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Resumen

La aproximacion de campo medio autoconsistente con interacciones efec-
tivas fenomenoldgicas ha sido muy exitosa para describir la mayoria de las
caracteristicas nucleares a lo largo de toda la carta de ntcleos. Este éxito
estd estrechamente relacionado con la ruptura espontdanea de las simetrias,
que permite describir el sistema de muchos cuerpos con una sola funcién de
onda intrinseca simple de tipo producto que incorpora correlaciones asocia-
das a la deformacion y al apareamiento. No obstante, para hacer estudios
espectroscopicos y/o describir sistemas con coexistencia de forma, se han de
aplicar teorias que vayan mas alla de la aproximacién de campo medio.

En este trabajo, se van a mostrar resultados obtenidos con la interaccion de
Gogny aplicando métodos mas alla del campo medio que incluyen la restau-
raciéon de la simetria del nimero de particulas y de invariancia rotacional
con métodos de proyeccion, ademés de mezcla de configuraciones llevada a
cabo mediante el método de la coordenada generadora. Se va a incidir en
la relevancia de la proyeccion al ntimero de particulas con el método de la
variacion después de la proyeccién y en papel que juega la autoconsistencia
para determinar los estados de la base.

En particular, estos métodos han sido utilizados para estudiar, por primera
vez, de manera simultanea la deformacion cuadrupolar y las fluctuaciones de
apareamiento. Se investigara de manera minuciosa la influencia de las fluc-
tuaciones de apareamiento de gran amplitud en el marco tedrico que ha sido
descrito mas arriba.

Se va a estudiar el efecto de los grados de libertad mencionados en la estruc-
tura nuclear. Para ello, se van a analizar las energias de excitacion, asi como
otros observables relevantes: las probabilidades de transicion E0 y E2, o las
energias de separacién. Estos estudios se han hecho para una seleccién de
nucleos: esféricos, deformados y con diferente grado de colectividad. Encon-
tramos que los efectos de las fluctuaciones de apareamiento aumentan con la
energia de excitacion y a mayor momento angular.

Ademas, se van a estudiar en detalle las vibraciones de apareamiento y su
relacién con el grado de libertad cuadrupolar, obteniéndose que la deforma-



10 Resumen

cién inhibe fuertemente dichas vibraciones.

Para terminar, se van a investigar los elementos de matriz nuclear del pro-
ceso de desintegracion doble beta sin emisién de neutrinos para los ntcleos
donde la deteccion de dicho proceso -que implica fisica mas alld del modelo
estandar- es més plausible. Se va a evaluar el papel que juegan la defor-
macién y el apareamiento en dichos elementos de matriz. Encontramos un
importante aumento del valor de los elementos de matriz con respecto a los
que se obtienen cuando no se incluyen las fluctuaciones de apareamiento, lo
que implica una reduccion de las vidas medias de dichos isétopos.
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Abstract

Self-consistent mean field approaches with effective phenomenological in-
teractions have succeed in describing many bulk properties along the whole
nuclear chart. This success is closely related to the spontaneous symmetry
breaking mechanism that allows the inclusion of many correlations within a
very simple intrinsic product wave function. However, in some cases this pic-
ture fails in taking into account important correlations and methods beyond
the mean field approach have to be applied.

In this work I will show some recent results obtained with the Gogny in-
teraction applying methods beyond mean field that include particle number
and rotational symmetry restoration, plus configuration mixing within ge-
nerating coordinate method framework. Hence, the relevance of the particle
number projection before the variation method and the self-consistency in
determining the basis states will be analyzed.

In particular, these methods are applied for the first time to study the qua-
drupole deformation and pairing fluctuations on the same footing. Especially,
the influence of large amplitude pairing fluctuations is thoroughly investiga-
ted in the framework depicted above.

I will discuss the influence of both degrees of freedom on the resulting nuclear
structure, analyzing the spectroscopic properties. Relevant observables like
excitation energies, F0 and E2 transition probabilities, or separation ener-
gies are also studied.

These studies have been performed for a selection of nuclei: spherical, defor-
med and with different degrees of collectivity. As a result, an increase of the
effect of the pairing fluctuations with increasing the excitation energy and
angular momentum is found.

I will also deal the topic about pairing vibrations. They are studied in detail
with the conclusion that deformations strongly inhibits their existence.

To close, we present an study of the nuclear matrix elements for the neu-
trinoless double-beta decay calculated for the most promising candidates to
detect this process beyond the standard model. In particular, the role of the
deformation and pairing on such nuclear matrix elements are analyzed. An

11



12 Abstract

important increase in the value with respect to the ones found without the
inclusion of pairing fluctuations is obtained, reducing the predicted half-lives
of these isotopes.
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Capitulo 1

Introduccion

La fisica nuclear se establece como rama de conocimiento de interés a

finales del siglo XIX con el descubrimiento de la radiactividad en 1896 por
H. Bequerel, punto de partida para los trabajos en este campo del matri-
monio Curie que culmina en 1898 con el descubrimiento de dos elementos
radiactivos existentes en la naturaleza, el 3Po y el #Ra. Ernest Rutherford
clasifica las radiaciones en alfa, beta y gamma y propone en 1911 su modelo
atémico en el que se establece la existencia del nucleo atémico por prime-
ra vez. Este modelo seria pronto sustituido, en 1913, por el de Niels Bohr,
capaz de explicar los espectros de emision caracteristicos de los atomos. El
descubrimiento del neutrén en 1932 por James Chadwick y el desarrollo de la
fisica cuantica en la primera mitad del siglo pasado nos conducen al modelo
de nicleo atémico que conocemos hoy en dia [1].
El conocimiento de la fisica nuclear se hace necesario por la cantidad de
campos de interés en los que estd presente. Ha permitido desarrollar tecno-
logias de aplicacion en la medicina, como las resonancias magnéticas nucleares
(RMN), la tomografia axial computerizada (TAC) o la tomografia compute-
rizada por emisién de positrones (PET). [ntimamente ligado a su nombre
estd la fisién y fusion nuclear y la obtencién de energia por medio de estos
procesos como parte de la solucién al problema energético. La astrofisica es
otro de los campos donde la fisica nuclear juega un papel clave. Asi, la ma-
teria que conforma el universo se forma por medio de reacciones nucleares
que suceden en entornos astrofisicos, desde los procesos de fusién que tienen
lugar dentro de las estrellas hasta las capturas rapidas de neutrones que se
producen en explosiones de supernova y colisiones de estrellas de neutrones.
Por tanto, el conocimiento preciso de dichas reacciones nucleares es esencial
para entender el origen y abundancia de los elementos quimicos.

Durante los tultimos veinte anos la imagen y concepcién del niicleo atomi-
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14 Introduccién

co ha cambiado debido al renacimiento que ha experimentado la estructura
nuclear como consecuencia del desarrollo de nuevas técnicas experimentales
como los haces de iones radiactivos y los espectrometros de rayos v en 4w
de alta eficiencia [2]. Estas técnicas han posibilitado el estudio de nicleos
atomicos exoticos, asi como nucleos en condiciones exéticas. Entendiendo
por ntcleos exdticos aquellos que se encuentran muy lejos del valle de la es-
tabilidad, esto es, nucleos con gran isospin o nucleos superpesados (aquellos
que tienen un gran nimero madsico). Se entiende por nicleos en condicio-
nes exdticas, los niicleos que se encuentran en el valle de la estabilidad (o
muy préximos a él) pero bajo condiciones tales como: alto momento angular
(I =~ 40 — 80h), muy alta energia de excitacién o grandes deformaciones.
Todo ello, esté revelando aspectos fundamentales como la determinacién de
las lineas de goteo (drip-lines) de neutrones o de protones y las desintegra-
ciones de protones en las proximidades de dicha linea, la sintesis de nucleos
superpesados e islas de estabilidad, la aparicién de halos y pieles de neutro-
nes, coexistencia de forma y superdeformacién, degradacion y la aparicién
de nuevos ntimeros méagicos, etc [3].

No sélo eso, el desafio contintia. La nueva generacién de instalaciones en todo
el mundo: GSI-FAIR [4], GANIL-SPIRAL-2 [5], CERN-HIE-ISOLDE [6] en
Europa; RIBF-RIKEN [7] en Japén 6 la futura MSU-FRIB [8] en Estados
unidos y la cantidad de observaciones experimentales que son (y serdn) des-
cubiertas en los numerosos proyectos que alli se desarrollaran, tendran que
ser explicadas desde el punto de vista de la fisica nuclear tedrica. Se espera
que esa conjuncién, entre la parte tedrica y experimental, siga aportando
respuestas al campo de la estructura nuclear, cuyo objetivo final es el cono-
cimiento unificado de la propiedades nucleares a partir de las interacciones
fundamentales entre los nucleones.

Es necesario el desarrollo de herramientas tedricas adecuadas que permi-
tan la comprension de la estructura nuclear a lo largo de toda la tabla de
nicleos y que se encuentren en consonancia con la gran cantidad de resul-
tados experimentales, que como hemos visto, la fisica nuclear experimental
demanda. Actualmente, la fisica nuclear tedrica también trata de mejorar
el conocimiento sobre los fenémenos nucleares bien mejorando los métodos
y modelos existentes o bien introduciendo nuevas técnicas, de entre los que
cabe destacar:

» Métodos ab-initio y diagonalizaciones exactas en sistemas de pocos
cuerpos son ahora posibles [9].

» Conexion de las interacciones nucleares desnudas con QCD a partir de
teorias de campo efectivas quirales [10,11].
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= El aumento de la capacidad de computacion permite hoy en dia hacer
célculos del modelo de capas con espacios mayores. [12].

= Desarrollo de las teorias mas alld del campo medio con interacciones
dependientes de la densidad. [13].

El contexto en el que se encuentra enmarcado este trabajo es el de la fisica
nuclear tedrica y dentro de los modelos nucleares tedricos de que se dispo-
nen, la memoria aqui presentada, esta englobada dentro de la aproximaciéon
de campo medio autoconsistente. Esta aproximacién considera al nicleo co-
mo un sistema de particulas o cuasiparticulas que no interactian entre si y
que se encuentran sometidas a un potencial promedio que liga el sistema. Es-
te potencial es calculado de manera autoconsistente haciendo uso del método
variacional para encontrar el hamiltoniano de cuasiparticulas independientes
optimo del problema nuclear de muchos cuerpos. Para ello se usa el método
de Hartree-Fock (HF) y su extension, el método de Hartree-Fock-Bogoliubov
(HEFB), con interacciones efectivas (interaccién de Gogny en nuestro caso
particular) que sean capaces de describir propiedades en cualquier regién de
la tabla de ntclidos.

En estos métodos, la funcion de onda que describe el sistema de muchos cuer-
pos es un producto de funciones de onda de una cuasiparticula. Para que el
espacio variacional sea lo mayor posible se admite la ruptura espontanea de
las simetrias del hamiltoniano, como por ejemplo, del nimero de particulas
y la invariancia rotacional, que van a permitir la descripcion de fenémenos
colectivos como la superfluidez nuclear o la aparicién de bandas rotaciona-
les respectivamente. Sin embargo, para describir adecuadamente el nicleo
atémico deberemos ir mas alla de la aproximacién de campo medio y restau-
rar dichas simetrias. Ademads, es posible una mejora de dicha descripcion si se
considera la funcién de onda final como una combinacién lineal de funciones
de onda tipo producto con las simetrias ya restauradas, idea que subyace tras
el método del generador de coordenadas.

Los métodos de campo medio con interacciones efectivas realistas han si-
do ampliamente estudiados [13-16] incluyendo restauracién de simetrias (si-
multdneas del nimero de particulas y el momento angular) y mezcla de confi-
guraciones y siguen demostrando ser una potente herramienta para describir
las propiedades de los nicleos atéomicos.

El desarrollo y avance de la computacién cientifica nos permite y anima a
implementar mejoras en nuestros calculos tedricos de campo medio, lo que
hace unos anos era una limitacion de calculo computacional, hoy deja de
serlo.

Por otra parte, es sabido que de entre las diferentes variables colectivas que

15



16 Introduccién

pueden incluirse en el estudio de las correlaciones de apareamiento en el mar-
co de las técnicas de proyeccion, la que nos ofrece una contribucién mayor
a la energia, es la deformacién asociada al momento cuadrupolar [17]. Sin
embargo, es deseable la inclusién de cuantas mas correlaciones mejor para
aproximarnos a la soluciéon mas exacta del problema.

Cuando soélo la deformacion cuadrupolar es tenida en cuenta, se observa que
los valores que se obtienen de forma tedrica para observables relevantes tales
como las energias de excitacion 6 las probabilidades de transicion, si bien
muestran un acuerdo cualitativo con lo obtenido experimentalmente, presen-
tan, en general, valores ligeramente superiores [14]. Este trabajo tiene entre
sus objetivos comprobar si el hecho de incluir una coordenada extra en el
sistema de estudio, puede completar la descripcion tedrica de manera que
suponga una mejora acercandonos a los datos experimentales.

Es la unién de estos dos aspectos, la necesidad de incluir mas grados de li-
bertad en el sistema unido a la mejora de la capacidad de computacion que
permite llevarlo a cabo, lo que ha motivado este trabajo que recoge el anélisis
y los resultados de considerar por primera vez las fluctuaciones de aparea-
miento [18,19].

El estudio de las fluctuaciones de apareamiento es relevante por diversos
motivos [20-26]. Por un lado los grados de libertad més relevantes a consi-
derar, son el monopolar (el apareamiento) y el cuadrupolar (la deformacién)
por lo que es deseable tratar a ambos en igualdad de condiciones. Por otro
lado, el principio variacional de Ritz con ligaduras, con el que se determina
la base de estados intrinsecos, es muy efectivo para determinar las funciones
de onda de los estados de la base favoreciendo, por construccién, encontrar
dichos estados en cédlculos con restauracion de simetrias y mezcla de configu-
raciones (como es nuestro caso). Sin embargo, el describir, dentro del mismo
marco, correctamente estados excitados, para los cuales pueden cambiar sus
nuimeros cuanticos, va a depender de tener una buena base. El hecho de au-
mentar el nimero de coordenadas nos ofrece una base mayor en la cual los
estados excitados se encuentren mejor descritos. Por ejemplo, es tipico de los
calculos con proyecciones obtener espectros de energia mas estirados que las
predicciones experimentales, al aumentar el tamano de la base incluyendo
un nuevo grado de libertad, esperamos obtener espectros méas comprimidos.
Por 1ltimo, el estudiar de forma simultdnea la forma y las fluctuaciones de
apareamiento va a permitir hacer un analisis sobre si las vibraciones de apa-
reamiento existen de forma genuina o como se amortiguan cuando ambos
grados de libertad son acoplados.

Esta memoria de tesis, basada en las siguientes publicaciones ( [27-29]),
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estd estructurada de la siguiente manera: en el siguiente capitulo, 2, se descri-
ben los modelos de estructura nuclear tedricos e interacciones fenomenolégi-
cas realistas mas utilizadas para poner en el contexto adecuado los métodos
que van a ser empleados en este trabajo. En el capitulo 3 se detallan los
fundamentos tedricos de las aproximaciones de campo medio y mas alla. Los
métodos de restauracion de simetrias con proyecciéon junto con el método de
la coordenada generadora se detallan también en este capitulo. En el capitulo
4 se introduce la nueva coordenada, se presenta el método de trabajo y se
ofrecen los detalles mas técnicos de los calculos tomando como ejemplo el
nticleo *2Ti. El capitulo 5 est4 dedicado al estudio del efecto de la proyeccién
del niimero de particulas. Se analiza su relevancia para tener una descripcion
correcta de los estados nucleares. En el capitulo 6 se discuten las superficies
de energia potencial y con especial detalle, los espectros de excitacion para
diversos nucleos como funcién de las dos coordenadas consideradas y en base
a tres diferentes aproximaciones. Los resultados de calcular otros observables
nucleares relevantes como probabilidades de transiciéon o energias de separa-
cién se exponen en el capitulo 7. En el capitulo 8 se discuten las funciones
de onda en diferentes aproximaciones estableciendo las analogias correspon-
dientes con las superficies de potencial mostradas anteriormente. Ademas,
en este capitulo también se va a tratar de forma minuciosa la cuestién de la
existencia de vibraciones genuinas de apareamiento. El capitulo 9 se centra
en el tema de las desintegraciones doble beta sin emisién de neutrinos. Los
elementos de matriz nuclear para los 11 candidatos mas probables a desinte-
grarse en este modo se han calculado teniendo en cuenta la deformacién y las
fluctuaciones de apareamiento. Por tltimo, las conclusiones de este trabajo
y perspectivas futuras que ofrece, se recogen en el capitulo 10. Como anexo,
en el apéndice A se muestra una lista de acrénimos que han sido utilizados
a lo largo de la memoria como guia para el lector. Los apéndices B C D y E
son para desarrollar en méas detalle expresiones tedricas que se han utilizado.
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Capitulo 2

Modelos de estructura nuclear

2.1. Introducciéon

Para describir la dinamica de un ntucleo atémico nos encontramos por un
lado con el problema cuantico de muchos cuerpos que no es resoluble a partir
de un cierto numero de nucleones. Por otro lado, el nimero de nucleones
presente en el nicleo dista mucho de ser suficientemente grande como para
abordar el problema desde la perspectiva de la fisica estadistica. Para aproxi-
marnos a la solucién del problema, es necesario el uso de modelos o métodos
que permitan describir la estructura nuclear. Estos modelos van a ser diferen-
tes en sus suposiciones y aproximaciones, de manera que en funcién de lo que
se quiera investigar, un método puede resultar mas apropiado que otro para
la resolucion de un problema concreto. De esta manera, vamos a disponer de
métodos complementarios que van a describir diferentes manifestaciones del
comportamiento nuclear.

Podemos hacer la siguiente clasificacién entre los modelos nucleares que
pueden ser utilizados.

= Modelos microscopicos:

El punto de partida para los modelos microscopicos (entendidos como
los que consideran los protones y neutrones como grados de libertad)
en la fisica nuclear es la definicion de la interaccion entre los nucleo-
nes constituyentes. Estas interacciones pueden ser definidas a partir
de interacciones desnudas entre los nucleones, también llamadas in-
teracciones realistas, o pueden tener en cuenta los efectos del medio
nuclear. Estas, son las interacciones fenomenologicas. En ambos casos,
hay parametros o constantes de acoplamiento que deben ser ajustadas
para reproducir algunos conjuntos de datos experimentales.

19



Modelos de estructura nuclear

Dentro de los modelos microscopicos se distinguen, dependiendo del
origen de la interaccién nuclear:

e (Calculos ab-initio, si las interacciones se extraen directamente a
partir de las interacciones NN (nucleén-nucleén) y NNN desnudas,
normalmente por renormalizacién de dichas interacciones.

Los métodos de resolucion de problemas de muchos cuerpos usados
con interacciones ab-initio van desde diagonalizaciones exactas, al
modelo de capas sin core (no core shell model, NCSM) [30], el
método de Monte Carlo con funciones de Green [31], o el método
de los clusters acoplados (coupled clusters, CC) [32].

Estos métodos se aplican a nucleos ligeros (A <12) con precisién
y también para nucleos més pesados, magicos o semimagicos.

e (Caélculos fenomenoldgicos, si las interacciones nucleares, normal-
mente sélo NN, se ajustan a datos experimentales de nicleos fini-
tos.

En este caso, se puede distinguir entre dos grandes grupos: el mo-
delo de capas (interacting shell model, ISM) y el método de campo
medio autoconsistente (self-consistent mean field, SCMF). Ambos
modelos van a centrar nuestra atencion en las secciones 2.2 y 2.3
de este capitulo donde se exponen sus caracteristicas con mas de-
talle.

Ambos modelos se basan en la idea de campo medio (mean field,
MF); los nucleones se mueven como particulas independientes en
un potencial promedio que crean el resto de nucleones. Este po-
tencial va a ser fenomenoldgico y debe ser capaz de explicar las
propiedades de los nicleos. La interacciéon entre nucleones es fuer-
te, por lo que esta aproximacién puede parecer, a priori, poco
apropiada. Sin embargo, dada la naturaleza fermiénica de los nu-
cleones, vamos a encontrar que el principio de Pauli, aplicado sobre
el medio nuclear, va a bloquear gran parte de los estados accesi-
bles. Esto hace que el efecto de la interaccién se reduzca; esto es,
se hace mas suave a cortas distancias, dando entonces sentido a
las aproximaciones de campo medio.

= Modelos colectivos:
Los modelos colectivos describen propiedades globales de los nicleos.
La idea basica en la que se apoyan los modelos de tipo macroscépico
es la de tratar de describir el nicleo como un todo, es decir, estamos
interesados en el movimiento colectivo de los nucleones.
Quizas el ejemplo mas representativo sea el modelo de la gota liquida,
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2.2 Modelo de capas 21

éste supone el nicleo como un fluido incompresible. Relacionados con el
primero y englobados dentro de los modelos colectivos, estan el modelo
vibracional y rotacional [33]. Se puede encontrar su descripcion en la
secciéon 2.4.

= Modelos algebraicos:

Otra forma de abordar el problema es mediante modelos algebraicos.
Estos modelos describen las excitaciones colectivas del nticleo por medio
de métodos basados en las teorias de grupos y los conceptos de simetrias
relacionados con ellos. El modelo de bosones interactuantes (de tipo
fenomenoldgico) o el modelo SU(3) de Elliot (de tipo macroscépico)
son ejemplos representativos de ellos. Se ampliard el modelo de bosones
interactuantes en la secciéon 2.5.

2.2. Modelo de capas

El modelo de capas tiene su origen en el descubrimiento de que ntcleos
con cierto nimero de protones y neutrones mostraban ciertas propiedades
asociadas a la presencia de capas cerradas de manera analoga a lo que ya se
conocia para los atomos. Se observan saltos en las energias de separacién de
nucleones, mayores diferencias en las masas con el modelo de la gota liquida
y mayores energias de excitacion del primer estado excitado. A estos ntimeros
se les dio el nombre de nimeros mégicos [34,35]. Los primeros en encontrar-
se fueron el 8 y 20. Es posible deducirlos si se asume un potencial de tipo
oscilador armoénico. Para obtener los siguientes niimeros magicos: 28, 50, 82
y 126 es necesario incluir un término de espin-6rbita [36].

Se toman un conjunto completo de estados, normalmente los del oscilador
armonico, como funciones de onda de particula independiente y se define una
base, en la que se va a diagonalizar el hamiltoniano, que sea un conjunto de
productos antisimetrizados de dichas funciones de onda de una sola particula.
Esto se corresponde con un determinante de Slater. Finalmente la funcién de
onda de muchos cuerpos seré una combinacién lineal de estos determinantes
de Slater.

El principal problema que presenta el ISM es el tamano de esta base, pues el
nimero de determinantes de Slater crece combinatorialmente con el niimero
de capas que se introducen en el cédlculo, de modo que segiin aumenta el
numero de nucleones el calculo se va complicando hasta hacerse computacio-
nalmente intratable. Es necesario, entonces, hacer una aproximacién para
reducir este espacio de configuraciones y, para ello, se hace una divisién de
dicho espacio aprovechando la estructura de niveles que dan los nimeros
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22 Modelos de estructura nuclear

magicos. Por un lado esta el core, que comprende aquellas capas que estan
totalmente llenas de nucleones y que, por tanto, no van a jugar un papel
en el problema que queremos resolver. Por otro lado, tenemos el espacio de
valencia, que es donde se va a resolver el problema. En general, consta de
una o dos capas mayores de oscilador donde los nucleones de valencia pueden
estar situados. Por ultimo, esta el espacio externo que se asume que esta to-
talmente vacio.

Dependiendo de la region de la tabla de nicleos en la que se va a trabajar,
se toma un espacio de valencia y, adecuada a este espacio, una interacciéon
efectiva que tratard de incluir en el espacio de valencia también correlaciones
que no pertenecen a él mediante técnicas de proyeccién y/o renormalizacion.
Una vez definidos el espacio de valencia y la interaccién efectiva, en prin-
cipio se efectiia una diagonalizacion exacta del hamiltoniano, con lo que se
deben manejar codigos informaticos que permitan la resolucién de proble-
mas de autovalores de matrices gigantescas. Estos cédigos constituyen junto
con el espacio de valencia y las interacciones efectivas los tres pilares de los
modernos calculos del ISM. Para ver los espacios de valencia e interacciones
efectivas empleadas en célculos del modelo ISM se puede consultar [12,13].
Las interacciones ajustadas a ciertas regiones, asi como la diagonalizacién
del problema en el espacio de valencia, hacen del ISM el método mas preciso
actual para calcular espectros nucleares. Sin embargo, esta dependencia de
la interaccion con el espacio de valencia hace que no sea un método universal
y representa uno de los principales inconvenientes de este modelo.

Otro de los problemas que presenta este modelo es que es aplicable a ntcleos
con un espacio de valencia no demasiado grande, para que sea un problema
computacionalmente factible, lo que nos restringe a nticleos con pocos nu-
cleones fuera de capa. Tampoco sera posible describir niicleos pesados donde
el nimero de niveles cerca de la energia de Fermi sea muy grande.

2.3. Meétodos de campo medio autoconsisten-
te

Los modelos de campo medio autoconsistente resuelven el problema de
muchos cuerpos de manera variacional, en espacios de configuracién gran-
des y con interacciones nucleares que son "universales” (vélidas a lo largo
de toda la tabla de niucleos). Precisamente esta tltima caracteristica es la
que hacen mas atractivos a este tipo de modelos, ya que permiten explicar
diversas propiedades en regiones nucleares diferentes.

En esta aproximacion se utiliza el método de HFB como punto de partida
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2.3 Métodos de campo medio autoconsistente 23

para obtener las funciones de onda que van a ser de tipo producto. Para me-
jorar esta aproximacion, se toma la extensiéon a métodos mas alla del campo
medio (beyond mean field, BMF) en la que se restauran las simetrias rotas a
nivel de campo medio mediante técnicas de proyeccién y se permite la mezcla
de configuraciones (symmetry conserving configuration mixing, SCCM) den-
tro del método de la coordenada generadora (generator coordinate method,
GCM).

Estas teorias se encuentran explicadas con més detalle en el siguiente capitu-
lo, ya que son el marco tedrico de los calculos que se presentan en esta
memoria.

Como ya se ha mencionado en la introduccién de este capitulo, en fisica nu-
clear los modelos microscopicos que estudian los nicleos atémicos se basan
en la descripcion del ntcleo como un conjunto de nucleones que interactiian
entre si donde, ademads, es necesario determinar qué tipo de interaccién nu-
clear vamos a considerar.

Para hallar dichas interacciones se puede proceder de dos maneras diferentes.
Por un lado, se puede renormalizar la interacciéon nucleén-nucleén desnuda
teniendo en cuenta que en el medio nuclear no todos los estados finales son
accesibles en la dispersion de dos nucleones, sino que la mayoria de ellos se
encuentran ocupados por otros nucleones. Este es el enfoque del método de
Brueckner y la matriz G [37] o de los potenciales Vj,,x 0 SRG [38].

El otro enfoque diferente seria la utilizacién de interacciones fenomenolégicas
efectivas que se usan en las aproximaciones de campo medio autoconsisten-
tes (SCMF). Principalmente se tienen tres grupos de célculos SCMF depen-
diendo de la interaccién usada; interacciéon de Gogny [39,40], interaccién de
Skyrme [41-44] o campo medio relativista [45]. En este caso se propone una
forma funcional para la interacciéon que dependa de un conjunto de parame-
tros que se ajusten para describir propiedades macroscépicas en una region,
lo més amplia posible, de la tabla de ntucleos. Dichas interacciones tienen,
como caracteristicas principales, una parte de corto alcance repulsiva suave
y, ademas, deben respetar las mismas invariancias que cumple la interaccion
nuclear desnuda, con la excepcion de que estas interacciones, en general, in-
cluyen un término dependiente de la densidad nuclear para que se respete la
propiedad de saturacién de la fuerza nuclear. Por otra parte, normalmente
no incluyen un término tensor explicito.

Podemos distinguir entre varios tipos de interacciones efectivas fenomendlo-
gicas.

= Las interacciones de Gogny (descrita en la subseccién 2.3.1) y Skyrme
son las mas usadas en calculos de campo medio, son no relativistas y
su dindmica viene gobernada por la ecuaciéon de Schrodinger.
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24 Modelos de estructura nuclear

= Interacciones relativistas Este tipo de interacciones se utilizan den-
tro de la aproximacién de campo medio relativista (relativistic mean
field, RMF). En el caso de tener un campo medio relativista, la dindmi-
ca del sistema va a venir gobernada por una densidad Lagrangiana efec-
tiva que cumpla las simetrias de QCD (quantum chromodynamics), a
partir de la que se deducen las ecuaciones de movimiento aplicando
las expresiones correspondientes de teoria cuantica de campos. En este
caso, son los valores de las constantes de acoplamiento de la densidad
lagrangiana los que son ajustados como parametros libres a los datos
experimentales de los nicleos, asi como a las propiedades de materia
nuclear como en el caso no relativista.

2.3.1. Interaccion de Gogny

Dedicamos esta seccién a la interaccién nuclear efectiva de Gogny [18,
39,40] que es la que se ha utilizado a lo largo de este trabajo y por ello es
tratada con especial atencion.

La interaccién de Gogny entre dos nucleones tiene un término central de ran-
go finito (Brink-Boeker [46]) que consta de la suma de dos gaussianas de corto
y largo alcance, un término de espin-6rbita a dos cuerpos y un término depen-
diente de la densidad, estos dos tltimos de contacto. Su expresion analitica
es:
2. _i-)? . . .
VL2 = e # (Wi + BiPo — H,P" — MiP”PT)
i=1
+iWrg (aa> 1 072>> kx6(m — )k +
ﬁ+6)
2

2 (1 + xofs(’) d(r1 —73)p” ( (2.1)
En esta expresion aparecen los operadores de intercambio de espin, po y
de isospin P7, la densidad p, los operadores de espin 7, las coordenadas de los
nucleones 7; y los momentos relativos k. El primer sumando de la expresién
(2.1) es el término central o de Brink-Boeker.
Se tienen como parametros ajustables: pi, Wi, B;, H;, M;, o, kg, Wrs v t3 y
tres parametrizaciones principales: D1, D1’ y D1S. Primero se ajustaron los
pardmetros para los casos D1 y D1’ [40,47]. El término de espin-érbita se
ajusta al valor del desdoblamiento de los niveles ps/2 — py/2 del 0. Para el
término dependiente de la densidad se ajusta la diferencia de energia entre
los niveles d3/; — p1j2 también en el 160. Los pardmetros de la interaccién
central que van con los operadores de intercambio se ajustan para reproducir
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2.4 Modelos colectivos nucleares 25

propiedades de los nicleos 190 y °Zr, mientras que las propiedades de apa-
reamiento se obtienen a partir de la informacién para los isétopos del estano.
Para la parametrizacién D1S [48] se tuvieron en cuenta, ademds de las pro-
piedades anteriores, otras referentes a la fisién, por ejemplo para el 24°Pu.
Existen otras dos parametrizaciones mas recientes que cabe destacar: DIN
[49] y DIM [50]. Con ellas se reproduce la ecuacién de estado de materia
neutrénica calculada con interacciones realistas y, con ello, se corrige la fal-
ta de energia de ligadura para ntucleos ricos en neutrones. Por otra parte,
mientras que todas las interacciones se ajustan a propiedades de unos pocos
ntcleos y con funciones de onda de campo medio, la D1M se ajusta usando
las soluciones del hamiltoniano colectivo 5D (BMF) y ajustando a todas las
masas de la compilacion AME (atomic mass evaluation) 2003 [51,52].

De las parametrizaciones que se encuentran para la interaccién de Gogny, la
mas utilizada y la que aqui se ha utilizado es la D1S. Sus valores se muestran
en la tabla (2.1).

p(fm) | W(MeV) | B(MeV) | H(MeV) | M(MeV)
1| 07 -1720.30 | 1300.00 | -1813.53 | 1397.60
1.20 103.64 -163.48 162.81 -223.93
« Zo WLS f}g
1/3 1 130.00 1390.60

Tabla 2.1: Parametrizacion D1S para la interaccion de Gogny

Si comparamos las interacciones de Gogny con la mencionada de Skyrme,
veremos que los términos de espin-orbita y dependiente de la densidad son
los mismos en ambas. Sin embargo, los términos de muy corto alcance de la
fuerza de Skyrme, son sustituidos por el término de rango finito de Brink-
Boeker compuesto por las dos gaussianas en el caso de Gogny. Esta es la
principal ventaja de la interaccién de Gogny sobre la de Skyrme, ya que este
término introduce de manera natural el apareamiento y lo hace, ademas, con
la misma interaccién con la que se obtiene la parte de HF, ya que esto es
esencial si se llevan a cabo cdlculos més alld del campo medio [53-55] [56,57].

2.4. Modelos colectivos nucleares

Esta cuestion puede ser estudiada desde otro punto de vista con este tipo

de modelos, en los que las excitaciones de baja energia son tratadas de mane-
ra colectiva. Ademas, los espectros de excitacion de nicleos par-par muestran
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26 Modelos de estructura nuclear

estructuras de banda caracteristicas que pueden ser interpretadas como vi-
braciones y rotaciones de la superficie nuclear.

La capa cerrada en un nucleo es muy estable, pero segin se suman mas
particulas, la estabilidad de ésta se ve reducida. Si se estudian las curvas de
energia potencial en funcion de la deformacién, a medida que se anaden mas
nucleones a una capa cerrada se pasa de una parabola, con centro en el caso
esférico, a curvas cada vez mas planas, hasta alcanzar un punto en el que el
nicleo prefiere una forma deformada, ya que el minimo ha abandonado la
configuracion esférica. De esta forma, segin nos alejamos de la configuracion
de capa cerrada, el nicleo va a mostrar, primero algunos rasgos caracteristi-
cos vibracionales del movimiento de ntcleos suavemente deformados y, mas
lejos, rasgos caracteristicos rotacionales del movimiento de nicleos perma-
nentemente deformados.

Veamos las caracteristicas principales que presentan cada uno de estos mo-
delos [58]:

a) Modelo colectivo vibracional:

= Se utiliza para ntcleos par-par con A < 150.

» El nicleo se presenta como una gota liquida vibrando a alta frecuencia,
cuya forma en promedio es esférica, con radio medio Ry

= La posicién instantanea de un punto de la superficie vendra dada por:

R(@, 12 t) =Ro |1+ Z a)\u(t)yku(ea 30) ) (2'2)

Al
donde X va a describir la multipolaridad.

» Cada modo de vibracién esta caracterizado por A. El modo fundamental
del modelo vibracional, son las vibraciones cuadrupolares, esto es, A =
2. Introduce variaciones en la forma de la superficie del ntcleo. Son
vibraciones entre formas esféricas, prolates y oblates.

= Los estados correspondientes a un modo A son estados propios de mo-
mento angular total J = X\ y con paridad bien definida P = (—1)*.

» En analogia al caso electromagnético denominamos fonon al cuanto de
energia vibracional.

» Kl espectro vibracional va a presentar la siguiente forma caracteristi-
ca. Si consideremos el efecto de anadir un fonén cuadrupolar al estado
fundamental, tendremos un estado 2*. Si suponemos una excitacién
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2.5 Modelos algebraicos 27

de dos fonones cuadrupolares, van a aparecer tres estados 07 27 47
con energias al doble que el primer estado excitado. Tres fonones cua-
drupolares generan estados con J = 0% 27 37 4% 67 con una energfa
triple.

= A partir de la estructura de niveles, el modelo vibracional predice he-
chos como que el estado fundamental 0" es esférico y que el cociente
E(4T)/E(27) ~ 2.

b) Modelo colectivo rotacional:

= El modelo rotacional se aplica a los llamados ntcleos deformados, es
decir, que no tienen una posicién de equilibrio esférica y se encuentran
alejados de las regiones de los ntimeros magicos. Region de 150 < A <
90 y A > 220; regién de tierras raras y actinidos; ntucleos de la capa
s-d, es decir, nicleos con nimero masico A ~ 24.

= La forma de los nticleos deformados puede expresarse como un elipsoide
de revolucion.

= El espectro rotacional tipico muestra una secuencia de estados con
energias proporcionales a J(J + 1). Al incrementar el niimero cudntico
J se esta aumentando la energia rotacional del nicleo, formando asf los
estados excitados una secuencia de bandas conocidas como bandas ro-
tacionales.

= Los nucleos deformados también presentan vibraciones de dos tipos:
vibraciones [ y 7y, dependiendo de la proyeccion K del momento angular
del fonon a lo largo del eje de simetria fijo en el cuerpo. Las vibraciones
B tienen K = 0, por lo tanto, conservan la simetria alrededor del eje,
mientras que las vibraciones v con K = 2 no.

2.5. Modelos algebraicos

En los modelos algebraicos se describen excitaciones colectivas de los
nicleos por medio de teorias de grupos y los conceptos de simetria rela-
cionados con ellos [59].

Un ejemplo de este tipo de modelos es el modelo de bosones interactuantes
(interacting boson model, IBM) [60], en el que las excitaciones colectivas de
nicleos par-par estan caracterizadas por un nimero fijo de N bosones de
dos tipos s y d con nimero cudnticos 0% y 2% respectivamente. Dentro del
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modelo IBM encontramos algunas extensiones. En el IBM-1 no se hace dis-
tincién entre bosones formados por neutrones o protones. El caso contrario
es el IBM-2 donde si se hace esta distincion.

El IBM ofrece una alternativa al modelo de capas, ya que para un nime-
ro elevado de nucleones y capas, el nimero de configuraciones posibles para
describir un estado puede llegar a ser tan alto que no sea abordable desde
esta perspectiva el problema. El IBM reduce el nimero de configuraciones
posibles truncando el espacio de Hilbert en el que se trabaja, obteniendo
asi un subespacio manejable. Para ello, se bosoniza el espacio teniendo en
cuenta parejas de nucleones (o huecos) de valencia con momento angular 0
(pareja S) y 21 (pareja D). Estas parejas pueden ser de protones o neutrones.
Los estados de parejas S y D estan relacionadas con los estados bosénicos s
y d. Dos nucleones con el mismo momento angular y diferente proyeccién se
acoplan para obtener un estado con momento angular cero y proyeccion cero
(pareja S), creando el bosén s, de igual manera para las parejas D, se acoplan
dos nucleones con distintos momentos angulares para obtener un estado con
momento angular 2 que se corresponde con el bosén d.

