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1. Introduction. The zero temperature QCD static potential is Coulomb-like at short distances
and linearly rising at long distances. At finite temperature the short-distance Coulomb-like potential
becomes screened which leads to the idea that heavy quark-antiquark bound state production in
Heavy Ion Collision (HIC) experiments will be suppressed through screening. However it turns out
that another effect is more important. The static potential has an imaginary part that is bigger than
the real part when the screening effects become large, which means that bound states disappear
because they become wide resonances rather than because they are no longer supported by the
Yukawa-like potential [1]. The suppression of heavy quark bound state production is observed in
current HIC experiments in a pattern that is consistent with this idea. We calculate the real-time
QCD static potential beyond leading order in a high temperature medium in the regime where bound
states start melting. The calculation provides a check on the idea of ref. [ 1], which was based on the
leading order results. Our results also give a wider set of physically motivated forms of the potential
which can be used as an input for the Bayesian methods to extract the real-time static potential from
Euclidean correlators calculated on the lattice.

The static potential is defined as the ground-state energy of a static quark and a static antiquark
separated at a distance r. The calculation amounts to that of the expectation value of a rectangular
Wilson loop with the length of the temporal sides of the loop taken to infinity. We work in the
close-time-path formalism of thermal field theory and we use an approach based on HTL effective
theory. The static quark and antiquark are (unthermalised) probe particles for which only the
longitudinal photon (Ag) vertices in the time-ordered branch are relevant. We use the Coulomb
gauge and dimensional regularization throughout, we use Cr = (N2 — 1)/(2N.) where N, is the
number of colours, and g is the QCD coupling constant.

The leading order (LO) result for the momentum space potential, under the assumptions that
g < 1 and the typical momentum exchange between the quark-antiquark satisfies p < T, is [1]

Vio(p) = g*CrG(0, p) (1)
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where m_gTmp is the Debye mass, with mip = /(N. +Ny/2)/3, T is the temperature, Ny is
the number of light flavors, and G(po, p) the time-ordered longitudinal HTL propagator. The
corresponding coordinate space potential is
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We define the dimensionless integrals 1;(7) = fooo dp sin (p7) (p> + 1)~/ and 7 = rmp.

At any order in the loop expansion of the expression that defines the potential, we must decide if
and how to dress the propagators and vertices in the resulting momentum integrals (i.e. if we should
use bare n-point functions, or HTL corrected ones). This decision depends on the momentum scale
that we choose to focus on, which in turn will determine the range of r where our coordinate space
potential will be most reliable. To decide what momentum scale is important for our purposes
we return to eq. (1). For a narrow resonance to exist the imaginary part of the static potential
must be smaller than the real part. This implies that p > (m%T)l/ 3~ ¢?BT or p = gT with
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0 < a < 2/3 (which we call semi-hard). The value a = 2/3 gives the momentum scale for which
the real and imaginary parts of the leading order momentum space potential are the same size and
is parametrically the scale at which we expect quarkonium to dissociate. We will take into account
all corrections larger than g2 to the real part and larger than g3 and g?>~“ to the imaginary part
of the LO momentum space potential. Note that the scaling in a at LO is different for the real
(g272%/T?) and the imaginary parts (g*>¢/T?). Two loop diagrams give corrections of order g2
or smaller to the real part, and of order g¢ or smaller to the imaginary part. Including full HTL
vertices in the self-energy diagrams gives corrections of order g2 or smaller to the real part and
of order g>~¢ or smaller to the imaginary part. All together our conditions restrict a to be in the
range 1/3 < a < 2/3. The coordinate space potential that we obtain by Fourier transforming the
momentum space potential will not be valid for rmp > 1, since large r corresponds to momenta
softer than the semi-hard scale we have chosen, or T < 1, since small r corresponds to momenta
larger than the temperature.

