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3.3. Ruptura de las simetŕıas. . . . . . . . . . . . . . . . . . . . . . 37
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Resumen

La aproximación de campo medio autoconsistente con interacciones efec-
tivas fenomenológicas ha sido muy exitosa para describir la mayoŕıa de las
caracteŕısticas nucleares a lo largo de toda la carta de núcleos. Este éxito
está estrechamente relacionado con la ruptura espontánea de las simetŕıas,
que permite describir el sistema de muchos cuerpos con una sola función de
onda intŕınseca simple de tipo producto que incorpora correlaciones asocia-
das a la deformación y al apareamiento. No obstante, para hacer estudios
espectroscópicos y/o describir sistemas con coexistencia de forma, se han de
aplicar teoŕıas que vayan más allá de la aproximación de campo medio.
En este trabajo, se van a mostrar resultados obtenidos con la interacción de
Gogny aplicando métodos más allá del campo medio que incluyen la restau-
ración de la simetŕıa del número de part́ıculas y de invariancia rotacional
con métodos de proyección, además de mezcla de configuraciones llevada a
cabo mediante el método de la coordenada generadora. Se va a incidir en
la relevancia de la proyección al número de part́ıculas con el método de la
variación después de la proyección y en papel que juega la autoconsistencia
para determinar los estados de la base.
En particular, estos métodos han sido utilizados para estudiar, por primera
vez, de manera simultánea la deformación cuadrupolar y las fluctuaciones de
apareamiento. Se investigará de manera minuciosa la influencia de las fluc-
tuaciones de apareamiento de gran amplitud en el marco teórico que ha sido
descrito más arriba.
Se va a estudiar el efecto de los grados de libertad mencionados en la estruc-
tura nuclear. Para ello, se van a analizar las enerǵıas de excitación, aśı como
otros observables relevantes: las probabilidades de transición E0 y E2, o las
enerǵıas de separación. Estos estudios se han hecho para una selección de
núcleos: esféricos, deformados y con diferente grado de colectividad. Encon-
tramos que los efectos de las fluctuaciones de apareamiento aumentan con la
enerǵıa de excitación y a mayor momento angular.
Además, se van a estudiar en detalle las vibraciones de apareamiento y su
relación con el grado de libertad cuadrupolar, obteniéndose que la deforma-
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10 Resumen

ción inhibe fuertemente dichas vibraciones.
Para terminar, se van a investigar los elementos de matriz nuclear del pro-
ceso de desintegración doble beta sin emisión de neutrinos para los núcleos
donde la detección de dicho proceso -que implica f́ısica más allá del modelo
estándar- es más plausible. Se va a evaluar el papel que juegan la defor-
mación y el apareamiento en dichos elementos de matriz. Encontramos un
importante aumento del valor de los elementos de matriz con respecto a los
que se obtienen cuando no se incluyen las fluctuaciones de apareamiento, lo
que implica una reducción de las vidas medias de dichos isótopos.
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Abstract

Self-consistent mean field approaches with effective phenomenological in-
teractions have succeed in describing many bulk properties along the whole
nuclear chart. This success is closely related to the spontaneous symmetry
breaking mechanism that allows the inclusion of many correlations within a
very simple intrinsic product wave function. However, in some cases this pic-
ture fails in taking into account important correlations and methods beyond
the mean field approach have to be applied.
In this work I will show some recent results obtained with the Gogny in-
teraction applying methods beyond mean field that include particle number
and rotational symmetry restoration, plus configuration mixing within ge-
nerating coordinate method framework. Hence, the relevance of the particle
number projection before the variation method and the self-consistency in
determining the basis states will be analyzed.
In particular, these methods are applied for the first time to study the qua-
drupole deformation and pairing fluctuations on the same footing. Especially,
the influence of large amplitude pairing fluctuations is thoroughly investiga-
ted in the framework depicted above.
I will discuss the influence of both degrees of freedom on the resulting nuclear
structure, analyzing the spectroscopic properties. Relevant observables like
excitation energies, E0 and E2 transition probabilities, or separation ener-
gies are also studied.
These studies have been performed for a selection of nuclei: spherical, defor-
med and with different degrees of collectivity. As a result, an increase of the
effect of the pairing fluctuations with increasing the excitation energy and
angular momentum is found.
I will also deal the topic about pairing vibrations. They are studied in detail
with the conclusion that deformations strongly inhibits their existence.
To close, we present an study of the nuclear matrix elements for the neu-
trinoless double-beta decay calculated for the most promising candidates to
detect this process beyond the standard model. In particular, the role of the
deformation and pairing on such nuclear matrix elements are analyzed. An
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12 Abstract

important increase in the value with respect to the ones found without the
inclusion of pairing fluctuations is obtained, reducing the predicted half-lives
of these isotopes.
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Caṕıtulo 1

Introducción

La f́ısica nuclear se establece como rama de conocimiento de interés a
finales del siglo XIX con el descubrimiento de la radiactividad en 1896 por
H. Bequerel, punto de partida para los trabajos en este campo del matri-
monio Curie que culmina en 1898 con el descubrimiento de dos elementos
radiactivos existentes en la naturaleza, el 84Po y el 88Ra. Ernest Rutherford
clasifica las radiaciones en alfa, beta y gamma y propone en 1911 su modelo
atómico en el que se establece la existencia del núcleo atómico por prime-
ra vez. Este modelo seŕıa pronto sustituido, en 1913, por el de Niels Bohr,
capaz de explicar los espectros de emisión caracteŕısticos de los átomos. El
descubrimiento del neutrón en 1932 por James Chadwick y el desarrollo de la
f́ısica cuántica en la primera mitad del siglo pasado nos conducen al modelo
de núcleo atómico que conocemos hoy en d́ıa [1].
El conocimiento de la f́ısica nuclear se hace necesario por la cantidad de
campos de interés en los que está presente. Ha permitido desarrollar tecno-
loǵıas de aplicación en la medicina, como las resonancias magnéticas nucleares
(RMN), la tomograf́ıa axial computerizada (TAC) o la tomograf́ıa compute-
rizada por emisión de positrones (PET). Íntimamente ligado a su nombre
está la fisión y fusión nuclear y la obtención de enerǵıa por medio de estos
procesos como parte de la solución al problema energético. La astrof́ısica es
otro de los campos donde la f́ısica nuclear juega un papel clave. Aśı, la ma-
teria que conforma el universo se forma por medio de reacciones nucleares
que suceden en entornos astrof́ısicos, desde los procesos de fusión que tienen
lugar dentro de las estrellas hasta las capturas rápidas de neutrones que se
producen en explosiones de supernova y colisiones de estrellas de neutrones.
Por tanto, el conocimiento preciso de dichas reacciones nucleares es esencial
para entender el origen y abundancia de los elementos qúımicos.

Durante los últimos veinte años la imagen y concepción del núcleo atómi-
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14 Introducción

co ha cambiado debido al renacimiento que ha experimentado la estructura
nuclear como consecuencia del desarrollo de nuevas técnicas experimentales
como los haces de iones radiactivos y los espectrómetros de rayos γ en 4π
de alta eficiencia [2]. Estas técnicas han posibilitado el estudio de núcleos
atómicos exóticos, aśı como núcleos en condiciones exóticas. Entendiendo
por núcleos exóticos aquellos que se encuentran muy lejos del valle de la es-
tabilidad, esto es, núcleos con gran isosṕın o núcleos superpesados (aquellos
que tienen un gran número másico). Se entiende por núcleos en condicio-
nes exóticas, los núcleos que se encuentran en el valle de la estabilidad (o
muy próximos a él) pero bajo condiciones tales como: alto momento angular
(I ≈ 40 − 80!), muy alta enerǵıa de excitación o grandes deformaciones.
Todo ello, está revelando aspectos fundamentales como la determinación de
las ĺıneas de goteo (drip-lines) de neutrones o de protones y las desintegra-
ciones de protones en las proximidades de dicha ĺınea, la śıntesis de núcleos
superpesados e islas de estabilidad, la aparición de halos y pieles de neutro-
nes, coexistencia de forma y superdeformación, degradación y la aparición
de nuevos números mágicos, etc [3].
No sólo eso, el desaf́ıo continúa. La nueva generación de instalaciones en todo
el mundo: GSI-FAIR [4], GANIL-SPIRAL-2 [5], CERN-HIE-ISOLDE [6] en
Europa; RIBF-RIKEN [7] en Japón ó la futura MSU-FRIB [8] en Estados
unidos y la cantidad de observaciones experimentales que son (y serán) des-
cubiertas en los numerosos proyectos que alĺı se desarrollarán, tendrán que
ser explicadas desde el punto de vista de la f́ısica nuclear teórica. Se espera
que esa conjunción, entre la parte teórica y experimental, siga aportando
respuestas al campo de la estructura nuclear, cuyo objetivo final es el cono-
cimiento unificado de la propiedades nucleares a partir de las interacciones
fundamentales entre los nucleones.

Es necesario el desarrollo de herramientas teóricas adecuadas que permi-
tan la comprensión de la estructura nuclear a lo largo de toda la tabla de
núcleos y que se encuentren en consonancia con la gran cantidad de resul-
tados experimentales, que como hemos visto, la f́ısica nuclear experimental
demanda. Actualmente, la f́ısica nuclear teórica también trata de mejorar
el conocimiento sobre los fenómenos nucleares bien mejorando los métodos
y modelos existentes o bien introduciendo nuevas técnicas, de entre los que
cabe destacar:

Métodos ab-initio y diagonalizaciones exactas en sistemas de pocos
cuerpos son ahora posibles [9].

Conexión de las interacciones nucleares desnudas con QCD a partir de
teoŕıas de campo efectivas quirales [10, 11].
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El aumento de la capacidad de computación permite hoy en d́ıa hacer
cálculos del modelo de capas con espacios mayores. [12].

Desarrollo de las teoŕıas más allá del campo medio con interacciones
dependientes de la densidad. [13].

El contexto en el que se encuentra enmarcado este trabajo es el de la f́ısica
nuclear teórica y dentro de los modelos nucleares teóricos de que se dispo-
nen, la memoria aqúı presentada, está englobada dentro de la aproximación
de campo medio autoconsistente. Esta aproximación considera al núcleo co-
mo un sistema de part́ıculas o cuasipart́ıculas que no interactúan entre śı y
que se encuentran sometidas a un potencial promedio que liga el sistema. Es-
te potencial es calculado de manera autoconsistente haciendo uso del método
variacional para encontrar el hamiltoniano de cuasipart́ıculas independientes
óptimo del problema nuclear de muchos cuerpos. Para ello se usa el método
de Hartree-Fock (HF) y su extensión, el método de Hartree-Fock-Bogoliubov
(HFB), con interacciones efectivas (interacción de Gogny en nuestro caso
particular) que sean capaces de describir propiedades en cualquier región de
la tabla de núclidos.
En estos métodos, la función de onda que describe el sistema de muchos cuer-
pos es un producto de funciones de onda de una cuasipart́ıcula. Para que el
espacio variacional sea lo mayor posible se admite la ruptura espontánea de
las simetŕıas del hamiltoniano, como por ejemplo, del número de part́ıculas
y la invariancia rotacional, que van a permitir la descripción de fenómenos
colectivos como la superfluidez nuclear o la aparición de bandas rotaciona-
les respectivamente. Sin embargo, para describir adecuadamente el núcleo
atómico deberemos ir más allá de la aproximación de campo medio y restau-
rar dichas simetŕıas. Además, es posible una mejora de dicha descripción si se
considera la función de onda final como una combinación lineal de funciones
de onda tipo producto con las simetŕıas ya restauradas, idea que subyace tras
el método del generador de coordenadas.
Los métodos de campo medio con interacciones efectivas realistas han si-
do ampliamente estudiados [13–16] incluyendo restauración de simetŕıas (si-
multáneas del número de part́ıculas y el momento angular) y mezcla de confi-
guraciones y siguen demostrando ser una potente herramienta para describir
las propiedades de los núcleos atómicos.
El desarrollo y avance de la computación cient́ıfica nos permite y anima a
implementar mejoras en nuestros cálculos teóricos de campo medio, lo que
hace unos años era una limitación de cálculo computacional, hoy deja de
serlo.
Por otra parte, es sabido que de entre las diferentes variables colectivas que
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16 Introducción

pueden incluirse en el estudio de las correlaciones de apareamiento en el mar-
co de las técnicas de proyección, la que nos ofrece una contribución mayor
a la enerǵıa, es la deformación asociada al momento cuadrupolar [17]. Sin
embargo, es deseable la inclusión de cuantas más correlaciones mejor para
aproximarnos a la solución más exacta del problema.
Cuando sólo la deformación cuadrupolar es tenida en cuenta, se observa que
los valores que se obtienen de forma teórica para observables relevantes tales
como las enerǵıas de excitación ó las probabilidades de transición, si bien
muestran un acuerdo cualitativo con lo obtenido experimentalmente, presen-
tan, en general, valores ligeramente superiores [14]. Este trabajo tiene entre
sus objetivos comprobar si el hecho de incluir una coordenada extra en el
sistema de estudio, puede completar la descripción teórica de manera que
suponga una mejora acercándonos a los datos experimentales.
Es la unión de estos dos aspectos, la necesidad de incluir más grados de li-
bertad en el sistema unido a la mejora de la capacidad de computación que
permite llevarlo a cabo, lo que ha motivado este trabajo que recoge el análisis
y los resultados de considerar por primera vez las fluctuaciones de aparea-
miento [18, 19].

