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Abstract: As wireless networks advance toward the Sixth Generation (6G), which will support
highly heterogeneous scenarios and massive data traffic, conventional computing methods may
struggle to meet the immense processing demands in a resource-efficient manner. This paper explores
the potential of quantum computing (QC) to address these challenges, specifically by enhancing
the efficiency of Maximum-Likelihood detection in Multiple-Input Multiple-Output (MIMO) Non-
Orthogonal Multiple Access (NOMA) communication systems, an essential technology anticipated
for 6G. The study proposes the use of the Quantum Approximate Optimization Algorithm (QAOA),
a variational quantum algorithm known for providing quantum advantages in certain combinatorial
optimization problems. While current quantum systems are not yet capable of managing millions of
physical qubits or performing high-fidelity, long gate sequences, the results indicate that QAOA is a
promising QC approach for radio signal processing tasks. This research provides valuable insights
into the potential transformative impact of QC on future wireless networks. This sets the stage for
discussions on practical implementation challenges, such as constrained problem sizes and sensitivity
to noise, and opens pathways for future research aimed at fully harnessing the potential of QC for 6G
and beyond.

Keywords: MIMO; NOMA; maximum likelihood detection; quantum computing; quantum optimization
algorithms; wireless communications; 6G

1. Introduction

Wireless communication networks in the upcoming Sixth Generation (6G) era will
have to meet increasingly challenging requirements, such as full geographical coverage,
high-precision geolocation, and rapid update rates. While Fifth Generation (5G), with mil-
limeter Wave (mmW) technology, can achieve Gigabits-per-second (Gbps) transmission
data rates, 6G aims for Terabit-per-second (Tbps) transmission data rates to support ap-
plications in the vein of high-quality three-dimensional (3D) video, Virtual Reality (VR),
and a combination of VR and Augmented Reality (AR). To address these requirements,
advanced techniques like Multiple-Input Multiple-Output (MIMO) and Non-Orthogonal
Multiple Access (NOMA) will be necessary [1]. Additionally, the intersection of Quantum
Computing (QC) and 6G could lead to synergies and innovative applications: variable
radio resource allocation, the optimization of communication systems, advanced signal
processing, and others [2].

The fundamental idea of employing multi-antenna base stations to cater to multiple
users dates back to the late 1980s. MIMO is a highly promising technology for achieving
enhanced data rates by exploiting spatial diversity. This significantly enhances the signal
quality, capacity, and reliability of wireless links when compared to conventional Single
Input Single Output (SISO) [3], all while ensuring a reasonable Bit Error Rate (BER) and
entering the most significant standards in the past decades, including IEEE 802.11n (WiFi)
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and Long Term Evolution (LTE) [4]. Moreover, MIMO techniques are one of the critical
technologies in 5G and beyond (e.g., 6G), and they increase the number of antennas at the
Base Station (BS) end [5].

On the other hand, the previous generations of networks have employed orthogo-
nal multiple access (OMA) schemes such as Frequency Division Multiple Access (FDMA)
in First Generation (1G) of wireless mobile telecommunications technology, Time Divi-
sion Multiple Access (TDMA) in Second Generation (2G), Code Division Multiple Ac-
cess (CDMA) in Third Generation (3G), and Orthogonal Frequency Division Multiple
Access (OFDMA) in Fourth Generation (4G). In OMA, users can exploit orthogonal com-
munication resources within a specific time slot, frequency band, or code to avoid multiple
access interference [6]. In contrast, NOMA has been recognized as a promising technology
to improve the spectral efficiency of mobile communication networks significantly, allowing
the simultaneous transmission of multiple user data in the same frequency carrier and time
domain [7].

The joint operation of MIMO-NOMA techniques can offer significant improvements
in Quality of Service (QoS), Energy Efficiency (EE), and Spectral Efficiency (SE) for future
6G users. Furthermore, it improves fairness among users, boosts throughput, and en-
hances robustness to channel variations. Many detection techniques have been developed
for MIMO-NOMA [8,9], all of them at their core based on refinements of well-known
techniques like Zero Forcing (ZF) [10], Minimum Mean-Square Error (MMSE) [11], and
Successive Interference Cancellation (SIC) [12], achieving near-optimal performance at low
computational complexity. On the contrary, the Maximum-Likelihood Detector (MLD)
problem, assuming an uncoded system, is optimal from the BER performance viewpoint
because it explores all possible solutions (exhaustive search) in a constellation of symbols to
find the transmitted symbol. However, MLD is typically considered a Non-Deterministic
Polynomial-Time (NP-hard) problem [13] for conventional (classic) computers because of
the discrete nature of the signal constellation [14]. While exhaustive search can be employed
for small-scale problems, it becomes impractical for systems using high-order spatial diver-
sity utilization schemes like massive MIMO. In practice, various suboptimal detectors have
been developed as approximations to the MLD, which can be broadly categorized as either
speed-up versions, such as Sphere Decoding (SD) [15] that are still exponentially complex,
or detectors that trade off remarkable BER degradations for polynomial complexity, like
Linear Minimum Mean Square Error (LMMSE) [16], Matched Filter (MF) [17], etc.

