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the numerical trends for the kurt-spectra in the nonlinear regime. In addition, we provide
estimators for beyond fourth-order spectra where no definitive analytical results are available,
and present corresponding results from numerical simulations.
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1 Introduction

Despite the huge amount of progress in cosmology in the past few decades, there still remain
many outstanding questions. These include the nature of dark matter (DM), the source of
the accelerated expansion of the universe, and the physics of the early universe. In addition,
the sum of the neutrino masses [1] remains unknown. It is expected that the operational
weak lensing surveys, including the Subaru Hyper Suprime-Cam Survey1 (HSC) [2], the Dark
Energy Survey2 (DES) [3], the Dark Energy Spectroscopic Instrument (DESI)3 [4], the Prime
Focus Spectrograph4 [5], the Kilo-Degree Survey (KiDS) [6], as well as near-future Stage-IV
large-scale structure (LSS) surveys such as Euclid5 [7], the Vera C. Rubin Observatory6 [8],
and the Roman Space Telescope7 [9, 10], will improve our understanding to many of the
questions that cosmology is facing from high-precision measurements of the intervening mass
distribution of the universe.

1http://www.naoj.org/Projects/HSC/index.html.
2https://www.darkenergysurvey.org.
3http://desi.lbl.gov.
4http://pfs.ipmu.jp.
5http://sci.esa.int/euclid.
6http://www.lsst.org/llst home.shtml.
7https://roman.gsfc.nasa.gov.
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Weak lensing observations target the low-redshift universe and small scales, where den-
sity perturbations are mostly in the nonlinear regime and the statistics are highly non-
Gaussian [11]. Hence, unlike the high-redshift cosmic microwave background (CMB) radia-
tion, the power spectrum alone is not sufficient to distill the entire information content of
the data. For this reason, many different estimators have been developed to probe higher-
order statistics of weak lensing maps [12]. Initial work in this direction focused primarily on
analyzing various statistics that are directly related to the bispectrum such as the integrated
bispectrum, a skew-spectrum estimator, and a morphological estimator.

With the increase in high-quality data from ongoing surveys, it is now becoming pos-
sible to probe statistics beyond the bispectrum, e.g. the trispectrum, which represents the
connected contribution to the four-point correlation function in the Fourier (or harmonic)
domain [13, 14]. However, detection and characterization of individual trispectral modes (rep-
resented by a quadrilateral) remain computationally challenging. To this end, compressed
statistics such as the generalization of the skew-spectrum to fourth order — known also as
the kurt-spectra — were introduced in the context of 21-cm surveys [15, 16]. Two types of
such spectra were implemented in [17, 18] and have already been studied in the context of
primordial non-Gaussianity (PNG), where the main motivation was to put independent con-
straints on the two shapes of local non-Gaussianity parameterized by τNL and gNL [19–22].
The situation for the gravity-induced trispectrum is very similar in modified gravity theories,
where more than one parameter characterizes the gravity-induced trispectrum. The use of
the two kurt-spectra can lift the degeneracy and provide an important consistency check for
the constraints from lower-point statistics.

Moreover, the kurt-spectra were used to detect the lensing-induced secondary non-
Gaussianity; for example, their application to the WMAP 7-year temperature maps resulted
in the first direct constraints of the CMB lensing potential power spectrum [23]. Planck
used a similar technique for their analysis [24], and the corresponding fourth-order real-space
correlation functions were used in the context of CMB secondaries [10] to separate the lensing
of the CMB from the Ostriker-Vishniac effect. In real space, these correlation functions were
also studied to arbitrary order in the context of gravity-induced non-Gaussianity in the
LSS using the standard perturbation theory (SPT) [25, 26], but in the limit of large angular
separations [27]. Theoretical modeling of trispectra has attracted more attention recently [28,
29]. Beyond the SPT, the effective field theory (EFT) based approach has been used to
model the trispectrum [30, 31], as well as the halo-model [32] and the hierarchical ansatz
based approaches [33], which are valid in the quasi-linear and (highly) nonlinear regimes.

In addition to the summary statistics listed above, in recent years a number of novel
modeling techniques have gained popularity. These include Bayesian hierarchical model-
ing, likelihood-free or forward modeling approaches [34–38], as well as wavelet phase har-
monics [39] and the scattering transform [40–42] (see also [43–46] for other works applying
scattering transform-type statistics to different astrophysical observables).8

One of the primary aims of this paper is to generalize the kurt-spectra used in [17, 18]
in the presence of a realistic Euclid-type mask and noise. Using a suite of state-of-the-
art numerical simulations, we study the gravity-induced non-Gaussianity using weak lensing
convergence κ maps. The gravity-induced signal is sufficient to saturate the Fisher bounds

8Many studies have also focused on one-point statistics for probing higher-order statistics. These include
the well-known real-space one-point statistics such as the cumulants [47] or two-point cumulant correlators as
well as the associated probability distribution function [48], the peak-count statistics [49], and morphological
estimators [50].
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for all-sky low-noise maps expected from Euclid. Note that this might not be the case for
ongoing surveys that are noise dominated and cover a small fraction of the sky; for these
studies, an optimization in line with what was presented in [17, 18] may be necessary. Such
procedures are, however, only optimal in the limit of weak non-Gaussianity, and may not be
relevant for signal-dominated data from future surveys. We will thus simply stick to sub-
optimal estimators in this work, and further neglect PNG though it can be incorporated the
same framework. Generalizations of our estimators to spectroscopic galaxy redshift surveys
such as BOSS9 [51] or WiggleZ10 [52] that probe the mass distribution of galaxies as biased
tracers [53] are left for future work.

This paper is organized as follows. In section 2, we review the formalism for computing
angular trispectra and describe the analytical modeling of gravity-induced trispectra that we
adopt in this work. In section 3, we describe the trispectrum of weak lensing convergence and
introduce the kurt-spectra. The ray-tracing simulations that we have used and the results
obtained are presented in section 4. We conclude and discuss future prospects in section 5.

2 Formalism

We begin with a short review of n-point correlation functions in harmonic space in sec-
tion 2.1, focusing on the case n = 4. We describe the computational methods for the angular
trispectrum in section 2.2 and the theoretical models for the matter trispectrum used in our
analysis in section 2.3.

2.1 Correlators in harmonic space

In cosmological observations, a projected observable O located at some redshift z is measured
as a function of its angular position on the celestial sphere. This is usually thought as
tracing the underlying matter density contrast δ integrated along the line-of-sight direction
n̂, weighted by some kernel WO as

O(z, n̂) =
∫ χ(z)

0
dχ′WO(χ′)δ(χ′, χ′n̂) , (2.1)

where χ is the comoving radial distance. It is often useful to take advantage of the spa-
tial isotropy of the celestial sphere and work in harmonic space, which allows for a spec-
tral analysis. Expanding the real-space observable in spherical harmonics as O(z, n̂) =∑∞
`=0

∑`
m=−`O

(z)
`mY`m(n̂), the harmonic coefficients are obtained through the projection in-

tegral

O(z)
`m = 4πi`

∫ χ(z)

0
dχ′WO(χ′)

∫
d3k

(2π)3 j`(kχ
′)Y ∗`m(k̂)δ(χ′,k) , (2.2)

where we have Fourier transformed δ and projected the plane waves onto the spherical har-
monics basis. The n-point function in harmonic space is then obtained by taking the expec-
tation value of a product of harmonic coefficients as

〈O(z1)
`1m1
· · · O(zn)

`nmn
〉 = (4π)ni`1···n

∫ n∏
i=1

[
dχ′id

3ki
(2π)3 WOi(χ′i)j`i(kiχ′i)Y ∗`imi(k̂i)

]
〈δ1 · · · δn〉 , (2.3)

9http://www.sdss3.org/surveys/boss.php.
10http://wigglez.swin.edu.au/.
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where we defined `1···n ≡ `1 + · · · + `n, Oi ≡ O(zi)
`imi

, and δi ≡ δ(zi,ki). In general, it is a
challenging task to evaluate the convoluted multi-dimensional projection integrals appearing
in (2.3) for n ≥ 3. However, as we will shortly review, these integrals become factorized for δ-
correlation functions that respect a certain separability condition, rendering the computation
of higher-point functions much more feasible.

Our primary interest in this work will be the case n = 4, namely the angular trispectrum
in harmonic space. A nice feature of a harmonic-space analysis is that we can completely
factor out the azimuthal dependence and write the harmonic-space trispectrum as [13, 54]

〈O(z1)
`1m1
· · · O(z4)

`4m4
〉 =

∑
LM

(−1)M
(
`1 `2 L
m1 m2 M

)(
`3 `4 L
m3 m4 −M

)
T `1`2`3`4

(L) (2.4)

=
∑
LM

(−1)M
(
`1 `2 L
m1 m2 M

)(
`3 `4 L
m3 m4 −M

)
P `1`2`3`4

(L) + (2↔ 3) + (2↔ 4) ,

where
∑
LM ≡

∑∞
L=0

∑L
m=−L and the rounded-bracketed matrices represent the Wigner 3-j

symbols. In the second line, we have split the trispectrum into three different pairings of
multipoles using permutation symmetry. As can be seen from (2.3), the input for the angular
trispectrum is the matter trispectrum in Fourier space, which we can write as

〈δ1 · · · δ4〉 = Tδ({zi,ki})× (2π)3δD(k1 + · · ·+ k4) , (2.5)

where {zi,ki} = {z1, k1, · · · , z4, k4} denotes the set of arguments and δD represents the
Dirac delta function that ensures spatial translational invariance. In accordance with (2.4),
the trispectrum can be decomposed into three different channels as

Tδ({zi,ki}) = T
(s)
δ ({zi,ki}) + T

(t)
δ ({zi,ki}) + T

(u)
δ ({zi,ki}) , (2.6)

where we defined s = |k1 + k2|, t = |k1 + k4|, u = |k1 + k3|, and different channels are
related by the permutations 2 ↔ 3 and 2 ↔ 4. These s, t, u-channel contributions are thus
in one-to-one correspondence with P `1`2`3`4

(L), P `1`4`3`2
(L), P `1`3`2`4

(L), respectively, in (2.4).
Note that the (reduced) angular trispectrum T `1`2`3`4

(L) in (2.4) is defined with respect to
a particular pairing of multipoles that corresponds to the s-channel. Unlike in Fourier space,
different multipole pairings in harmonic space do not contribute to the total trispectrum in
a simple additive manner, but instead they are related by [13]

T `1`2`3`4
(L) = P `1`2`3`4

(L) (2.7)

+ (2L+ 1)
∑
L′

(
(−1)`2+`3

{
`1 `2 L
`4 `3 L

′

}
P `1`3`2`4

(L′) + (−1)L+L′
{
`1 `2 L
`3 `4 L

′

}
P `1`4`3`2

(L′)
)
,

where the curly-bracketed matrices represent the Wigner 6-j symbols. Despite there being a
complicated relation amongst three channels, it turns out that a simplifying approximation
T `1`2`3`4

(L) ≈ P `1`2`3`4
(L) is often adequate for most purposes (see e.g. [13, 23]). This dramatically

simplifies numerical analyses of harmonic-space trispectra; we adopt this approximation in
this work.