El estudio de las fluctuaciones de apareamiento es relevante por diversos
motivos [20–26]. Por un lado los grados de libertad más relevantes a consi-
derar, son el monopolar (el apareamiento) y el cuadrupolar (la deformación)
por lo que es deseable tratar a ambos en igualdad de condiciones. Por otro
lado, el principio variacional de Ritz con ligaduras, con el que se determina
la base de estados intŕınsecos, es muy efectivo para determinar las funciones
de onda de los estados de la base favoreciendo, por construcción, encontrar
dichos estados en cálculos con restauración de simetŕıas y mezcla de configu-
raciones (como es nuestro caso). Sin embargo, el describir, dentro del mismo
marco, correctamente estados excitados, para los cuales pueden cambiar sus
números cuánticos, va a depender de tener una buena base. El hecho de au-
mentar el número de coordenadas nos ofrece una base mayor en la cual los
estados excitados se encuentren mejor descritos. Por ejemplo, es t́ıpico de los
cálculos con proyecciones obtener espectros de enerǵıa más estirados que las
predicciones experimentales, al aumentar el tamaño de la base incluyendo
un nuevo grado de libertad, esperamos obtener espectros más comprimidos.
Por último, el estudiar de forma simultánea la forma y las fluctuaciones de
apareamiento va a permitir hacer un análisis sobre si las vibraciones de apa-
reamiento existen de forma genuina o cómo se amortiguan cuando ambos
grados de libertad son acoplados.

Esta memoria de tesis, basada en las siguientes publicaciones ( [27–29]),
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está estructurada de la siguiente manera: en el siguiente caṕıtulo, 2, se descri-
ben los modelos de estructura nuclear teóricos e interacciones fenomenológi-
cas realistas más utilizadas para poner en el contexto adecuado los métodos
que van a ser empleados en este trabajo. En el caṕıtulo 3 se detallan los
fundamentos teóricos de las aproximaciones de campo medio y más allá. Los
métodos de restauración de simetŕıas con proyección junto con el método de
la coordenada generadora se detallan también en este caṕıtulo. En el caṕıtulo
4 se introduce la nueva coordenada, se presenta el método de trabajo y se
ofrecen los detalles más técnicos de los cálculos tomando como ejemplo el
núcleo 52Ti. El caṕıtulo 5 está dedicado al estudio del efecto de la proyección
del número de part́ıculas. Se analiza su relevancia para tener una descripción
correcta de los estados nucleares. En el caṕıtulo 6 se discuten las superficies
de enerǵıa potencial y con especial detalle, los espectros de excitación para
diversos núcleos como función de las dos coordenadas consideradas y en base
a tres diferentes aproximaciones. Los resultados de calcular otros observables
nucleares relevantes como probabilidades de transición o enerǵıas de separa-
ción se exponen en el caṕıtulo 7. En el caṕıtulo 8 se discuten las funciones
de onda en diferentes aproximaciones estableciendo las analoǵıas correspon-
dientes con las superficies de potencial mostradas anteriormente. Además,
en este caṕıtulo también se va a tratar de forma minuciosa la cuestión de la
existencia de vibraciones genuinas de apareamiento. El caṕıtulo 9 se centra
en el tema de las desintegraciones doble beta sin emisión de neutrinos. Los
elementos de matriz nuclear para los 11 candidatos más probables a desinte-
grarse en este modo se han calculado teniendo en cuenta la deformación y las
fluctuaciones de apareamiento. Por último, las conclusiones de este trabajo
y perspectivas futuras que ofrece, se recogen en el caṕıtulo 10. Como anexo,
en el apéndice A se muestra una lista de acrónimos que han sido utilizados
a lo largo de la memoria como gúıa para el lector. Los apéndices B C D y E
son para desarrollar en más detalle expresiones teóricas que se han utilizado.
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Caṕıtulo 2

Modelos de estructura nuclear

2.1. Introducción

Para describir la dinámica de un núcleo atómico nos encontramos por un
lado con el problema cuántico de muchos cuerpos que no es resoluble a partir
de un cierto número de nucleones. Por otro lado, el número de nucleones
presente en el núcleo dista mucho de ser suficientemente grande como para
abordar el problema desde la perspectiva de la f́ısica estad́ıstica. Para aproxi-
marnos a la solución del problema, es necesario el uso de modelos o métodos
que permitan describir la estructura nuclear. Estos modelos van a ser diferen-
tes en sus suposiciones y aproximaciones, de manera que en función de lo que
se quiera investigar, un método puede resultar más apropiado que otro para
la resolución de un problema concreto. De esta manera, vamos a disponer de
métodos complementarios que van a describir diferentes manifestaciones del
comportamiento nuclear.

Podemos hacer la siguiente clasificación entre los modelos nucleares que
pueden ser utilizados.

Modelos microscópicos:
El punto de partida para los modelos microscópicos (entendidos como
los que consideran los protones y neutrones como grados de libertad)
en la f́ısica nuclear es la definición de la interacción entre los nucleo-
nes constituyentes. Estas interacciones pueden ser definidas a partir
de interacciones desnudas entre los nucleones, también llamadas in-
teracciones realistas, o pueden tener en cuenta los efectos del medio
nuclear. Éstas, son las interacciones fenomenológicas. En ambos casos,
hay parámetros o constantes de acoplamiento que deben ser ajustadas
para reproducir algunos conjuntos de datos experimentales.
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20 Modelos de estructura nuclear

Dentro de los modelos microscópicos se distinguen, dependiendo del
origen de la interacción nuclear:

• Cálculos ab-initio, si las interacciones se extraen directamente a
partir de las interacciones NN (nucleón-nucleón) y NNN desnudas,
normalmente por renormalización de dichas interacciones.
Los métodos de resolución de problemas de muchos cuerpos usados
con interacciones ab-initio van desde diagonalizaciones exactas, al
modelo de capas sin core (no core shell model, NCSM) [30], el
método de Monte Carlo con funciones de Green [31], o el método
de los clusters acoplados (coupled clusters, CC) [32].
Estos métodos se aplican a núcleos ligeros (A ≤12) con precisión
y también para núcleos más pesados, mágicos o semimágicos.

• Cálculos fenomenológicos, si las interacciones nucleares, normal-
mente sólo NN, se ajustan a datos experimentales de núcleos fini-
tos.
En este caso, se puede distinguir entre dos grandes grupos: el mo-
delo de capas (interacting shell model, ISM) y el método de campo
medio autoconsistente (self-consistent mean field, SCMF). Ambos
modelos van a centrar nuestra atención en las secciones 2.2 y 2.3
de este caṕıtulo donde se exponen sus caracteŕısticas con más de-
talle.
Ambos modelos se basan en la idea de campo medio (mean field,
MF); los nucleones se mueven como part́ıculas independientes en
un potencial promedio que crean el resto de nucleones. Este po-
tencial va a ser fenomenológico y debe ser capaz de explicar las
propiedades de los núcleos. La interacción entre nucleones es fuer-
te, por lo que esta aproximación puede parecer, a priori, poco
apropiada. Sin embargo, dada la naturaleza fermiónica de los nu-
cleones, vamos a encontrar que el principio de Pauli, aplicado sobre
el medio nuclear, va a bloquear gran parte de los estados accesi-
bles. Esto hace que el efecto de la interacción se reduzca; esto es,
se hace más suave a cortas distancias, dando entonces sentido a
las aproximaciones de campo medio.

Modelos colectivos:
Los modelos colectivos describen propiedades globales de los núcleos.
La idea básica en la que se apoyan los modelos de tipo macroscópico
es la de tratar de describir el núcleo como un todo, es decir, estamos
interesados en el movimiento colectivo de los nucleones.
Quizás el ejemplo más representativo sea el modelo de la gota ĺıquida,
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2.2 Modelo de capas 21

éste supone el núcleo como un fluido incompresible. Relacionados con el
primero y englobados dentro de los modelos colectivos, están el modelo
vibracional y rotacional [33]. Se puede encontrar su descripción en la
sección 2.4.

Modelos algebraicos:
Otra forma de abordar el problema es mediante modelos algebraicos.
Estos modelos describen las excitaciones colectivas del núcleo por medio
de métodos basados en las teoŕıas de grupos y los conceptos de simetŕıas
relacionados con ellos. El modelo de bosones interactuantes (de tipo
fenomenológico) o el modelo SU(3) de Elliot (de tipo macroscópico)
son ejemplos representativos de ellos. Se ampliará el modelo de bosones
interactuantes en la sección 2.5.

2.2. Modelo de capas

El modelo de capas tiene su origen en el descubrimiento de que núcleos
con cierto número de protones y neutrones mostraban ciertas propiedades
asociadas a la presencia de capas cerradas de manera análoga a lo que ya se
conoćıa para los átomos. Se observan saltos en las enerǵıas de separación de
nucleones, mayores diferencias en las masas con el modelo de la gota ĺıquida
y mayores enerǵıas de excitación del primer estado excitado. A estos números
se les dio el nombre de números mágicos [34,35]. Los primeros en encontrar-
se fueron el 8 y 20. Es posible deducirlos si se asume un potencial de tipo
oscilador armónico. Para obtener los siguientes números mágicos: 28, 50, 82
y 126 es necesario incluir un término de esṕın-órbita [36].
Se toman un conjunto completo de estados, normalmente los del oscilador
armónico, como funciones de onda de part́ıcula independiente y se define una
base, en la que se va a diagonalizar el hamiltoniano, que sea un conjunto de
productos antisimetrizados de dichas funciones de onda de una sola part́ıcula.
Esto se corresponde con un determinante de Slater. Finalmente la función de
onda de muchos cuerpos será una combinación lineal de estos determinantes
de Slater.
El principal problema que presenta el ISM es el tamaño de esta base, pues el
número de determinantes de Slater crece combinatorialmente con el número
de capas que se introducen en el cálculo, de modo que según aumenta el
número de nucleones el cálculo se va complicando hasta hacerse computacio-
nalmente intratable. Es necesario, entonces, hacer una aproximación para
reducir este espacio de configuraciones y, para ello, se hace una división de
dicho espacio aprovechando la estructura de niveles que dan los números
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22 Modelos de estructura nuclear

mágicos. Por un lado está el core, que comprende aquellas capas que están
totalmente llenas de nucleones y que, por tanto, no van a jugar un papel
en el problema que queremos resolver. Por otro lado, tenemos el espacio de
valencia, que es donde se va a resolver el problema. En general, consta de
una o dos capas mayores de oscilador donde los nucleones de valencia pueden
estar situados. Por último, está el espacio externo que se asume que está to-
talmente vaćıo.
Dependiendo de la región de la tabla de núcleos en la que se va a trabajar,
se toma un espacio de valencia y, adecuada a este espacio, una interacción
efectiva que tratará de incluir en el espacio de valencia también correlaciones
que no pertenecen a él mediante técnicas de proyección y/o renormalización.
Una vez definidos el espacio de valencia y la interacción efectiva, en prin-
cipio se efectúa una diagonalización exacta del hamiltoniano, con lo que se
deben manejar códigos informáticos que permitan la resolución de proble-
mas de autovalores de matrices gigantescas. Estos códigos constituyen junto
con el espacio de valencia y las interacciones efectivas los tres pilares de los
modernos cálculos del ISM. Para ver los espacios de valencia e interacciones
efectivas empleadas en cálculos del modelo ISM se puede consultar [12, 13].
Las interacciones ajustadas a ciertas regiones, aśı como la diagonalización
del problema en el espacio de valencia, hacen del ISM el método más preciso
actual para calcular espectros nucleares. Sin embargo, esta dependencia de
la interacción con el espacio de valencia hace que no sea un método universal
y representa uno de los principales inconvenientes de este modelo.
Otro de los problemas que presenta este modelo es que es aplicable a núcleos
con un espacio de valencia no demasiado grande, para que sea un problema
computacionalmente factible, lo que nos restringe a núcleos con pocos nu-
cleones fuera de capa. Tampoco será posible describir núcleos pesados donde
el número de niveles cerca de la enerǵıa de Fermi sea muy grande.