2. The static potential beyond leading order. The relevant diagrams are shown in fig. 1,
where all the fermion lines do not depend on the spatial momenta (the static limit). There is one
(4-dimensional) momentum variable that is integrated over (which we call k) and the momentum
transfer is p = (pg, p). The fact that the semi-hard scale dominates the soft one means that HTL
vertices and HTL propagators reduce to the bare ones up to corrections of order m%) /p*. The gluon

S ™

(a) (b) (¢) (d) (e)

Figure 1: One-loop contributions to the static potential in the Coulomb gauge. All gluon lines correspond
to longitudinal gluons. The iteration of the LO potential must be subtracted. Note that there is no diagram
analogous to (d) with a three-gluon vertex.

self-energy bubble in fig. 1(a) at next-to-leading order in p /T is, for py — 0,

2
. 8T .7 po\ . N¢\ pop
Hfﬁé(po,p)=——4 (Nc(p+’§7)_’(Nc_7)2n_T)' )

The first contribution comes from the loop with k semi-hard [2—4] and the second piece is the power
correction. To find the corresponding contribution to the potential the result in (3) is used in the
time ordered propagator. The leading contribution from the last four graphs in fig. 1 arises when
the internal momentum k ~ mp and HTL propagators are used. The contribution from figs. 1(d,e)
in momentum space is

d*k  G(ko, k)
(2m)* (ko +im)?”

with n — 0*. To do the momentum integral we use time order propagators in the HTL limit and

V3% = ig*N.CrG(0, p) / 4)
expand the Bose distribution since k ~ mp. The contribution from the graphs in figs. 1(b,c) is

_ig*NCr [ d*k G(ko.k + p)G (ko. k)
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Since p > (k, ko) we can write under the integral sign

N k2 3
G (ko k + ) = G(O,p)[l - 5G(0.p) (1 +4m§)G(o,p)) ] +0('Z—§’) . (6)

To extend the range of r where our coordinate space potential will be valid, we keep m%) in
the denominators even though it is parametrically smaller than p?. We call this the damped
approximation. The coordinate space potential in the damped approximation is [5]
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The first (second) line of the real (imaginary) part comes from fig. 1(a) and the remaining contri-
butions from the last four diagrams in fig. 1.

We have not calculated contributions to potential from the soft region (p ~ mp) because they
would require full HTL propagators and vertices and are thus prohibitively difficult. However we
can determine these contributions by taking advantage of the fact that they have a universal form in
coordinate space at any order in g. To see this note that since we assume rmp < 1 the exponential
¢'P7 in the Fourier transform can be expanded in the soft region which gives

d*p

R I -
Vort(r) = E (1 +ip -7 — E(p-r)2+-~~)V(p) = VS()Oft+V§)ft(r)+... ) (8)

The second term is zero by symmetry in an isotropic system. The contribution from the soft
momentum region thus reduces to a polynomial in 7. At the order to which we work we need the
zeroth order (the r-independent term) for the real part and up to the first order (the 7> term) in the
imaginary part [5]. The form of the soft contributions to the coordinate space potential is

Vasot = g'a0T +i (¢%T + g°rT%) ©)

where (qo, ip, 1) are real constants. We will determine the values of the constants (g, ig, i2) by
fitting to lattice data. We note that one can verify that (9) is the correct form for the soft contributions
by expanding the NLO result in mp /p and Fourier transforming the result. The coordinate space
expression has poles of order 1/(d — 3) that can be absorbed into the parameters of (9).

