidelity F (Et) is estimated. Thus, the average gate fidelity of the target gate is known

and thus the target Clifford gate is characterised.

3.4.4 Non-Clifford gate characterisation using Clifford gates

The scheme addressed in this subsection aims to characterise any qubit C3 \ C2 gate using,

as auxiliary gates, Clifford (including Pauli) gates. This scheme requires estimating two

parameters. This scheme has a more general noise configuration (than standard randomised

benchmarking); it assigns the same noise to the Clifford and Pauli gates but a different noise

to the target gate.

I assume the auxiliary gate set has been characterised and only describes the circuit to

estimate the average gate fidelity for the target gate. The noise for the target gate, any gate

in C3 \ C2, is ET . Let gi be a Clifford gate and pi a Pauli gate. The circuit is

S ≜ (Tp2Tg2Tp1Tg1)
−1 T p2 T g2 T p1 T g1 ,

which corresponds to the channel (including noise)

S̃ = E ◦ [p2, g2, p1, g1]inv ◦ T̂ ◦ET ◦E ◦ p̂2 ◦ T̂ ◦ET ◦E ◦ ĝ2 ◦ T̂ ◦ET ◦E ◦ p̂1 ◦ T̂ ◦ET ◦E ◦ ĝ1. (3.42)
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The twirl is

E
p2,g2,p1,g1

S̃ = [[ETE ]PETE ]2C, (3.43)

using the notation of Eq. (2.52). Thus, the fidelity estimated by means of this circuit is

F (E2TE2).

Therefore, using the approximation of the fidelity of a composition as the product of

the fidelities (F (E2TE2) ≈ F (ET )F (ET )F (E)F (E)), the data analysis part of this scheme

estimates F (ET ). Notice the product approximation is used twice: first to remove the con-

tribution of the auxiliary gate set and then to get F (ET ) from F (E2T ).

3.4.5 Interleaved dihedral benchmarking

In the original work on dihedral benchmarking [2], the corresponding interleaved benchmark-

ing extension is introduced. Here I discuss, using the notation of dihedral benchmarking,

the extension for the individual characterisation of a T gate.

The group D16 := ⟨X,R(16)⟩ has as a subgroup a set of Clifford gates that is invariant

under conjugation by the qubit R(16), where

R(d) := exp(2πiZ/d). (3.44)

Note that R(8) satisfies: R(8)XR(8)† = −Y and R(8)ZR(8)† = Z. Therefore, R(8) is a

Clifford gate. Thus, I consider T := R(16) for this discussion on dihedral benchmarking.

An invariant group, invariant under conjugation by T , is generated by X and R(8);

notice D8
∼= ⟨X,R(8)⟩. Importantly, the twirl resulting from the averaging over the group

D8 is equal to twirling with respect to D16.

Assuming the gate set D8 are characterised, which could be done by assuming every

Clifford gate has been characterised, the next step is to estimate the average gate fidelity

of the composition of the noise of the T gate and the D8 gates. I now explain the circuit

used to estimate the auxiliary average gate fidelity, which includes the contribution of the
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noise of the target gate. An even-length sequence is used. The basic sequence, without the

inversion gate, is

Sref = T̂ ◦ ĝ0 ◦ · · · ◦ T̂ ◦ ĝm−1, (3.45)

which corresponds to the circuit

Sref ≜ · · ·T g0 T g1 T gm−1 .

The next step is to include noise and the inversion gate.

Note that D8 is invariant under T conjugation, that is, for any g ∈ D8, TgT
† ∈ D8. I

exploit the invariance of D8 under T conjugation to show that the sequence Sref is equal to

Sref = T̂ 2m⃝i ĝ
′
i. Consider the sequence to be Tg0Tg1 (g0, g1 ∈ D8), introducing the identity

I obtain T (TT †)g0Tg1 = T 2g′0g1, where g′0 = T †g0T is a Clifford element, because g0 ∈ D8

then T †g0T ∈ D8.

Because T 2 is Clifford, it has the same noise as the elements of D8. This means that the

inversion gate in the sequences is a member of D8 if the circuit depth is even.

The circuit corresponding to the scheme is:

Starget ≜ (
∏

i Tgi)
−1 T g0 T g1 · · · T gm−1 .

Figure 3.2: Family of circuits for interleaved dihedral benchmarking given in Eq. (3.46).

Including noise, the channel corresponding to the sequence is

S̃ref = E◦[Tg0 · · ·Tgm−1]inv⃝i∈[m]T̂ ◦Et◦E◦ĝi = E◦T̂ 2m⃝j∈[m](ĝj)
†⃝i∈[m]T̂ ◦Et◦E◦ĝi, (3.46)

where

[Tg0 · · ·Tgm−1]inv := (Tg0 · · ·Tgm−1)
−1. (3.47)

By using the fact that the twirl commutes with any group element and the invariance of D8,
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we obtain the twirl

E
g0,...,gm

S̃ref = Γ(E)[Γ(Et)Γ(E)]2mD8
; (3.48)

the notation for the twirl is introduced in Eq. (2.46). Therefore, using the randomised

benchmarking scheme applied to circuit, the average gate fidelity of Et ◦ E is estimated.

Dividing by the reference fidelity (of the auxiliary gate set) E , a nice approximation of Et is

obtained.

3.4.6 Interleaved benchmarking for qubit gates

This technique estimates the fidelity of any single- or controlled-qubit gate [135]. Part of this

technique includes constructing a group of symmetries, which is a semidirect product between

the following two groups: first, a subgroup of the Clifford group that normalises the target

gate; second, a group of permutations that leave invariant the gate acting by conjugation.

This scheme has the following requirements: a target gate to benchmark, the SPAM of the

state |0⟩, and the single and multiqubit Clifford gate set. This set of requirements is thus in

line with standard randomised benchmarking schemes.

The novel assumption of the scheme is that the twirl for the noise of each gate—twirl

with respect to the symmetric group—is close to being diagonal as the unitary gate. This

assumption is strong; since the twirl commutes with the image of the representation of any

group element, it means that every group element should be almost equally diagonal: a block

diagonal part with a small non-block-diagonal contribution justified by the symmetries in

the Hamiltonian linked to the unitary evolution [135].

The sequence of gates, including the target gate gt, is

Starget ≜ · · ·(gtgm−1gtgm−2 · · · gtg0)−1 gt gm−1 gt g0 .

The invariance of the auxiliary gate set with respect to the target gate is key to simplifying

the twirl of Starget; this invariance is common in interleaved benchmarking schemes for non-
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Clifford gates.

The noise configuration is also novel: the channel E is appended to the ideal operation gtg.

However, for the inversion gate ginv, the noise used is E ′ ̸= E . This choice of noise for the

inversion gate is irrelevant to the characterisation, since it is absorbed into SPAM instead of

the gates.

Therefore, the experimental implementation of the scheme estimates the average gate

fidelity of E . The form of the average gate fidelity obtained from the twirl is unspecified.

Unlike the standard randomised benchmarking formulation—with a single parameter acces-

sible via |0⟩—this scheme has an unspecified number of parameters. Moreover, it is unclear

how these values (the decay parameters of the sequence fidelity) are estimated with the

standard randomised benchmarking tool kit.

I conclude this subsection with a summary of the method. By constructing a symmetry

group, an individual gate is characterised. The noise corresponds to the composition of the

target gate and the symmetry group. The estimate is done using different (non-standard)

techniques compared to randomised benchmarking schemes. Note that the scheme does not

take into account the many parameters that could appear. This has the impact of requiring

distinct initial states and increasing the experimental resources required.

3.4.7 Cycle benchmarking

In this subsection, I discuss cycle benchmarking. The aim of this scheme is to individu-

ally characterise multiple simultaneous Clifford gates; these simultaneous gates are called

cycles [67]. Using the language of individual characterisation, the auxiliary gate set is the

set of Pauli cycles, and the target gate is a Clifford cycle.

A novel technique is required for this scheme. While the quantity obtained is not new,

the procedure differs from the other randomised benchmarking schemes I have described so

far. I now explain the problem and solution in general terms. Consider Q, a unitary matrix,

and ϱ, a density matrix. I now explain how to estimate tr[Qϱ] without using tomographic
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techniques. The expression is as follows:

tr[Qϱ] =
∑
z

tr[λz |z⟩⟨z| ϱ] =
∑
z

λz tr[|z⟩⟨z| ϱ], (3.49)

where Q =
∑

z λz |z⟩⟨z|. I follow the notation, which may seem redundant, from the original

source [67]. Let BQ be the linear mapping that diagonalises Q. That is,

BQ(|z⟩⟨z|) = U |z⟩⟨z|U † = |c⟩⟨c| , (3.50)

where U is a unitary matrix, and |c⟩ is one of the computational basis states. Thus, we

obtain

tr[Qϱ] =
∑
z

λz tr[|z⟩⟨z| ϱ] =
∑
c

λz(c) tr
[
|c⟩⟨c|U †ϱU

]
. (3.51)

In an experiment, tr
[
|c⟩⟨c|U †ϱU

]
can be estimated2. The eigenvalues λz are known. Thus tr[Qϱ]

can be evaluated.

I discuss how the process fidelity is obtained. Let m be the order of the Clifford cycle G.

Define

m1 := mk1 and m2 := mk2, (3.52)

where m is such that

Gm = I, (3.53)

k1 and k2 are two positive integers; these integers are the only two circuit depths required

by the scheme. Draw a gate P from the set of Pauli cycles (Pauli gates acting simulta-

neously on different qubits). Draw mi gates from the auxiliary gate set (formed by Pauli

cycles): gmi
:= g1, . . . , gmi

. The next part involves the ideal gate ĝi and the physical (noisy)

2Note that the sequence U†ϱU may appear erroneous. The reason for this is that, originally, the com-
putation ends with tr

[
U |c⟩⟨c|U†ϱ

]
. However, to make it more appealing to experimental groups that only

have access to restricted measurements, it is customary to use the cyclic property of the trace, resulting in
tr
[
|c⟩⟨c|U†ϱU

]
.
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implementation g̃i. The following circuit is constructed:

Ŝcycle := ĝ1 ◦ Ĝ ◦ ĝ2 ◦ · · · ◦ Ĝ ◦ ĝm; (3.54)

for any U unitary matrix, Û acts on a density matrix ϱ by conjugation: Û(ϱ) := UϱU †. The

noisy version of the previous matrix, is

S̃cycle := g̃1 ◦ G̃ ◦ · · · ◦ G̃ ◦ g̃m, (3.55)

where ϱ is a +1 eigenstate of the first Pauli matrix drawn (Pϱ = ϱ); this condition also reveals

an implicit assumption of the scheme: the gates considered are taken to be phase-less.

Using the procedure explained above, the experimental data is of the form

tr
[
Ŝcycle(P )S̃cycle(ϱ)

]
. (3.56)

Then the process fidelity F̂ [67] is estimated as

F̂ ≈ E
P∈P

EPm2 tr
[
Ŝcycle(P )S̃cycle(ϱ)

]
EPm1 tr

[
Ŝcycle(P )S̃cycle(ϱ)

] , (3.57)

where the average over P ∈ P is the average over all Pauli gates. The details of the approxi-

mation are discussed both in the generalisation for universal gates and in the supplementary

material of the original article [67]. The process fidelity is equivalent to the average gate

fidelity. Whereas the average gate fidelity is related to the trace of the Pauli-Liouville rep-

resentation of a channel E as

F (E) =
d tr(Γ(E)) + d2

d2(d+ 1)
, (3.58)

the process fidelity is F̂ := d−2 tr(Γ(E)); thus, determining one determines the other.

To summarise this subsection, cycle benchmarking is a method to estimate the quality

of a (single) Clifford qubit cycle. The method use a different circuit and data analysis than
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standard randomised benchmarking; notably, “unlike randomised benchmarking protocols,

the above protocol does not have an inversion gate” [67]. There is an interesting additional

assumption implicit in the lack of an inversion gate3. Consider BQ in Eq. (3.50). The noise

of this gate, which is associated with SPAM, is not considered in the analytical expression

for the estimated process fidelity.

3.5 Platforms

In this section, I review two qudit platforms. This review serves to give a glimpse of the

variety of situations in which randomised benchmarking is used. For the ion trap and

superconductor qudits, I reproduce figures corresponding to the sequence fidelity; I use these

figures to support the application of Markovian techniques.

3.5.1 Qudit ion trap

In Sec. 2.12, I discussed in more detail the implementation of a qudit on an ion trap. The

ion trap platform has access to single-qudit and entangling qudit gates. Now I discuss

the way randomised benchmarking is used to characterise this platform [14]. The scheme

implemented is Clifford randomised benchmarking; thus Ringbauer et al. assume all the

consideration necessary for Clifford randomised benchmarking. They apply this scheme and

obtain fidelities of 6× 10−4, 2× 10−3, and 1.0× 10−2 for qubits, qutrits and ququints.

There is a marked decrease in the quality of gates by increasing the number of levels. The

reason is the way randomised benchmarking was implemented. For qubit gates fewer basic

operations, laser pulses, are needed, whereas for ququints, exponentially more are required;

the increment on number of two by two unitary matrices follows the triangular number

sequence. The errors accumulate, leading to the two order of magnitude discrepancy of the

3I note that the requirement in Eq. (3.53) could be considered as the inversion gate for cycle benchmarking.
However, I prefer to only use the term “inversion gate” for the last gate in the sequence of a randomised
benchmarking experiment
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Figure 3.3: Sequence fidelity for qudits with d = 2, 3, and 5. Courtesy of Ringbauer
et al. [14]. This plot shows the sequence fidelity obtain by implementing qudit randomised
benchmarking for d = 2, 3, and 5. Number of Clifford gates refers to the circuit depth and
survival probability to the sequence fidelity.

quality between qubits and ququints.

The maximum circuit depth, in this case the number of Clifford gates, is 90, 85, and

50 for qubit, qutrit, and ququint. For each circuit depth, 20 random sequences of gates

are used. The number of shots per circuits is 100, assuming the same number of shots as

for the entangling gates [14]. As argued in Appendix B.5, the best strategy (suggested by

numerical evidence) requires using sequences with depths of up to 100, coupled with 20 shots

and random circuits.

In Fig. 3.3, I reproduce the sequence fidelity reported by Ringbauer et al [14] and in

Fig. 3.4 I show the log plot for the qutrit data. I discuss these plots as follows. There are

two important things to notice in Fig. 3.3. First, the exponential decay justifies the restriction

to Markovian techniques [112]. Second, the figure reveals the experimental capabilities of

the platform. The circuit depth available and the repetitions support the application of

randomised benchmarking in a sensible setting. In particular, asking for circuit depths up

to 50 gates and repetitions up to 20 shots should be enough for a proper characterisation.
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Figure 3.4: Log plot for the sequence fidelity for qutrits. Using the supplementary
data from Ringbauer et al. [14], I produce a log plot for their sequence fidelity using their
qutrit data.