2.3. Métodos de campo medio autoconsisten-

te

Los modelos de campo medio autoconsistente resuelven el problema de
muchos cuerpos de manera variacional, en espacios de configuración gran-
des y con interacciones nucleares que son ”universales” (válidas a lo largo
de toda la tabla de núcleos). Precisamente esta última caracteŕıstica es la
que hacen más atractivos a este tipo de modelos, ya que permiten explicar
diversas propiedades en regiones nucleares diferentes.
En esta aproximación se utiliza el método de HFB como punto de partida
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2.3 Métodos de campo medio autoconsistente 23

para obtener las funciones de onda que van a ser de tipo producto. Para me-
jorar esta aproximación, se toma la extensión a métodos más allá del campo
medio (beyond mean field, BMF) en la que se restauran las simetŕıas rotas a
nivel de campo medio mediante técnicas de proyección y se permite la mezcla
de configuraciones (symmetry conserving configuration mixing, SCCM) den-
tro del método de la coordenada generadora (generator coordinate method,
GCM).
Estas teoŕıas se encuentran explicadas con más detalle en el siguiente caṕıtu-
lo, ya que son el marco teórico de los cálculos que se presentan en esta
memoria.
Como ya se ha mencionado en la introducción de este caṕıtulo, en f́ısica nu-
clear los modelos microscópicos que estudian los núcleos atómicos se basan
en la descripción del núcleo como un conjunto de nucleones que interactúan
entre śı donde, además, es necesario determinar qué tipo de interacción nu-
clear vamos a considerar.
Para hallar dichas interacciones se puede proceder de dos maneras diferentes.
Por un lado, se puede renormalizar la interacción nucleón-nucleón desnuda
teniendo en cuenta que en el medio nuclear no todos los estados finales son
accesibles en la dispersión de dos nucleones, sino que la mayoŕıa de ellos se
encuentran ocupados por otros nucleones. Este es el enfoque del método de
Brueckner y la matriz G [37] o de los potenciales Vlowk o SRG [38].
El otro enfoque diferente seŕıa la utilización de interacciones fenomenológicas
efectivas que se usan en las aproximaciones de campo medio autoconsisten-
tes (SCMF). Principalmente se tienen tres grupos de cálculos SCMF depen-
diendo de la interacción usada; interacción de Gogny [39, 40], interacción de
Skyrme [41–44] o campo medio relativista [45]. En este caso se propone una
forma funcional para la interacción que dependa de un conjunto de paráme-
tros que se ajusten para describir propiedades macroscópicas en una región,
lo más amplia posible, de la tabla de núcleos. Dichas interacciones tienen,
como caracteŕısticas principales, una parte de corto alcance repulsiva suave
y, además, deben respetar las mismas invariancias que cumple la interacción
nuclear desnuda, con la excepción de que estas interacciones, en general, in-
cluyen un término dependiente de la densidad nuclear para que se respete la
propiedad de saturación de la fuerza nuclear. Por otra parte, normalmente
no incluyen un término tensor expĺıcito.
Podemos distinguir entre varios tipos de interacciones efectivas fenomenólo-
gicas.

Las interacciones deGogny (descrita en la subsección 2.3.1) y Skyrme

son las más usadas en cálculos de campo medio, son no relativistas y
su dinámica viene gobernada por la ecuación de Schrödinger.
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24 Modelos de estructura nuclear

Interacciones relativistas Este tipo de interacciones se utilizan den-
tro de la aproximación de campo medio relativista (relativistic mean
field, RMF). En el caso de tener un campo medio relativista, la dinámi-
ca del sistema va a venir gobernada por una densidad Lagrangiana efec-
tiva que cumpla las simetŕıas de QCD (quantum chromodynamics), a
partir de la que se deducen las ecuaciones de movimiento aplicando
las expresiones correspondientes de teoŕıa cuántica de campos. En este
caso, son los valores de las constantes de acoplamiento de la densidad
lagrangiana los que son ajustados como parámetros libres a los datos
experimentales de los núcleos, aśı como a las propiedades de materia
nuclear como en el caso no relativista.

2.3.1. Interacción de Gogny

Dedicamos esta sección a la interacción nuclear efectiva de Gogny [18,
39, 40] que es la que se ha utilizado a lo largo de este trabajo y por ello es
tratada con especial atención.
La interacción de Gogny entre dos nucleones tiene un término central de ran-
go finito (Brink-Boeker [46]) que consta de la suma de dos gaussianas de corto
y largo alcance, un término de esṕın-órbita a dos cuerpos y un término depen-
diente de la densidad, estos dos últimos de contacto. Su expresión anaĺıtica
es:

V (1, 2) =
2∑

i=1

e
−

( !r1− !r2)
2

µ2i

(
Wi +BiP̂ σ −HiP̂

τ −MiP̂
σP̂ τ

)

+iWLS

(
&σ(1) + &σ(2)

)
&k × δ(&r1 − &r2)&k +

t3
(
1 + x0P̂ σ

)
δ(&r1 − &r2)ρ

α

(
&r1 + &r2

2

)
(2.1)

En esta expresión aparecen los operadores de intercambio de esṕın, P̂ σ y
de isosṕın P̂ τ , la densidad ρ, los operadores de esṕın &σ, las coordenadas de los
nucleones &rj y los momentos relativos &k. El primer sumando de la expresión
(2.1) es el término central o de Brink-Boeker.
Se tienen como parámetros ajustables: µ1,Wi, Bi, Hi,Mi,α, x0,WLS y t3 y
tres parametrizaciones principales: D1, D1’ y D1S. Primero se ajustaron los
parámetros para los casos D1 y D1’ [40, 47]. El término de esṕın-órbita se
ajusta al valor del desdoblamiento de los niveles p3/2 − p1/2 del 16O. Para el
término dependiente de la densidad se ajusta la diferencia de enerǵıa entre
los niveles d3/2 − p1/2 también en el 16O. Los parámetros de la interacción
central que van con los operadores de intercambio se ajustan para reproducir
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2.4 Modelos colectivos nucleares 25

propiedades de los núcleos 16O y 90Zr, mientras que las propiedades de apa-
reamiento se obtienen a partir de la información para los isótopos del estaño.
Para la parametrización D1S [48] se tuvieron en cuenta, además de las pro-
piedades anteriores, otras referentes a la fisión, por ejemplo para el 240Pu.
Existen otras dos parametrizaciones más recientes que cabe destacar: D1N
[49] y D1M [50]. Con ellas se reproduce la ecuación de estado de materia
neutrónica calculada con interacciones realistas y, con ello, se corrige la fal-
ta de enerǵıa de ligadura para núcleos ricos en neutrones. Por otra parte,
mientras que todas las interacciones se ajustan a propiedades de unos pocos
núcleos y con funciones de onda de campo medio, la D1M se ajusta usando
las soluciones del hamiltoniano colectivo 5D (BMF) y ajustando a todas las
masas de la compilación AME (atomic mass evaluation) 2003 [51, 52].
De las parametrizaciones que se encuentran para la interacción de Gogny, la
más utilizada y la que aqúı se ha utilizado es la D1S. Sus valores se muestran
en la tabla (2.1).

i µ(fm) W (MeV ) B(MeV ) H(MeV ) M(MeV )
1 0.7 -1720.30 1300.00 -1813.53 1397.60
2 1.20 103.64 -163.48 162.81 -223.93

α x0 WLS t3
1/3 1 130.00 1390.60

Tabla 2.1: Parametrización D1S para la interacción de Gogny

Si comparamos las interacciones de Gogny con la mencionada de Skyrme,
veremos que los términos de esṕın-órbita y dependiente de la densidad son
los mismos en ambas. Sin embargo, los términos de muy corto alcance de la
fuerza de Skyrme, son sustituidos por el término de rango finito de Brink-
Boeker compuesto por las dos gaussianas en el caso de Gogny. Esta es la
principal ventaja de la interacción de Gogny sobre la de Skyrme, ya que este
término introduce de manera natural el apareamiento y lo hace, además, con
la misma interacción con la que se obtiene la parte de HF, ya que esto es
esencial si se llevan a cabo cálculos más allá del campo medio [53–55] [56,57].

2.4. Modelos colectivos nucleares

Esta cuestión puede ser estudiada desde otro punto de vista con este tipo
de modelos, en los que las excitaciones de baja enerǵıa son tratadas de mane-
ra colectiva. Además, los espectros de excitación de núcleos par-par muestran
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estructuras de banda caracteŕısticas que pueden ser interpretadas como vi-
braciones y rotaciones de la superficie nuclear.
La capa cerrada en un núcleo es muy estable, pero según se suman más
part́ıculas, la estabilidad de ésta se ve reducida. Si se estudian las curvas de
enerǵıa potencial en función de la deformación, a medida que se añaden más
nucleones a una capa cerrada se pasa de una parábola, con centro en el caso
esférico, a curvas cada vez más planas, hasta alcanzar un punto en el que el
núcleo prefiere una forma deformada, ya que el mı́nimo ha abandonado la
configuración esférica. De esta forma, según nos alejamos de la configuración
de capa cerrada, el núcleo va a mostrar, primero algunos rasgos caracteŕısti-
cos vibracionales del movimiento de núcleos suavemente deformados y, más
lejos, rasgos caracteŕısticos rotacionales del movimiento de núcleos perma-
nentemente deformados.
Veamos las caracteŕısticas principales que presentan cada uno de estos mo-
delos [58]:
a) Modelo colectivo vibracional:

Se utiliza para núcleos par-par con A < 150.

El núcleo se presenta como una gota ĺıquida vibrando a alta frecuencia,
cuya forma en promedio es esférica, con radio medio R0

La posición instantánea de un punto de la superficie vendrá dada por:

R(θ,ϕ, t) = R0

(
1 +

∑

λµ

αλµ(t)Yλµ(θ,ϕ)

)
, (2.2)

donde λ va a describir la multipolaridad.

Cada modo de vibración está caracterizado por λ. El modo fundamental
del modelo vibracional, son las vibraciones cuadrupolares, esto es, λ =
2. Introduce variaciones en la forma de la superficie del núcleo. Son
vibraciones entre formas esféricas, prolates y oblates.

Los estados correspondientes a un modo λ son estados propios de mo-
mento angular total J = λ y con paridad bien definida P = (−1)λ.

En analoǵıa al caso electromagnético denominamos fonón al cuanto de
enerǵıa vibracional.

El espectro vibracional va a presentar la siguiente forma caracteŕısti-
ca. Si consideremos el efecto de añadir un fonón cuadrupolar al estado
fundamental, tendremos un estado 2+. Si suponemos una excitación
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de dos fonones cuadrupolares, van a aparecer tres estados 0+ 2+ 4+

con enerǵıas al doble que el primer estado excitado. Tres fonones cua-
drupolares generan estados con J = 0+ 2+ 3+ 4+ 6+ con una enerǵıa
triple.

A partir de la estructura de niveles, el modelo vibracional predice he-
chos como que el estado fundamental 0+ es esférico y que el cociente
E(4+)/E(2+) ≈ 2.

b) Modelo colectivo rotacional:

El modelo rotacional se aplica a los llamados núcleos deformados, es
decir, que no tienen una posición de equilibrio esférica y se encuentran
alejados de las regiones de los números mágicos. Región de 150 < A <
90 y A > 220; región de tierras raras y act́ınidos; núcleos de la capa
s-d, es decir, núcleos con número másico A ∼ 24.

La forma de los núcleos deformados puede expresarse como un elipsoide
de revolución.

El espectro rotacional t́ıpico muestra una secuencia de estados con
enerǵıas proporcionales a J(J +1). Al incrementar el número cuántico
J se está aumentando la enerǵıa rotacional del núcleo, formando aśı los
estados excitados una secuencia de bandas conocidas como bandas ro-
tacionales.