3. Comparison with lattice results. We consider bottomonium and take the mass of the
bottom quark mp; = 4676 MeV. We fix g from the fit to the 7 = 0 lattice data for the static potential
with r € [0,0.3] fm which gives g = 1.8 and we use N. = Ny = 3. First we compare our potential
with [6]. The constants (g, io, i2) are determined by fitting to the lattice data at values of r that
satisfy r > 0.04 fm and rmp < 0.44. To adjust the origin of energies we also add a temperature
independent constant S to the real part of the potential. We also adjust the origin of energies for the
LO potential and we plot results using Sayg = (S + S10) /2. The values of the coefficients are given
in the first row of table 1 and the potential is shown in fig. 2. For comparison we show in the second
row of table 1 the parameters obtained by fitting to data points that satisfy 0.04 fm< r < 0.3 fm [5].
The real part of the potential varies very little with temperature, in agreement with the data. For the
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Figure 2: Real and imaginary part of V. The solid lines show V = Vjjo + Vo + V; ort in the damped
approximation with parameters given in the text. The legends indicate the temperature in MeV. The LO
contribution includes the one-loop static quark self-energies and for the imaginary part we show a single
temperature since the remaining two would overlap with it. The solid bands on the lower plot indicate the
uncertainty in the values of the fitted constants inherited from the error bars of the lattice data. Note that a
slightly different fitting procedure is used in ref. [5] - see text for details.

imaginary part the soft contribution is mostly responsible for the large correction to the LO result.

To compare with the results of ref. [7] we solve the Schrodinger equation using our expression
for the real part of the potential. To match the definition of [7], the widths for each temperature are
obtained by calculating the expectation value —(Im[V]). The constants (g, iy, i2) are determined
by fitting to the lattice data and their values are the third row in table 1 (the errors are obtained from
the fits to the upper and lower values). The results are shown in fig. 3. The temperature dependence
of both the binding energy and the decay width gives a reasonable description of the lattice data,
and a considerable improvement with respect to the LO results.

We can use our results for the binding energies and widths to estimate the dissociation temper-
ature, which we define as the temperature for which the energy difference to the threshold equals
the thermal decay width I = —2(Im[V]). The results obtained from each set of fitted coefficients is
given in the last column of table 1. For comparison the leading order result is 7giss = 193.2 MeV.
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Figure 3: The temperature dependence of the binding energy and thermal width (in MeV) of the bottomonium
ground state. The /o includes the one-loop static quark self-energies.

We have shown that our approach is able to reasonably describe the two sets of lattice data [6]
and [7], but the parameter sets we need to do so are not entirely consistent. We believe this might
be due to a problem in the extraction of the decay width in either lattice paper. Since all scales are
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q0 io i2 Save Taiss
[6] 0.019 -0.017+ 0.001 0.13+0.01 127.4 MeV || 154.7 4.7
[6] 0.027 -0.019 £ 0.001 | 0.194 = 0.002 | 209.5 MeV || 142.7+1.1
[71 | 0.044+ 0.002 | -0.026 = 0.009 | 0.052+ 0.002 - 202 =10

Table 1: Fitted coefficients and the corresponding dissociation temperature. The first row corresponds to
the fitting procedure used to produce fig. 2 and the second row is the procedure of ref. [5].

explicit in our approach, we expect that the fitted numerical coefficients should be approximately
the same size. This is true except for the values of i, obtained by fitting to the data of [6]. The
corresponding dissociation temperature is also very low, incompatible with earlier lattice studies
that indicate it is much higher than the crossover temperature.

4. Summary and conclusions. We have calculated the momentum space potential including
corrections beyond the leading order HTL result for typical momentum transfer p that satisfies
mp < p < T. This is the relevant region to obtain the dissociation temperature for heavy
quarkonium. We have extended our calculation to softer p by keeping suitable p> + sz terms
unexpanded. The Fourier transform gives the coordinate space potential for 1/7T < r < 1/mp up
to a polynomial in 7> which encodes the contribution for p < mp at any order in g. We expect our
expressions (7,8,9) will give a reasonable approximation at larger r as well, since explicit damping
factors are kept. Our results therefore provide useful inputs for the Bayesian methods required in
the effort to determine the real-time static potential from lattice QCD. As an example, we have
shown that our results describe reasonable well two different sets of lattice data, whereas the LO
result fails to do so. We have also been able to identify an inconsistency between these two sets
of data. This is not surprising because of the notorious difficulty of extracting the imaginary part
of the potential in lattice calculations. Our results could be used as a check when comparing the
validity of different lattice methods.
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