As was alluded to above, the projection integrals in (2.3) become dramatically simplified
for δ-correlation functions that are separable. Roughly speaking, a separable correlation
function means that its individual terms can be expressed as a product of some functions
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of momentum variables. The precise separability condition for the matter trispectrum put
forward in [28] is that individual terms, say, in the s-channel can be expressed as

T
(s)
δ ({zi,ki}) ⊃ f1(z1, k1) · · · f4(z4, k4)fs(s)t2J , (2.8)

where J is a non-negative integer for local interactions.11 The gravitationally-induced matter
trispectrum that is relevant for our purpose has J = 0. In this case, the angular and radial
integrals in (2.3) become completely factorized, with the separable term (2.8) in Fourier space
resulting in the following form in harmonic space [28]:

P `1`2`3`4
(L) = g`1`2Lg`3`4L

(2π2)5

∫ ∞
0

dr r2I
(1)
`1

(r)I(2)
`2

(r)
∫ ∞

0
dr′ r′2I

(3)
`3

(r′)I(4)
`4

(r′)J (s)
L (r, r′) , (2.9)

where

g`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
(2.10)

is a geometric factor and

I
(i)
` (r) = 4π

∫ χ(z)

0
dχ′WO(χ′)

∫ ∞
0

dk k2fi(z(χ′), k)j`(kχ′)j`(kr) , (2.11)

J
(s)
L (r, r′) = 4π

∫ ∞
0

ds s2fs(s)jL(sr)jL(sr′) , (2.12)

are the projection radial integrals, with j` the spherical Bessel function. Typically, the
functions of momenta take the form fi(z, k) = Dmi

+ (z)k2niP piδ (k), where D+ is the linear
growth function, Pδ is the matter power spectrum, and ni,mi, pi are integers.12 This allows
us to further simplify the double integral in (2.11), as we show next.

A few comments about eq. (2.7) and the subsequent approximation are in order. The
evaluation of the expression given in eq. (2.7) for the trispectrum is computationally chal-
lenging. This approximation was introduced in the context of CMB studies. In the case of
low-redshift weak lensing studies, the situation is even more difficult due to the line-of-sight
integration.

An alternative to this approach was introduced in [58] (also see [59]), where the spherical
sky expression is replaced by the corresponding flat-sky approximations, and the 3j- and
6j-symbols are replaced by Dirac delta functions. The summations that appear in all-sky
calculations are subsequently replaced by integrals that can be carried out using higher-
dimensional Monte Carlo computations.

The primary aim of this article is to introduce the kurt-spectra and their higher-order
analogs. A more accurate modeling will be taken up in the future. This is likely to take a
hybrid approach, where the entire range of ` values is split into a low-` and a high-` regime.
The low-` (` < 100) regime can be tackled using an all-sky calculation, where 6j-symbols
computations are feasible, and a flat-sky method will be used for the high-` regime.

11See e.g. [22, 55] for alternative separability criteria for trispectra.
12More generally, one needs to introduce a scale-dependence in the linear growth function due to e.g. massive

neutrinos. Such cases can be efficiently dealt with by the use of a polynomial approximation that separates
the scale and redshift dependences; see [56, 57] for details.
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2.2 Computational methods

As we just saw, the computation of harmonic-space trispectra amounts to evaluating the
projection integrals of the form (2.11) and (2.12). Naively, the presence of highly oscillatory
Bessel functions in the integrand makes a direct numerical integration quite difficult, espe-
cially for high multipoles. Over recent years, efficient semi-analytic methods for evaluating
these projection integrals have been developed in [28, 60–62] based on the algorithm known
as the FFTLog [63], with the goal of computing angular observables in cosmology in a nu-
merically fast and accurate way (see [57, 64–73] for related developments and applications of
these methods).

The basic idea of these methods is to discrete Fourier transform (in log k) the matter
power spectrum over some finite interval [kmin, kmax] as

Pδ(z, k) ≈
N/2∑

m=−N/2
cm(z)k−b+iηm , ηm ≡

2πm
log(kmax, kmin) , (2.13)

where b is a real parameter introduced for convenience and the coefficients of the transform
are given by

cm(z) =
2− δ|m|,N/2

2N

N−1∑
n=0

Pδ(z, kn)kbnk
−iηm
min e−2πimn/N . (2.14)

Essentially, the FFTLog approximates the matter power spectrum in terms of a finite number
of complex power-law functions, with a sub-percent accuracy for N = O(102). The usefulness
of this approximation is that the momentum integrals in (2.11) and (2.12) can now be done
analytically for each complex power-law function, allowing us to express them as

I
(i)
` (r) ≈

∑
m

cm

∫ χ(z)

0
dχ′ χ′−νmDmi

+ (z(χ′))WO(χ′)I`
(
νm,

χ′

r

)
, (2.15)

JL(r, r′) ≈
∑
m

cmr
−νm IL

(
νn,

r′

r

)
, (2.16)

with [60]

I`(ν, w) ≡ 4π
∫ ∞

0
dxxν−1j`(x)j`(wx)

=
2ν−1π2Γ(`+ ν

2 )
Γ(3−ν

2 )Γ(`+ 3
2)
w` 2F1

(
ν − 1

2 , `+ ν

2 , `+ 3
2 , w

2
)
, (2.17)

for w ≤ 1, and 2F1 denotes the Gauss hypergeometric function. For w > 1, one uses the
property I`(ν, w) = w−ν I`(ν, 1

w ). Since the hypergeometric function is a smooth function
whose analytic properties are well known, this provides an efficient way to compute the
projection integrals, avoiding the need to directly integrate the Bessel functions.

If we restrict to large multipoles and sufficiently smooth line-of-sight kernels, then there
is a more widely used approximation to deal with the projection integrals known as the
Limber approximation [74, 75]. This amounts to replacing the spherical Bessel functions j`

– 6 –
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in the integrands with Dirac delta functions, j`(x) ≈
√

π
2`δD(`− x), which leads to

I
(i)
` (r) ≈ 2π2

r2 D
mi
+ (r)WO(r)f̃i(`/r) , (2.18)

J
(s)
L (r, r′) ≈ 2π2

r2 fs(L/r)δD(r − r′) , (2.19)

where f̃i is fi evaluated at z = 0. Note that what used to be the χ integrand does not
carry any multipole dependence, allowing us to factor it out from individual terms. More-
over, the leftover delta function in J

(s)
L removes one of the radial integrals in (2.9). As a

consequence, the Limber-approximated angular trispectrum simply reduces to the following
one-dimensional integral (at tree level):

P `1`2`3`4
(L) ≈ g`1`2Lg`1`2L

∫ ∞
0

dr

r6 D
6
+(r)W 4

O(r)T̃ (s)
δ

(
`1
r
, · · · , `4

r
,
L

r

)
, (2.20)

where T̃ (s)
δ is defined to be the purely momentum-dependent part of the matter trispectrum

T̃
(s)
δ (k1, · · · , k4, s) = T

(s)
δ ({zi,ki})|zi=0 , (2.21)

with the normalization D+(0) = 1. Similar expressions exist for the t- and u-channels. We
will show a comparison of the FFTLog and Limber approximation in section 3.1.

2.3 Theoretical model for matter trispectrum
Cosmological angular trispectra are obtained by projecting the matter trispectrum along the
line of sight. While this in principle involves integrating over all momenta, typical scales
are related by ` ∼ kχ(z) between the harmonic and Fourier domains. Depending on the
harmonics, two distinct theoretical models for matter clustering are then relevant in the quasi-
linear and nonlinear regimes. Let us briefly review the models that we consider in our study.

Quasi-linear regime. At sufficiently large scales, cold dark matter behaves as an effective
pressureless fluid, and its gravitational evolution is governed by the Newtonian fluid equations
of motion. In the standard perturbation theory (SPT) framework [76], these equations are
solved perturbatively by expanding the nonlinear density contrast in terms of the linear
solution δ(1) as

δ(z,k) =
∞∑
n=1

Dn
+(z)

∫
q1,··· ,qn

(2π)3δD(k − q1···n)F sym
n (q1, · · · , qn)δ(1)(q1) · · · δ(1)(qn) , (2.22)

where
∫

q1,··· ,qn ≡
∫ ∏n

i=1
d3qi
(2π)3 , q1···n ≡ q1+· · · qn and F sym

n is the symmetrized SPT kernel [77,
78]. The Einstein-de Sitter (matter domination) approximation is typically used so that the
temporal and spatial dependences become factorized in the way above. At tree level, there
are two contributions to the matter trispectrum

T SPT
δ ({zi,ki}) = T3111({zi,ki}) + T2211({zi,ki}) , (2.23)

which follows from the two distinct ways of expanding δ. We quote here the standard results
from the SPT [76]

T3111({zi,ki}) = 6D1D2D3D
3
4P1P2P3F

sym
3 (k1,k2,k3) + 3 perms , (2.24)

T2211({zi,ki}) = 4D1D
2
2D3D

2
4P1P3PsF

sym
2 (k1,−k12)F sym

2 (k3,k12) + 11 perms , (2.25)

– 7 –
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where we used the notation Di ≡ D+(zi) and Pi ≡ PL
δ (ki) for the linear matter power

spectrum. To utilize the separability, we express the above trispectrum in terms of momentum
magnitudes and write the total tree-level trispectrum as

T SPT
δ ({zi,ki}) =

[
T

(s)
exchange(k1, k2, k3, k4, s) + 2 perms

]
+ Tcontact(k1, k2, k3, k4) , (2.26)

where the labels “exchange” and “contact” refer to the parts that depend on the internal
momenta and that does not, respectively. Explicit expressions of the matter trispectrum in
these variables can be found in [28].

Nonlinear regime. In the nonlinear regime δ & 1, the perturbation theory breaks down
and we typically have to resort to phenomenological models or fitting functions. Unlike
for the bispectrum, there currently exists no precise fitting function available for the matter
trispectrum that smoothly interpolates between linear and nonlinear scales for all momentum
configurations.13 Instead, a nonlinear clustering model known as the hierarchical ansatz
(HA) [81] is often invoked.

In the HA, higher-order spectra of density contrast are written as a sum of product
of two-point functions over all possible topologies with different amplitudes. The matter
trispectrum then has two contributions given by [82, 83]

THA
δ (k1, · · · ,k4) ≡ Ra

(
[PNL
δ (k1)]1+ε[PNL

δ (k2)]1+ε[PNL
δ (k3)]1+ε + 3 perms

)
+Rb

(
[PNL
δ (k1)]1+ε[PNL

δ (k3)]1+ε[PNL
δ (s)]1+ε + 11 perms

)
, (2.27)

where PNL
δ denotes the nonlinear matter power spectrum and we have suppressed the red-

shift dependence. We will only consider the models with ε = 0 in this paper. The matter
trispectrum in the HA is therefore parameterized by two amplitudes Ra and Rb, which
are assumed to be constant in the strongly nonlinear regime. Note that each of the two
structures in the HA trispectrum has the same power spectra dependence as T3111 and
T2211 in the tree-level trispectrum, and the amplitudes Ra, Rb can be thought as being
the angular averages of the SPT kernels [76, 84, 85], e.g. Ra = 〈F3〉Ω, Rb = 〈F2〉2Ω, where
〈Fn〉Ω ≡ n!

∫
[
∏n
i=1

dΩi
4π ]Fn(k1, · · · ,kn). Sometimes a simpler model is used for which the two

amplitude parameters in (2.27) are set equal, Ra = Rb = Q4. It was checked, for instance,
in [86] that this choice fits the simulation results well in the nonlinear regime for certain
kinematic configurations. For our comparison against simulations, we have taken Q4 as a
free parameter to fit the data.