Los núcleos deformados también presentan vibraciones de dos tipos:
vibraciones β y γ, dependiendo de la proyecciónK del momento angular
del fonón a lo largo del eje de simetŕıa fijo en el cuerpo. Las vibraciones
β tienen K = 0, por lo tanto, conservan la simetŕıa alrededor del eje,
mientras que las vibraciones γ con K = 2 no.

2.5. Modelos algebraicos

En los modelos algebraicos se describen excitaciones colectivas de los
núcleos por medio de teoŕıas de grupos y los conceptos de simetŕıa rela-
cionados con ellos [59].
Un ejemplo de este tipo de modelos es el modelo de bosones interactuantes
(interacting boson model, IBM) [60], en el que las excitaciones colectivas de
núcleos par-par están caracterizadas por un número fijo de N bosones de
dos tipos s y d con número cuánticos 0+ y 2+ respectivamente. Dentro del
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modelo IBM encontramos algunas extensiones. En el IBM-1 no se hace dis-
tinción entre bosones formados por neutrones o protones. El caso contrario
es el IBM-2 donde śı se hace esta distinción.

El IBM ofrece una alternativa al modelo de capas, ya que para un núme-
ro elevado de nucleones y capas, el número de configuraciones posibles para
describir un estado puede llegar a ser tan alto que no sea abordable desde
esta perspectiva el problema. El IBM reduce el número de configuraciones
posibles truncando el espacio de Hilbert en el que se trabaja, obteniendo
aśı un subespacio manejable. Para ello, se bosoniza el espacio teniendo en
cuenta parejas de nucleones (o huecos) de valencia con momento angular 0+

(pareja S) y 2+ (pareja D). Estas parejas pueden ser de protones o neutrones.
Los estados de parejas S y D están relacionadas con los estados bosónicos s
y d. Dos nucleones con el mismo momento angular y diferente proyección se
acoplan para obtener un estado con momento angular cero y proyección cero
(pareja S), creando el bosón s, de igual manera para las parejas D, se acoplan
dos nucleones con distintos momentos angulares para obtener un estado con
momento angular 2 que se corresponde con el bosón d.

Formalmente, la estructura nuclear se reduce a resolver el problema de
N bosones interactuantes tipo s y d. El número de N bosones se cuenta pa-
ra la capa cerrada más cercana. Por ejemplo, para el núcleo 110Cd, se tiene
Z=48 y N=62. Para protones, el cierre de capa está en Z=50, por lo que se
tienen dos protones (huecos) de valencia que corresponden a un bosón. Para
los neutrones, la capa cerrada más próxima es de nuevo N=50 por lo que se
tienen 12 neutrones de valencia, que se corresponden con 6 bosones, de modo
que N = 7.
Las 5 componentes del estado de bosones d, más la componente del estado de
bosones s, definen un espacio vectorial de seis dimensiones. De modo que la
estructura algebraica para el IBM viene dada por el grupo U(6) del álgebra
de Lie.
Este modelo se emplea en el estudio de núcleos intermedio y pesados, per-
mite determinar momentos nucleares, niveles de enerǵıa y probabilidades de
transición. Todos los observables f́ısicos van a ser derivados de métodos de
teoŕıas de grupos y expresados anaĺıticamente, partiendo de que el álgebra
que lo describe es la dada por U(6).
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Caṕıtulo 3

Método de HFB y teoŕıas más

allá del campo medio

3.1. Introducción

El método de HFB es la teoŕıa en la que se fundamentan los cálculos que
se han desarrollado en este trabajo, por tanto este caṕıtulo trata de expli-
car los aspectos fundamentales de esta aproximación y de sus extensiones; la
restauración de simetŕıas y el método de la coordenada generadora.
Para abordar este problema se postula un conjunto de funciones de onda
prueba y se hace uso del Principio Variacional para encontrar como solu-
ción al problema aquella que minimiza la enerǵıa del sistema, obteniendo
de esta manera una solución aproximada a la enerǵıa y a la función de onda
del estado fundamental. Imponiendo condiciones de ortogonalidad, es posible
construir los estados excitados.

En un sistema fermiónico, como es el núcleo atómico, el espacio de fun-
ciones de onda más sencillo que podemos tomar como prueba corresponde
a un determinante de Slater: un conjunto de productos antisimetrizados de
funciones de onda de una sola part́ıcula.
El método de Bardeen, Cooper y Schrieffer para el estudio de la supercon-
ductividad fue aplicado posteriormente al caso nuclear por Bohr, Mottelson
y Pines [61]. Mediante la transformación de Bogoliubov, se pasa a considerar
el núcleo como un conjunto de cuasipart́ıculas independientes que no inter-
actúan entre śı. De esta manera, se tiene una función de onda producto, esto
es, un producto antisimetrizado de funciones de onda de una cuasipart́ıcu-
la.Esto, permite incluir correlaciones de apareamiento [62] que van a ser
capaces de describir fenómenos como la superconductividad o superfluidez
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nuclear.
La generalización de ambos métodos, HF y BCS (Bardeen Cooper Schrieffer),
da lugar a la teoŕıa de Hartree-Fock-Bogoliubov (HFB). En el modelo HFB
se tratan al mismo nivel las correlaciones nucleares de largo alcance (correla-
ciones part́ıcula-hueco), que vienen descritas por el campo de Hartree-Fock
(Γ) y las correlaciones que vienen de la parte de corto alcance de la fuerza
nuclear (correlaciones part́ıcula-part́ıcula) y que vienen dadas por el campo
de apareamiento (∆).

3.2. Ecuaciones de HFB

Sean c†l , cl los operadores de creación y destrucción de part́ıculas donde
el sub́ındice l se refiere a los números cuánticos que caracterizan a un estado
de un oscilador armónico. Estos operadores cumplen que:
a) El operador destrucción aplicado sobre el vaćıo de part́ıculas da cero.

cl|−〉 = 0. (3.1)

b) El operador creación aplicado sobre el vaćıo de part́ıculas crea el estado l.

c†l |−〉 = |l〉. (3.2)

Se conoce con el nombre de transformación de Bogoliubov, a la transfor-
mación lineal más general entre los operadores de creación y destrucción de
part́ıculas [63] que va a definir los operadores de cuasipart́ıculas:

β†
k =

∑

l

Ulkc
†
l + Vlkcl, (3.3)

donde l, k son ı́ndices que van desde uno hasta la dimensión del espacio
de configuración M . Los operadores β†

k βk son los operadores de creación y
destrucción de cuasipart́ıculas. Éstos, cumplen las relaciones de anticonmu-
tación:

{β†
i , βj} = δij , (3.4)

{β†
i , β

†
j} = {βi, βj} = 0. (3.5)

La transformación (3.3) puede expresarse en términos matriciales [58] como:

(
β
β†

)
=

(
U † V †

V T UT

)(
c
c†

)
= W †

(
c
c†

)
. (3.6)
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Las relaciones de conmutación expresadas en (3.4) (3.5) imponen la unita-
riedad de W .

WW † = W †W = I, (3.7)

de forma que la expresión (3.6) es invertible:

(
c
c†

)
=

(
U V ∗

V U∗

)(
β
β†

)
= W

(
β
β†

)
. (3.8)

Las matrices de la transformación U y V deben satisfacer por tanto, las
siguientes propiedades:

U †U + V †V = I UU † + V ∗V T = I, (3.9)

U †V + V †U = 0 UV † + V ∗UT = 0. (3.10)

El teorema de Bloch-Messiah [58, 64] demuestra que la transformación
general de Bogoliubov puede ser reducida a tres transformaciones sucesivas
de la siguiente forma:
1) Un transformación unitaria D entre operadores de part́ıcula, que permite
refinar una nueva base (base canónica):

a†k =
∑

l

Dlkc
†
l . (3.11)

En esta nueva base, la matriz densidad (ρ) va a ser diagonal.

2) Una transformación de tipo BCS (llamada transformación especial de
Bogoliubov):

α†
k = uka

†
k − vkak̄

αk̄† = uka
†
k̄
− vkak, (3.12)

donde α†
k y αk̄† son estados de de cuasipart́ıculas canónicamente conjugados.

Dentro del marco de la teoŕıa BCS, ambos estados conjugados están relacio-
nados mediante la simetŕıa de inversión temporal.

3) Una transformación unitaria ”C” de las cuasipart́ıculas entre ellas mis-
mas:

β†
k =

∑

l

Clkα
†
l . (3.13)
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La función de onda prueba |Φ〉 que describe al sistema nuclear dentro de la
aproximación de HFB viene dada a través de las cuasipart́ıculas aśı definidas,
del siguiente modo:

|Φ〉 =
∏

k

βk|−〉, (3.14)

donde |−〉 es el vaćıo de part́ıculas. La función |Φ〉 es el vaćıo de quasipart́ıcu-
las, ya que verifica:

βk|Φ〉 = 0 ∀ k = 1, ...M. (3.15)

El hamiltoniano, en representación de los operadores de part́ıcula, que
describe el sistema tiene la forma:

Ĥ = T̂ + V̂ =
∑

l1l2

tl1l2c
†
l1
cl2 +

1

4

∑

l1l2l3l4

vl1l2l3l4c
†
l1
c†l2cl4cl3 , (3.16)

donde definimos:
a) El término cinético:

tl1l2 = 〈l1|T̂ |l2〉 (3.17)

b) El término potencial antisimetrizado:

vl1l2l3l4 = vl1l2l3l4 − vl1l2l4l3 (3.18)

vl1l2l3l4 = 〈l1l2|V̂ |l3l4〉 (3.19)

Teniendo en cuenta la transformación de Bogoliubov (3.6), se puede escribir
el hamiltoniano (3.16) en la base de cuasipart́ıculas [58]:

Ĥ = H0 +
∑

l1l2

H10
l1l2β

†
l1
βl2 +

∑

l1<l2

(
H20

l1l2β
†
l1
β†
l2
+ h.c

)
+Hint, (3.20)

donde las matrices Hcd
ij se refieren a la parte del hamiltoniano con c operado-

res de creación de cuasipart́ıculas y d de destrucción. La parte h.c se refiere a
la parte hermı́tica conjugada y se denota como Hint al conjunto de contribu-
ciones H31, H13, H40, H04 y H22, provenientes de la parte a dos cuerpos del
hamiltoniano y que representa la interacción entre más de dos cuasipart́ıculas.

Los coeficientes Ulk y Vlk de la transformación de HFB no están definidos
de manera única por la función de onda HFB. Por ello, es útil definir dos
cantidades importantes que van a determinar la función |Φ〉 de forma uńıvoca
y que viene dadas por sus elementos de matriz en la base de part́ıculas:
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a) La matriz densidad: ρll′ = 〈Φ|c†l′cl|Φ〉 = (V ∗V T )ll′
b) El tensor de apareamiento: κll′ = 〈Φ|cl′cl|Φ〉 = (V ∗UT )ll′,
Aplicando el Teorema de Wick1 [65], se puede demostrar que el valor esperado
de cualquier operador evaluado entre las funciones de onda |Φ〉 se puede
expresar en función de la matriz densidad y del tensor de apareamiento. En
particular, la enerǵıa de HFB, tomando la expresión del hamiltoniano de la
ecuación (3.20), viene dada por:

EHFB =
〈Φ|H|Φ〉
〈Φ|Φ〉 =

∑

l1l2

tl1l2
〈Φ|c†l1cl2 |Φ〉

〈Φ|Φ〉 +
1

4

∑

l1l2l3l4

vl1l2l3l4
〈Φ|c†l1c

†
l2
cl4cl3 |Φ〉

〈Φ|Φ〉 .