As mentioned in Chapter 2 Sec. 2.11, Markovian noise leads to a single exponential decay.

Whereas, in principle, nothing impedes non-Markovian noise to produce a single exponential

decay, having a single exponential sequence fidelity allows to estimate the average gate fi-

delity, which is the only goal of randomised benchmarking and not to determine if the noise is

non-Markovian or not. Whereas the study of non-Markovian noise using randomised bench-

marking techniques is relevant, such goal is distinct to the goal of randomised benchmarking

schemes.

Why is randomised benchmarking used to characterise the gates of this platform? The

authors mention that to avoid SPAM interference in the characterisation they opted for

randomised benchmarking. Nevertheless, they also implemented process tomography to

verify the randomised benchmarking characterisation. This shows that for single-qudit gates,

randomised benchmarking and gate set tomography are complementary methods.
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3.5.2 Superconductor

The system is a transmon qutrit, which is modelled as an anharmonic oscillator. A transmon

qutrit is an artificial system that has a multilevel structure with unevenly spaced energy lev-

els. In the literature, it is sometimes referred to as an ‘artificial atom’ due to the similarity of

its spectrum with that observed in atoms. Briefly, a harmonic oscillator can be implemented

in a LC (or resonant) circuit [136]. The anharmonicity is obtained by replacing a linear

inductor with a non-linear inductor. Experimentally, this is achieved using a superconduct-

ing inductor as a replacement for the linear one. This anharmonicity produces an uneven

spectrum. The operations (the quantum gates) are implemented by applying an oscillatory

voltage at different frequencies. Some frequencies excite the artificial ’atom’; while others

serve to probe or measure its state.

In this platform, any single-qudit unitary gate can be implemented natively. This is done

by explicitly constructing the non-diagonal exponentials of the Gell-Mann matrices. The

diagonal gates are implemented virtually; that is, the phases are implemented in the next

gate. Combining the complex exponentials of Gell-Mann matrices and virtual gates the full

unitary group can be implemented. As in the ion trap case, the gates are decomposed into

operations that act on only two levels at a time.

As in the ion trap case, Fig. 3.5 is reproduced with a twofold purpose: first, to illustrate

the circuit depth that can be achieved with this platform; second, to show that the average

sequence fidelity is approximately a single exponential. This supports the assumption that

the CPTP and Markovian approximations for the noise are valid, which in turn allows us to

apply randomised benchmarking rigorously.

Similar behaviour of the average sequence fidelity is reported in other qudit superconduc-

tor platforms [137]. For qutrits [138], Lupascu’s group has a qutrit superconductor platform

that shows a single exponential decay function [138], and a group in Chicago has a ququart

showing the same Markovian behaviour [139].
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Figure 3.5: Courtesy of A. Morvan et al. [13]. Population decay corresponding to the fidelity
between the initial state Q(|0⟩), with Q a circuit generated from random Clifford gates, and
one of the states |i⟩, with i ∈ [3].

3.6 Randomised compiling

Randomised compiling is initially designed to mitigate coherent errors and increase fault-

tolerant thresholds by a procedure that leaves the same theoretical circuit but randomly

changes its experimental implementation [58]. The resulting average circuit transforms any

Markovian CPTP noise into stochastic (Pauli) noise [58].

The method’s ingredients are a physical gate set and an additional “virtual” gate set,

implemented by keeping track of the phases until a non-diagonal gate is applied. The virtual

gate set twirls gates before the gates are applied. The physical gate set is partitioned into

easy and hard gates. Easy gates correspond to gates with low noise and hard gates with

high noise.

The scheme goes as follows: a circuit is analytically split into easy and hard gates. Before

and after each easy gate, a pair of twirling gates are inserted. In the ideal setting, one of

the gates cancels the previous hard gate, then cancels the previous twirling gate, and then

restores the previous hard gate. Thus, in the ideal case, the circuit remains the same. The

resulting gates, from pre- and post-multiplying, are implemented on the platforms. Thus,

these gates should be pre-computed on demand. The action of the virtual gates introduces
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a small overhead in the experimental cost.

The result of this procedure is a circuit with only stochastic noise. Moreover, the scheme

is beneficial even if the easy gates have gate-dependent noise. Twirling a circuit with gate-

dependent noise equals a twirled circuit with gate-independent noise plus a minor correc-

tion [58]. This procedure is essential in gate characterisation since now randomised bench-

marking can be implemented on top of randomised compiling with the basic assumptions

and still yield the desired characterisation.

3.7 Summary

In this chapter, I presented a survey of the state-of-the-art for randomised benchmarking

schemes. My survey concentrated on schemes to characterise non-Clifford gates. This survey

serves the purpose of illustrating the techniques and results that I aim to generalise for qudit

systems.

I discussed schemes for individual and collective characterisation of non-Clifford gates.

I presented the dihedral benchmarking scheme as the latest method to obtain the average

gate fidelity of a gate set, including a qubit T gate. I also discussed schemes to characterise

Clifford gates, such as qudit Clifford randomised benchmarking and cycle benchmarking. In

the next chapter, I present my generalisation to qutrit systems of dihedral benchmarking.

The features of my scheme are imposed to be equal to those of dihedral benchmarking: only

two parameters are necessary to characterise a qutrit T gate.
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Chapter 4

Randomised benchmarking for

universal qutrit gates

4.1 Introduction

In this chapter, I introduce the hyperdihedral group (HDG) for qutrits. From the associated

gate set, I extend the original qubit randomised benchmarking scheme to characterise a

qutrit gate set that includes a non-Clifford gate [2]. I start my discussion by enumerating

the features a gate set ought to satisfy to be included in a feasible randomised benchmarking

scheme. I then verify the HDG satisfies these features. Finally, I show several numerical

results illustrating the feasibility of my scheme.

4.2 Construction of the HDG

In this section, I construct the HDG for the qutrit case; the HDG is the group used in my

generalisation of the dihedral benchmarking scheme for qutrits. Then I specify features of the

HDG, including its generators and its multiplication rule. Both are important in practical

implementations.

I discuss the feasibility of my scheme. My feasibility claim is grounded in two points: (i)
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the number of parameters required for the characterisation is two and (ii) the variance of the

sequence fidelity (using the HDG) is similar to the variance for the Clifford gate set. These

two points are discussed later.

Now I describe the gate set construction in detail, starting with the generators. The

elements of the group have the form of a product of a cyclic permutation matrix and a

diagonal matrix. Therefore, to find the generators of the group, I need to find the generators

for the group generated by the matrices obtained by computing every permutation of the

diagonal entries of T, which I denote as D.

Now, I argue that finding the set of generators of D is equivalent to finding a basis for the

module (or vector space, but over a ring rather than a field) generated by the diagonals of

each element of D. To see this, consider d0 and d1 in D. Then, since d0 and d1 are diagonals

with entries of the form exp(2πia/b) (where b is fixed), matrix multiplication is equivalent

to addition of vectors modulo b. Therefore, whereas finding an element of D is equivalent to

finding the powers of the generators of D needed to represent the element, the corresponding

diagonal should be a linear combination of the basis of the vector space corresponding to

the diagonals of the elements of D.

As in the case of finding a basis given a list of vectors, row-echelon reduction is necessary.

A small tweak is needed since the matrices have entries in some ring rather than C, but

fortunately, this has been developed in Howell’s work [75]. Applying such a generalized

row-reduction procedure allows me to compute the generators of the HDG.

The generators of the HDG are

X =


0 0 1

1 0 0

0 1 0

 , T =


1 0 0

0 ω8
9 0

0 0 ω9

 , and T ′ =


ω2
9 0 0

0 ω6
9 0

0 0 ω9

 ; (4.1)

every HDG element is of the form

XxTα0(T ′)α1 , (4.2)
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where x ∈ Z3 and α0, α1 ∈ Z9; these values (x, α0, α1) are used to label HDG elements.

Now the multiplication rule between HDG elements. Let V be a diagonal matrix.

Conjugating V by X results in a cyclic permutation of the diagonal entries of V . Let

V = diag[a, b, c] (a, b, c ∈ C); conjugating V by X results in the matrix XVX† = diag[c, a, b].

Moreover, ⟨T, T ′⟩ (the set of matrices generated by T and T ′) is invariant with respect to

conjugation by X: for any V ∈ ⟨T, T ′⟩, XVX† ∈ ⟨T, T ′⟩.

The multiplication between two HDG elements can be obtained from the observation

made in the previous paragraph. Multiply two elements XaT b0(T ′)b1 and Xa′T b′0(T ′)b
′
1 of the

HDG, introduce the identity in the form I = Xa′(Xa′)†:

XaT b0(T ′)b1Xa′T b′0(T ′)b
′
1 = XaXa′ [(Xa′)†T b0(T ′)b1Xa′ ]T b′0(T ′)b

′
1 . (4.3)

As observed in the previous paragraph, and noting that a cyclic permutation of the diagonal

entries of T ′ produces a member of ⟨T, T ′⟩, the matrix (Xa′)†T b0(T ′)b1Xa′ is a member

of ⟨T, T ′⟩.

A trivial algebraic manipulation reveals that the multiplication rule for HDG is

Xx0T a0(T ′)b0Xx1T a1(T ′)b1 = Xx0+x1T (a1+a′0)(T ′)(b1+b′0), (4.4a)

where a′0
b′0

 =

5 8

4 3


x1
a0
b0

 . (4.4b)

The simplicity of the multiplication rule of Eq. (4.4) is important: using an arbitrary gate

set, the computation of the product and the inverse of an arbitrary element is in general

expensive. This has led to the development of techniques for cleverly sampling gates [140].

However, as the HDG multiplication rule is explicitly given and is efficient to compute, my

scheme does not require such sampling methods, which decreases the difficulty in implement-

ing my scheme.
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I denote by HDG the group that has an irrep with representatives ⟨X,T ⟩. The gate

set corresponding to the unitary matrices ⟨X,T ⟩ is the smallest, verified using GAP1, that

produces a bi-parametric fidelity, where

T = diag[1, ω8
9, ω9]. (4.5)

Notice there are only two primitive gates needed to generate the gate set: T ′ is used only to

simplify the computation of composition and inverse.

4.3 Representation theory for the HDG

The objective of this section is threefold. First, it aims to define the irreducible represen-

tations (irreps) of the homogeneous differential group (HDG). Second, it seeks to illustrate

the decomposition of the Hilbert space in terms of the irreps of the HDG.

Now I start the exposition. The minimal generating set of the HDG is given by the

matrices in Eq. (4.1). Then, I define the representation γ as

γ(x, α0, α1) := XxTα0(T ′)α1 . (4.6)

I now study the decomposition of the Hilbert space according to the invariant subspaces

corresponding to the action of Γ = γ ⊗ γ̄. The decomposition of the set of endomorphisms

(from h to h) is fundamental in the computation of the expressions for the gate fidelity

and sequence fidelity. The Pauli-Liouville representation of γ (defined in Eq. (2.6)) has five

nonequivalent irreps; these five irreps decompose the Hilbert space as

end(h) = hI ⊕ h0 ⊕ h∗0 ⊕ h+ ⊕ h∗+. (4.7)

1GAPis a command line utility that allows to symbolically manipulate groups. For my purposes, it is a
repository with access to finite groups including their character tables. From the character tables I verify
the results in this chapter and in my paper [10].

79



As I show in §5.4, the number of irreps is equal to the number of parameters; conjugate pairs

of irreps imply conjugate pairs of parameters.

In the next section, I explain how to compute the decomposition in Eq. (4.7). Later

in §5.3, I formally compute the decomposition into irreps of the group labelling gates; I use

GAP to compute the decomposition and the associated projectors. See Appendix B.3 for a

list of functions and snippets I wrote for this purpose.

4.4 Gate fidelity and sequence fidelity

I now have all the ingredients (the decomposition of end(h) and the multiplication rule for

group elements) to compute the expressions for the gate fidelity and sequence fidelity. I start

by computing the expression for the gate fidelity and then for the sequence fidelity. Then I

conclude this section by illustrating how the parameters in both fidelities are linked; I show

how to estimate them in a randomised benchmarking experiment.

The channel representation decomposes the Hilbert space into five irreps: hI, h0, h
∗
0, h+,

and h∗+. Let ϖ ∈ {I, 0,+, 0∗,+∗} be an index corresponding to an irrep. Let Πϖ denote

the projector onto the irrep ϖ. The twirling map (first defined in Eq. (2.46)) transforms a

matrix M to

[M ]HDG =
∑

ϖ∈{I,0,+,0∗,+∗}

ηϖ(M)Πϖ, (4.8)

where

ΠI = diag(1, 0, 0, 0, 0, 0, 0, 0, 0), (4.9a)

Π0 = diag(0, 1, 0, 0, 0, 0, 0, 0, 0), (4.9b)

Π0∗ = diag(0, 0, 1, 0, 0, 0, 0, 0, 0), (4.9c)

Π+ = diag(0, 0, 0, 1, 1, 1, 0, 0, 0), (4.9d)

Π+∗ = diag(0, 0, 0, 0, 0, 0, 1, 1, 1), (4.9e)
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and ηϖ(M) :=
tr(ΠϖM†)
dim(Πϖ)

is the quantity to be experimentally estimated.

Applied to the Pauli-Liouville representation of a channel E , the twirling map is equal to

[Γ(E)]HDG =
∑

ϖ∈{I,0,+,0∗,+∗}

ηϖ(Γ(E))Πϖ. (4.10)

Thus, the average gate fidelity for any channel twirled by the HDG is

F (E) =
3(1 + 2 Re(η0(Γ(E))) + 6 Re(η+(Γ(E)))) + 9

36
, (4.11)

where I used Eq. (2.76).

I discuss the appearance of the real part in the expression for the gate fidelity. Two irreps

appearing in the decomposition of h in Eq. (4.7) are conjugated: h0∗ is conjugated to h0. A

simple computation reveals the eigenvalue η of conjugated irreps are themselves conjugated.

Therefore, by adding the two parameters, I get (twice) the real part of the eigenvalue η0.

4.5 Scheme description at circuit and SPAM level

In this section, I describe my randomised benchmarking scheme. By description, I mean a

description of an experimental ‘run’ of the scheme to obtain a number. Then I illustrate the

iterative steps; I conclude with an estimate of the sequence fidelity.

I start the description of the experimental run by describing the ingredients and statistical

requirements: I make use of gates, states, and measurements. The gates are labelled by HDG

members, the states are |0⟩ and |+⟩ := F2 |0⟩, and the measurements are with respect to

those same states. The parameters of a run are the circuit depth m, the initial state |ϖ⟩,

and the measurement ⟨ϖ|. The circuit depth is the number of gates sampled from the gate

set, excluding the inversion gate.