Formalmente, la estructura nuclear se reduce a resolver el problema de
N bosones interactuantes tipo s y d. El nimero de N bosones se cuenta pa-
ra la capa cerrada més cercana. Por ejemplo, para el nicleo 1°Cd, se tiene
7=48 y N=62. Para protones, el cierre de capa esta en Z=>50, por lo que se
tienen dos protones (huecos) de valencia que corresponden a un bosén. Para
los neutrones, la capa cerrada mas proxima es de nuevo N=50 por lo que se
tienen 12 neutrones de valencia, que se corresponden con 6 bosones, de modo
que N =T7.
Las 5 componentes del estado de bosones d, mas la componente del estado de
bosones s, definen un espacio vectorial de seis dimensiones. De modo que la
estructura algebraica para el IBM viene dada por el grupo U(6) del algebra
de Lie.
Este modelo se emplea en el estudio de ntucleos intermedio y pesados, per-
mite determinar momentos nucleares, niveles de energia y probabilidades de
transicion. Todos los observables fisicos van a ser derivados de métodos de
teorias de grupos y expresados analiticamente, partiendo de que el algebra
que lo describe es la dada por U(6).
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Capitulo 3

Método de HFB y teorias mas
alla del campo medio

3.1. Introduccion

El método de HFB es la teoria en la que se fundamentan los calculos que

se han desarrollado en este trabajo, por tanto este capitulo trata de expli-
car los aspectos fundamentales de esta aproximacién y de sus extensiones; la
restauracion de simetrias y el método de la coordenada generadora.
Para abordar este problema se postula un conjunto de funciones de onda
prueba y se hace uso del Principio Variacional para encontrar como solu-
cion al problema aquella que minimiza la energia del sistema, obteniendo
de esta manera una soluciéon aproximada a la energia y a la funcién de onda
del estado fundamental. Imponiendo condiciones de ortogonalidad, es posible
construir los estados excitados.

En un sistema fermiénico, como es el nucleo atémico, el espacio de fun-
ciones de onda mas sencillo que podemos tomar como prueba corresponde
a un determinante de Slater: un conjunto de productos antisimetrizados de
funciones de onda de una sola particula.

El método de Bardeen, Cooper y Schrieffer para el estudio de la supercon-
ductividad fue aplicado posteriormente al caso nuclear por Bohr, Mottelson
y Pines [61]. Mediante la transformacién de Bogoliubov, se pasa a considerar
el nicleo como un conjunto de cuasiparticulas independientes que no inter-
actuan entre si. De esta manera, se tiene una funcién de onda producto, esto
es, un producto antisimetrizado de funciones de onda de una cuasiparticu-
la.Esto, permite incluir correlaciones de apareamiento [62] que van a ser
capaces de describir fenémenos como la superconductividad o superfluidez
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nuclear.

La generalizaciéon de ambos métodos, HF y BCS (Bardeen Cooper Schrieffer),
da lugar a la teoria de Hartree-Fock-Bogoliubov (HFB). En el modelo HFB
se tratan al mismo nivel las correlaciones nucleares de largo alcance (correla-
ciones particula-hueco), que vienen descritas por el campo de Hartree-Fock
(T") y las correlaciones que vienen de la parte de corto alcance de la fuerza
nuclear (correlaciones particula-particula) y que vienen dadas por el campo
de apareamiento (A).

3.2. Ecuaciones de HFB

Sean clT, ¢; los operadores de creacion y destruccion de particulas donde

el subindice [ se refiere a los niimeros cuanticos que caracterizan a un estado
de un oscilador arménico. Estos operadores cumplen que:
a) El operador destruccién aplicado sobre el vacio de particulas da cero.

al-)=0. (3.1)
b) El operador creacién aplicado sobre el vacio de particulas crea el estado .

=) = 10). (3.2)

Se conoce con el nombre de transformacién de Bogoliubov, a la transfor-
macién lineal mas general entre los operadores de creacién y destruccién de
particulas [63] que va a definir los operadores de cuasiparticulas:

Bl =" U] + Vixar, (3.3)
l

donde [, k son indices que van desde uno hasta la dimensién del espacio

de configuracién M. Los operadores ﬁ,i Bk son los operadores de creacion y

destruccién de cuasiparticulas. Estos, cumplen las relaciones de anticonmu-
tacion:

{61,8;} = 04, (3.4)

{61, 8]} = {8:.8;} = 0. (3.5)

La transformacion (3.3) puede expresarse en términos matriciales [58] como:

(§)=(2~£)(;):W(;). (3.6)
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3.2 Ecuaciones de HFB 31

Las relaciones de conmutacién expresadas en (3.4) (3.5) imponen la unita-
riedad de W.
WWT=WWw =1, (3.7)

de forma que la expresién (3.6) es invertible:

()-(L5)(8)w(2) oo

Las matrices de la transformaciéon U y V deben satisfacer por tanto, las
siguientes propiedades:

Uv+viv=1r uvut+vvt=1, (3.9)
UVv+Vviu=0 UVi+vUT =0. (3.10)

El teorema de Bloch-Messiah [58,64] demuestra que la transformacién
general de Bogoliubov puede ser reducida a tres transformaciones sucesivas
de la siguiente forma:

1) Un transformacién unitaria D entre operadores de particula, que permite
refinar una nueva base (base candnica):

al =Y Dyc]. (3.11)
l

En esta nueva base, la matriz densidad (p) va a ser diagonal.

2) Una transformacién de tipo BCS (llamada transformacién especial de
Bogoliubov):
OJ}; = ukaL — UrQag

apr = ukc% — Vpag, (3.12)

donde oz/,TC y ag+ son estados de de cuasiparticulas canénicamente conjugados.
Dentro del marco de la teoria BCS, ambos estados conjugados estan relacio-
nados mediante la simetria de inversion temporal.

3) Una transformacién unitaria ”C” de las cuasiparticulas entre ellas mis-

mas:
Bl =" Cuaf. (3.13)
l
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La funcién de onda prueba |®) que describe al sistema nuclear dentro de la
aproximacién de HFB viene dada a través de las cuasiparticulas asi definidas,
del siguiente modo:

@) =[] 8-, (3.14)

donde |—) es el vacio de particulas. La funcién |®) es el vacio de quasiparticu-
las, ya que verifica:

Brl®) =0V k=1,..M. (3.15)

El hamiltoniano, en representacion de los operadores de particula, que
describe el sistema tiene la forma:

. N 1 _
H=T+V = Ztllbcjlcb + Z Z ’0111213140;10;[2014013, (316)

l1lo l1l2l3ly

donde definimos:
a) El término cinético:

tii, = (1|Tle) (3.17)

b) El término potencial antisimetrizado:

Vlylalaly = Ulhlalsly — Vllalals (318)

vlllglgl4 - <l1l2|f/|l3l4> (319)

Teniendo en cuenta la transformacién de Bogoliubov (3.6), se puede escribir
el hamiltoniano (3.16) en la base de cuasiparticulas [58]:

= Ho+ Y HY, B B+ > (HELBLBL + hee) + Hiw,  (3.20)

l1l2 l1<l2

donde las matrices Hf]d se refieren a la parte del hamiltoniano con ¢ operado-
res de creacién de cuasiparticulas y d de destruccién. La parte h.c se refiere a
la parte hermitica conjugada y se denota como H;,; al conjunto de contribu-
ciones H3', H'3 H* H% y H?2 provenientes de la parte a dos cuerpos del
hamiltoniano y que representa la interaccion entre mas de dos cuasiparticulas.

Los coeficientes Uy, v Vi, de la transformacion de HFB no estan definidos
de manera unica por la funcién de onda HFB. Por ello, es til definir dos
cantidades importantes que van a determinar la funcién |®) de forma univoca
y que viene dadas por sus elementos de matriz en la base de particulas:
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a) La matriz densidad: py = (®|ch¢|®) = (V*VT)y

b) El tensor de apareamiento: sy = (®|cyc|®) = (V*UT)y,

Aplicando el Teorema de Wick! [65], se puede demostrar que el valor esperado
de cualquier operador evaluado entre las funciones de onda |®) se puede
expresar en funcion de la matriz densidad y del tensor de apareamiento. En
particular, la energia de HFB, tomando la expresion del hamiltoniano de la
ecuacién (3.20), viene dada por:

(®|H|®) (@lcl,cn|?) (@], cf, cracss |B)
E 1 1 02 .
HFB — q)‘q) Z il ™ T+ 14\ q)‘q) l lzll Ul1l2l3l4 <q)‘q)>
102434
(3.21)
El primer término, correspondiente a la Energia cinética:
cI)|T\cI) (I>|cl | @)

(I)|(I) Z Wl ™ 51/ (I)|(I) Ztlll2pl2ll - ( P) (3'22)

)

Haciendo uso del Teorema de Wick, se toman las contracciones de los opera-
dores de particulas definidas para las funciones de onda correspondientes y
se desarrolla la parte correspondiente al potencial:

(e[V|®) (®cf c] cr,cr,|®)

RCDEE Z Unitalals (D) -
l1l2l314
X e D

_ E = T T T T T
- 1 Ullalsly (Cllclgcl4cls =, G4, + Cllclsclgch)

lilalsly
1
— *
- Z E Ul1l2l3l4("{lllg"{l3l4 = Plaly Pisly T Plsiy Plals (323)
lilalsly
A continuacién definimos el campo de Hartree-Fock como:
Flllg - E El1l2l3l4pl4l27 (324>
Ioly

y el campo de apareamiento:

I —_
Alll2 = 5 Z Viylol314 Riyly - (325)

Ialy
La expresion de la Energia potencial sera:

(@[Vie) 1

D) éTr(I’p — ArY)). (3.26)

IEn el apéndice B se puede ver con més detalle estos desarrollos.
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La expresion final para el valor esperado del hamiltoniano entre estados HFB
se expresa como:

1
Enrp = Tr(tp + a(Fp — AKY)). (3.27)

La energia de apareamiento, que va a ser una magnitud relevante en nuestro
estudio, se corresponde con el término:

1
Epair = —§Tr(A/<;*). (3.28)

Una vez definido el espacio variacional como las funciones de onda (3.14)
que son vacio de los operadores de cuasiparticulas, tenemos que encontrar
los operadores ﬁ,i Bk que minimizan:

(2|H|P)

B(9) = “gray

(3.29)

Esto es equivalente a encontrar las matrices U y V' de la transformacion de
HFB que minimizan el funcional anterior. Sin embargo, la parametrizacion
de la energia en términos de estas matrices estd sujeta a las relaciones de uni-
tariedad expresadas en (3.7). Por ello resulta més adecuado hacer uso de una
parametrizacién de la funcién de onda de HFB dada por el Teorema de Thou-
less [66]. Dicho Teorema nos dice que dada una funcién de onda arbitraria
de tipo producto |®) que sea vacio de de unos operadores de cuasiparticulas,
podemos construir otra funcién de onda producto |®(Z)) no ortogonal a la
primera y relacionadas mediante la matriz antisimétrica Z de la siguiente
manera:
1 f o
(%)) = <¢|¢(Z)>8Xp{§ZZwﬁl Py }|®) (3.30)
w

Zyy son variables independientes, que son usados como parametros variacio-
nales. Se aplica el principio variacional (§E = 0) a la ecuacién (3.29) para
las funciones de onda prueba. La solucién |®) de la ecuacién variacional que

queda, se corresponde con Z; = 0. De modo que la expresion que se obtiene
es:
0E(Z)
— =0 3.31
(557, 0

Evaluamos ahora la expresiéon anterior en Z = 0, sustituimos el hamilto-
niano por su expresion en la base de cuasiparticulas 3.20 y hacemos uso del
Teorema de Wick [58]:
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(8E(Z)) _ w 1 ZHoz <©|ﬁl16l26262'|¢> (3.32)
Z=0

il
0z (|P) 24 (D|D)
1
=3 > H (kinOrt, — Ok, Okry) = —Hpp =0 (3.33)
1l
Por tltimo con la propiedad 0% = (0%)T = —(0*)T podremos decir que

los operadores de cuasiparticulas que buscamos, son aquellos para los que:
HY, =0. (3.34)

Conviene destacar en este punto que la transformaciéon de HFB (3.3) viola
las simetrias del hamiltoniano. Esto permite aumentar el espacio variacional
para lograr una solucién mas cercana a la exacta, pero manteniendo la es-
tructura de funcién de onda producto. En particular, hace que la funcién de
onda |®) no conserve el nimero de particulas. Ademds, en general, también
se viola la simetria rotacional, por lo que, en principio, ni el momento angular
ni el nimero de particulas van a ser buenos nimeros cuanticos del sistema
HFB. Es preciso, entonces, imponer la condicion subsidiaria de que en pro-
medio el niimero de particulas sea el correcto. Esto se consigue introduciendo
una ligadura, con lo que en lugar de minimizar el funcional definido por el
hamiltoniano H, se minimiza el funcional definido por:

H =H—-MN—-X\;Z (3.35)

siendo los A los multiplicadores de Lagrange que van a ser obtenidos impo-
niendo las ligaduras de que los valores esperados sean igual al niimero de

particulas correctos: R
(®IN[®) = Ny (3.36)

(D] Z|®) = Z, (3.37)

Pero ademés, este caso es generalizable y es posible suponer que hay més
ligaduras para cualquier operador Q; de interés como la deformacién cua-
drupolar, las fluctuaciones en el nimero de particulas, etc. De este modo el
hamiltoniano méas general vendra dado por la expresion:

H' =H- AN =XzZ =) X, Qi (3.38)

con la condicidn:

(D|Q:|®) = o (3.39)
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Este es denominado método de HFB con ligaduras o constrenido (constrained
HF'B). Este hamiltoniano es el que debe introducirse en la expresién que va
a ser minimizada (3.29). Este método permite explorar la dependencia de la
energia como funcion de ciertos observables. Por ejemplo, si se constrine en
el operador Qz = QQO, podremos definir una superficie de energia potencial
como funcion de la deformacion cuadrupolar. Esto es extensible a otros gra-
dos de libertad.

Con este hamiltoniano, la condicién (3.34), queda ahora de la forma:

H? = H* — AyN? = 2,727 = " 2,02 =0, (3.40)

Ademads, dado que esta condicién sélo determina las dos primeras transfor-
maciones (3.11,3.12) del Teorema de Bloch-Messiah [64], (ya que la ecuacién
variacional que hemos estudiado no se ve afectada por la transformacion entre
los operadores de cuasiparticulas) es habitual imponer la condicién:

HY = B4, (3.41)

para determinar la tercera transformacién (3.13). Ej, son las energias de cua-
siparticula (ver més abajo). Esto nos permite deducir las ecuaciones de HFB
en forma matricial en la base de quasiparticulas:

H/ll H’20 E, 0
( _H/QO* _H/ll* ) - ( 0 E. ) : (342)

Transformado a la base de los operadores de particulas ¢ y c', las ecuaciones
anteriores toman la forma:

(B ) ()-m(i) oo

W=t+T+00=Av=Az=> X\ (3.44)

donde:

Debido a que el hamiltoniano depende explicitamente de la densidad, apa-
recen en las ecuaciones de HFB los campos (0I') que son los denominados
términos de reacoplamiento (rearrangement terms).

Son ecuaciones no lineales cuya resolucién se ha hecho de forma autocon-
sistente con el método del gradiente [67]. Asi, finalmente encontramos la
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solucion al problema variacional con ligaduras planteado y encontramos las
funciones de onda |Pprp(qe;)) con las que se pueden hallar valores esperados
de operadores de interés fisico. En particular, se pueden definir superficies de
energia potencial dando valores a las ligaduras qq;

3.3. Ruptura de las simetrias.

En el caso general de tener bastante particulas y fuertes correlaciones, el
correcto tratamiento de las simetrias no es una cuestién trivial; por un lado
queremos describir el sistema con funciones de onda sencillas que sean tipo
producto de las de una quasiparticula. Por otro lado, no es posible tener en
cuenta importantes correlaciones si no se permite a las funciones de onda que
rompan ciertas simetrias.

Las correlaciones de tipo particula-hueco, que son las responsables de causar
deformaciones y las correlaciones particula-particula, que son las que des-
criben propiedades superfluidas, son correlaciones que van a ser incluidas a
nivel de campo medio. En la secciéon anterior hemos visto cémo son trata-
das dentro de la teoria HFB. Esto nos llevé a encontrar funciones de onda
de tipo HFB |®), que si bien eran capaces de incluir correlaciones entre las
particulas, no eran autoestados de los operadores de simetria. En concreto
la aproximacion de campo medio de HFB, violaba la simetria de invariancia
bajo rotaciones (asociadas al campo I') y del ntimero de particulas (asociada
al campo A). Ademds cuanto mayores son estas correlaciones, mejor va a ser
la aproximacién de campo medio. En analogia a la fisica del estado sélido
se suele decir que el sistema experimenta una transicién de fase, como por
ejemplo, a un estado deformado o superfluido donde las simetrias estan rotas.
Esta aproximacion, si bien es capaz de describir algunas magnitudes nuclea-
res, presenta limitaciones [58]:

a) No es posible describir ciertas propiedades nucleares tan importantes co-
mo las probabilidades de transicién o los espectros de energia, dentro de una
aproximacion pura de campo medio.

b) La transicién de fase, por ser el nicleo un sistema finito, se da de forma
gradual entre la zona en la que se conserva la simetria y la zona donde se
produce una débil ruptura y finalmente se encuentra la simetria fuertemente
rota. En el caso de un débil ruptura de la simetria el método HFB no describe
el problema de forma correcta.

Por estos dos motivos se hace necesario ir mas alla de la aproximacién de
campo medio y restaurar las simetrias rotas a nivel de campo medio. Para
ello, se hace uso de las técnicas de proyeccion [68-70] que van a ser desarro-
lladas en la seccién 3.4. Ademas, la aproximacién de campo medio, ya sea en
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su formulacion mas sencilla o inicamente con restauracion de las simetrias,
no es capaz de incluir mezcla de configuraciones para explicar, por ejemplo,
mezclas o coexistencias de forma. Por eso, es necesario usar el método GCM.
Podemos ver con més detalle el mecanismo de ruptura de simetrias en la
aproximaciéon de campo medio. Para ello, establecemos una analogia entre
las magnitudes que describen la transicion que se da de esférico a deformado
(parte izquierda de la tabla 3.1) y otra que nos lleva desde un nticleo normal a
uno superfluido (parte derecha de la misma) tomando como referencia el mo-
delo pairing plus quadropole [58]. Este modelo incluye de la forma més simple
posible los aspectos fundamentales de las teorias de campo medio para siste-
mas nucleares de muchos cuerpos. El potencial promedio esférico promedio es
aproximado mediante un potencial de oscilador arménico esférico. La inter-
accion residual debera contener dos partes. La primera contribuira al campo
I' y dard cuenta de las deformaciones mas alla de la simetria esférica. La otra,
contribuira al campo de apareamiento A. Ambas partes de la interaccion se
eligen de tal forma que el potencial residual resultante sea separable.

Aspecto S. Rotacional S. N° Particulas
Tipo de onrrelacwnes Cuadrupolares De apareamiento
que incluyen
Existe i nimo et la Deformado Superfluido
superficie de energia
Operadores Qu = kYo k) ehew  A=GY,.,cien
En la aprox. de campo [ﬁ, j] _ 0 [ﬁ, N] _ 0

medio violan

Aprox. de Cranking H—-wJ, H — AN

La solucién |P)
esta caracterizada por la

orientacién dada por los Euler: € = (o, 3,7) Gauge: ¢
angulos
Las soluciones estan
degeneradas con R(Q) = e—iad: o—iBJy ,—inJ. Gly) = oioN /2
respecto a rotaciones
Proyectores Py o< fD}GM/(Q)R(Q)dQ PN & 027r ei‘f’(N*N)dgo

En el estado deformado,
se dan el espectro de

excitacion (J #0) nes de apareamiento.

Tabla 3.1: Comparacién entre la simetria rotacional y la simetria del nimero de
particulas.
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Una vez descritas las consideraciones generales sobre simetrias y su rup-
tura dentro de la aproximaciéon de campo medio, pasamos ahora a explicar
los métodos de proyeccion que nos van a permitir restaurar dichas simetrias
rotas (seccion 3.4).

3.4. Restauracion de simetrias. Métodos de
Proyeccién

Hemos visto que las funciones de onda tipo HFB, si bien son capaces de
incluir correlaciones entre las particulas, no eran autoestado de los operado-
res de simetria. Sin embargo, por las propiedades de la interaccién nuclear
el hamiltoniano de muchos cuerpos, es invariante bajo un nimero de opera-
dores de simetria. Esto es, el hamiltoniano conmuta con el correspondiente
operador de simetria S:

[H,5] =0. (3.45)

De modo que las funciones de onda exactas si que deben ser autoestados
simultaneamente del hamiltoniano y de los operadores asociados a las si-
metrias. Por lo tanto, como ya se mencioné en la secciéon anterior, para obte-
ner una descripcién mejor del niicleo asi como para obtener valores de dife-
rentes observables en el sistema de laboratorio es necesario el uso de métodos
mas alla del campo medio para restaurar las simetrias rotas.

Para restaurar las simetrias vamos a utilizar los llamados métodos de
proyeccion, en los que las funciones de onda de campo medio se proyectan
sobre el subespacio de autofunciones de S mediante la aplicacion del operador
PS.

P|o) = W), (3.46)
donde P? es el proyector con el valor S bien definido y |¥9) es la nueva

funcién de onda, que si es autoestado de S.

Desde el punto de vista variacional, esto es, si el problema variacional es
resuelto antes o después de la proyeccién, vamos a distinguir entre dos tipos
de proyeccion:

= Proyeccién después de la variacién (projection after variation, PAV):
Se determinan las funciones de onda resolviendo las ecuaciones de HFB
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constrenidas 2. Para ello, se minimiza la expresion:

(D@D H — AN — Ay 7 — 7G|(D)

@D -0

5EHFB(Q_> =94 ( )
|2()=IHFB(q))

(3.47)

Una vez obtenida la solucion a la ecuacién anterior se realiza la pro-
yeccién y se obtienen las superficies de energia proyectadas:

(Purs(q)|(P%)'HP®|®urp(q))
(Purp(q)|(P)1 P Purp(q))

B (@) = (3.48)

» Variacion después de la proyeccién (variation after projection, VAP):
Otra posibilidad, es llevar a cabo una proyeccién VAP [56,71,72]. En
este caso se van a proyectar primero las funciones de onda |®°(q)).
Estas son usadas como espacio variacional y se minimiza la energia

proyectada:
PSJo(@) = PIVAP(@) = [°() 3.49)
oo (@@ | @@le@) _
5EVAP@‘5< @) @) )> o
(3.50)

Con las funciones de onda halladas, definimos superficies de energia
potencial VAP:

(Pyap(Q)|(P°) H PS|Dyap(q))
(Pvap ()] (P?) TP ®yap(q))

Egap(q) = (3.51)

Si el proyector utilizado es el del nimero de particulas (3.52), estaremos en
un caso PN-VAP (particle number variation after projection), en el que las
funciones de onda intrinsecas seran de este tipo en lugar de las vistas con
anterioridad y que eran de tipo HFB.

El método VAP ofrece una solucién mejor dado que el funcional que se mi-
nimiza al incluir las simetrias se parece mas a la energia exacta del sistema.
El precio a pagar es un mayor coste computacional, pues hay que evaluar la
energia proyectada a cada paso que damos hasta obtener la convergencia en

2Donde expresamos con ¢ el conjunto de ligaduras que se va a contemplar. Obtendremos
la energia como funcién paramétrica de las ligaduras
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lugar de proyectar una sola vez. Ademas, la energia proyectada es mas sensi-
ble a la aparicién de divergencias [53-56, 73] por ello se requiere la inclusién
de todos los términos de la interaccion.

En este trabajo se han utilizado dos proyecciones; la proyeccion a buen ntime-
ro de particulas para restaurar la simetria rota con el mismo nombre, y la
proyeccién a buen momento angular para restaurar la simetria de invariancia
bajo rotaciones.

3.4.1. Proyecciéon a buen nimero de particulas

Tal y como se ha descrito en la seccion anterior, es posible construir a
partir de funciones de onda de campo medio una funcién de onda que sea
autoestado del niimero de particulas proyectando al subespacio de funciones
de onda con el niimero de particulas correcto [58] (particle number projection,
PNP). En este caso el proyector viene dado por:

1 2w

pN e? =N, (3.52)

:%0

donde ¢ es la variable canénica conjugada de N en el espacio gauge asociado.
O bien, puede ser escrito en notaciéon de Dirac:

PN = "|aN)(aN|, (3.53)

donde |Na) es un conjunto completo de funciones de onda ortogonales con
numero de particulas igual a N y caracterizadas cuanticamente por «. El
proyector P cumple las siguientes propiedades:

(PN = PN (3.54)

(PM)? = pY (3.55)

~ Si desarrollamos un estado de HFB (|®)) en la base de autoestados de
N y aplicamos el operador proyeccién que acabamos de describir podemos
construir un autoestado de N:

|B) = AaklaNi) (3.56)

Donde se cumple: )
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Proyectamos ahora:

1 2 o Aa 2 ) R
PN|(I)> _ %/ GW(NN)FI))d(p:ZQ—ﬂ_k/ efupNeupN|aNk>d(p:
0 ok 0

1 27 )
D (3.58)
ak 0
donde:
1 2 )
L [T ey sy (3:59)
0

De modo que al final se obtiene:

PN|@) =) " AaxlaN) = |[@V) (3.60)
Nl@V) =) " AunN|aN) = N|@Y). (3.61)

Es usual la representacion del proyector a buen nimero de particulas en

la forma discreta dada por Fomenko [74], en lugar de en la forma integral

dada por (3.52).
L

1 s
P =23 oW g = 2 (3.62)
=1

Nos estamos refiriendo a un proyector general PV que actia sobre N
particulas. Sin embargo, aunque se haga como simplificacion, hay que tener
en cuenta que las funciones de onda de un ntcleo atémico tenemos dos ti-
pos de fermiones, protones y neutrones, por lo que nuestra funcién de onda
proyectada sera de la forma:

[@Y4(q)) = PYP?|2()) (3.63)

Estamos interesados en obtener el valor esperado del hamiltoniano con
funciones de onda proyectadas a buen nimero de particulas [69]. En funcién
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del tipo de proyeccion que se haga, tendremos un caso HFB+PNP (si la pro-
yeccién es PAV) 6 PN-VAP (si la proyeccion es VAP). La energia vendra dada
por la expresion:

(@M@ HI1OY (@) ((q)|HPNP?|2())
(PV2(q)| 2% (q)) (B(QIPYPZ|D(7))

Si desarrollamos los proyectores que aparecen en la ecuacion anterior obte-
nemos para el numerador:

ENA(g) = (3.64)

(()| PN P?|9(q)) = Z Z

<¢(@)|6i¢lNN?i¢lZZ|ﬁ|¢(®> d ei‘PlNNei‘PlZZ o 3.65
<(I)<g’)|€i‘plNN€i‘PlzZ‘q)<(j’)> < (C‘T)| | (C‘T)> ( )

Lo mismo aplicado en el denominador, que se corresponde con la norma
queda:

(@(Q)|PVP?|®(7)) = Z Z e Nemie 2 (@ () e N 122 0())

LNl zz1

(3.66)

Las funciones de onda de HFB que estamos utilizando, por la simetria de
la tercera componente de isospin, se pueden escribir como un producto de
protones y neutrones:

12(7)) = |2n(7)|P2(7))- (3.67)
Por lo que con esta factorizacién la norma queda:
(@(q)| P P?|2(q)) = n”(@)n" (q). (3.68)
siendo cada una de ellas, n”(q):
W@ = L3 e (e (), (369)
=1

donde o
(B()e= (7)), (3.70)

43



44 BMF

es calculada mediante la férmula de Onishi [75]:

NI

n(q, 1) = (7@ det[To (7, 1, )]) (3.71)
En esta expresion se ha introducido:
Tn(q, ¢1,) = 2= VHQV (@) + e U QU™ () (3.72)

Las matrices V'(¢), U(q) son las correspondientes a la transformaciéon de HFB
definidas en la ecuacién (3.6).

El numerador, lo desarrollamos de manera andloga a la explicada al prin-
cipio de este capitulo, en la que obteniamos la energia de HFB y definfamos
los campos de Hartree-Fock y de apareamiento, obtenemos en este caso en
funcion del angulo gauge:

) 1 3 1w )
HY (pg1,) = Tr (tp(q, o) + =G 0 )p(T 1) — §A10(q, R (7 %))

2
(3.73)
La energia de apareamiento queda ahora definida como:
1 . -
Epaie(g1,) = Tr <—§A1°(q, )6, %)) (3.74)

Se ha definido la matriz densidad el tensor de apareamiento y los campos de
Hartree-Fock y apareamiento en funcién de dicho dangulo® como:

pu (T 01,) = (€9 V(@) T (0. 01, )VH(D)ur (3.75)
KT 1) = (€9 V(@) T (4 00)UT (@) (3.76)
KNG o) = = (7P UM (@ T5' (T V(D) (3.77)
LG en) = Twewpiy (. 41,) (3.78)
kK’
" I S
AY(G, @1,) = 3 > Buwwry (. 01,) (3.79)
kK’

3En el apéndice D se puede ver un desarrollo andlogo a este con més detalle
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3.4.2. Proyecciéon a buen momento angular

En esta seccién nos vamos a encargar de la invariancia bajo rotaciones
que ha sido rota por el método de HFB, implementando una proyeccién a
momento angular (angular momentum projection, AMP). El proyector nos
va a dar, en este caso, funciones de onda que van a ser autoestados de los
operadores de momento angular J? y J.. Viene definido como [58,76]:

Z al Pl (3.80)
2J 1
Pl = + / Dy (Q)R(Q)dS, (3.81)

siendo: Q = («, 8,7) los dngulos de Euler; Di;,,, () las matrices de Wigner
y R el operador unitario de rotacion.
En la notacion de Dirac el operador se expresa:

P = |JM){JK]|. (3.82)

Este operador tiene las siguientes propiedades:

(PZ\J4K)T = PI%Mv (3.83)
Pl e Pl = 07110 kunn, Piiirco- (3.84)
Ademés, se cumple que [77]:
R(Q) = e emi0ve i (3.85)
Q)|JM) = Z D ()T M) (3.86)
Dipar () = (JM'|R(Q)JM) = e d3; 0 (8)e™™, (3.87)

siendo dy,,,+(3) las matrices reducidas de Wigner

En este trabajo, nos restringiremos al caso axial. Una funcién axialmente
simétrica con autovalor K = 0 cumple que:

J|®) = K|®) =0 — e 7|®) = |D) (3.88)

Ademas se consideraran las simetrias autoconsistentes de paridad y simplex:
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~

11®) = |®) (3.89)

e ™ |®) = |®) (3.90)

Al igual que en el caso del operador a buen nimero de particulas, com-
probamos que la funciéon de onda proyectada es autoestado de los operadores

de momento angular {J2 J } Si desarrollamos la funcién de onda (|®)) en

la base de autoestados del momento angular total y de la tercera componente
del mismo:

= Y Awyar|a M) (3.91)
aJ' M’

Aplicamos el proyector:

2J +1 . .
P/M|®) = Z aj AOJJ,M,W / Dix Q) R(Q) |t M) dS
KaJ' M’

2J +1 . /
= Y A [ Dl@) DY @)ar g
KaJ M'M"

(3.92)

En la expresién anterior, hemos sustituido R(€2) por su expresién (3.86) y
empleamos ahora que las matrices de Wigner cumplen la siguiente propiedad:

* 87'('2
/D]{/} M’ D]{ng’<Q)dQ = 27 + 15J1J25M1M25M{Mé- (393>

Con lo que obtenemos:

2J +1 8r?
PJM (b = J AO( / ) — 5 ,5 ,5 . JM//
| > KO{J/ZMM” 457 J'M {72 2J +1 JJ'OMM' OK M |a >

Finalmente obtenemos lo que queriamos demostrar:

PM®) = " af Aajxlad M) = o] M)|®7) (3.94)

El estado |®) va a ser el estado en el sistema de referencia intrinseco dado por
el campo medio, mientras que |®/M) va a ser el estado correspondiente en
el sistema de laboratorio. Este se obtiene a partir del primero construyendo
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2J + 1 estados con buen momento angular total mediante la suma de to-
das las posibles rotaciones del estado intrinseco pesadas por las funciones de
Wigner y para obtener el estado final, se toma la combinacién lineal de todas
las proyecciones sobre el eje Z del sistema intrinseco con sus correspondientes
pesos, (3.81 y 3.95).

Si escribimos las funciones de onda como:

7MY =" g Pl | ), (3.95)
K

la expresion para el valor esperado de un operador escalar bajo rotaciones
entre estados proyectados sera:

e @M@DIORM @) T R A B(DIOPL (@)
)= "BV D) S sh sl P ey O

2k 9K i i
donde se define O . y 175 como:

Ok = (@IOP (@) = L5 [ Dl ((@@IOR@)2(@)de
(3.98)
Moo = @DIPLcl (@) = 25 [ Dl Q@@ IRE@)2(@)de
(3.99)

Tendremos que calcular los solapes del operador (D(Q)|ORQ)|®(7)) y de la
norma (B(q)| R(2)|(q)).

Si asumimos que tenemos funciones axialmente simétricas con K = 0,
veamos lo que se obtiene para el solape del operador de la expresién (3.96)
(nétese que el desarrollo del solape de la norma sera andlogo):

2J 1
(q)JM((j)‘O(I)JM + /DKK/ (j)\Oe zJZa szB ZJZW|(I>((jj>dQ
(3.100)
Considerando las identidades:
_zﬁJy _ ez Jz zﬂjxe—i%jz’ (3101)

Jaa= | " o / " senpdg / T, (3.102)
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la integral de la expresién anterior nos queda:

(@M (|08 (7)) = 2L

| senpdi@otaas. (@109)
0
Donde, para simplificar, se ha llamado:

(@(D)|Oe1D()) = 0(q. B) (3.104)

Por las simetrias impuestas (3.88, 3.89, 3.90) es posible reducir el intervalo
de integracion de § a la mitad, esto es, [0, 7).
Ademas se ha utilizado las propiedad:

doo(m — B) = (=1)"di (B), (3.105)

Considerando todas estas propiedades, se puede demostrar que las integrales
solo van a ser distintas de cero en el caso en el que el momento angular sea
par [78].

Finalmente, el valor esperado de un operador O vendr4 dado por la expresion.

. /2 .
@U@0 (@) = T+1) [ 50+ (1T d53(8) sens o(d. )5 =

w/2
=(2J+1) /0 dJs(B) senB o(q, B)dp. (3.106)

En esta expresién observamos que la energia sélo va a estar bien definida en
el caso en el que el momento angular sea par.

Al igual que se ha hecho en el andlisis de la proyecciéon al nimero de
particulas se puede particularizar dicho operador como el hamiltoniano y
desarrollar el calculo de los solapes como se explicé en dicho apartado. Este
calculo se puede ver en el apéndice D, donde se hace parte de este desarrollo.

3.4.3. Divergencias y término dependiente de la den-
sidad

La expresiéon de la energia proyectada puede contener divergencias [56]
que aparecen en la matriz densidad y en el tensor de apareamiento. Su pro-
cedencia viene de dos fuentes:

Por un lado es necesario considerar todas y cada una de las contribuciones de
la interaccién a los campos de HF (I") y apareamiento (A). Esto es importan-
te ya que normalmente se suelen despreciar algunos términos de intercambio
(Fock). Ademas, es necesario tener la misma interaccién en los canales de HF
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y apareamiento para que se produzca la cancelacion de estas divergencias.
La segunda fuente tiene su origen en el termino dependiente de la densidad
de la interaccién, estudiada ampliamente [54,56, 79, 80].

La fuerza de Gogny (2.1) incluye un término dependiente de la densidad, que
tiene la forma:

—

Lt 2) , (3.107)

VDD:tg <1+$0P0) 5(7"? —T_é)pa ( 9
con @« = 1/3 y g = 1. En teorfas de campo medio, esté claro qué densidad
debemos emplear en el término (3.107). Sin embargo, en teorias proyectadas
y, en general, en teorias més alla del campo medio, tendremos que tomar una
prescripcion de dicha densidad.

La contribucion del término dependiente de la densidad a la energia proyec-
tada vendra dado por:

NITr =(AT &N d (6|Vip [p(F eieong
. _ @V ][0 >:/ #(@Vpo [p(r)] €] >7 108

(@¥|2%) / dp(dleieV|)

donde [p(7)] indica la dependencia de Vpp con la densidad p(7). La densidad
depende de los estados con los que se calcula, de modo que a nivel de campo
medio solo aparecen elementos diagonales, por lo que la densidad espacial
va a estar determinada de forma univoca, mientras que para los otros casos
tendremos que encontrar una prescripcion que cumpla ciertas condiciones.
Las mas importantes son la que la energia sea una magnitud escalar y real.

Se tienen dos prescripciones diferentes [81,82] para la densidad; proyec-
tada o mixta.
a) Prescripcién 1: Densidad proyectada.
Es la que se utiliza en el caso de proyeccion al nimero de particulas donde
se proyecta en el espacio gauge asociado al niimero de particulas y no hay
ninguna dependencia en las coordenadas espaciales. Esta eleccion esta jus-
tificada si partimos del hecho de que en la aproximacién a campo medio la
energia viene dada por:

o @A) 5,109

(P(Q)2(D)

y se asume que Vpp depende de la densidad: (®(q)|p|®(7))/(P(q)|P(7)) Sin
embargo, si la funciéon de onda que describe el sistema nuclear es la funcion
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de onda proyectada |®%), el elemento de matriz que tenemos que calcular
en la expresién (3.108) es de la forma:

(@M ()| Vool 27 (@)
(2N (27N (q)

Por tanto, parece razonable utilizar en Vpp la densidad proyectada. Se define
como:

(3.110)

g @I @) _ (@@l Pe(a)
=0 e gerg)  e@ea Y

Con el operador densidad definido como:

GRS IGEE) (3.112)

b) Prescripcién 2: Densidad mixta.
En el caso de restaurar simetrias de tipo espacial, simetrias asociadas a 7
como la proyeccién al momento angular a la paridad, esta es la prescripciéon
que debe ser considerada. En este caso, se parte del hecho de que para evaluar
la expresién (3.108) hay que calcular elementos de matriz entre funciones de
onda producto diferentes, |®) y |®’), relacionadas por:

|B') = V| ) (3.113)
De modo que para calcular elementos de matriz de la forma:

(®|Vpp|D')

T (3.114)

elegimos la densidad (p,(7)) la densidad mixta como:

(©(@)A1%(@)
@@ (@) (3115)

para ser usada en Vpp. Esta aproximacion es conocida como prescripcion de
la densidad mixta.

() = p,(7) =

Con respecto al momento angular cabe decir que como ya se vio en la
seccion anterior el hamiltoniano es invariante bajo rotaciones y, por tanto, la
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energia intrinseca es independiente de la orientacion de la funcién de onda
intrinseca, esto es:

(2(9)|H|2(7)) = (@(DIR"(HR(2)|2(9) (3.116)

Sin embargo, para la interaccién que estamos usando, el término dependiente
de la densidad, en general, no va a conmutar con el operador de rotaciones.
Se puede demostrar [78], que con la prescripcién de la densidad espacial
apropiada, el término dependiente de la densidad se va a poder expresar
como:

(@) = (O@I(P™) Vpp PP [0(0)) =
N / DY @@ Vo RE@[O@)d2  (3.117)

KK’

El término dependiente de la densidad debe cumplir como requisito, ademas
de que la energia sea real, que no transporte momento angular [83], es decir:

(O 02N ()| ()| 0745 )
<(I)J1,M1,Z,N<q’) |(I)J2,M2,Z,N<q—')>
(O 02N ()| ()| 074N ()

= 0.7, 7500, M, (@M ZN ()| G ML ZN () (3.118)
La prescripcion mixta para el momento angular tiene la forma:
OZN ()| RN(Q)pR(Y)| 27N
V0, gr) = @R @R @) 19

(2N ()| RNQ)R(Y)| 97N (9))

Para concluir; para evitar las divergencias en nuestros calculos se ha te-
nido en cuenta:

= Todos los términos de intercambio de la fuerza de Gogny han sido
incluidos.