In 6G scenarios, wireless systems might rely on extensive massive MIMO configura-
tions featuring a larger number of antennas for transmission and reception. However, due
to the large amount of data to be processed, the computational complexity of signal pro-
cessing in such systems [18], specifically detection, will remain a significant challenge [19].
Motivated by this, this work focuses on an uplink MIMO-NOMA scenario, where each
mobile User Equipment (UE) transmits its signal to the BS applying Superposition Cod-
ing (SC) [20]. Then, the receiver, at BS, needs to distinguish the symbols of each user from
the superposed symbol.

An MLD that leverages QC to harness the unique properties of quantum mechan-
ics, such as superposition and entanglement, is proposed. These characteristics would
enable the acceleration of specific calculations that would pose significant computational
challenges for classical computers. The Quantum Approximate Optimization Algorithm
(QAOA) and IBM Quantum computers have been used to implement the detector MIMO-
NOMA to solve the combinatorial optimization problem derived from the MLD. Moreover,
under the assumption that QC resides in the Noisy Intermediate-Scale Quantum (NISQ)
era, we scrutinize and deliberate on the potential “quantum advantage” and the intrica-
cies of QAOA for this particular use case, considering that it can be extended to massive
MIMO systems.

The rest of the paper is organized as follows: Section 2 presents the state of the art
in QC approaches to NOMA and MIMO. Section 3 gives a brief overview of QC and its
main characteristics. Section 4 explains the QAOA approach to implement the quantum
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MLD for the MIMO-NOMA uplink. Section 5 provides results for the BER, derived from
the classical approach of the QAOA running in a quantum simulator and in a real quantum
computer. Finally, Section 6 draws the main conclusions of this work.

2. Related Works
2.1. Non-Orthogonal Multiple Access

Lately, there has been growing interest in utilizing quantum techniques to overcome
some of the complexity-derived limitations of future 6G communication systems [21],
among them being the operation of multi-user versions of digital modulation schemes,
both orthogonal and non-orthogonal [22]. Applying quantum methods aims to perform
the strategic calculations needed for these schemes but at a much faster pace than classi-
cal computation.

Some approaches in the literature are inspired by quantum mechanics principles but
do not directly involve QC. For example, in [23], a Quantum Evolutionary Algorithm (QEA)
is proposed to solve user pairing in NOMA systems. This method simulates quantum-
related concepts like superposition within population-based meta-heuristic optimization
algorithms. It uses evolutionary computation methods with a genetic approach to find the
optimal user pairing for the highest sum rate. While this approach shows improvement
over random pairing, the simulations rely on classical computational resources, such as the
Monte Carlo method.

In contrast, recent methodologies directly address the challenge of testing algorithms
for NOMA schemes in practical QC environments. For example, ref. [22] details the im-
plementation of NOMA signal detection using Quantum Annealing (QA) on D-WAVE’s
development platform. QA aids in discovering the global minimum of a specified cost
function, facilitating the maximume-likelihood estimation of each signal at the NOMA
receiver. While this process is computationally intensive on classical computers, restructur-
ing the computation and using QA to infer the better-transmitted symbol candidate can
enhance the performance of traditional NOMA receivers, mitigating issues associated with
SIC in such scenarios. Similarly, ref. [24] employs QA to optimize the MLD for NOMA
networks as an alternative to SIC. Notably, despite the QA-assisted MLD demonstrating
the same BER performance as a brute-force constellation search, the results indicate a
longer execution time. Additionally, parallelization is recommended to expedite the QA
execution process. Upon closer examination, this suggests the importance of utilizing all
available qubits, as the QA execution time remains independent of the number of qubits
being occupied.

2.2. Multiple-Input Multiple-Output

The integration of MIMO technology into the quantum domain began with the im-
plementation of a free-space MIMO system in a Quantum Key Distribution (QKD) scheme
as demonstrated in [25], sparking significant research interest and leading to numerous
publications on novel free-space QKD schemes [26]. A quantum MIMO communication
scheme using quantum teleportation with triplet states was later proposed in [27], enabling
the transmission of n-qubit signals through MIMO channels using quantum diversity tech-
niques. More recently, a quantum MIMO architecture for wireless communications was
introduced in [28], establishing a theoretical foundation for conveying classical information
through quantum states. In addition, research has addressed the complexity of MIMO
systems, such as in [29], which presents a quantum algorithm for optimizing power allo-
cation in MIMO by leveraging quantum concepts like entanglement and superposition.
Furthermore, ref. [30] proposes a quantum strategy, the Constrained Quantum Optimiza-
tion Algorithm (CQOA), to minimize transmit power in MIMO systems while meeting
users’ bit-rate constraints.

On the other hand, QA and the QAOA are considered exceptional cases, where the
problem of minimizing the energy of a quantum state by applying a combination of two
Hamiltonians is common to both approaches. Searching the combination of two Hamilto-
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nians prepares the ground state of one of the Hamiltonians as quickly and accurately as
possible. While QA smoothly interpolates between the two Hamiltonians, QAOA applies
one or the other in sequence.