(3.21)
El primer término, correspondiente a la Enerǵıa cinética:

〈Φ|T̂ |Φ〉
〈Φ|Φ〉 =

∑

l1l2

tl1l2
〈Φ|c†l1cl2|Φ〉

〈Φ|Φ〉 =
∑

l1l2

tl1l2ρl2l1 = Tr(tρ). (3.22)

Haciendo uso del Teorema de Wick, se toman las contracciones de los opera-
dores de part́ıculas definidas para las funciones de onda correspondientes y
se desarrolla la parte correspondiente al potencial:

〈Φ|V |Φ〉
〈Φ|Φ〉 =

1

4

∑

l1l2l3l4

vl1l2l3l4
〈Φ|c†l1c

†
l2
cl4cl3 |Φ〉

〈Φ|Φ〉 =

=
1

4

∑

l1l2l3l4

vl1l2l3l4(
̂c†l1c

†
l2
ĉl4cl3 −

̂c†l1cl4
̂c†l2cl3 +

̂c†l1cl3
̂c†l2cl4)

=
1

4

∑

l1l2l3l4

vl1l2l3l4(κ
∗
l1l2κl3l4 − ρl4l1ρl3l2 + ρl3l1ρl4l2 (3.23)

A continuación definimos el campo de Hartree-Fock como:

Γl1l3 =
∑

l2l4

vl1l2l3l4ρl4l2 , (3.24)

y el campo de apareamiento:

∆l1l2 =
1

2

∑

l3l4

vl1l2l3l4κl4l2 . (3.25)

La expresión de la Enerǵıa potencial será:

〈Φ|V̂ |Φ〉
〈Φ|Φ〉 =

1

2
Tr(Γρ− ∆κ∗)). (3.26)

1En el apéndice B se puede ver con más detalle estos desarrollos.
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La expresión final para el valor esperado del hamiltoniano entre estados HFB
se expresa como:

EHFB = Tr(tρ+
1

2
(Γρ− ∆κ∗)). (3.27)

La enerǵıa de apareamiento, que va a ser una magnitud relevante en nuestro
estudio, se corresponde con el término:

Epair = −1

2
Tr(∆κ∗). (3.28)

Una vez definido el espacio variacional como las funciones de onda (3.14)
que son vaćıo de los operadores de cuasipart́ıculas, tenemos que encontrar
los operadores β†

k βk que minimizan:

E(|Φ〉) = 〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 (3.29)

Esto es equivalente a encontrar las matrices U y V de la transformación de
HFB que minimizan el funcional anterior. Sin embargo, la parametrización
de la enerǵıa en términos de estas matrices está sujeta a las relaciones de uni-
tariedad expresadas en (3.7). Por ello resulta más adecuado hacer uso de una
parametrización de la función de onda de HFB dada por el Teorema de Thou-
less [66]. Dicho Teorema nos dice que dada una función de onda arbitraria
de tipo producto |Φ〉 que sea vaćıo de de unos operadores de cuasipart́ıculas,
podemos construir otra función de onda producto |Φ(Z)〉 no ortogonal a la
primera y relacionadas mediante la matriz antisimétrica Z de la siguiente
manera:

|Φ(Z)〉 = 〈Φ|Φ(Z)〉exp{1
2

∑

ll′

Zll′β
†
l β

†
l′}|Φ〉 (3.30)

Zll′ son variables independientes, que son usados como parámetros variacio-
nales. Se aplica el principio variacional (δE = 0) a la ecuación (3.29) para
las funciones de onda prueba. La solución |Φ〉 de la ecuación variacional que
queda, se corresponde con Zll′ = 0. De modo que la expresión que se obtiene
es:

(
∂E(Z)

∂Z

)

Z=0

= 0 (3.31)

Evaluamos ahora la expresión anterior en Z = 0, sustituimos el hamilto-
niano por su expresión en la base de cuasipart́ıculas 3.20 y hacemos uso del
Teorema de Wick [58]:
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(
∂E(Z)

∂Z

)

Z=0

=
〈Φ|Ĥβ†

kβ
†
k′|Φ〉

〈Φ|Φ〉
=

1

2

∑

l1l2

H02
l1l2

〈Φ|βl1βl2β
†
kβ

†
k′|Φ〉

〈Φ|Φ〉
= (3.32)

=
1

2

∑

l1l2

H02
l1l2(δkl2δk′l1 − δkl1δk′l2) = −H02

kk′ = 0 (3.33)

Por último con la propiedad O20 = (O02)† = −(O20)T podremos decir que
los operadores de cuasipart́ıculas que buscamos, son aquellos para los que:

H20
kk′ = 0. (3.34)

Conviene destacar en este punto que la transformación de HFB (3.3) viola
las simetŕıas del hamiltoniano. Esto permite aumentar el espacio variacional
para lograr una solución más cercana a la exacta, pero manteniendo la es-
tructura de función de onda producto. En particular, hace que la función de
onda |Φ〉 no conserve el número de part́ıculas. Además, en general, también
se viola la simetŕıa rotacional, por lo que, en principio, ni el momento angular
ni el número de part́ıculas van a ser buenos números cuánticos del sistema
HFB. Es preciso, entonces, imponer la condición subsidiaria de que en pro-
medio el número de part́ıculas sea el correcto. Esto se consigue introduciendo
una ligadura, con lo que en lugar de minimizar el funcional definido por el
hamiltoniano H , se minimiza el funcional definido por:

H ′ = H − λNN̂ − λZẐ (3.35)

siendo los λ los multiplicadores de Lagrange que van a ser obtenidos impo-
niendo las ligaduras de que los valores esperados sean igual al número de
part́ıculas correctos:

〈Φ|N̂ |Φ〉 = N0 (3.36)

〈Φ|Ẑ|Φ〉 = Z0 (3.37)

Pero además, este caso es generalizable y es posible suponer que hay más
ligaduras para cualquier operador Q̂i de interés como la deformación cua-
drupolar, las fluctuaciones en el número de part́ıculas, etc. De este modo el
hamiltoniano más general vendrá dado por la expresión:

H ′ = H − λNN̂ − λZẐ −
∑

i

λQiQ̂i, (3.38)

con la condición:
〈Φ|Q̂i|Φ〉 = q0i. (3.39)
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Este es denominado método de HFB con ligaduras o constreñido (constrained
HFB). Este hamiltoniano es el que debe introducirse en la expresión que va
a ser minimizada (3.29). Este método permite explorar la dependencia de la
enerǵıa como función de ciertos observables. Por ejemplo, si se constriñe en
el operador Q̂i = Q̂20, podremos definir una superficie de enerǵıa potencial
como función de la deformación cuadrupolar. Esto es extensible a otros gra-
dos de libertad.

Con este hamiltoniano, la condición (3.34), queda ahora de la forma:

H
′20 = H20 − λNN

20 − λZZ
20 −

∑

i

λQiQ
20
i = 0, (3.40)

Además, dado que esta condición sólo determina las dos primeras transfor-
maciones (3.11,3.12) del Teorema de Bloch-Messiah [64], (ya que la ecuación
variacional que hemos estudiado no se ve afectada por la transformación entre
los operadores de cuasipart́ıculas) es habitual imponer la condición:

H
′11 = Ekδkl, (3.41)

para determinar la tercera transformación (3.13). Ek son las enerǵıas de cua-
sipart́ıcula (ver más abajo). Esto nos permite deducir las ecuaciones de HFB
en forma matricial en la base de quasipart́ıculas:

(
H

′11 H
′20

−H
′20∗ −H

′11∗

)
=

(
Ek 0
0 Ek

)
. (3.42)

Transformado a la base de los operadores de part́ıculas c y c†, las ecuaciones
anteriores toman la forma:

(
h

′
∆

−∆∗ −h
′∗

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (3.43)

donde:
h′ = t + Γ + δΓ − λN − λZ −

∑

i

λi (3.44)

Debido a que el hamiltoniano depende expĺıcitamente de la densidad, apa-
recen en las ecuaciones de HFB los campos (δΓ) que son los denominados
términos de reacoplamiento (rearrangement terms).
Son ecuaciones no lineales cuya resolución se ha hecho de forma autocon-
sistente con el método del gradiente [67]. Aśı, finalmente encontramos la
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solución al problema variacional con ligaduras planteado y encontramos las
funciones de onda |ΦHFB(q0i)〉 con las que se pueden hallar valores esperados
de operadores de interés f́ısico. En particular, se pueden definir superficies de
enerǵıa potencial dando valores a las ligaduras q0i

3.3. Ruptura de las simetŕıas.

En el caso general de tener bastante part́ıculas y fuertes correlaciones, el
correcto tratamiento de las simetŕıas no es una cuestión trivial; por un lado
queremos describir el sistema con funciones de onda sencillas que sean tipo
producto de las de una quasipart́ıcula. Por otro lado, no es posible tener en
cuenta importantes correlaciones si no se permite a las funciones de onda que
rompan ciertas simetŕıas.
Las correlaciones de tipo part́ıcula-hueco, que son las responsables de causar
deformaciones y las correlaciones part́ıcula-part́ıcula, que son las que des-
criben propiedades superfluidas, son correlaciones que van a ser incluidas a
nivel de campo medio. En la sección anterior hemos visto cómo son trata-
das dentro de la teoŕıa HFB. Esto nos llevó a encontrar funciones de onda
de tipo HFB |Φ〉, que si bien eran capaces de incluir correlaciones entre las
part́ıculas, no eran autoestados de los operadores de simetŕıa. En concreto
la aproximación de campo medio de HFB, violaba la simetŕıa de invariancia
bajo rotaciones (asociadas al campo Γ) y del número de part́ıculas (asociada
al campo ∆). Además cuanto mayores son estas correlaciones, mejor va a ser
la aproximación de campo medio. En analoǵıa a la f́ısica del estado sólido
se suele decir que el sistema experimenta una transición de fase, como por
ejemplo, a un estado deformado o superfluido donde las simetŕıas están rotas.
Esta aproximación, si bien es capaz de describir algunas magnitudes nuclea-
res, presenta limitaciones [58]:
a) No es posible describir ciertas propiedades nucleares tan importantes co-
mo las probabilidades de transición o los espectros de enerǵıa, dentro de una
aproximación pura de campo medio.
b) La transición de fase, por ser el núcleo un sistema finito, se da de forma
gradual entre la zona en la que se conserva la simetŕıa y la zona donde se
produce una débil ruptura y finalmente se encuentra la simetŕıa fuertemente
rota. En el caso de un débil ruptura de la simetŕıa el método HFB no describe
el problema de forma correcta.
Por estos dos motivos se hace necesario ir más allá de la aproximación de
campo medio y restaurar las simetŕıas rotas a nivel de campo medio. Para
ello, se hace uso de las técnicas de proyección [68–70] que van a ser desarro-
lladas en la sección 3.4. Además, la aproximación de campo medio, ya sea en
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su formulación más sencilla o únicamente con restauración de las simetŕıas,
no es capaz de incluir mezcla de configuraciones para explicar, por ejemplo,
mezclas o coexistencias de forma. Por eso, es necesario usar el método GCM.
Podemos ver con más detalle el mecanismo de ruptura de simetŕıas en la
aproximación de campo medio. Para ello, establecemos una analoǵıa entre
las magnitudes que describen la transición que se da de esférico a deformado
(parte izquierda de la tabla 3.1) y otra que nos lleva desde un núcleo normal a
uno superfluido (parte derecha de la misma) tomando como referencia el mo-
delo pairing plus quadropole [58]. Este modelo incluye de la forma más simple
posible los aspectos fundamentales de las teoŕıas de campo medio para siste-
mas nucleares de muchos cuerpos. El potencial promedio esférico promedio es
aproximado mediante un potencial de oscilador armónico esférico. La inter-
acción residual deberá contener dos partes. La primera contribuirá al campo
Γ y dará cuenta de las deformaciones más allá de la simetŕıa esférica. La otra,
contribuirá al campo de apareamiento ∆. Ambas partes de la interacción se
eligen de tal forma que el potencial residual resultante sea separable.

Aspecto S. Rotacional S. No Part́ıculas

Tipo de correlaciones
que incluyen

Cuadrupolares De apareamiento

Existe un mı́nimo en la
superficie de enerǵıa

Deformado Superfluido

Operadores Q̂µ =
∑

kk′〈k|r2Y2µ|k′〉c†kck′ ∆̂ = G
∑

k>0 ck̄ck
En la aprox. de campo

medio violan
[Ĥ, Ĵ ] = 0 [Ĥ, N̂ ] = 0

Aprox. de Cranking H − ωĴx H − λN̂
La solución |Φ〉

está caracterizada por la
orientación dada por los

ángulos

Euler: Ω = (α, β, γ) Gauge: ϕ

Las soluciones están
degeneradas con

respecto a rotaciones
R(Ω) = e−iαĴze−iβĴye−iγĴz G(ϕ) = eiϕN̂/2

Proyectores P J
MM ′ ∝

∫
DJ∗

MM ′(Ω)R̂(Ω)dΩ PN ∝
∫ 2π
0 eiϕ(N̂−N)dϕ

En el estado deformado,
se dan el espectro de

excitación

Vibraciones β, γ. Rotaciones
(J *= 0)

Vibraciones y rotacio-
nes de apareamiento.