The inversion gate is a gate that, in a noiseless setting, cancels the action of the original

circuit, leaving only the identity operation. Assume two gates are drawn (more appropriately
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draws and then applies) and I label them by g0, g1 ∈ HDG. Then the inversion gate is labelled

by the group element (g0g1)
−1 ∈ HDG. In general, for an ordered multiset of gates labelled

by group elements g0, . . . , gm−1 ∈ HDG, the inversion gate is labelled by (g0 · · · gm−1)
−1. A

diagram of a run of the experiment is presented in Fig. 4.1). This concludes the description

of the experimental setup required.

|0⟩ ⟨0| .(g0g1)
−1 g0 g1

Figure 4.1: Circuit for a run using the HDG gate set. ⟨0| denotes the measurement with
respect to |0⟩.

4.6 Numerical study of my scheme’s feasibility

Assessing the feasibility of my scheme refers to assessing whether my scheme can be im-

plemented with current experimental resources reported in the literature. In my case, since

there are already randomised benchmarking experiments being done, it is enough to compare

the resources required by my scheme against known schemes. In particular, I compare my

scheme against Clifford randomised benchmarking [13].

My criteria for feasibility have three components [10]: fewer or an approximately equal

number of primitive gates required than Clifford schemes, practical random sampling and

composition of group elements, and the number of samples required. I explain the last two

points. By practical random sampling, I refer to the fact that obtaining an HDG element

requires sampling one of the following permutations: {e, (123), (132)}, and two powers for the

diagonal gates. My claim (of practical composition) is justified by the fact that composing

two elements of the HDG amounts to the following tasks: 1) compose two permutations,

2) cyclically rotate a vector, and 3) add two vectors. By contrast, an arbitrary finite group

given only by its generators requires approximate methods (in terms of a group element), of

which a computation complexity is unknown for a general group [141, 142].

The number of samples refers to the number of required runs at a given depth, with
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each run using a different randomly drawn circuit. The computation of the number of runs

required (for any gate set, including Clifford) is non-trivial and no standard method exists

for performing this computation [143]. Here, I explain the method I use to estimate the

number of samples required compared to the Clifford case. This estimation is based on the

variance of the sequence fidelity, defined as follows.

I assume a uniform probability for drawing one random gate. Therefore, the probabil-

ity of sampling the ordered multiset (g0, . . . , gm−1) ∈ Gm is |G|−m. For a given gate set

configuration (E , ρ, E), I then define the random variable X as the map

X(tr{EEg0 · · · Egm−1ρ}) = |G|−m; (4.12)

This means that the probability of getting the value tr{EEg0 · · · Egm−1ρ} is |G|−m. I use X

to define the mean and variance.

I now illustrate the computation of the mean and variance. The mean is

E(X) = |Gm|−1
∑
g∈Gm

tr{EEg0 · · · Egm−1ρ}; (4.13)

Note that E(X) is equal to the sequence fidelity. The variance is

V(X) = |Gm|−1
∑
g∈Gm

tr{EEg0 · · · Egm−1ρ}2 − E(X)2 = E(X2)− E(X)2. (4.14)

Figure 4.2 illustrates the qualitative behaviour of the variance for unital noise or noise with

high fidelity F > 0.999. The figure is typical of the variance behaviour for any kind of

noise. High-fidelity noise makes the channel approximately unital. As the variance curves

are qualitatively similar, the number of samples for the HDG should be similar to the number

of samples for Clifford.

Confidence intervals and the number of samples are closely related. The variance of the

data directly affects the confidence interval [52, 143], which in turn determines the required
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V(m; |0⟩⟨0| , ⟨0| ,HDG)
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V

Figure 4.2: Plot comparing the variance of the HDG sequence fidelity with the variance of
the Clifford sequence fidelity; I used the analytical expression (using Eq. (4.14)) to compute
the plot. The fidelity of the noise considered is 0.99.

number of samples. Given a certain number of samples, the error and confidence level for the

average result, such as the average sequence fidelity, can be established. This relationship

helps to ensure that sufficient samples are taken to achieve the desired accuracy.

Here is how the number of samples required is related to the variance. In general, it is

possible to set the confidence and error and, from the expression of the confidence interval,

estimate the minimum number of samples required. Tight bounds are commonly obtained

from expressions containing the variance of the sampled statistic. Therefore, similar variances

imply similar numbers of samples.

4.7 Phase and criteria for universal qutrit randomised

benchmarking

In this section, I discuss my results for the qutrit case, which became redundant in light

of my qudit results. These include the analysis of whether the phase can be neglected and

the criteria for selecting the HDG over other groups. I will also explain the reasons for the

obsolescence of these results. By comparing the two cases, it became clear that the qudit

approach offers more comprehensive solutions.

As discussed in Sec. 4.3, the HDG decomposes into five irreps, two of which appear as
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conjugate irreps. This decomposition leads to an oscillatory contribution to the sequence

fidelity. This contribution becomes negligible when dealing with a high-fidelity gate. There-

fore, the oscillatory effects do not significantly impact the accuracy of the results.

To prove this claim, I first express the phases as a function of the chi-representation.

The chi-representation helps relate the phase to the average gate fidelity. I then calculate

the contributions from both the real and imaginary parts of the sequence fidelity. The result

shows that the imaginary part is several orders of magnitude smaller than the real part.

With this form, I can find the minimum and, thus, the value at which the deviation from

an exponential becomes noticeable. The non-exponential contribution is given by

cosφ0 =
1√

1 + (v/u)2
, (4.15)

where

v :=
2√
3

(χ33 + χ44 + χ55 − χ66 − χ77 − χ88) , (4.16)

and

u := χ00 + χ11 + χ22 −
1

2
(χ33 + χ44 + χ55 + χ66 + χ77 + χ88) , (4.17)

where the chi-representation is used. The average gate fidelity is a function of χ00. This

leads to the definition of four variables that are useful for analyzing the range cosφ0 can

take:

x0 = χ00, (4.18)

x1 = χ22 + χ11, (4.19)

x2 = χ33 + χ44 + χ55, (4.20)

and

x3 = χ66 + χ77 + χ88. (4.21)
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Using these variables, the new form of cosφ0 is:

v

u
=

2√
3
(x2 − x3)

x0 + x1 − 1
2
(x2 + x3)

. (4.22)

Whereas the maximum value that cosφ0 can take is 1, the minimum is not clear. Therefore,

to identify the range the values can take, it is necessary to compute the minimum.

Observing the form of cosφ0, the minimum is reached when x1 = x2 = 0 and x3 = 1−x0.

Thus, the minimum value it can take is

min(cosφ0) =
1√

4m2(χ00−1)2

3(χ00−1
2

+χ00)
2 + 1

. (4.23)

Since χ00 is a function of F , defined as

F =
1

4
(1 + 3χ00), (4.24)

I substitute the value of χ00 as a function of F into min(cos ϱ0):

min(cosφ0) =
1√√√√ 4m2( 4F

3
+ 1

3
−1)

2

3

(
4F
3 +1

3−1

2
+ 4F

3
+ 1

3

)2 + 1

=
1√

64(F −1)2m2

27(1−2F )2
+ 1

. (4.25)

To gain intuition, I explore two limits:

lim
m→∞

min(cosφ0) = 0, (4.26a)

lim
F→1

min(cosφ0) = 1. (4.26b)

The limits in Eqs. (4.26) indicate that as the gate fidelity increases, the deviation from a

single exponential is negligible. However, the limit for m shows that if the fidelity of the gates

is expected to be low, then shorter circuits should be used in the randomised benchmarking

86



0.990 0.992 0.994 0.996 0.998 1.000
0

20

40

60

80

100

F

m

Deviation: 0.1 0.01 0.001

Figure 4.3: Contour plot showing the maximum circuit depth m that a gate with average
gate fidelity F can be composed of before the phase contribution changes the behavior of
the single exponential.

experiment.

In Fig. 4.3, I show the relation between fidelity, circuit depth, and the deviation result of

the phase. It shows that if the target deviation is 0.01, then for a gate with a fidelity of 0.998,

the maximum circuit depth to use is 40. Beyond that circuit depth, the deviation surpasses

the target deviation, and the sequence fidelity curve deviates significantly from the single

exponential. This suggests the following strategy to estimate the fidelity. For not-so-high

fidelity gates, it is better to aim for short circuits but sample different gates.

I am able to justify HDG for qutrits based on three criteria. This criterion was used to

uniquely identify the group. The three criteria are now listed:

• The T gate is a member of a unitary irreducible representation (irrep) of the group.

• The twirl of an arbitrary matrix should be diagonal in the Heisenberg-Weyl basis.

• The group is the smallest that satisfies the previous two criteria.
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• The number of parameters is the smallest.

In summary, our criteria state that the smallest possible group that produces a diagonal

twirl with the fewest parameters should be selected. Thus, if two groups have the same

number of parameters, the smaller group should be chosen. These points are valid for the

qutrit case since the order of the groups that satisfy the first two criteria is small. Therefore,

using GAP, it made sense to search over small-order groups to identify the best fit.

These criteria are motivated by experimental constraints. The small order is implemented

to avoid requiring the preparation of many gates. Additionally, the requirement for a min-

imal number of parameters is driven by the need to avoid preparing many distinct states.

This would otherwise complicate isolating the parameters during experiments, increasing the

overall complexity of the setup.

4.8 Conclusion

The results of this chapter are: the HDG for qutrits, the expressions for the fidelities (gate

and sequence), and a numerical argument supporting the feasibility of my scheme. These

results correspond to a generalisation for qutrits of the dihedral benchmarking scheme.

I now further discuss these results. The group HDG is constructed such that it reduces

to the gate set found in dihedral benchmarking. I verified the mathematical properties

relevant for my scheme: the number of irreps in the decomposition of the Pauli-Liouville

representation and the multiplication rule.

My second result is the computation of the expressions for the sequence and gate fidelities

for the HDG. Both expressions share two parameters: these two parameters, in turn, can be

computed from experimental data obtained using the standard randomised benchmarking

experimental scheme. By fitting an exponential function to the data, the parameters in

the sequence fidelity are computed. From these two parameters, the average gate fidelity is

computed.
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The last discussion of this chapter is the verification of the feasibility of my scheme. I used

a numerical approach to compare the resources required to obtain a statistical significance

similar to Clifford randomised benchmarking. My numerical study showed that my scheme

(which requires fewer resources than Clifford randomised benchmarking in terms of primitive

gates) operates under the same statistical parameters (number of samples and number of

repetitions) and has a qualitatively similar statistical reliability.

In the following chapter, I introduce my generalisation to qudits of the result presented

here. There, I not only generalise the qutrit scheme but also obtain a simpler scheme with no

oscillatory contribution to the sequence fidelity. I also present a multi-qudit generalisation.
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Chapter 5

Randomised benchmarking for

universal qudit gates

5.1 Introduction

This is the main chapter of my thesis. Here I introduce my benchmarking scheme for non-

Clifford qudit gates. I start by defining the drHDG, which is constructed for each T gate

and forms the gate set used in my scheme. Then comes a representation theory analysis. In

this analysis I discuss the decomposition of the Pauli-Liouville representation of the drHDG.

I conclude the chapter by obtaining the expressions required in any benchmarking scheme:

the average gate fidelity and sequence fidelity for the drHDG.

As I discuss in this chapter, my scheme is useful to characterise any diagonal gate with

order higher than 2. However, for non-power-of-prime (POP) dimensions, only the trivial

generating set of a universal gate set is known. Therefore, whereas my scheme is useful to

characterise diagonal gates in any dimension, I restrict my discussion to POP systems for

the important task of characterising the generators of a universal gate set.
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5.2 Construction of the qudit rHDG

In this section, I construct a unitary representation of drHDG that I use to compute the Pauli-

Liouville representation. I start the construction by defining two auxiliary representations

that are needed for the representation of the qudit drHDG. The auxiliary representations

are representations of the symmetric and cyclic groups. I start with the representation of the

symmetric group, which I denote X. Let Sd denote the symmetric group of d elements [3].

For a permutation σ ∈ Sd, its representative by X is

X(σ) =
∑
i

δi,σ(i); (5.1)

δ is the Kronecker delta, considered as a matrix with a single entry non-zero and that non-

zero entry is equal to 1.

As an example of the representation X, consider the representatives of S3. For complete-

ness, I include all the permutations, not only the generators.

X(I) =



1 0 0

0 1 0

0 0 1


, X((12)) =



0 1 0

1 0 0

0 0 1


, X((13)) =



0 0 1

0 1 0

1 0 0


,

X((23)) =



1 0 0

0 0 1

0 1 0


, X((123)) =



0 1 0

0 0 1

1 0 0


, X((132)) =



0 0 1

1 0 0

0 1 0


.

(5.2)
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The representation X is called the standard representation of Sd. This representation is

reducible and decomposes into two irreps: one is the trivial irrep and the other is called the

standard irrep of Sd.

The second auxiliary representation is for a direct product of cyclic groups. I start the

definition of this representation by introducing notation for cyclic groups. Elements of the

cyclic group are denoted by α. Let p denote the order of α: αp = I. I denote the cyclic

group of order k as Ck; it has elements of the form αp, with p ∈ [k]. As an example consider,

for k = 3, C3 has elements {α, α2, α3 = I}.

A product of cyclic groups is an important subgroup of the drHDG. Consider a multiset

with l elements: k = (k0, . . . , kl−1), each component of k is a positive integer. Then I denote

the direct product of the cyclic groups with order given by each entry of k as

×
k∈k

Ck := Ck0 × · · · × Ckl−1
. (5.3)

The elements of×k∈k Ck are denoted by (αp0
0 , . . . , α

pl−1

l ), where each pi ∈ [ki] denote the

power of the element αi of the group Cki . Cyclic groups appear in drHDG in the form

of powers of diagonal non-Clifford gates. The representation for×k∈k Ck is computed as

follows. Given α = (αp0
0 , . . . , α

pl−1

l−1 ) ∈×k∈k Ck, the mapping D is defined as

D(α) = D(αp0
0 , . . . , α

pl−1

l−1 ) := diag[ωp0
# d, . . . , ω

pl−1

# d ]. (5.4)

Now I can define a representation of the drHDG.

Using the representations of Eqs. (5.1) and (5.4), I define the representation for the drHDG.

For a pair (σ,α) ∈ Sd ××k∈k Ck the mapping γ is

γ(σ,α) := X(σ)D(α). (5.5)

The mapping γ is a d × d unitary irreducible representation (unirrep). In the following
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section, I study the properties of γ relevant for my randomised benchmarking scheme.

The rest of this section is devoted to the construction of concrete representations of drHDG.