While implementing the gradient descent method of QA on the identical experimental
setups to QAOA, such as IBM Quantum Experience, poses challenges, the hardware
and setups offered by D-Wave (which are not considered universal quantum computers but
“quantum annealers”) have demonstrated the feasibility of using a similar gradient-based
method for optimization. There are recent works that deal with a quantum MLD using QA,
such as [31,32]. In [31], the authors discuss the problem of meeting the growing demand for
wireless capacity from users using MIMO wireless physical layer techniques, highlighting
that algorithms for higher performance systems are computationally demanding and
become a limiting factor for wireless capability. To solve this, the authors propose QuAMax,
a new MIMO centralized radio access network design implemented on a 2031-qubit D-
Wave 2000Q quantum annealer, and perform experiments on real and synthetic MIMO
channel traces. Their results show that 10 us of compute time on the 2000Q is enough
for 48 users, 48 AP antenna Binary Phase-Shift Keying (BPSK) communication at 20 dB
Signal to Noise Ratio (SNR) with a BER of 107, and a 1500-byte frame error rate of 10~4.
In [32], a comparative performance study is presented, focusing on the D-Wave annealer
to handle large-scale optimization problems such as the Quadratic Unconstrained Binary
Optimization (QUBO) formulation derived from Maximum Likelihood Channel Decoder
problems for MIMO scenarios in Centralized-Radio Access Network (RAN) architectures,
which are challenging due to the exponential increase in the solution space with problem
sizes. The authors compare the performance of the novel D-Wave Advantage QA device
to the D-Wave 2000Q. The researchers extended previous work to large MIMO problems
with more complex modulations and larger MIMO antenna array sizes and reported on the
improvements and limiting factors they uncover.

Likewise, QAOA empowers gate-model universal quantum computers to address
combinatorial optimization problems similar to those tackled by the D-Wave-style QA.
Furthermore, opting for QAOA on a gate-model quantum computer offers a distinct
advantage over utilizing QA. With QAOA, precision can be increased arbitrarily, whereas
QA will only converge to a solution with a probability of 1 as time t approaches infinity,
rendering it impractical. In addition, if ¢ is too long, QA is likely not to find the solution, as
the probability is not monotonic. In this sense, [33], a paper on fair sampling, has already
demonstrated that running QA on a 5-qubit system can only find two of the three possible
states. Other researchers argue that it is still uncertain which approach (QA or QAOA) is
more effective. The authors of [34] state that classical computers require a vast amount of
computation time and memory to simulate the time evolution of an N-spin system using
specific algorithms. On the contrary, QAOA offers an advantage since the necessary time
evolution can be carried out on a quantum computer and experimentally implemented on
a real system as is presented in this work.

3. Quantum Computing

Quantum computing is a field of computer science that explores the principles of
quantum mechanics to develop new methods of processing information. Unlike traditional
classical computers that use bits to represent and manipulate data as 0 or 1, quantum
computers use quantum bits or qubits. Qubits can exist in a superposition of both 0 and 1
states simultaneously, forming a linear combination of those basis states [35]:

) = «[0) + B[1), ©)

where « and § are complex numbers. Measuring a qubit in a superposition state involves
collapsing to one of its basis states (|0) or |1)). The probability of having |0) or |1) as a
result of the measure is known by ||? and |B|?, respectively.

This ability of qubits to be in multiple states, known as superposition, allows quan-
tum computers to explore many possible solutions to a problem in parallel. Quantum
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parallelism is a crucial aspect of QC, enabling the exploration of large solution spaces
simultaneously and offering the potential for solving complex problems more efficiently
than classical computers. The entanglement phenomenon links the states of multiple qubits,
enabling them to be correlated so that changes in one qubit instantaneously affect the others
no matter the distance between them. This property is used in quantum algorithms to
perform complex calculations efficiently.

QC has the potential to revolutionize various fields and has boosted interest world-
wide in different areas, including cryptography, optimization, drug discovery, material
science, and machine learning. Wireless communications, especially in the upcoming tech-
nologies, 6G and beyond, are not far from this interest. Nevertheless, the development of
quantum computers requires challenging efforts that involve overcoming various technical,
theoretical, and practical obstacles. Qubits are highly sensitive to external factors and tend
to lose their quantum properties, a phenomenon known as decoherence. The development
of error correction codes to mitigate the impact of noise in quantum devices is defiant,
and implementing them in quantum hardware is even more challenging. Building and
maintaining the physical infrastructure for QC, including cooling systems that operate at
extremely low temperatures, is a substantial technical challenge and has a high environ-
mental impact due to the energy consumption needed to support the required temperature.
These and many other examples influence the scalability of quantum computers in terms
of the qubits available to accomplish significant results, but despite these challenges, there
has been significant progress in the field of QC, and researchers are actively working to
address these issues.

4. Quantum Maximum-Likelihood Detector for MIMO-NOMA

In general, NOMA schemes can be classified into power-domain multiplexing and
code-domain multiplexing. In power-domain multiplexing, users are assigned different
power coefficients according to channel conditions to achieve high system performance. In
code-domain multiplexing, different users are allocated different codes and multplexed
over the same time-frequency resources, such as Multiuser Shared Access (MUSA), Sparse
Code Multiple Access (SCMA), and Low-Density Spreading (LDS). In addition, there
are other NOMA schemes such as Pattern Division Multiple Access (PDMA) [36] and Bit
Division Multiplexing (BDM) [37].