Tabla 3.1: Comparación entre la simetŕıa rotacional y la simetŕıa del número de
part́ıculas.
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Una vez descritas las consideraciones generales sobre simetŕıas y su rup-
tura dentro de la aproximación de campo medio, pasamos ahora a explicar
los métodos de proyección que nos van a permitir restaurar dichas simetŕıas
rotas (sección 3.4).

3.4. Restauración de simetŕıas. Métodos de

Proyección

Hemos visto que las funciones de onda tipo HFB, si bien son capaces de
incluir correlaciones entre las part́ıculas, no eran autoestado de los operado-
res de simetŕıa. Sin embargo, por las propiedades de la interacción nuclear
el hamiltoniano de muchos cuerpos, es invariante bajo un número de opera-
dores de simetŕıa. Esto es, el hamiltoniano conmuta con el correspondiente
operador de simetŕıa S:

[Ĥ, Ŝ] = 0. (3.45)

De modo que las funciones de onda exactas śı que deben ser autoestados
simultáneamente del hamiltoniano y de los operadores asociados a las si-
metŕıas. Por lo tanto, como ya se mencionó en la sección anterior, para obte-
ner una descripción mejor del núcleo aśı como para obtener valores de dife-
rentes observables en el sistema de laboratorio es necesario el uso de métodos
más allá del campo medio para restaurar las simetŕıas rotas.

Para restaurar las simetŕıas vamos a utilizar los llamados métodos de
proyección, en los que las funciones de onda de campo medio se proyectan
sobre el subespacio de autofunciones de Ŝ mediante la aplicación del operador
P S:

P S|Φ〉 = |ΨS〉, (3.46)

donde P S es el proyector con el valor S bien definido y |ΨS〉 es la nueva
función de onda, que śı es autoestado de Ŝ.

Desde el punto de vista variacional, esto es, si el problema variacional es
resuelto antes o después de la proyección, vamos a distinguir entre dos tipos
de proyección:

Proyección después de la variación (projection after variation, PAV):
Se determinan las funciones de onda resolviendo las ecuaciones de HFB
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constreñidas 2. Para ello, se minimiza la expresión:

δEHFB(&q) = δ

(
〈Φ(&q)|Ĥ − λNN̂ − λZẐ − λ)q

&̂Q|Φ(&q)〉
〈Φ(&q)|Φ(&q)〉

)

|Φ()q)〉=|HFB()q)〉

= 0.

(3.47)

Una vez obtenida la solución a la ecuación anterior se realiza la pro-
yección y se obtienen las superficies de enerǵıa proyectadas:

ES
PAV (&q) =

〈ΦHFB(&q)|(P S)†ĤP S|ΦHFB(&q)〉
〈ΦHFB(&q)|(P S)†P S|ΦHFB(&q)〉

(3.48)

Variación después de la proyección (variation after projection, VAP):
Otra posibilidad, es llevar a cabo una proyección VAP [56, 71, 72]. En
este caso se van a proyectar primero las funciones de onda |ΦS(&q)〉.
Éstas son usadas como espacio variacional y se minimiza la enerǵıa
proyectada:

P S|Φ(&q)〉 = P S|VAP(&q)〉 = |ΦS(&q)〉 (3.49)

δES
VAP(&q) = δ

(
〈ΦS(&q)|Ĥ|ΦS(&q)〉
〈ΦS(&q)|ΦS(&q)〉 − λ)q

〈Φ(&q)|Q̂|Φ(&q)〉
〈Φ(&q)|Φ(&q)〉 )

)

|Φ()q)〉=|VAP()q)〉

= 0

(3.50)

Con las funciones de onda halladas, definimos superficies de enerǵıa
potencial VAP:

ES
VAP(&q) =

〈ΦVAP(&q)|(P S)†ĤP S|ΦVAP(&q)〉
〈ΦVAP(&q)|(P S)†P S|ΦVAP(&q)〉

(3.51)

Si el proyector utilizado es el del número de part́ıculas (3.52), estaremos en
un caso PN-VAP (particle number variation after projection), en el que las
funciones de onda intŕınsecas serán de este tipo en lugar de las vistas con
anterioridad y que eran de tipo HFB.
El método VAP ofrece una solución mejor dado que el funcional que se mi-
nimiza al incluir las simetŕıas se parece más a la enerǵıa exacta del sistema.
El precio a pagar es un mayor coste computacional, pues hay que evaluar la
enerǵıa proyectada a cada paso que damos hasta obtener la convergencia en

2Donde expresamos con !q el conjunto de ligaduras que se va a contemplar. Obtendremos
la enerǵıa como función paramétrica de las ligaduras
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lugar de proyectar una sola vez. Además, la enerǵıa proyectada es más sensi-
ble a la aparición de divergencias [53–56, 73] por ello se requiere la inclusión
de todos los términos de la interacción.
En este trabajo se han utilizado dos proyecciones; la proyección a buen núme-
ro de part́ıculas para restaurar la simetŕıa rota con el mismo nombre, y la
proyección a buen momento angular para restaurar la simetŕıa de invariancia
bajo rotaciones.

3.4.1. Proyección a buen número de part́ıculas

Tal y como se ha descrito en la sección anterior, es posible construir a
partir de funciones de onda de campo medio una función de onda que sea
autoestado del número de part́ıculas proyectando al subespacio de funciones
de onda con el número de part́ıculas correcto [58] (particle number projection,
PNP). En este caso el proyector viene dado por:

PN =
1

2π

∫ 2π

0

eiϕ(N̂−N)dϕ, (3.52)

donde ϕ es la variable canónica conjugada de N̂ en el espacio gauge asociado.
O bien, puede ser escrito en notación de Dirac:

PN =
∑

α

|αN〉〈αN |, (3.53)

donde |Nα〉 es un conjunto completo de funciones de onda ortogonales con
número de part́ıculas igual a N y caracterizadas cuánticamente por α. El
proyector PN cumple las siguientes propiedades:

(PN)† = PN (3.54)

(PN)2 = PN (3.55)

Si desarrollamos un estado de HFB (|Φ〉) en la base de autoestados de
N̂ y aplicamos el operador proyección que acabamos de describir podemos
construir un autoestado de N̂ :

|Φ〉 =
∑

αk

Aαk|αNk〉 (3.56)

Donde se cumple:
N̂ |αNk〉 = Nk|αNk〉 (3.57)
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Proyectamos ahora:

PN |Φ〉 = 1

2π

∫ 2π

0

eiϕ(N̂−N)|Φ〉dϕ =
∑

αk

Aαk

2π

∫ 2π

0

e−iϕNeiϕN̂ |αNk〉dϕ =

=
∑

αk

AαNk|αNk〉
1

2π

∫ 2π

0

eiϕ(Nk−N)dϕ, (3.58)

donde:
1

2π

∫ 2π

0

eiϕ(Nk−N)dϕ = δNkN . (3.59)

De modo que al final se obtiene:

PN |Φ〉 =
∑

α

AαN |αN〉 = |ΦN〉 (3.60)

y
N̂ |ΦN〉 =

∑

α

AαN N̂ |αN〉 = N |ΦN 〉. (3.61)

Es usual la representación del proyector a buen número de part́ıculas en
la forma discreta dada por Fomenko [74], en lugar de en la forma integral
dada por (3.52).

PN
L =

1

L

L∑

l=1

eiϕl(N̂−N); ϕl =
π

L
l (3.62)

Nos estamos refiriendo a un proyector general PN que actúa sobre N
part́ıculas. Sin embargo, aunque se haga como simplificación, hay que tener
en cuenta que las funciones de onda de un núcleo atómico tenemos dos ti-
pos de fermiones, protones y neutrones, por lo que nuestra función de onda
proyectada será de la forma:

|ΦNZ(&q)〉 = PNPZ |Φ(&q)〉 (3.63)

Estamos interesados en obtener el valor esperado del hamiltoniano con
funciones de onda proyectadas a buen número de part́ıculas [69]. En función
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del tipo de proyección que se haga, tendremos un caso HFB+PNP (si la pro-
yección es PAV) ó PN-VAP (si la proyección es VAP). La enerǵıa vendrá dada
por la expresión:

ENZ(&q) =
〈ΦNZ(&q)|Ĥ|ΦNZ(&q)〉
〈ΦNZ(&q)|ΦNZ(&q)〉 =

〈Φ(&q)|ĤPNPZ|Φ(&q)〉
〈Φ(&q)|PNPZ|Φ(&q)〉 (3.64)

Si desarrollamos los proyectores que aparecen en la ecuación anterior obte-
nemos para el numerador:

〈Φ(&q)|ĤPNPZ |Φ(&q)〉 = 1

L

L∑

LN=1

1

L

L∑

lZ=1

e−iϕlN
Ne−iϕlZ

Z

〈Φ(&q)|eiϕlN
N̂eiϕlZ

Ẑ |Ĥ|Φ(&q)〉
〈Φ(&q)|eiϕlN

N̂eiϕlZ
Ẑ |Φ(&q)〉

〈Φ(&q)|eiϕlN
N̂eiϕlZ

Ẑ |Φ(&q)〉 (3.65)

Lo mismo aplicado en el denominador, que se corresponde con la norma
queda:

〈Φ(&q)|PNPZ|Φ(&q)〉 = 1

L

L∑

LN=1

1

L

L∑

lZ=1

e−iϕlN
Ne−iϕlZ

Z〈Φ(&q)|eiϕlN
N̂eiϕlZ

Ẑ |Φ(&q)〉

(3.66)

Las funciones de onda de HFB que estamos utilizando, por la simetŕıa de
la tercera componente de isosṕın, se pueden escribir como un producto de
protones y neutrones:

|Φ(&q)〉 = |ΦN (&q)〉|ΦZ(&q)〉. (3.67)

Por lo que con esta factorización la norma queda:

〈Φ(&q)|PNPZ|Φ(&q)〉 = nZ(&q)nN(&q), (3.68)

siendo cada una de ellas, nτ (&q):

nτ (&q) =
1

L

L∑

lτ=1

e−iϕlτ Nτ 〈Φ(&q)|eiϕlτ N̂τ |Φ(&q)〉, (3.69)

donde
〈Φ(&q)|eiϕlτ N̂τ |Φ(&q)〉, (3.70)
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es calculada mediante la fórmula de Onishi [75]:

n(&q,ϕlτ ) =
(
e−iϕlτTr(1)det[T22(&q,ϕlτ )]

) 1
2 (3.71)

En esta expresión se ha introducido:

T22(&q,ϕlτ ) = eiϕlτ V T (&q)V ∗(&q) + e−iϕlτUT (&q)U∗(&q) (3.72)

Las matrices V (&q), U(&q) son las correspondientes a la transformación de HFB
definidas en la ecuación (3.6).