First, I discuss the form of known T gates for qudits. The matrices that I present are useful

for obtaining instances of the drHDG. I use qudit diagonal T gates [144]. The T gates

defined for d ̸= 2, 3 are

T =
∑
j∈Zd

ωj3

d δj,j. (5.6a)

For d = 3 the diagonal T gate I use is

T =
∑
j∈Zd

ωj3

3dδj,j. (5.6b)

For future convenience, I denote the order of the qudit T gate as #(d); thus

#(d) :=


9, d = 3

d, otherwise

. (5.7)

For power-of-prime dimensions, the corresponding T gate should be constructed as if a multi-

qudit gate. For instance, for ququart systems, the T gate is T ⊗ I, where T is the qubit T

gate. Next step is to compute the group generated by the set of matrices computed from

the cyclic permutations of the diagonal entries of T .

Consider T = diag[ωp0
#(d), . . . , ω

pl−1

#(d)]. Extract the diagonal from T ; D := (ωp0
#(d), . . . , ω

pl−1

#(d)).

Compute every permutations of D: D = {(ωp0
#(d), . . . , ω

pl−1

#(d)), . . . , (ω
pσ(0)

#(d) , . . . , ω
pσ(l−1)

#(d) )}. Us-

ing Howell’s algorithm [75], extract from D the generators of the group generated by D

along with their orders. The output of Howell’s algorithm is the set of permutations

σ = (σ0, . . . , σl′) and a set of positive integers {o0, . . . , ol′}, one integer per permutation.

The minimal generating set is

T ′ := {diag[ω
oipσi(0)
#(d) , . . . , ω

oipσi(l−1)

#(d) ] : i ∈ [l′]}; (5.8)
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from T ′ the form of the group generated by the permutations of the diagonal entries of T

can be computed:

⟨Tσ : σ ∈ Sd⟩ ∼=×
k∈k

Ck, (5.9)

where #(d) is the order of the T gate, σ ∈ σ, and k = {k0, k1, . . . , k′l} = {# d/o0, . . . ,# d/ol′}.

I conclude this section with a qutrit example of the drHDG. This construction serves to

illustrate the construction for other POP systems. For qutrits, #(3) = 9 as in Eq. (5.7).

Thus, the basic diagonal gates are:

D (α = (α0, α1, α2)) = diag[ω9
α0 , ω9

α1 , ω9
α2 ], (5.10)

where αi ∈ [3]. The T gate for this case is T = diag[ω9, 1, 1].

Knowing the representatives for diagonal and permutations, I can write the general rep-

resentative for a drHDG element. Consider for instance

γ((12),α) =


0 1 0

1 0 0

0 0 1

 diag[ω9
α0 , ω9

α1 , ω9
α2 ] =


0 ω9

α1 0

ω9
α0 0 0

0 0 ω9
α2

 . (5.11)

In §5.3 I prove that representations such as γ are useful to characterise a T gate for POP-

level systems. I never directly exploit the fact that γ is an irrep; the methods that I use to

prove the decomposition of the Pauli-Liouville representation can be used to prove that γ is

indeed an irrep of drHDG.

Illustrate the group to make it less abstract from a geometric perspective. In the case of

a T gate diag[ω3, 1, 1], the resulting group is S3⋉C3×C3×C3. This group is also the wreath

product between S3 and C3. This allows us to picture the drHDG for T as the symmetry

group of the figure in Fig. 5.1. The symmetry group of the vertices of the triangle in Fig. 5.1

is S3 ≀ C3, which is the group for T = diag[ω3, 1, 1].
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Figure 5.1: Geometric figure used to illustrate the drHDG. The symmetry group of the
vertices of the triangles form the drHDG for the qutrit T gate given by diag[ω3, 1, 1].

5.3 Representation theory for the rHDG

In this section, I discuss some notation from representation theory applied to the drHDG.

The main motivation is to use representation theory to prove that the Pauli-Liouville rep-

resentation of the representation γ decomposes, indeed, into three inequivalent irreps. This

section is basically the proof of this decomposition, including examples of some steps in the

proof.

For each representative computed using γ from Eq. (5.5), I define:

Γ(σ,α) = γ(σ,α)⊗ γ(σ,α) ∈ end(h), (5.12)

where the bar denotes complex conjugate. Now I discuss the key property of Γ: its decom-

position into three distinct irreps. It will be shown later that this property is valid for any d,

not only POP systems. However, with the current knowledge of universal gate sets, only for

POP systems our results are applicable.

The proof of the tripartite decomposition of end(h) has the following strategy: First, I

state a result on characters to count the frequency by which an irrep appears in a reducible

representation. Then I compute the character of the irrep γ of Eq. (5.5). Next, using the

average of the modulus squared of the character of the irrep, I sum over all the elements of

the rHDG. Using Theorem 5.1, below I conclude the proof of the tripartite decomposition.

Theorem 5.1 (Adapted from Serre’s textbook [82]). Let χ be the character of a represen-
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tation ρ of a group G acting on the Hilbert space h. The representation ρ decomposes h into

the following sum:

h = hi0 ⊕ · · · ⊕ hi0︸ ︷︷ ︸
φ0 summands

⊕ · · · ⊕ hik ⊕ · · · ⊕ hik︸ ︷︷ ︸
φk summands

; (5.13)

where φi is called the frequency in which the irrep hi appears in h. Then

E
g∈G
|χρ(g)|2 =

∑
i∈[k]

φ2
i . (5.14)

This result is commonly used to compute the dimensions of the irreps appearing in some

representation.

I start the proof the decomposition of the representation of Eq. (5.12) by an observation

useful to compute the character of an drHDG element. The elements on the diagonal of

any X(σ) correspond to the entries fixed by σ. For instance consider the permutation (13)

for an ordered list of three elements (♢,♠,♡); (13)(♢,♠,♡) = (♡,♠,♢): ♠ is a fixed

element. Then ⟨♠|X((13)) |♠⟩ ̸= 0. Note also that multiplying (left or right multiplication)

any X(σ) by a diagonal matrix still keeps the fixed diagonal non-zero entry and the non-zero

entries are equal to 1. Another explicit example is given in Eq. (5.11).

The diagonal elements of the rHDG correspond to matrices of the form

X(I)D(α) =



ωα0

#(d)

ωα1

#(d)

. . .

ω
αd−1

#(d)


. (5.15)

More notation is needed for the next part. Let J(σ) denote the set of indices of the diagonal

entries fixed by σ. Then I know X(σ)i,i = 1 if and only if i ∈ J(σ); on the contrary, X(σ)i,i = 0

if and only if i ̸∈ J(σ). Thus, the diagonal entries of X(σ)D(α) are ωαi

#(d) with i ∈ J(σ). I

96



define the quantity

fσ := |J(σ)|. (5.16)

I am ready to compute the characters of γ and Γ,

χγ(σ,α) =
∑

i∈[J(σ)]

ωαi

#(d). (5.17)

From Eq. (5.17) I compute the character of the Pauli-Liouville representation: χΓ(σ,α) =

|χγ(σ,α)|2.

From χγ the character of the Pauli-Liouville representation:

χΓ(σ, α) =
∑

i,j∈[J(σ)]

ω
αi−αj

#(d) = fσ +
∑
i ̸=j

ω
αi−αj

#(d) (5.18a)

note that χΓ(σ,α) is a real number, thus I omit the modulus appearing in Theorem 5.1.

The next step is averaging χΓ
2 (the square of χΓ(σ,α)) over every drHDG element and

verifying that Eσ,α χΓ(σ,α)2 = 3. Then, using Theorem 5.1, show that there are only three

inequivalent irreps in the drHDG.

First, I compute χ2
Γ(σ, α):

χ2
Γ(σ, α) = (fσ +

∑
i ̸=j

ω
αi−αj

#(d) )(fσ +
∑
u̸=v

ωαu−αv

#(d) ) (5.18b)

= f 2
σ + fσ(

∑
i ̸=j

ω
αi−αj

#(d) ) + fσ(
∑
u̸=v

ωαu−αv

#(d) ) + (
∑

i ̸=j,u̸=v

ω
αi−αj+αu−αv

#(d) ) (5.18c)

I note that, for i ̸= j

E
α
ω
αi−αj

#(d) = 0. (5.18d)

Thus

E
α

∑
χ2
Γ(σ,α) = f 2

σ + E
α

∑
i ̸=j,u̸=v

ω
αi−αj+αu−αv

#(d) (5.18e)

To simplify Eq. (5.18e) I need to isolate the phases αi appearing in the exponent of ω. Only
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Table 5.1: Table with the clasification of the phases.
Configuration αi − αj + αu − αv

i ̸= v i = u j ̸= u j = v 2αi − 2αj

i ̸= v i = u j ̸= u j ̸= v 2αi − αj − αv

i = v i ̸= u j = u j ̸= v 0
i ̸= v i ̸= u j = u j ̸= v αi − αv

i ̸= v i ̸= u j ̸= u j = v αi + αu − 2αv

i = v i ̸= u j ̸= u j ̸= v αu − αj

i ̸= v i ̸= u j ̸= u j ̸= v αi − αj + αu − αv

then I can compute the average over the phases. I decompose the cases i ̸= j and u ̸= v in

Table 5.18.

In Table 5.18 I describe the different combinations of phases that appear in the sum

Eq. (5.18e). I decompose the sum-average in the second summand in the right-hand side

of Eq. (5.18e):

E
α

∑
i ̸=j,u̸=v

ω
αi−αj+αu−αv

#(d) = E
α

∑
i ̸=v,i=u,
j ̸=u,j ̸=v

ω
2αi−2αj

# d + E
α

∑
i ̸=v,i=u,
j ̸=u,j ̸=v

ω
2αi−αj−αv

# d (5.18f)

+ E
α

∑
i=v,i̸=u,
j=u,j ̸=v

ω0
# d (5.18g)

+ E
α

∑
i ̸=v,i̸=u,
j=u,j ̸=v

ωαi−αv

# d + E
α

∑
i ̸=v,i̸=u,
j ̸=u,j=v

ωαi+αu−2αv

# d (5.18h)

+ E
α

∑
i=v,i̸=u,
j ̸=u,j ̸=v

ω
αu−αj

# d + E
α

∑
i ̸=v,i̸=u,
j ̸=u,j ̸=v

ω
αi−αj+αu−αv

# d . (5.18i)

Note that each sum, except (5.18g), has in the exponent a sum of phases, with each phase

different. Thus, averaging over the phases I obtain zero. Only the sum (5.18g) is non-zero:

E
α

∑
i=v,i̸=u,
j=u,j ̸=v

ω0
# d = fσ(fσ − 1). (5.18j)
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Thus,

E
α

∑
χ2
Γ(σ, α) = f 2

σ + fσ(fσ − 1) = 2f 2
σ − fσ. (5.18k)

Note that the computations needed to arrived at the last equation (Eq. (5.18k)) are valid

for any phase order greater than two. This shows my scheme is valid for any diagonal gate

with order greater than two.

I am close to the end of my proof of the decomposition. The next step is to average with

respect to the permutations σ ∈ Sd. I rely on the following Lemma. Let Bk be the k-th

Bell number. I need, in a future proof, B1 = 1 and B2 = 2.

Lemma 5.2 ([73]). Let n and k be two positive integers such that k ≤ n. Then

Bk = E
σ∈Sn

fk
σ . (5.19)

Alternatively to Rota’s proof [73], I offer a proof for Lemma 5.2 in Appendix A, which I

produced independently.

Proposition 5.3. For the T gates defined in Eq. (5.6) let γ be the corresponding unirrep

defined in Eq. (5.5). Then Γ splits end(h) into three distinct real irreps:

end(h) = hI ⊕ h0 ⊕ h+. (5.20)

Proof. The proof of this proposition amounts to showing that

E
σ,α

χΓ(σ,α)2 = 3. (5.21)

From Eq. (5.18k) and using Lemma 5.2:

E
σ,α

χΓ(σ,α)2 = E
σ

(2f 2
σ − fσ) = 2 · 2− 1 = 3. (5.22a)

Since the solution of Eq. (5.14) for the system in Eq. (5.22) is having three different φi = 1
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and the rest equal to zero, using Theorem 5.1, I conclude there are only three irreps in the

Pauli-Liouville representation of the drHDG: the trivial irrep always appears in the product

of one representation and its complex conjugate [10, 82]. The other two irreps are discussed

in §5.4.

5.4 Expressions for the average gate fidelity and se-

quence fidelity

Knowing there are only three irreps in the Pauli-Liouville representation of drHDG is good

because it means that only two parameters are needed to characterise CPTP noise. However,

to have a practical scheme, it is important also to know how to access those parameters

experimentally. The next step is to relate the eigenvalues ηϖ of the twirl by the drHDG to

the sequence and gate fidelities. To do so, I need to prove that the state |+⟩⟩ is mapped to

the null vector by Π0. First, an auxiliary lemma.

Lemma 5.4. The average of fσ − 1 over all permutations is equal to zero:

E
σ∈Sd

(fσ − 1) = 0. (5.23)

Proof. The quantity fσ − 1 is the character of a non-trivial irrep of the symmetric group; it

is called standard irrep. The equality follows from the orthogonality of the character with

the trivial irrep.

Lemma 5.5. The projector Π0 from end(h) to h0, maps |+⟩⟩ to the null-vector.

Proof. For this proof I use the Kraus representation. In this representation |+⟩⟩ has entries

equal to

(|+⟩⟩K)d(i−1)+j := (|+⟩⟨+|)i,j. (5.24)
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Thus, |+⟩⟩K has all its entries equal. Therefore, for all σ

(
X(σ)⊗ X(σ)

)
|+⟩⟩K = |+⟩⟩K. (5.25)

Thus,

E
σ

(fσ − 1)X(σ)⊗ X(σ)|+⟩⟩K = |+⟩⟩K
(
E
σ

(fσ − 1)
)

= 0, (5.26)

where 0 is the null-vector. For the rightmost equality in Eq. (5.26), I use Lemma 5.4.

Also, the vectorisation of |0⟩⟨0| is orthogonal to |+⟩⟩. Then I have Π0|+⟩⟩ = Π+|0⟩⟩ and

Π0|0⟩⟩ ̸= 0 ̸= Π+|+⟩⟩. Therefore, due to the decomposition in Eq. (5.20):

⟨⟨ϖ|[E ]mT |ϖ⟩⟩ =
d− 1

d
ηϖ(E)m +

1

d
; (5.27)

ϖ labels the irrep and thus take values 0 and +. Thus, from the sequence fidelity the

eigenvalues ηϖ can be estimated.

Now I obtain the form of the average gate fidelity. Because,

tr(E) = tr([E ]γ) = 1 + (d− 1)η0 + (d2 − d)η+, (5.28)

the expression for the average gate fidelity is

F (E) =
d(1 + (d− 1)η0 + (d2 − d)η+) + d2

d2(d+ 1)
. (5.29)

I now relate the eigenvalues ηϖ with the sequence fidelity, the last task necessary to define

my scheme.