NOMA can be applied in downlink and uplink scenarios. Figure 1 provides an
example of both schemes for two users, showing the main differences, where each mobile
user transmits its signal at the same time and in the same frequency band to the BS applying
SC, and at the BS, SIC iterations are carried out to detect the signal of mobile users in the
case of uplink and vice versa in the downlink. The BS transmits the data, and the receivers
(users) decode its data.

In the NOMA uplink, the signal received at BS can be written as

K
y =) hv/axPsg +n, 2)
k=1

where s is the transmitted symbol of the user k, i is the channel gain of the link between
the user k and the BS, 0 < a; < 1 is the power allocation, P is the maximum transmission
power, 1 is the Additive White Gaussian Noise (AWGN) with zero mean, and 032 is the
power density.

One of the primary prerequisites for power domain NOMA is the allowance for distinct
power levels assigned to each information signal. This becomes particularly relevant in
the uplink scenario, where users are positioned at varying distances from the BS. In such
cases, the BS receiver must be capable of distinguishing individual user symbols within
the amalgamated symbol y. The most commonly employed technique for achieving this is
SIC, which entails decoding the signal of the strongest user first, treating the other users
as interference. Following this, the decoded user is removed from the received signal to
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facilitate the decoding of the next user. This iterative process continues until the last user’s
information is successfully decoded. It is important to note that an error floor phenomenon
can arise during this signal recovery process, where the remaining lower-power signals are
managed as interference.

Even though SIC is the leading candidate to be used in NOMA systems for the next
generations, it has drawbacks that make exploring other solutions to decode NOMA
interesting. The main disadvantages are as follows [22]:

e If an error is made while decoding one iteration, it propagates through other succes-
sive ones.

e All the channel information should be known at the receiver to equalize.

*  Since the decoding is iterative, complexity increases with the number of users, causing
latency problems in some cases.

¢ Differences in the power levels of each signal should be large enough for success-
ful detection.

All of these limitations become more severe as the number of users increases. Therefore,
the MLD is presented in the literature as an alternative to overcome some of its disadvantages.

s= Fisy + [Fs,

(« é))

Weak user  yj = s + m

Strong user

Figure 1. Downlink and uplink NOMA schemes.

On the flip side, Figure 2 shows an excerpt of a MIMO system. As depicted, the trans-
mitter and receiver are equipped with several antennas. The signal received in a MIMO
system can be formulated as

Y =Hs+N, 3)

where y € CN*! is the received signal, H € CN*M is the channel matrix, s € CM*! is a
transmitted symbol vector, and N & CN*1 j5 the AWGN.

As all variables are complex-valued, throughout the present document, to avoid han-
dling complex-valued variables, (3) is converted to its equivalent real-valued representation
by using the following convention:

Y=Hs+N, (4)

) a= [0, -

%(H)} ©)

where

and R(.) and J(.) are defined as the real and imaginary parts of a complex matrix or
vector, respectively.

MIMO systems can turn multi-path propagation and multi-path delay spreads into
a benefit for the receiver. The key advantage of MIMO systems is the many orders of
magnitude of the SNR at no extra bandwidth. However, non-negligible software and
hardware processing complexity is added on both sides (transmitter and receiver).
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Figure 2. Excerpt of a MIMO communication system.

4.1. MIMO-NOMA Detector

Without loss of generality, Figure 2 may also be considered to be representing a single-
cell MIMO-NOMA uplink communication system, in which the receiver BS is equipped
with receiving Ny antennas, and the cell has K users, each equipped with N7 transmit-
ting antennas, given the condition Nr = NrK and factoring the specific distances and
transmitted power levels of each UE into the Equation (7).

We assume that in a previous stage (not shown in Figure 2), a sequence of log, (M)
bits is mapped to a symbol vector s, where M is the number of symbols in the given
constellation. For example, in BPSK, one bit is mapped onto a symbol. The symbols are
then de-multi-plexed by a MIMO encoder, which transmits an independent symbol over
one of the Nt transmit antennas. The receiver, equipped with Nr antennas, receives the
transmitted symbols. Each symbol has a channel gain, %; ;, which is the gain experienced
by the symbol from the i-th transmit antenna to the j-th receive antenna. The elements of
the received signal is calculated as follows [38]:

yik = Hy/aPsg +N, (7)

where the variables are complex-valued, where y is the received signal vector Ng x 1, H
is the Ng X N7 channel matrix composed by each channel gain, 0 < a; < 1is the power
allocation, P is the maximum transmission power, sy is the Nt x 1 transmitted symbol
vector, and N is a N x 1 vector of AWGN superimposed on the received signal. Thus, its

elements are
w .
n; = \/E(u +jv), 8)

where u and v are random variables distributed according to the standard normal, and w is
the noise power in linear scale, considering that typically w = —174 4 10log;,(B) in dBm,
where B is the system bandwidth.

The entries of H are assumed to be independent and identically distributed, which
can be achieved if the antennas are at a distance of at least half a wavelength apart such
that no correlation exists between the channel gains. After the signal has been received,
the MIMO-NOMA detector obtains an estimate of the transmitted symbols as §, and then
each symbol is ready to be processed to obtain its corresponding bit representation such
that the BER is minimized. The detector estimates the transmitted symbols by enumerating
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all possible values for s and then finds the candidate that minimizes the Euclidean distance
between the received signal y and H+/ayPsy as follows:

¢ = argmin ||Y — Hy/a,Psg||?, )

seSNr

where SNT is the Ny-dimension complex constellation set for the modulation scheme
selected. In an uncoded system, this brute-force approach yields the optimal BER per-
formance; however, it requires an exponential exploration of |S Nr |, (i.e., all constellation
points), which is impractical if Ny or modulation orders are large.