El numerador, lo desarrollamos de manera análoga a la explicada al prin-
cipio de este caṕıtulo, en la que obteńıamos la enerǵıa de HFB y defińıamos
los campos de Hartree-Fock y de apareamiento, obtenemos en este caso en
función del ángulo gauge:

HNτ (ϕ)q,lτ ) = Tr

(
tρ(&q,ϕlτ ) +

1

2
Γ10(&q,ϕlτ )ρ(&q,ϕlτ )−

1

2
∆10(&q,ϕlτ )κ

01(&q,ϕlτ )

)

(3.73)
La enerǵıa de apareamiento queda ahora definida como:

Epair(ϕ)q,lτ ) = Tr

(
−1

2
∆10(&q,ϕlτ )κ

01(&q,ϕlτ )

)
(3.74)

Se ha definido la matriz densidad el tensor de apareamiento y los campos de
Hartree-Fock y apareamiento en función de dicho ángulo3 como:

ρll′(&q,ϕlτ ) = (eiϕlτ V ∗(&q)T−1
22 (&q,ϕlτ )V

T (&q))ll′ (3.75)

κ10(&q,ϕlτ ) = (eiϕlτ V ∗(&q)T−1
22 (&q,ϕlτ )U

T (&q))ll′ (3.76)

κ01(&q,ϕlτ ) = −
(
e−iϕlτU∗(&q)T−1

22 (&q,ϕlτ )V
T (&q)

)
ll′

(3.77)

Γ10
ll′ (&q,ϕlτ ) =

∑

kk′

vlkl′k′ρ
10,τ
k′k (&q,ϕlτ ) (3.78)

∆10(&q,ϕlτ ) =
1

2

∑

kk′

vlkl′k′κ
10,τ
k′k (&q,ϕlτ ) (3.79)

3En el apéndice D se puede ver un desarrollo análogo a este con más detalle
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3.4.2. Proyección a buen momento angular

En esta sección nos vamos a encargar de la invariancia bajo rotaciones
que ha sido rota por el método de HFB, implementando una proyección a
momento angular (angular momentum projection, AMP). El proyector nos
va a dar, en este caso, funciones de onda que van a ser autoestados de los
operadores de momento angular Ĵ2 y Ĵz. Viene definido como [58, 76]:

P JM =
∑

M ′

aJM ′P J
MM ′ (3.80)

P J
MM ′ =

2J + 1

8π2

∫
DJ∗

MM ′(Ω)R̂(Ω)dΩ, (3.81)

siendo: Ω = (α, β, γ) los ángulos de Euler; DJ
MM ′(Ω) las matrices de Wigner

y R̂ el operador unitario de rotación.
En la notación de Dirac el operador se expresa:

P J
MK = |JM〉〈JK|. (3.82)

Este operador tiene las siguientes propiedades:

(P J
MK)

† = P J
KM , (3.83)

P J1
M1K1P

J2
M2K2 = δJ1J2δK1M2P

J1
M1K2. (3.84)

Además, se cumple que [77]:

R̂(Ω) = e−iαĴze−iβĴye−iγĴz (3.85)

R̂(Ω)|JM〉 =
∑

M ′

DJ∗

MM ′(Ω)|JM ′〉 (3.86)

DJ
MM ′(Ω) = 〈JM ′|R̂(Ω)|JM〉 = e−iM ′αdJMM ′(β)e−iMγ, (3.87)

siendo dJMM ′′(β) las matrices reducidas de Wigner

En este trabajo, nos restringiremos al caso axial. Una función axialmente
simétrica con autovalor K = 0 cumple que:

Ĵz|Φ〉 = K|Φ〉 = 0 → e−iγĴz |Φ〉 = |Φ〉 (3.88)

Además se considerarán las simetŕıas autoconsistentes de paridad y simplex:
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Π̂|Φ〉 = |Φ〉 (3.89)

Π̂e−iπĴx |Φ〉 = |Φ〉 (3.90)

Al igual que en el caso del operador a buen número de part́ıculas, com-
probamos que la función de onda proyectada es autoestado de los operadores

de momento angular
{
Ĵ2, Ĵz

}
. Si desarrollamos la función de onda (|Φ〉) en

la base de autoestados del momento angular total y de la tercera componente
del mismo:

|Φ〉 =
∑

αJ ′M ′

AαJ ′M ′ |αJ ′M ′〉 (3.91)

Aplicamos el proyector:

P JM |Φ〉 =
∑

KαJ ′M ′

aJK AαJ ′M ′

2J + 1

8π2

∫
DJ∗

MK(Ω)R̂(Ω)|αJ ′M ′〉dΩ

=
∑

KαJ ′M ′M ′′

aJK AαJ ′M ′

2J + 1

8π2

∫
DJ∗

MK(Ω)DJ ′

M ′′ M ′(Ω)|αJ ′M ′′〉dΩ

(3.92)

En la expresión anterior, hemos sustituido R̂(Ω) por su expresión (3.86) y
empleamos ahora que las matrices de Wigner cumplen la siguiente propiedad:

∫
DJ1∗

M1M ′
1
(Ω)DJ2

M2M ′
2
(Ω)dΩ =

8π2

2J + 1
δJ1J2δM1M2δM ′

1M
′
2
. (3.93)

Con lo que obtenemos:

P JM |Φ〉 =
∑

KαJ ′M ′M ′′

aJK AαJ ′M ′

2J + 1

8π2

8π2

2J + 1
δJJ ′δMM ′δKM ′′|αJ ′M ′′〉

Finalmente obtenemos lo que queŕıamos demostrar:

P JM |Φ〉 =
∑

Kα

aJK AαJK |αJM〉 = |αJM〉|ΦJM〉 (3.94)

El estado |Φ〉 va a ser el estado en el sistema de referencia intŕınseco dado por
el campo medio, mientras que |ΦJM〉 va a ser el estado correspondiente en
el sistema de laboratorio. Éste se obtiene a partir del primero construyendo
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2J + 1 estados con buen momento angular total mediante la suma de to-
das las posibles rotaciones del estado intŕınseco pesadas por las funciones de
Wigner y para obtener el estado final, se toma la combinación lineal de todas
las proyecciones sobre el eje Z del sistema intŕınseco con sus correspondientes
pesos, (3.81 y 3.95).

Si escribimos las funciones de onda como:

|ΦJM〉 =
∑

K

gJKP
J
MK |Φ〉, (3.95)

la expresión para el valor esperado de un operador escalar bajo rotaciones
entre estados proyectados será:

〈ÔJ〉 = 〈ΦJM(&q)|Ô|ΦJM(&q)〉
〈ΦJM(&q)|ΦJM(&q)〉 =

∑
KK ′ gJ∗K gJK ′〈Φ(&q)|ÔP J

KK ′|Φ(&q)〉∑
KK ′ gJ∗K gJK ′〈Φ(&q)|P J

KK ′|Φ(&q)〉 (3.96)

=

∑
KK ′ gJ∗K gJK ′OJ

KK ′∑
KK ′ gJ∗K gJK ′ηJKK ′

, (3.97)

donde se define OJ
KK ′ y ηJKK ′ como:

OJ
KK ′ = 〈Φ(&q)|ÔP J

KK ′|Φ(&q)〉 = 2J + 1

8π2

∫
DJ∗

KK ′(Ω)〈Φ(&q)|ÔR̂(Ω)|Φ(&q)〉dΩ

(3.98)

ηJKK ′ = 〈Φ(&q)|P J
KK ′|Φ(&q)〉 = 2J + 1

8π2

∫
DJ∗

KK ′(Ω)〈Φ(&q)|R̂(Ω)|Φ(&q)〉dΩ.

(3.99)

Tendremos que calcular los solapes del operador 〈Φ(&q)|ÔR̂(Ω)|Φ(&q)〉 y de la
norma 〈Φ(&q)|R̂(Ω)|Φ(&q)〉.

Si asumimos que tenemos funciones axialmente simétricas con K = 0,
veamos lo que se obtiene para el solape del operador de la expresión (3.96)
(nótese que el desarrollo del solape de la norma será análogo):

〈ΦJM(&q)|ÔΦJM(&q)〉 = 2J + 1

8π2

∫
DJ∗

KK ′〈Φ(&q)|Ôe−iĴzαe−iĴyβe−iĴzγ |Φ(&q)〉dΩ

(3.100)
Considerando las identidades:

e−iβĴy = ei
π
2 Ĵze−iβĴxe−iπ2 Ĵz , (3.101)

y ∫
dΩ =

∫ 2π

0

dα

∫ π

0

senβdβ

∫ 2π

0

dγ, (3.102)
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la integral de la expresión anterior nos queda:

〈ΦJM(&q)|Ô|ΦJM(&q)〉 = 2J + 1

2

∫ π

0

senβdJ∗00 (β)o(&q, β)dβ. (3.103)

Donde, para simplificar, se ha llamado:

〈Φ(&q)|Ôe−iĴyβ|Φ(&q)〉 = o(&q, β) (3.104)

Por las simetŕıas impuestas (3.88, 3.89, 3.90) es posible reducir el intervalo
de integración de β a la mitad, esto es, [0, π

2 ].
Además se ha utilizado las propiedad:

dJ00(π − β) = (−1)JdJ00(β), (3.105)

Considerando todas estas propiedades, se puede demostrar que las integrales
sólo van a ser distintas de cero en el caso en el que el momento angular sea
par [78].
Finalmente, el valor esperado de un operador Ô vendrá dado por la expresión.

〈ΦJM(&q)|Ô|ΦJM(&q)〉 = (2J +1)

∫ π/2

0

1

2
(1+ (−1)JΠ̂) dJ∗00 (β) senβ o(&q, β)dβ =

= (2J + 1)

∫ π/2

0

dJ∗00 (β) senβ o(&q, β)dβ. (3.106)

En esta expresión observamos que la enerǵıa sólo va a estar bien definida en
el caso en el que el momento angular sea par.

Al igual que se ha hecho en el análisis de la proyección al número de
part́ıculas se puede particularizar dicho operador como el hamiltoniano y
desarrollar el cálculo de los solapes como se explicó en dicho apartado. Este
cálculo se puede ver en el apéndice D, donde se hace parte de este desarrollo.

3.4.3. Divergencias y término dependiente de la den-

sidad

La expresión de la enerǵıa proyectada puede contener divergencias [56]
que aparecen en la matriz densidad y en el tensor de apareamiento. Su pro-
cedencia viene de dos fuentes:
Por un lado es necesario considerar todas y cada una de las contribuciones de
la interacción a los campos de HF (Γ) y apareamiento (∆). Esto es importan-
te ya que normalmente se suelen despreciar algunos términos de intercambio
(Fock). Además, es necesario tener la misma interacción en los canales de HF
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3.4 Restauración de simetŕıas. Métodos de Proyección 49

y apareamiento para que se produzca la cancelación de estas divergencias.
La segunda fuente tiene su origen en el termino dependiente de la densidad
de la interacción, estudiada ampliamente [54, 56, 79, 80].
La fuerza de Gogny (2.1) incluye un término dependiente de la densidad, que
tiene la forma:

VDD = t3
(
1 + x0P̂ σ

)
δ(&r1 − &r2)ρ

α

(
&r1 + &r2

2

)
, (3.107)

con α = 1/3 y x0 = 1. En teoŕıas de campo medio, está claro qué densidad
debemos emplear en el término (3.107). Sin embargo, en teoŕıas proyectadas
y, en general, en teoŕıas más allá del campo medio, tendremos que tomar una
prescripción de dicha densidad.
La contribución del término dependiente de la densidad a la enerǵıa proyec-
tada vendrá dado por:

EP
DD =

〈ΦN |V̂DD [ρ(&r)] |ΦN 〉
〈ΦN |ΦN〉 =

∫
dϕ〈φ|V̂DD [ρ(&r)] eiϕN̂ |φ〉
∫

dϕ〈φ|eiϕN̂|φ〉
, (3.108)

donde [ρ(&r)] indica la dependencia de VDD con la densidad ρ(&r). La densidad
depende de los estados con los que se calcula, de modo que a nivel de campo
medio solo aparecen elementos diagonales, por lo que la densidad espacial
va a estar determinada de forma uńıvoca, mientras que para los otros casos
tendremos que encontrar una prescripción que cumpla ciertas condiciones.
Las más importantes son la que la enerǵıa sea una magnitud escalar y real.

Se tienen dos prescripciones diferentes [81, 82] para la densidad; proyec-
tada o mixta.
a) Prescripción 1: Densidad proyectada.
Es la que se utiliza en el caso de proyección al número de part́ıculas donde
se proyecta en el espacio gauge asociado al número de part́ıculas y no hay
ninguna dependencia en las coordenadas espaciales. Esta elección está jus-
tificada si partimos del hecho de que en la aproximación a campo medio la
enerǵıa viene dada por:

E =
〈Φ(&q)|Ĥ|Φ(&q)〉
〈Φ(&q)|Φ(&q)〉

, (3.109)

y se asume que VDD depende de la densidad: 〈Φ(&q)|ρ̂|Φ(&q)〉/〈Φ(&q)|Φ(&q)〉 Sin
embargo, si la función de onda que describe el sistema nuclear es la función
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de onda proyectada |ΦZ,N〉, el elemento de matriz que tenemos que calcular
en la expresión (3.108) es de la forma:

〈ΦZ,N(&q)|V̂DD|ΦZ,N(&q)〉
〈ΦZ,N(&q)|ΦZ,N(&q)〉

. (3.110)

Por tanto, parece razonable utilizar en VDD la densidad proyectada. Se define
como:

ρ(&r) = ρZ,N(&r) =
〈ΦZ,N(&q)|ρ̂|ΦZ,N(&q)〉
〈ΦZ,N(&q)|ΦZ,N(&q)〉 =

〈Φ(&q)|ρ̂PNPZ|Φ(&q)〉
〈Φ(&q)|Φ(&q)〉 . (3.111)

Con el operador densidad definido como:

ρ̂(&r) =
A∑

i=1

δ(&r − &ri) (3.112)

b) Prescripción 2: Densidad mixta.
En el caso de restaurar simetŕıas de tipo espacial, simetŕıas asociadas a &r
como la proyección al momento angular a la paridad, esta es la prescripción
que debe ser considerada. En este caso, se parte del hecho de que para evaluar
la expresión (3.108) hay que calcular elementos de matriz entre funciones de
onda producto diferentes, |Φ〉 y |Φ′〉, relacionadas por:

|Φ′〉 = eiϕN̂ |Φ〉 (3.113)

De modo que para calcular elementos de matriz de la forma:

〈Φ|V̂DD|Φ′〉
〈Φ|Φ′〉 , (3.114)

elegimos la densidad (ρϕ(&r)) la densidad mixta como:

ρ(&r) = ρϕ(&r) =
〈Φ(&q)|ρ̂|Φ′(&q)〉
〈Φ(&q)|Φ′(&q)〉 , (3.115)

para ser usada en V̂DD. Esta aproximación es conocida como prescripción de
la densidad mixta.