= Para el término dependiente de la densidad se toma la densidad pro-
yectada en el caso de la proyeccion al niimero de particulas, ya que esta
prescripcién no presenta divergencias [56] mientras que la prescripcién
mixta si puede presentar problemas.

= La prescripcion de la densidad mixta es la que se ha utilizado para el
caso de la proyeccién al momento angular [78] y en el método de la
coordenda generadora [84].
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3.4.4. Proyeccién simultanea a N y J

Tratamos ahora el caso en el que se restauren de forma simultdnea las
dos simetrias estudiadas anteriormente (particle number angular momentum
projection, PNAMP). De modo que las expresiones anteriores de las subsec-
ciones 3.4.1 y 3.4.2 deben ser generalizadas. Para facilitar su lectura, varios
de los desarrollos tedricos han sido recogidos en forma de apéndice D.

En este caso, si se restauran la simetria del nimero de particulas y la
simetria de invariancia rotacional, las funciones de onda tendran ahora la

forma:
PP PN PZ(0(g)) — |9V 4N () (3.120)

La energia proyectada esta definida por la expresion:

<(I)NZJM(®‘[A{‘®NZJM<®>

E (q_) - <(I)NZJM(q_')|(I)NZJM(Cj’)>

(3.121)

Desarrollamos el numerador (hamiltoniano) y el denominador (norma) de la
expresion para la energia proyectada:
Para la norma se obtiene:

NVEI() = (VAT (@) ONEIM () — (@ ()|(P) P (0N ()
=Y sk / D (@ (@) RQ)| DV (@), (3.122)

KK’

donde:
(@Y ()| RPN () = n™ (7, Qn™(, Q). (3.123)

Como ya se vi6 en la expresion (3.69):

1 L

n(q,Q) =7 S e N (@(g)| RN () (3.124)

plr-=1

La expresion general de hamiltoniano es:
HNZJ((D <(I>NZJM q~»)|H|(I>NZJM(—)> <(I)NZ((]~»)|(PJM)THPJM|(I>NZ(CT)>

— S gl 2J+1/DKK, O(Q)|HRQ)PYP?|0(7)dQ  (3.125)

KK’
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Sin embargo, como se ha visto mas arriba, estas expresiones se reducen
considerablemente cuando se imponen las simetrias que estamos considerando
(3.88, 3.89, 3.90). Tendremos que evaluar el solape proyectado que aparece
en las integrales:

(@ (@) HRQ)PY P?0(9)) = (®()| e #» P P?a(q))  (3.126)

Si seguimos lo que se hizo de manera particular para cada operador en (3.65)
y (3.103), finalmente llegamos a la expresién de la energia proyectada para
funciones axialmente simétricas:

gy _ o senSdfs (D) (d, (g, 5)dB 5127

2 senBdlz (3)nN# (g, B)dp

Teniendo en cuenta que las funciones de onda son simétricas bajo simplex,
las expresiones de la norma n™¥%(q, 3) y de la energia eV4(q, 3), se pueden
escribir en funcién de J, en lugar de J, y quedan definidas como:

NG B) = 5 30 S e et e et Nt p )

IN Iz
(3.128)
1 . . AP .
NG 0) = =5 D D e eV (@) e eV etaa g )
In Iz
(3.129)

3.5. Meétodo de la coordenada generadora

El estudio de la restauracién de las simetrias, mostrado en la seccion ante-
rior, se completara con la implementacién de la mezcla de configuraciones. Es
posible ir un paso adelante en el marco de teorias mas alla del campo medio
y conseguir funciones de onda que incluyan mas correlaciones. Para ello, se
usa el Método de la Coordenada Generadora (GCM), a la que esta dedicada
esta seccion.

Se conoce como aproximacién SCCM (Symmetry Conserving Configuration
Mizing) a aquella que tiene en cuenta la conservacion de simetrias junto con
la mezcla de configuraciones [78,85-87].

El método de la coordenada generadora nos permite tratar con grados de
libertad colectivos de una forma sencilla. En esta aproximacion la funcién de
onda colectiva GCM se expresa como una combinacién lineal de los estados
de la base con diferentes valores de las coordenadas colectivas elegidas. Para
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la parte de la interacciéon de largo alcance se toman como variables colectivas
la expansién multipolar (cuadrupolar, hexadecupolar, octupolar, etc...) de
los operadores de la deformacion. Para la parte de corto alcance de la in-
teraccion se toma como coordenada colectiva el gap de apareamiento. Cada
grado de libertad que se considere, incrementa la dificultad del calculo, sobre
todo desde el punto de vista computacional ya que se incrementa el tiempo
de céalculo. Para nuestros medios técnicos el niimero de horas de CPU supone
casi un factor 100 (97.3) entre un cdlculo en el que se considera una variable
colectiva frente a uno en el que se consideren dos. Por lo que sélo los grados
de libertad mas relevantes van a ser tenidos en cuenta. Lo mas frecuente es
considerar de forma explicita solo el grado de libertad asociado a la defor-
macién cuadrupolar, ya sea en calculos axiales o triaxiales. Sin embargo, se
ha analizado extensamente que las correlaciones de apareamiento juegan un
papel importante en la descripciéon de observables nucleares [88]. De hecho,
como ya ha sido mencionado, a nivel de campo medio para tener una buena
descripcién debemos trabajar en el marco de la aproximacién HFB [89] en
el que se incluyen las correlaciones monopolares y cuadrupolares al mismo
nivel. Por tanto, parece razonable tomar fluctuaciones de los valores medios
de ambas variables dentro del marco de teorias mas alla del campo medio
(BMF).

El método GCM se basa en la mezcla de configuraciones. Consiste en cons-
truir una combinacion lineal de muchas funciones de onda de tipo producto.
Las funciones de onda que van a ser mezcladas y que van a construir los esta-
dos GCM, son las que resultan de proyectar simultdneamente a buen niimero
de particulas y buen momento angular los estados intrinsecos que se obtenian
con el método de HFB o PN-VAP y que dependian de una o dos variables
colectivas. Tanto la eleccion de la base como de las coordenadas generadoras
van a ser importantes a la hora de implementar el método y obtener una
mejor solucién del sistema.

Se propone como soluciéon prueba del sistema la siguiente combinacién de
estados:

N2y / Y|V (g di (3.130)

donde:

» |[UNZ75) es la funcién de onda mezcla. El superindice o = 1,2,3, ...
etiqueta los distintos estados que se pueden tener para un mismo valor
de momento angular, siendo o = 1 los estados yrast. Asi, para un nucleo

par-par el estado fundamental vendra determinado por J = 0,0 = 1.

» |ONZ7(7)) son las funciones de onda intrinsecas HFB o VAP, proyec-

54



3.5 Método de la coordenada generadora 55

tadas simultaneamente a buen ntimero de particulas y buen momento
angular, definidas con anterioridad en la ecuacién (3.120).

» fNZI(7) es el peso de las funciones generadoras. Son pardmetros que
van a ser determinados de forma variacional resolviendo la ecuacién

SE(UNZI () =0 .

= ¢ Es el conjunto de coordenadas generadoras. En este estudio, se ha
considerado un generador unidimensional y otro bidimensional, como
serd explicado en capitulos posteriores.

Desarrollamos ahora el método para el caso de un generador que dependa
del conjunto de coordenadas {g} .

La resolucién de la ecuacién variacional para la determinacion de los pesos
(fN479) nos conduce a una ecuacién de autovalores generalizada ya que los
estados en los que se hace la combinacién lineal de la ecuacion (3.130) no son
ortonormales. Es conocida como la ecuacion de Hill-Wheeler (HW) [58,90,91]:

/(HNZJ<q—»’ q_}) o ENZJJNNZJ(_:q_;)> fNZJo<q_;)dq_; — O’ (3131)

donde se ha definido el solapamiento de la norma y del hamiltoniano respec-
tivamente:
NNZJ(q—; q/) — <(I>NZJ((j)|q)NZJ(q/)>’ (3.132)
HNZJ(@&}) _ <(I)NZJ<(T)|[:[|(I)NZJ q_}>> (3133)
Ademas, la energia se ha definido como:

NZJox NZJ(7 )\ fNZJo( d_’d_;
onzse _ SN @R (G 0 7 (d) dgdg (3.134)

[ PRI QNN ) [N () il

Si el conjunto de coordenadas generadoras es discretizado en un conjunto
finito de puntos, tenemos:

(wNHIe) =3 N (q) P PN PP 2()), (3.135)

q

la integral de la ecuacion HW (3.131) acaba siendo una suma:

S (@2 @ |9V () — BV (@M @[V () £ () =

7

q

(3.136)

25



56 BMF

Para abordar la resolucion de la ecuaciéon de HW, es necesario transformarla
en un problema de autovalores normal siguiendo los siguientes pasos:
1-. Diagonalizacion del solapamiento de la norma:

D (@@ () ur P (@) = P P (@), (3.137)

ql

2-. Construccion de una base natural, ortonormal:
Se construye a partir de los autovalores (n{f Z7) distintos de cero y sus corres-
pondientes autovectores, obtenidos al diagonalizar la matriz del solape de la

norma en el paso anterior, los estados naturales:

kNZTY = Z —qu;) N2 (), (3.138)

con nih?’ > e. Estos estado naturales si son ortogonales por construccién
y van a servir de base en la que va a ser desarrollada la funcién de onda
original (3.130). Debido a que las funciones de onda proyectadas |®N%7(q))
no son ortogonales, habra autovalores n?7 de la matriz de los solapes de
la norma que van a ser cero, por lo que no deben ser tenidos en cuenta en
la construccién de los estados naturales. De modo que es posible estudiar la
convergencia de las soluciones a medida que se incluyen estados naturales con
autovalor de la norma mas pequeno en el desarrollo de la funcién de onda

(3.139).

3-. Expansion de la funcion de onda en la base natural:

|\IINZJ0> — Zg]iVZJO-|k:NZJ>- (3139)
k

El ntimero de estados de la base natural que son tenidos en cuenta para la
expansion de la funcién de onda, es en cierta medida arbitrario ya que depen-
de de hasta qué valor del autovalor de la norma correspondiente queremos
usar. Si el autovalor es muy pequeno, entonces estaremos introduciendo mu-
chos estados en la base natural y dependencia lineal en nuestra base. Si en
cambio sélo tomamos unos pocos estados, no estaremos aprovechando todas
las posibles correlaciones que estan incluidas en el conjunto de funciones ori-
ginal. Debemos alcanzar un compromiso entre ambas situaciones. Se estudia
la energia en funcion de los estados de la base natural que se tomen y cuando
se alcance un valor mas o menos constante de la misma (plateau) ese seria el
valor definitivo. También hay que imponer la condiciéon de ortonormalizacion
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de los estados correspondientes a un mismo J. Si se escogen distintas bases
naturales para calcular estados con el mismo momento angular pero distinto
o, entonces estos estados dejan de ser ortogonales (y eso no puede ser). Pa-
ra distinto J, son ortogonales por construccién con lo que si se puede coger
distintas bases naturales.

4-. Resolucién de la ecuacién de HW en la base natural:

Siguiendo las anteriores consideraciones, es posible escribir la ecuacion de
HW como una ecuacién de autovalores habitual.
Z(k’NZJ|H|]€/NZJ>g]]€\/TZJO— :ENZJUQIJCVZJO—. (3140)
k/
Por tanto, resolviendo la ecuacién (3.140) obtenemos las energias ENZ79
los coeficientes gi'#7? que determinan las funciones de onda GCM.

y

5-. Calculo de la funciéon de onda colectiva:
Resolviendo la ecuacién anterior se obtienen las energfas EN?79 y los coefi-
cientes ¢g'?7? que determinan los pesos de las funciones de onda de GCM.
Con estos coeficientes es posible escribir la funciéon de onda colectiva:

GNZJO(Q_) — Z[ NZJ(q—; q_})]l/Z NZJO’ ZgNZJU NZJ q—*) (3141)

7

q
La funcién de onda colectiva al cuadrado estd normalizada a 1 (3, [G(q)]* =
1) y da los pesos de cada coordenada intrinseca en la funcién de onda GCM.

6-. Célculo de los valores esperados:

Resuelta la ecuacion de autovalores, es posible también determinar los valores
esperados de cualquier operador.

<\I/NZJJ|OA|\I/NZJ’ ! ZgNZJo* k:NZJ|OA|k/NZJ’>g]J€\,TZJ/a’.
kk!
(3.142)

El elemento de matriz entre los estados de la base natural sera:

NZJ, NZJ
TLk TLk,/

(3.143)

N ez dddd
(N |ONAT) = / (™ (@) (@Y ()| 010N (@) ul ™ () — =g
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Si se quieren calcular valores esperados con funciones de onda GCM pro-
yectadas a buen nimero de particulas y buen momento angular, es necesario
tener en cuenta que las expresiones de la seccién 3.4.4 deben ser reescritas
(Consultar apéndice D), pues para una proyeccion PNAMP los valores bus-
cados son los elementos diagonales de la matriz a diagonalizar ahora. Esto
supone que los solapes, antes calculados entre estados (®(7)|®(q)), ahora son
entre estados ((q)|P(¢)) .

Es importante en este punto hacer la siguiente aclaracién: Cuando se
restaura sélo la simetria rotacional, proyectando funciones de onda tipo HFB
solo a buen momento angular y no se incluye la proyecciéon a buen nimero de
particulas [78,83,92,93], para que en promedio las funciones de onda tengan
el nimero de particulas correcto se debe hacer la siguiente correcciéon a la
ecuacién de HW y a la energia proyectada [84]:

> (@ @[H]07(¢)) - B (@ (@0 (@) S7(d) =0, (3.144)

-
!

q

con

(@ ()| HY |97 () = (@7 ()| H'|2” (7))
—aw (@7 @M@ (@) = N) = Az (@7 (@)|2197(4) - 2).
(3.145)

donde Ay Az son los multiplicadores de Lagrange promediados que han sido
obtenidos al resolver las ecuaciones de HFB y N y Z los valores correctos
del ntimero de neutrones y protones respectivamente. No obstante, el valor
esperado del niimero de neutrones (protones) en la funcién de onda GCM no
es en general Ny (Z)). Esto se discutira en detalle méas adelante (5.2).
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Capitulo 4

Estudio de las fluctuaciones de
apareamiento en el 2y

4.1. Introduccion

En este capitulo se presenta el método con el que se van obtener los resul-
tados que seran presentados mas adelante, tomando como ejemplo, el nicleo
2Ti. Se introduce la nueva coordenada y se tratan los detalles m4s técnicos
de los calculos relacionados con este hecho. Ademas, para ilustrar como es
un calculo completo, se muestran las superficies de energia potencial y se
discuten los espectros de excitacion para este ejemplo.

Para los cédlculos numéricos ha sido utilizada la fuerza de Gogny depen-
diente de la densidad y de rango finito con la parametrizaciéon D1S (capitulo
2).

Los célculos tomando dos grados de libertad implican gran tiempo de célcu-
lo computacional por lo que han sido restringidos a 8 capas mayores de
oscilador arménico [94] y, como ya se ha mencionado, a formas axialmente
simétricas. Las simetrias autoconsistentes de inversion temporal, paridad y
simplex (e~*/+) también han sido impuestas.

Se estudian tres aproximaciones diferentes que han sido explicadas en el
capitulo 3 y se pueden ver, a modo de sintesis, en la tabla 4.1.
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60 22Ti

Nombre de la f.o intrinseca |¢) calculada P
aproximacion: minimizando:
HFB+AMP (D|H|D)/(D|D) P/
HFB+PNAMP (D|H|D)/(D|D) PJPN
PN-VAP+PNAMP (D|HPN|®D)/(D|PN|D) PPN

Tabla 4.1: Aproximaciones utilizadas para calcular las funciones de onda P|®)
de la ecuacién (3.130). En el nombre de la aproximacién las primeras letras antes
del signo de suma indican el método (HFB o PN-VAP) con el que se han calcu-
lado las funciones de onda intrinsecas. Las letras posteriores, indican las simetrias
que se han restaurado (AMP o PNAMP). Las expresiones particulares para cada
aproximacioén correspondientes al cdlculo de la energia se pueden encontrar en el
apéndice (C).

4.2. Superficies de energia potencial como fun-
cién de la deformacion

Es sabido que la coordenada mas relevante que debe tomarse es la defor-
macién cuadrupolar axial [17], ésta viene dada por el operador [58]:

Qa0 = Z(k‘\rngdk’)chk/, (4.1)
k!

siendo Y3g la componente del arménico esférico de orden 2. Definimos:

q = <¢|Q20|¢>- (4.2)

Una vez que hemos definido ¢, se aplica el formalismo detallado en el
capitulo 3; se van a generar funciones de onda intrinsecas, |¢), tipo HFB
para valores diferentes fijados de la deformacion resolviendo la ecuacién va-
riacional:

SE'[p(q,)] =0, (4.3)
,@e)
E - <(I)‘(I)> )‘Q<¢|Q20‘¢>7 (4'4)

donde A, es el correspondiente multiplicador de Lagrange para el operador
definido en la ecuacién (4.2) y @ es la funcién de onda proyectada. Para ilus-
trar los diferentes aspectos de un célculo HFB y uno PN-VAP con diferentes
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4.2 Superficies de energia potencial como funciéon de la deformacion 61

proyecciones, dentro de las tres aproximaciones dadas en la tabla anterior, se
estudian las superficies de energia potencial (potential energy surfaces, PES)
a lo largo de la direccién ¢, figura (4.1). La expresién més general para las
superficies de energia potencial representadas en esta figura, sera:

o _ (@Y (q)| H|2V (g))
(N2 (q)|@N27(q))

(4.5)

Para la variable ¢ se ha definido un intervalo que se extiende desde los -220
fm? hasta los 400 fm?, con un intervalo de 20 fm?. De manera que tenemos
32 valores para la deformacién.

440 g T
-444 - .
°
S -448 - .
(NN
-452 |- .
- —— HFB+AMP
feeeess HFB+PNAMP
——  PN-VAP+PNAMP
456 Ll [ [ [ L

-120 O 120 240 360
q (fm?)

Figura 4.1: Superficies de energia potencial en funcién de ¢ para el °2Ti en
diferentes aproximaciones (ver leyenda) y para momento angular J = 0.

La curva que se encuentra a mayor energia se corresponde con el caso
HFB+AMP. La proyeccién a ambos operadores (HFB+PNAMP) hace que
se gane mas energia. Observamos que, en este segundo caso, el minimo oblate
se ve acentuado y desplazado al valor -80 fm? y que en la parte prolate
aparece una estructura de dos minimos (entre 80 y 120 fm?). Esto es debido
a que en un nucleo las correlaciones de apareamiento dependen fuertemente
de la cantidad de niveles de particula independiente (Nilsson) alrededor del
nivel de Fermi. Si la densidad de niveles es baja, el apareamiento sera débil
presentando minimos en las deformaciones en las que se produzcan cruces
de niveles. Es sabido que la aproximaciéon de HFB es buena en el régimen
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62 22Ti

de fuertes correlaciones de apareamiento y mala en el caso de débiles. Es
por ello que se hace necesario salvar este inconveniente implementando otra
aproximacion que arroje mejores resultados, llamada PN-VAP+PNAMP.
Dicha aproximacion es la que presenta la superficie menos plana de las tres
(minimos y maximos més acentuados) y con una barrera (distancia entre el
mé&ximo relativo y el minimo) mayor, ademas es la mas profunda de las tres.
Desaparece la estructura de dos minimos en la parte prolate, aparece sélo un
minimo relativo mayor que el que se aprecia en la parte oblate y se encuentra
un hombro prolate superdeformado.

4.3. Una nueva coordenada: 9

El apareamiento es una parte esencial de la interaccion nuclear. La parte
de corto alcance de la interaccion favorece energéticamente la formacion de
pares de nucleones acoplados a momento angular cero. El modelo de HFB
permite tratar al mismo nivel las correlaciones nucleares de largo alcance (co-
rrelaciones particula-hueco) y las correlaciones que vienen de la parte de corto
alcance de la fuerza nuclear (correlaciones particula-particula). Las primeras
estan relacionadas con la deformacion nuclear y, por tanto, se pueden estu-
diar mediante fluctuaciones en la variable ¢. Las segundas estan relacionadas
con el apareamiento y permiten explicar evidencias experimentales como son
entre otras [58]: que los estados fundamentales de los nicleos par-par tienen
un momento angular total igual a cero; sélo hay cuatro nicleos impar-impar
estables o el conocido efecto par-impar en la energia de ligadura. Como no-
vedad que se presenta en este trabajo, vamos a incluir otro grado de libertad
extra para estudiar las fluctuaciones de apareamiento.

En el espacio gauge asociado al apareamiento, la funcién de onda HFB
tiene dos grados de libertad colectivos. Por un lado el gap de apareamiento,
A, que nos da una medida de la cantidad de las correlaciones de aparea-
miento, esto es, la deformacion en el espacio gauge asociado [95]. Por otro,
el dngulo ¢ (3.52), el cual indica la orientacién del estado en este espacio.
Una minimizacién tipo HFB nos permite determinar la funciéon de onda y
por tanto A, mientras que el angulo ¢ no va a jugar ningin papel a nivel de
campo medio como se ha visto en el capitulo anterior. Si se toman combina-
ciones lineales apropiadas de las funciones de onda con diferente orientacién
en el espacio gauge se obtienen funciones de onda con el niimero de particulas
conservado [71]. Sin embargo, las fluctuaciones de apareamiento en torno al
valor de Ay que se encuentra para el valor minimo de la energia asociado a
funciones de onda con diferentes gaps de apareamiento no han sido estudia-
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4.3 Una nueva coordenada: 63

das con tanto detalle. De hecho, solo han sido consideradas en el marco del
hamiltoniano colectivo [96-99]; calculos con modelos microscépicos [100,101],
o con espacios de configuracién reducidos [102] o bien sin considerar proyec-
ciones [103].

Conviene aclarar que, en el marco tedrico en el que se desarrollan los

célculos, sélo se contempla el canal (7" = 1, T, = £1) de apareamiento, no
hay apareamiento en 7' = 0 ni en (T = 1, T, = 0), por lo que sdlo se tie-
ne apareamiento protén-protén y neutron-neutrén mientras que se desprecia
el apareamiento protén-neutrén. Para los casos en los que N ~ Z, los res-
pectivos niveles de Fermi son muy parecidos, y podria resultar interesante
incluirlo.
Si se considerara el apareamiento proton-neutrén, se violaria la simetria de
la tercera componente de isospin y seria necesario restaurarla con una pro-
yeccién. Ademas, se romperia la estructura de bloques del tensor de aparea-
miento por lo que la complejidad de los calculos aumentaria, motivo por el
cual esta cuestiéon esta fuera del ambito de este trabajo.

Para ver la relacién entre el gap de apareamiento con las fluctuaciones en
el nimero de particulas tomamos como punto de partida una de las aproxi-
maciones mas sencillas en la que esté presente el apareamiento, esto es, una
funcién tipo BCS:

IBCS) = H(Uk + vkchczj—) (4.6)

k

La minimizacion de la energia BCS va a dar como soluciéon los coeficientes
Uk, ug y el gap de apareamiento A = G ), uyvg. Esta cantidad va a dar una
medida de la deformacidn [95] en el espacio gauge asociado a N. Como el
hamiltoniano conmuta con N la variable ¢ va a medir la orientacién de A
en el espacio y puede tomar cualquier valor. Esta degeneracion en la energia
puede ser utilizada en la expresién (3.52) para construir los autoestados del
nimero de particulas PY|BCS). La funcién de onda incluye todas las fluctua-
ciones asociadas a ¢, sin embargo, se corresponde con un valor del gap fijo.
Una manera de considerar fluctuaciones a lo largo de A es generar soluciones
tipo BCS con diferentes gaps. Al resolver el conjunto de ecuaciones BCS,
encontraremos la solucién autoconsistente para la ecuaciéon del gap [58], que
serd |[BCS(Ay)) siendo Ay el valor mas probable para el gap.
Es necesario mencionar que con la interacciéon que se esta utilizando, no es
posible constrenir en A debido a que en dicha interaccién, los As dependen
del orbital, esto es, A;. De modo que es necesario encontrar un operador que
nos de una medida de las correlaciones de apareamiento y permita fluctuacio-
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nes en su valor. Para este propédsito se ha utilizado la desviacion cuadratica
media del ntimero de particulas, AN?. Esta cantidad es cero en ausencia de
las correlaciones de apareamiento y tiene valores grandes para sistemas fuer-
temente correlacionados.

En una interaccién de apareamiento esquematica monopolar, las fluctuacio-
nes en el numero de particulas estan determinadas por:

(AN)?) =4 ujop = AQZ%, (4.7)
k>0 k>0 "k

donde Ej es la energia de quasiparticula. Si la funciéon de onda es autoes-
tado del ntimero de particulas el valor AN? = 0. Esto se corresponde con
una solucién pura de HF que no contiene correlaciones de apareamiento. Si
trabajamos dentro de la aproximacién de HFB, la transformacion dada en la
expresiéon (3.3) no conserva el nimero de particulas pues mezcla operadores
de creacion y destruccién. Si la densidad de niveles alrededor del nivel de
Fermi es grande, lo que provoca una intensidad de la interaccién de aparea-
miento efectiva mas o menos grande, la solucién de HFB rompe la simetria
del nimero de particulas y las superficies de energia van a presentar un mini-
mo para un valor de AN? # 0. En caso contrario, la solucién de HFB colapsa
a la solucién de HF con AN? = 0.
Como queda reflejado en la ecuacién (4.7), se da una relacién de proporcio-
nalidad que existe entre el operador y el gap apareamiento:

A x ((AN)?)V2, (4.8)

De manera que (AN)? nos da una medida del contenido de apareamiento
presente en la funciéon de onda. Por tanto, parece razonable tomar este ope-
rador para estudiar las fluctuaciones de apareamiento.

Quedan asi definidos los dos operadores: Qso y (AN )2, que van a ser
utilizados a lo largo de esta memoria. Haciendo uso de la expresién (3.39)
aplicada sobre el nuevo operador, denotamos:

0= (¢l(AN)?[9)'2, (4.9)

siendo ¢ la coordenada que nos va a permitir generar funciones de onda con
diferente apareamiento. Para la otra coordenada, asociada a la forma del
ntcleo o deformacién, tenemos la expresion dada en la ecuacion (4.2).

De modo que q y é son los dos grados de libertad o coordenadas generadoras
a las que nos referiremos a partir de ahora. Llamaremos 1D a los calculos que
solo incluyan de forma explicita ¢ y 2D a aquellos que dependan simultanea-
mente de ¢ y 9.
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4.3 Una nueva coordenada: 65

Para justificar la conveniencia de la eleccién de la coordenada ¢ para
estudiar las correlaciones de apareamiento, representamos en la figura (4.2)
la energia de apareamiento, ecuaciones (3.28) y (3.74), en el plano (¢,d) para
funciones de onda intrinsecas tipo HFB (izquierda) y PN-VAP (derecha) para
el nicleo tomado como ejemplo, el 52Ti.
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Figura 4.2: Curvas equipotenciales del valor de la energia de apareamiento en
MeV en el plano (g, §) para los dos tipos de funcién de onda intrinseca que estamos
estudiando; HFB (izquierda) y PN-VAP (derecha) para el nicleo *2Ti

Si miramos la figura, observamos que el rango de energia de apareamiento
que estamos cubriendo es muy amplio, de 0 a 50 MeV, lo que nos va a
permitir tener funciones de onda con bajo, medio y alto apareamiento y
estudiar estos regimenes en cualquier nicleo, independientemente de cuantos
nucleones fuera de capa tenga a priori. Los calculos con una sola ligadura en
la deformacién (q) hacen que el grado de libertad de apareamiento se adapte
a la densidad de niveles alrededor del nivel de Fermi que se tenga para cada
q v quede restringido a un régimen determinado. Con esta nueva ligadura,
por tanto, se va a poder soslayar dicha limitacion, obteniéndose una relacién
entre la energia de apareamiento y el parametro delta casi independiente del
ntcleo en cuestién, como se puede apreciar en la figura (4.2).

Se obtienen lineas rectas que nos indican que la energia de apareamiento
crece de manera continua con § y que es independiente de ¢ para un § dado,
excepto pequenas oscilaciones para valores pequenos de delta. Esto coincide
con la simplificacién del sistema dada en la ecuacién (4.7). De este modo,
es posible justificar que la eleccion de la coordenada ¢ para constrenir en
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ella y generar funciones de onda con diferente contenido de apareamiento es
acertada.

La diferencia que se da entre los dos casos con diferentes funciones de onda
intrinsecas es, principalmente, que para un ¢ fijo las energias de apareamiento
son un poco mayores para el caso PN-VAP.

Por 1ltimo, estos cédlculos son posibles gracias al método de los gradientes
conjugados [67]. Dicho método, aplicado para resolver las ecuaciones HFB
y/o PN-VAP, hace que se puedan construir las funciones de onda intrinsecas
que minimizan la energia (HFB o PN-VAP) para valores a la carta de (g, 0)
incluso para funciones de onda cuya energia (HFB o PN-VAP) estd muy lejos
de la éptima (la correspondiente al cdlculo sin ligaduras).

4.4. PES 2D en diferentes aproximaciones pa-
ra el ?Ti

Una vez que hemos definido la nueva coordenada § y hemos visto las su-
perficies de energia potencial como funcion de la deformacion, extendemos el
analisis de las superficies de energia potencial visto en la seccién 4.2 al caso
en el que se incluye §. El uso de ligaduras nos permite definir superficies de
energia potencial en las direcciones marcadas por los valores esperados de
los operadores en los que se constrinen, en esta seccion, la deformacion cua-
drupolar axial ¢, y la fluctuaciéon de la energia de apareamiento, . Para este
caso en dos dimensiones las superficies de energia potencial vienen definidas
por la expresién general:

e (B2 (q,0) 1|97 (g, 5))
(@71 (q,6)| 777 (g.))

(4.10)

Tendremos, por tanto, la energia en el plano (¢, §) y en lugar de curvas,
tendremos ahora contornos equipotenciales, donde los valores para ¢ estan
en fm? y la energia en MeV. Las superficies de energia potencial en 2D para
el Titanio se pueden ver en la figura (4.3). Vamos a tener diferentes superfi-
cies para varias aproximaciones en funcion de las proyecciones que han sido
tenidas en cuenta y se va a analizar el papel que desempena cada una.

Al hacer un primer andlisis unidimensional de la energia, tomando como di-
reccion relevante el momento cuadrupolar, hemos obtenido para cada valor
de la deformacién el valor asociado de 9. Esta, es la solucién autoconsistente
que se puede ver representada en forma de puntos que siguen un camino per-
pendicular a las lineas equipotenciales. Vamos a tener dos tipos de lineas, una
para cada tipo de funcién de onda intrinseca, HFB o PN-VAP, que van a ser
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4.4 PES 2D en diferentes aproximaciones para el 2Ti 67

comunes a todas las aproximaciones que partan de la misma funcién de onda.

Si partimos del caso puramente HFB, panel (a), encontramos una regién
delimitada, en el eje de las abscisas por g= -60 fm? y g= 100 fm? y en el eje
de ordenadas por =0 y 0 = 2.5, dentro de la cual el potencial es blando
en ambas direcciones. Por blando queremos senalar que dado un valor de
0 (0 q) cuesta poca energia, alrededor de 1 MeV para la regién indicada,
desplazarnos a lo largo de ese valor.

Dentro del mismo intervalo de deformacién, pero para un ¢ entre 2.5 y 4,
la energia necesaria para aumentar las correlaciones de apareamiento del
sistema es mucho mayor, en torno a 10 MeV. Para valores mayores de delta
esa energia crece hasta superar los 20 MeV.

Si nos movemos dentro de la variable ¢ el resultado es andlogo; fuera del
rango indicado el potencial se vuelve duro (crece muy rapido con pequenas
variaciones de la deformacién) y llevar al niicleo hasta esas deformaciones es
muy costoso energéticamente.

N W b

—_

N W A~ O

—_

-120 0 120 240 360 -120 0 120 240 360 -120 0 120 240 360
q (fm) q (fm) q (fm?)

Figura 4.3: Superficies de energia potencial para el ®>Ti en el plano (g, §) para
diferentes aproximaciones. En lineas de trazos se pueden ver los contornos desde
0 hasta 3 MeV de uno en uno. En linea continua los contornos desde 4 a 10 MeV
en intervalos de 2 MeV. A la derecha se puede ver la escala de colores en MeV.
Cada superficie ha sido normalizada a cero de forma independiente con respecto
a su minimo de energia. Los puntos son la soluciéon autoconsistente tipo HFB o
PN-VAP, segiin corresponda.

A continuacion, proyectamos la solucién del caso anterior a buen niimero
de particulas. Para una proyeccién PAV encontramos la soluciéon HFB+PNP

67



68 22Ti

que se muestra en el panel (b). El potencial alrededor del minimo sigue sien-
do muy plano y éste se desplaza hasta 6 = 2.5 mientras que su energia baja
en 1.37 MeV.

Si se hace una proyeccién VAP encontraremos la solucién con funciones de
onda intrinsecas tipo PN-VAP, panel (c). Esta curva se parece a la anterior,
ya que también se observa el potencial desplazado a valores mayores de delta
y un minimo mas profundo. Que ambas curvas se parezcan, es debido a que
si a la aproximacion HFB+PNP se le permite explorar las fluctuaciones de
apareamiento, tendera hacia la solucién que se obtiene con la aproximacion
PN-VAP.

No obstante, en este caso, aparecen definidos dos minimos, uno mas profundo
prolate en (¢ = -40 fm?, § = 2.5) y otro oblate en (¢ = 60 fm?, § = 2.5). El
minimo absoluto es mas profundo, baja 2.54 MeV con respecto a la solucion
pura de HFB. Esto supone 1.17 MeV con respecto al tipo de proyeccién an-
terior, lo que remarca la importancia que tiene hacer la proyeccion antes de
la variacion. Se puede ver, como en este caso, la linea de puntos que marca la
solucién autoconsistente pasa exactamente por los minimos de la superficie.
Estas dos ideas son un indicativo de que la aproximacion PN-VAP es la ma-
nera correcta de aplicar el principio variacional, pues se minimiza la energia
calculada ya con el ntimero correcto de particulas. No sélo es importante
por el hecho de que el principio variacional sea mas efectivo encontrando la
energia sino que ademas, para otros observables relevantes pueden obtenerse
divergencias en los resultados por la falta de autoconsistencia.

Continuamos con la proyeccién del momento angular, para momento
J = 0. Empezamos proyectando la solucién HFB lo que nos lleva a la aproxi-
macién HFB+AMP que se puede ver en el panel (d). Dado que las funciones
de onda en esta aproximacion no dan en promedio el nimero de particulas
correcto, se ha aplicado a cada punto de la red la correcciéon al ntimero de
particulas dada por los multiplicadores de Lagrange. Esta correccién es dis-
cutida con més detalle en la seccién 6.3.1 en la que se va a analizar de manera
mas pormenorizada la proyeccién al momento angular.
Se observa que la solucién autoconsistente se encuentra por debajo de los
minimos.
La proyecciéon a momento angular hace que se encuentren dos minimos mu-
cho mas diferenciados que si solo se tiene en cuenta la proyecciéon al nimero
de particulas. Los efectos de una proyeccion AMP hacen que los potenciales
sean mas anchos y los minimos sean mas profundos y desplazados a valores
mayores de ¢. En este caso, ¢g= -80 fm? para el minimo oblate y g= 80 fm?
para el prolate.
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En los paneles (e) y (f) podemos ver los potenciales que guardan més
parecido entre si, correspondientes a las aproximaciones HFB+PNAMP y
PN-VAP+PNAMP respectivamente. El minimo oblado se encuentra ahora
en g= -80 fm? y el prolado en g= 100 fm2. Con respecto al otro grado de
libertad, los minimos se dan para § = 2.5, mientras que para el HFB+AMP se
encontraba en § = 2 lo que supone una diferencia de energia de apareamiento
de aproximadamente 4 MeV si miramos la gréfica (4.2). El hecho de que el
minimo para el caso HFB4+AMP esté en una region de débil apareamiento
tendra importantes consecuencias, ya que el momento de inercia asociado a
la dindmica del sistema va a ser mayor que los asociados a los que tengan
proyecciones al nimero de particulas (PN), dando como resultado un espectro
mas comprimido. La energia que gana el minimo absoluto de la aproximacién
PN-VAP+PNAMP con respecto al caso HFB es de 4.53 MeV y de 2.71 MeV
con respecto a PN-VAP.

4.5. Calculos GCM

Por tltimo, tras obtener los diferentes estados |®(g,d)) que van a con-
formar una base para cada aproximacion usada, se utiliza el método GCM,
explicado en la seccion 3.5. A lo largo de las siguientes subsecciones, conti-
nuamos estudiando los principales aspectos del método seguido para estudiar
las fluctuaciones de apareamiento, pero ahora con calculos que involucran el
método GCM.

La funcién de onda va a ser superposicion de funciones de onda con diferentes
valores de ¢ y 9.

N7 — / " 1o(a.6)Plo(q. 8))dads (4.11)

Resolviendo la ecuacién 3.131 obtenemos las energias £V479. Se muestran

los niveles GCM de energia etiquetados por ¢ = 1 para el fundamental y
o =2,0 =3, 0 =4 para los siguientes estados excitados.

4.5.1. Tamano de la base para la coordenada ¢

Lo primero que vamos a analizar, es el tamano apropiado que debe tener
la nueva base en la que vamos a trabajar. Mientras que el intervalo y el
tamano de la base cuando se considera ¢ como coordenada es conocido, pues
es la que ha sido, por lo general, considerada hasta ahora [14, 17, 78], la
inclusion de una nueva coordenada implica tener que conocer el tamano de
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la base idoneo asociado al grado de libertad ¢. En la seccion 4.3 ya se ha
visto la relacién entre ¢ y la energia de apareamiento, pero, aparte de los
extremos del intervalo, es necesario determinar el nimero de puntos que
es necesario tomar entre ambos. Tomamos el ntcleo *?Ti y resolvemos la
ecuacién (3.131) en la aproximacién PN-VAP+PNAMP tomando el intervalo
de ¢ fijo, desde 0 hasta 4.5, pero tomando diferente nimero de puntos (Ny)
entre dicho intervalo. Hemos tomado Ng= 3, 5, 10 y 19. De esta manera, se
va a determinar el tamano 6ptimo del conjunto de estados intrinsecos que se
usan para hallar los estados GCM, ecuacién (3.130).