The elements of the channel matrix of H are assumed to have a Rayleigh distribution,
which helps model real-world phenomena in wireless communications. It is frequently
used to model multi-path fading with no direct Line of Sight (LoS) path, and thus

U
ho: — ib @ 10
o=+ jo)y 2, (10

where a and b are random variables distributed according to the standard normal, d; ;
is the distance from the i-th transmit antenna to the j-th receive antenna, and typically
1 = 4, the path loss exponent. According to the previous equation, the channel is generated
depending on the order of the MIMO system.

4.2. Quantum Approximate Optimization Algorithm

As quantum technologies continue to advance, the demand for robust algorithms
capable of operating on emerging and inherently noisy quantum hardware has similarly
intensified. Consequently, Variational Quantum Algorithms (VQAs) have garnered sig-
nificant attention due to their distinctive approach, which leverages a classical optimizer
to train parameterized quantum circuits. VQAs have now been proposed for virtually all
potential applications envisioned for QC, and they represent the most promising avenue
for achieving quantum advantage. However, several challenges persist, including issues
related to these algorithms’ trainability, accuracy, and efficiency.

QAOA is a prominent example of VQAs and a promising approach for making early
advancements toward quantum advantages in solving combinatorial optimization prob-
lems [39]. The core idea behind QAOA is to represent the objective function C(X) as a
cost Hamiltonian H¢ (11) and then search for an optimal bitstring X that achieves a high
approximation ratio with significant probability [40]:

Hclx) = C(X)|x), (11)

where |x) is the quantum state that encodes the bitstring X. Finding the minimum eigen-
vector of the Hamiltonian corresponds to locating the ground state energy of the system,
which represents the optimal quantum state. In quantum mechanics, the Hamiltonian
denotes the total energy of a system. Thus, solving an optimization problem using quantum
techniques begins by converting it into a quantum Hamiltonian, or Hermitian operator,
problem. The objective is to find the system’s lowest energy state, which equates to the
optimal solution.

QAOA is a variational quantum hybrid (quantum-—classical) algorithm due to its
implementation through variational quantum circuits. These quantum circuits depend on
a set of parameters (5, y), whose optimal values must be found so that the quantum state
| (Bopt, Yopt)) encodes the optimal solution to the problem [41]. Then, a classical optimizer
tunes the circuit parameters and minimizes the measured value. Figure 3 represents the
QAOA operation principle [41].
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Figure 3. QAOA operation scheme.

This paper addresses the challenges of maximum likelihood-based detection in fu-
ture wireless communication networks that utilize massive MIMO systems by proposing
an initial phase involving a QAOA-based maximum likelihood detection (MLD) method
tailored for MIMO-NOMA systems. The proposed approach is designed with potential
scalability to massive MIMO, with a view toward implementation on emerging quantum
devices. The choice of QAOA is motivated by several key advantages over other quantum
computing methods as outlined in Section 2. Firstly, QAOA has demonstrated effectiveness
in comparable research domains [41]. Secondly, as a hybrid quantum-—classical algorithm,
QAOA leverages the strengths of both quantum and classical computing, making it particu-
larly well suited for current NISQ-era quantum systems. This is especially significant given
that NISQ devices are susceptible to errors and noise, which can undermine the precision
and reliability of purely quantum algorithms.

Despite the advantages of QAOA, it has the same limitations inherent to current QC
technologies such as the one used in the present work (IBM Quantum Experience). These
systems are noisy and require multiple runs in the quantum domain (known as “shots”)
to account for errors. Also, the limited number of available qubits poses a challenge in
scalability validation in practical systems. However, the field is continuously developing
new approaches and hardware that could overcome these limitations and take advantage of
the unique capabilities of QC. As such, the proposed use of QAOA in MIMO and NOMA
detection could represent an important step towards realizing the full potential of QC and
hold promise for a wide range of applications in the field of telecommunications.

4.3. Quantum MIMO-NOMA Detection

A compelling strategy for addressing combinatorial optimization problems with QC
involves reformulating them into the QUBO model, followed by applying QAOA to identify
a solution. Thus, the MLD minimization problem proposed in (9) is transformed into a
QUBO model to be solved with QAOA. The QUBO model’s significance in addressing
numerous combinatorial optimization problems lies in its equivalence to the Ising Model,
which plays a crucial role in physics [42]. It provides a simplified representation of the
interactions between spins in a physical system, typically in the context of magnetism
and phase transitions. Additionally, the primary rationale for the emphasis on QUBO
instances in QAOA is tied to hardware limitations. Nevertheless, if the quantum device
can implement gates on more than two qubits, there could be a potential advantage in
reducing the number of interactions by elevating their order.