The HA trispectrum has a very different momentum dependence from that of the SPT
trispectrum, so that it is only applicable in the strongly nonlinear regime. This is manifest
from the soft limit behavior of the two shapes: THA

δ ∼ Pδ(k1) as k1 → 0, while T SPT
δ ∼

1
k1
Pδ(k1) in the same limit. In the next section, we compare the shapes of the weak lensing

trispectrum arising from these two models.
There are many different HA available in the literature. The specific version that we

have used was introduced in [87, 88]. In this model the amplitudes associated with diagrams
with different topologies but with same number of vertices are always equal. This is not only

13The second-order SPT kernel F2 that characterizes the matter bispectrum has 3 independent tensor
structures. A fitting formula is then constructed by endowing each of these structures with a general function
momenta that interpolates the linear and nonlinear regimes, see e.g. [79]. On the other hand, the matter
trispectrum depends on the third-order kernel F3 that has 12 independent tensor structures with 6 momentum
degrees of freedom, which complicates such a fitting procedure (see [80] for recent progress on this).
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assumed at the level of fourth-order (trispectrum) but to an arbitrary order. Other models
that are well known include the minimal hierarchical model which was introduced by [89].
In [90, 91] many consequences of minimal hierarchical models for weak lensing were discussed.
Many other versions of HA were tested subsequently. One such model assumes Rb 6= 0 and
Ra = 0 [47, 92]. In general, it was found that various choices of Ra and Rb can reproduce the
weak lensing statistics with varying success. There is no specific HA that can reproduce all
observables. Moreover, most previous studies concentrate on one-point statistics. In a related
context we have also checked that the kurtosis spectra extracted from a simulated log-normal
sky is very different from the more realistic ray-traced simulations. This is important as log-
normal simulations are routinely used in field-based inference studies. We have also tried
the extension of the log-normal [93] model, but they could not be fine-tuned to reproduce
the both kurtosis spectra for the entire range of redshift and angular harmonics probed.
A full modeling of matter trispectrum would involve either (a) effective halo model type
approach for trispectrum that extends to higher order [94] or (b) a fitting function for the
trispectrum as was done most recently by [95] for the bipectrum. For individual shapes of
trispectrum [96], we use estimators developed in [97] for the study of shapes of bispectrum.

3 Weak lensing higher-order statistics

In this section we compute the weak lensing trispectrum and introduce the kurt-spectra. The
weak lensing convergence κ is a line-of-sight integration of the underlying density contrast δ,
and can be expressed using the lensing kernel Wκ as

κ(n̂) =
∫ χs

0
dχ′Wκ(χ′)δ(χ′, χ′n̂) , (3.1)

Wκ(χ) = 3H2
0 Ωm(1 + z(χ))

2c2

∫ χs

χ
dχ′n(χ′)χ

′ − χ
χ′

, (3.2)

where n(χ) represents the distribution of lensing sources. In our study, we will assume all
sources to be at a single source plane χ = χs, which gives Wκ(χ) = 3H2

0 Ωm(1 + z(χ))χ(χs −
χ)Θ(χs − χ)/(2c2χs). The spherical harmonic coefficients κ`m of the convergence κ map is
defined through κ`m ≡

∫
dn̂ κ(n̂)Y ∗`m(n̂).

3.1 Weak lensing trispectrum

Using the formalism described in the previous section, we can straightforwardly compute the
trispectrum of weak lensing convergence in harmonic space. Figure 1 shows the shape of the
weak lensing trispectrum for various multipole configurations. We show the reduced part of
the trispectrum τ `1`2`3`4

(L) after stripping off the geometric factors, defined by

P `1`2`3`4
(L) = g`1`2Lg`3`4Lτ `1`2`3`4

(L) , (3.3)

at source redshift zs = 1. We considered the weak lensing trispectrum arising from two
different theoretical models for the matter trispectrum: the tree-level result from the SPT
(blue curves) and the HA (black curves) with Ra = Rb = 1. As the figure shows, these two
models lead to drastically different scaling behaviors, clearly highlighting the different do-
mains of applicability of these models. In particular, the HA leads to a less suppressed power
compared to the tree-level signal at small scales, as expected for a nonlinear clustering model.
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Figure 1. Weak lensing trispectrum at zs = 1 after stripping off the geometric factors, cf. (3.3).
Two different models for the matter trispectrum are used: the tree-level result from the standard
perturbation theory (SPT) and the hierarchical ansatz (HA) with Ra = Rb = 1. The solid and dashed
lines show the trispectra computed using the FFTLog and the Limber approximation, respectively.

It is interesting to compare the calculations done with the FFTLog and the Limber
approximation.14 We see that the Limber approximation in general works very well for weak
lensing even for very small multipoles, but there is a notable exception: the SPT trispectrum
in the collapsed limit L � `1, · · · , `4, for which the Limber approximation induces a large
deviation. This can be understood from the way the matter trispectrum in Fourier space
is projected to harmonic space: the collapsed limit is dominated by terms that scale as
inverse powers of s in the SPT trispectrum. It turns out that these terms fully cancel in
the rhombus-like configurations k1 = k2 = k3 = k4 in Fourier space, ensuring the infrared
safety of the one-loop power spectrum and that the consistency relations are satisfied [98].
While this continues to be true under the Limber approximation that simply amounts to
the substitution ki → `i

r (cf. (2.20)), these terms do not fully cancel in the exact calculation
when the projection is taken before taking the equal-multipole limit. The FFTLog method
is able to capture this non-cancellation of terms that dominate in the collapsed limit, hence
resulting in the large difference between the two computational methods in the collapsed limit.
This implies that the Limber approximation of the weak lensing trispectrum from the SPT is
highly accurate for most configurations, except in the limit L→ 0.15 For the HA, the Limber
approximation was found to be accurate for the multipole configurations we considered.

14In figure 1, we used the FFTLog only for the external multipoles and used the Limber approximation for
the internal L to reduce computational costs.

15The same observation was made in [28], where it was shown that the Limber approximation fails for the
computation of the non-Gaussian covariance of the angular matter power spectrum, which requires evaluating
T `1`2
`3`4

(L) at L = 0.
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3.2 Kurt-spectra
While the precise physical content of a correlation function is contained in its entire shape
dependence, it is often useful to construct lower-point statistics to estimate higher-point
functions. One of the main advantages of such estimators is that they have a much simpler
multipole dependence, while still carrying sufficient information to constrain amplitude-like
parameters.

The harmonic coefficients of the n-th power of the convergence field, κn, can be expressed
in terms of κ`m as

[κn]`m ≡
∫
dΩ̂κn(Ω̂)Y ∗`m(Ω̂)

=
∑
`1m1

· · ·
∑
`nmn

κ`1m1 · · ·κ`nmn
∫
dΩ̂Y`1m1(Ω̂) · · ·Y`nmn(Ω̂)Y ∗`m(Ω̂). (3.4)

The integral involving spherical harmonics above can be expressed in terms of (products and
sums of) the Wigner 3-j symbols. We can then define the following two kurt-spectra, which
we will denote as K22

` and K31
` [17, 18]:

K22
` ≡

1
2`+ 1

∑
m

〈[κ2]`m[κ2]∗`m〉 =
∑
`1···`4

g`1`2`g`3`4`

(2`+ 1)2 T `1`2`3`4
(`) , (3.5)

K31
` ≡

1
2`+ 1

∑
m

<〈[κ3]`mκ∗`m〉 =
∑

`1`2`3L

g`1`2Lg`3`L

(2L+ 1)(2`+ 1)T
`1`2
`3`

(L) , (3.6)

where we have expressed the results in terms of the weak lensing angular trispectrum T `1`2`3`4
(L)

and < denotes the real part.16 These are natural generalizations of the skew-spectrum
〈[κ2]`mκ∗`m〉 statistics studied in [99] to fourth order.17

The Gaussian (disconnected) contribution to the trispectrum, which we denote by
G`1`2`3`4

(L), depends only on the angular power spectrum C` = 〈κ`mκ∗`m〉, and is given by
the expression [13]

G`1`2`3`4
(L) = (−1)`1+`3

√
(2`1 + 1)(2`3 + 1)C`1C`3δL0δ`1`2δ`3`4

+ (2L+ 1)C`1C`2
[
(−1)`2+`3+Lδ`1`3δ`2`4 + δ`1`4δ`2`3

]
, (3.8)

where δ`a`b denotes the Kronecker delta. The corresponding Gaussian contribution to the
kurt-spectra are given by

G22
` =

∑
`1`2`3`4

g`1`2`g`3`4`

(2`+ 1)2 G`3`4`1`2
(`) , (3.9)

G31
` =

∑
`1`2`3L

g`1`2`g`3L`

(2L+ 1)(2`+ 1)G
`3`
`1`2

(L) . (3.10)

16The relations between the kurt-spectra and the trispectrum can be derived by using the inversion formula
for the angular trispectrum

T `1`2
`3`4

(L) = (2L+ 1)
∑
M,mi

(
`1 `2 L
m1 m2 M

)(
`3 `4 L
m3 m4 −M

)
〈κ`1m1 · · ·κ`4m4〉 . (3.7)

17For the skew-spectra applied to galaxy statistics, see also [100–102].
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These need to be subtracted from the total kurt-spectra. Substituting the Gaussian trispec-
trum (3.8), we get

G22
` = 1

4π
∑
`1`2

(2`1 + 1)(2`2 + 1)C`1C`2

δ`0 + 2
(
`1 `2 `
0 0 0

)2
 , (3.11)

G31
` = 3C` ×

1
4π

∑
`′

(2`′ + 1)C`′ . (3.12)

These two spectra are related to the real-space kurtosis by

1
4π

∫
dn̂ 〈κ4(n̂)〉 = 3

4π
∑
`

(2`+ 1)G22
` = 3

4π
∑
`

(2`+ 1)G31
` = 3σ4 , (3.13)

where σ2 ≡ 1
4π
∫
dn̂ 〈κ2(n̂)〉 = 1

4π
∑
`(2`+ 1)C` is the angle-averaged variance. To include the

contribution from the noise, C` in (3.8) should be replaced by C` +N`. For Gaussian noise,
the noise power spectrum is independent of `: N` = 4πσ2/Npix.

In addition to the kurt-spectra at fourth order, we have also computed the fifth-, sixth-
and seventh-order spectra from numerical simulations. At each order, there are more than
one spectrum; for example, there are two fifth-order spectra defined as follows18

<〈[κ4]`mκ∗`′m′〉 = C41
` δ``′δmm′ , <〈[κ3]`m[κ2]∗`′m′〉 = C32

` δ``′δmm′ . (3.14)

The triplets of sixth-order spectra C51
` , C42

` , C33
` and seventh-order spectra C61

` , C
52
` , C43

`

are defined analogously. Note that, unlike even-order spectra, there is no Gaussian contribu-
tion at odd orders. The addition of noise, typically assumed to be Gaussian, increases the
scatter at odd orders, while for even orders it affects the mean of the estimator through its
contribution to the disconnected components.

4 Comparison with ray-tracing simulations

Having described the calculation of the matter trispectrum and the weak lensing kurt-spectra,
we now compare these theoretical signals to simulations. We first describe the details of the
N -body simulations used in section 4.1 and then discuss the results in section 4.2.

4.1 Simulation specifications

We use the publicly available all-sky weak lensing maps generated by [103]19 using a ray-
tracing scheme through N -body simulations. The underlying N -body simulations follow the
gravitational clustering of 20483 particles. Multiple lens planes were used to generate the
lensing convergence κ and the corresponding shear γ maps. To generate the maps in these
simulations, the source redshifts used were in the range zs ∈ [0.05, 5.30] at a redshift-interval
of ∆zs = 0.05. In this study, we have used the maps with source-redshifts zs = 0.5, 1, and
2, using the following fiducial cosmological parameters: the dimensionless Hubble parameter

18While the harmonic mode decomposition and a related power spectral analysis is ideal for a higher
sky coverage, for ongoing surveys with a small fraction of sky coverage it is often easier to work in the
real-space domain to avoid complications related to irregular mask or survey geometry. The higher-order
correlation functions corresponding to these high-order spectra are obtained by the usual Legendre transform
as Cpq(θ) = 1

4π
∑

`
Cpq` (2`+ 1)P`(cos θ).