-446 + -
L 0+3 1 ‘\\‘\Jr‘ 1
-448 . T 275
— [ .H—IO 2@ + ]
B -450 - L .
Ll +
452 - 14 ot
452 | | oo - 'o|
0+1
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2 4 6 81012141618 2 4 6 8 1012141618 20
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Figura 4.4: Energias de los estados excitados mds bajos de 07 y 27, unidos por
lineas, como funcién del nimero de valores de § (3, 5, 10 6 19) usados en el célculo
de la energfa con la aproximacién PN-VAP+PNAMP para el niicleo *?Ti.

En la figura (4.4) podemos ver las energias que se obtienen para los tres
primeros estados con momento angular J = 0y J = 2 en funcién de N;. Vien-
do los resultados, podemos concluir que tomar 10 valores entre 6 = 0 — 4.5
para cada valor fijo de ¢ es una buena eleccién que garantiza que la energia
tenga buena convergencia.

Por lo tanto, se va a definir una red bidimensional, en la que se van a desarro-
llar los calculos, que va a depender de dos coordenadas. La coordenada ¢, va
a variar desde -220 fm? hasta los 400 fm?, con un incremento de 20 fm?. Para
la coordenada que explora el apareamiento, 9, se van a tomar valores desde
0 hasta 4.5 con un incremento de 0.5. Esto supone un total de 32 puntos
para el caso unidimensional, en el que solo ¢ es considerado y una red de 320
puntos para el caso bidimensional.

Es importante aclarar que no sélo los extremos, de ambas coordenadas, han
sido seleccionados de manera que, para los diferentes niucleos que han sido
escogidos para el estudio, se obtenga convergencia en la energia, sino que
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ademas se garantice que las funciones de onda colectivas caigan hasta tomar
el valor cero dentro de ambos intervalos. Estas funciones de onda se pueden
encontrar en la seccién 8.3.

4.5.2. Convergencia para la energia

Existe otro problema de convergencia, pero en este caso inherente a la

resolucién de la ecuacién de HW (3.131). Esté originado, como ya ha sido
mencionado, por la no ortogonalidad de los estados |¢(g,d)) que forman la
base. Para resolver este problema se construye una base natural, ecuacién
(3.138), que si va a ser ortonormal, donde solo van a entrar los estados li-
nealmente independientes, quedando excluidos los que tengan un autovalor
de la norma cero o muy cercana a cero, que son los que serian linealmente
dependientes [58]. Sin embargo, el nimero de estados de la base natural que
van a ser tenidos en cuenta en la diagonalizacién de la ecuacion de HW es,
en cierto modo, arbitrario pues depende de un valor de corte que se debe
fijar para el autovalor de la norma que sea cercano a cero, por debajo del
cual esos estados naturales van a ser desechados. Determinar ese valor de
corte, no solo no es facil, sino que su dificultad se incrementa al aumentar el
tamano de la base, ya que se tiene una disminucién muy progresiva de dichos
autovalores hasta alcanzar valores muy pequenos. Para lidiar con este pro-
blema, se estudia la convergencia de la energia y la correspondiente funcién
de onda como funciéon del nimero de estados de la base natural, denotado
como (NE);.,,, que se toman en la diagonalizacién de la ecuacion de HW.
Para obtener convergencia en la energia, o en cualquier otro observable, se
pide alcanzar en una regién un valor mas o menos constante del mismo, lo
que se conoce con el nombre de plateaus [84]. La eleccién final de (NE),, es
aquel en el que se observa un plateau grande para todos los estados con el
mismo momento angular y para el cual las funciones de onda colectivas no
cambian. Para estados con el mismo J el valor de (NE),,, debe ser el mismo,
pues se debe garantizar la ortogonalidad de las funciones de onda correspon-
dientes.
Esta convergencia se puede ver en los plateaus de la figura (4.5) donde se ha
representado las energfas como funcién de (NE),,, para los estados 0" en un
célculo 2D (figuras de la izquierda) y 1D (figuras de la derecha) en las tres
aproximaciones en las que se trabaja. Las funciones de onda correspondientes
se pueden encontrar en las secciones 8.3 y 8.4.

Pese a las diferencias devenidas de la dependencia lineal de la base u
otros aspectos, vamos a obtener un comportamiento general muy parecido,
que puede verse en la figura (4.5), cuando los estados naturales son ordena-
dos por orden decreciente de los autovalores de la norma: para autovalores
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Figura 4.5: Energias de los 4 estados excitados 0T més bajos para el nicleo *2Ti
(OIL en cuadrados azules, 0; en circulos magentas, 0§L en asteriscos verdes y OI
en diamantes naranjas). Los paneles de izquierda se corresponden con célculos 2D
mientras que los de la derecha con los del caso 1D. Se puede ver la aproximacién
utilizada en cada caso en la leyenda de la figura.

grandes de la norma, la energia va disminuyendo de forma considerable hasta
alcanzar un valor, mas o menos constante, donde las contribuciones que se
obtienen al anadir un nuevo estado a la base natural son casi inapreciables.
Como el valor de las normas va a seguir decreciendo hasta hacerse casi cero,
se puede encontrar un punto en el cual la energia diverge a valores negativos
muy profundos.

En general, se va encontrar una mejor convergencia para aquellos estados
mas bajos en energia.

En particular para la figura (4.5), si miramos las graficas (a) y (b), encon-
tramos que para el caso 2D, por debajo de 30 estados naturales, estamos en
una zona en la que todavia no se encuentra la convergencia. Entre 30 y 90
estados, hay un plateau donde las contribuciones que se obtienen al anadir
mas estados, son muy pequenas. Para un niimero mayor de estados, en torno
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a 90 y 100 respectivamente para cada caso, se tiene una gran dependencia
lineal, las contribuciones a la energia son espurias y muy grandes. En este
punto, las funciones de onda también van modificar su estructura y, cualquier
observable que se intente calcular con este niimero de estados, va a tomar
valores no realistas.

Si nos centramos en los casos 2D, observamos plateaus relativamente gran-

des para las aproximaciones HFB4+PNAMP y PN-VAP+PNAMP lo que nos
indica que tenemos una buena convergencia, ademaés se puede establecer un
parecido entre ellos. Sin embargo, para el caso HFB4+AMP la situacién es
diferente; obtenemos peor convergencia pues los plateaus son peores, los ni-
veles estan mas amontonados entre si, incluso unos caen encima de los otros
y los plateaus son de menor tamano. El hecho de no proyectar al namero de
particulas acarrea mayor dependencia lineal y estados menos puros, esto es,
mas mezcla. Esto serd una constante para esta aproximacién que afectara a
diferentes propiedades y se mostrara mas adelante.
Si nos movemos a la derecha y observamos los plateaus que se producen para
los casos de 1D, veremos que la situacion es parecida, para el caso HFB+AMP
los plateaus que se encuentran son peores. Sin embargo, para el caso 1D te-
nemos una base diez veces mas pequena de modo que su dependencia lineal
es nula o muy pequena, por lo que este efecto es menos acusado que en el
caso 2D.

Este estudio de la convergencia se realiza para cada ntcleo que se calcula
y para los diferentes momentos angulares (J = 0, 2,4, 6) que son examinados.
La situacion descrita aqui se repite, de modo que las conclusiones menciona-
das son aplicables a estos otros casos diferentes.

4.5.3. Espectros para el °>Ti

Una vez definida la red de valores para ¢ y §, asi como el criterio de
convergencia para la solucién de la ecuacion HW, obtenemos como resultado
final del célculo los estados GCM para el nticleo °2Ti.

Las superficies de energia potencial analizadas en la secciéon anterior repre-
sentan, de alguna manera, los elementos de matriz diagonales del solape del
hamiltoniano normalizado. A continuacién, se aplica el método GCM al con-
junto de las diferentes funciones de onda intrinsecas con sus correspondientes
proyecciones, de manera que los elementos fuera de la diagonal van a ser in-
corporados al resolver la ecuacién de HW (3.131). Esto nos permite ver la
ganancia de energia que se obtiene de la mezcla de configuraciones a la vez
que se pueden estudiar los espectros de excitacion, entendidos como la dife-
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rencia de energias que se obtiene entre un estado excitado con respecto a la
del estado fundamental.

La ganancia de energia va a estar relacionada con la aproximacién que utilice-
mos. Por este motivo, esperamos que las correlaciones dinamicas que va a dar
el método GCM den contribuciones menores para el caso PN-VAP+PNAMP
ya que en este método la proyeccién se hace antes de la variacién y es auto-
consistente.

Analizamos primero la evolucion del valor absoluto de las energias cuando

se va afinando la funciéon de onda mediante el uso de diferentes proyecciones.
Para ello, se han representado en la figura (4.6) dichas energias, tanto para
el caso 1D como 2D, para los estados 07, 05 y 03 . Los valores de las energias
estan recogidos en la tabla (4.2).
En el eje de abscisas se puede ver la aproximacion que se usa. El punto de
partida serfa el estado etiquetado como HFB o PN-VAP, que son los dos
tipos de funciones intrinsecas a las que posteriormente se le van a aplicar dis-
tintos proyectores. El comportamiento general es el siguiente: por un lado,
dentro de una misma aproximacion, el caso 2D siempre esta energéticamente
por debajo del 1D. Esto es claro, ya que lo que implica pasar de un céalculo
1D a otro 2D, es anadir un grado de libertad extra. Por otro, la energia del
estado fundamental siempre decrece segin la complejidad de la funcién de
onda aumenta.

Si nos centramos en los estados tipo HFB, observamos que si miramos
de forma separada a la izquierda de esta solucion, caso PNP, y a la dere-
cha, caso AMP, lo que se obtiene es una energia menor en ambos casos. Sin
embargo, las dos proyecciones tenidas en cuenta de forma simultanea, caso
PNAMP, no supone un efecto suma de lo que se obtiene por separado para
cada una de las proyecciones. Se produce un efecto de interferencia por el cual
algunos estados, como el 03 y el 07, en 1D y 2D, sufren un incremento de
la energia en comparacion a cuando solo se implementa una tinica proyeccion.

Para las aproximaciones PN-VAP y PN-VAP+PNAMP; se observa, como
es esperado, menor ganancia de energia entre el caso 1D y 2D en compara-
cion a lo que ocurre con las aproximaciones que tienen como punto de partida
funciones de onda intrinsecas tipo HFB (HFB4+PNP y HFB+PNAMP).

Si miramos los dos casos situados mas a la izquierda (o bien los dos que
estdn méas a la derecha), se puede ver la diferencia entre una proyeccién al
niumero de particulas tipo VAP o PAV tanto para el caso 1D como para el
2D. Para el fundamental en 1D, la ganancia entre el caso VAP y PAV es de

74



4.5 Célculos GCM 75

aproximadamente 1.5 MeV. Para las mismas aproximaciones, pero en 2D,
esta diferencia pasa a ser de 0.75 MeV. Si se incluye la proyeccién al mo-
mento angular la ganancia que se va a obtener, tanto para los casos HFB o
PN-VAP como para los casos 1D o 2D, es de aproximadamente 3 MeV. La
diferencia de energia que se obtiene entre las aproximaciones HFB+PNAMP
y PN-VAP+PNAMP es de 1.3 MeV para el caso 1D y 0.73 MeV para el caso
2D. Segiin aumentamos la precision en nuestro método, se gana exactitud en
la energia de manera convergente.

Por 1ltimo, podemos ver que la energia que se gana para el estado fun-
damental (07) desde la aproximacién mas simple, HFB en 1D hasta la mds

sofisticada, PN-VAP+PNAMP en 2D, es de 5.4 MeV, lo que supone una
importante cantidad.

A continuacién, analizamos los espectros para el *?Ti en la figura (4.7)
en calculos 1D (linea azul discontinua) y 2D (linea roja continua). Los va-
lores de las energias han sido normalizados al valor del estado fundamental
(J =0, 0 =1) y los espectros no han sido agrupados en bandas en base a
algin observable, sino que han sido numerados segtun el orden en el que se
han calculado teéricamente con o creciente para estados mas excitados.

Si miramos la parte izquierda de la figura, encontramos el espectro que se
corresponde con la aproximacién PN-VAP+PNAMP. Cuando las fluctuacio-
nes de apareamiento son incorporadas, el espectro se comprime. Es posible
justificar esta idea en base al siguiente argumento: dado que estos calculos en
1D y 2D son autoconsistentes la energia del estado fundamental antes de la
resolver la ecuacion de HW, esto es, el minimo de las superficies de energia
potencial, es el mismo en ambos cédlculos e incluso muy similar después de
resolver la ecuacién de HW, como hemos visto en la tabla (4.2). Este resul-
tado es la consecuencia del hecho de que el principio variacional usado para
determinar las funciones de onda favorece el estado fundamental. En el caso
1D no hay cabida para que los estados excitados cambien el contenido de apa-
reamiento presente en una funcién de onda. Sin embargo, el hecho de anadir
el grado de libertad del apareamiento para el caso 2D, abre la posibilidad
de que las funciones de onda para un determinado ¢ varien su apareamiento,
consiguiendo con esto una bajada de la energia que hace que los niveles de
los espectros se encuentren ahora mas juntos.
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respectivamente) como funcién de las diferentes aproximaciones (nombres en el eje
inferior). La linea continua es para los cdlculo en 2D y la discontinua para los de

1D.

07 05 05

1 2 3
PN-VAP 1D | -450.991 | -450.415 | -447.579
2D | -451.140 | -450.598 | -448.213
HFB+PNP 1D | -449.528 | -448.883 | -446.145
2D | -450.395 | -449.428 | -447.176
HFB 1D | -448.872 | -447.578 | -445.598
2D | -449.056 | -448.111 | -447.355
HFB+AMP 1D | -451.547 | -448.561 | -446.217
2D | -451.800 | -449.629 | -449.173
HFB+PNAMP 1D | -452.837 | -446.915 | -446.208
2D | -453.543 | -447.863 | -447.135
PN-VAP+PNAMP | 1D | -454.136 | -448.570 | -446.832
2D | -454.275 | -449.245 | -447.632

Tabla 4.2: Energfas absolutas (en MeV) de los tres estados: 01, 05 y 05 en varias

aproximaciones para el 92Ti.
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En el medio de la misma figura encontramos el caso HFB+PNAMP. Esta

aproximacion, en general, ofrece unos espectros mas estirados que los que
da la aproximacién anterior. Otra caracteristica que podemos observar aqui,
es que varios estados, sobre todo los de la banda Yrast y la siguiente, estan
invertidos entre si, encontrando los niveles 1D por encima de los de 2D.
Por un lado, tenemos el efecto que supone incluir el grado de libertad § dis-
cutido para el caso PN-VAP4+PNAMP. Por otro, tenemos el efecto de la falta
de autoconsistencia que se da en este caso. Si miramos el panel (e) de la figura
(4.3) vemos que el camino marcado por los puntos, que siguen los valores de ¢
del caso 1D, pasan por debajo de los minimos obtenidos en el caso 2D, por lo
que se tienen correlaciones de apareamiento menores. El momento de inercia
asociado al movimiento colectivo va a ser mayor para el caso 1D por lo que
se va a obtener un espectro mas comprimido. Estos dos hechos combinados
hacen que encontremos solo los niveles excitados més bajos invertidos.

Como tercer caso, tenemos la aproximacion HFB+AMP, a la derecha de
la figura. En este caso se encuentra mayor autoconsistencia entre los calculos
1D y 2D como puede verse en la superficie de energia potencial, panel (d)
de la figura (4.3), de modo que ya no encontramos esa inversiéon que se daba
en el caso anterior y los niveles 2D estan por debajo de los de 1D. Lo mas
notable de esta aproximacion, es que encontramos unos espectros, tanto para
el caso monodimensional como bidimensional, muy comprimidos comparados
con los de las otras dos aproximaciones. En el andlisis de la convergencia para
los estados GCM, figura (4.5), ya vimos como la convergencia era peor para
esta aproximacion, se observaba una mayor dependencia lineal en la base lo
que hace que los estados sean menos puros. Esto supone una limitacién de
esta aproximacién para describir de forma correcta magnitudes relevantes
nucleares. Nos centraremos de nuevo en esta cuestion mas adelante: en el
capitulo 5 y en la seccion 6.4 en la que se van a discutir otros espectros.
Mirando las superficies de energia potencial (paneles inferiores:(d), (e) y (f)
de la figura (4.3)) se puede anticipar cémo de comprimidos van a estar los
espectros. Si miramos los valores de § para los cuales se dan los minimos y
las zonas de alrededor, encontramos que, la que tiene menos correlaciones de
apareamiento y es mas suave en esta direccion, es la correspondiente al caso
HFB+AMP y, por tanto, va a dar el espectro mas comprimido. Para los casos
PN-VAP+PNAMP y HFB+PNAMP vemos que ambas superficies se parecen
mas, pero, obtenemos valores méas altos en la del caso HFB+PNAMP, por
tanto, obtendremos espectros similares para estas dos siendo mas estirado el
del segundo caso.
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Figura 4.7: Espectros para el *>Ti para las aproximaciones PN-VAP4+PNAMP
(izquierda), HFB4+PNAMP (medio) y HFB+AMP (derecha)

4.5.4. Ligaduras en 0z, Oy y 0

Para acabar el estudio de la coordenada ¢ dentro del método GCM, ha-
cemos la siguiente consideracion: una aproximaciéon mas completa del grado
de libertad de apareamiento se obtendria estudiando por separado los pro-
tones y neutrones, es decir, constrinendo en las fluctuaciones del niimero de
particulas siguientes:

(GIAN)*9) 2 =bn  (9|(AZ)*]9)")? = 65 (4.12)

Sin embargo, esta separaciéon aumentaria sobremanera el niimero de estados
incluidos en el calculo GCM, haciéndolo computacionalmente casi inalcan-
zable con la capacidad de calculo actual. Méds si cabe, si se van a analizar
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37 nucleos, como son analizados en este trabajo y utilizando, para varios de
ellos, diferentes aproximaciones.

Para comprobar la validez de la aproximacion que se hace en este trabajo,
es decir, utilizando las fluctuaciones en el ntimero de particulas total, J, se
hacen tres tipos de calculos. En el primer caso, se constrine solo a d de-
jando que (|(AN)2|$)1/2 alcance el valor autoconsistente que se obtenga al
minimizar la energia por el principio variacional. En el segundo caso, es
la coordenada que se constrifie, dejando que (¢|(AZ)2|¢)1/? varie libremente.
Y por ultimo, el caso que se ha sido utilizado para todo los calculos que se
exponen en esta memoria, donde se constrine al ¢ total.

0z N o
E* P; Py E* P; Py E* P; Py
Of 0.00 —4.1 —59|0.00 —4.2 —6.2 | 0.00 —4.0 —5.7
0;— 458 —50 —59 480 —45 —6.0|4.65 —4.7 —5.7
0;— 780 —5.1 —4.7]6.76 —4.7 —4.3 | 717 —4.1 —3.7

271260 —4.0 —4.0 211 —40 —3.1 221 —35 —3.2
25 | 575 —4.7 —52 531 —45 —33 559 —42 —42
251605 —42 —4.0[588 —4.6 —4.9[5.90 —3.7 —4.0

Tabla 4.3: Energia de excitacién E*, energia de apareamiento para protones (Pyz)
y neutrones (Py), para los 3 estados mds bajos 07 y 2% de la ecuaciéon de HW en
aproximaciéon PN-VAP+PNAMP constrinendo en dz, oy 6 9.

Es importante notar que, en este caso, los calculos se han hecho dentro
de la aproximacién PN-VAP+PNAMP para el ntcleo *°Ca, en lugar de pa-
ra nuestro ejemplo hasta ahora, el ®2Ti, por un motivo didéctico, ya que su
caracter magico en protones puede ayudar a interpretar mejor los resultados
de ambas aproximaciones.

Podemos ver en la tabla (4.3) las energias de excitacién y las energias de apa-
reamiento de protones y neutrones para los tres primeros estados excitados
de 0" y 2%*. Las energias del estado fundamental que se encuentran son las
siguientes: -428.991 MeV (constrifiendo en dy), -428.962 MeV (constrinendo
en dz) y -429.037 MeV (constrifiendo en §). La mds baja es, como es espe-
rable, para el caso en el que se constrine a d. Sin embargo, los tres valores
son practicamente iguales. Para los valores mostrados en la tabla, tampo-
co encontramos desviaciones que tengan que ser subrayadas. Por tanto, al
no haberse encontrado grandes diferencias, podemos concluir que la aproxi-
macién que estamos haciendo es apropiada para estudiar las fluctuaciones
de apareamiento. Un analisis andlogo se ha hecho para el **Mg, ntcleo que
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presenta mas particulas fuera de capa, obteniendo la misma conclusion.
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Capitulo 5

Estudio de la aproximacion
HFB+AMP

Como ya se ha visto en el capitulo anterior, en este trabajo se hace
uso de tres aproximaciones diferentes (pueden ser consultadas en la tabla
4.1), en las que se observan importantes diferencias. Las denotadas por PN-
VAP+PNAMP y HFB+PNAMP, contemplan la restauracion del nimero de
particulas aunque el orden en que se hace la proyeccién y se minimiza el
funcional es diferente (VAP versus PAV). En la tercera de ellas, de nombre
HFB+AMP, esta proyeccion no es tenida en cuenta. Esta ultima aproxima-
cién ofrece unos resultados (consultar capitulos 4 y 6) que no se encuentran
en linea con los que se obtienen cuando se utilizan los otros dos métodos.
En este capitulo queremos indagar en la procedencia de esas diferencias que
hacen que la restauracion al nimero de particulas tenga que ser implementa-
da, por ser crucial para la correcta descripcion del sistema. Con este objetivo,
se van a hacer dos analisis. Primero, se van a estudiar los elementos de matriz
de la norma cuando se proyecta a buen ntimero de particulas y cuando no.
Segundo, se va a estudiar la distribuciéon del nimero de particulas dentro de
la aproximacion HFB4+AMP. Para ello, volvemos a tomar como ejemplo el
nticleo *?Ti.

5.1. Elementos de matriz de la norma.
En la diagonalizacién de la ecuacién de HW (3.131) aparecen dos can-
tidades; el solape del hamiltoniano y el solape de la norma. En la seccién

(4.4) se puede encontrar la discusién de los elementos de matriz diagonales
del hamiltoniano. Ahora, vamos a concentrarnos en el solape de la norma.
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Las diferencias principales que se dan en el solape de las norma, vienen
entre las aproximaciones que tienen en cuenta la proyeccién al nimero de
particulas (PNP) frente a las que no la consideran.

En la figura (5.1) se muestran las normas para momento angular J = 0,2, 4
en las aproximaciones HFB+AMP (sin proyeccién al ntiimero de particulas)
y HFB4+PNAMP (incluyendo dicha proyeccién). Las normas obtenidas con
el método PN-VAP+PNAMP son similares a las del caso HFB +PNAMP y
no se muestran. Ademas, para comparar mejor el efecto de la proyeccién al
numero de particulas, conviene tomar las mismas funciones de onda intrinse-

cas.

J=4
)

0.2

360
HFB+PNAMP HFB+PNAMP
240

120

-120 0 120 240 360 -120 0 120 240 360 -120 0 120 240 360
q (fm?) q (fm?) q (fm?)

Figura 5.1: Solapes de las normas para el >2Ti. Estos valores se encuentran renor-
malizados habiendo sido divididos por un factor tal que, para cada panel, el valor
maximo que se obtenga sea igual a uno. En la parte de arriba de la gréafica tene-
mos la aproximacién HFB-+AMP. De izquierda a derecha con los correspondientes
factores de normalizacién: J = 0 (factor=1.0), J = 2 (factor=0.484) y J = 4 (fac-
tor=0.316). En la parte de abajo, tenemos la aproximacién HFB+PNAMP y los
momentos angulares normalizados a J = 0 (factor=0.191), J = 2 (factor=0.218) y
J =4 (factor=0.202). En linea discontinua estan representados los contornos 0.1 y
0.9 correspondientemente etiquetados y en linea continua los contornos desde 0.2
hasta 0.8 en intervalos de 0.2

Para incluir en el analisis los elementos no diagonales y poder hacer una
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5.1 Elementos de matriz de la norma. 83

representacion, es obvio que solo puede hacerse en funcién de una coordenada.
En esta figura se han tomado las normas del caso 1D y se han representado
en el plano (g, ¢'). Para poder evaluar el comportamiento cualitativo de di-
chas normas y compararlas en los diferentes casos, todas las aproximaciones
han sido divididas por un factor de escala para que el maximo en todas ellas
valga la unidad. Para el andlisis cuantitativo, esos factores se muestran en el
pie de dicha figura.

En los paneles (a) (¢) y (e) de la figura (5.1) representamos el valor de la
norma:

(@(q)|P7|2(q))- (5.1)

En el panel (a) tenemos el caso J = 0. Las funciones de onda intrinsecas
HFB estan normalizadas a la unidad, por lo que la norma va a ser la unidad
para el caso esférico (¢ = ¢’ = 0) como puede verse en la figura. Tomando
ese punto como centro y siguiendo los contornos hacia fuera, observamos una
disminucién radial exponencial de la norma con ¢, hasta encontrar que, para
valores con ¢ = 100 fm?, el mdximo es una décima parte de ese valor.

En los paneles (b) (d) y (f) de la misma figura (5.1) se representa la
norma:

(0(@)| PP e(q). (5.2)

Si miramos el panel (b) que se corresponde de nuevo con momento angular
cero, observamos que, en este caso, para ¢ = ¢’ = 0 el valor que se obtiene es
0.191. Este valor esta lejos de ser la unidad ya que cuantos mas proyectores
se tengan en cuenta, menor va a ser el valor del solape de la norma. Para
este momento angular vemos que las normas de ambas aproximaciones se
parecen, aunque para el caso HFB4+PNAMP son méas anchas y estdan més
extendidas en la diagonal.

Para momento angular J = 2 (paneles (c¢) y (d)) las normas se hacen

cero para el caso esférico. Observamos que las normas van decreciendo sua-
vemente a lo largo de la diagonal (¢=¢’) y las lineas ¢+ ¢’ = constante. En el
caso HFB4+AMP la distribucién que se obtiene es casi simétrica respecto a
la linea (¢ = —¢’), es decir, la parte oblate con la parte prolate, encontrando
el méximo valor alrededor de la deformacién de [60] fm?.
Para el caso HFB4+PNAMP se encuentra una predominancia del lado prola-
te debido a que la norma es sensible al contenido de apareamiento presente
en la funcién de onda. En este caso, el maximo valor se encuentra para una
deformacién prolate de 100 fm?2.
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84 Estudio de la aproximacién HFB+AMP

En los paneles (e) y (f) se muestran los contornos para momento angular
J = 4. El comportamiento que se observa sigue la linea de lo descrito para
J = 2 pero con las diferencias que hemos apuntado méas marcadas. Aparte de
la asimetria oblate-prolate presente en el caso HFB+PNAMP, se observa que
las normas para la aproximacion HFB4+AMP y momento angular mayor que
cero estan mas extendidas. Esto es indicativo de que tenemos mezcla en el
nimero de particulas y evidencia que se van a obtener correlaciones espurias
para el caso HFB+AMP.

El analisis anterior puede extenderse, de alguna manera, al caso con dos
coordenadas generadoras como se muestra a continuacién en la figura (5.2).
El niimero de coordenadas que se tiene en este caso para elementos no dia-
gonales, nos llevarfa a una representacién como funcién de (¢, ¢, 6, 0"). Como
esto no es posible y ya hemos visto su comportamiento en el plano (g, ¢'), fija-
mos ahora dos deformaciones -80 fm? y 100 fm?, que se corresponden con los
valores en los que la energia es minima (ver figura (4.3)) y tomamos ¢ = ¢'.
Para la otra variable, tomaremos tres valores que cubran el rango de del-
tas en el que estamos trabajando: § = 0.5 (apareamiento débil); 6 = 2.0
(apareamiento medio) y § = 3.5 (apareamiento fuerte). Utilizamos las deno-
minaciones de bajo, medio y alto, en relacion al contenido de apareamiento
presente en la solucién autoconsistente en torno a esas deformaciones que
son: § = 2.33 para q = -80 fm? y § = 2.22 para ¢ = 80 fm?. Mientras que &’
tomara todos los valores del rango seleccionado y estara representada en el
eje de abscisas.

Esta representacion nos va a permitir analizar el comportamiento del solape
de las normas en funcién de la coordenada §, pero sin eliminar completamen-
te la dependencia con la variable ¢, ya que es la coordenada dominante.

De nuevo, el objetivo es ver el efecto que tiene la proyecciéon al nimero de
particulas, por lo que se estudian las siguientes normas:

(®(q,0)|P’PN|®(¢,0")) HFB+ PNAMP (5.3)
(®(q,9)|P’|®(q,¢)) HFB+ AMP (5.4)
(®(q,0)|®(¢,¢")) HFB (5.5)

En la figura (5.2), la norma definida en (5.3) se representa en circulos
azules, la que se corresponde con la ecuacién (5.4) por cuadrados magentas
y la de la expresién (5.4) por tridngulos verdes. J va a tomar los valores 0 y
2 en los casos en los que se proyecte al momento angular.
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5=0.5 g=-80
J=0

0.5 ¢ 6=0.5 g=-80 |
J=2

6=0.5 g=10
J=0

9=2 g=100] 8=8.5 g=100
J=0 T J=0

0.5 ¢ 5=0.5 g=100 | 5=2 g=100 | 8=3.5 g=100
J=2 T J=2 T J=2

6!

Figura 5.2: Elementos de matriz del solape de la norma para el ®>Ti para algunos
casos del célculo en 2D (ver el texto principal para una explicacién més detallada).
Los valores para la aproximaciéon HFB+PNAMP se corresponden con los circulos
azules, mientras que los cuadrados magentas son para la aproximaciéon HFB+AMP.
También se incluye, en tridngulos verdes, la norma entre estados HFB (multiplicada
por un factor 0.5).

Lo primero que observamos mirando la figura es que el caso HFB y
HFB+AMP presentan un comportamiento gaussiano con centro en ¢ =
mientras que esto no ocurre para el caso HFB+PNAMP, donde las normas o
decrecen o se mantienen mas o menos constantes para valores crecientes de
0’. Para entender esto ultimo, podemos expandir las funciones de onda como
autoestados del operador del nimero de particulas [58]:

|(g,")) = Y Carne(q,8)|a’, N'). (5.6)

o’ N’
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86 Estudio de la aproximacién HFB+AMP

La norma HFB4+PNP entonces se define como:

<CI)(q’ 5)|PN|(I>(q7 5/)> = Z COJN(qv 5)004N(Q7 5,) (57)

En la expresion anterior, para (g, d) fijo, el coeficiente Cy n (g, d) es una cons-
tante (menor o igual a 1 por la normalizacién de los estados dados en la
ecuacién (5.6)), mientras que Cyn(g,d’) es maximo en ¢’ = 0. Esto se debe
a que, en ese punto, la funcién de onda intrinseca (5.6) es ya autoestado
del nimero de particulas y la suma en N’ se reduce a un solo sumando. De
nuevo, la normalizacién a 1 de la funcién de onda hace que esos coeficien-
tes Cun(q,8" = 0) sean mayores que para un ¢ arbitrario, donde la norma
esta repartida en mas autoestados de N.

Si comparamos las aproximaciones HFB+AMP y HFB+PNAMP como
funcién de 9, observamos que, independientemente del valor de ¢, las curvas
de ambas aproximaciones, para un régimen de bajo apareamiento, van muy
juntas y van divergiendo encontrando mayores diferencias para el caso de me-
dio apareamiento y, este efecto, es todavia mayor para el § correspondiente a
valores grandes de apareamiento (paneles de izquierda a derecha). Es en este
caso, cuando la diferencia entre ellas es maxima, en el que la curva del caso
HEFB+AMP, para J = 0, guarda mayor similitud con la del caso HFB.

Con respecto al momento angular, para el caso J = 2, las desviaciones entre
las curvas HFB+AMP y HFB+PNAMP son mayores.

Si miramos como de diferentes son las curvas ahora en funcién de §’ obser-
vamos lo siguiente: mientras que HFB-+PNAMP es el caso que mas rapi-
do decrecen las normas segin aumenta ¢, el caso HFB+AMP coincide con
HEB+PNAMP para valores pequenos de ¢’. La diferencia entre estas curvas
va aumentado segtin 0’ aumenta hasta el valor maximo ¢’ = §. A partir de
este punto, la diferencia vuelve a decrecer y en el limite de 0’ coincidiria con
el valor HFB+PNAMP pues estariamos en limite semiclasico. Si  es pequeno
la separacién entre las curvas es minima.

Concluimos que, las normas proyectadas a momento angular, se com-
portan de manera diferente con respecto al apareamiento si los estados se
proyectan o no a buen numero de particulas. Estas diferencias se producen
en los valores de apareamiento que son tipicos en los nicleos y van a verse
reflejadas posteriormente en los observables calculados con el método GCM.
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5.2 Distribucién del niimero de particulas 87

5.2. Distribucién del nimero de particulas

En la aproximacién HFB+AMP, para tratar el aspecto crucial de la no
conservacién del nimero de particulas, se introduce una correccién mediante
los multiplicadores de Lagrange que hace que el nimero de particulas sea
ajustado en promedio en las funciones de onda HFB. Cuando se utiliza el
método GCM, de nuevo se hace una correccién mediante el término intro-
ducido en la ecuacién (3.38). La cuestiéon que queremos abordar es cémo de
acertada es la conservacién del nimero de particulas para los estados |®77).

Para ello, analizaremos la distribucién del niimero de particulas en la funcién
de onda |®77).

La probabilidad de encontrar un autoestado del operador N con autovalor
N en la funcién de onda |®77), viene dada por:

WY = 3T aN|RR)R = 30 (@0 aN) (N |27

= (®7|PN|®7). (5.8)

De forma analoga, si tomamos W% nos daré la probabilidad de tener si-
multdneamente un autoestado de Z y N, con autovalores Z y N respectiva-
mente. Con la definicién de |®77), dada en la ecuacién 3.130, la expresién de
la probabilidad vendra dada en el marco de la ecuacién de HW, por:

WEN — (@J’U‘PNPZ‘(I)J’U> — /dqdq/d5d5/
Xf*NZJ,a(q’ §)(8(q, 5)|pJprZ|¢(q/’ 5/)fNZJ,a(q/’ &) (5.9)

La funcién de onda |®77) se encuentra normalizada a la unidad, y dado que:
> PV =3 "|aN)(aN| =1, (5.10)
N aN

encontramos que:
> WA =1, (5.11)
N,Z
La forma de proceder es la siguiente: se hace un célculo GCM con HFB+AMP
y se calcula el solape que aparece en la expresién (5.9) proyectando a dife-
rentes valores de Z y N, yendo desde Z — 6 hasta Z + 6 y lo mismo para el
nimero de neutrones V.
En el caso BCS, donde la funciéon de onda que no es autoestado del ntimero

de particulas pero cuyo valor promedio es el adecuado, se tiene una distribu-
ci6én gaussiana centrada en dicho valor N ((BCS|N|BCS) = N) [58].
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88 Estudio de la aproximacién HFB+AMP

En la tabla (5.1) se pueden ver los valores esperados de protones (7)) y
neutrones (N, ), corregidos por los multiplicadores de Lagrange (3.145), que
se obtienen del calculo HFB+AMP en 1D y 2D. Para el 52Ti, los valores
correctos que se deberian obtener, serian Z = 22y N = 30.

Z)\ N)\
07 [ 1D | 21.819 | 20.934
2D | 21.789 | 29.907
07 | 1D | 21.784 | 29.923
2D | 21.743 | 29.977
0 | 1D [ 21.707 | 29.955
2D | 21.865 | 29.873
07 | 1D | 21.903 | 29.940
2D | 21.660 | 29.887

Tabla 5.1: Valores esperados del nimero de protones (Z)) y de neutrones (NVy)
corregidos con multiplicadores de Lagrange, para los estados 01", 0;‘ ,Oé" y OI de
las distribuciones mostradas en 5.3 (1D) y 5.4 (2D).

En las figuras (5.3) y (5.4), se muestra el caso de las funciones de onda
HFB+AMP en el ntcleo 52Ti, cuando se tiene una o dos coordenadas res-
pectivamente y para momento angular J = 0% y sus cuatro autoestados mds
bajos. En el eje X estan representados el nimero de protones y en el eje Y los
neutrones. Para cada pareja de valores (Z, N) se representa en 2D, como se
puede ver en el codigo de colores de la derecha, la distribucion de W(Z, N).
Esa distribucién deberia tener un comportamiento gaussiano con un maximo
en Z =22y N = 30 para este ntcleo.

Si miramos el caso unidimensional, figura (5.3), observamos que el estado
fundamental 0], panel de arriba a la izquierda, tiene toda su distribucién de
probabilidad centrada en el valor correcto del nimero de particulas y que se
acerca bastante a la forma esperada. Sin embargo, no va a ocurrir lo mismo
para los estados excitados.

La distribucién para el primer excitado 03, panel superior derecho, tiene una
distribucion parecida al estado anterior, pero asimétrica con respecto a la
linea N 4+ Z = 52, por lo que dista de ser tipo gaussiana.

Para el siguiente estado excitado 05, panel inferior izquierdo, tenemos una
distribucion mas extendida en protones, encontramos una alta intensidad en
el punto Z =20y N = 30.

El estado excitado mas alto 0, panel inferior derecho, presenta una distri-
bucién mas extendida ahora en protones, si bien esta centrada en la posicién
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5.2 Distribucién del niimero de particulas 89

correcta, tenemos también alta intensidad en Z = 22 N = 28 y, de nuevo, no
se corresponde con un comportamiento puramente gaussiano.

36 T T T T T 0-3 36 T T T T T 03
34 - 0" 025 34 - 0.25
32 -H 0.2 32 0.2
Z 30 r 1/ 0.15 Zz 30 0.15
28 —4H 0.1 28 0.1
26 “H 0.05 26 “H 0.05
24 Il Il Il Il Il 0 24 Il Il Il Il Il 0
16 18 20 22 24 26 28 16 18 20 22 24 26 28
Z Z
36 T T T T T 0~2 36 T T T T T 02
34 34 +
0.15 0.15
32 32 L
Z 30 0.1 Z 30 0.1
28 28
0.05 0.05
26 |- - 26 |- -
24 1 1 1 1 1 0 24 1 1 1 1 1 O
16 18 20 22 24 26 28 16 18 20 22 24 26 28
Z Z

Figura 5.3: Distribucién del niimero de particulas en la aproximacién HFB+AMP
para el estado fundamental y los 3 primeros estados excitados con momento angular
cero para el °>Ti en 1D.

Vayamos al caso de dos dimensiones que se muestra en la figura (5.4). En
este caso, la situacién empeora y ninguna de las distribuciones que se obtiene
para los diferentes estados, cumple la esperada distribucién gaussiana.

El patréon que muestra el estado fundamental se parece a lo obtenido en el
caso 1D, pero su intensidad es mayor en valor absoluto en la posicion esperada
7 =22y N = 30. Practicamente la mitad de la intensidad se concentra entre
este punto y correspondiente a Z = 20 y N = 30.

El estado 0F tiene una distribucién claramente asimétrica extendida en la
direccién de Z, donde se localiza practicamente toda la intensidad.