A formal definition of the QUBO model is given by

min / max (X QX + LTX), (12)

where X is a vector of binary decision variables, Q is a square matrix of quadratic coeffi-
cients, L is a vector of linear coefficients, and T denotes the transpose of a matrix.
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Moreover, assuming BPSK modulation (for simplicity) means that the symbols (i.e.,
bits) of each transmit antenna s, k € [1,..., Ny] may take up values in the set {—1,+1}.
Accordingly, (9) requires the following simple substitution sy = 2g; — 1 due to the QUBO
model being valid for binary variables. Higher-order modulation schemes like Quadrature
Phase-Shift Keying (QPSK), 16-Quadrature Amplitude Modulation (QAM), and 64-QAM
can be utilized. However, this increases both the complexity of the problem and the
number of qubits required, which can impact the results due to the limitations of current
quantum computers.

An example of a MIMO-NOMA 2 x 2 BPSK system shows the completed procedure.
Two aspects must be considered: First, as it is a MIMO system, the channel is characterized
by a matrix, according to (6) in this work. Second, NOMA must have different power
a1 and a, levels, depending on the users’ distances, assuming user 1 to be the weakest
(farthest from BS) and user 2 to be the strongest (closer to BS). In accordance with (2) and
(9), the MLD in MIMO and NOMA for M =2 is

§ = min ||Y — H(v/aeP (2 — 1))|P?, (13)

After solving the equation above, with some reordering and grouping similar terms
together, the quadratic and linear terms are separated for better compression to form
the QUBO model and solve the optimization problem through QAOA. Equations (14)
through (24) illustrate the entire process. In the case of quadratic terms, the following are
obtained, separating them by Q;;, Q;; and Q; ;, to form the matrix Q:

Qi1 = 4V/m P(R(h1,1)* + S(h1,1)* + R(110)* + S(hp)?) (14)
Q12 =8y a1aP(R(h1,1)R(h2) + S(h11)S(h12) (1)
+ R(hy, 1)%(}12,2) + S(h21)S(h2,2))
Q2o = 4v/aP(R(h21)* + S(h21)? + R(h2p)? + S(h22)?) (16)
_|Q11 Qi
Q= [ ! Qm] a7

For linear terms, on the other hand, three distinct contributions are derived and
isolated for each user (M = 2) after solving, reordering, and grouping (13):

L1y = —4y/a P(R(h1,1) + S(h11)* + R(2)? + S(hip)?) (18)

Lyy = —4yvar P(R(h,1)R(y1) + S(h1,1)S(y1) (19)
+§R(h1 2)3%( 2) + S(h12)S(y2))

L3 = —4v/aaaP(R(h1,1)R(h12) + S(h,1)S(h12) (20)

+ R(ho1)R (hzz) + S(h2,1)S(h2,2))
Lip = —4y/a2P(R(h22)* + S(h22)* + R(h21)* + S(h21)?) (21)
Lyp = — 4/ aaP(R(hp2)R(y2) + S(h2,2)S(y2)

(22)
+ R(ho, 1)§R(y1) + (1) (v1))

L3y = —4v/a1a2P(R(ho)R(h1) + S(ho2) S (h21) 23)
+ 9?(}12,1)3%(}11,1) + S(h21)S(h1,1))

L= [Lig+Loi+Ls1, Lip+Lop+Lao] (24)

Also, note that the number of qubits required equals the number of bits transmitted in
total by all antennas (e.g., for MIMO 2 x 2 with BPSK, only two qubits are needed).
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Once the QUBO model has been prepared and its corresponding terms have been
established, our attention can be directed toward (11). The cost Hamiltonian of QAOA is
defined by the problem Hamiltonian (Hp) (26), which contains the cost function, and the
mixing Hamiltonian (Hys) (27), defined as the sum of single Pauli X-operators on all
qubits [43]:

Hc|x) = Hp|x) + Hy, (25)

Hplx) = ( Y xiQixj+ ) Lixi> |x) (26)
= i=1

Hy =YX, @)

i=1

Since our variables are binary, x; = xJZ is satisfied. Concerning this assumption,

the linear and quadratics contributions can be written in the same matrix notation [42].
Denoting L1 + L1 + L3y = Lyand Ly o + Lys + L3 » = Ly for simplicity, the new matrix
Q is presented below:

Qi1— L1 Q12
_ & : 28
Q22 0 Qs L (28)

Following these essential transformations, we can define the problem Hamiltonian
using Pauli-Z gates and construct the QAOA circuit for this particular example:

Hp = (Q11 — L1)IZo 4 (Qo22 — L2) Z11 + (Q1,2) Z1Zo (29)

According to (25), the QAOA circuit implemented in Qiskit is shown in Figure 4.
Initially, a layer of Hadamard (H) gates is applied to establish superposition across all
qubits. Next, Rz gates, representing the linear terms, apply a transformation or rotation to
the corresponding qubit, based on the parameter <. Similarly, ZZ gates, associated with the
quadratic terms, also depend on . Finally, before measurement, the mixing Hamiltonian
is implemented using Rx gates, which are parameterized by B. After measuring the
qubits, the optimal parameters for oy and § could be found by a classical optimizer, such as
Cobyla [44], ADAM [45], etc. The purpose of this example is solely to provide a general
overview of the procedure, which is why specific numerical values are omitted.