19http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
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Figure 2. Kurt-spectra K31
` and K22

` as defined in (3.5) and (3.6), without any beam smoothing. In
each panel, the (pale) red, green, and blue curves show the (Gaussian) kurt-spectra for source redshifts
zs = 0.5, 1, and 2, respectively. One single realization with Nside = 1024 was used to generate the
total kurt-spectra, while the Gaussian parts are generated using ten realizations of Gaussian maps
from the theoretical power spectrum.

h = 0.7, the dark matter density Ωcdm = 0.233, the baryon density Ωb = 0.046, the matter
density Ωm = Ωcdm + Ωb, the amplitude of matter fluctuations on 8h−1Mpc scales σ8 = 0.82,
the scalar spectral index ns = 0.97, and a flat universe. In a previous study [104], inclusion
of post-Born terms in lensing statistics were studied at the level of the bispectrum. Although
post-Born corrections play a significant role at higher redshift, e.g. in the case of CMB lensing,
it was found that such corrections play a negligible role at the low-source redshifts that we
study in this work.

The lensing convergence maps were generated using an equal area pixelization scheme
in HEALPix20 format [105]. In this pixelization scheme, the number of pixels scales as Npix =
12N2

side. The resolution parameter Nside can take values Nside = 2m with m = 1, 2, · · · . The
maps used in this study are generated at Nside = 4096 and were cross-checked against higher-
resolution maps constructed at Nside = 8192, 16384 for consistency, up to `max = 2 × 103.
Many additional tests were also performed using the E/B decomposition of the shear maps
for the construction of κ maps [103]. After this validation procedure, we have degraded these
maps to Nside = 1024 and analyzed them for harmonic modes satisfying ` ≤ 2Nside.

4.2 Results and discussion

4.2.1 Shapes of Kurt-spectra
In figure 2, we show the redshift dependence and the shapes of the two kurt-spectra defined
in (3.5) and (3.6) from a single realization, without an observational mask or noise. The
various lines, from bottom to top in each panels, present the results for source redshifts
zs = 0.5, 1, and 2, respectively. We see that the amplitude of K31

` is typically higher
than that of K22

` at low `. This is because a larger number of non-vanishing trispectrum
configurations contribute to the former at a given `� `max.

20https://healpix.jpl.nasa.gov/.
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Figure 3. Kurt-spectra at zs = 1 after applying a Euclid-type mask, with no noise inclusion. The
smoothing angular scale is fixed at θs = 5′. The upper curve shows Kpq

` computed using a single
realization without the observational mask. The two nearly-identical curves at the bottom show the
corresponding masked spectra, K̃pq

` , and the unmasked spectra multiplied with the fraction of sky
coverage, Kpq

` fsky.

In addition to the total kurt-spectra, we have also generated ten Gaussian realiza-
tions to estimate the contribution to the kurt-spectra from the disconnected parts of the
trispectrum, (3.10) and (3.9), which are shown in pale-colored lines. For generating these
realizations, we have used the same power spectra as the original numerical simulations. As
expected, the Gaussian contributions are subdominant at low redshifts where κ traces the
highly non-Gaussian underlying density distribution. These simulated Gaussian kurt-spectra
were found to match the theoretical signals accurately.

4.2.2 Observational mask and noise
Observational masks introduce mode couplings that need to be corrected before studying
the gravity-induced mode coupling. An efficient approach was introduced in [106] to study
the ordinary angular power spectrum, commonly known as the pseudo-C` or PCL technique.
Using the PCL approach, an unbiased estimator for the (p + q)−th order power spectrum,
Ĉpq` , can be expressed as

Ĉpq` =
∑
`′

M−1
``′ (C̃

pq
`′ − G̃

pq
`′ ) , (4.1)

where C̃pq` represents the total spectrum estimated from a noisy map in the presence of mask

C̃pq` = 1
2`+ 1

∑
m

[κ̃p]`m[κ̃q]`m , (4.2)

with κ̃ the masked κ map. The Gaussian component of the spectrum is denoted above as
G̃pq` , which is computed using Monte Carlo realizations of Gaussian maps in the presence
of the same mask and noise. The matrix M``′ that encodes the mode-coupling information
induced by the mask takes the form

M``′ = (2`′ + 1)
∑
`′′

2`′′ + 1
4π |w`′′ |2

(
` `′ `′′

0 0 0

)2

, (4.3)
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Figure 4. Comparison of theoretical and numerical results for the kurt-spectra with θs = 10′. The
discrete points represent theoretical predictions using the hierarchical ansatz. The simulation results
are an average of ten realizations (see the text for more details).

where w`′′ represents the angular power spectrum of the survey mask. In the high-` regime,
the coupling matrix simplifies as M``′ ≈ fskyδ``′ with fsky the fraction of sky coverage. For
the spectra of order higher than four, terms involving lower-order spectra will contribute and
generation of Gaussian maps may not be enough to subtract the disconnected contributions.

Using this technique, we study the effect of a Euclid-type mask in the estimation of the
kurt-spectra. (For reference, the mask we have used has fsky ≈ 0.35 and is described in [99].)
The results are shown in figure 3, where the left and right panels show the kurt-spectra K22

`

and K31
` , respectively. The smoothing angular scale is fixed at θs = 5′ in both cases. In

each panel, the upper curve shows Kpq
` computed from a single realization without any noise

added. The two nearly-identical curves at the bottom show the corresponding masked K̃pq
`

and the rescaled unmasked spectra fskyK
pq
` . The same scaling with fsky can be applied to

the Gaussian contribution and the noise; hence these contributions can simply be subtracted
to construct an unbiased estimator. We used a sharp mask without any apodization. The
large-scale features of the mask then appear as fluctuations in the convolved spectra, which
survive the auto-spectrum K̃22

` but not in the cross-spectrum K̃31
` .

The estimator we have introduced here is a sub-optimal estimator.21 This is sufficient for
all-sky surveys where the signal-to-noise is very high. A nearly-optimal estimator which is also
unbiased was considered for PNG in the CMB in [17, 18]. This method depends on applying
weights that depend on the target trispectrum and is computationally more expensive. An
optimal method was also presented in [17, 18], which involves inverse covariance weighting.
Such estimators are optimal only in the limit of small non-Gaussianity (e.g. PNG). However,
such an approach is neither realistic nor necessary for secondary non-Gaussianity where the
non-Gaussian signal is quite strong. Optimized versions of the kurt-spectra have also been
considered in [17] for PNG, though they cannot be estimated using a PCL estimator. In
the presence of a mask, the linear correction terms require a more elaborate Monte Carlo
computation involving Gaussian random realizations. Optimization of our estimator to the
gravity-induced secondary non-Gaussianity will be presented elsewhere.

21The flat-sky equivalent of PCLs used here was developed in [107].
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4.2.3 Comparison with theory

In figures 4 and 5, we present the results of our comparison of a theoretical model against
numerical simulations for source redshifts zs = 0.5, 1, and 2. We have used two different
smoothing angular scales θs = 10′ and θs = 30′, for which it was sufficient to use the maps
with Nside = 512 and `max = 1024. Two curves are shown in each panel: the red and
gray curves represent K31

` and K22
` , respectively. For the purpose of comparing against

purely theoretical signals from the connected trispectrum, we have subtracted the Gaussian
contributions and no noise and mask were used. The discrete points represent the theoretical
results using the HA given in (2.27) with Ra = Rb as a free parameter to fit the data. As
can be seen from the figures, the kurt-spectra resulting from the HA agree reasonably well
with the simulation results in the nonlinear regime, while it has an upward trend and starts
to display a large deviation towards low multipoles.22

We have also done a comparison with the tree-level SPT trispectrum used as the input,
and found that they deviate significantly from the simulation results even at low `, with or
without using the Limber approximation. This failure can be attributed to the fact that the
tree-level approximation typically remains valid up to the scale k? ≈ 0.1hMpc−1 in Fourier
space, with the corresponding nonlinear multipoles `? ≈ 90, 150, and 240 for zs = 0.5, 1, and
2, respectively. The kurt-spectra therefore involve summing over a large number of nonlinear
modes for the smoothing scales that we have considered in this work. For example, even the
largest smoothing scale θs = 30′ that we used only reduces the amplitude at `? = 240 by
30%, which is not sufficient to suppress the contribution from nonlinear modes.

The HA and SPT both generate similar correlation structure but with different hier-
archical amplitudes Ra and Rb [76]. This explains the fact that in figure 4 the theoretical
predictions better match numerical simulations for source redshift zs = 0.5 (highly nonlinear
regime) and zs = 2.0 (quasi-linear regime). However, in the intermediate regime, the form
of the correlation hierarchy is more complicated and remains poorly understood. This is
reflected in the middle panel of figure 4 for zs = 1.0. Indeed, the line-of-sight integral mixes
various modes.

There are clear deviations in the high-` regime especially for zs = 2.0. The HA can be
extended to consider ε 6= 0 in eq. (2.27). However, our aim in this article is not to provide a
detailed phenomenological fitting function, but rather to introduce the higher-order spectra
in the analysis of weak lensing maps.

Extending the calculation to one loop order would allow us to include modes up to k? ≈
0.3hMpc−1 and would significantly extend the range of validity of perturbation theory in har-
monic space (e.g. up to `? ≈ 720 at zs = 2). It would thus be interesting to compute the kurt-
spectra including the contribution from the one-loop matter trispectrum in the EFT frame-
work [109–111] and compare its validity against simulations. We leave this for future work.

It is instructive to compare the problem at hand with the computation of the non-
Gaussian covariance of the angular power spectrum, which takes the form [13]

C``′ = (−1)`+`′√
(2`+ 1)(2`′ + 1)

T ```′`′(0)− C`C`′ . (4.4)

22In general, low multipoles are affected by the finite size of the survey volume, which is more pronounced
in higher-order statistics. The ray-tracing simulations inherit the finite volume corrections from the N -body
simulations used to generate the lensing maps. For this reason, we have mostly concentrated on harmonics
` > 100, as in the previous work [99, 108].
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discrete points represent theoretical predictions using the hierarchical ansatz. The simulation results
show average of ten realisations (see text for more details).
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Figure 6. Higher-order spectra of weak lensing convergence at zs = 1 with θs = 30′. The different
panels from left to right show the fifth-, sixth-, and seventh-order spectra.

Notice that, unlike the kurt-spectra, this does not involve summing over nonlinear modes,23

and it is known that the tree-level approximation provides a good approximation at low mul-
tipoles [28, 86]. Moreover, the non-Gaussian covariance involves taking the infrared multipole
L = 0, so it always receives contributions from large scales, making the HA inadequate in
this case; see also [86].

4.2.4 Beyond fourth order
We have also simulated spectra beyond fourth order, as shown in figure 6. From left to right
the different panels show the spectra at fifth, sixth, and seventh orders, with the smoothing

23Note that T `1`2
`3`4

(L) is the trispectrum defined with a specific channel decomposition, so it in principle
includes a sum over nonlinear modes from other channels, see (2.7). As explained earlier, these contributions
are, however, usually highly suppressed in the limit L→ 0 and so can be neglected.
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scale θs = 30′ and the source redshift zs = 1. The original maps created at a HEALPix
resolution of Nside = 4096 were degraded to Nside = 1024 before the analysis, and a total
of ten realizations were used. All-sky maps were considered and no noise was added to the
maps. The Gaussian contributions to the sixth-order spectra are also shown, while there are
no Gaussian parts at odd orders.