El estado 05 se extiende a lo largo del niimero de neutrones y el maximo
se encuentra para un valor incorrecto de N, N = 28 en lugar de N = 30.
Ademas, el siguiente maximo tampoco es para el valor esperado que deberia
ser el correcto, sino que se da para N = 26.

La distribucién del estado 07 es la que presenta la distribucién mas asimétrica
de todas. La posicién del maximo no se corresponde con el valor de N ni de
Z que esperamos.
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34 | 0+17 0.35 34 + 0+27 0.35
0.3 0.3
32 - 18 o025 2r 18 o025
28 L | 0.15 28 L | 0.15
0.1 0.1
26 | 1H 005 26 T 005
24 1 1 Il 1 1 0 24 1 1 1 1 1 0
16 18 20 22 24 26 28 16 18 20 22 24 26 28
Z Z
36 T T T 1 0.2 36 T T T 0.2
34 | 0" 51 34 0" 1
0.15 0.15
32 b 32 B
Z 30 B 0.1 Z 30 B 0.1
28 B 28 B
0.05 0.05
26 B 26 B
24 1 1 1 1 1 0 24 1 1 1 1 1 0
16 18 20 22 24 26 28 16 18 20 22 24 26 28
Z Z

Figura 5.4: Distribucién del nimero de particulas en la aproximaciéon HFB+AMP
para el estado fundamental y los 3 primeros estados excitados con momento angular
cero para el °>Ti en 2D.

Es importante destacar que, pese a que los valores esperados del niimero
de particulas cuando son corregidos por los multiplicadores de Lagrange se
acercan bastante a lo que deberia obtenerse, con diferencias en torno a 0.3
para protones y 0.1 para neutrones (se muestran en la tabla 5.1), las distri-
buciones que se obtienen no son correctas, llegando incluso a estar centradas
para otros valores de N y Z que no son los propios del nicleo que se estudia.
Podemos concluir, que la distribucién del nimero de particulas en la aproxi-
macién HFB+AMP, tiene un comportamiento que dista de lo que se espera
de forma tedrica. El hecho de incluir las fluctuaciones de apareamiento no
es el origen de dichas distribuciones irregulares, ya que como hemos visto,
cuando solo se considera la deformacién cuadrupolar, se encuentran distri-
buciones anémalas también.

Como sintesis global de este capitulo, podemos decir que se ha abordado,
desde dos perspectivas diferentes, el tema de la importancia de la proyeccién
al nimero de particulas, encontrando que es fundamental su implementacion
para describir de forma adecuada las propiedades atomicas del ntcleo.
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Capitulo 6

Superficies de energia potencial
y espectros con q y 0

6.1. Introduccion

En este capitulo se discuten las PES (secciones 6.2 y 6.3) y los espectros de
excitacion (seccién 6.4), de manera andloga a lo que ya se hizo en el capitulo
4 para el »2Ti, pero extendido a otros nicleos. Estos, conforman un escenario
de casos diferentes y representativos a la vez, lo que hace atractivo el estudio
de todos ellos. Ademas, va a permitir comprobar si las conclusiones que se
obtuvieron para el Titanio se pueden extrapolar a otros casos.

6.2. Superficies de energia potencial 1D

Como guia para los cdlculos mas sofisticados en 2D, presentamos primero

las curvas de energia potencial cuando solo es tenida en cuenta la defor-
macién, figura (6.1). Su visualizacion servird como guia para interpretar las
superficies bidimensionales de la siguiente seccién y para entender resultados
que seran discutidos posteriormente.
Se muestran a la izquierda las curvas para los nicleos *Cr, »2Ti Mg y
32Mg (de arriba a abajo) con los dos tipos de funcién de onda utilizados y
diferentes proyecciones. En la parte derecha de dicha figura y al lado de su
correspondiente potencial, se muestra el apareamiento que se obtiene para
protones y neutrones.
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Figura 6.1: En la parte izquierda podemos ver los pozos de potencial en funcién
solamente de la variable ¢ para el *Cr, 52Ti 2#Mg y 32Mg (de arriba a abajo) en
diferentes aproximaciones, ver leyenda del panel (a), y para J = 0 en los casos en
los que se proyecta a momento angular. A la derecha de cada nicleo se muestran
las energias de apareamiento para los dos tipos diferentes de funciones de onda,

ver leyenda del panel (b). 9



6.2 Superficies de energia potencial 1D 93

Las superficies del Cromo presentan todas dos minimos, uno prolate y
otro oblate, siendo la curva HFB la mas plana y la que se encuentra a una
energia mas alta. Si se proyecta a momento angular (HFB+AMP) la cur-
va de potencial se hace un poco mas profunda y los minimos se desplazan
ligeramente a deformaciones mayores. La proyeccion con ambos operado-
res (HFB+PNAMP) hace que todavia se gane més energia, excepto en los
puntos en los que las correlaciones de apareamiento son cero. El caso PN-
VAP+PNAMP es para el que se tiene la curva mas profunda, el minimo
prolate aparece mas marcado y se encuentra un “hombro” en g = 240 fm?
que, en este caso, va a estar producido por un cruce de niveles.

En la aproximacién PN-VAP+PNAMP para el nticleo *2Ti encontramos una
coexistencia de formas oblate y prolate con un hombro prolate superdefor-
mado. En el nicleo 2*Mg observamos un minimo deformado profundo prolate
y otro, aproximadamente a 5 MeV por encima, oblate. El 3> Mg presenta una
superficie més plana, con un minimo deformado prolate y a dos MeV de
energia por encima, otro minimo oblate.

Las curvas que se obtienen a nivel de campo medio son las que mas difieren
con respecto a las de las otras aproximaciones, obteniendo incluso una forma
esférica para el 2Ti. Sin embargo, las correspondientes a las aproximaciones
HFB+AMP, HFB+PNAMP y PN-VAP+PNAMP, muestran formas pareci-
das entre si, aunque es esta ultima la que proporciona mayor ganancia de
energia en todos los casos.

En la parte derecha de la misma figura, podemos ver el apareamiento
de forma separada para neutrones y protones correspondiente a funciones
de onda intrinsecas tipo PN-VAP o HFB como funcién de la deformacion,
consultar la leyenda del panel (b).

Para el Cr, el apareamiento que viene de la aproximacién de HFB se hace
cero tanto para protones (¢ = 100-240 fm?) como para neutrones (¢ = 100-
120, 280-340 fm?). El minimo prolate se encuentra en una deformacién de
120 fm?, en la que ambas correlaciones han colapsado a cero. Para el caso
PN-VAP, el apareamiento oscila, de media, entre de 4 y 7 MeV aunque, para
deformaciones muy oblates, llega hasta los 10 MeV.

En el ??Ti, obtenemos un comportamiento oscilante del apareamiento en
funcion de la deformacién. Anédlogamente que para el nticleo anterior, en la
aproximacion HFB se da un colapso de las correlaciones de apareamiento, en
este caso para los neutrones, en dos deformaciones que coinciden con las mis-
mas en las que se localizan el minimo prolate y el hombro superdeformado.
La misma tendencia vista para los dos nucleos anteriores se observa en los
Magnesios. Por una lado, la energia de apareamiento es cero en las deforma-
ciones en las que se obtiene el minimo HFB y por otro, tenemos valores de
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apareamiento mayores que no llegan a colapsar nunca, para las funciones PN-
VAP. Merece la pena destacar el caso del 2*Mg, que tiene el mismo nimero
de protones que neutrones y, sin embargo, se puede ver que las correlaciones
de apareamiento obtenidas en ambos canales es diferente, lo que se expli-
ca gracias al efecto anti-apareamiento de Coulomb (Coulomb anti-pairing

effect) [104].

6.3. Superficies de energia potencial 2D

En esta seccion, estudiamos las curvas de energia potencial, pero ahora
con respecto a los dos grados colectivos de libertad para una seleccién de
nucleos. A la deformacién cuadrupolar, del apartado anterior, se suman aho-
ra las fluctuaciones en el apareamiento, incluidas al constrenir en la nueva
coordenada ¢, como se mostré en la seccién (4.4).

En todas las superficies de energia en 2D mostradas a continuacion, los va-
lores para g estdn en fm? y la energia en MeV. Asimismo, se puede ver la
solucion autoconsistente correspondiente a cada una de ellas como una linea
de puntos.

Aparte del interés intrinseco de las PES, nos van a mostrar las diferencias
que surgen al utilizar una u otra de las aproximaciones estudiadas y van a
ayudarnos a entender e interpretar los espectros de excitacién que veremos
en la siguiente seccién.

6.3.1. PES con proyeccion a diferente momento angu-
lar

En esta seccién queremos analizar, principalmente, como son las superfi-
cies de energia cuando se proyecta a diferente momento angular. No obstante,
también se van a explicar algunas superficies en las mismas aproximaciones
que vimos con anterioridad para el Titanio. Para hacer este analisis hemos
elegido el nticleo **Cr. Sus superficies se muestran en la figura (6.2).
Empezamos por el caso HFB, panel (a). La superficie tiene un minimo prola-
te a 100 fm? y otro menor oblate a 60 fm?. El minimo prolate se extiende en
el eje Y hasta zonas donde las correlaciones de apareamiento se van a cero.
Observamos que para valores de ¢ mayores que 50 fm?, las equipotenciales
son paralelas al eje de las deltas (eje y) para § pequenos y perpendiculares
para valores grandes de 0. Ese valor de delta, para el que se da el cambio, se
encuentra alrededor de d,,,, = 2.5 para la region de las ¢ donde es energéti-
camente interesante, esto es, donde encontramos el minimo del potencial y
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alrededores. Esto nos indica que, si fijamos el ¢, para valores de § < a0
cambiar el apareamiento de una funciéon de onda no cuesta mucha energia,
teniendo un potencial blando en esa direccién. Sin embargo, superado ese
valor de 0,,.., ese potencial se vuelve duro y moverse en la direccion ¢ im-
plica un gran coste de energia. Si miramos ahora lo que ocurre cerca de la
configuracion esférica, encontramos un valle alrededor de § = 2.5 donde la
energia crece si uno trata de aumentar o disminuir las correlaciones de apa-
reamiento. Esto esta relacionado con el hecho de que alrededor de la forma
esférica la configuracién es muy pura, teniendo cuatro protones en la subcapa
J7/2 y dos neutrones en la p3/». Las otras subcapas estan lejos en energia, de
modo que modificar el apareamiento va a implicar un coste de energia grande.

A continuacion, analizamos el efecto de proyectar al niimero de particulas
en aproximacién VAP, panel (b). Observamos que las equipotenciales se des-
plazan a valores mas altos de 4. En concreto el minimo prolate se desplaza
hasta § = 2. Los minimos ahora estan mas pronunciados y son un poco mas
profundos.

Pasamos ahora a ver el efecto puramente de la proyeccion del momento
angular (AMP) para momento angular J=0. En el panel (c¢) se muestran los
resultados para el caso HFB4+AMP sin ningun tipo de correccién. En este
caso, al igual que para el puro HFB y contrariamente al caso PN-VAP, el
minimo del potencial se extiende hasta 6 = 0, lo que nos esta indicando que
es necesario restaurar la simetria del niimero de particulas para incluir, de
forma correcta, las correlaciones de apareamiento.

Dado que no tenemos en promedio el nimero de particulas, se hace a cada
punto de la red la correccion al nimero de particulas dada por los multipli-
cadores de Lagrange:

Ecorr:El‘i_)\Z(NZO_NZ)_'_)‘N(NNo_NN)7 (61)

donde Az y Ay son los multiplicadores de Lagrange para protones y neu-
trones respectivamente; £’ la energfa proyectada a momento angular; Ny, vy
Ny, es el numero exacto de protones y neutrones; y Nz Ny el nimero de
protones y neutrones que se obtienen en la proyeccién.

Esta correccién con los multiplicadores de Lagrange es implementada para
obtener los estados del espectro, ya que es introducida en la ecuacién de HW
(3.145), por lo que es interesante visualizar la superficie asociada ya corregida
que se muestra en el panel (d).

Esta correccién principalmente tiene el efecto de desplazar los minimos a zo-
nas con correlaciones de apareamiento distintas de cero, haciendo que este ti-
po de superficies sean muy parecidas a las de la aproximacion HFB+PNAMP.
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En este caso, pasamos de tener el minimo a cero correlaciones de apareamien-
to, a tenerlo en § = 1.5.
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Figura 6.2: Superficies de energfa potencial para el **Cr en el plano (g, §). En
lineas de puntos se pueden ver los contornos de 0 hasta 3 MeV de 1 MeV cada
uno. En linea continua los contornos desde 4 a 10 Mev en intervalos de 2 MeV.
A la derecha se puede ver la escala de colores en MeV. Cada superficie ha sido
normalizada a cero de forma independiente con respecto a su minimo de energia.

Podemos ver el efecto de ambas proyecciones a la vez en las curvas
HFB+PNAMP (e) y PN-VAP+PNAMP (f). Si comparamos el caso PN-
VAP con el PN-VAP+PNAMP podemos ver el efecto de la proyeccién al
momento angular cuando ya se ha tenido en cuenta la proyeccion del niimero
de particulas. Vemos que los minimos se desplazan a valores un poco ma-
yores de ¢ y se hacen mas profundos, sin embargo no se encuentra ningun
movimiento en la direccion de 4. Si comparamos ahora ambas superficies
(HFB+PNAMP versus PN-VAP+PNAMP) entre si, vemos que presentan
un comportamiento cualitativamente similar, sin embargo, los minimos para
el primero de los casos son mucho mas blandos, en especial el prolate, para
valores pequenos del §.
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Por tltimo, en las figuras (g) (h) y (i), se muestran los potenciales dentro
de la aproximacién PN-VAP+PNAMP para momento angular creciente J =
2, J =4y J = 6 respectivamente.

Antes de discutir estas superficies, es conveniente hacer una aclaraciéon. En
la aproximacién semicldsica de Cranking [58] se deberia anadir el término
—w.J, ala ecuacién variacional (3.40), de manera que ésta quedaria:

o ~ 4]
S (BIAI®) —

o o|.J|®) =0 (6.2)

La frecuencia de Cranking es determinada por la relacién (J) = /J(J + 1)
y w es el multiplicador de Lagrange que asegura que el valor medio del mo-
mento angular sea (®|J|®) = J. En este caso, este término no es tenido en
cuenta, por lo que estamos describiendo el caso J = 0, ya que como nuestras
funciones de onda no rompen simetria temporal la condicion (j ) = 0 siempre
se cumple. Para un estudio mas completo este término deberia ser incluido
y calculado para cada valor de J. El hecho de imponer esa condicién a las
funciones de onda intrinsecas, que forman la malla de puntos con los que
se realizan los célculos (en una o dos dimensiones), implica que la energia
va a ser minimizada para un momento angular 6ptimo igual a cero. Esto
supone que tenemos una funcién de onda tipo PN-VAP optimizada para el
nimero de particulas correcto y momento angular J = 0, de tal manera que
al permitir las fluctuaciones y hacer el generador de coordenadas, el valor
de la energia para J = 0 no va a verse afectado mucho mientras que las
de los estados con diferente J si se van a ver corregidas. Esto hace que las
variaciones en las energias de excitacién sean més importantes para Js mas
altos cuando se hace el PN-VAP, como podra apreciarse en los espectros de
la siguiente seccion.

Volviendo a los potenciales, observamos en estos paneles, como al proyectar
para diferentes valores del momento angular las superficies se van achatan-
do para valores mas altos del momento angular. Esto supone que el minimo
de la energia se encuentra en valores mas bajos de §. Lo que indica que si
se aumenta el momento angular, el sistema tiende a tener energias de apa-
reamiento menores. Ademas, podemos ver que el minimo oblate se desplaza
ligeramente hacia el caso esférico.
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98 PES y espectros

6.3.2. PES para nucleos con diferente grado de colec-
tividad

Esta seccién estd dedicada a las superficies de contorno de la energia
para nucleos con diferente grado de colectividad. Se estudian las superficies
de energfa potencial para los isétopos del Magnesio **Mg, ?*Mg y para los
isétopos del Calcio, que tienen un cierre de capa en Z=20, %°Ca, *?Ca y *Ca.

HFB+AMP(J=0)

o = N W h O =2 DM O

400 0 100 200 -100 O 100 200 -100 O 100 200
q (fm?) q (fm?) q (fm?)

Figura 6.3: Superficies de energfa equipotencial para el >*Mg.

En la figura (6.3) podemos ver los potenciales para el 2Mg. Presenta,
de todos los nucleos analizados, los potenciales mas estrechos y con mayor
pendiente de todos. Tiene un méaximo prolate muy profundo y otro minimo
oblate a varios MeV de energia por encima.

La soluciéon autoconsistente, para los casos de HFB, tiene cero correlacio-
nes de apareamiento para las deformaciones 60, 80 y 100 fm?. Ademads, si
la comparamos con la que se obtiene para el caso PN-VAP, vemos que para
deformaciones prolates mayores se obtienen valores mas bajos para las corre-
laciones. Es importante notar que en los casos en los que los puntos no pasen
por los minimos no tendremos autoconsistencia.

Cuando no se tiene en cuenta la proyeccién al nimero de particulas, casos
HFB y HFB+AMP, paneles (a) y (d), el minimo se encuentra para 6 = 0.
Si es tenida en cuenta, el minimo se desplaza hasta § = 1.5 para los casos
HFB+PNP y HFB+PNAMP, paneles (b) y (e), o § = 2 si se utilizan funcio-
nes intrinsecas tipo PN-VAP, paneles (c) y (f).

Si no se tiene en cuenta la proyeccion del momento angular, casos de fila
superior de la figura, el minimo absoluto se da para una deformacién de 60
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fm? mientras que si es tenida en cuenta, fila inferior de la misma figura, se
produce un desplazamiento hasta ¢=80 fm?.

El 32Mg se muestra en la figura (6.4). Si comparamos estas superficies
con respecto a las superficies del 2*Mg observamos que las primeras son més
anchas y mas planas en la direccién ¢ pero, sin embargo, presentan mayor
pendiente en la coordenada 9.

Cuando no se hace la proyeccién al momento angular (fila superior) presenta
una estructura esférica, con el minimo en ¢ = 0. Las mismas ideas explicadas
anteriormente para los otros nicleos aplican en este caso también.

Si nos centramos en la aproximaciéon mas completa, PN-VAP4+PNAMP (pa-
nel f) se observan dos minimos deformados, el més profundo para una defor-
macién de 100 fm? y 6 = 2. El otro es oblate para una deformacién de -40
fm? y § = 2.5 encontrandose aproximadamente a una energia de 2 MeV por
encima del primero.

N W b

—_

N W A~ O

—_

-100 0 100 200 -100 0 100 200 -100 0 100 200
q (fm) q (fm) q (fm?)

Figura 6.4: Superficies de energia equipotencial para el 32Mg.

Para acabar con esta seccion de superficies equipotenciales, se muestran
en la figura (6.5) las correspondientes a los isétopos del Calcio: *°Ca 52Ca y
(a solo para el caso PN-VAP y su caso proyectado PN-VAP+PNAMP.
Es posible, por medio de esta grafica, estudiar la evolucién de las superficies
equipotenciales como funcién del nimero de neutrones. Si miramos la fila
de arriba, caso PN-VAP, todos tienen un potencial esférico debido al cierre
de capa para Z=20. Los contornos crecen rapido en la direcciéon de ¢ dando
potenciales con gran pendiente aunque son bastante suaves en la coordenada
0, por debajo del valor 6 = 3.5. Segiin aumenta la colectividad, uno esperaria
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obtener en la direccién ¢, potenciales que pasarian de mas estrecho a mas
ancho. Sin embargo, esto no es lo que se observa para el caso del 2Ca. Este
hecho esta relacionado con un cierre de subcapa para N=32, tema que se
volvera a tratar mas tarde.

Si miramos las filas inferiores para los casos PN-VAP+PNAMP con J = 0
vemos el efecto que tiene la proyeccion del momento angular y que ya ha sido
notado con anterioridad. El potencial se suaviza en la direccién g produciendo
una estructura de dos minimos, uno oblate y otro prolate en 60 fm? y -60
fm? respectivamente.

o = N W »h O =2 N O

120 0 120 240 360 -120 O 120 240 360 -120 0 120 240 360
q (fm?) q (fm?) q (fm?)

Figura 6.5: Superficies equipotenciales para el 59Ca 52Ca y %Ca (de izquierda a
derecha) y en aproximaciones PN-VAP (fila de arriba) y PN-VAP4+PNAMP (fila
de abajo) para J = 0.

6.4. Espectros

En esta seccién se van a analizar los espectros de los nticleos cuyas PES se
han estudiado en la seccién anterior. Los espectros se han calculado siguiendo
las mismas indicaciones que se explicaron en la subseccién 4.5.3. De nuevo,
para evaluar el impacto de las fluctuaciones de apareamiento, los estados de
los espectros se representan en azul y rojo, segiin se haya tomado una varia-
ble (1D) o dos (2D) respectivamente.

Para entender los espectros hay que hacer las siguientes consideraciones.

Cuanto mas deformado sea un objeto, mayor va a ser su momento de inercia,
lo que conlleva un espectro mas comprimido, por lo que para interpretar el es-
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pectro habra que tener en cuenta si el objeto se hace méas o menos deformado
cuando se exploran mas grados de libertad. Ademas, para la restauracion del
momento angular, tendremos estados con momento angular distinto de cero,
que estaran energéticamente méas altos de lo que deberian pues la aproxima-
cion tipo PAV (que es la que estd siendo usada aqui) presenta un momento de
inercia menor que el que se obtendria en una aproximacioén tipo AM-VAP [58§]
siendo éste uno de los motivos que hace que los espectros se estiren. El efecto
contrario lo va a dar el apareamiento. Para una misma deformacién, a mayor
apareamiento se obtiene un nicleo mas superfluido y por tanto, el momento
de inercia asociado es menor. Esto quiere decir que cuando obtengamos so-
luciones con méas apareamiento (caso PN-VAP frente a HFB) los espectros
van a ser mas estirados.

6.4.1. Espectros para el *Cr

Empezamos analizando los espectros que se obtienen para el **Cr, figura
(6.6).

Si tomamos el espectro que viene de la aproximaciéon PN-VAP+PNAMP
(espectro de la izquierda de la figura) y comparamos el caso 1D con el 2D,
observamos que el segundo se encuentra mas comprimido que el primero y
esta bajada de energia aumenta a mayor momento angular y para estados mas
excitados. Para aclarar este punto, conviene hacer las siguientes aclaraciones.
Una aproximacion VAP al momento angular, de acuerdo a la expansion a
primer orden de Kamlah [105], se harfa de la siguiente manera: la funcién de
onda intrinseca |®), se determinaria minimizando la energia:

E = (D|H|D) — w(D|J,|®). (6.3)

Mientras que w estarfa determinado al constrenir (J,) = /J(J+1). La
energia entonces, vendra dada por:

-~ (2o[P7]2) '
Esta prescripcion aplica para las tres aproximaciones utilizadas. Para el caso
J = 0 se cumple que: (®].J,|®) = 0. Para momento angular distinto de
cero, esto ya no es cierto porque nuestra funciéon de onda no rompe inversiéon
temporal, de modo que ya no va a satisfacer la ligadura del momento angular.
Esto implica que nuestras aproximaciones favorecen los estados con J = 0
porque, en este caso, estamos haciendo una aproximacién VAP mientras que
para otros momentos angulares estamos haciendo una proyeccion PAV. Desde
esta perspectiva, es obvio que la calidad de la aproximacién disminuye con
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valores crecientes del momento angular. Por tanto, estas predicciones tedricas
que dan espectros muy estirados, esperariamos que mejoraran si se permitiera
la ruptura de la simetria de inversiéon temporal [106].
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Figura 6.6: Espectros de excitacién para el *Cr, obtenidos tras implementar un
generador de coordenadas a las tres aproximaciones que se vienen estudiando y que
estan indicadas en la parte inferior de la figura. El color azul o linea discontinua se
corresponde con un calculo unidimensional, mientras que el rojo o linea continua
es para uno bidimensional. Las energias estdn normalizadas al estado fundamental
v los espectros no han sido agrupados en bandas en base a algin observable, sino
que han sido numerados segin el orden en el que se han calculado teéricamente
con o creciente para estados mas excitados.

El hecho de que el valor 6ptimo de la funcién intrinseca se dé para J = 0,
se traduce en que si permitimos las fluctuaciones en el sistema y la mezcla de
configuraciones con otras funciones de onda, no sélo con la autoconsistente,
las correcciones que vamos a encontrar para la energia del estado J = 0 van
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a ser pequenas. Sin embargo, para los demés estados excitados tendremos un
cambio apreciable.

Por otro lado, la autoconsistencia, también juega un papel importante pues,
de alguna forma, va a limitar la ganancia de energia que se va a obtener cuan-
do se pasa de un cédlculo 1D a otro 2D al estar en el segundo caso contenidos
los valores del primero y hacer uso del principio variacional. Se puede ver,
paneles (f) y (i) de la figura (6.2), como los puntos de la solucién autocon-
sistente van a seguir un camino que pasa por los minimos y puntos de silla
de la superficie bidimensional para el caso en el que el momento angular es
J = 0 mientras que esto no ocurre para el caso J = 6.

Todo esto se traduce en que el método GCM baja la energia de los estados

con momento angular alto (27,41, 67) mds que la del fundamental (07), lo
mismo que para estados que no pertenezcan a la banda Yrast (o mayor que
uno), cuando se hace un andlisis bidimensional frente al unidimensional. Esto
se puede apreciar en los valores absolutos de los niveles de energia del espectro
recogidos en la tabla (6.1).
Podriamos decir que, considerar un grado de libertad adicional, compensa de
manera parcial el problema ya mencionado acerca de una proyeccion VAP
para momento angular igual a cero y otra PAV para cuando es distinto de
cero. En realidad, lo que estamos haciendo al tener en cuenta otro grado
de libertad, es una aproximaciéon VAP restringida (restricted variation after
projection, RVAP) para el momento angular [17].

A continuacion, nos centramos en el espectro que se obtiene si se utiliza
la aproximacién HFB+PNAMP (espectro del medio de la figura (6.6)). El
aspecto general es similar al que se observa para la aproximacion anterior,
lo cual es consistente con el hecho de que las superficies de energia de estos
dos casos también tenian un gran parecido. Sin embargo, el comportamiento
cuando se incluye el segundo grado de libertad, de nuevo, es diferente en
este caso que lo que se obtenia en la aproximacién PN-VAP+PNAMP. Se
observa que varios de los estados 2D se encuentran por debajo de los corres-
pondientes 1D y, en particular, la banda del fundamental esta mas estirada
en 2D que en 1D. La razén por la que esto ocurre es debido a la falta de
autoconsistencia en esta aproximacion, que puede verse en los paneles (b) y
(e) de la figura (6.2). Se observa que la solucién autoconsistente no pasa por
el minimo que se obtiene en 2D, de modo que ahora el fundamental ya no
tiene por qué encontrarse casi para el mismo valor, pudiendo experimentar
una ganancia en la energia considerable.

Esto, unido a que una exploracion de las fluctuaciones de apareamiento inclu-
ye correlaciones que conllevan un momento de inercia asociado menor, hace
que los espectros mostrados en esta aproximacion se alarguen para el caso
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07 07 07 0F
3 4
PN-VAP+PNAMP | 1D | -476.636 | -471.566 | -469.188 | -467.530
2D | -476.865 | -472.232 | -469.951 | -469.004
HFB+PNAMP | 1D | -474.985 | -470.285 | -467.371 | -466.677
2D | -475.809 | -470.720 | -468.951 | -467.311
HFB+AMP 1D | -473.522 | -471.282 | -468.630 | -466.018
9D | -474.137 | -473.182 | -472.734 | -470.452
47 4y 43 A5
PN-VAP+PNAMP | 1D | -473.735 | -463.881 | -467.890 | -466.329
2D | -474.010 | -470.430 | -468.493 | -467.906
HFB+PNAMP | 1D | -471.957 | -467.126 | -465.919 | -464.201
2D | -472.290 | -468.297 | -467.280 | -466.139
HFB+AMP 1D | -471.266 | -467.626 | -466.576 | -464.753
2D | -471.675 | -469.401 | -468.749 | -467.084

Tabla 6.1: Energias absolutas (en MeV) para los cuatros estados mas bajos del
%4 Cr para dos momentos angulares distintos; parte superior J = 0 y parte inferior
J =4

en que se tienen en cuenta dos dimensiones.

Pese a que el caso HFB4+PNAMP en 2D, segtin se incluyen més correlaciones
y se permite la mezcla de configuraciones, se va acercando a la solucién PN-
VAP+PNAMP, podemos decir a la vista de los espectros, que no la alcanza
a un nivel suficiente.

Por dltimo, analizamos el espectro obtenido para el caso HFB+AMP (es-
pectro de la derecha de la figura (6.6)). Es el que presenta una apariencia mas
comprimida de los tres casos estudiados, ya sea cuando se toma un grado de
libertad o dos. Esto es debido, para este ntcleo en esta aproximacién, a que
para los minimos de la energia, tanto en una como en dos dimensiones, se ob-
tienen menos correlaciones de apareamiento. Incluso van a hacerse cero para
el caso unidimensional, panel (d) de la figura (6.2). Esto va asociado, como
ya hemos dicho, a momentos de inercia mayores y espectros mas comprimi-
dos. Sin embargo, esta compresién del espectro ocurre también en nticleos
con diferentes estructura, como era para el caso del Titanio (figura (4.7)) y
se verd en la siguiente seccién para los Magnesios (figuras 6.7 y 6.8), por lo
que podemos afirmar que existe una explicacion a este hecho relacionada con
la ausencia de la proyeccion al nimero de particulas en esta aproximacion,
como ya se explico en el andlisis que se hacia en el capitulo 5 donde se es-
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tudiaban aspectos relacionados con esta aproximacion. Las soluciones de la
ecuacion de HW, en esta aproximacién, van a tener mucha mezcla debido
a contribuciones espurias cuyo origen es la no conservacion del ntimero de
particulas.

6.4.2. Espectros para los Magnesios

A continuacién, pasamos a estudiar los espectros de dos isétopos del Mag-
nesio. Estos nicleos son mas ligeros que los dos primeros, siendo su ntimero
atomico 12, con 12 y 20 neutrones respectivamente. En lo que respecta al
comportamiento de los espectros en funcién de la aproximacién tomada, en-
contramos que es el mismo que ha sido discutido con detalle para los nicleos
%(Cr y 52Ti, constatando asf la validez de nuestras interpretaciones.
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Figura 6.7: Espectros para el 3>Mg en diferentes aproximaciones.
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En la figura (6.7) se muestra el espectro del 3?Mg. Podemos ver que glo-

balmente el espectro PN-VAP4+PNAMP se encuentra comprimido debido a
que este nucleo presenta un caracter muy colectivo, como puede observarse
en los potenciales de la figura 6.4, ya que si son comparados con el otro iséto-
po del mismo elemento, se observa que los primeros son mucho mas anchos.
Si comparamos este espectro con el de la aproximaciéon HFB4+AMP, vemos
que pese a que existen marcadas diferencias, especialmente para los estados
més excitados (0 = 3y 4), entre aquellos menos excitados con 0 = 1y 2, se
encuentran diferencias menores que en el caso del Titanio o el Cromo.
Este ntcleo se ha demostrado experimentalmente que es deformado pese a
ser magico en neutrones, ya que tiene N=20. Los valores de sus energias de
excitacion E(27), E(27)/E(4") y su valor de la probabilidad de transicién
B(E2 0f — 2) indican la existencia de una banda rotacional para este
ntcleo [107] [108].

Los espectros del 2*Mg se muestran en la figura (6.8). Este niicleo pre-
sentaba un potencial duro en ambas direcciones. En comparacion con el caso
anterior, encontramos grandes diferencias entre las aproximaciones. Para el
caso HFB+AMP se observa, una vez mas, una bajada de los niveles 2D que
en esta aproximaciéon es inusualmente grande. En este caso, las correlaciones
de apareamiento para funciones de onda intrinsecas tipo HFB se van a cero
en el minimo del potencial, figura (6.3), lo que va inducir un momento de
inercia asociado grande. Ademas de este efecto, tendremos que anadir el efec-
to de la contribucién espuria de la no conservacion del nimero de particulas.
En la descripcion de los estados que conforman los espectros, estamos con-
siderando dos grados de libertad colectivos; la deformacién cuadrupolar y el
gap de apareamiento. Es por este motivo, que los estados que sean colecti-
vos van a estar muy bien descritos en nuestras aproximaciones. Sin embargo,
los estados genuinos de particula independiente, solo son descritos de for-
ma aproximada. En este nicleo se puede observar que el estado excitado 05
estd muy alto en energia comparado con el dato experimental que lo sitiia en
10.855 MeV, lo que nos indica que no esta bien descrito por tratarse de un
estado de dos cuasiparticulas.
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Figura 6.8: Espectros para el 2*Mg en diferentes aproximaciones

6.4.3. Espectros para los Calcios

Por cerrar esta seccién dedicada a los espectros, se muestran en la figura
(6.9) los espectros para los isétopos *°~52754Ca solo en la aproximacién PN-
VAP+PNAMP, por ser la mas completa. De esta forma, se puede ver como
es la evolucion de los espectros con el niimero de neutrones y, si tenemos en
cuenta el **Cr y el *2Ti, el mismo analisis puede aplicarse con respecto al
nimero de protones. Observamos desplazamientos entre los niveles 2D y 1D
siguiendo la misma tendencia que los nucleos discutidos méas arriba en esta
aproximacion.

Segun crece el nimero de neutrones, uno esperaria un aumento de la colecti-
vidad, sin embargo si miramos los espectros, vemos que esto no es cierto pues
el ®?Ca no parece una interpolacién entre los otros dos niicleos vecinos. De
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108 PES y espectros

hecho, varios de los estados excitados de la primera y segunda banda estan a
una energia superior que los correspondientes al 5°Ca y %*Ca, en particular,
es interesante el estado 2. Este hecho ha sido interpretado como un posible
subcierre de capa en N = 32. Esta discusién se retomara en el capitulo 7.
Destacar el hecho de que, s6lo para en el °Ca, se observa una inversién de
los niveles 2 y 21 que se encuentran por debajo de de los 03 y 0F corres-
pondientes.

Si comparamos este espectro con el obtenido para el ®>Ti podemos ver el efec-
to de abrir la capa cerrada Z = 20. Los niveles para el Titanio, se encuentran
visiblemente por debajo de los del *°Ca.
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Figura 6.9: Espectros para los nticleos ®°Ca 52Ca 5*Ca en la aproximacién PN-
VAP+PNAMP

En esta seccién se han analizado los espectros de varios nucleos de dife-
rentes caracteristicas por un doble motivo. Por un lado entender el papel que
juegan las fluctuaciones de apareamiento en funcion de la estructura nuclear
y la aproximacién empleada. Por otro, mostrar como los efectos a gran esca-
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la que se observan para el primer ntcleo que hemos tomado de ejemplo, se
repiten en todos ellos en un modo sistematico.

Como resumen podemos decir que es el método PN-VAP+PNAMP en dos di-
mensiones, el que ofrece la mejor aproximacion a la solucion real del sistema.
No sélo por la inclusién de forma éptima de las correlaciones de apareamiento
en ambas dimensiones sino porque, ademas, la ganancia que se obtiene en la
energia para el espectro, debida el efecto de la inclusion de este grado extra
de libertad, va en una direccién mas acorde con lo obtenido experimental-
mente.

Con respecto a las otras aproximaciones podemos decir que, los espectros
HFB+AMP difieren mucho de los obtenidos con las otras dos aproximaciones.
Para los de tipo HFB+PNAMP, tenemos el problema de la autoconsistencia,
pero podemos decir que se parecen mas a los de tipo PN-VAP+PNAMP,
si bien sus estados estan en general a energias superiores. Sin embargo, los
espectros HFB+AMP y HFB+PNAMP tienen las mismas funciones de on-
da intrinsecas por lo que se puede deducir, que parte de esas divergencias
obtenidas, tienen su origen en el niimero incorrecto de particulas.

6.5. Resumen

Como resumen a este descriptivo y extenso capitulo, en el que se han dis-
cutido las superficies de energia potencial y los espectros para varios ntcleos
como funcion de g y d recogemos, a modo de sintesis, las principales conclu-
siones que han sido extraidas:

= Podemos decir que, en general y de manera independiente a la apro-
ximacién elegida, las superficies de energia potencial muestran que los
nicleos presentan una dependencia mas suave con el grado de libertad
del apareamiento. Si bien para un régimen donde el apareamiento es
muy fuerte, la superficie de energia potencial se vuelve escarpada pues
la energia crece rapidamente.

= Hemos visto que la autoconsistencia en los célculos es un importante
ingrediente. Los espectros de las aproximaciones PN-VAP+PNAMP y
HFB+PNAMP mostraban diferencias atribuibles a este factor.

» Para la aproximacién mas completa, PN-VAP+PNAMP, la ganancia
de energia que resulta al incluir la nueva coordenada, por ejemplo para
el caso del ®Cr (tabla (6.1)), va desde 0.229 MeV para el estado 07;
0.666 MeV para el 05 hasta 1.549 MeV para el 45 .
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En los espectros hemos visto que por construccién los estados J = 0
estan favorecidos en una proyeccion tipo PAV del momento angular.
Esto conlleva que los estados mas excitados, ya sean del mismo o dife-
rente .J, presenten mayores bajadas en la energia.

Para el caso en el que se tenga una proyeccién al momento angular,
serfa interesante poder implementar una proyeccién tipo VAP (tema
que esté fuera del propdsito de esta memoria) para obtener el momen-
to de inercia adecuado.

Si no se tiene en cuenta la proyeccién al niimero de particulas, las corre-
laciones de apareamiento no van a ser incluidas de manera adecuada. Es
necesario, al menos, como hemos visto para las superficies de energia,
una correcciéon con multiplicadores de Lagrange.

Los espectros obtenidos sin proyeccién al nimero de particulas tienen
los estados mucho més juntos, mostrando una apariencia de espectros
muy comprimidos hasta llegar a hacerlos poco realistas. Se han dado
argumentos que justifican esta situacion.

Los espectros enfatizan por un lado, la relevancia de la proyeccion al
nimero de particulas y por otro, el impacto que tienen sobre ellos las
correlaciones de apareamiento.

Para obtener mejores descripciones de los espectros, se deberia permitir
la ruptura de la simetria de inversion temporal e incluir excitaciones de
cuasiparticula, tomando como punto de partida la aproximacion PN-

VAP+PNAMP 2D.
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Capitulo 7

Resultados de observables
nucleares como funcion de q y ¢

Tras haber explicado el método que se ha seguido para el estudio de las
fluctuaciones de apareamiento en el capitulo 4, haber discutido las diferencias
que se dan entre las distintas aproximaciones en los capitulos 5 y 6, y haber
extendido el analisis de las superficies de energia potencial y los espectros
a diferentes nticleos en el capitulo 6, pasamos a examinar otras magnitudes
nucleares relevantes. En particular; las energias de separacién (seccién 7.1),
las probabilidades de transicién reducidas B(E2) (seccién 7.2), las energias
de excitacién 2% para los is6topos del Calcio ?~**Ca (seccién 7.3) y las tran-
siciones transiciones eléctricas monopolares p?(E0) (seccién 7.4). Ademads, se
comparan los valores tedricos con los correspondientes datos experimentales.