_._ i Ry i i _m_ N
do 1 (QL1-L1)*y | | |
i i zz@Qu2vy) || 1
_._ ! Rz ! ! _m_ ! X—
a1 i (Q22-L2)*y i i i
c 2 <+ 0 u 1

Figure 4. QAOA Circuit MIMO 2 x 2.

Furthermore, it is crucial to bear in mind that MLD involves an exhaustive search,
resulting in four potential solutions for two users in the case of BPSK, for instance. When
we introduce variables like varying the transmission power to observe differences in the
BER results or changing the number of bits to transmit, there would be numerous iterations
necessitating different QAOA circuits. Moreover, adjusting the power allocation coefficient
would also impact the results by changing the relative strength of each user in the system.
Specifically, the BER would vary with the transmitted power based on the allocated power
and the user’s distance from the base station.

Although the presented 2 x 2 MIMO-NOMA example is relatively straightforward
and does not require a substantial number of qubits or extensive calculations, the complexity
increases dramatically as we scale up the MIMO system order and modulation schemes.
Considering a massive MIMO system, and trying to perform the entire optimization process
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with QAOA from scratch becomes virtually impossible. Thus, QAOA is implemented in
libraries such as Qiskit on IBM Quantum, Pennylane by Xanadu, etc.

5. Results

This section discusses the results obtained from the quantum MLD for MIMO-NOMA.
Concerning the 2 x 2 example, the users be A (a4 = 0.8, the weakest) and B (ap = 0.2,
the strongest) are 500 and 200 m away from the receivers. Assuming BPSK modulation,
a first experiment, where 1000 bits are sent, is shown in Figure 5. The graph displays the
BER values vs. the power transmitted for the two users in the classical version and the
quantum version of MLD. The power levels are quantified concerning a reference power
of 1 mW, denoted as dBm. Negative values indicate signals with reduced strength (below
1 mW), whereas positive values indicate signals with increased strength.

BER (Pp)

¥

weakest quantum user
strongest quantum user
weakest classic user
strongest classic user

¥4

1073 4

-45 -40 -35 -30 -25 -20 -15 -10 -5 0
Transmitted Power (dBm)

Figure 5. BER results MIMO-NOMA 2 x 2 antenna (2 users 1000 bits).

Classical values are computed using MATLAB to benchmark against the quantum
results achieved through the QAOA implemented with (Qiskit-IBM). The quantum version
is executed 1024 times (shots) in IBM Quantum systems, which means a long time to obtain
the outcomes (12 h). This timeline contains from when the job is created (sent to the system)
to when it is executed, going through some phases such as transpiling, validating, queue
time, and running time. Transpiling refers to rewriting the given input circuit to match the
topology of the quantum device. In other words, the circuit is translated into a circuit that
can be run on the backend. This process includes converting the circuit gates into standard
basis quantum gates. Validating is the time taken to verify that the circuit can be run, and it
depends on the device. The queue time varies depending on how busy the system is and
how many other jobs use it. The running time is the time it takes the backend to run the
circuit itself, 4.3 s in this case. If the circuit is more complex and/or the number of shots
increases, this time increases. IBM Quantum is a cloud-based quantum computing platform
that provides access to a wide range of quantum hardware devices and high-performance
simulators for prototyping quantum circuits and algorithms [46]. These simulators are
designed to allow researchers and developers to explore the behavior of quantum systems
under various conditions, including realistic device noise models.

As depicted in the image, it is evident that both the classical and quantum approaches
yield similar results for each transmitted power level: the BER decreases as the power
increases. In particular, it should be observed that the BER for users A and B diverges as
the power varies, aligning with the anticipated outcome based on the varying distances of
their respective locations relative to the receiver.

Next, the same system is tested, increasing the number of bits sent. With 10,000 bits,
the graph lines in Figure 6 are smoother, and both approaches appear almost equal.
The quantum method yields increasingly enhanced results, approaching the performance
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of conventional MIMO-NOMA detection. As expected, BER decreases when the power
increases for all cases.

10—1 4

1073 4

weakest quantum user
strongest quantum user
weakest classic user
strongest classic user

10—4 4

-4

T

-40 -35 -30 -25 -20 -15 -10 -5 0
Transmitted Power (dBm)

Figure 6. BER results MIMO-NOMA 2 x 2 antenna (2 users 10,000 bits).

Despite being a straightforward example, it has been shown that potential use cases
such as detection in MIMO-NOMA will be developed based on QC since its implementation
in classical systems will be extremely challenging in the 6G era. When the number and
quality of qubits increase enough, a quantum MLD will provide an optimal service to
users in future wireless communication technologies. Additionally, as QAOA applies
superposition and quantum parallelism, the time taken for a 2 x 2 system could be similar
to a higher-order system, being the main advantage of quantum mechanics and quantum
computation applied to this use case.

Another example is given in Figure 7, which illustrates a 4 x 4 system where users
are positioned at distances of d = [100, 120, 150, 200], with corresponding a; values of [0.1,
0.15, 0.25, 0.5] for each user. Remarkably, in the preceding graph, the resemblance between
classical and quantum outcomes is less pronounced compared to the 2 x 2 scenario. This
divergence is primarily attributed to the fact that, as the system’s size grows, the QAOA
circuit influence becomes more substantial, and the inherent noise and instability of qubits
directly impact the results. Conversely, when the complexity of the optimization problem
intensifies, the results become exceedingly precise, aiming for a substantially superior solu-
tion. It is worth highlighting that varying factors such as user-to-BS distances, adjustments
in power allocation coefficients, and increasing the number of bits for transmission could
lead to substantial variations in these results.