We do not have an accurate analytical model to compute the scatter in the spectra.
However, we know that the higher the power of the spectra, the more scatter it will present.
This is because higher-order spectra probe the tails of the κ-distribution, so they are more
susceptible to the presence (or absence) of rare high (or low) κ values. As a consequence, C41

`

will be noisier as it contains fourth power compared to, say, C32
` , which cross-correlates fields

with lower powers. Currently, there are no well-established estimator for higher-order non-
Gaussianities beyond fourth order. Nevertheless, from the figures it is clear that surveys such
as Euclid will be able to probe these non-Gaussian spectra beyond fourth order. Utilizing
these higher-order spectra can help tighten cosmological parameter constraints.

The stage-IV weak lensing surveys will be in the signal-dominated regime [37]. Estimat-
ing the signal-to-noise involves computing the error covariance matrix of the PCL estimator
that we have considered. This is nontrivial even in the context of the ordinary power spec-
trum in the signal dominated regime. Theoretical computation of the covariance matrix
requires an analytical modeling of even high-order spectra, e.g. eight-order correlations for
the covariance of the kurt-spectra estimators. This is currently not possible in a reliable
manner using the HA or extensions of halo models. One possible option is to use simulations
to model the higher-order correlations. Indeed, to get a reliable estimate of the off-diagonal
terms in the covariance matrix, an increased number of simulations will be required. This
remains an active area of research.

4.2.5 Low-` modes and finite volume corrections

In the low-` regime our model over predicts simulation results for both K22
` and K31

` . This is
related to the fact that in this regime at least one leg of the trispectrum is in the perturbative
regime. The magnitude associated with the perturbative trispectrum for a given configuration
is expected to be lower than its hierarchical counterparts.

In addition, it is worth mentioning that the effect of the finite volume of the simulation is
known to play an important role for the determination of one-point statistics (see, e.g., [112]).
Previous studies focused on one-point moments, but the spectra we are constructing are two-
point statistics. At the moment, to the best of our knowledge, there is no prescription to
correct the bias due to such finite volume corrections for two-point statistics.

5 Conclusions and future prospects

Most studies of weak lensing non-Gaussianity focus on the leading-order non-Gaussianity,
namely the bispectrum. In this paper, we have extended these works to fourth-order statistics
by introducing two new fourth-order spectra called kurt-spectra that generalize the concept of
kurtosis — the fourth-order cumulant — in harmonic space. We have used pseudo-C`-based
estimators that can estimate these kurt-spectra from realistic weak-lensing maps that involve
an observational mask and noise. We have shown how the Gaussian components of these
spectra can be subtracted using Monte-Carlo realizations of Gaussian maps or the theoretical
expectation. One of the main outcomes of our study is the fact that the kurt-spectra, as well
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as their higher-point generalizations, can be reliably extracted from (nearly-)all-sky weak
lensing surveys.

Additionally, we have introduced a framework to compute these statistics theoretically.
However, we found that obtaining an exact matching with the simulation results is not
straightforward for two different reasons. At the level of the bispectrum, there currently
exist halo-model-based numerical fitting functions that can be used to accurately predict the
skew-spectrum. On the other hand, we do not have a such numerical fitting function for
the trispectrum or beyond. In circumventing this problem, we have outlined two different
(analytical) approaches in this paper based on the SPT and the HA. The SPT is only valid
for large smoothing scales, while HA is expected to be valid at much smaller length scales.
The kurt-spectra involve a mode sum that mixes different scales, thus underlining the case
for a fitting function to reproduce the simulation results. An additional complexity is that,
while computation of the skew-spectrum requires O(`2max) evaluation of the bispectrum, the
number of computation for the kurt-spectra is O(`3max), hence restricting the resolution of
maps that can be analyzed.

We have analyzed maps with Nside = 512 and `max = 1024, and compared the simulation
results with the theory predictions. With this choice, we found that the HA, despite its
simplicity, can predict the general trends of the fourth-order spectra to a good accuracy
in the nonlinear regime. At the same time, they show a pronounced departure from the
numerical simulations at low multipole moments, due to the invalidity of the HA in this
regime. We also found that the tree-level SPT trispectrum cannot be used to reliably predict
the shapes of the kurt-spectra, which involve contributions from modes at ` � 100. A
better theoretical modeling is thus required to accurately compute the kurt-spectra, such as
including the EFT trispectrum at one loop [109–111] in the perturbative calculation. Another
possibility is to use an emulator-based approach for cosmological statistics to avoid modeling
of a fitting function (see e.g. [113]).

The results presented here correspond to a single source plane. In practice, the sources
are distributed over a range of redshifts, which can be easily incorporated in our modeling.
Future cosmological galaxy surveys, such as the Vera Rubin Observatory, will observe a very
large number of galaxies. In the absence of spectroscopic data, their redshifts will have to be
inferred from the photometric redshifts (photo-z). We leave incorporating the photo-z error
in our modeling and study its implications in the future.

Along with the skew-spectrum, the kurt-spectra introduced in this paper will be useful
in testing various mass-mapping techniques that are generally employed. It is well known that
the naive mass-mapping technique uses a flat-sky approximation known also as the Kaiser-
Squires (KS) method [114], which is an inversion of the forward model in the Fourier domain.
This, however, does not take into account noise or boundary effects. These are typically post-
processed via convolutions that involve a large Gaussian smoothing kernel. This results in a
heavy degradation of the quality of the non-Gaussian information content of high-resolution
maps. In addition, there are issues related to the fact that the decomposition of spin-fields
into E/B modes when performed on a bounded manifold is known to be degenerate. It
is thus commonly believed that the KS estimator can perform poorly in the presence of a
nontrivial mask. In recent years, a sparse hierarchical Bayesian formalism for all-sky mass-
mapping without making any assumptions or impositions of Gaussianity was developed (e.g.
in [115]). The estimators developed here for higher-order statistics can be used to compare
the reproducibility of the non-Gaussian information in mass-mapping in the presence of a
mask and noise.
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We have studied a few representative trispectrum configurations. Different configura-
tions of correlation functions are associated with features in the large-scale structure, such
as pancakes, filaments, clumps, voids, cosmic strings, as well as statistical anisotropy. Since
the kurt-spectra reduce the entire shape information to one dimension, the study of vari-
ous shapes of the trispectrum along with the kurt-spectra would thus yield a rich dividend.
Based on the techniques developed in [116], an estimator that can probe individual bispec-
trum shapes was proposed in [108]. We plan to generalize this estimator to explore the full
shape of the trispectrum in future work.

Acknowledgments

DM was supported by a grant from the Leverhulme Trust at MSSL when this project was
initiated. HL and CD were partially supported by Department of Energy (DOE) grant DE-
SC0020223. HL is supported by the Kavli Institute for Cosmological Physics through an
endowment from the Kavli Foundation and its founder Fred Kavli. We would like to thank
Peter Taylor for providing us his code to generate the Euclid-type mask used in our study.
We would also like to thank Ryuichi Takahashi for making his simulations publicly available.

References

[1] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307
[astro-ph/0603494] [INSPIRE].

[2] H. Aihara et al., The hyper Suprime-Cam SSP survey: overview and survey design, Publ.
Astron. Soc. Jap. 70 (2018) S4 [arXiv:1704.05858] [INSPIRE].

[3] DES collaboration, Cosmology from cosmic shear with Dark Energy Survey science
verification data, Phys. Rev. D 94 (2016) 022001 [arXiv:1507.05552] [INSPIRE].

[4] DESI collaboration, The DESI experiment part I. Science, targeting, and survey design,
arXiv:1611.00036 [INSPIRE].

[5] N. Tamura et al., Prime Focus Spectrograph (PFS) for the Subaru Telescope: overview, recent
progress, and future perspectives, Proc. SPIE Int. Soc. Opt. Eng. 9908 (2016) 99081M
[arXiv:1608.01075] [INSPIRE].

[6] K. Kuijken et al., Gravitational lensing analysis of the kilo degree survey, Mon. Not. Roy.
Astron. Soc. 454 (2015) 3500 [arXiv:1507.00738] [INSPIRE].

[7] EUCLID collaboration, Euclid definition study report, arXiv:1110.3193 [INSPIRE].

[8] J.A. Tyson, D.M. Wittman, J.F. Hennawi and D.N. Spergel, LSST: a complementary probe of
dark energy, Nucl. Phys. B Proc. Suppl. 124 (2003) 21 [astro-ph/0209632] [INSPIRE].

[9] N.R. Council, New worlds, new horizons in astronomy and astrophysics, The National
Academies Press, Washington, DC, U.S.A. (2010).

[10] M.A. Riquelme and D.N. Spergel, Separating the weak lensing and kinetic SZ effects from
CMB temperature maps, Astrophys. J. 661 (2007) 672 [astro-ph/0610007] [INSPIRE].

[11] D. Munshi, P. Valageas, L. Van Waerbeke and A. Heavens, Cosmology with weak lensing
surveys, Phys. Rept. 462 (2008) 67 [astro-ph/0612667] [INSPIRE].

[12] C. Parroni, E. Tollet, V.F. Cardone, R. Maoli and R. Scaramella, Higher-order statistics of
shear field via a machine learning approach, Astron. Astrophys. 645 (2021) A123
[arXiv:2011.10438] [INSPIRE].

– 20 –

https://doi.org/10.1016/j.physrep.2006.04.001
https://arxiv.org/abs/astro-ph/0603494
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0603494
https://doi.org/10.1093/pasj/psx066
https://doi.org/10.1093/pasj/psx066
https://arxiv.org/abs/1704.05858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05858
https://doi.org/10.1103/PhysRevD.94.022001
https://arxiv.org/abs/1507.05552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.05552
https://arxiv.org/abs/1611.00036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.00036
https://doi.org/10.1117/12.2232103
https://arxiv.org/abs/1608.01075
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01075
https://doi.org/10.1093/mnras/stv2140
https://doi.org/10.1093/mnras/stv2140
https://arxiv.org/abs/1507.00738
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.00738
https://arxiv.org/abs/1110.3193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.3193
https://doi.org/10.1016/S0920-5632(03)02073-5
https://arxiv.org/abs/astro-ph/0209632
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0209632
https://doi.org/10.17226/12951
https://doi.org/10.17226/12951
https://doi.org/10.1086/516774
https://arxiv.org/abs/astro-ph/0610007
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0610007
https://doi.org/10.1016/j.physrep.2008.02.003
https://arxiv.org/abs/astro-ph/0612667
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0612667
https://doi.org/10.1051/0004-6361/202038715
https://arxiv.org/abs/2011.10438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.10438


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[13] W. Hu, Angular trispectrum of the CMB, Phys. Rev. D 64 (2001) 083005 [astro-ph/0105117]
[INSPIRE].

[14] T. Okamoto and W. Hu, CMB lensing reconstruction on the full sky, Phys. Rev. D 67 (2003)
083002 [astro-ph/0301031] [INSPIRE].

[15] A. Cooray, C. Li and A. Melchiorri, The trispectrum of 21 cm background anisotropies as a
probe of primordial non-Gaussianity, Phys. Rev. D 77 (2008) 103506 [arXiv:0801.3463]
[INSPIRE].

[16] A. Cooray, 21 cm background anisotropies can discern primordial non-Gaussianity, Phys. Rev.
Lett. 97 (2006) 261301 [astro-ph/0610257] [INSPIRE].

[17] D. Munshi, A. Heavens, A. Cooray, J. Smidt, P. Coles and P. Serra, New optimised estimators
for the primordial trispectrum, Mon. Not. Roy. Astron. Soc. 412 (2011) 1993
[arXiv:0910.3693] [INSPIRE].