Todos los célculos de esta seccion se obtienen con la aproximacién PN-
VAP+PNAMP vy la interaccion de Gogny D1S, ya que se ha concluido en
los andlisis anteriores que es la mas completa.

7.1. Energias de separacion

Las energias de separacién de protones/neutrones sirven para determinar
posibles cierres de capa, apareciendo saltos bruscos en los ntimeros magicos.
Ademas, determinan los limites de la existencia de los nticleos como sistemas
ligados (lineas de goteo) y juegan un papel clave en la astrofisica nuclear [109].
Dado que, por el momento, no se pueden calcular nicleos impares con este
grado de sofisticacion de la teoria, nos centramos en las energias de separacién
de dos particulas.

Empezamos con las energias de separacion de dos neutrones. Se definen como
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112 Observables nucleares

la diferencia entre las energias de ligadura de los isétopos con N y N — 2
protones.

Son(N) = BE(Z,N) — BE(Z,N — 2) (7.1)
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Figura 7.1: Energias de separaciéon de dos neutrones en MeV para la cadena
isotopica del Mg.

En la figura (7.1) se representan las energias de separacién de dos neu-
trones. Observamos que segiin aumenta el nimero de neutrones la energia
disminuye, como es logico, si nos alejamos de la estabilidad. Para N = 16 se
produce una bajada abrupta de la energia que se corresponde con el subcie-
rre de la capa si/2. Sin embargo, para el cierre N = 20 no se observa una
gran bajada en la energia, como cabria esperar por ser un cierre de capa, ya
que el niicleo con ese ntimero de neutrones, el 3>Mg, es un caso especial, que
volverd a centrar nuestra atencion en la seccién 7.4. La conformidad entre los
datos experimentales y los valores tedricos es excelente ya que no se aprecian
diferencias significativas cuantitativas entre ellos.

De modo anélogo, se puede definir la energia de separacion de dos proto-
nes, como la diferencia entre las energias de ligadura de dos is6tonos.

S9,(Z) = BE(Z,N) — BE(Z — 2, N) (7.2)

En este caso, damos los datos para la cadena N=30 formada por los ntcleos
Ca, *2Ti y *Cr, tabla (7.1).
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Sap 1D 2D Exp
52Ty | 25.349 | 25.314 | 24.472
%4(Cr | 22.483 | 22.408 | 22.046

Tabla 7.1: Energias de separacién entre dos protones (Ss,) calculadas para la
cadena N = 30 y expresadas en MeV. Se muestra por columnas los resultados
de un célculo unidimensional, otro bidimensional y los datos experimentales res-
pectivamente.

Las energias de separacion, por definicion, solo implican las propiedades
del estado fundamental. Por este motivo, las diferencias que se observan entre
los casos 1D y 2D son muy pequenas, a la vez que se aprecia un notable
acuerdo con los datos experimentales (figura 7.1 y tabla 7.1). Dichos valores
para ambas energias de separacién estan tomados de [110].

7.2. Probabilidades de transicion cuadrupo-
lares

Una medida complementaria a las energias de excitacién para determinar
la colectividad de los estados nucleares, son las probabilidades de transicién
reducidas B(FE2). En esta seccién estudiamos las probabilidades de transi-
cién cuadrupolares eléctricas reducidas, E2, entre estados 07 — 2] usando
funciones de onda calculadas con el método del generador de coordenadas y
proyectados simultaneamente a buen N y J. En general, la probabilidad de
una transicion eléctrica reducida viene dada por la expresién:

1 N
B(EM. J. —~ ] — (I)NZJ1U1 Melec (I)NZJQUQ 2 73
(EA, Jo0 101) 2J2+1|( [ M5l )7 (7.3)
siendo: R
M = 12Y,,(0, ¢) (7.4)

el operador de transicion que actia sobre los protones. Para transiciones E2,
se toma A = 2. Ademas, Y>,(f, ¢) son los arménicos esféricos.

El elemento de matriz reducido (®NZ/101|[Nglee||®NZ7292) se calcula con los
estados del generador (3.139) [58,65,78,111].

Debido a que se usan bases de particula independiente grandes, sin core, las

cargas efectivas de protones y neutrones son sus respectivas cargas desnudas:
¢ =1y q,=0[14,112].
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En la figura (7.2) se pueden ver las probabilidades de transiciéon cuadru-
polares eléctricas reducidas: B(E2,0{ — 2{), para las cadenas isotépicas
formadas por isétopos del Magnesio (izquierda) y del Calcio (derecha) que
ya han sido utilizadas anteriormente.

En el primer caso, se observa que los resultados tedricos siguen, mas o menos,
el comportamiento de forma experimental. Sin embargo, el comportamien-
to en zigzag no es tan acusado como en el caso experimental ya que en el
valor tedrico para el **Mg estd ligeramente sobreestimado. Se observa que
los niicleos: ?*Mg, **Mg y 3*Mg, tienen los valores de las B(FE2) més altos,
indicando que dichos ntcleos son mas colectivos. Particularmente interesante
es el caso del Mg ya que tiene N = 20 y se esperarfa que el valor de B(E2)
en este caso fuese pequeno, sin embargo es superior al que se obtiene para el
30Mg.

Podemos decir que en general, las predicciones tedricas para la cadena del
Magnesio reproducen cualitativamente bien el comportamiento que muestran
los datos experimentales aunque los valores tedricos son mas elevados. Cuan-
do se incluyen las fluctuaciones de apareamiento, se observa que el efecto que
producen, es disminuir los valores de las predicciones tedricas y acercarlos a
los datos experimentales.

Para los isétopos del Calcio, las fluctuaciones de apareamiento, tienen un
efecto mayor, llegando a reducir su valor en un 30 % con respecto a los va-
lores de 1D. En este caso faltan datos experimentales para poder ofrecer
conclusiones.

700 ‘ — 200 !
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VE <rE = "
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= =100 - . o 1
g 400 o 18
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300 - e 2D 4 i o e 2D |
L + ¢ exp | L * exp
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Neutrones Neutrones

Figura 7.2: Probabilidades de transicién B(E2,07 — 2]) para Magnesios y
Calcios. Los datos experimentales estan tomados de [110] [113], [108], [114] y [115]

Para otros ntucleos estudiados, se muestran las probabilidades de transi-
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cion en la tabla (7.2). Comparando estos valores podemos comprobar que los
nicleos més deformados, por ejemplo **Cr frente al ®**Ca o 52Ti presentan
transiciones de valores mas altos. A medida que aumenta el niimero de pro-
tones fuera del cierre de capa (Z=20, Z=22 y Z=24 respectivamente para los
tres nucleos mencionados) los efectos colectivos tendran mayor peso.

Por otro lado, observamos de nuevo que los valores tedricos obtenidos a par-
tir de estados que dependen de la fluctuacién del niimero de particulas y del
momento cuadrupolar son menores (para todas las transiciones calculadas)
que los que se obtienen en el caso de depender sélo del segundo.

B(E21) | ®Cr 1D | *Cr 2D | ®Crexp |°*Ti 1D | 5%Ti 2D | 52Ti 2D

07 — 21 | 1256.233 | 1244.361 | 885.05 (36) | 643.252 | 601.238 | 567 (51)

Tabla 7.2: Diferentes probabilidades de transicién, B(E27), calculadas en una y
dos dimensiones expresadas en e2fm? y comparadas con los datos experimentales
[110,113,116].

Podemos concluir que la tendencia que se observa cuando se incluye ¢
consiste en disminuir las B(F2) con respecto a los casos 1D y, en los casos
estudiados, obtener un mejor acuerdo con el experimento, si bien los valores
tedricos para ciertos ntucleos siguen siendo bastante elevados, mostrando las
limitaciones del presente marco tedrico.

7.3. Energias de excitacién 2" para la cadena
isotopica del Calcio

El Modelo de Capas, tomando un potencial de oscilador arménico mas
un término de espin drbita, predice la existencia de los ya bien conocidos
nimeros magicos [35,117] (cierres de capa de dicho potencial): 2, 8, 20, 28,
50, 82 y 126. Estos nimeros se corresponden con el nimero de protones o
neutrones que tiene ciertos niicleos y que presentan unas ciertas propiedades
notorias, como mayor estabilidad, saltos en las energias de separacién, dife-
rencias entre las energias de ligadura con respecto a lo que se obtenia para
el modelo de la gota liquida, esfericidad, etc.

El desarrollo experimentado tanto por la fisica nuclear tedrica como expe-
rimental ha permitido explorar nuevas regiones de la tabla de ntcleos, po-
niendo nuevas cuestiones sobre la mesa como la discusion de la degradacién
o aparicion de nuevos cierres de capa fuera del valle de la estabilidad. Hemos
recuperado aqui el andlisis para los posibles cierres en N=32 y N=34 tomando
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la cadena isotépica del Calcio que ha sido ampliamente discutida [14,118,119]
introduciendo el nuevo grado de libertad.

Los observables relevantes para determinar un posible cierre de capa van a
ser, por las propiedades citadas mas arriba, la energia del primer estado ex-
citado 27 (presentaria un valor alto); la probabilidad de transicién entre ese
estado y el fundamental (por correlacién con la energia de excitacién seran
valores pequenos) y las energias de separacion correspondientes presentarian
un salto abrupto.
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Figura 7.3: energias de excitacién para los primeros estados 2? de los isétopos
del Calcio: °°Ca, ®2Ca y 5*Ca. Los simbolos azul y magenta (circulos y cuadrados
respectivamente) se corresponden con las energias de excitacién calculadas con el
generador de coordenadas en una y dos dimensiones respectivamente, mientras que
los diamantes verdes muestran los datos experimentales.

Mostramos la energfa de excitacién del estado 2] para la cadena isotépica
Ca, 52Ca y *'Ca, figura (7.3), dentro del marco de la coordenada genera-
dora con funciones de onda PN-VAP proyectadas a buen momento angular
y a buen numero de particulas. En azul y magenta estan representados los
valores tedricos para calculos 1D y 2D respectivamente y en verde los datos
experimentales.

Como ya hemos visto en los espectros, si comparamos los datos de 1D y
2D obtenemos valores mas bajos de la energia de excitacién para el segundo
caso. Por otro lado, las predicciones tedricas en 2D muestran el mismo com-
portamiento cualitativo que los datos experimentales para los puntos dados
por el °Ca y el 2Ca y 5*Ca. Sin embargo, cuantitativamente las predicciones
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tedricas dan valores méas elevados. Para obtener mejores resultados, en este
caso en el que los Calcios tienen un cierre en Z = 20, seria interesante poder
incluir en la descripcion tedrica excitaciones de cuasiparticula.

Observamos que el estado 2] del niicleo *?Ca estd claramente mds alto
en energia que sus vecinos, por lo que N=32 puede ser interpretado como un
buen subcierre de capa [14].

Menos claro es el caso del **Ca; la energfa de su estado 2] correspondiente, no
es tan alta como la del mismo estado para el niicleo *?Ca pero tampoco baja,
como se esperaria, hasta el nivel (o incluso mas abajo) al que se encuentra el
del niicleo *°Ca. Recientemente se ha medido la energia de excitacién para el
4Ca [120]. Nuestras predicciones se muestran de acuerdo con este resultado
experimental.

Concluimos, a la vista de la grafica, que nuestros resultados con un generador

bidimensional se muestran de acuerdo con un posible subcierre de capa en
N=32 y N=34.

7.4. Transiciones eléctricas monopolares.

Estudiamos ahora las probabilidades de transicion eléctricas monopolares.
En estas transiciones se cumple que AJ = 0 y no hay cambio en la paridad.
En nuestro caso, vamos a estudiarlas entre estados 05 — 0{. Como las
correlaciones de apareamiento juegan un papel destacado en la descripcién
de los estados 05 esperamos que para esta cantidad se encuentren diferencias
remarcables entre los casos 1D y 2D. El observable asociado a una transicién
eléctrica monopolar es p*(E0), ecuacién (7.6), y es relevante para estudiar
la coexistencia de forma cuando las energias de excitacién de los estados 05
sean relativamente pequenas o sean los primeros estados excitados del ntcleo.
Se define el operador eléctrico monopolar a un cuerpo E0O como [121]:

T(E0) =) ey (7.5)

Los elementos de matriz diagonales del solape de este operador definen el
radio de carga mientras que los no diagonales van a estar asociados a las
transiciones.

La probabilidad de transicién monopolar se define como:

2

; (7.6)

1
PED) = = | (@] Y curtl)
k
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siendo R = 1.2A'3 y &, ® ¢ las funciones de onda de los estados iniciales y
final respectivamente, en este caso, la de los estados 035 and 07.

Si los nicleos poseen estados con distintos minimos en las PES para dife-
rentes deformaciones, entonces uno observa diferencias en el radio cuadratico
medio de carga. Por otro lado, debido a que la forma y el radio del nicleo
estan intimamente relacionados, las correspondientes transiciones F0 van a
estar relacionadas con la forma que tienen los estados inicial y final implica-
dos [122,123]. Si un niicleo posee configuraciones con diferentes deformaciones
y se mezclan, se observaran transiciones eléctricas monopolares mayores. Por
ejemplo, la transicién F0(0; — 0f) permite diferenciar situaciones en las
que dos configuraciones compiten por ser el estado fundamental o el primer
excitado como es el caso de la isla de inversién para el 32 Mg. En el marco del
modelo de capas, dos neutrones son excitados desde la capa ds/; al orbital
intruso f7/, dando lugar a una configuracion deformada que compite con la
configuracion esférica pudiendo incluso el estado intruso convertirse en el fun-
damental [115,124]. En esta situacién de competicién entre configuraciones
y en ausencia de mezcla, uno esperaria un estado deformado 0] y otro cerca
del esférico 03 o a la inversa.

En la figura (7.4), graficas superiores, se muestran las energias de excita-
cién y los valores de E0(0J — 07) para los is6topos del Magnesio.
Si miramos la energia de excitacién del estado 05, gréfica superior izquier-
da (a), observamos que la diferencia entre los célculos de 1D y 2D es de
aproximadamente de 1MeV y que ambos siguen la tendencia de los datos
experimentales, si bien los datos del caso bidimensional estan ligeramente en
mayor acuerdo que los de una dimensién. El valor para el 2*Mg presenta una
notable diferencia entre las predicciones tedricas y los datos experimentales,
probablemente porque éste es un estado de dos cuasiparticulas que no pode-
mos describir adecuadamente.
En la grafica superior derecha (b) se representan los valores de p?(E0, 05 —
07) para la cadena ~3*Mg. De nuevo, no encontramos diferencias cualitati-
vas entre los tres datos expuestos pues todos presentan el mismo comporta-
miento, aunque las predicciones del caso 2D presenta valores inferiores que
pueden llegar a ser significativos como el caso del 3*Mg, para el cual el calculo
2D reduce el valor que se obtiene para el caso 1D en un factor dos, reprodu-
ciendo de este modo el valor experimental.
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Figura 7.4: Energias de excitacién para los estados 05 y p?(E0,0 — 0{) para
los isétopos del Magnesio (gréficas de arriba), los isétopos de Silicio (en el medio) y
isétopos del azufre (graficas de abajo). Los datos experimentales han sido tomados
de las referencias: [125], [110], [122], [115].
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|2 (fm) | 1D | 2D | Exp |
Mg [3.095 [ 3.008 [ 3.057
%Mg | 3.065 | 3.068 | 3.034
BMg [ 3.078 [ 3.082 | 3.070
SO0Mg 3.106 | 3.110 | 3.111
Mg [ 3.158 | 3.159 | 3.186
Mg [3.210 [ 3.213

Tabla 7.3: Radio nuclear de carga para el estado fundamental de los isétopos del
Magnesio, los datos experimentales han sido tomados de [126]

En la tabla (7.3) se dan los valores para el radio de carga en los isétopos
del Magnesio, para los dos tipos de céalculo y se compara con el experimento.
Ambos célculos difieren ligeramente y muestran buen acuerdo con los datos
experimentales.

En los paneles del medio de la figura (7.4) se representan las energias de
excitacién de los estados 03 (c) y las probabilidades de transicién monopo-
lares (d) para los is6topos 28Si y #°Si del Silicio.

En este caso observamos apreciables diferencias tanto cualitativas como cuan-
titativas entre ambos casos. Las predicciones en 1D no ofrecen, para ninguna
de las dos magnitudes, ni el comportamiento ni el valor correcto, mientras
que el caso 2D mejora de forma considerable el acuerdo con los datos expe-
rimentales. En concreto, para el caso 3°Si, encontramos una reduccién en la
energia de excitacion de 1.5 MeV con respecto al otro célculo que hace que
baje hasta reproducir la tendencia experimental. Para el p, el valor 2D es un
factor 3 mas pequeno que para el caso 1D, hasta situarlo de nuevo en acuerdo
con el comportamiento experimental.

Estos cambios tan grandes que observamos al incluir las fluctuaciones de
apareamiento, es probable que estén relacionados con el subcierre de la capa
2812 que se tiene para N = 16. El hecho de permitir en dicha configuracion
al sistema que explore el grado de libertad del apareamiento trae importantes
correlaciones que son las que van a originar estas bajadas que observamos en
los valores 2D.

Por ltimo, en la zona inferior de la figura (7.4) se muestran los mismos
resultados para la energia y las transiciones monopolares, paneles (e) y (f)
respectivamente, ahora para los isétopos del Azufre.

Las conclusiones que pueden sacarse en este caso son analogas al caso de los
is6topos del Silicio. La aproximacion con 1D no reproduce en modo alguno
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la energia de los estados 0 pues va incluso en sentido contrario al com-
portamiento experimental para el caso 32S. El considerar las fluctuaciones
de apareamiento reduce en 3 MeV el valor de la energia hasta situarlo en
linea con el dato experimental. Lo mismo se puede decir para la intensidad
la transicion monopolar donde una aproximacion en 2D reduce el valor uni-
dimensional en un factor 2 de modo que los datos experimentales estan en
este caso mejor reproducidos.

A partir de los resultados mostrados en este capitulo, podemos concluir
que:

= Se obtienen buenas predicciones tedricas para los observables calcu-
lados: energias de ligadura, transiciones, etc, que reproducen el com-
portamiento cualitativo experimental, obteniendo un mayor grado de
acuerdo cuando se incorpora la coordenada 6.

= Los valores tedricos para ciertos nicleos siguen siendo bastante eleva-
dos, lo que nos indica que es necesario hacer mejoras en el método para
poder reproducir el comportamiento cuantitativo. Se espera que se ob-
tenga un mayor grado de precisién si:
a) Se hace una proyecciéon VAP al momento angular.
b) Se incluyen grados de libertad extra, por ejemplo, mediante la rup-
tura de mas simetrias, como la de inversiéon temporal.
c¢) Se pueden considerar excitaciones de quasiparticulas.
d) Se extienden los cédlculos al caso triaxial.

= Se dan los resultados de las energias de excitacién de los estados 2%
para los Calcios. Tras analizar su comportamiento se puede interpretar
N=32 como un buen subcierre de capa mientras que para N=34 no es
tan robusto.
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Capitulo 8

Vibraciones colectivas

Cuando en un ntucleo se tienen excitaciones colectivas, esto es, excitacio-
nes que involucran varios nucleones, generalmente, se va a dar lugar al mo-
vimiento coherente de varios nucleones dentro del nicleo que se manifiestan
como un movimiento macroscopico del mismo. El estudio de los movimientos
colectivos nucleares es interesante ya que constituyen otra aproximacion para
estudiar las interacciones a n-cuerpos y la fuerza nuclear. Estas excitaciones
colectivas pueden ser de diferente tipo. En este trabajo, estamos interesados
en las vibraciones cuadrupolares y de apareamiento. Para las primeras, se dio
una breve descripcién en la seccion 2.4. El concepto de vibracién de aparea-
miento es analogo al de las vibraciones espaciales, pero para la coordenada
0, en lugar de en la deformacion, q.

Dedicamos la primera parte de este capitulo al estudio de estas vibraciones
colectivas cuadrupolares y de apareamiento, seccion 8.2. Es particularmente
interesante el caso de las segundas, ya que han sido objeto de estudio [8§]
y son las que se encuentran asociadas a la nueva coordenada que se ha in-
corporado en este trabajo. Se investigard, si es posible, interpretar alguno
de los estados con momento angular J = 0 como una vibracién genuina de
apareamiento. La cuestion principal que se plantea, es si existen de forma ge-
nuina o si estan de alguna forma desdibujadas o amortiguadas por el grado
de libertad cuadrupolar.

Con el objetivo de encontrar las vibraciones asociadas a la forma y al apa-
reamiento de forma separada, es interesante saber el papel que juega cada
una de las coordenadas. Para ello, podemos desacoplar de algin modo am-
bos grados de libertad. Lo que se propone es lo siguiente; hacer dos series de
calculos unidimensionales. En uno no se considera la interaccién entre las di-
ferentes formas nucleares y en el otro, la interaccién entre funciones de onda
con diferente apareamiento. Se estudian las funciones de onda en aproxima-
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cién PN-VAP+PNAMP del 5*Ti con acoplamiento en ¢, esto es, cuando se
toma ésta como coordenada generadora y d fijo para estudiar las vibraciones
cuadrupolares, subseccién 8.2.1, asi como el caso contrario, funciones de onda
con acoplamiento en J y ¢ fijo para estudiar las vibraciones de apareamiento,
subseccion 8.2.2.

En la otra mitad de este capitulo se discuten las funciones de onda colec-

tivas para estados 0" del mismo ntcleo, como funcién de la deformacién y de
las fluctuaciones de apareamiento. Es decir, ya con un calculo completo en
el que se considera el acoplamiento en 9 y ¢. Las funciones de onda calcula-
das dentro de la aproximacion PN-VAP+PNAMP se muestran en la seccién
8.3 donde, ademas, se comparan con las funciones de onda obtenidas en las
subsecciones anteriores, 8.2.1 y 8.2.2.
Las mismas funciones de onda pero dentro de las otras dos aproximaciones
que estamos contemplando, se tratan en la seccion 8.4. Es de esperar que se
encuentren diferencias apreciables segiin tomemos una aproximacién u otra.
Nos van a ofrecer una interpretacion fisica de los estados que representan, lo
que va a resultar de utilidad para entender efectos tales como la dependencia
lineal y la mezcla de estados, que se observan en la aproximacién HFB-+AMP.
Las funciones de onda 1D del Titanio también se discuten en la seccion 8.1
como aproximaciéon al estudio de las vibraciones cuadrupolares a partir del
caso autoconsistente, siendo el punto de partida de este capitulo.

8.1. Vibraciones cuadrupolares. Caso autocon-
sistente

Para estudiar la posible apariciéon de modos de vibracion en el espectro
nuclear, vamos a estudiar la estructura nodal de las funciones de onda co-
lectivas correspondientes al estado fundamental y los dos primeros estados
excitados 0F. La funcién de onda colectiva viene dada por la expresion de
G(q,0) definida en (3.141), que se obtiene como resultado de resolver la ecua-
cion HW. Es usual tomar esta magnitud al cuadrado, sin embargo, si no se
toma el cuadrado, las funciones de onda van a cambiar de signo cortando el
eje de abscisas, y esta representacién va a ser de utilidad a la hora de des-
cribir las vibraciones de forma o de apareamiento. El signo arbitrario de la
funcién de onda se escoge de manera que el estado fundamental sea positivo.
Tomamos como ejemplo el caso del 2Ti. Empezamos primero mostrando el
caso unidimensional, figura (8.1).

En la figura (8.1), panel (a), representamos los estados calculados en la apro-
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8.1 Vibraciones cuadrupolares. Caso autoconsistente 125

ximacion PN-VAP+PNAMP. La funciéon de onda del estado fundamental
estd comprendida en un intervalo ¢ € [—160, 220] fm? y presenta un maximo
oblate en ¢ = —100 fm? y otro prolate ligeramente mas alto en ¢ = 100 fm?.
Estos puntos se corresponden con los minimos en la PES, panel (c) de la fi-
gura (6.1). El estado excitado 05 estd definido también en el mismo intervalo
de deformacion y tiene una estructura parecida a la del estado fundamental,
pero con el signo invertido en la parte prolate y una pequena oscilacion al-
rededor del punto esférico. Este tipo de estado, en el que se corta una vez la
linea G = 0, es caracteristico de una vibracion tipo beta asociada a la de-
formacién. El estado 05 presenta una estructura de dos nodos, esto es, corta
dos veces al eje X, y los maximos, en valor absoluto, se localizan, en este
caso, para valores mayores de ¢ tanto en la parte prolate como en la oblate.
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Figura 8.1: Funciones de onda colectivas para el 2Ti con momento angular J = 0
como funcién de la deformacién cuadrupolar ¢, en diferentes aproximaciones. La
linea azul continua representa el estado Oi", la linea de trazos magenta el estado
OQL y linea verde de puntos el 0;{. La funcién de onda del estado OQL en la aproxi-
macién HFB4+AMP ha sido multiplicada por un factor de escala igual a 0.5 para
poder representar los tres estados en la misma escala y que se puedan visualizar
correctamente. La linea G = 0 estd marcada para diferenciar la zona positiva del
eje Y de la negativa.

En el panel del medio de la figura estan las funciones de onda correspon-
dientes al caso HFB+PNAMP. La funcién de onda del estado 0] tiene el
maximo prolate roto en dos, debido al colapso de la energia de apareamiento
de HFB para los neutrones que se da justo para esa deformacién, 100 fm?,
panel (d) de la figura (6.1).

La funcién de onda para el estado 0] presenta una estructura de un nodo
con un maximo y un minimo, siendo muy similar a la correspondiente para
el mismo estado en la aproximacion anterior.

La funcién colectiva del estado 03, si bien es similar a la del caso PN-
VAP+PNAMP, muestra un comportamiento mas irregular alrededor de la
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forma esférica y el minimo oblate se encuentra por debajo del prolate en este
caso.

En la parte derecha de la figura estan las funciones de onda correspon-
dientes al caso HFB+AMP. Su potencial, que se puede ver en el panel (c)
de la figura (6.1), presentaba la misma estructura de dos minimos que los
anteriores por lo que es de esperar que las funciones de onda tengan una
distribucion parecida.

El estado fundamental 07, al igual que en el caso HFB+PNAMP, presenta
la separacién en dos maximos del maximo prolate con respecto al caso visto
en la aproximaciéon PN-VAP+PNAMP. Por lo demads, es bastante similar a
los dos casos previamente estudiados.

El primer estado excitado 0 es el que es més diferente, con respecto a sus
homénimos, de los que hemos visto hasta ahora. Presenta un minimo muy
intenso (nétese que ademds estd multiplicado por un factor 0.5 para que se
ajuste a la escala utilizada) para la deformacién donde la energia de aparea-
miento de neutrones se anula.

El segundo estado excitado, 03, presenta un primer maximo prolate muy
plano alrededor del esférico y dos minimos de intensidad parecida, uno obla-
te y otro prolate, a deformaciones similares a las encontrados en los dos casos
anteriores.

8.2. Vibraciones simuladas en dos dimensio-
nes

8.2.1. Vibraciones cuadrupolares. Calculos con acoplo
en q y ¢ fijo

Empezamos analizando qué ocurre cuando sélo tenemos acoplo en la coor-
denada ¢, como en el caso anterior, pero para otros valores de § distintos a
la solucion autoconsistente, tomando uno menor y otro mayor y mantenien-
do estos valores constantes para todo ¢. En la figura (8.2) podemos ver los
potenciales y las funciones de onda como funcién de ¢, pero en este caso solo
para los estados PN-VAP+PNAMP 07 y 05.

Observamos que el pozo de potencial para el caso § = 1.5, panel (a), estd a
2.7 MeV mas profundo que el del § = 3.5, panel (b), de modo que cuando
se incorporen las correlaciones de apareamiento, las funciones de onda van
a estar inhibidas para valores altos de §. Esto significa que en el analisis
que vamos a hacer conformando funciones de onda bidimensionales en base
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a céalculos 1D, esto es, tomando una de las coordenadas como generadora y
haciendo un generador para cada valor fijo de la otra coordenada, no se van
a tener en cuenta consideraciones con respecto a la energia sobre qué valores
de g o 0 son favorecidos o inhibidos. Este efecto va a jugar un papel impor-
tante para la interpretaciéon de las funciones de onda en 2D. Por ejemplo, los
maximos que encontremos para valores grandes de d es poco probable que se
mantengan y aparezcan en la funcion de onda total.
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Figura 8.2: Pozos de potencial (linea continua negra) y funciones de onda para

los estados 0f (azul) y 0] (magenta) en un célculo unidimensional en el que la
coordenada generadora es ¢ y se fija el valor de 6 = 1.5, panel (a) y § = 3.5, panel

(b).

A continuacion, extendemos el analisis a todos los valores de § que for-
man la red en la que se realizan los calculos, pero seguimos sin permitir que
interactien estados con diferente energia de apareamiento. De modo que te-
nemos 10 valores de § para los que se va a hacer, para cada uno de ellos, un
generador de coordenadas de 32 estados, que son el nimero de valores que
tenemos para q.

Si resolvemos la ecuacién de HW (3.131) para todos los valores de § que se
tienen, obtenemos 10 curvas similares a las de la figura (8.2). Estas curvas
se pueden fusionar en una y formar una superficie con las coordenadas (q,
d). Si la representamos gréaficamente, se obtienen las funciones de onda bidi-
mensionales para diferentes estados de la figura (8.3), paneles (a) (b) y (c).
Estas superficies son idealizadas puesto que se ha suprimido la interaccién
entre distintos §. Esto es, las funciones de onda que se observan en la figura
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(8.3) son las que se habrian obtenido si hubiésemos resuelto la ecuacién de
HW en dos dimensiones reales, con acoplo en ¢ y § pero suponiendo que:

(61| HPN P |q26,) = (161 | HPYN P?|q261) 05,5, (8.1)
Ademas para una ecuacién HW, como es el caso, hay que asumir también:

(@161 PY P g265) = (161 PN P71 102) 0430, (8.2)
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Figura 8.3: Funciones de onda GCM para los estados Of, O; y O;f (de arriba a
abajo) obtenidas combinando generadores en 1D para ¢ fija y con ¢ como coorde-
nada generadora. Todas son en aproximaciéon PN-VAP+PNAMP y para el nticleo
92T4. Consultar el texto principal para una informacién més detallada.

Es importante notar dos aspectos. En primer lugar, cuando se representa
una funcién de onda bidimensional de un estado excitado y se produce un
cambio de signo, esto, va a dar lugar a una linea nodal en vez de observar
solo un nodo. En segundo lugar, habra que distinguir entre esta linea y las
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lineas de contorno igual a cero y que nada tienen que ver con una linea nodal,
sino que indican las colas de la funcién de onda cuando caen a cero.

En esta figura, en analogia a lo que ocurria en el caso unidimensional, se
observa una vibracién beta de uno o dos fonones para los estados 0f y 05
respectivamente.

8.2.2. Vibraciones de apareamiento. Calculos con aco-

plo en J y q fijo

De manera analoga a como se han encontrado las vibraciones cuadrupola-
res asociadas a la deformacion, es posible hacer una busqueda de otro modo
nuclear colectivo de vibracién, asociado en este caso al segundo grado de li-
bertad que estamos considerando, lo que se corresponderia con una vibracién
de apareamiento.

Empezamos por el caso mas sencillo. Se toma como coordenada genera-
dora ¢ y se mantiene la deformacion fija en valores para los que sabemos que
la funcién de onda tiene presencia, en este caso: ¢ = 80 fm? y ¢ = —80 fm?.
Obtenemos los potenciales y las funciones de onda (a) y (b) de la figura (8.4)
respectivamente para esas deformaciones.
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Figura 8.4: Pozos de potencial (linea continua negra) y funciones de onda para
los estados 0 (azul) y 03 (magenta) en un célculo unidimensional. En los paneles
(a) y (b) se fija la deformacién en ¢ = 80 fm? y ¢ = —80 fm? respectivamente y se
utiliza § como coordenada generadora.
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La energia viene representada en linea negra continua. En ambos casos,

se muestra la forma de un pozo de potencial que decrece suavemente desde
0 = 0 hasta el minimo en § & 2.5 y posteriormente crece con bastante pen-
diente a medida que crece el apareamiento . Las funciones de onda estan
representadas por una linea discontinua azul para el estado 0] y magenta
para el estado 05 .
Para ambas deformaciones, ¢ = £80 fm?, el estado fundamental se encuentra
en la parte positiva del eje Y, mientras que el primer excitado muestra un
nodo, pues corta una vez el eje X. Por lo tanto, este estado se puede inter-
pretar como una vibracion de apareamiento.

Después de mostrar un ejemplo de calculo como funcién de § y con ¢ cons-
tante, seguimos una argumentacion equivalente a la de la subseccién 8.2.1.
Para cada uno de los 32 valores del intervalo de ¢ que estamos tomando, se
hace un calculo 1D usando § como coordenada generadora. Es decir, tene-
mos 32 generadores de 10 puntos cada uno, que unidos, van a conformar una
funcién de onda en 2D que sélo tiene acoplo en 6.

De esta manera, se obtienen las funciones de onda de los paneles (a) (b) y
(c) de la figura (8.5) para los estados 07, 03 y 05 respectivamente.

En este caso, la analogia con el caso 2D real nos llevaria a que la condicién
(8.1) serfa ahora:

(@161 H PN P ga6) = (101 [HPN P7|q102)0 s, (8.3)
mas, de nuevo, la condiciéon dada por (8.2).

El estado fundamental tiene una interpretacion clara pues no presenta
ningtin cambio de signo. En el panel (b), para el estado 05, se observa una
linea nodal a lo largo de 0 lo que nos indica que tenemos una vibracion
genuina de apareamiento. El estado 0§ se corresponde con una vibracién de
apareamiento de dos fonones.

130



8.3 Funciones de onda 2D reales, con acoplo en ¢ y 0 131

0.5
0.4
0.3
0.2
0.1
0

0.4
0.2
0
-0.2
-0.4

0.4
0.2

o

-0.2

)
O = NMWHAO=2NWARO=NMAN

-100 0 100 200
q (fm?)

Figura 8.5: Funciones de onda GCM para los estados OT, 0; y 0;{ (de arriba a
abajo) obtenidas combinando generadores en 1D para ¢ fija y § como coordenada
generadora. Consultar el texto principal para una informacién mas detallada.

8.3. Funciones de onda 2D reales, en un calcu-
lo completo con acoplo en la deformacién
y en el apareamiento

Las mismas funciones de onda para el mismo nucleo son representadas
ahora para el caso puramente bidimensional, sin hacer ninguna simplificacién,
en el plano (g, d), figura (8.6). Las superficies de energia potencial asociadas
a estas funciones de onda y que sirven de guia para interpretar las funciones
de onda se muestran en la figura (4.3).

Los contornos de la funcién de onda para el estado 0f se muestran en
el panel (a) de la figura (8.6). Encontramos, en fuerte correspondencia con
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lo que se observa para el potencial, una estructura de dos maximos, aunque
ahora se observa una dependencia més suave con el grado de libertad del
apareamiento, con predominancia del lado prolate. Las deformaciones a las
que se encuentran son casi las mismas que para el caso 1D visto con anterio-
ridad, mientras que los valores de ¢ coinciden practicamente con la solucién
autoconsistente, que se puede ver marcada por puntos sobre la figura.

El estado 05, panel (b) de la figura (8.6), tiene un méaximo prolate y un
minimo oblate, siendo ahora mayor en valor absoluto este ultimo. Estos ex-
tremos estdn ahora en valores de § menores que para el estado 0. Hay un
cambio de signo entre el mdximo positivo en ¢ ~ —60 fm? y el minimo que
toma valores negativos en ¢ ~ 140 fm2. Se encuentran separados por una
linea nodal en ¢ ~ 40 fm?, por lo que este estado, se puede interpretar como
una vibracion 5 en dos dimensiones. Conviene hacer la distincion entre esta
linea y la linea de contorno igual a cero que se observa aproximadamente
para -160 fm? y 220 fm? y que no es parte de la linea nodal, sino que indica
que es la cola de la funcién de onda cuando cae a cero.

En el panel (c) estd la funcién de onda para el estado 0;. Se ve una
estructura de tres picos: dos con valores negativos para formas muy deforma-
das y con grandes correlaciones de apareamiento (uno prolate y otro, el més
intenso de los tres, oblate). El tercero, con valores positivos, se encuentra en
80 fm? y con valores bajos de apareamiento (0 < § < 1.5).

Las posiciones a las que se encuentran los maximos con respecto a la coorde-
nada ¢ son similares a lo que se ha obtenido para el caso unidimensional. El
hecho de que los picos que se dan para grandes deformaciones tengan fuertes
correlaciones de apareamiento es debido a que para esas deformaciones la
densidad de niveles es alta y el hecho de permitir al sistema moverse en la
coordenada ¢ dado un ¢ fijo le permite a los estados colectivos moverse a
zonas con diferente apareamiento.

En esta funcién de onda encontramos dos partes diferenciadas marcadas por
la linea nodal. Una estd formada por dos segmentos perpendiculares al eje
¢, uno en ¢ ~ —100 fm? y otro en ¢ ~ 200 fm?. Esta zona puede asociarse
con una vibracién beta de dos fonones. En la otra parte, la linea nodal es
curvada, méas o menos paralela al eje ¢ y puede ser asociada a una vibracién
de apareamiento. Por tanto, este estado no puede interpretarse como una
vibracién pura de apareamiento.
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Figura 8.6: Funciones de onda colectivas para los estados Of 0; y 0;, de arriba a
abajo, del °2Ti en célculos 2D y en la aproximacién PN-VAP+PNAMP. Obsérvese
que la escala de la deformacion ha sido reducida en relacién a la que hemos em-
pleado regularmente, para obtener mejor resoluciéon en la zona de interés donde
se localiza la intensidad de la funcién de onda. Los contornos se corresponden con
intervalos de separacién 0.02 y la linea discontinua maés gruesa marca los ceros de
las funciones de onda.

Para tratar de entender lo que ocurre con la vibracién pura de aparea-
miento hacemos el siguiente andlisis. El objetivo es comparar las funciones
de onda completas de un cdlculo en 2D, figura (8.6) con las obtenidas de
una forma artificial, que hemos explicado anteriormente, acoplando o g por
separado, figuras (8.3, 8.5).

Es importante hacer primero la siguiente consideracion; la normalizacién de
las funciones de onda es diferente si se trata de la funciéon de onda bidimen-
sional estandar 75 |G(gd)]*> = 1; o si es para las construidas con ¢ fijo,
> |G(gd)> =15 00 fijo, 3 5|G(¢d)]> = 1. Esto va a producir un efecto que
consiste en que las funciones de onda se estiran. Asi, para § fijo, figura (8.3),
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las funciones de onda se expanden a lo largo del eje Y, obteniendo intensidad
de las funciones de onda en valores inusualmente grandes de las correlaciones
de apareamiento, como puede verse en la figura. Del mismo modo, para el
caso de q fijo, las funciones de onda se estiran en la direccion del eje X, panel
izquierdo de la figura (8.5).