The quantum circuit for the 4 x 4 MIMO-NOMA system is illustrated in Figure 8.
As noted earlier, the number of qubits reflects the total number of bits transmitted across
all antennas; for instance, a MIMO 4 x 4 system using BPSK requires 4 qubits. The cir-
cuit construction is based on matrix (31), which is composed of the terms Q;;, Q;; and
Q;j, and vector (30), formed by summing contributions such as Ly1 + Lpy + L3 = Ly,
Lip+Lop+ L3p = Ly, and so on for Lz and L4. The circuit setup mirrors the earlier 2 x 2
MIMO-NOMA example, starting with H gates to establish superposition across all qubits.
Rzz gates represent the linear terms, parameterized by <y, while ZZ gates account for the
quadratic terms, also dependent on <. The mixing Hamiltonian is then applied using Rx
gates, parameterized by S, just before measurement:

L = [Ly, Ly, L3, Ly] (30)
Qi1— Ly Q12 Q13 Q14
0 Qop — Lo Q23 Qo4
- ' : / 31
Quxa 0 0 Q33— L3 Q34 1)

0 0 0 Qua—Ly
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Figure 7. BER results MIMO-NOMA 4 X 4 antenna (4 users 1000 bits).
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Figure 8. QAOA Circuit MIMO 4 x 4.

Regarding quantum devices, they have limitations in the number of qubits and noise,
which hinder the execution time, the scalability, and the accuracy of the results. More
extensive scenarios, more users, and a higher order of modulation are challenging to
develop on the current available quantum computers, and experiments could be run on
IBM Quantum simulators to explore the behavior of larger quantum systems as alternative.

As an illustrative example, Figure 9 shows what could be the BER performance that
would be calculated using the IBM Quantum’s system with 7 qubits implementing a MIMO
7 x 7 detector, averaging the errors in 10,000 transmitted bits, again concerning the trans-
mitted power, assuming distances for the 7 users of d = [100, 110, 120, 150, 200, 220, 250]
meters, respectively, and allocating power coefficient values according to their distances.
This example highlights the usefulness of IBM Quantum’s simulators for evaluating the
performance of small quantum systems, allowing researchers to study how quantum errors
scale with system size and to optimize error correction strategies for real-world quantum
devices. It is important to note that while the results obtained from the simulator are not
exact representations of the behavior of real-world quantum systems, they can provide
valuable insights into the factual correctness and adequate performance of quantum al-
gorithms and circuits, especially when it comes to studying the effects of noise and other
sources of errors.

Figure 10 summarizes our results, which are focused on the number of shots required
for computing different values of BER at a 95% confidence level for different classical
readout error probabilities. As shown, 1024 shots imply that IBM Quantum backend devices
are very noisy (45% of the measures are affected by errors); however, it is also apparent
that just by improving this value to the 30-40% range, it could cut the number of shots
(and thus the computation time) to 64 (an improvement by a factor of 16 when compared
to 1024). Also, as shown, in some instances, as few as 8 would suffice if measurement error
probabilities within 20-30% were feasible.
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Figure 9. BER results MIMO 7 x 7 antenna (7 users 10,000 bits).
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Figure 10. Number of shots required for computing different values of BER at a 95% confidence level

for different classical readout error probabilities.

6. Conclusions

The research community has increasingly turned its attention to the development
of 6G technology, which promises unparalleled speed and connectivity, paving the way
for a fully interconnected world. However, realizing the full potential of 6G requires
computational capabilities that exceed those of current classical computers. QC, with its
capacity to perform certain calculations exponentially faster than classical counterparts,
has emerged as a potential enabler of 6G technology.

This paper has examined the potential of QC in the context of future 6G wireless
technology, specifically focusing on improving the MLD of MIMO-NOMA uplink trans-
missions through the QAOA and its possible extension to massive MIMO, while adapting
to the current limitations of QC. As the computational complexity of detecting a massive
MIMO-NOMA signal increases disproportionately with the number of antennas or the
modulation order, QC presents a viable approach to accelerating detection in the future.

However, it is important to recognize that the current NISQ era quantum proces-
sors, with only a few hundred qubits, are not yet advanced enough to achieve “quantum
supremacy”. Thus, the continued development of quantum technology is crucial to un-
locking its full potential. As this paper explores detection in MIMO-NOMA systems using
existing QC capabilities, it is worth noting that more robust algorithms capable of achieving
quantum supremacy may emerge. The forthcoming fault-tolerant era in QC is expected to
introduce new use cases and significantly improve existing applications.

In conclusion, this work has provided insights into the potential impact of QC on
the future of wireless technology. Despite the challenges that lie ahead, the findings of
this study highlight the substantial promise of quantum computation within the domain
of 6G technology. Consequently, it is imperative for the wireless research community to
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continue exploring quantum-based approaches, as doing so will be key to unlocking the full
potential of 6G, leading to faster and more efficient communication in the years to come.
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