The sequence fidelity is used to estimate η0 and η+, which appear in the gate fidelity

expression Eq. (5.27). The formal expression of the sequence fidelity comes from the com-
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position of the twirl m times [E ]mγ . The sequence fidelity is

P (m; |ϖ⟩ , |ϖ⟩⟨ϖ|) = a+ bηϖ(E)m; (5.30)

a, b depend on SPAM errors, with values close to d−1 and (d − 1)d−1, respectively. Note

a and b are quantities that do not appear in the average gate fidelity but are necessary to

consider in the fitting procedure. By using the standard randomised benchmarking scheme,

the eigenvalues η0 and η+ are estimated. Then, using the expression Eq. (5.29), the average

gate fidelity is estimated.

5.5 Experimental scheme

In this section, I present the implementation of my scheme using the required ingredients.

The requisites of the scheme include gates from drHDG, the Fourier operation F , preparation

of |0⟩, and measurement of ⟨0|. My explanation overlaps with the one previously given

in §2.10.

The basic step of the experiment proceeds as follows:

1. Prepare |0⟩.

2. Randomly draw m drHDG elements: g0, . . . , gm−1.

3. On a classical computer, identify the gate corresponding to the group element (g0 · · · gm−1)
−1.

4. Apply the gates g0, . . . , gm−1, (g0 · · · gm−1)
−1 to |0⟩, and then measure ⟨0|.

I refer to the sequence of gates mentioned in this paragraph as the circuit.

There are two iterative steps in the scheme:

1. The first iteration is on the number of different circuits that need to be realised to

estimate Eq. (5.27) by averaging the output of each run. Notice that in an experimental
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setting, for each circuit, the number of repetitions, called ‘shots’, is also required to

estimate P (m; |0⟩ , ⟨0| , E) as in Eq. (2.88a).

2. The second iterative step involves changing the values of m, the circuit depth. Thus,

after repeating the steps 2-4 for various m values, a graph of circuit depth vs averaged

sequence fidelity is constructed.

To implement our scheme, besides using drHDG instead of the Clifford group, two ran-

domised benchmarking experiments are needed to conduct, as is the case for Clifford ran-

domised benchmarking. One experiment requires preparation and measurement of |0⟩, and

the other requires preparation and measurement of the state |+⟩ = F |0⟩; F is defined

in Eq. (3.13). The steps in the experiment using |+⟩ are identical (besides adding at the

start of the circuit the gate F and at the end the gate F †) to those using |0⟩.

5.6 Multi-qudit case

As is implicit in the proof of the decomposition in Proposition 5.3, and in the gates used in

the multi-qubit dihedral benchmarking scheme [66], our scheme is also useful to characterise

a controlled non-Clifford gate. In this section, I describe the required gate set, initial state,

and measurement for the characterisation.

For a system of two qudits, the gate set needs to include a representation of Sd2 . This

group has two generators: a CSUM gate and a single-qudit X gate, where

CSUM(|a, b⟩) = |a, a⊕ b⟩ ; (5.31)

the ⊕ symbol denotes addition modulo d. The single-qudit X gate is simply the tensor

product of identities except on the first gate, where X should be put in.

As to the initial states needed to estimate the eigenvalues η0 and η+, I note that the

argument for projectors and the state F |0⟩ still holds, as shown in Lemma 5.5. Therefore,
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the initial states necessary (for an n-qudit system) are |0⟩⟩n and |+⟩⟩ ⊗ |0⟩⟩n−1.

5.7 Conclusion

In this chapter, I introduced my main contribution: a scheme, based on randomised bench-

marking, to characterise universal qudit gates. The first point to note is that, while my

construction applies to any diagonal gate with an order equal to or greater than #(d), I

restrict it to POP systems. This restriction is imposed because there is no known universal

gate set generator for non-POP systems. By focusing on POP systems, the scheme remains

applicable to a more manageable class of quantum systems.

Next, I addressed the mathematical proofs related to the scheme, such as the decom-

position of the Pauli-Liouville representation and the states necessary to access a single

parameter. These mathematical elements are crucial for understanding how the scheme op-

erates. The key insight is that all the hard work is done by the mathematical identity linking

the number of partitions of a finite set with the fixed points of permutations. This connec-

tion simplifies many aspects of the proof and shows how combinatorial properties underpin

the performance of the scheme.

I finished this section by demonstrating that two initial states, |0⟩ and |+⟩, are members

of only one of the two non-trivial irreducible representations (irreps) appearing in the Pauli-

Liouville representation. Specifically, |0⟩ belongs to h0 and |+⟩ to h+. These states thus

provide a way to individually estimate the parameters ηϖ required to characterise a gate

set. This feature is particularly useful in practical applications where accurate parameter

estimation is key.

I then discussed the individual steps required for an experimental implementation of

the scheme. This discussion serves the purpose of illustrating, in detail, the experimental

resources needed, ranging from the preparation of gates to the expressions that are fitted to

estimate parameters. These parameters ultimately lead to the estimation of the average gate
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fidelity, which is a key figure of merit in quantum information theory. By outlining these

steps, I provide a clearer understanding of what is required for a successful implementation.

Finally, I concluded the chapter with a discussion of the scheme for multi-qudit gates. I

showed how to construct the gate set for multi-qudit systems and identified the initial states

that can exploit the bi-parametric nature of the scheme. This extension of the scheme to

multi-qudit gates broadens its applicability, allowing for more complex quantum operations

to be characterised.

In the next chapter, equipped with the drHDG, I extend several methods that aim to

achieve a more useful characterisation than a collective one. These methods take advantage

of several properties of the drHDG, which I did not exploit in the collective characterisation

addressed in this chapter. This approach promises to yield more nuanced insights into the

behaviour of quantum gates and systems.
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Chapter 6

Application of the rHDG to

extensions of randomised

benchmarking

6.1 Introduction

This chapter is about application of the rHDG in alternatives to randomised benchmarking.

I concentrate on two scheme alternatives. These alternatives aim is to overcome particular

limitations of the standard randomised benchmarking. In this chapter I start by discussing

a limitation—in the original randomised benchmarking— and then address the alternative

scheme that overcomes it. In both alternatives, the drHDG is substituted for the Clifford

gate set.

6.2 Interleaved benchmarking

The original randomised benchmarking scheme estimates the average gate fidelity over a

gate set. However, it is easy to imagine the following situation: some Clifford gates—such as

Pauli gates—are easy to implement and it is expected to have low noise; this is not the case
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for the Hadamard gate, which most of the time require multiple native gates [12]. Therefore

in this situation it is reasonable to be unsure about the quantity randomised benchmarking

determines. Interleaved benchmarking was developed to overcome this limitation [2, 145, 90,

60].

Interleaved benchmarking is a scheme that allows to estimate the average gate fidelity of

an individual gate by using an pre-characterised gate set. The characterisation is achieved

by benchmarking the composition of the gate of interest with pre-characterised gate set

members. By means of an approximation of the composition of two channels, the average

gate fidelity of the gate of interest is computed. In this section I present my generalisation

for universal qudit gates of this method; my work generalises qubit results [2].

Three theoretical assumptions are made for the noise of the gates: the noise for the T

gate acts before the gate; the noise for members of the Clifford like gate set act after the gate;

the third assumption is that the noise resulting from applying T is the same as if applying

T multiple times. The requirement to apply the T gate more than once should not be

surprising. Newer randomised benchmarking schemes—cycle benchmarking, for instance—

have a similar circuit design arrangement. As these schemes are being used today, this

assumption is reasonable.

The interleaved benchmarking scheme estimates the noise of the composition of two

gates—one from the already characterised gate set and the other from the gate to be charac-

terised. The interleaved benchmarking circuit is designed to achieve this composition. Then

an approximation of the composition’s average gate fidelity as the product of the average gate

fidelity of each noise is used. From the approximation—and the fact one gate set has already

been characterised—the average gate fidelity of the non-characterised gate is computed.

In what follows, I design the circuit required to obtain the noise composition, which

allows the estimate of the average gate fidelity of the non-characterised gate. Note that

this scheme is based on the original work on dihedral benchmarking [2], which also uses the

technique of considering T , up to some power, to have the same noise as T .
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In this subsection I go over the implementation of my scheme. I assume there is a

platform with access to Clifford gates and a T gate. The requirements of my extension of

interleaved benchmarking are: a T gate, Clifford gates—specially H, the drHDG, and state

and measurement with respect to the state |0⟩.

I now construct the subset of gates that are assumed to be already characterised. Con-

jugate T using any permutation matrix and form the set

T := {XσTX
†
σ : σ ∈ Sd}. (6.1)

Compute the group generated by T in Eq. (6.1) and Z (the qudit clock matrix)—call it

C ′ := ⟨T , Z⟩. Then compute the normaliser—with respect to the Heisenberg-Weyl group—of

C ′; I denote it N . Then the group

C := ⟨N , X,X01⟩. (6.2)

For convenience, elements of C are denoted as g. It can be shown that twirling with respect

to the C produces the same twirl as drHDG.

I ensure the circuit has only elements in C. Denote by p the power of the T gate that is

a member of C. Notice p depends on the dimension: for qutrits and six-level systems, p = 3;

for POP systems with dimension d = pk; for some k, p = p.

The noise for the T gate acts before T, and the noise for the C gates acts after the ideal

gate. The inversion gate is, therefore, also a member of C. The circuit is of the form

EC(T pg0 · · ·T pgm−1)invT
pETECg0 · · ·T pETECgm−1. (6.3)

Notice each ideal gate of the circuit is a member of C.

By the standard analysis of randomised benchmarking, after averaging over the elements
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of C, I obtain the following expression for the sequence fidelity

P (m; ET , EC, |ϖ⟩) = ⟨⟨ϖ|EC[ETEC]mT |ϖ⟩⟩, (6.4)

where |ϖ⟩ = |0⟩ , |+⟩. Therefore using the qudit universal expressions, of Eq. (5.30), the

channel ETEC can be characterised. The procedure is explained below.

With the expression for the composite noise I am ready to compute the expression for

the average gate fidelity of the T gate. The following approximation is used in interleaved

benchmarking schemes [134]. Consider two channels, E0 and E1. Then

F (E0 ◦ E1) = F (E0)F (E1) + error; (6.5)

since the average gate fidelity is related to the trace of the Pauli-Liouville representation,

the approximation (and the associated error) is related to the approximation of the trace of

a product as the product of the trace.

The known bounds for the difference between the fidelity of the composition and the

product of the composition, smaller the more different F (E0) and F (E1) are [93]. If the

fidelities are expected to be similar, standard randomised benchmarking should be used,

since the approximation for similar noise applies. I illustrate my results for a ququart gate

set. I link an ideal experimental setting with the expressions required for the characterisation

of a set of gates. The justification is that the ququart system requires relatively small circuit

depths.

A related interesting result for this example is to show the “correct” generalisation of

the Pauli group for ququarts. For ququarts, the normaliser of the Heisenberg-Weyl group is

not a unitary 2-design. However, the normaliser of the following set of matrices is indeed a

unitary 2-design

P = ⟨σx ⊗ I, I⊗ σx, σz ⊗ I, I⊗ σz⟩. (6.6)
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From this, then the T gate I use is

4T := diag[1, ω8]⊗ I; (6.7)

The rHDG for this particular case of a ququart system is

4rHDG = ⟨X,X01, 4T
2⟩; (6.8)

note that ⟨X,X01⟩ normalises P in Eq. (6.6).

The representatives of the auxiliary group is generated by the following matrices (note

this set is not minimal but convenient for the computation of the composition and inverse):



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


,



1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


,



ω4

1

ω4

−1


,



ω4

ω4

1

−1


, ω4I. (6.9)

The group generated by these matrices is A4 ⋉ (C4 × C4 × C4). I call the gates associated

with the representatives of this group the auxiliary gate set.

Now, I discuss some properties of 4T . By direct computation, A4 ⋉ C4 × C4 × C4 is

invariant under conjugation by 4T
2. Assuming 4T

2 has the same noise as 4T , this assumption

is sensible because applying a gate twice should result in similar errors as applying the gate

once: the reason is that similar techniques are applied. Thus, characterising 4T
2 implies

characterising 4T . Another useful observation is that 4T
4 is a member of A4⋉C4×C4×C4.

This ensures the inversion gate, which requires even length gates including 4T
2, is always in

the auxiliary gate set.

With the previous observations, I start discussing the experimental implementation. Con-

sider the following circuit:
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where :=|ϖ⟩ C ⟨ϖ| , C Ginv 4T
2 (σ,α0) 4T

2 (σ,α1) .

Figure 6.1: Circuit corresponding to a run with circuit depth m = 2 of interleaved bench-

marking.

I use the circuit in Fig. 6.1 to compute the averaged sequence fidelity that can be obtained

by randomly drawing gates from the gate set A4 ⋉ C4 × C4 × C4.

From Fig. 6.1, the corresponding channel (appearing between the state |0⟩ and measure-

ment ⟨0|) is

C̃ := G̃inv · 4T̃ 2γ̃(σ0,α0) · 4T̃ 2 · γ̃(σ1,α1), (6.10)

where

G̃inv = γ̂(σ1,α1)(4T̂
2)

†
γ̂(σ0,α0)(4T̂

2)
†
E . (6.11)

Thus, the complete channel is

C̃ = γ̂(σ1,α1)(4T̂
2)

†
γ̂(σ0,α0)(4T̂

2)
†
EET 4T̂

2γ̂(σ0,α0)EET 4T̂
2γ̂(σ1,α1)E , (6.12)

where I assigned the noise E to auxiliary gates and ET to the target gate. The next step, in

the process to characterise the target gate 4T , is finding the expression for the twirl.

Averaging Eq. (6.12) over α and then σ

E
σ0,σ1,α0,α1

C̃ = (6.13a)

= E
σ0,σ1,α0,α1

γ̂(σ1,α1)(4T̂
2)

†
γ̂(σ0,α0)(4T̂

2)
†
EET (4T̂

2)γ̂(σ0,α0) (6.13b)

× EET (4T̂
2)γ̂(σ1,α1)E , (6.13c)

= E
σ1,α1

γ̂(σ1,α1)(4T̂
2)

†
[EET ]EET (4T̂

2)γ̂(σ1,α1)E , (6.13d)

= E
σ1,α1

[EET ]γ̂(σ1,α1)(4T̂
2)

†
EET (4T̂

2)γ̂(σ1,α1)E , (6.13e)

= [EET ]2E , (6.13f)
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where I obviate the composition symbol, ◦. Therefore, considering the last channel E to be

a SPAM contribution, using the randomised benchmarking scheme with two distinct initial

states (|0⟩ and |+⟩), the average gate fidelity of E ◦ ET is obtained. Then the approximation

F (E ◦ ET ) ≈ F (E)F (ET ) is used to obtain F (ET ). This concludes the exposition of my

generalisation of interleaved benchmarking for qudit systems.