Si nos centramos ya en dicha comparacion, vemos que el estado funda-

mental 0] del cdlculo completo en 2D, panel (a) (8.6), tiene dos méximos,
el mayor en +80 fm? y otro, menor y oblate en —80 fm?. Esta estructura se
da para el estado fundamental de los calculos con ¢ como coordenada gene-
radora, panel (a) figura (8.3). Si bien, como ya se ha explicado, los méximos
se extienden para un rango muy grande de valores de 9.
El mismo estado pero con el apareamiento como coordenada, panel (a) de
figura (8.5), muestra un patrén diferente. Hay tres maximos; uno para la
forma esférica y otros dos para grandes deformaciones £200 fm? lo cual se
corresponde con una situacion en la que la densidad de niveles es alta, lo
que favorece correlaciones de apareamiento grandes. Esta funciéon de onda
no se corresponde con la funciéon de onda completa en 2D. Sin embargo, si
la observamos junto a la anterior, es facil visualizar que cuando se considera
el apareamiento, se modula la funcién de onda que se obtiene para el caso
en el que se toma ¢ como coordenada generadora, suprimiendo, por ejemplo,
valores de delta proximos a cero y mayores a 4, hasta obtener la imagen del
caso completo 2D, figura (8.6)(a).

El estado 0F para la funcién de onda completa, panel (b) de la figura

(8.6), se parece de nuevo al mismo estado con ¢ como coordenada genera-
dora, panel (b) de la figura (8.3), salvo porque, en este caso, hay una fuerte
supresion de valores altos de 4.
Sin embargo, la vibracién genuina de apareamiento del panel (b) de la figura
(8.5), no presenta una equivalencia directa con el segundo estado excitado,
como podria esperarse, del caso completo 2D mostrado en el panel (c) de la
figura (8.6).

Por tltimo, el estado 03 de la funcién de onda completa, panel (c) de la
figura (8.6) para los cdlculos 2D, se puede interpretar como la mezcla de una
vibracién beta de dos fonones (figura (8.3) (c)) y una vibracién de aparea-
miento (figura (8.5) (b)).

El estado 05 del panel (c) de la figura (8.3) es una vibracién beta de dos
fonones que no parece tener un claro homoélogo en la funciéon de onda total
como ocurre para los estados anteriores. Sin embargo, es facil observar que
si se toma el corte para d = 2.5, valor que se corresponde aproximadamente
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con el de la solucién autoconsistente, se obtiene una estructura de parecida a
la del mismo estado en una dimensién, linea verde del panel (a) de la figura
(8.1).

La vibracién 3, panel (c) de la figura (8.3), tiene una estructura principal de
4 picos aproximadamente en los siguientes valores de ¢: —140, —90, +100 y
+220 fm?. Mientras que la vibracién de 4, panel (b) de la figura (8.5), presen-
ta una distribucion de dos picos en —160 y +180 y otros dos en —50 y +50
fm?2. Se puede inferir, que una combinacién de ambas estructuras de nodos
en una sola, de forma energéticamente eficiente, pasa por favorecer los dos
picos de grandes deformaciones (sacando provecho de tener una densidad de
niveles grande) a zonas de grandes correlaciones de apareamiento y los dos de
deformaciones pequenas a zonas de pequenas correlaciones de apareamiento.
Los dos picos oblates (lo mismo se da para los prolates) de grandes defor-
maciones provenientes de ambos modos se funden en uno y lo mismo para
los picos a pequenas deformaciones. El resultado de esta combinacion es el
estado 03 que se observa para el calculo completo en 2D.

De esta discusién podemos concluir que es el grado de libertad cuadru-
polar el que proporciona la parte principal de la estructura de la funcién
de onda. Las posiciones de los puntos singulares en la coordenada ¢ estan
moderadamente influenciados por el grado de libertad del apareamiento. Si
miramos la solucién autoconsistente marcada en las funciones de onda, obser-
varemos que apenas hay variaciones en el contenido de apareamiento, man-
teniendo un valor casi constante en torno a § ~ 2.5 — 3.0. Esto no es asi para
el caso 2D completo, en concreto para el estado 05 candidato a ser una vi-
braciéon de apareamiento. Lo que se deduce de las figuras de las funciones
de onda con acoplamiento en § y ¢ simultaneamente y las funciones de onda
con el acoplo separado en cada una de las variables, es que la vibracion de
apareamiento de un fonén se mezcla con la vibracién beta de dos fonones
hasta que ambas se acomodan en una funcién de onda resultante con dife-
rente intensidad en el apareamiento.

Por tanto, la presencia de vibraciones de apareamiento genuinas esta fuerte-
mente inhibida por el modo cuadrupolar, que es el que claramente modula
la estructura de la funcién de onda.
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136 Vibraciones colectivas

8.4. Funciones de onda en 2D para diferentes
aproximaciones

Por dltimo, se presentan las funciones de onda bidimensionales equiva-
lentes a las de la figura 8.6, analizadas en la seccién anterior pero para los
casos derivados de funciones de onda intrinsecas tipo HFB.
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Figura 8.7: Funciones de onda colectivas en 2D, andlogas a las de la figura
8.6, para los estados Of 0; y OE{ (de arriba a abajo) pero en las aproximacio-
nes HFB+PNAMP y HFB+AMP (en columnas). Los contornos se corresponden
con intervalos de separacion 0.02 y la linea discontinua mas gruesa marca los ceros
de las funciones de onda.

En los paneles (a), (b) (c) de la figura 8.7, encontramos las funciones de
onda HFB4+PNAMP para los estados 0] 05 03 respectivamente. Si se tienen
en cuenta las superficies de energia potencial, panel (e) de la figura (4.3),
las funciones de onda 1D para esta aproximacién, panel (b) figura (8.1) y
la discusién que se ha hecho para el caso PN-VAP+PNAMP en 2D no hay
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practicamente nada nuevo que aportar a la hora de interpretar estas funcio-
nes de onda. La principal diferencia con lo obtenido para el caso anterior,
es que la vibracién beta para el estado 05, y en menor medida también el
estado 0;, no son tan puras como en el caso anterior.

Las funciones de onda HFB+AMP se encuentran en los paneles (d), (e),
(f) de la figura 8.7. De nuevo, es la aproximacién donde encontramos las
diferencias mds acusadas comparadas con las otras dos. Para el estado 0]
encontramos una clara similitud con los otros dos estados fundamentales
mostrados. Presenta una estructura de dos maximos, aunque ahora son mas
intensos y estan localizados para valores mas cercanos entre ellos de ¢ y
para valores menores de §. Los estados 05 y 04 parecen ser el resultado
de una mezcla de los que se observan en las aproximaciones con proyeccién
al nimero de particulas. Estas funciones de onda estdn mas comprimidas
en la variable §, dando la impresién de que son empujadas hacia valores
bajos de correlaciones de apareamiento y no se encuentran picos para las
grandes deformaciones, como se veia en los otros casos. La tendencia que
observamos, es que la concentracién de la funciéon de onda es mayor cuando
la aproximacién que se utiliza para obtenerlas es de menor calidad. Para ver
este efecto de manera cuantitativa se muestran en la tabla (8.1) los maximos
(en valor absoluto) de las funciones de onda.

Funcién de onda 07 05 05
PN-VAP+PNAMP | 0.125 | 0.158 | 0.198
HFB+PNAMP 0.133 | 0.183 | 0.295
HFB+AMP 0.161 | 0.200 | 0.357

Tabla 8.1: Valores méximos de GG en valor absoluto para las funciones de onda
colectivas representadas en las figuras (8.6) y (8.7).

Es interesante notar que, mientras que las superficies de potencial que
se corresponden a estos tres casos, paneles (d), (e) y (f) de la figura (4.3),
tienen un aspecto similar entre si, las funciones de onda HFB+AMP son
bastante diferentes a las de las otras aproximaciones. Esto esta relacionado,
por un lado con los elementos no diagonales del solape del hamiltoniano y
las correlaciones dindamicas que va a dar el método GCM y por otro, con el
solape de la norma y la dependencia lineal de los estados que forman la base.
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Capitulo 9

Desintegracion doble beta sin
emision de neutrinos

9.1. Introduccion

Uno de los principales retos en la fisica nuclear y de particulas hoy en dia

es determinar si los neutrinos son particulas tipo Dirac o Majorana y rela-
cionado de manera directa con este asunto, esta la cuestién de la deteccién
de las desintegraciones doble beta sin emision de neutrinos [127].
La desintegracién doble beta es un proceso mediado por la interaccién débil
y que se caracteriza por ser muy lento. Se da entre dos is6baros par-par, uno
decae en otro que tiene dos protones mas y dos neutrones menos, cuando una
desintegracién sélo beta esta energéticamente prohibida. Esta situacion se da
para una treintena de nucleos, a pesar de que debido a los largos tiempos
de vida asociados a estas desintegraciones, solo serdn adecuados para su de-
teccién aquellos que tengan un valor factor ()3 grande. Ademads, los ntcleos
iniciales deben ser lo suficientemente abundantes para poder llevar a cabo el
experimento.

Se puede distinguir dos casos de desintegraciones doble beta. Las reaccio-
nes nucleares correspondientes son las siguientes:

GXN =540 Xnoo + 2 + 27, (9.1)

FXN =50 Xn_o+2e” (9.2)

En el primer modo de desintegracion, propuesto inicialmente por Goeppert-
Mayer [128], se emiten dos electrones y dos neutrinos (2v(3). Es un proceso
de segundo orden mediado por la interaccion débil, por lo que la probabilidad
para que ocurra es baja, conserva el ntimero leptonico y es compatible con
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que los neutrinos sean particulas tipo Dirac o Majorana. La primera detec-
cién en un laboratorio data de 1987 [129]. Desde entonces, se ha medido para
una docena de nucleos [130].

La otra alternativa, ecuacién 9.2, es la desintegracién doble beta sin emision
de neutrinos (Ovf3f), [131]. Este proceso en el que el nimero lepténico no se
conserva solamente es posible si los neutrinos son particulas de Majorana,
esto es, que los neutrinos son a la vez su propia antiparticula. Este caso seria
particularmente interesante desde el punto de vista tedrico ya que tendria
importantes consecuencias en la fisica de particulas, pues este proceso impli-
ca, por ejemplo, que los neutrinos tendrian que tener masa y que el nimero
leptonico no se conserva, ambos conceptos no compatibles con el Modelo
Estandar.

La desintegracién Ov 3 resulta ser la mejor manera para detectar un proceso
en el que se viole la conservacion del ntimero lepténico y por tanto, de esta-
blecer el cardcter tipo Majorana de los neutrinos. Ademas, los experimentos
de oscilaciones de neutrinos demuestran que estas particulas elementales tie-
nen masa y proporcionan una medida de las diferencias entre las masas de
los distintos autoestados de masa. La deteccion de la desintegracion OvSp
permitiria establecer una escala absoluta para dichas masas y, dependiendo
de dicha escala, su jerarquia [127].

Sin embargo, salvo en la aseveraciéon muy controvertida efectuada por parte
de la colaboracién del experimento de Heidelberg-Moscow [132] y que ha sido
recientemente casi descartada por los resultados de GERDA [133], la desinte-
graciéon OvBS no ha sido observada todavia, de manera que por un lado tene-
mos el reto experimental para detectar dicho proceso. Este objetivo no es facil
dado que es necesario tener un fondo extremadamente bajo para diferenciar
los escasos eventos del ruido. Actualmente varios experimentos como EXO-
200 [134], KamLAND-Zen [135], GERDA [133, 136, 137], CANDLES [138],
COBRA [139], Majorana [140], NEMO-3 [141], SNO+ [142], AMoRE [143],
CUORICINO [144], CUORE [145], NEXT-DEMO [146] ya estan en marcha

o en avanzado estado de desarrollo.

Los candidatos mas plausibles para detectar la desintegracién Ovf3S5 de
acuerdo a su alto factor Qg son los siguientes: ¥Ca, Ge, %2Se, Zr, %Mo,
116Cd, 124811, 128Te7 130Te, 136Xe, 150Nd.

Como se vera en la seccion 9.2, la semivida, y la vida media, de este proceso
es proporcional al elemento de matriz nuclear (nuclear matrix element, NME)
entre los estados inicial y final. Dichos NME tienen que determinarse teérica-
mente de la manera mas precisa posible por dos motivos principalmente. El
primero de ellos es que, en ausencia de resultados experimentales, la eleccién
de los nucleos mas adecuados para tratar de detectar el proceso dependera de
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si el NME es grande o pequeno. El segundo motivo es que si finalmente se
obtiene una senal experimental, el valor final y la incertidumbre de la masa
efectiva del neutrino dependera del NME.

Hasta la fecha, los elementos de matriz nuclear han sido calculados utili-
zando diferentes métodos de estructura nuclear como: la QRPA [147-151];
el modelo de capas (ISM) [152-154]; el modelo de bosones interactuantes
(IBM) [155,156], el método de Hartree-Fock proyectado (PHFB) [157] y el
método de funcionales de la densidad de energfa (energy density functional,
EDF) [158-160].

En este capitulo se estudian los NME para la desintegracion doble beta
(double beta decay, DBD) para los 11 candidatos mencionados anteriormente
en el marco de las teorias més alld de campo medio autoconsistente con
restauracion de simetrias y mezcla de configuraciones tomando como grados
de libertad, el gap de apareamiento y la deformacién. Todos los calculos de
este capitulo estan exclusivamente desarrollados para la aproximaciéon PN-
VAP+PNAMP y haciendo uso del método GCM. En este caso, el espacio
de configuracién se ha ampliado, con respecto a los calculos mostrados con
anterioridad a este punto. Se han tomando 11 capas mayores de oscilador.
La coordenada asociada a la deformacion o forma nuclear en este caso va a
estar descrita en el plano 3, [33], en lugar de ser la variable ¢ utilizada hasta
ahora. Sin embargo, ambas estédn relacionadas de la siguiente forma [58]:

32 4513
V207

Nuestros calculos son axiales, de modo que v = 0, A es el niimero mésico y
ro = 1.2 fm. El rango que toma [ varia ligeramente entre los candidatos, pero
tipicamente van desde -0.8 hasta 0.9 con intervalos de 0.05 mientras que el
rango de 0 va de 0.5 hasta 6.5 en intervalos de 0.5. De modo que tenemos del
orden de 400 estados intrinsecos para cada uno de los nicleos que queremos
describir.

<¢‘Q20|¢> = Bcosy

(9.3)

El apareamiento es un elemento fundamental en la existencia de una
desintegracién doble beta, ya que es esta interaccion la que hace que la energia
de los nucleos par-par baje. Esto hace que se cree una desintegracion doble
beta energéticamente mas favorable entre dos niicleos con esta caracteristica a
que ocurra una sola desintegracion beta pasando por el nticleo vecino impar-
impar. La sensibilidad del operador de transiciéon con las correlaciones de
apareamiento ha sido previamente descrita [148,151,153,158]. Sin embargo,
en este trabajo se estudia por primera vez en los elementos de matriz nuclear
la influencia de las correlaciones de apareamiento y de deformacién cuando
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éstas son tratadas al mismo nivel, incluyendo la posibilidad de mezcla de
configuraciones.

9.2. Marco Teorico

La semivida del proceso de desintegracion doble beta sin emision de neu-
trinos entre estados 0 viene dada por la expresién [127]:

[10(0% = 01)] ™ = Gy | M <@) : (9.4)

Me
donde:

s (G es una factor de fase cinemético que depende de la carga, masa y
energia disponible en el proceso [161].

= M, es la masa del electrén.

= (m,) es la masa efectiva del neutrino de Majorana. Se define como:
(my) = | >, U2myl, siendo my, la combinacién de las masas del neu-
trino que da la matriz de mezcla U.

» MY es el elemento de matriz nuclear (NME), esto es, el elemento de
matriz del operador para una desintegracion Ov(3[ entre los estados
iniciales y finales de los ntcleos.

Si tenemos en cuenta la aproximacién de cierre para hacer la suma en
los estados intermedios del nicleo impar-impar [127], el NME para la desin-
tegracion OvfBf, se calcula como un valor esperado entre un operador a dos
cuerpos entre los estados iniciales y finales:

MY = (0F] 81 07) (9.5
M% consta de tres términos: Fermi (F), Gamow-Teller (GT) y Tensor (T):
2
M = — (g—V) MY + M%. — MY (9.6)
ga

Se toman en este caso como valores de las constantes: gy = 1y g4 = 1.25.
M F/cryT son los operadores a dos cuerpos de Fermi, Gamow-Teller y Ten-
sor respectivamente. El término tensor, que tiene una pequena contribu-
cién [150,153], no es tenido en cuenta en estos calculos.
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9.2 Marco Tedrico 143

Los operadores F' y GT se definen como:

MY = Vp(r)iDi® (9.7)
MY = Ver(r)(5'a?)iDi? (9.8)

donde: {_ es el operador escalera de isospin que permite cambiar neutrones
p(A)rAprotones;Ac:fAson las matrices de Pauli que actiian sobre la parte de espin;
(ri73] VF/GT|7’ET_2’> = vpjer(|r1 —73]), son los potenciales locales que dependen
de la coordenada relativa de los nucleones implicados en la desintegraciéon y
r=|r1 —r3.

Las funciones vp/qr(r) que aparecen en la expresién anterior, son los poten-
ciales de neutrino [153] y tienen la forma:

27 A1/3 o0 . h G (q)
UF/GT(T) = p ngl /0 ]0(q7’)I;/TTquq7 (9.9)

donde r es la distancia entre nucleones; o y A ya han sido definidas en la
ecuacion (9.3); ga=1.25; = 10.22 MeV; g es el momento transferido; hp/ar
es el factor de forma y jo(gr) la funcién esférica de Bessel. El pardmetro p
depende de cada desintegracion y es una energia promedio de los estados
intermedios del nicleo impar-impar [162,163].

En el calculo de los NMEs, es necesario tener en cuenta las correlaciones
de corto alcance (short range correlations, SRC) consideradas en el operador
de la transicion. Para incluirlas de manera totalmente consistente, se tendria
que renormalizar el operador Ov /3 usando la misma prescripcién que para la
interaccién desnuda. Sin embargo, esta prescripcién general no se pueden em-
plear cuando se usan interacciones fenomenolégicas efectivas (como en este
caso y en los métodos usados habitualmente). Por lo tanto, las SRC también
se incluyen de manera fenomenoldgica usando diferentes parametrizaciones,
en particular:

a) Funciones tipo Jastrow [164]:

En este caso el NME se modifica mediante una transformacion unitaria de
la siguiente manera:

(O v(r)] 0F)sre = (OF f(r)] w(r)| f(r)0F) = (OF| f(r)*v(r)| OF),  (9.10)
con f(r)=1—e"(1—br?)ya=111fm? b=0.68 fm 2

b) Unitary correlation operator method (UCOM) [165]:
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144 Desintegracién doble beta

En este caso el NME, es modificado por un operador de traslaciéon de la
siguiente manera:

(0] v(r)| 0F )sre = (07| 0(7)] OF) (9.11)

F=r (1 + e—e%% (%)n> , (9.12)

con a = 1.3793 fm ; f = 0.8853 fm y n = 0.3724

En este trabajo, las SRC son implementadas dentro del método UCOM. Las
correcciones que ofrece este método son mas suaves [166] que las dadas por
el primero.

donde

Para encontrar los elementos de matriz nuclear hace falta describir las
funciones de onda de los estados fundamentales de los estados iniciales y fi-
nales |07, ) 71> que aparecen en la ecuacién (9.5) y entre las que se van a evaluar
los términos explicados anteriormente.

Como ya se ha visto en anteriores capitulos, una vez que se resuelve la
ecuacion de HW, cualquier observable como la energia, las probabilidades
de transicion electromagnéticas o los radios cuadréaticos medios pueden ser
calculados [13]. En particular, también es posible evaluar el valor esperado
para los operadores M%GT (consultar el apéndice E para més detalle).

Los estados involucrados en una transicion van a venir dados por la ecuacién

(3.130) :
|759) = me, B,0)|®],;(8,0)), (9.13)

donde J va a ser el momento angular; o de nuevo, etiqueta de menor a
mayor energia los estados excitados para el mismo momento angular; 5y o
son los grados de libertad del momento cuadrupolar axial y del apareamiento
respectivamente; Z?/V fZJ 7(/3,9) son los coeficientes que se obtienen al resolver
la ecuacién (3.136). Las funciones de onda proyectadas vienen dadas por
(3.141):

[®)4(8,8)) = PNus P%u1 P|o(8,5)), (9.14)

donde PN%) y P’ son los proyectores del niimero de protones (neutrones) y
del momento angular respectivamente. Ya que la desintegracion se da entre
los estados fundamentales de los nticleos iniciales y finales, estamos interesa-
dos en obtener la solucion para el estado fundamental, esto es, en la ecuacién
(9.13), tenemos J =0y o = 1.

Los elementos de matriz de la transicién entre los estados proyectados vendra da-
do por:

144



9.3 Un ejemplo: La desintegracion 3¢Xe 145

ME#GT<67 5; 6/7 5,> =

(D708, 6)| MY | ®{=0(B', 8))
(®7=0(8,6)|@/=08,0))1/2(®7=0(3, ") | @T=0(B, 6")) /2

9.3. Un ejemplo: La desintegracién *Xe

Discutimos en detalle la desintegracién del 13¢Xe — 136Ba para ilustrar
el método que estamos utilizando. Empezamos analizando las superficies de
energia potencial proyectadas definidas como:

7=0(3,0)| H|®7=°(8,))
(@7=0(5,0)|27=0(8,9))

Se muestran en la figura (9.1). Panel (a) para el '**Xe y panel (b) para el
136Ba. Las lineas a trazos y continuas delimitan contornos separados 1 MeV
y 2 MeV respectivamente.

Para el nicleo 36Xe obtenemos una superficie equipotencial més o menos
simétrica en torno al caso esférico, con dos minimos degenerados en [ =
+0.05 y 0 = 3. La superficie tiene una gran pendiente y la energia aumenta
significativamente cuando se aumenta la deformacién o el apareamiento, en
particular para valores superiores de g = +£0.15 y § ~ 4.

La superficie para el *°Ba es mds ancha en las direcciones marcadas por
ambas coordenadas. Presenta dos minimos; el minimo absoluto es prolate y
se encuentra en (f = 0.15 , § = 3); el otro es oblate y esta localizado en
(6 = —0.10 , 6 = 3.5). En este caso, se aprecia que el minimo absoluto es
mas suave en la direccion de §, mientras que la energia en este niucleo crece
considerablemente en la zona de valores § > £0.2 y § > 5.

Las superficies de energia, presentan una zona blanda que se extiende para
deformaciones —0.2 < § < 0.2 y 1 < § < 4. Es interesante resaltar que
toda esta informacién relevante sobre las correlaciones de apareamiento no
estd contenida en un célculo 1D en la direccién S, como puede verse en la
solucién autoconsistente marcada por los puntos en la superficie de potencial.
Sin embargo, puede desempenar un papel importante en la descripcion de la
estructura final de los estados en los que estamos interesados.

E7=0(B,6) = < (9.15)
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146 Desintegracion doble beta
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Figura 9.1: Izquierda: superficies de energia potencial proyectadas a momento
angular J = 0 y al nimero de particulas para los niicleos *Xe (a) y 13Ba (b).
Las lineas discontinuas separan contornos de 1 MeV y las las continuas de 2 MeV
y las superficies estdn normalizadas con respecto a su correspondiente minimo
absoluto. Derecha: Funciones de onda colectivas al cuadrado, ¥6Xe (c) y 1%6Ba
(d). Los puntos marcan el camino de la solucién autoconsistente de 4 a lo largo de
la direccion S.

Completamos la descripcion de los estados fundamentales de estos niicleos
con las funciones de onda colectivas. Estas vienen dados por la expresion
(3.141).

|GJ:0;U:1(57 5)|2 _ | Z fNZJ:O;azl(ﬁ/’ 5/)<@J:0(ﬁ, 5)|(I)J:0(ﬂ/, 5/))1/2|2
83

(9.16)
Estas funciones de onda se pueden ver en la figura (9.1), panel (c) para el
estado fundamental del nticleo 3Xe y (d) para el correspondiente al niicleo
136Ba. Para el primero se encuentra una distribucién practicamente esférica,
en la misma posicion para las que se obtenfan los minimos de la superficie de
energia potencial. Esta distribucion es consistente con el cierre que presenta
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9.3 Un ejemplo: La desintegracion 3¢Xe 147

este nicleo en neutrones para el nimero magico N=82.

Para el estado fundamental del 3®Ba obtenemos dos méximos situados en
las mismas posiciones en las que se situaban los minimos de los pozos de po-
tencial para este ntcleo, aunque tenemos mayor concentracién de la funcion
de onda en la zona prolate.

En general, podemos decir que obtenemos pesos grandes para las funciones
de onda en el intervalo (§ = 2 — 4) y esta mezcla en el apareamiento no se
tiene en cuenta en un calculo unidimensional, por lo que esperamos unos ele-
mentos de matriz ligeramente diferentes cuando se incluya el apareamiento
como veremos a continuacion.

Con las funciones de onda calculadas, evaluamos ahora los elementos de
matriz nuclear de la expresién (9.15) y estudiamos su dependencia con las
variables elegidas. Vamos a analizar en la figura (9.2), por separado, la in-
fluencia de ambos grados de libertad en los NMEs para el término GT (el
término F presenta un comportamiento muy parecido pero con valores me-
nores por lo que no se muestra aqui).

Primero tomamos los valores de d para los que se encuentra el minimo de
las funciones de onda mostradas en la figura (9.1) del estado inicial (§ = 3)
y del estado final (' = 3) y se hace una representaciéon de los NMEs como
funcién de la deformacién cuadrupolar para ambos estados en el panel (a)
de la figura (9.2). Se observa que la intensidad de la transicién estd loca-
lizada en la parte diagonal de la figura donde los estados iniciales y finales
tienen deformaciones similares. Esto implica que la desintegracion doble beta
sin emisién de neutrinos es mas probable que se dé en esta situacion siendo
las configuraciones esféricas las mas favorecidas pues es donde se localiza en
maximo. También se encuentran valores significativamente altos alrededor de
la forma esférica para valores fuera de la diagonal y con configuracién (8 =

- ﬁ’)

A continuacién, estudiamos la dependencia con las fluctuaciones de apa-
reamiento de los elementos de matriz nucleares. Es decir, como depende la
probabilidad de que el proceso nuclear suceda con respecto al contenido de
apareamiento de las funciones de onda inicial y final. Hacemos una represen-
tacion andloga a la del caso anterior. En este caso se toman fijos los valores
de deformacién donde las funciones de onda colectivas presentan el maximo
(B =0 =0.1)y se toman como variables § y ¢, panel (b) de la figura (9.2).
Observamos que los NMEs tienen valores casi despreciables para valores de
0 o ¢ inferiores a dos. Sin embargo, para valores mayores, éstos crecen rapi-
damente a medida que se incrementa el valor del apareamiento. Se observa
también que la distribucién es bastante ancha lo que implica que la mezcla
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148 Desintegracién doble beta

de estados con diferente apareamiento, va a jugar un importante papel en la
descripcién de los elementos de matriz nuclear.

5 (138Xe)

Figura 9.2: Elementos de matriz nuclear proyectados a buen momento angular
y buen nimero de particulas en funcién de la deformacién (a) y del apareamiento
(b) para los estados iniciales 36Xe y finales '3°Ba. Las lineas de contorno estén
separadas 0.5 de modo que las lineas continuas se corresponden con valores enteros
(1,2, etc.) y las discontinuas en medios (0.5, 1.5, etc.) A la derecha se puede ver la
escala de colores valida para las dos figuras.

En realidad, la forma y fluctuaciones de apareamiento estan siendo consi-
derados a la vez, aunque no es posible representarlos bajo la misma figura. Si
tenemos en cuenta la informacion obtenida en las funciones de onda iniciales
y finales, (figuras (9.1) (c)-(d)) las cuales dependen de las dos coordenadas
y la que nos aporta el panel (b) de la figura (9.2), podemos ver que para la
zona de relevancia delimitada por las zonas en las que se encuentra la inten-
sidad de la funcién de onda, (2 < 6(0") < 4) la intensidad del término GT
oscila entre un amplio rango de valores (practicamente entre 0 y 5) lo que
indudablemente va a contribuir a definir el valor final del elemento de matriz
cuando las fluctuaciones de apareamiento son incluidas.
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9.4 Resultados para una desintegracién 0vj3 [ 149

9.4. Resultados para una desintegracién Ov5

En esta seccion discutimos los resultados de los NMEs, y de otros obser-
vables, para las 11 desintegraciones doble beta que se han estudiado.
En la tabla 9.1 se muestran los resultados obtenidos para los ntcleos que se
pueden ver en la columna 1. La parte derecha de la tabla (separada por una
doble linea vertical) se corresponde con valores propios de una desintegracién
Ovp6. Podemos ver los valores de los elementos de matriz cuando sélo se con-
sidera la coordenada de la deformacién (columna 8) o las dos coordenadas
(columna 9). En la columna 10 se expone la variacién porcentual que supone
sobre el elemento de matriz un céalculo 2D frente a uno 1D. En la columna 11,
haciendo uso de la ecuacién (9.4), se da la relacién entre entre las semividas
cuando el apareamiento se incluye como grado de libertad adicional.
En la parte izquierda de la tabla se recogen valores de observables nucleares
relevantes para los estados fundamentales. Su comparacion con los valores
experimentales (exp), situados en una columna justo al lado del valor teérico
(th), van a permitir comprobar la fiabilidad del método. En las columnas 2
y 3, se da la energia de ligadura en MeV y en las columnas 4 y 5 se dan los
valores de la rafz del radio cuadritico medio de carga (r?)Y/2, sin tener en
cuenta el tamano finito del nucleén [167]. En las columnas 6 y 7 se da el valor
de un observable relacionado directamente con una desintegracién beta, la
intensidad total de Gamow-Teller para los estados iniciales, S_, y finales S .
Es posible encontrar en la literatura a la intensidad de GT como B(GT),
en clara analogia a las probabilidades de transicién electromagnéticas B(EX)
y B(MA). De nuevo, la comparacién con los valores experimentales permite
evaluar la calidad de la descripcién tanto de los estados 07, como de la de-
sintegracién.
La intensidad de GT, calculada con los operadores de GT Of, v Ogy, deben
satisfacer la regla de suma de Ikeda [65]:

S — 8. =S 1(0f 10cr-109)]” = S (07 [Ogr+10})[* =
f f

= (07108 Ocr-10F) = (071087 Oar+|0F) = 3(N = 2) (917
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150 Desintegracién doble beta

Isotope | (BE)" [ (BE)= | R™ [ Rew | st | 77 | M*(B,) | M*(8,6) | Var (%) | 7255
BCa | 420919 | 415.991 | 3467 | 3.473 | 1348 | 14422 | 2.3700%% | 2.22907% | -6 113
STi | 423.753 | 418.699 | 3.560 | 3.591 | 1.94 | 19405

TGe | 664.604 | 661.508 | 4.025 | 4.081 | 20.96 | 19.89 || 4601305 | 5.5510em | 21 0.69
Se | 665.268 | 662.072 | 4.075 | 4.139 | 1.26 | 145+ 0.07

2Se | 717.034 | 712842 | 4122 | 4139 | 2357 | 2101 | 4218350 | 467450 | 11 0.81
2Kr | 718220 | 714.273 | 4.131 | 4.192 | 1.26

%7r | 820.801 | 828.995 | 4.208 | 4.349 | 27.73 5.65010%5 | 6.49872%% | 15 0.76
%Mo | 834.212 | 830.778 | 4.320 | 4.384 | 2.64 | 0.20+0.08

™\o | 862.003 | 860.457 | 4.373 | 4445 | 28.04 |  26.69 | 508450 | 6.588,5r | 30 0.60
0Ru | 865.230 | 861.927 | 4.388 | 4.453 | 2.63

T6Cd | 088.809 | 987.440 | 4567 | 4.628 | 34.40 | 3270 | 4795300 | 5.3485372 | 12 0.80
165y | 991.300 | 988.684 | 4.569 | 4.626 | 2.61 | 1.09+0.13

1245n | 1051.981 | 1049.96 | 4.622 | 4.675 | 40.71 4.8083803 | 5.7871:959 20 0.69
21Te | 1052.019 | 1050.69 | 4.664 | 4.717 | 1.63

5T | 1082.541 | 1081.44 | 4.685 | 4.735 [ 40.48 | 4008 | 4107302 | 5687135 | 38 0.52
125Xe | 1081.249 | 1080.74 | 4.724 | 4.775 | 145

B0Te | 1097.320 | 1095.94 | 4.605 | 4.742 [ 43.60 | 45.00 | 5130058 | 6.40575 | 25 0.64
180Xe | 1097.655 | 1096.91 | 4.733 | 4.783 | 1.33

B0Xe | 1143.500 | 114183 | 4.757 | 4.799 | 46.77 1199550 | 4T | 14 0.77
186Ba | 1143.606 | 1142.77 | 4.789 | 4.832 | 1.06

TONd | 1234720 | 1237.45 | 5.033 | 5.041 | 50.35 1707820 | 2190057 | 29 0.61
150gm | 1236.249 | 1239.25 | 4.987 | 5.040 | 1.54

Tabla 9.1: Tabla DBD: En las columnas (2-7) se dan los valores tedricos y expe-
rimentales para: las energias de ligadura (en MeV) [168]; los radios (en fm) [169],
Intensidad de Gamow-Teller S_,, de los estados iniciales y finales de los candida-
tos a una desintegracién OvfS [170-174] (los valores tedricos estdn multiplicados
por un factor 0.74%). En la columna 8: NMEs tomando como coordenada la fluc-
tuacién en la deformacion y en la columna 9 simultdneamente fluctuaciones en la
deformacion y en el apareamiento. Los superindices dan la contribucion del término
GT y los subindices la de Fermi. Las dos tultimas columnas dan la variacion de
los elementos de matriz y las semividas cuando se tiene en cuenta como grado de
libertad el apareamiento.

Analizando la tabla, encontramos que para el caso analizado de la de-
sintegraciéon 3%Xe, el elemento de matriz aumenta en un 14 % cuando el
apareamiento es incluido como grado de libertad explicito, lo que conlleva
una reduccion de la semivida en un factor 0.77. Este resultado es consistente
con la exploracion de regiones con mayores valores de NME que permite el
hecho de tener en cuenta el grado de libertad del apareamiento gracias a las
fluctuaciones en 9 que ahora son incluidas en las funciones de onda colecti-
vas. El mismo efecto de aumento de los NMEs se observa para el resto de
candidatos.

Con la excepcién de la desintegracién del #®Ca, los datos en dos dimensio-
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9.4 Resultados para una desintegracién 0vj3 [ 151

nes de los NMEs nos conducen a una reduccién de las predicciones sobre las
semividas en factores que van desde 0.81 (para el ¥2Se) hasta 0.52 (para el
128Te).

En forma de superindice y subindice se da por separado la contribucién del
término de Gamow-Teller y Fermi respectivamente al valor total del NME.
Lo primero que notamos es que el valor de la componente de Fermi es mucho
mas pequena que la contribucion de Gamow-Teller, siendo por tanto, esta
ultima la dominante. Sin embargo, la ganancia que se obtiene al incluir las
fluctuaciones de apareamiento es similar en ambos canales.

Con respecto al resto de observables nucleares que se muestran en la ta-

bla, se puede apreciar como existe un buen acuerdo entre los datos tedricos
cuando son comparados con sus respectivos valores experimentales. Los ra-
dios son los valores que mejor se reproducen. Para los valores tedricos de S_
v S, hay que multiplicar por un factor de atenuacién 0.74% [12,158,175] para
obtener valores cercanos a los experimentales. Este valor tiene en cuenta prin-
cipalmente efectos de renormalizacién del operador de Gamow-Teller aunque
otros posibles origenes estan actualmente en discusién como el tamano del
espacio de valencia [12] o términos de dos corrientes en el lagrangiano elec-
trodébil [176].
Las energias de ligadura son ligeramente mayores en el caso tedrico, si bien
esa diferencia no supera los 5 MeV lo que se encuentra dentro de la precision
dada por la interaccién de Gogny [177] ya que la interaccién estd ajustada
de modo global a toda la tabla de ntcleos.

En relacion a la energia, conviene también recordar que la solucién numéri-

ca a la ecuacién de HW, estd directamente relacionada con la eleccion del
numero de estados naturales de la base. Debe garantizar la independencia
lineal de los estados al mismo tiempo que debe incluir las correlaciones dadas
por el conjunto original de funciones de onda.
Podemos ver la convergencia de las energia y de los elementos de matriz de la
transicién en la figura (9.3). Dado que la energia del estado fundamental de
los nicleos elegidos como ejemplo, ¥%Xe y 13Ba, estdn tan préximas entre
si que son casi indistinguibles (-1143.5 MeV y -1143.606 MeV respectivamen-
te), se ha tomado en este caso como ejemplo la desintegracién ®Ge — "6Se.
Se observan amplios plateaus en los que los valores, tanto para las energias
de los estados fundamentales como para los NMEs, se mantienen constantes.
Esto se da para los todas las transiciones calculadas, de modo que tenemos
la garantia de obtener valores estables de los elementos de matriz.

En la figura (9.4) se presentan los resultados para los elementos de matriz
nuclear Ov3f calculadas, para los once casos de nuestro estudio, con diferentes
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Figura 9.3: Figura superior: convergencia de la energia de los estados Of para
el niicleo inicial *Ge y final Se como funcién del niimero de estados de la base

natural. Figura inferior: convergencia de los NMEs.

métodos:

» En cuadrados rojos se dan los resultados [153,178] que se obtienen para
el modelo de capas (ISM) explicado en la seccién 2.2.

= En diamantes azules, se representan los elementos de matriz nuclear
[155,156] para el modelo IBM-2 que se traté en la seccién 2.5. Estos
resultados estdn multiplicados por un factor 1.18 [158] por la diferencia
entre tratar las correlaciones de corto alcance con funciones de onda
tipo Jastrow (este caso) o UCOM (todos los demads resultados que se
muestran en esta figura)

» En tridngulos verdes y rosas tenemos las soluciones para dos tipos de
calculos, QRPA(Jy) [150] y QRPA(Tu) [148], ambos pertenecientes a
la familia de la Quasiparticle random-phase aprozimation (QRPA). La
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9.4 Resultados para una desintegracién 0vj3 [ 153

QRPA es un método basado en la aproximacién de HF mas aparea-
miento BCS en el que se incluyen correlaciones tipo RPA.