[18] D. Munshi, P. Coles, A. Cooray, A. Heavens and J. Smidt, Primordial non-Gaussianity from a
joint analysis of cosmic microwave background temperature and polarization, Mon. Not. Roy.
Astron. Soc. 410 (2011) 1295 [arXiv:1002.4998] [INSPIRE].

[19] Planck collaboration, Planck 2013 Results. XXIV. Constraints on primordial
non-Gaussianity, Astron. Astrophys. 571 (2014) A24 [arXiv:1303.5084] [INSPIRE].

[20] Planck collaboration, Planck 2015 results. XVII. Constraints on primordial
non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

[21] Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity,
Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

[22] K.M. Smith, L. Senatore and M. Zaldarriaga, Optimal analysis of the CMB trispectrum,
arXiv:1502.00635 [INSPIRE].

[23] J. Smidt et al., A constraint on the integrated mass power spectrum out to z = 1100 from
lensing of the cosmic microwave background, Astrophys. J. Lett. 728 (2011) L1
[arXiv:1012.1600] [INSPIRE].

[24] Planck collaboration, Planck 2013 results. XVII. Gravitational lensing by large-scale
structure, Astron. Astrophys. 571 (2014) A17 [arXiv:1303.5077] [INSPIRE].

[25] F. Bernardeau, The large scale gravitational bias from the quasilinear regime, Astron.
Astrophys. 312 (1996) 11 [astro-ph/9602072] [INSPIRE].

[26] D. Munshi, A.L. Melott and P. Coles, Generalised cumulant correlators and hierarchical
clustering, astro-ph/9812271 [INSPIRE].

[27] D. Munshi and J.D. McEwen, Higher order spectra of weak lensing convergence maps in
parametrized theories of modified gravity, Mon. Not. Roy. Astron. Soc. 498 (2020) 5299
[arXiv:2004.07021] [INSPIRE].

[28] H. Lee and C. Dvorkin, Cosmological angular trispectra and non-Gaussian covariance, JCAP
05 (2020) 044 [arXiv:2001.00584] [INSPIRE].

[29] D. Gualdi, S. Novell, H. Gil-Marín and L. Verde, Matter trispectrum: theoretical modelling
and comparison to N -body simulations, JCAP 01 (2021) 015 [arXiv:2009.02290] [INSPIRE].

[30] D. Bertolini, K. Schutz, M.P. Solon and K.M. Zurek, The trispectrum in the effective field
theory of large scale structure, JCAP 06 (2016) 052 [arXiv:1604.01770] [INSPIRE].

[31] T. Steele and T. Baldauf, Precise calibration of the one-loop trispectrum in the effective field
theory of large scale structure, Phys. Rev. D 103 (2021) 103518 [arXiv:2101.10289]
[INSPIRE].

[32] A. Cooray and R.K. Sheth, Halo models of large scale structure, Phys. Rept. 372 (2002) 1
[astro-ph/0206508] [INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevD.64.083005
https://arxiv.org/abs/astro-ph/0105117
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0105117
https://doi.org/10.1103/PhysRevD.67.083002
https://doi.org/10.1103/PhysRevD.67.083002
https://arxiv.org/abs/astro-ph/0301031
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0301031
https://doi.org/10.1103/PhysRevD.77.103506
https://arxiv.org/abs/0801.3463
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.3463
https://doi.org/10.1103/PhysRevLett.97.261301
https://doi.org/10.1103/PhysRevLett.97.261301
https://arxiv.org/abs/astro-ph/0610257
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0610257
https://doi.org/10.1111/j.1365-2966.2010.18035.x
https://arxiv.org/abs/0910.3693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0910.3693
https://doi.org/10.1111/j.1365-2966.2010.17527.x
https://doi.org/10.1111/j.1365-2966.2010.17527.x
https://arxiv.org/abs/1002.4998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.4998
https://doi.org/10.1051/0004-6361/201321554
https://arxiv.org/abs/1303.5084
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5084
https://doi.org/10.1051/0004-6361/201525836
https://arxiv.org/abs/1502.01592
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.01592
https://doi.org/10.1051/0004-6361/201935891
https://arxiv.org/abs/1905.05697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05697
https://arxiv.org/abs/1502.00635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.00635
https://doi.org/10.1088/2041-8205/728/1/L1
https://arxiv.org/abs/1012.1600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.1600
https://doi.org/10.1051/0004-6361/201321543
https://arxiv.org/abs/1303.5077
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5077
https://arxiv.org/abs/astro-ph/9602072
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9602072
https://arxiv.org/abs/astro-ph/9812271
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9812271
https://doi.org/10.1093/mnras/staa2706
https://arxiv.org/abs/2004.07021
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07021
https://doi.org/10.1088/1475-7516/2020/05/044
https://doi.org/10.1088/1475-7516/2020/05/044
https://arxiv.org/abs/2001.00584
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.00584
https://doi.org/10.1088/1475-7516/2021/01/015
https://arxiv.org/abs/2009.02290
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.02290
https://doi.org/10.1088/1475-7516/2016/06/052
https://arxiv.org/abs/1604.01770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.01770
https://doi.org/10.1103/PhysRevD.103.103518
https://arxiv.org/abs/2101.10289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.10289
https://doi.org/10.1016/S0370-1573(02)00276-4
https://arxiv.org/abs/astro-ph/0206508
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0206508


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[33] D. Munshi and P. Coles, Weak lensing from strong clustering, Mon. Not. Roy. Astron. Soc.
313 (2000) 148 [astro-ph/9911008] [INSPIRE].

[34] J. Alsing, T. Charnock, S. Feeney and B. Wandelt, Fast likelihood-free cosmology with neural
density estimators and active learning, Mon. Not. Roy. Astron. Soc. 488 (2019) 4440
[arXiv:1903.00007] [INSPIRE].

[35] D.K. Ramanah, T. Charnock and G. Lavaux, Painting halos from cosmic density fields of
dark matter with physically motivated neural networks, Phys. Rev. D 100 (2019) 043515
[arXiv:1903.10524] [INSPIRE].

[36] N. Porqueres, A. Heavens, D. Mortlock and G. Lavaux, Lifting weak lensing degeneracies with
a field-based likelihood, Mon. Not. Roy. Astron. Soc. 509 (2021) 3194 [arXiv:2108.04825]
[INSPIRE].

[37] P.L. Taylor, T.D. Kitching, J. Alsing, B.D. Wandelt, S.M. Feeney and J.D. McEwen, Cosmic
shear: inference from forward models, Phys. Rev. D 100 (2019) 023519 [arXiv:1904.05364]
[INSPIRE].

[38] A. Diaz Rivero and C. Dvorkin, Flow-based likelihoods for non-Gaussian inference, Phys. Rev.
D 102 (2020) 103507 [arXiv:2007.05535] [INSPIRE].

[39] E. Allys, T. Marchand, J.-F. Cardoso, F. Villaescusa-Navarro, S. Ho and S. Mallat, New
interpretable statistics for large scale structure analysis and generation, Phys. Rev. D 102
(2020) 103506 [arXiv:2006.06298] [INSPIRE].

[40] S. Mallat, Group invariant scattering, Commun. Pure Appl. Math. 65 (2012) 1331
[arXiv:1101.2286].

[41] S. Cheng, Y.-S. Ting, B. Ménard and J. Bruna, A new approach to observational cosmology
using the scattering transform, Mon. Not. Roy. Astron. Soc. 499 (2020) 5902
[arXiv:2006.08561] [INSPIRE].

[42] S. Cheng and B. Ménard, Weak lensing scattering transform: dark energy and neutrino mass
sensitivity, Mon. Not. Roy. Astron. Soc. 507 (2021) 1012 [arXiv:2103.09247] [INSPIRE].

[43] A.K. Saydjari, S.K.N. Portillo, Z. Slepian, S. Kahraman, B. Burkhart and D.P. Finkbeiner,
Classification of magnetohydrodynamic simulations using wavelet scattering transforms,
Astrophys. J. 910 (2021) 122 [arXiv:2010.11963].

[44] G. Valogiannis and C. Dvorkin, Towards an optimal estimation of cosmological parameters
with the wavelet scattering transform, Phys. Rev. D 105 (2022) 103534 [arXiv:2108.07821]
[INSPIRE].

[45] B. Regaldo-Saint Blancard, F. Levrier, E. Allys, E. Bellomi and F. Boulanger, Statistical
description of dust polarized emission from the diffuse interstellar medium — a RWST
approach, Astron. Astrophys. 642 (2020) A217 [arXiv:2007.08242] [INSPIRE].

[46] E. Allys et al., The RWST, a comprehensive statistical description of the non-Gaussian
structures in the ISM, Astron. Astrophys. 629 (2019) A115 [arXiv:1905.01372] [INSPIRE].

[47] D. Munshi, P. Valageas and A.J. Barber, Weak lensing shear and aperture-mass from linear to
non-linear scales, Mon. Not. Roy. Astron. Soc. 350 (2004) 77 [astro-ph/0309698] [INSPIRE].

[48] C. Uhlemann et al., Cylinders out of a top hat: counts-in-cells for projected densities, Mon.
Not. Roy. Astron. Soc. 477 (2018) 2772 [arXiv:1711.04767] [INSPIRE].

[49] A. Peel, C.-A. Lin, F. Lanusse, A. Leonard, J.-L. Starck and M. Kilbinger, Cosmological
constraints with weak lensing peak counts and second-order statistics in a large-field survey,
Astron. Astrophys. 599 (2017) A79 [arXiv:1612.02264] [INSPIRE].

– 22 –

https://doi.org/10.1046/j.1365-8711.2000.03190.x
https://doi.org/10.1046/j.1365-8711.2000.03190.x
https://arxiv.org/abs/astro-ph/9911008
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9911008
https://doi.org/10.1093/mnras/stz1960
https://arxiv.org/abs/1903.00007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.00007
https://doi.org/10.1103/PhysRevD.100.043515
https://arxiv.org/abs/1903.10524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.10524
https://doi.org/10.1093/mnras/stab3234
https://arxiv.org/abs/2108.04825
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.04825
https://doi.org/10.1103/PhysRevD.100.023519
https://arxiv.org/abs/1904.05364
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.05364
https://doi.org/10.1103/PhysRevD.102.103507
https://doi.org/10.1103/PhysRevD.102.103507
https://arxiv.org/abs/2007.05535
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05535
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.1103/PhysRevD.102.103506
https://arxiv.org/abs/2006.06298
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD102%2C103506%22
https://doi.org/10.1002/cpa.21413
https://arxiv.org/abs/1101.2286
https://doi.org/10.1093/mnras/staa3165
https://arxiv.org/abs/2006.08561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08561
https://doi.org/10.1093/mnras/stab2102
https://arxiv.org/abs/2103.09247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.09247
https://doi.org/10.3847/1538-4357/abe46d
https://arxiv.org/abs/2010.11963
https://doi.org/10.1103/PhysRevD.105.103534
https://arxiv.org/abs/2108.07821
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.07821
https://doi.org/10.1051/0004-6361/202038044
https://arxiv.org/abs/2007.08242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.08242
https://doi.org/10.1051/0004-6361/201834975
https://arxiv.org/abs/1905.01372
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01372
https://doi.org/10.1111/j.1365-2966.2004.07553.x
https://arxiv.org/abs/astro-ph/0309698
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0309698
https://doi.org/10.1093/mnras/sty664
https://doi.org/10.1093/mnras/sty664
https://arxiv.org/abs/1711.04767
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.04767
https://doi.org/10.1051/0004-6361/201629928
https://arxiv.org/abs/1612.02264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.02264


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[50] D. Munshi, T. Namikawa, J.D. McEwen, T.D. Kitching and F.R. Bouchet, Morphology of
weak lensing convergence maps, Mon. Not. Roy. Astron. Soc. 507 (2021) 1421
[arXiv:2010.05669] [INSPIRE].