6.3 Shadow estimate for universal gates

The first step is constructing an auxiliary matrix, denoted by A, that determines the quantity

estimated by the scheme. There is no unique way of constructing A. Therefore, I present one

without claiming its uniqueness, as it is the simplest and does not require further knowledge

of the irreps of drHDG.

The following three lemmas are necessary for the scheme. They appear in the supple-

mentary material of [146] but are not proven there.

Lemma 6.1. Let G be a finite group and ρ an irrep of G, distinct from the trivial irrep.

Then

E
g
ρ(g) = 0, (6.14)

where 0 is the null operator.

Proof. This is a corollary of Schur’s lemma [82]. Since Eg ρ(g) commutes with any element

ρ(h), we have Eg ρ(g) = αI. Proving the lemma is equivalent to showing that α is zero.

By reductio ad absurdum, suppose α is not zero. Then for any h ∈ G, (Eg ρ(g))ρ(h) =

αIρ(h) = ρ(h) = αI. Thus, for any g ∈ G, ρ(g) = αI, which implies ρ is reducible. This

is a contradiction, as the statement assumes ρ is an irrep. The contradiction arises from

assuming α ̸= 0. Thus, α = 0, and therefore Eg ρ(g) = 0.

Lemma 6.2. Let G be a group and σ a representation, possibly reducible, of G. Then the
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operator

E
g∈G

σ(g) (6.15)

is a projector onto the vector space spanned by invariant vectors under the action of σ.

Proof. Summing over the representatives of an irrep is equal to the null operator unless the

irrep is the trivial irrep (see Lemma 6.1). Therefore, assume the trivial irrep σI appears

k > 0 times in σ. It is always possible to block-diagonalise (here achieved by the matrix U)

a reducible representation [82]:

U

(
E
g
σ(g)

)
U † = diag[1, . . . , 1]⊕ σ⊥, (6.16)

where σ⊥ is the orthogonal complement of the direct sum of trivial irreps appearing in σ.

Then we have

(U E
g
σ(g)U †) |i⟩ = |i⟩ , (6.17)

in the computational basis (i ∈ [k]). Defining

|ψi⟩ := U † |i⟩ , (6.18)

the form of the operator is

U(E
g
σ(g))U † =

∑
i

|ψi⟩⟨ψi| , (6.19)

which is a projector onto the vector space spanned by invariant vectors under the action of

σ.

The following lemma is used in Eqs. (6.22) and (6.25).

Lemma 6.3. Let G be a group and σ and ρ be two real irreps of G. Then one of the following

results holds:

1. If σ and ρ are not isomorphic, then Eg σ(g)⊗ ρ(g) = 0.
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2. If σ and ρ are isomorphic, then the trivial irrep appears once in the decomposition

of σ ⊗ ρ.

Proof. Computing the trace of Eg σ(g) ⊗ ρ(g) is equivalent to taking the inner product

between the characters of σ and ρ, which is the number of times ρ appears in σ. If σ is

not isomorphic to ρ, then the sum of traces (divided by the order of the group) equals 0.

However, if the irreps are equivalent, the average of the trace of the representation equals 1,

corresponding to the number of times the trivial irrep appears in σ ⊗ ρ.

Now that the tools for the method are mostly stated, I describe the big picture of

the method. There are two main differences compared to other randomised benchmarking

schemes that I introduced in this scheme. The first difference is the amount of a posteriori

data analysis required. Another important difference is the absence of an inversion gate.

Grosso modo, the scheme requires randomly drawing gates and applying them to some

state, finishing with a measurement. This part is similar to randomised benchmarking but

does not require the computation and implementation of an inversion gate. The randomly

drawn gates are stored, and an almost identical ideal sequence is then computationally

evaluated. The adverb “almost” is justified because an additional matrix A pre-multiplies

the representatives used in the simulation. Then, for each sequence of gates, the experimental

estimate of the sequence fidelity and the simulation, using A, are multiplied, and the results

are averaged over each sequence. The matrix A is chosen to compute part of the trace of

the Kronecker product of A and the Pauli-Liouville representation of the noise.

Now, I discuss the construction of the auxiliary representation to compute the convolution

sequence, which I denote by C. I show—in 5.3—that the Pauli-Liouville representation Γ

of drHDG (acting on h) has three invariant subspaces: hI, h0, and h+. These irreps decompose

the endomorphisms of the Hilbert space h as:

end(h) = hI ⊕ h0 ⊕ h+. (6.20)
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Therefore, to construct a convolution of sequence fidelity that allows the estimation of the

eigenvalue ηϖ, I can use σϖ as the auxiliary representation.

I compute the expression for the sequence fidelity to estimate the parameter η0. For a

mapping f defined on domain X with Y ⊂ X, I denote the mapping with domain Y as f ↾Y ,

defined as f(y) if y ∈ Y and f(y) = 0 if y ∈ X \ Y . Using this notation, consider the irrep:

σϖ := Γ ↾hϖ . (6.21)

I use σϖ to estimate the new sequence fidelity.

The computation of the sequence fidelity starts with the computation of the following

mapping:

Π0 := E
g
σ0(g)⊗ Γ(g) (6.22)

= E
g
(σ0 ⊗ σI)⊕ E

g
(σ0 ⊗ σ0)⊕ E

g
(σ0 ⊗ σ+) (6.23)

= 0d−1 ⊕ Π0 ⊕ 0(d−1)(d2−d), (6.24)

where I used Lemma 6.3 and 0i is the projector onto the null subspace with dimension i.

Repeating the analysis with the irrep σ+, I get

Π+ := E
g
σ+(g)⊗ Γ(g) = 0d−1 ⊕ 0(d−1)(d2−d) ⊕ Π+. (6.25)

Using mappings Π0 and Π+ I obtain the expression for the convolution sequence required

to obtain the expression for the sequence fidelity.

Now, I compute the convolution sequence fidelity for shadow estimate. In this case, as

mentioned at the beginning of this subsection, the expression is of the form

Pϖ(m) = ⟨⟨0, ϖ|(I⊗ E)(ΠϖA⊗ EΠϖ)m−1|0, ϖ⟩⟩. (6.26)
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Therefore, the form of the convoluted sequence fidelity is

Pϖ(m; E , A, |ϖ⟩ , ⟨ϖ|) = aA(E)
( ηϖ

dimϖ

)m−1

, (6.27)

where ϖ ∈ {0,+} and aA(E) is a parameter that depends on A and E—aA(E) is irrelevant

in the characterisation scheme; ηϖ is the same eigenvalue as in Chapter 5: Eq. (5.30).

For definitiveness, I show how to use this shadow estimate scheme to approximate the

average gate fidelity of the drHDG gates. For the qutrit case I mention the matrices required

to estimate the average gate fidelity. The matrices required to access the eigenvalues ηϖ,

written in Eq. (6.26), are labelled by the subspace

A0 := 18I, A+ := 12I. (6.28)

Then the sequence fidelity is

P0(m) = 6−1(6η0)
m, P+(m) = (18)−1((18)η+)m. (6.29)

Now, I illustrate the procedure to estimate ηϖ.

Let M denote a list of positive integers corresponding to the circuit’s depths to use. I

describe the steps for the state |0⟩ and the irrep h0 and those steps are the same for |+⟩

and the irrep h+. Let m ∈ M be a circuit depth. Let σαm denote an ordered multiset (a

sequence) of drHDG elements. Assume that each (σ,α) ∈ σαm has been randomly drawn,

where each pair (σ,α) denotes a drHDG element. Then two quantities are to be obtained:

one is numerical, computed and depends on A; and the other is experimental; first, I discuss

the experimental and then the numerical.

Now, I discuss the quantity that should be experimentally estimated. Let C̃ denote the
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circuit corresponding to the sequence of gates to be applied to the initial state:

C̃ = ⃝
σ,α∈σαm

γ̃(σ,α), (6.30)

where ⃝σ,α∈σαm
denotes the composition indexed by σαm. The state |0⟩ is prepared, the

noisy circuit C̃ is applied to |0⟩, and then the outcome C̃(|0⟩) is measured with respect to

|0⟩. Repeating the experiment results in a quantity that approximates

p̃(σαm) := tr
[
|0⟩⟨0| C̃(|0⟩⟨0|)

]
. (6.31)

After estimating p̃(σαm) the next step is computing the quantity that is required for the

convolution.

The analytical quantity is similarly computed with a few changes. Let Ĉ be the following

sequence of gates

Ĉ = ⃝
σ,α∈σαm

AΓ(γ̂ ↾h0)(σ, α). (6.32)

Then the following quantity is computed:

p̂(σαm) := ⟨⟨0|Ĉ|0⟩⟩. (6.33)

The quantities p̃(σαm) and p̂(σαm) are estimated and computed for each m ∈ M. From

these two numerical values, the following quantity is defined:

p̄(σαm) := E
σ,α

p̃(σαm)p̂(σαm). (6.34)

p̄(σαm) is used to estimate the fidelity.

By fitting the expression Eq. (6.27) to the graph (m, p̄(σαm)) the eigenvalue η0 can be

estimated. Similarly, by repeating the procedure using as initial state |+⟩ the average gate

fidelity of drHDG can be determined with Eq. (5.29). This concludes my exposition of the
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method called shadow estimate.”

6.4 Universal cycle benchmarking

In this section, I discuss my extension of cycle benchmarking to qudits. My extension is

valid for both Clifford gates and non-Clifford gates. The cycle benchmarking scheme, in its

original formulation, allows the individual characterisation of a Clifford gate by using only

Pauli gates and the target Clifford gate to characterise. In this section, I concentrate on my

extension to characterise a T gate. My scheme uses the same circuit-design as the original

cycle benchmarking scheme, and in terms of difficulty, it substitutes the Clifford gate with

the qudit X gate.

Whereas in the standard formulation of cycle benchmarking, the basic gate set is the

Pauli gate set, in my scheme, I use a slight variation of it. The basic gate set is generated

by XT and Z :

Rd := ⟨XT , Z⟩, (6.35)

where I am denoting conjugation

gT := T †gT, (6.36)

do not confuse with the transposition operation for matrices. Now, I list the properties of

this gate set and their relevance to the scheme. I drop the subscript d when the result applies

for any dimension or if the dimension is given in the context.

The gate set R is—under conjugation—T -invariant. Given g ∈ R, the condition refers

to gT ∈ R. This condition is employed during the computation of the sequence fidelity. The

second property is that a basis for the set of d× d matrices is a subset of R.

In my case, the subset is formed by

B := {(XT )iZj : i, j ∈ [d]}. (6.37)
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I use B to construct the Pauli-Liouville representation of the channels. The reason is that

using the set of Pauli matrices as a basis for the Pauli-Liouville representation results in a

non-diagonal matrix. This makes it a bit more tedious to obtain and explain the resulting

expressions.

The last property of R is related to representation theory. I require that the number of

irreps appearing in the decomposition of the Pauli-Liouville representation of R is the same

as for P , the Heisenberg-Weyl matrices. Verifying this for R is a trivial computation.

6.5 Conclusion

In this chapter, I showed three applications of the drHDG in randomised benchmarking-like

schemes. These applications serve to illustrate the importance of drHDG beyond my original

goal. Some applications are key to the relevance of the scheme as they address more practical

considerations. In this section, I briefly discuss several of the results and their implications.

Consider first interleaved benchmarking, where the assumption in randomised bench-

marking schemes—that all gates have equal noise—is unrealistic. Interleaved benchmarking

allows for a more realistic noise model by considering different noise levels for different gates.

It makes sense to assume Clifford gates have the same noise, different from that of a T gate,

in an error-correcting scheme. In this case, the Clifford gates are encoded, but the T gate is

implemented using magic state distillation.

Next, shadow estimation can be used to partially reconstruct a channel, which is an

essential aspect of quantum process tomography. I also learned that the inversion gate is

useful for reducing the number of samples required in such reconstructions. Avoiding the

inversion gate in shadow estimation results in an almost four-fold increase in the number of

samples needed compared to randomised benchmarking. However, this comparison is not

entirely fair, as shadow estimation should be compared to tomographic techniques.

Lastly, in cycle benchmarking, I exploit several properties of groups to generalise the tech-
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nique to characterise non-Clifford gates. This method does not use the drHDG explicitly but

draws on similar group structures. The resulting gate set has the same structure as drHDG,

although the irrep structure (the number of distinct irreps appearing in the Pauli-Liouville

representation) is different. This demonstrates the flexibility of the drHDG framework in

adapting to various benchmarking schemes.
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Chapter 7

Summary and open problems

In this final chapter of the thesis, I summarise the results presented in the following chapters:

§4, §5, and §6. The main result of §4 is the gate set HDG. By using a set of gates labelled

by HDG elements, I developed a characterization scheme for a qutrit T gate similar to

dihedral benchmarking for qubits in terms of experimental implementation. In §5, I not

only addressed an issue in the qutrit case but also generalized dihedral benchmarking for

any level system and any number of qudits. This was achieved using the group I introduced:

drHDG. This is the main chapter of this thesis. Finally, in §6, I discuss several applications

of drHDG. This aims to both increase the applicability of my results and extend certain

protocols to a universal gate set. Now, I will discuss the summary for each chapter in more

detail.

In Chapter 2, I reviewed some experimental implementations of randomised benchmark-

ing. There, I showed the circuit depths that can be achieved and how the graph of circuit

depth vs sequence fidelity justifies trace-preserving and Markovian noise conditions. These

two facts, at least for these platforms, show that the assumptions of Clifford randomised

benchmarking are valid, and thus my schemes could be used to characterise those platforms.

With randomised benchmarking mitigating further issues such as drift and leakage [128, 131],

even under highly adversarial noise conditions, the average gate fidelity can be estimated by
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adding randomised compiling to my schemes.

7.1 Universal qutrit randomised benchmarking

Before my work on qutrits, there was no method to characterise a non-Clifford qutrit gate.

With multiple qutrit implementations now a reality, it makes sense to have a generalisation

for qutrit systems. In this project, I faced the challenge of formalising dihedral benchmark-

ing, as it was initially unclear what generalising dihedral benchmarking entailed. Moreover,

in contemporary literature, the scheme was introduced with limited explanations and justi-

fications, making my work necessary to address those gaps.