= Los valores de nuestros calculos en aproximacién PN-VAP+PNAMP
con el métodos GCM para el caso 1D [158] y 2D [29] se pueden ver en
circulos negros y tridngulos morados respectivamente, ambos unidos
por una linea discontinua de puntos. Se corresponden con los valores
de las columnas 8 y 9 de la tabla (9.1).

e 1D ¢ IBM-2 A QRPA(Tu)
» 2D m ISM v QRPA(Jy)
7 E \ \ \ \ \ \ \ ]
I . o > 1
L v . _|
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i P AN > * L - ]
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| °__ ;// ‘ \'_————.\\ X///i \\\}\“ |
4L e e v v ¢ v a _
S i v W
s F // v ‘ A v B
L Y _|
3 I /,/ - . 2 . | . A e |
5l s = >
|- A . -
1 [ [ ]
i \ \ \ \ \ \ \ \ \ \ \ ]

4803. 76(3|e SZSe QGZr 100MO11GCd 124Sn 128-|-e 130-|-e 136Xe 150Nd

Figura 9.4: Elementos de matriz nucleares calculados utilizando diferentes méto-
dos mostrados en la leyenda (ver texto principal para mas informacién). Nuestros
resultados para la aproximacién PN-VAP+PNAMP, que se corresponden con los
datos de la tabla (9.1), se pueden ver en tridngulos unidos por una linea de puntos.

Si comparamos los valores de los NMEs que se obtienen con nuestro méto-
do en 1D y 2D observamos que ambos muestran el mismo patrén de com-
portamiento, sin embargo los valores de los NMEs aumentan entre un 10 %
y un 40 % cuando se incluye como grados de libertad, la deformacion y el
apareamiento frente al caso en el que solo el primero es considerado. Esta di-
ferencia en el incremento experimentado esta relacionada con la distribucion
de las funciones de onda; aquellas que tengan una distribucion desplazada a
valores mayores de ¢ van a poder encontrar valores mas altos para los NMEs
al explorar este grado de libertad ya que como se ha visto, estos elementos
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de matriz dependen fuertemente del apareamiento y muestran valores apre-
ciables por encima de § = 3.

Encontramos para el elemento de matriz un valor medio de 5.07 aunque hay
dos casos especiales; la desintegracién del “¥Ca y la del "°Nd. En ellos, su
elemento de matriz correspondiente estd bastante por debajo del valor medio.
El #Ca es un caso particular pues es un nicleo doblemente mégico, ya que
lo es en protones (Z=20) y en neutrones (N=28). Por este motivo, la funcién
de onda de este estado inicial se encuentra considerablemente desplazada a
zonas con apareamiento mas bajo, lo que hace que se obtenga en esta caso un
valor para el NME ligeramente menor. Ademas la posibilidad de explorar la
direccién 0 en un nucleo con doble capa cerrada no aporta ninguna mejora.
La desintegracién del '*°Nd también presenta un valor mucho menor que el
resto. Las funciones de onda de los estados implicados en la desintegracion,
presentan minimos bien deformados prolates pero las deformaciones a las que
se encuentran son bastante diferentes (f=0.35 para el estado inicial y =0.20
para el estado final), siendo este argumento una de las principies fuentes de
supresién del NME [158]. Sin embargo, en este caso, la exploracién de la
coordenada ¢ aporta al valor final del NME un aumento del 29 %.

Si comparamos los resultados con los obtenidos por otros métodos vemos
que los nuevos valores con dos coordenadas se acercan méas a los resultados
QRPA/IBM para los casos %®Ca "®Ge #Te y %°Nd, mientras que son ma-
yores para los otros candidatos, ver figura (9.4). No obstante, ni los célculos
QRPA ni los IBM incluyen de forma explicita las fluctuaciones de aparea-
miento.

Las principales diferencias entre nuestra aproximacion y la QRPA son: las
interacciones nucleares son también diferentes en ambos casos; se asume si-
metria esférica en la QRPA; en el caso GCM (1D y 2D) se tiene una base
de particula independiente mayor que no consta de core y la ausencia de
excitaciones de cuasiparticula.

Todas estas diferencias metodoldgicas y en las interacciones usadas hace bas-
tante complicado identificar el origen de las discrepancias/similitides encon-
tradas en los NME.

Por otro lado, los calculos del modelo ISM, presentan valores que estan bas-
tante distanciados de las otras aproximaciones, especialmente para la mayoria
de nuestros resultados, hacia valores inferiores. Ambos métodos, ISM y GCM,
han sido recientemente comparados en la referencia [179] con el objetivo de
esclarecer las diferencias entre ambos métodos cuando se calculan los NMEs.
Las correlaciones en las funciones de onda introducidas mas alla de la apro-
ximacion esférica en el GCM y ’senioridad’ cero en el SM tienden a reducir
el elemento de matriz. Aunque el comportamiento cualitativo de los NME es
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similar en ambos casos, los NME calculados con el GCM son un aproxima-
damente factor 2 mayores que los SM. El origen de esta discrepancia puede
ser la falta de componentes de senioridad alta en el método GCM inherente
a la ausencia de excitaciones explicitas de cuasiparticulas en las funciones
de onda. Por otra parte, la proyecciéon a buen isospin (en el marco del SM)
tiene un efecto grande en el término de Fermi pero no asi en el de GT. Este
resultado nos induce a pensar que el aumento en los NME obtenido al intro-
ducir el grado de libertad de apareamiento no se debe a una mayor violaciéon
de isospin ya que, como se aprecia en la tabla 9.1, tanto la componente de
Fermi como la GT aumentan de manera similar.

9.5. Resumen

En resumen, en este capitulo se han presentado los elementos de ma-
triz Qv para célculos GCM en aproximacion PN-VAP+PNAMP, con la
interacciéon de Gogny e incluyendo por primera vez el apareamiento como
grado de libertad, ademas de la deformacién cuadrupolar axial, obteniendo
las siguientes conclusiones:

= Los elementos de matriz son mayores cuando la transicion se hace entre
estados con deformacién similar.

» Para estados débilmente correlacionados, deltas menores de dos, los
elementos de matriz son practicamente cero.

= Si aumentan las correlaciones de apareamiento los elementos de matriz
se hacen mayores.

= Cuando estudiamos la dependencia de los NMEs con las fluctuaciones
de apareamiento, encontramos una amplia zona alrededor de la diago-
nal, delimitada por las rectas: ¢’ = 0+3 y §+0’ = 3 donde los elementos
de matriz toman valores considerables. Esto, unido al hecho de permitir
fluctuaciones de apareamiento, hace que se obtengan valores para los
elementos de matriz considerablemente mas altos, entre un 10 %-40 %,
que cuando solo se tiene en cuenta la deformacion. El hecho de que es-
tos valores sean superiores implica que las semividas de los candidatos
se van a ver reducidas, lo que nos sittia en mejor escenario para que
desintegraciones Ov(3( puedan ser detectadas experimentalmente.

» Para una descripcion mas completa de los NME podria ser interesante
considerar componentes de senioridad altas incluyendo excitaciones de
cuasiparticula, asi como la proyeccion a isospin.
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Capitulo 10

Conclusiones y perspectivas

En este trabajo se han utilizado diferentes métodos de resolucién de pro-
blemas de muchos cuerpos cuanticos aplicados al estudio de los niicleos atémi-
cos. El punto de partida ha sido el método de HF B, con el que se ha obtenido
un conjunto de funciones de onda intrinsecas que posteriormente han sido
proyectadas a buen nimero de particulas y/o buen momento angular. Por
ultimo, hemos completado la descripcién utilizando el método GCM permi-
tiendo la mezcla de configuraciones e introduciendo correlaciones dinamicas.
En esta memoria se han detallado los principales aspectos del método, se han
analizado aspectos formales de la teoria y se han presentado los resultados
obtenidos tras aplicar el método al estudio de sistemas fisicos.

Por primera vez se han considerado de manera simultanea fluctuaciones cua-
drupolares y de apareamiento en el marco de teorias mas alla del campo medio
con interacciones efectivas. A lo largo de esta memoria se muestran e imple-
mentan diferentes métodos hasta obtener una funcién de onda lo més com-
pleta posible utilizando los dos grados de libertad relevantes. Principalmente
se han discutido tres: HFB+AMP, HFB+PNAMP y PN-VAP+PNAMP.

Se ha concluido que el método GCM con funciones de onda intrinsecas PN-
VAP proyectadas simultaneamente a buen momento angular y buen ntimero
de particulas (PNAMP), tomando los mencionados dos grados de libertad,
es el que ofrece una mejor descripcién del sistema y proporciona unos resul-
tados mas consistentes y aproximados a la energia exacta del sistema cuando
se compara con los datos experimentales. Ademads, tiene las ventajas de que
el espacio de configuracion en el que se trabaja es grande y la interaccién
usada es “universal”, en el sentido de que se puede utilizar para todos los
nucleos de la tabla.

Se han analizado los resultados obtenidos para varios observables nuclea-
res: probabilidades de transicién, energias de separacion, se han discutido las
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superficies de energia equipotenciales y, con especial detalle, los espectros de
excitacién para diversos niicleos como funcién de las dos coordenadas con-
sideradas y en base a tres diferentes aproximaciones. Se ha seleccionado: la
cadena isot6pica del Magnesio (N = 24 — 34), tres nicleos (Cromo, Titanio
y Calcio) con N = 30 y tres isétopos del Calcio con Z = 20. Esto nos ha
permitido, aparte de conocer su estructura nuclear, discutir las diferencias
que se dan segun la técnica usada y las dimensiones empleadas (una o dos).
Se ha aplicado el método para investigar la cuestién de los posibles cierres de
capaen N =32y N = 34 en los isétopos del Calcio, calculando las energias
de excitacién del estado 2%. Se ha observado un buen acuerdo entre los datos
tedricos y experimentales de los que se disponen hasta el momento.

Se ha visto que los efectos de las fluctuaciones de apareamiento aumentan
con la energia de excitaciéon y con momento angular mayor y que los valores
teodricos, en general, bajan cuando se incluye 9, lo que hace que se aproximen
mas a los datos experimentales.

La aproximacion HFB4+AMP ha sido estudiada en detalle, ya que los es-
pectros obtenidos dentro de esta aproximacion son diferentes a los que dan los
otros dos métodos: tienen un aspecto muy comprimido que es poco razonable.
Para ello, se ha estudiado la distribuciéon del nimero medio de particulas y
los elementos de matriz de la norma, dentro de esta aproximacién, mostrando
que este método ofrece resultados de poca calidad. Se encuentra una mayor
dependencia lineal, por lo que tenemos un espacio variacional menor y una
mayor mezcla, no deseada, de los estados.

También se han discutido las funciones de onda que se obtienen con las di-
ferentes aproximaciones. En especial, para el caso sin proyeccién al nimero
de particulas, se observa una concentraciéon de la intensidad de la funcion de
onda 2D no realista, que sumado al efecto de la dependencia lineal mencio-
nada mas arriba, son la causa de que se obtengan unos espectros mucho mas
comprimidos que los que se obtienen para el caso en el que hay proyeccion
al nimero de particulas.

Se ha llegado a la conclusiéon de que la proyecciéon al nimero de particulas
es un ingrediente esencial. También se obtiene una fuerte dependencia con la
manera en la que es generada la base intrinseca. Es importante implementar
la proyeccién al nimero de particulas de manera autoconsistente, esto es, en
una variacién después de la proyeccion (VAP).

Se ha discutido la existencia de las vibraciones puras de apareamiento.
Se observan cuando solo se tiene en cuenta la coordenada d, pero cuando se
acopla la deformacién cuadrupolar, se encuentra que este grado de libertad es
dominante, inhibiendo la presencia de vibraciones de apareamiento genuinas.
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Por 1ltimo, se han presentado los elementos de matriz nuclear para una
desintegracién doble beta sin emision de neutrinos para 11 posibles candida-
tos.

Por un lado, los nicleos implicados en las desintegraciones representan otros
casos particulares diferentes a los nticleos que se habian analizado hasta es-
te punto, lo que ha supuesto extender los calculos de las fluctuaciones de
apareamiento a casos de ntucleos mas pesados, esféricos o muy deformados.
Para ello, el espacio de configuracién ha tenido que ser ampliado (de 8 capas
mayores de oscilador a 11).

Por otro lado, en lo que a los NMEs se refiere, podemos decir que:

a) Hemos confirmado que esta desintegracion estd favorecida si se da entre
estados con deformacién muy similar siendo el caso esférico el preferido.

b) El apareamiento juega un papel importante y que estos elementos de ma-
triz toman valores mayores si las correlaciones de apareamiento se hacen
mayores.

c) Si se tiene en cuenta la coordenada 4 el valor de dichos elementos de matriz
experimenta un aumento significativo de su valor, de media 5.07, y que oscila
entre el 10 % para el menor y un %40 para el mayor con la correspondiente
disminucién de la vida media asociada.

Como se ha ido desgranando a lo largo de esta memoria, el método imple-
mentado, cuando se incluye ¢, ofrece unos resultados tedéricos que, en general,
disminuyen los valores con respecto a lo obtenido cuando sélo se considera
el grado de libertad de la deformacién, mejorando el acuerdo con los datos
experimentales. Aun asi, los valores que se obtienen de forma tedrica se en-
cuentran sobreestimados. Para conseguir un mejor acuerdo cuantitativo es
posible introducir mejoras y ampliar nuestros calculos. Ademas, este trabajo
deja varias lineas abiertas, algunas de ellas ya mencionadas, que seguir explo-
rando. Se pueden abordar como perspectivas futuras de trabajo las siguientes
cuestiones:

= Seguir la linea de este trabajo y extender estos cédlculos, con dos grados
de libertad, para describir otros observables en cualquier otra zona de la
tabla de ntcleos que sean de interés, dada la universalidad del método.

= Extender estos calculos a un caso en 3D, constriniendo por separado en
protones y neutrones, lo que permitiria estudiar caracteristicas especi-
ficas que sean genuinas de protones o neutrones.

= [ntroducir progresivamente y por orden de importancia grados de li-
bertad extra en el sistema, como deformaciones de orden mayor. Es
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importante hacer esta incorporacion por orden de mayor a menor rele-
vancia en la contribucién que van a dar a la energia. Valga como ejemplo
el estudio del método HFB+AMP incluyendo la fluctuacion del nimero
de particulas. De nada sirve estudiar las superficies de energia potencial
en funcién de la deformacion cuadrupolar y de la fluctuacion del nime-
ro de particulas si no es restaurado el propio niimero de particulas. Si
queremos afinar el método, tenemos que tener en cuenta, en primer lu-
gar, los aspectos més relevantes que van a modificar en mayor medida
el valor de los observables, como es para el caso citado, la proyeccion a
N frente a las fluctuaciones.

Extender el estudio de los dos grados de libertad a una base triaxial.

Permitir la ruptura de otras simetrias, como por ejemplo la ruptura
de la simetria de inversiéon temporal. Esto implicaria tener un espacio
variacional mas grande y funciones de onda de Cranking, lo que im-
plicaria una mejor descripcion para los estados con momento angular
distinto de cero y una mejora en los momentos de inercia. La ruptura
de la tercera componente de isospin permitiria incluir en apareamiento
proton- neutréon. Una ruptura de la simetria bajo paridad, permitiria
describir estados de paridad negativa, asi como explorar el grado de
libertad octupolar.

Seria deseable para el caso de la desintegracién doble beta, restaurar
la simetria de isospin.

Incorporar de forma explicita estados de mas cuasiparticulas y excita-
ciones de cuasiparticulas.

Realizar una variacién después de la proyecciéon para el nimero de
particulas y para cada valor del momento angular (PNAMP-VAP) para
encontrar las funciones de onda intrinsecas de tipo producto. De esta
forma, obtendriamos los valores correctos de los momentos de inercia.

La interaccién fenomenoldgica efectiva que ha sido utilizada también
puede ser mejorada, bien introduciendo nuevos términos o modificando
otros, asi como con nuevas parametrizaciones de la interaccion que sean
mas completas y, por ejemplo, tengan en cuenta efectos mas alla del
campo medio.

Pese a que estas ideas para perfeccionar el método podrian suponer una
mejora cuantitativa con respecto a los datos experimentales, no esperamos
cambios cualitativos en las principales conclusiones que han sido discutidas
en esta memoria.
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Apéndice A
Acronimos

Como guia para el lector, hemos agrupado en este apéndice los acrénimos
mas relevantes por orden de aparicién en el texto.

HF Hartree Fock

HFB Hartree Fock Bogoliubov

ISM Modelo de capas

SCMF Campo medio autoconsistente

MF Campo medio

BMF Métodos mas alla del campo medio
SCCM Conservacion de las simetrias y mezcla de configuraciones
GCM Método de la coordenada generadora
RMF Campo medio relativista

QCD Cromodindmica cuéntica

IBM Modelo de Bosones Interactuantes.
BCS Bardeen Cooper Schrieffer

PAV Proyeccién después de la variacion
VAP Variacion después de la proyeccién

PN-VAP Particle Number Variation After Projection
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PNP Proyeccién a buen niimero de particulas

AMP Proyeccién a momento angular

PNAMP Proyeccion a momento angular y buen niimero de particulas
HW Ecuacion de Hill-Wheeler

PES Superficies de energia potencial

PN Proyecciéon al namero de particulas

RVAP Variacién después de la proyeccion restringido
2v3[ Desintegracién doble beta con dos neutrinos

OvfBp Desintegracion doble beta sin emision de neutrinos
NME Elementos de matriz nuclear

DBD Desintegracion doble beta

F Fermi

GT Gamow-Teller

QRPA Quasiparticle random phase approximation
EDF Funcionales de la densidad de energia

SRC Correlaciones de corto alcance

UCOM Unitary correlation operator method
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Apéndice B

Teorema de Wick y contraccion
de operadores

Varias de las expresiones derivadas en el capitulo 3 hacen uso del teorema
de Wick que nos permite calcular valores esperados de un producto de ope-
radores de creacion y destruccién. En este apéndice se detalla dicho teorema.
Los operadores de quasiparticulas deben estar en el producto en el orden nor-
mal, esto es, los de creacion a la izquierda y los de destruccion a la derecha.
Por cada nimero de permutaciones impares que deban realizarse para poner
los operadores en esta disposicion aparecerd un signo menos.

Por otro lado, se define las contracciones de dos operadores de creacion o
destruccién (ab) entre estados |®), que son el vacio de los operadores de
cuasiparticulas, como:
o (@a]e)
(@)

El teorema de Wick se aplica para expresar el producto de operadores de
creaciéon y destruccion en cualquier representacion y en cualquier orden co-
mo la suma del producto en orden normal de dichos operadores en la base
de cuasiparticulas mas la suma del producto en orden normal con una con-
traccion tomada de todas las maneras posibles més la suma del producto
en orden normal tomando dos contracciones de todas las formas posibles y
asi sucesivamente.

Teniendo en cuenta las relaciones de anticonmutacién y las transformaciones
tipo HFB dadas en el capitulo 3 y considerando el caso mas sencillo, cuando
los estados entre los que se va a evaluar los valores esperados se correspondan
con el mismo vacio de cuasiparticulas, ®). Se obtienen las siguientes expresio-
nes si son aplicamos sobre estados en la base de particulas y cuasiparticulas:

(B.1)
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BB = Al = BLBL = 0 (B.2)
— T

BBl = % = O (B.3)
Brcw = L(%'C;)@) = Vi (B.4)

5 _ (@l
= o)

La matriz densidad vendré definida como:

P Sl (U Usio 1) Vi By + Ui B[ ®)
e (2[®) -

k'l

<I) B

Y el tensor de apareamiento:

. Z (O (Uni B + Vi B1) (U By + Vi 81| @)
T L (®]@) -

(®|Bu B )
== Z Ukk/‘/ll’ |6;)él)>)| Z Ukk/‘/”/(sk/l/ - (V UT> lk (B?)
k'l

Si se considera la proyeccién al nimero de particulas, los solapes que
queremos calcular se dan entre estados que no se corresponden con el mismo
vacio de cuasiparticulas, de modo que las expresiones anteriores obtenidas
con el teorema de Wick deben ser generalizadas [180]. Tomamos la parame-
trizacion de Thouless entre dos dos estados que son vacios de cuasiparticulas
diferentes, |®) y |®) [58,66] :

D) = (D|D) exp( > A 5%«) |D) (B.8)

kE
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kK’ kK’

[BrmB] = % = (@B, Brexp < > Awl(e 5k5ki> @) =

—Z S A (9)(®1BmBiBLBLI®) = Z 5 At (9) (Ot — OkmOrr1) =
kk' kk'
= Apu(p) (B.9)

Esta matriz A, () es antisimétrica. En funcién de esta matriz se definen
las siguientes matrices:

U(p) =U* + VA(p) (B.10)

V(p) =V*+UA(p) (B.11)
Si continuamos con las contracciones para estados de particulas, se obtie-
ne:
(Plchcl®)

chel = pin(ip) = s

= (®lc! clexp< ZAkk’ ﬁkﬁk,> |©) =

kk’
= AR (Viuw B + U B5,) (Ui B + Vi 1)
m/l’
(I+Z ZAW )BIBL + .| @) =
kK’
= Z Vi Vi 0 mS Z Ao (©) Vo Uppr (| B B 8181 | @) =
/l/ kkl /l/

= (VV )i + (UA@V )im = (V(@)V )i (B.12)
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e, | D
emr] = i) = Pl
= (P|cneexp ( ZA’W Bkﬁk/> |D) =
kk’
= Z<®|(Umm/ﬁm’ + Vo 5 ) (U By + ‘/17/61/ I+ ZAkk’ @ﬁk/ L) ®) =
mlll k‘k;/
= ZUmm’ 1 Om v t3 Z At () Uit U (@] B By BLBL | @) =
/l/ kk/ /l/
= (VU )i + (UA@U )i = (V(©)U i (B.13)
(D]cf,ci D)
[Cjncﬂ = H%(@)Té) =
= (®lc], CzeXP< > Aw(p 5%«) @) =
Kk’
= S I (Vi B+ U B ) Vi + U811+ 5 3 Ao ()58 +)]@) =
mlll k‘k;/
= Vi Upii O + Z A () Vi Viar (@] By By B 8L @) =
m/l/ kk/ /l/

(VUi = VAV )t = (U V)it = VARV )t =

= —(U(@)V" )in (B.14)
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Apéndice C

Expresiones de la energia
proyectada

En este apéndice se dan las expresiones para la energia proyectada, segin
el tipo de proyeccion implementada, las simetrias que son restauradas y el
nimero de variables que han sido tenidas en cuenta, segin se ha explicado
en el capitulo 3. Para ello, se hacen uso de las propiedades de los operadores
descritos en el mismo capitulo.

Diferenciamos dos grandes bloques, segiin haya sido calculada la funcién
de onda intrinseca, por el método de HEB (3.47) o por el método VAP (3.50)
cuando el proyector es el del nimero de particulas (PN). Posteriormente di-
ferenciamos la proyeccion después de la variacion que ha sido realizada y por
ultimo se indica si se toman uno; 1D (gq) o dos; 2D (g, §) grados de libertad

= El método PAV proyectando sélo a momento angular (Angular mo-
mentum projection, AMP) o s6lo a buen nimero de particulas (particle
number projection, PNP) a partir de funciones de onda tipo HFB obte-
nidas de resolver las ecuaciones correspondientes (3.40, 3.41) con una
o dos ligaduras al mismo tiempo (aparte de las del niimero de protones
y neutrones, siempre incluidas en ese tipo de célculos).

» HFB+PNP 1D

EF (q) =

(Purg(q)| HPY P?|Oyrp(q))
(PurB(q)| PN PZ|®urp(q))
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Expresiones de la energia proyectada

* HFB+PNP 2D

(Purg(q, 5)|ﬁPNPZ|‘I>HFB(qa 9))

B (0:9) = g 0, )P P [Gren (4, 0)) (©2)
+* HFB+AMP 1D
o @aen(@) | (PP P (g))
Einl0) = T (@) (PP PP [ (0)) (C3)
+* HFB+AMP 2D
Eiy(q,8) = Bumnl@ NPT a0, D)

{@urs(g, 0)[(PM)TPIM|Pypg (g, )

El método PAV proyectando simultdneamente al momento angular y al
numero de particulas (Particle number angular momentum projection,
PNAMP) a partir de funciones de onda de HFB.

* HFB+PNAMP 1D

Nz1. (@urs(@)|(PM)THPIM PN PZ|Oypg(q))
Eip(q) = JM\f pJM pN pZ (C.5)
(Purg(q)|(P7M)TPIM PN PZ|dypg(q))
* HFB+PNAMP 2D
JM\t iy pJM DN pZ

(Purp(q, )|(P/M)TPIMPN PZ|ypp(q,0))

El método VAP. En este caso, construiremos superficies de energia po-
tencial proyectadas a buen ntimero de particulas obtenidas a partir de
funciones intrinsecas PN-VAP, solucién de la ecuacion (3.50), con las
mismas ligadura que para el caso de HFB.

+ PN-VAP 1D
Dyap(q)| H PN P?|®yap(q))
ENZ(g) = \Dwar C.7
0 = g (TP PP Buan (0)) (©7)
+ PN-VAP 2D
T DN DZ

<(I>VAP(q7 5)|PNPZ|(I>VAP(q7 5)>
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El método PN-VAP mas PAV proyectando a buen momento angular.

* PN-VAP+PNAMP 1D

ENZJM(q) _ <(I)VAP<q)‘(PJM>T[:[PJMPNPZ‘(I)VAP(Q>> (Cg)
P (Pvap(q)(P/M)T| PIM PN PZ|Dyyp(q))
* PN-VAP+PNAMP 2D
EéVDZJM(q 5) _ <(I)VAP<Q75)|<PJM)T[:[PJMPNPZ|(I)VAP<Q75)> (ClO)

(Pvap(q, )| PTM PN PZ|®ysp(q,0))

Los desarrollos para el numerador y denominador se analizan con detalle,
para el caso particular mas general, en el siguiente apéndice.
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Apéndice D

Calculos con funciones de onda
proyectadas

En este apéndice se mostraré el calculo de valores esperados entre esta-
dos GCM con proyeccién simultdnea al nimero de particulas y al momento
angular. Este es el caso mas general posible de todos los tratados. Estas ex-
presiones se simplificaran de la siguiente manera:

a) Si no se hace el generado de coordenadas — ¢ = ¢
b) Si no se hace proyeccién al niimero de particulas — ¢ =0
¢) Si no se hace la proyeccién al momento angular — 5 =0

En el capitulo 3 se defini6 el elemento de matriz entre estados de la base
natural, ecuacién (3.143) como:

. . . - dgdq
(2RO = [ @) (@ (DIOLN () — ot
NZJy, NZJy
ny nk,
(D.1)

De modo que hay que calcular el solape que aparece:
(@ (|01 () (D.2)

Si tomamos la definicion del proyector a buen nimero de particulas y sus
propiedades explicados en la seccién 3.4.1 y lo mismo para el proyector al
momento angular descrito en la seccién 3.4.2 y los sustituimos en la expresion
del solape (D.2) obtenemos:

@V (QIOIN () = 3 (af, (@) alt, (N @@ (P ) OP e, PV P10(7)

(D.3)
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172 Célculos con funciones de onda proyectadas

Estas expresiones van a ser vélidas si el operador O conmuta con el operador
de rotaciones y con los operadores del niimero de particulas.

(@NP7(Q)|010N () =

= 3 (@ @) (@) 2t / DY 1, (Q)(@(@D|ORQ) P P?(3(q))de,

e 8?2
(D.4)
donde:
» )= (a,3,7) son los dngulos de Euler.
= R(Q) es el operador de rotaciones.
= D7(Q) son las funciones de Wigner.
Si tomamos las definiciones siguientes:
R(Q) = 0Tz gmiBly =iz (D.5)
e—wjy _ ez‘%jxe—zﬂjxe—i%jz’ (D.6)
Diig () = M dy 1 (B), (D.7)

/ dQ = / do / senfdp / dr, (D.8)

y las aplicamos a la ecuacién (D.4) el solape a calcular toma la forma:

* _Jo 2J+1 zoz 7
S @@t [ [T e,

K1 Ko

(D(§)|Oe™ oz ¢ ZBJye’”JZPNPZM)( "NdasenfdpBdy (D.9)

Aplicamos la definicién (D.6), imponemos simetria axial, de paridad y de
simplex a la expresién anterior:

2J+1

“Sa 2w / Al (®(3)|Oe 7> PN PZ|®(¢))senBd3  (D.10)
us 0
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A continuacién, para calcular las expresiones de la norma y la energia,
utilizamos la definicién de los proyectores del nimero de particulas (3.62)
para protones y neutrones por separado, ya que las funciones de onda tipo
HFB no mezclan isospin, para calcular el solape que aparece en la integral:

(®(7)|Oe™ zBszNpZM) () L2ZZ€ o1y N =1, Z
Z

(B(q)| O =eion N e=iv127 | d(¢))
7

(B(q)|e1Beion N etz 21D ()

(®()]eB=etev N e=i122 |0 (¢)) (D.11)

Primero, es necesario calcular la norma, definida como:

N2(G.d, B) = (d(Qe " PN PZ|d(q)) (D.12)

La norma puede ser factorizada en una parte correspondiente de protones y
en otra de neutrones. Si tomamos como ejemplo la de neutrones y aplicamos
la definicién del proyector correspondiente (3.62) obtenemos:

N(g.d,B8) = LZ o N ()] e et N () (D.13)

Lo mismo se va a obtener para la norma de protones, de modo que la norma
serd:

M(q.q) =™ (3.4 )" (q,q). (D.14)
El elemento de matriz que aparece en el sumatorio se calcula utilizando la

férmula de Onishi [75]:

<q)<q)‘efiﬁjzeinN‘q)<q7)> _ (,ii[BT&"(JI)*«JTY(I)}Det[Tm((j7 (]7, 8, SOIN)])(l/?)’
(D.15)

donde la matriz Ty, (ecuacién (3.72)) es una de las matrices que componen la
matriz 7 [58]. Esta matriz de dimensién 2Nx2N, permite una transformacién
lineal unitaria que relaciona los operadores de cuasiparticulas de dos vacios
diferentes que conservan las relaciones de conmutacion.

En la ecuacion anterior vemos que hay un signo indeterminado debido a
la raiz cuadrada. Existen distintos métodos generales para determinar este
signo, como el método de Neergard [181]. Sin embargo, como estamos traba-
jando en el caso axial, es posible utilizar las simetrias internas de las funciones
de onda tipo producto para determinar este signo de manera univoca.
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174 Célculos con funciones de onda proyectadas

Segundo, necesitaremos calcular los elementos de matriz del operador 0.
En concreto cuando éste sea el hamiltoniano, ecuacion (3.16):

7=t 1 - P
H = tllbcllcb —+ Z U1112[3[4Cl16l2614613

l1lo l1l2l3ly

Este operador nos va a dar la expresién de la energia: eN4(q, ¢/, 3), como
suma de un término cinético mas otro potencial. Tomamos el primer término
que se corresponde con la energia cinética y que es un operador a un cuerpo:

(@)l cne
Dt

(®(q)]e- et N e 1927 |0(g)

10,NZ -
= Ztl1l2P1112 q q,76a90lNZ) =
l1lo

= Trftp'" "N (G, d, B, o1y + Trltp' % (G, d, B, o1,)] (D.16)

—iBJs iy N o= Z‘PZZZ|q)((?)>
)

Para el término correspondiente al potencial estamos en el caso de un
operador a dos cuerpos.

(T)|Cllclzcl4clse iﬁjx@_mZZ@_MNN‘q)((?»

— Z l1lzlsl4 < ((D |e—zﬁJxe—W’lzZe_inN|(I)(q_;)> -

l1 lal3ly

- E lll2l3l4

l1l213l4

(I)N (T)|Cllclgclscl4e iﬁjxe_inN‘q)N(q_;»
(Bn(q)|e e 2N D ()
(I)Z (T)|Cllclgclscl4€ Zﬂjxe_i(plzz‘q)2<q_;)>

n Viqlslsly - > -
Z ’ (P2(Q)]e e 9127 | Dy ()

l1l213l4

Ly (@2(D)lcf, e e 0127 |D4(q))
T @ @e e 02, (q)
(@n ()] ey Pre N | Dy (¢)) N
(D (Q)]e- e N | Dy ()
(@2(q)|c},cr,e” e 9127 | 4(q)))
2 Z M @ (@le el D))
(@n(Q)|c], e e o N D ()
(@ (Q)]e#re o N | D ()

lllgl3l4

(D.17)

174



175

Se definen los campos de Fock, apareamiento y la matriz densidad pro-
yectada, respectivamente como:

10,N/Z,N' /2", — = B L
o NG By ) = D Bt ™ (@4 By, ,)  (DA8)

13ly

10,N/Z ;> = _ -
80, G4 By p) = Y Bt (G4 B e1y,) (D.19)

I3l4

e—iSOlZZ<¢Z(q—')|67iﬁjzeigolZZ|(bZ((?)>
7

A — 10, N/Z(d, ¢, B,
5, e e gt )

(D.20)

PN g, 8) =Y

In
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176 Célculos con funciones de onda proyectadas

De modo que la parte del hamiltoniano, ecuacién (D.17), correspondiente
a la energia potencial se obtiene:

5 s @le e () L
o, e (B (@)]em e (D () 2

g R Pl ety ()
7 Ti ¢ (R P (B () 2
)

STe[%20G By, )P (G, By o))+

1T TN (G q B, N (G, d . B)]+
Z e o (‘I’N(Cm@ oo Ny (q)) 1
S, e N (@ () e e N Dy (¢)) 2
Il 10| el A GV I
3, e 22 (D ()18 |4 (g))) 2
3 et (P (@) 8Lt Ny ()

S, e N (@ () e N Dy (¢)) 2

ST NG, ', B, 000" 1% (3, B)]

[Aw’Z((Ta q_;7 ﬁu (plz)ﬁ(]l’Z((Tv q_;7 Bv (plz)]_

Tr[AlO’N(Cf, 6177 Ba cplN)’%Ol’N(Cz q_;v 67 SOIN)]

(D.21)

Por 1ltimo, si sustituimos las definiciones anteriores en (D.10), se obtiene
la expresién final més general de la energia:

w/2 .
/0 dseN (., )N, 7 B)senBd

—
/

EYN(q,q) =

. (D.22)
/ dgsn™?(q, ¢, B)senBdp
0
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Apéndice E

Elementos de matriz nuclear en
una desintegracion Ov3j3

En este apéndice se desarrollan con mas detalle expresiones para los ele-
mentos de matriz nuclear (NME) para una desintegraciéon doble beta sin
emisién de neutrinos (0v3f), dentro del marco de la teorfa BMF cuyos re-
sultados han sido discutidos en el capitulo 9. El elemento de matriz que
queremos evaluar es:

M%GT = <OZF|O%V(GT|O}F> (El)
El operador a dos cuerpos de la interacciéon se escribe como:
A0y 1 —0v
O%/GT ~ 1 Z(OF/GT)ijkl aja;blbkv (E.2)
ijkl

donde los operadores de creacion se definen como:

aZT|O) — crea un protén con numeros cuanticos i
b;|0) — crea un neutrén con numeros cuanticos j

El término antisimetrizado que aparece en la expresién (E.2) serd:

—O0v

(Orar)im = (il OFar) k) — (0| OF)ar)|ik) (E.3)

La desintegracién doble beta es una transiciéon que se da entre los estados
fundamentales de dos nucleos diferentes, por lo que tendremos que: J = 0
y 0 = 0. De modo que para funciones PN-VAP con proyecciéon PNAMP y
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generador de coordenadas, seccién 3.5, el elemento de matriz que queremos
evaluar tiene la siguiente forma:

*

110 o UgN“Z Q) 0,N;,Z;
(07| F/GT‘Of>_ Z 9r

- no,N,,Z
qq’ kK’ k

N, Z
ONf,Zf) ug/ ! f(q)

<PJ:OPNiPZ <®|OF/GT|PJ:0PNfPZf(I)(q_;)> (gk; \/m
Hef
k./

Los dos paréntesis que aparecen a la derecha de la expresion, asi como
sus expresiones conjugadas que aparecen a la izquierda, vienen del calculo
GCM con la solucién a la ecuacion HW, de manera que lo que nos falta
es evaluar el solape que aparece en el medio de la expresion. La diferencia
frente a otras expresiones de calculo de valores medios, como las desarrolladas
en el apéndice anterior, es que este operador no conmuta con el nimero
de particulas. Por ello, es necesario para el proyector a buen ntmero de
particulas, definido en (3.62), tener en cuenta las siguientes propiedades:

(E.4)

alP? = P74l (E.5)
b; PN = PNt (E.6)
PN PN =5y, PN (E.7)

El solape queda entonces:
<0+|OF/GT|0}_> =

(POPM P70 (q_)‘OF/GT‘POPNfPZf(I)f<(]_;)>

J(POPY P, ()| PO PY. P2, (7)) (PO P21 () PO P71 ()
(E.8)

Los operadores conmutan, esto es, se satisface: [OF/GT, R(Q)] = 0. Cada uno
de los términos que aparecen en la raiz del denominador, que son iguales, se
calcula como:

—

(POPYPZa()| PP P2 () =

/ DI (9)(®,() [ R(Q) P P4] (7)) d2 (E9)
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El solape que aparece dentro de la integral, se factoriza de la siguiente
manera;

(@:(@)| RPN PZ|Di(¢)) = (%Z@i,p(dﬂf?( JeeZD|a, (7)>> -

l

(% Z<<I>@-,n<q*)u%<ﬂ>ewN>|<I>Z-,n<5f>>) ~

| (E.10)

Por otro lado el numerador:
(PO PN P70y (q)| O | PPN P21 0y(¢)) =
— 57 | D@ @I PAOY 6P PP R(O) |05 =

- 5Nf,Ni_gazf,Zi+@ / DR ()@ (0)| O PV P71 RQ)| ()
(E.11)

De nuevo, aparece dentro de la integral un solape que debe ser evaluado:

(©:(D)|O¥/r PN PZTR()|94(d) =

=7 Z r/cr )ik Pi(@]alalbby PN P R(9Q)| 05 (¢)) =

zgkl
— IS0 ) P2 R(D)|D (@) (i (@) [Bibe P2 R(Q) D 1.0 (7)) =
—42( rrer)ije{Pip(@)]ala] (D[P (q"){Pi,n ()| bibx ()[@sn(d)) =
ikl
—01/
:_Z F/GT)ijkl
ijkl
T 1 g (Z— ZNR ) v
- Zp CT)MGJG ( )| ZP(Q)><(I)ip<q—»)‘ewl(Z Zf ( )‘q)zp< )) .
L , , (q)] 22D R(Q)|;,(d) ’

)
<—Z @n@\blbkew DRO)|Pin(@)

in GW’IN Nf (I)zn
2 DR [ (0) (@in(9)] R()|®i (g )>>

(E.12)
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Definimos el tensor de apareamiento (k) y el campo de apareamiento (A)

como: o A
(@i, (@)]alale’™ 77D R(Q)| @y, (¢)))

Ky T, ) = — §
(@i (@7 Z= 20 R(D)|Dy,(q))

(E.13)

R (o0 Q) = 7 DR (01 D (@i @) R)| Dy, (0))  (B.14)

(P Zn(@|blbkewl (N-Np) R R(Q2 )|¢f"(5)> (E.15)

L) =
) = @ e IR 0 (0)

R (o0, 2) = + 3 R (01 ) (@ (@) TN R(Q) D1 (6)) (ELG)

(A @)

De modo que con las definiciones anteriores, obtenemos el valor del solape
en el que estamos interesados:

ij

= Z <6OFV/GT> “ilj " P<Q) (E.17)

. - 1 n
(@DNOY e PV P R)IDH(&)) = 5T [AZET (277)] (B1g)
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