[51] C.-T. Chiang, C. Wagner, A.G. Sánchez, F. Schmidt and E. Komatsu, Position-dependent
correlation function from the SDSS-III baryon oscillation spectroscopic survey data release 10
CMASS sample, JCAP 09 (2015) 028 [arXiv:1504.03322] [INSPIRE].

[52] M.J. Drinkwater et al., The WiggleZ dark energy survey: survey design and first data release,
Mon. Not. Roy. Astron. Soc. 401 (2010) 1429 [arXiv:0911.4246] [INSPIRE].

[53] V. Desjacques, D. Jeong and F. Schmidt, Large-scale galaxy bias, Phys. Rept. 733 (2018) 1
[arXiv:1611.09787] [INSPIRE].

[54] E. Mitsou, J. Yoo, R. Durrer, F. Scaccabarozzi and V. Tansella, General and consistent
statistics for cosmological observations, Phys. Rev. Res. 2 (2020) 033004 [arXiv:1905.01293]
[INSPIRE].

[55] D.M. Regan, E.P.S. Shellard and J.R. Fergusson, General CMB and primordial trispectrum
estimation, Phys. Rev. D 82 (2010) 023520 [arXiv:1004.2915] [INSPIRE].

[56] M. Levi and Z. Vlah, Massive neutrinos in nonlinear large scale structure: a consistent
perturbation theory, arXiv:1605.09417 [INSPIRE].

[57] S.-F. Chen, H. Lee and C. Dvorkin, Precise and accurate cosmology with CMB×LSS power
spectra and bispectra, JCAP 05 (2021) 030 [arXiv:2103.01229] [INSPIRE].

[58] T. Matsubara, Analytic Minkowski functionals of the cosmic microwave background:
second-order non-Gaussianity with bispectrum and trispectrum, Phys. Rev. D 81 (2010)
083505 [arXiv:1001.2321] [INSPIRE].

[59] D. Munshi, B. Hu, T. Matsubara, P. Coles and A. Heavens, Lensing-induced morphology
changes in CMB temperature maps in modified gravity theories, JCAP 04 (2016) 056
[arXiv:1602.00965] [INSPIRE].

[60] V. Assassi, M. Simonović and M. Zaldarriaga, Efficient evaluation of angular power spectra
and bispectra, JCAP 11 (2017) 054 [arXiv:1705.05022] [INSPIRE].

[61] H.S. Grasshorn Gebhardt and D. Jeong, Fast and accurate computation of projected two-point
functions, Phys. Rev. D 97 (2018) 023504 [arXiv:1709.02401] [INSPIRE].

[62] N. Schöneberg, M. Simonović, J. Lesgourgues and M. Zaldarriaga, Beyond the traditional
line-of-sight approach of cosmological angular statistics, JCAP 10 (2018) 047
[arXiv:1807.09540] [INSPIRE].

[63] A.J.S. Hamilton, Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy.
Astron. Soc. 312 (2000) 257 [astro-ph/9905191] [INSPIRE].

[64] B. Leistedt and J.D. McEwen, Exact wavelets on the ball, IEEE Trans. Signal. Process. 60
(2012) 6257 [arXiv:1205.0792] [INSPIRE].

[65] J.E. Campagne, J. Neveu and S. Plaszczynski, Angpow: a software for the fast computation of
accurate tomographic power spectra, Astron. Astrophys. 602 (2017) A72 [arXiv:1701.03592]
[INSPIRE].

[66] Z. Slepian, On decoupling the integrals of cosmological perturbation theory, Mon. Not. Roy.
Astron. Soc. 507 (2021) 1337 [arXiv:1812.02728] [INSPIRE].

[67] E. Di Dio, R. Durrer, R. Maartens, F. Montanari and O. Umeh, The full-sky angular
bispectrum in redshift space, JCAP 04 (2019) 053 [arXiv:1812.09297] [INSPIRE].

[68] X. Fang, E. Krause, T. Eifler and N. MacCrann, Beyond Limber: efficient computation of
angular power spectra for galaxy clustering and weak lensing, JCAP 05 (2020) 010
[arXiv:1911.11947] [INSPIRE].

– 23 –

https://doi.org/10.1093/mnras/stab2101
https://arxiv.org/abs/2010.05669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.05669
https://doi.org/10.1088/1475-7516/2015/09/028
https://arxiv.org/abs/1504.03322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.03322
https://doi.org/10.1111/j.1365-2966.2009.15754.x
https://arxiv.org/abs/0911.4246
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.4246
https://doi.org/10.1016/j.physrep.2017.12.002
https://arxiv.org/abs/1611.09787
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.09787
https://doi.org/10.1103/PhysRevResearch.2.033004
https://arxiv.org/abs/1905.01293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01293
https://doi.org/10.1103/PhysRevD.82.023520
https://arxiv.org/abs/1004.2915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.2915
https://arxiv.org/abs/1605.09417
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.09417
https://doi.org/10.1088/1475-7516/2021/05/030
https://arxiv.org/abs/2103.01229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.01229
https://doi.org/10.1103/PhysRevD.81.083505
https://doi.org/10.1103/PhysRevD.81.083505
https://arxiv.org/abs/1001.2321
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.2321
https://doi.org/10.1088/1475-7516/2016/04/056
https://arxiv.org/abs/1602.00965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.00965
https://doi.org/10.1088/1475-7516/2017/11/054
https://arxiv.org/abs/1705.05022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05022
https://doi.org/10.1103/PhysRevD.97.023504
https://arxiv.org/abs/1709.02401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.02401
https://doi.org/10.1088/1475-7516/2018/10/047
https://arxiv.org/abs/1807.09540
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09540
https://doi.org/10.1046/j.1365-8711.2000.03071.x
https://doi.org/10.1046/j.1365-8711.2000.03071.x
https://arxiv.org/abs/astro-ph/9905191
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9905191
https://doi.org/10.1109/TSP.2012.2215030
https://doi.org/10.1109/TSP.2012.2215030
https://arxiv.org/abs/1205.0792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.0792
https://doi.org/10.1051/0004-6361/201730399
https://arxiv.org/abs/1701.03592
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.03592
https://doi.org/10.1093/mnras/staa1789
https://doi.org/10.1093/mnras/staa1789
https://arxiv.org/abs/1812.02728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.02728
https://doi.org/10.1088/1475-7516/2019/04/053
https://arxiv.org/abs/1812.09297
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.09297
https://doi.org/10.1088/1475-7516/2020/05/010
https://arxiv.org/abs/1911.11947
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11947


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[69] A.C. Deshpande and T.D. Kitching, Post-Limber weak lensing bispectrum, reduced shear
correction, and magnification bias correction, Phys. Rev. D 101 (2020) 103531
[arXiv:2004.01666] [INSPIRE].

[70] H.S. Grasshorn Gebhardt and D. Jeong, Nonlinear redshift-space distortions in the
harmonic-space galaxy power spectrum, Phys. Rev. D 102 (2020) 083521 [arXiv:2008.08706]
[INSPIRE].

[71] X. Fang, T. Eifler and E. Krause, 2D-FFTLog: efficient computation of real space covariance
matrices for galaxy clustering and weak lensing, Mon. Not. Roy. Astron. Soc. 497 (2020) 2699
[arXiv:2004.04833] [INSPIRE].

[72] F. Montanari and S. Camera, Speeding up the detectability of the harmonic-space galaxy
bispectrum, JCAP 01 (2021) 002 [arXiv:2008.11131] [INSPIRE].

[73] O. Umeh, Optimal computation of anisotropic galaxy three point correlation function
multipoles using 2DFFTLOG formalism, JCAP 05 (2021) 035 [arXiv:2011.05889] [INSPIRE].

[74] D.N. Limber, The analysis of counts of the extragalactic nebulae in terms of a fluctuating
density field. II, Astrophys. J. 119 (1954) 655 [INSPIRE].

[75] M. LoVerde and N. Afshordi, Extended Limber approximation, Phys. Rev. D 78 (2008) 123506
[arXiv:0809.5112] [INSPIRE].

[76] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the
universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551]
[INSPIRE].

[77] M.H. Goroff, B. Grinstein, S.J. Rey and M.B. Wise, Coupling of modes of cosmological mass
density fluctuations, Astrophys. J. 311 (1986) 6 [INSPIRE].

[78] B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high
redshift, Astrophys. J. 431 (1994) 495 [astro-ph/9311070] [INSPIRE].

[79] H. Gil-Marin, C. Wagner, F. Fragkoudi, R. Jimenez and L. Verde, An improved fitting formula
for the dark matter bispectrum, JCAP 02 (2012) 047 [arXiv:1111.4477] [INSPIRE].

[80] D. Gualdi, H.e. Gil-Marín and L. Verde, Joint analysis of anisotropic power spectrum,
bispectrum and trispectrum: application to N -body simulations, JCAP 07 (2021) 008
[arXiv:2104.03976] [INSPIRE].

[81] J.N. Fry, The galaxy correlation hierarchy in perturbation theory, Astrophys. J. 279 (1984)
499 [INSPIRE].

[82] J.N. Fry and P.J.E. Peebles, Statistical analysis of catalogs of extragalactic objects. IX. The
four-point galaxy correlation function, Astrophys. J. 221 (1978) 19.

[83] F. Bernardeau and R. Schaeffer, Halo correlations in nonlinear cosmic density fields, Astron.
Astrophys. 349 (1999) 697 [astro-ph/9903387] [INSPIRE].

[84] F. Bernardeau and R. Schaeffer, Galaxy correlations, matter correlations and biasing, Astron.
Astrophys. 255 (1992) 1.

[85] P. Coles, A. Melott and D. Munshi, Bias and hierarchical clustering, Astrophys. J. Lett. 521
(1999) L5 [astro-ph/9904253] [INSPIRE].

[86] R. Scoccimarro, M. Zaldarriaga and L. Hui, Power spectrum correlations induced by nonlinear
clustering, Astrophys. J. 527 (1999) 1 [astro-ph/9901099] [INSPIRE].

[87] I. Szapudi and A.S. Szalay, Higher order statistics of the galaxy distribution using generating
functions, Astrophys. J. 408 (1993) 43.

[88] P. Boschan, I. Szapudi and A.S. Szalay, On the accurate determination of the clustering
hierarchy of galaxies, Astrophys. J. Suppl. 93 (1994) 65.