In Chapter 4, I demonstrated that using the same construction for the gate set as in the

qubit case leads to a group that has a Pauli-Liouville representation with five parameters,

two of which are complex conjugate pairs. Using this group with a high-fidelity gate set, the

characterisation reduces to that of the qubit case. By applying the gate set construction, I

recover either the dihedral group or a gate set that leads to the same irrep decomposition

of the Pauli-Liouville representation. I also provide expressions for both sequence fidelity

and gate fidelity, showing how these elements tie into existing frameworks. Using GAP, I

demonstrated that the HDG is the smallest group (i.e. lowest order) that achieves such

decomposition of the Pauli-Liouville representation.

In addition, I introduced criteria in Chapter 4 to certify the properties that a given

abstract group and its representations should satisfy. These criteria played a crucial role

in the generalisation for qudits of the HDG representations. This approach was essential

in ensuring that the qutrit benchmarking scheme could be extended effectively to higher-

dimensional systems. Without such criteria, the applicability of the scheme would have been

much more limited.

Three primary limitations to my HDG work exist. The most tangible issue is the phase

that appears in the sequence fidelity expression. This phase complicates the fitting pro-
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cess because it is difficult to estimate, contradicting the simplicity sought with randomised

benchmarking schemes. The difficulty in estimating this phase introduces a complexity that

challenges the ease of use of the overall method.

The second limitation concerns entangling gates. My scheme is currently limited to

characterising single qutrit gates, which leaves out multi-qubit systems. However, with

current implementations of entangling gates in qutrit systems, this limitation is increasingly

significant and limits broader applicability. Addressing this limitation would be an important

step for further development.

The last limitation is specific to qutrits. The construction ⟨X,T ⟩ leads to more than

five parameters for ququart systems and continues to increase for larger systems. This

means that, beyond qutrits, the HDG method becomes increasingly complex and unwieldy.

Therefore, it would be preferable to find another gate set for qudits with d > 3 that simplifies

the parameter count while maintaining fidelity to the benchmarking objectives.

7.2 Universal qudit randomised benchmarking

Before my work, only for qubits and qutrits was there a scheme to characterise non-Clifford

gates. Currently, there is increasing interest in qudit systems across multiple platforms,

even those with entangling gates [147]. Therefore, a generalisation of dihedral benchmarking

is urgently needed. Moreover, the proof technique that dihedral benchmarking used to

characterise multi-qubit gates does not work for qudits, as it relies on the fact that each

Pauli gate is its own inverse, a property that does not hold for qudits.

In Chapter 5, I presented my generalisation of dihedral benchmarking for any dimension

and any number of qudits. The outcomes of this scheme include the gate set necessary to

characterise a non-Clifford gate and the corresponding expressions for sequence fidelity and

average gate fidelity. This is a crucial development, as no such generalisation existed before

for higher-dimensional systems. My approach allows for efficient characterisation across
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multiple qudit platforms, addressing a significant gap in the field.

The gate set in this scheme is a representation of a group. This group, the drHDG, forms

a semidirect product of the symmetric group and a product of cyclic groups. Under certain

circumstances, depending on the T gate used, the group is the generalised symmetric group.

This group structure simplifies the complexity of the benchmarking scheme while ensuring

it is adaptable to various multi-qudit systems.

The drHDG scheme requires estimating only two parameters. Estimating each parameter

requires a different initial state: the first state is |0⟩, and the second requires applying the

Fourier operator to |0⟩. This result is applicable for any dimension and across any multi-

qudit platform, making it a versatile tool for characterisation. These parameters streamline

the process of evaluating gate fidelity, significantly reducing the overhead in experimental

setups.

The scheme is grounded in the decomposition into irreps of the Pauli-Liouville represen-

tation of a unirrep of the abstract group drHDG. This decomposition makes drHDG unique:

using an arbitrary group could require up to d2 parameters to fit. For an n-qudit platform,

the parameter count could increase to d2n, making the approach impractical. My results on

decomposition are mathematically formal, ensuring robustness in the scheme.

One key result is the computation of the character of the irrep γ of the drHDG. With

that knowledge, I employed a celebrated identity relating the number of partitions of a set

and the powers of fixed points of permutations. These results allowed me to prove that

the Pauli-Liouville representation of γ decomposes into three inequivalent irreps. Each non-

trivial irrep corresponds to one parameter, and one parameter is equal to 1 if the noise is

trace-preserving.

The scheme has two main limitations: one inherited from the assumptions of randomised

benchmarking and the other related to current knowledge of qudit gates. In the standard for-

mulation of randomised benchmarking, it is assumed that gates experience the same Marko-

vian noise. Consequently, the estimated quality is only an approximation of the average gate
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fidelity of the target gate, which is typically a non-Clifford gate.

The second limitation relates to the dimension of the system. For non-POP systems, a

finite universal gate set is currently unknown, and even an appropriate Pauli gate set (with

a normalizer that is also a unitary 2-design) has not been established. Therefore, while my

scheme can characterise any diagonal gate with order greater than two in any dimension,

characterising universal gates is still limited to POP systems. This limitation highlights the

need for further research in developing gate sets for higher-dimensional systems.

Finally, the justification for the applicability of my work to current hardware is two-

fold. First, empirical evidence (see Sec. 3.5) demonstrates that sequence fidelity decays as

a single exponential, indicating that non-CPTP or non-Markovian behaviour is negligible.

Second, my scheme is compatible with randomised compiling [58, 108, 113], ensuring that

even in the presence of non-CPTP or non-Markovian behaviour, my scheme remains valid

as a characterisation tool in terms of average gate fidelity estimation.

7.3 Applications of the real HyperDihedral group

In Chapter 6, I discuss the applications of the drHDG. I present four generalisations of

randomised benchmarking, which are useful because they employ the same methods as ran-

domised benchmarking but for more general error configurations. This means that I relax

the assumption that the noise is the same for each gate. These generalisations extend the

applicability of the scheme to a wider range of practical scenarios.

First, the most important generalisation is that of interleaved benchmarking for two

reasons. One is that interleaved benchmarking offers the most practical application for the

characterisation of universal gates. This is crucial in the context of error correction schemes,

where Clifford gates can be encoded, but the T-gate cannot. In this case, I can clearly

distinguish between the types of noise affecting Clifford and non-Clifford gates.

The second generalisation is shadow estimation. This technique is significant because it
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allows for noise recovery or reconstruction, making it similar to tomography. However, unlike

tomography, shadow estimation avoids the issues associated with SPAM errors, making it

more reliable in practice.

Finally, I discuss cycle benchmarking. Cycle benchmarking plays an essential role in

interleaved benchmarking, particularly for multi-qubit gates. Although I do not directly

use drHDG in this case, I employ a similar construction, leading to results equivalent to

those in the Clifford gate scenario. This shows the versatility of the method in various

contexts.

7.4 Open problems

The open problems in my research are as follows. The most practical and immediately

relevant problem is creating a user-friendly and effective estimate of the number of samples

required to attain a certain confidence level in the fitting procedure. Currently, the variance

is unknown, which complicates this estimate. Additionally, the number of samples needed to

obtain an estimate from non-linear or even linear fitting, when the variance is not constant,

prevents obtaining an optimal estimate for these quantities.

Another issue, more mathematical in nature, is identifying the smallest group that

has a decomposition (in terms of irreps) identical to the decomposition obtained by us-

ing the drHDG. For the qutrit case, I demonstrated that the HDG is the smallest because I

was able to list all groups of that order. However, for higher-level systems, the task of enu-

meration becomes extremely complicated and does not scale well, presenting a significant

challenge.

The final open problem concerns a universal gate set for non-prime power systems. Cur-

rently, the only known proofs for non-trivial universal gate sets are restricted to systems with

prime or prime power dimensions. This leaves a gap for systems such as quhex (six-level

systems), where no generating set has yet been established. Solving this problem would
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expand the applicability of universal gate sets to a broader range of quantum systems.
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theory of quantum information. arXiv:2002.03233, 2020.

[46] Fernando Pastawski, Alastair Kay, Norbert Schuch, et al. How long can a quantum

memory withstand depolarizing noise? Phys. Rev. Lett., 103:080501, 2009.

[47] John Watrous. The Theory of Quantum Information. Cambridge UP, Cambridge,

2018.

[48] Isaac L Chuang and M A Nielsen. Prescription for experimental determination of the

dynamics of a quantum black box. J. Mod. Opt., 44(11-12):2455–2467, 1997.

[49] E Knill, D Leibfried, R Reichle, et al. Randomized benchmarking of quantum gates.

Phys. Rev. A, 77:012307, 2008.

[50] Joseph Emerson, Robert Alicki, and Karol Życzkowski. Scalable noise estimation with
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[132] Jay M Gambetta, A D Córcoles, S T Merkel, et al. Characterization of Addressability

by Simultaneous Randomized Benchmarking. Phys. Rev. Lett., 109(24):240504, 2012.

[133] Reinier W Heeres, Philip Reinhold, Nissim Ofek, et al. Implementing a universal gate

set on a logical qubit encoded in an oscillator. Nat. Commun., 8(1), 2017.

[134] Shelby Kimmel, Marcus P da Silva, Colm A Ryan, et al. Robust extraction of tomo-

graphic information via randomized benchmarking. Phys. Rev. X, 4(1):011050, 2014.

140



[135] E Onorati, A H Werner, and J Eisert. Randomized benchmarking for individual quan-

tum gates. Phys. Rev. Lett., 123:060501, 2019.
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Appendix A

Proof of an identity for Bell numbers

In this appendix, I prove the mathematical result on which our results are grounded. I follow

standard notation [72].

Consider the set {1, . . . , n} with n elements. Given a permutation σ of n elements with

k cycles we define a vector. Let σ be a permutation and ci ∈ {0, . . . , n} be be the number

of i-cycles in σ. I define the following list of c = (c1, c2, . . . , cn). For an integer partition λ,

the number of times the integer i appears in λ is c(λ, i). Notice, in the context of the same

permutation σ in a conjugacy class labelled by λ, ci = c(λ, i). I use j for the number of

times a number appear in an integer partition, I use i for ci.

Definition A.1. The number of permutations with cycle decomposition c = (c1, c2, . . .)

with k different cycles is denoted by

q(n, k, c) :=
n!∏
i i

cici!
. (A.1)

As an example, consider the partition λ = (2, 1) of n = 3; it contains one 1-cycle and one

2-cycle and no 3-cycle so c1 = 1, c2 = 1, c3 = 0. Therefore, q(3, 2, (1, 1, 0)) = 3 and we know

there are three permutations with cycle decomposition c: (1, 2), (1, 3), and (2, 3).
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Definition A.2. I define

p(n, k, s; c) := cs1q(n, k, c) =
cs1n!∏
i i

cici!
. (A.2)

I assign an integer partition λ to each c as follows: the entry ci denotes the number of times i

appears in the λ.

Lemma A.3. Let Φ be the generating function of p. Then

Φ(t, 1;xi = 1) =
∑
k<s

(
k∑
k1

S(s, k1)

)
tk +

∑
k≥s

Bst
k, (A.3)

where Bs is the s-th Bell number and S(s, k1) is a Stirling second-kind number.

Proof. We compute the generating function of p with an infinite number of variables

Φ (t, u;x = (x1, . . .)) :=
∑
n,k,c

p(n, k, s; c)uk
tn

n!
xc11 x

c2
2 · · · , (A.4)

where x is a vector of an infinite countable dummy variables. By definition q of Eq. (A.2)

satisfies q(n, k; c) ̸= 0 only if

∑
i

ci = k and
∑
i

ici = n. (A.5)

The justification is that, given a c, the values of k and n are fixed. Consider for instance c =

(1, 1, 0). Is invalid to have either n ̸= 3 or k ̸= 2.

I substitute the values of n and k (as given in Eq. (A.5)) in terms of c in Eq. (A.19). I

get:

Φ(t, u;x) =
∑
c

cs1u
∑

j cj∏
i ci!i

ci
t
∑

i ici

(∏
l≥1

xcll

)
. (A.6)
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For clarity, I expand Eq. (A.6)

Φ(t, u;x) =
∑

c1,c2,...≥0

cs1n!

c1!c2! · · · 1c12c2 · · ·
uc1+c2+··· t

c1+2c2+···

n!
. (A.7)

Grouping terms in Eq. (A.7) according to ci:

Φ(t, u;x) =
∑

c1,c2,...≥0

cs1
c1!

(tux1)
c1

1

c2!
(tux2)

c2
1

c3!
(tux3)

c3 · · · (A.8)

Is useful to shorten the expression Eq. (A.8) in the following way:

Φ(t, u;x) =
∏
i≥1

∑
ci≥0

cs1
[(ti/i)uxi]

ci

ci!
. (A.9)

Now, I make two observations. My first observation applies to i > 1:

∑
ci≥0

[(ti/i)uxi]
ci

ci!
= exp

[
ti

i
uxi

]
. (A.10)

Applying Eq. (A.10) in Eq. (A.9)

Φ(t, u;x) =
∑
c1≥0

cs1tux1
c1!

∏
i>1

exp

[
ti

i
uxi

]
(A.11)

The second observation uses Dobiński’s formula [148]:

∑
c1≥0

cs1
tux1
c1!

= exp[tux1]Bs(tux1). (A.12)

Applying Eq. (A.12) on Eq. (A.11) I get

Φ(t, u;x) = Bs(tux1)
∏
i≥1

exp

[
ti

i
uxi

]
. (A.13)
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Setting xi = 1 for all i ≥ 1 in Eq. (A.13), I get

Φ(t, u;xi = 1) = Bs(tu)(1− t)−u. (A.14)

Similarly setting u = 1 in Eq. (A.14)

Φ(t, 1;xi = 1) =
Bs(t)

1− t
. (A.15)

I recall that Bs(1) = Bs is the s-th Bell number. Also,

1

1− t
=
∑
n

tn

is the exponential generating function of n!. Bell polynomials (also named Touchard poly-

nomials [149]) are given in terms of Stirling second kind numbers—S(n, k) the number of

equivalence relations with k classes on [s] [72]—as:

Bs(t) :=
s∑

k=0

S(s, k)tk; (A.16a)

Bell numbers are thus computed as

Bs := Bs(0) =
s∑

k=0

S(s, k). (A.16b)
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Thus, substituting Eqs. (A.16) in Eq. (A.15), I obtain:

Φ(t, 1;xi = 1) =
∑
k0≥0

Bs(t)t
k0 =

∑
k0≥0

(
s∑
k1

S(s, k1)t
k1

)
tk0 , (A.17a)

=
∑
k0≥0

(
s∑
k1

S(s, k1)

)
tk0+k1 , (A.17b)

=
∑
k0≥0

min(s,k0)∑
k1

S(s, k1)

 tk0 , (A.17c)

=
∑
k<s

(
k∑
k1

S(s, k1)

)
tk +

∑
k≥s

Bst
k. (A.17d)

Theorem A.4. Let n be a positive integer, Bs the s-th Bell number with s ≥ n. For a given

integer partition λ ⊢ n, let c(λ, j) denote the number of times j appears in λ. Then

Bs =
∑
λ⊢n

c(λ, 1)s∏
j j

c(λ,j)c(λ, j)
. (A.18)

Proof. I compute the generating function of p

Φ (t, u;x = (x1, . . .)) :=
∑
n,k,c

p(n, k, s; c)uk
tn

n!
xc11 x

c2
2 · · · , (A.19)

where x is a vector containing a countable number dummy variables.

Setting, for all i, xi = 1 in Eq. (A.19), I obtain

Φ(t, u; 1, 1, . . . ) =
∑
n,k,c

p(n, k; c)uk
tn

n!
. (A.20)

Given n and k, I define

p′(n, k) :=
∑
c

p(n, k; c), (A.21)

where the value of n and k constrain the values of c, as in Eq. (A.5). There is no contradiction
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between Eqs. (A.21) and (A.6), as in Eq. (A.6) I am also (implicitly) summing over n and k

in Eq. (A.20):

Φ(t, u;xi = 1) =
∑
n,k

p(n, k)′
tn

n!
uk =

∑
n

(∑
k

p(n, k)′uk

)
tn

n!
, (A.22)

setting u = 1

Φ(t, 1;xi = 1) =
∑
n

(∑
k

p′(n, k)

)
tn

n!
, (A.23)

Therefore, matching coefficients of Eq. (A.17d) in Lemma A.3 and Eq. (A.23), I obtain—

for n ≥ s— ∑
k

p′(n, k) =
∑
c

cs1n!∏
i i

cici!
=
∑
λ

c(λ, 1)sn!∏
j j

c(λ,j)c(λ, j)
= Bsn!. (A.24)
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Appendix B

Miscellaneous computations

B.1 Motivation for the Clifford hierarchy

In this section, I justify the unconventional definition of the Clifford hierarchy mentioned for

first time in my thesis on chapter 1. By unconventional I refer to the fact it would be more

natural to define the hierarchy in terms of mapping from one level to a previous one, instead

of a most natural transformations mapping Pauli to the previous level of the hierarchy.

I consider the teleportation circuit as a mapping that takes as input a state |α⟩ and a gate

U . The result is UP |α⟩, where P is an element of the Pauli group. I denote this stochastic

mapping TP (|α⟩ , U) = UP |α⟩.

If U is a member of the second level of the Clifford hierarchy UP = P ′U where P ′ is

another member of the Pauli group. If T is a member of the third level of the Clifford

hierarchy TP = CT where C is a member of the second level of the Clifford hierarchy. We

apply the mapping once again but the input is now CT |α⟩ and C−1. The resulting state is

C−1PCT |α⟩. Using C is a Clifford gate C−1PCT |α⟩ = C−1CP ′T |α⟩ = P ′T |α⟩. As the

higher levels of the Clifford hierarchy do not form a group, C must be used instead of C−1

in the commutation with P ′.

Therefore, each level of the Clifford hierarchy to which some gate is a member is equal
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to the number of times the teleportation protocol circuit needs to be applied to recover the

action on the initial state |α⟩.

In this brief comment, I highlight that a qubit operation that is Clifford may be no longer

Clifford in a higher-level system. This discussion is important since it shows that the basis

that substitutes the Pauli matrices satisfies that its normaliser forms a unitary 2-design.

I show that X(12) (the qubit X gate embedded in a ququart system) (5.1) is not a Clifford

operation. To this end, we introduce a recursive map

B(g, h, i) := B(g, gh, i− 1), B(g, h, 1) := gh = h̄gh. (B.1)

I say a gate g belongs to the k-level of the Clifford hierarchy if B(g, h, k)—h is a Heisenberg-

Weyl matrix—is a member of the qudit Pauli group. Using B with h = X, a trivial compu-

tation reveals X(12) is not a member of any level of the Clifford hierarchy.

B.2 Proof and estimate of the total variation distance

In Ref. [59] there is a statement linking the total variation distance and the diamond distance.

I explicitly shows this link as follows. The original statement is

As N →∞, rmin → ∥pid − pac∥TV, (B.2)

where ∥.∥TV is the total variation distance between two distributions. I prove this claim

using elementary calculus notions.

Let

EN :=

∥∥∥∥n(x)

N
− pac(x)

∥∥∥∥. (B.3)

Consider r such that

EN =

∥∥∥∥n(x)

N
+ r − pid(x)

∥∥∥∥, (B.4)
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which should be thought as the fraction of manipulated outcomes needed to transform the

distribution pac into pid. Without loss of generality, I assume

n(x)

N
< pid(x). (B.5)

Then we can solve for r to obtain two solutions:

r = pid(x)− n(x)

N
± EN . (B.6)

Therefore, we can write the equivalent equation to Eq. (B.2)

lim
N→∞

r = ∥pid − pac∥TV. (B.7)

Proof. The proof relies on two steps. First,

lim
N→∞

n(x)

N
= pac(x). (B.8)

Lastly,

lim
N→∞

EN = lim
N→∞

∥∥∥ n
N
− pac

∥∥∥ = 0, (B.9)

where the last equality follows from the definition of the quotient and the continuity of the

norm.

We notice that for a pair of Bernoulli random variables p and q

∥p− q∥TV = ∥p(x)− q(x)∥, (B.10)

for any x in the shared domain of p and q.
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B.3 GAP code for qutrit HDG

In this appendix, I write the code used to compute the decomposition into irreps and the

characters. First we introduce the generators of the group into GAP [126]:

xgate := [[0,0,1],[1,0,0],[0,1,0]];

tgate := DiagonalMat([1,E(9), E(9)^8]);

group := Group(xgate, tgate);

The next step is to compute the character of this representation. From this character,

I compute the character of the PL representation. This character is the product of the

character and its complex conjugate.

character := NaturalCharacter(group);;

plrep := character*ComplexConjugate(character);;

Then I compute the decomposition using the multiset of characters in plrep:

decomposition := ConstituentsOfCharacters(plrep);;

Finally, I compute the projectors in Mathematica by exporting the character table.

B.4 Proof number of independent parameters in chi-

representation

In this section I prove that the number of independent parameters of a chi-representation

for a quantum channel E is d4 − d2, with d the dimension of the Hilbert space. The proof

is based on two claims: the chi-representation is an Hermitian matrix, and that there are d2

constraints due the trace preserving condition on the Kraus operators {Ai} of E .
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Definition B.1. Let E be a channel with Kraus operators {Ai}. Consider the basis {|i⟩⟨j|}

of operators. Expressing each

Ai =
∑
n,m

ei,nm |n⟩⟨m| . (B.11)

Then the chi-representation of E is a matrix with entries defined as

χ(E)nm,uv :=
∑
i

ei,nmēi,uv. (B.12)

Proposition B.2. Let E be a channel with Kraus operators {Ai : i ∈ I}, with I an index-set.

Then the matrix χ is Hermitian.

Proof. I simply compute the complex conjugate:

χ̄mn,uv =
∑
i

ei,mnēi,uv, (B.13)

=
∑
i

ēi,mnei,uv, (B.14)

=
∑
i

ei,uvēi,mn, (B.15)

= χuv,mn. (B.16)

Proposition B.3. The trace-preserving condition on the Kraus operators of a channel E

fixes d2 parameters of χ.

Proof. Here I use a explicitly the basis on which χ is defined. Consider the Kraus operators

expressed on a bi-label basis

Ai =
∑
i

ei,kl |k⟩⟨l| , (B.17)

by this, then I use four indices to write the χ representation

χkl,uv =
∑
i

ei,klēi,uv =
∑
i

⟨k|Ai|l⟩ ⟨v|A†
i |u⟩ , (B.18)

153



Then, from the CPTP condition (
∑

iA
†
iAi = I) I obtain

δk,l = ⟨k|
∑
i

A†
iAi|l⟩ , (B.19)

=
∑
i,j

⟨k|A†
i |j⟩ ⟨j|Ai|l⟩ , (B.20)

=
∑
j

χjl,jk = δk,l. (B.21)

This finishes the proof since l and k take d parameters.

B.5 Discussion numerical confidence intervals

In this appendix, I describe a numerical analysis that justifies the feasibility of my scheme.

A numerical analysis of the feasibility must consider three experimental values: the number

of different circuit depths used, the number of randomly sampled circuits per circuit depth,

and the number of shots. The number of shots refers to the number of times a state is

prepared, the circuit applied, and then measured.

In what follows, I present the numerical analysis of these variables based on the average

gate fidelity of the gates, their confidence intervals, and the error of the estimate.

Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.89
100 10 0.013 0.020 0.024

10 100 0.013 0.021 0.021

100 100 0.003 0.006 0.008

Table B.1: Table reporting the confidence values for the estimate of the parameter η0. The

noise corresponds to a randomly sampled channel with average gate fidelity 0.89.
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Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.931339

100 10 0.008 0.013 0.014

10 100 0.008 0.014 0.015

100 100 0.002 0.004 0.004

20 100 0.005 0.008 0.009

20 20 0.013 0.022 0.022

Table B.2: Table reporting the confidence values for the estimate of the parameter η0. The

noise model is a composition of a totally depolarising and an amplitude damping channel,

which is a comprehensive Markovian and completely positive noise model. The value of

fidelity corresponds to the parameters 0.01 for the depolarising and amplitude damping

channel.

Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.958284

100 10 0.005 0.007 0.008

10 100 0.005 0.008 0.009

100 100 0.001 0.002 0.002

20 100 0.003 0.004 0.005

20 20 0.008 0.011 0.012

Table B.3: Table reporting the confidence values for the estimate of the parameter η0. The

noise model is a composition of a totally depolarising and an amplitude damping channel,

which is a comprehensive Markovian and completely positive noise model. The value of

fidelity corresponds to the parameters 0.03 for the depolarising and amplitude damping

channel.
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Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.985921

100 10 0.002 0.002 0.003

10 100 0.002 0.003 0.004

100 100 0.000 0.000 0.001

20 100 0.001 0.002 0.002

20 20 0.003 0.006 0.006

Table B.4: Table reporting the confidence values for the estimate of the parameter η0. The

noise model is a composition of a totally depolarising and an amplitude damping channel,

which is a comprehensive Markovian and completely positive noise model. The value of

fidelity corresponds to the parameters 0.05 for the depolarising and amplitude damping

channel.

Each table should be read as follows. If the noise is known or it is suspected to have

an average gate fidelity value in one of the values on Tables B.1-B.4 then, according to the

confidence expected to obtain (we use 0.95, 0.999, and 1), the number of shots and circuits

required to obtain such confidence intervals are displayed. For concreteness, we explain the

reading of Tab. B.1: fixing the number of shots and circuits to 100 and for a noise with

fidelity 0.89, the values resulting from the fitting of Eq. (5.27) have an error of 0.003 with a

frequency of 0.95, error 0.006 with frequency 0.999, and error 0.008 in any case. This could

also be written as Prob(|η0 − η̌0| > 0.003) = 1 − 0.95, Prob(|η0 − η̌0| > 0.006) = 1 − 0.999,

and Prob(|η0 − η̌0| > 0.008) = 0, respectively.

For the ququart case, we get similar results, as presented in Tables B.5-B.7:
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Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.90
100 10 0.008 0.014 0.015

10 100 0.009 0.014 0.018

10 10 0.027 0.050 0.052

20 20 0.013 0.021 0.023

Table B.5: Table reporting the confidence values for the estimate of the parameter. In

contradistinction with the qutrit case, the noise model corresponded to a randomly sampled

channel with an average gate fidelity 0.90.

Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.99
100 10 0.001 0.002 0.002

10 100 0.001 0.002 0.002

10 10 0.004 0.006 0.008

20 20 0.002 0.003 0.004

Table B.6: Table reporting the confidence values for the estimate of the parameter. In

contradistinction with the qutrit case, the noise model corresponded to a randomly sampled

channel with an average gate fidelity 0.99.
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Shots Circuits Error given a probability Fidelity

s r 0.95 0.999 1

0.95
100 10 0.004 0.007 0.007

10 100 0.004 0.007 0.007

10 10 0.013 0.026 0.034

20 20 0.006 0.012 0.013

Table B.7: Table reporting the confidence values for the estimate of the parameter. In

contradistinction with the qutrit case, the noise model corresponded to a randomly sampled

channel with an average gate fidelity 0.95.

From the numerical evidence gathered above we see that the number of shots and random

circuits required is around 20. Our numerical results suggest that doubling the shots and

circuits exponentially decreases the error.

Strategy Error given a probability

circuit depth 0.95 0.999 1

i 0.002 0.003 0.004

ii 0.002 0.003 0.004

iii 0.003 0.004 0.006

iv 0.001 0.001 0.002

Table B.8: Comparison of the strategies. The result is based on the confidence intervals. For

the noise we used a depolarising channel composed with a phase-damping; the depolarising

and dephasing parameters are set to 0.1.
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Appendix C

Classical randomised benchmarking

In this appendix, I introduce a scheme that does not rely on quantum mechanics but that

illustrates the main components of an RB schemes. I call it classical randomised bench-

marking. Without going into full generality, I present the simplest case. I will finish with a

table that for reference related the classical quantities with the quantities used in randomised

benchmarking schemes.

I consider a faulty switch (FS). A switch is understood as a device that if the status is

ON and you press the switch you get OFF and if the status is OFF then the status after

pressing the switch is ON. Assume that, with probability p, the switch realises the mapping

ON to OFF and with probability q the mapping OFF to ON. This is modeled as the transfer

matrix [150]

MFS :=

ON OFF 1− p q ON

p 1− q OFF

. (C.1)

The probability vector is a vector with entries denoting the probability that the state is ON

and OFF:

vFS :=

 x ON

y OFF
. (C.2)
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For this example, characterisation means obtaining p, since this parameter quantifies the

quality of the switch.

The final ingredient is the Bhattacharyya coefficient (BC), also known as classical fi-

delity [107]. Consider two probability distribution qi and pi. Then, the BC between p and q

is

BC(p, q) =
∑
i

√
piqi. (C.3)

The square of the BC is known as the classical fidelity [107]. Now, I describe the algorithm

to estimate q; that is, I describe the algorithm to estimate the performance of the faulty

switch.

• Pick mc an even positive integer.

• Pick Nc a positive integer.

For each mi ∈ [m]even, press the switch mi times, record 1 if the output of the final

sequence of operations is ON and 0 if the outcome is OFF. Let N (mi) be the sum of ones

divided by Nc.

Then, the curve mi vs N
(mi) is an exponential function. This can be seen by computing

the following inner product

v⊤FSM
m
FSvFS = A+Bqm. (C.4)

By the experiment mentioned above, the parameter q can be estimated. Thus, by the

scheme described above, the quality of the FS is estimated.

[. . . ] y aśı, por toda dulzura

nunca yo me perderé [. . . ]
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