– 24 –

https://doi.org/10.1103/PhysRevD.101.103531
https://arxiv.org/abs/2004.01666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01666
https://doi.org/10.1103/PhysRevD.102.083521
https://arxiv.org/abs/2008.08706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08706
https://doi.org/10.1093/mnras/staa1726
https://arxiv.org/abs/2004.04833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04833
https://doi.org/10.1088/1475-7516/2021/01/002
https://arxiv.org/abs/2008.11131
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.11131
https://doi.org/10.1088/1475-7516/2021/05/035
https://arxiv.org/abs/2011.05889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.05889
https://doi.org/10.1086/145870
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C119%2C655%22
https://doi.org/10.1103/PhysRevD.78.123506
https://arxiv.org/abs/0809.5112
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.5112
https://doi.org/10.1016/S0370-1573(02)00135-7
https://arxiv.org/abs/astro-ph/0112551
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0112551
https://doi.org/10.1086/164749
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C311%2C6%22
https://doi.org/10.1086/174502
https://arxiv.org/abs/astro-ph/9311070
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9311070
https://doi.org/10.1088/1475-7516/2012/02/047
https://arxiv.org/abs/1111.4477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.4477
https://doi.org/10.1088/1475-7516/2021/07/008
https://arxiv.org/abs/2104.03976
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.03976
https://doi.org/10.1086/161913
https://doi.org/10.1086/161913
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C279%2C499%22
https://doi.org/10.1086/156001
https://arxiv.org/abs/astro-ph/9903387
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9903387
https://doi.org/10.1086/312174
https://doi.org/10.1086/312174
https://arxiv.org/abs/astro-ph/9904253
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9904253
https://doi.org/10.1086/308059
https://arxiv.org/abs/astro-ph/9901099
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9901099
https://doi.org/10.1086/172568
https://doi.org/10.1086/192046


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[89] F. Bernardeau and R. Schaeffer, Halo correlations in nonlinear cosmic density fields, Astron.
Astrophys. 349 (1999) 697 [astro-ph/9903387] [INSPIRE].

[90] D. Munshi and B. Jain, The statistics of weak lensing at small angular scales: probability
distribution function, Mon. Not. Roy. Astron. Soc. 318 (2000) 109 [astro-ph/9911502]
[INSPIRE].

[91] D. Munshi and B. Jain, Statistics of weak lensing at small angular scales: analytical
predictions for lower order moments, Mon. Not. Roy. Astron. Soc. 322 (2001) 107
[astro-ph/9912330] [INSPIRE].

[92] A.J. Barber, D. Munshi and P. Valageas, From linear to nonlinear scales: analytical and
numerical predictions for the weak lensing convergence, Mon. Not. Roy. Astron. Soc. 347
(2004) 667 [astro-ph/0304451] [INSPIRE].

[93] S. Colombi, A ‘skewed’ lognormal approximation to the probability distribution function of the
large scale density field, Astrophys. J. Lett. 435 (1994) L536 [astro-ph/9402071] [INSPIRE].

[94] O.H.E. Philcox, D.N. Spergel and F. Villaescusa-Navarro, Effective halo model: creating a
physical and accurate model of the matter power spectrum and cluster counts, Phys. Rev. D
101 (2020) 123520 [arXiv:2004.09515] [INSPIRE].

[95] R. Takahashi et al., Fitting the nonlinear matter bispectrum by the halofit approach,
Astrophys. J. 895 (2020) 113 [arXiv:1911.07886] [INSPIRE].

[96] A. Lewis, The real shape of non-Gaussianities, JCAP 10 (2011) 026 [arXiv:1107.5431]
[INSPIRE].

[97] D. Munshi et al., The weak lensing bispectrum induced by gravity, Mon. Not. Roy. Astron.
Soc. 493 (2020) 3985 [arXiv:1910.04627] [INSPIRE].

[98] T. Fujita and Z. Vlah, Perturbative description of biased tracers using consistency relations of
LSS, JCAP 10 (2020) 059 [arXiv:2003.10114] [INSPIRE].

[99] D. Munshi, T. Namikawa, T.D. Kitching, J.D. McEwen and F.R. Bouchet, Weak lensing
skew-spectrum, Mon. Not. Roy. Astron. Soc. 498 (2020) 6057 [arXiv:2006.12832] [INSPIRE].

[100] M. Schmittfull, T. Baldauf and U. Seljak, Near optimal bispectrum estimators for large-scale
structure, Phys. Rev. D 91 (2015) 043530 [arXiv:1411.6595] [INSPIRE].

[101] A. Moradinezhad Dizgah, H. Lee, M. Schmittfull and C. Dvorkin, Capturing non-Gaussianity
of the large-scale structure with weighted skew-spectra, JCAP 04 (2020) 011
[arXiv:1911.05763] [INSPIRE].

[102] M. Schmittfull and A. Moradinezhad Dizgah, Galaxy skew-spectra in redshift-space, JCAP 03
(2021) 020 [arXiv:2010.14267] [INSPIRE].

[103] R. Takahashi et al., Full-sky gravitational lensing simulation for large-area galaxy surveys and
cosmic microwave background experiments, Astrophys. J. 850 (2017) 24 [arXiv:1706.01472]
[INSPIRE].

[104] D. Munshi, T. Namikawa, T.D. Kitching, J.D. McEwen and F.R. Bouchet, Weak lensing
skew-spectrum, Mon. Not. Roy. Astron. Soc. 498 (2020) 6057 [arXiv:2006.12832] [INSPIRE].

[105] K.M. Górski et al., HEALPix — a framework for high resolution discretization, and fast
analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513]
[INSPIRE].

– 25 –

https://arxiv.org/abs/astro-ph/9903387
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9903387
https://doi.org/10.1046/j.1365-8711.2000.03694.x
https://arxiv.org/abs/astro-ph/9911502
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9911502
https://doi.org/10.1046/j.1365-8711.2001.04069.x
https://arxiv.org/abs/astro-ph/9912330
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9912330
https://doi.org/10.1111/j.1365-2966.2004.07249.x
https://doi.org/10.1111/j.1365-2966.2004.07249.x
https://arxiv.org/abs/astro-ph/0304451
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0304451
https://doi.org/10.1086/174834
https://arxiv.org/abs/astro-ph/9402071
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9402071
https://doi.org/10.1103/PhysRevD.101.123520
https://doi.org/10.1103/PhysRevD.101.123520
https://arxiv.org/abs/2004.09515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.09515
https://doi.org/10.3847/1538-4357/ab908d
https://arxiv.org/abs/1911.07886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.07886
https://doi.org/10.1088/1475-7516/2011/10/026
https://arxiv.org/abs/1107.5431
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.5431
https://doi.org/10.1093/mnras/staa296
https://doi.org/10.1093/mnras/staa296
https://arxiv.org/abs/1910.04627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04627
https://doi.org/10.1088/1475-7516/2020/10/059
https://arxiv.org/abs/2003.10114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.10114
https://doi.org/10.1093/mnras/staa2769
https://arxiv.org/abs/2006.12832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12832
https://doi.org/10.1103/PhysRevD.91.043530
https://arxiv.org/abs/1411.6595
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.6595
https://doi.org/10.1088/1475-7516/2020/04/011
https://arxiv.org/abs/1911.05763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.05763
https://doi.org/10.1088/1475-7516/2021/03/020
https://doi.org/10.1088/1475-7516/2021/03/020
https://arxiv.org/abs/2010.14267
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.14267
https://doi.org/10.3847/1538-4357/aa943d
https://arxiv.org/abs/1706.01472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.01472
https://doi.org/10.1093/mnras/staa2769
https://arxiv.org/abs/2006.12832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12832
https://doi.org/10.1086/427976
https://arxiv.org/abs/astro-ph/0409513
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0409513


J
C
A
P
1
1
(
2
0
2
2
)
0
2
0

[106] E. Hivon, K.M. Gorski, C.B. Netterfield, B.P. Crill, S. Prunet and F. Hansen, Master of the
cosmic microwave background anisotropy power spectrum: a fast method for statistical
analysis of large and complex cosmic microwave background data sets, Astrophys. J. 567
(2002) 2 [astro-ph/0105302] [INSPIRE].

[107] C. Hikage, M. Takada, T. Hamana and D. Spergel, Shear power spectrum reconstruction using
pseudo-spectrum method, Mon. Not. Roy. Astron. Soc. 412 (2011) 65 [arXiv:1004.3542]
[INSPIRE].

[108] D. Munshi et al., The weak lensing bispectrum induced by gravity, Mon. Not. Roy. Astron.
Soc. 493 (2020) 3985 [arXiv:1910.04627] [INSPIRE].

[109] D. Bertolini, K. Schutz, M.P. Solon, J.R. Walsh and K.M. Zurek, Non-Gaussian covariance of
the matter power spectrum in the effective field theory of large scale structure, Phys. Rev. D
93 (2016) 123505 [arXiv:1512.07630] [INSPIRE].

[110] D. Bertolini, K. Schutz, M.P. Solon and K.M. Zurek, The trispectrum in the effective field
theory of large scale structure, JCAP 06 (2016) 052 [arXiv:1604.01770] [INSPIRE].

[111] T. Steele and T. Baldauf, Precise calibration of the one-loop trispectrum in the effective field
theory of large scale structure, Phys. Rev. D 103 (2021) 103518 [arXiv:2101.10289]
[INSPIRE].

[112] I. Szapudi and S. Colombi, Cosmic error and the statistics of large scale structure, Astrophys.
J. 470 (1996) 131 [astro-ph/9510030] [INSPIRE].

[113] A. Spurio Mancini, D. Piras, J. Alsing, B. Joachimi and M.P. Hobson, CosmoPower:
emulating cosmological power spectra for accelerated Bayesian inference from next-generation
surveys, Mon. Not. Roy. Astron. Soc. 511 (2022) 1771 [arXiv:2106.03846] [INSPIRE].

[114] N. Kaiser and G. Squires, Mapping the dark matter with weak gravitational lensing, Astrophys.
J. 404 (1993) 441 [INSPIRE].

[115] M.A. Price, J.D. Mcewen, L. Pratley and T.D. Kitching, Sparse Bayesian mass-mapping with
uncertainties: full sky observations on the celestial sphere, Mon. Not. Roy. Astron. Soc. 500
(2020) 5436 [arXiv:2004.07855] [INSPIRE].

[116] T. Namikawa, B. Bose, F.R. Bouchet, R. Takahashi and A. Taruya, CMB lensing bispectrum:
assessing analytical predictions against full-sky lensing simulations, Phys. Rev. D 99 (2019)
063511 [arXiv:1812.10635] [INSPIRE].

– 26 –

https://doi.org/10.1086/338126
https://doi.org/10.1086/338126
https://arxiv.org/abs/astro-ph/0105302
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0105302
https://doi.org/10.1111/j.1365-2966.2010.17886.x
https://arxiv.org/abs/1004.3542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.3542
https://doi.org/10.1093/mnras/staa296
https://doi.org/10.1093/mnras/staa296
https://arxiv.org/abs/1910.04627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04627
https://doi.org/10.1103/PhysRevD.93.123505
https://doi.org/10.1103/PhysRevD.93.123505
https://arxiv.org/abs/1512.07630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07630
https://doi.org/10.1088/1475-7516/2016/06/052
https://arxiv.org/abs/1604.01770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.01770
https://doi.org/10.1103/PhysRevD.103.103518
https://arxiv.org/abs/2101.10289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.10289
https://doi.org/10.1086/177855
https://doi.org/10.1086/177855
https://arxiv.org/abs/astro-ph/9510030
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9510030
https://doi.org/10.1093/mnras/stac064
https://arxiv.org/abs/2106.03846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.03846
https://doi.org/10.1086/172297
https://doi.org/10.1086/172297
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C404%2C441%22
https://doi.org/10.1093/mnras/staa3563
https://doi.org/10.1093/mnras/staa3563
https://arxiv.org/abs/2004.07855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07855
https://doi.org/10.1103/PhysRevD.99.063511
https://doi.org/10.1103/PhysRevD.99.063511
https://arxiv.org/abs/1812.10635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10635

	Introduction
	Formalism
	Correlators in harmonic space
	Computational methods
	Theoretical model for matter trispectrum

	Weak lensing higher-order statistics
	Weak lensing trispectrum
	Kurt-spectra

	Comparison with ray-tracing simulations
	Simulation specifications
	Results and discussion
	Shapes of Kurt-spectra
	Observational mask and noise
	Comparison with theory
	Beyond fourth order
	Low-ell modes and finite volume corrections


	Conclusions and future prospects