Con respecto al momento angular cabe decir que como ya se vio en la
sección anterior el hamiltoniano es invariante bajo rotaciones y, por tanto, la
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enerǵıa intŕınseca es independiente de la orientación de la función de onda
intŕınseca, esto es:

〈Φ(&q)|Ĥ|Φ(&q)〉 = 〈Φ(&q)|R̂†(Ω)ĤR̂(Ω)|Φ(&q)〉 (3.116)

Sin embargo, para la interacción que estamos usando, el término dependiente
de la densidad, en general, no va a conmutar con el operador de rotaciones.
Se puede demostrar [78], que con la prescripción de la densidad espacial
apropiada, el término dependiente de la densidad se va a poder expresar
como:

HJ(&q) = 〈Φ(&q)|(P JM)†V̂DDP
JM |Φ(&q)〉 =

=
∑

KK ′

gJ∗K gJK
2J + 1

8π2

∫
DJ∗

KK ′〈Φ(&q)|V̂DDR̂(Ω)|Φ(&q)〉dΩ (3.117)

El término dependiente de la densidad debe cumplir como requisito, además
de que la enerǵıa sea real, que no transporte momento angular [83], es decir:

〈ΦJ1,M1,Z,N(&q)|Ĥ(ρ)|ΦJ2,M2,Z,N(&q)〉
〈ΦJ1,M1,Z,N(&q)|ΦJ2,M2,Z,N(&q)〉

= δJ1J2δM1M2

〈ΦJ1,M1,Z,N(&q)|Ĥ(ρ)|ΦJ1,M1,Z,N(&q)〉
〈ΦJ1,M1,Z,N(&q)|ΦJ1,M1,Z,N(&q)〉

(3.118)

La prescripción mixta para el momento angular tiene la forma:

ρZ,N)q (&r,Ω,Ω′) =
〈ΦZ,N(&q)|R̂†(Ω)ρ̂R̂(Ω′)|ΦZ,N(&q)〉
〈ΦZ,N(&q)|R̂†(Ω)R̂(Ω′)|ΦZ,N(&q)〉

(3.119)

Para concluir; para evitar las divergencias en nuestros cálculos se ha te-
nido en cuenta:

Todos los términos de intercambio de la fuerza de Gogny han sido
incluidos.

Para el término dependiente de la densidad se toma la densidad pro-
yectada en el caso de la proyección al número de part́ıculas, ya que esta
prescripción no presenta divergencias [56] mientras que la prescripción
mixta si puede presentar problemas.

La prescripción de la densidad mixta es la que se ha utilizado para el
caso de la proyección al momento angular [78] y en el método de la
coordenda generadora [84].
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3.4.4. Proyección simultánea a N y J

Tratamos ahora el caso en el que se restauren de forma simultánea las
dos simetŕıas estudiadas anteriormente (particle number angular momentum
projection, PNAMP). De modo que las expresiones anteriores de las subsec-
ciones 3.4.1 y 3.4.2 deben ser generalizadas. Para facilitar su lectura, varios
de los desarrollos teóricos han sido recogidos en forma de apéndice D.

En este caso, si se restauran la simetŕıa del número de part́ıculas y la
simetŕıa de invariancia rotacional, las funciones de onda tendrán ahora la
forma:

P JMPNPZ|Φ(&q)〉 = |ΦNZJM(&q)〉 (3.120)

La enerǵıa proyectada está definida por la expresión:

ENZJ(&q) =
〈ΦNZJM(&q)|Ĥ|ΦNZJM(&q)〉
〈ΦNZJM(&q)|ΦNZJM(&q)〉 (3.121)

Desarrollamos el numerador (hamiltoniano) y el denominador (norma) de la
expresión para la enerǵıa proyectada:
Para la norma se obtiene:

NNZJ(&q) = 〈ΦNZJM(&q)|ΦNZJM(&q)〉 = 〈ΦNZ(&q)|(P JM)†P JM |ΦNZ(&q)〉

=
∑

KK ′

gJ∗K gJK
2J + 1

8π2

∫
DJ∗

KK ′(Ω)〈ΦNZ(&q)|R̂(Ω)|ΦNZ(&q)〉dΩ, (3.122)

donde:
〈ΦNZ(&q)|R̂(Ω)|ΦNZ(&q)〉 = nN(&q,Ω)nZ(&q,Ω). (3.123)

Como ya se vió en la expresión (3.69):

nτ (&q,Ω) =
1

L

L∑

ϕlτ=1

e−iϕlτNτ 〈Φ(&q)|R̂(Ω)eiϕlτ N̂τ |Φ(&q)〉 (3.124)

La expresión general de hamiltoniano es:

HNZJ(&q) = 〈ΦNZJM(&q)|Ĥ|ΦNZJM(&q)〉 = 〈ΦNZ(&q)|(P JM)†ĤP JM |ΦNZ(&q)〉

=
∑

KK ′

gJ∗K gJK
2J + 1

8π2

∫
DJ∗

KK ′(Ω)〈Φ(&q)|ĤR̂(Ω)PNPZ|Φ(&q)〉dΩ (3.125)
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Sin embargo, como se ha visto más arriba, estas expresiones se reducen
considerablemente cuando se imponen las simetŕıas que estamos considerando
(3.88, 3.89, 3.90). Tendremos que evaluar el solape proyectado que aparece
en las integrales:

〈Φ(&q)|ĤR̂(Ω)PNPZ|Φ(&q)〉 = 〈Φ(&q)|Ĥe−iβĴxPNPZΦ(&q)〉 (3.126)

Si seguimos lo que se hizo de manera particular para cada operador en (3.65)
y (3.103), finalmente llegamos a la expresión de la enerǵıa proyectada para
funciones axialmente simétricas:

ENZJ(&q) =

∫ π/2

0 senβdJ∗00 (β)e
NZ(&q, β)nNZ(&q, β)dβ

∫ π/2

0 senβdJ∗00 (β)n
NZ(&q, β)dβ

(3.127)

Teniendo en cuenta que las funciones de onda son simétricas bajo simplex,
las expresiones de la norma nNZ(&q, β) y de la enerǵıa eNZ(&q, β), se pueden
escribir en función de Jx en lugar de Jy y quedan definidas como:

nNZ(&q, β) =
1

L2

∑

lN

∑

lZ

e−iϕlN
Ne−iϕlZ

Z〈Φ(&q)|e−iβĴxeiϕlN
N̂eiϕlZ

Ẑ |Φ(&q)〉

(3.128)

eNZ(&q, β) =
1

L2

∑

lN

∑

lZ

e−iϕlN
Ne−iϕlZ

Z〈Φ(&q)|Ĥe−iβĴxeiϕlN
N̂eiϕlZ

Ẑ|Φ(&q)〉

(3.129)

3.5. Método de la coordenada generadora

El estudio de la restauración de las simetŕıas, mostrado en la sección ante-
rior, se completará con la implementación de la mezcla de configuraciones. Es
posible ir un paso adelante en el marco de teoŕıas más allá del campo medio
y conseguir funciones de onda que incluyan más correlaciones. Para ello, se
usa el Método de la Coordenada Generadora (GCM), a la que está dedicada
esta sección.
Se conoce como aproximación SCCM (Symmetry Conserving Configuration
Mixing) a aquella que tiene en cuenta la conservación de simetŕıas junto con
la mezcla de configuraciones [78, 85–87].
El método de la coordenada generadora nos permite tratar con grados de
libertad colectivos de una forma sencilla. En esta aproximación la función de
onda colectiva GCM se expresa como una combinación lineal de los estados
de la base con diferentes valores de las coordenadas colectivas elegidas. Para
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la parte de la interacción de largo alcance se toman como variables colectivas
la expansión multipolar (cuadrupolar, hexadecupolar, octupolar, etc...) de
los operadores de la deformación. Para la parte de corto alcance de la in-
teracción se toma como coordenada colectiva el gap de apareamiento. Cada
grado de libertad que se considere, incrementa la dificultad del cálculo, sobre
todo desde el punto de vista computacional ya que se incrementa el tiempo
de cálculo. Para nuestros medios técnicos el número de horas de CPU supone
casi un factor 100 (97.3) entre un cálculo en el que se considera una variable
colectiva frente a uno en el que se consideren dos. Por lo que sólo los grados
de libertad más relevantes van a ser tenidos en cuenta. Lo más frecuente es
considerar de forma expĺıcita solo el grado de libertad asociado a la defor-
mación cuadrupolar, ya sea en cálculos axiales o triaxiales. Sin embargo, se
ha analizado extensamente que las correlaciones de apareamiento juegan un
papel importante en la descripción de observables nucleares [88]. De hecho,
como ya ha sido mencionado, a nivel de campo medio para tener una buena
descripción debemos trabajar en el marco de la aproximación HFB [89] en
el que se incluyen las correlaciones monopolares y cuadrupolares al mismo
nivel. Por tanto, parece razonable tomar fluctuaciones de los valores medios
de ambas variables dentro del marco de teoŕıas más allá del campo medio
(BMF).
El método GCM se basa en la mezcla de configuraciones. Consiste en cons-
truir una combinación lineal de muchas funciones de onda de tipo producto.
Las funciones de onda que van a ser mezcladas y que van a construir los esta-
dos GCM, son las que resultan de proyectar simultáneamente a buen número
de part́ıculas y buen momento angular los estados intŕınsecos que se obteńıan
con el método de HFB o PN-VAP y que depend́ıan de una o dos variables
colectivas. Tanto la elección de la base como de las coordenadas generadoras
van a ser importantes a la hora de implementar el método y obtener una
mejor solución del sistema.

Se propone como solución prueba del sistema la siguiente combinación de
estados:

|ΨNZJσ〉 =
∫

fNZJσ(&q)|ΦNZJ(&q)〉d&q, (3.130)

donde:

|ΨNZJσ〉 es la función de onda mezcla. El supeŕındice σ = 1, 2, 3, ...
etiqueta los distintos estados que se pueden tener para un mismo valor
de momento angular, siendo σ = 1 los estados yrast. Aśı, para un núcleo
par-par el estado fundamental vendrá determinado por J = 0, σ = 1.

|ΦNZJ(&q)〉 son las funciones de onda intŕınsecas HFB o VAP, proyec-
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3.5 Método de la coordenada generadora 55

tadas simultáneamente a buen número de part́ıculas y buen momento
angular, definidas con anterioridad en la ecuación (3.120).

fNZJ(&q) es el peso de las funciones generadoras. Son parámetros que
van a ser determinados de forma variacional resolviendo la ecuación
δE(|ΨNZJ(&q〉) = 0 .

&q Es el conjunto de coordenadas generadoras. En este estudio, se ha
considerado un generador unidimensional y otro bidimensional, como
será explicado en caṕıtulos posteriores.

Desarrollamos ahora el método para el caso de un generador que dependa
del conjunto de coordenadas {&q} .
La resolución de la ecuación variacional para la determinación de los pesos
(fNZJσ) nos conduce a una ecuación de autovalores generalizada ya que los
estados en los que se hace la combinación lineal de la ecuación (3.130) no son
ortonormales. Es conocida como la ecuación de Hill-Wheeler (HW) [58,90,91]:

∫ (
HNZJ(&q, &q′)− ENZJσNNZJ(&q, &q′)

)
fNZJσ(&q′)d&q′ = 0, (3.131)

donde se ha definido el solapamiento de la norma y del hamiltoniano respec-
tivamente:

NNZJ(&q, &q′) = 〈ΦNZJ(&q)|ΦNZJ(&q′)〉, (3.132)

HNZJ(&q, &q′) = 〈ΦNZJ(&q)|Ĥ|ΦNZJ(&q′)〉. (3.133)

Además, la enerǵıa se ha definido como:

ENZJσ =

∫
fNZJσ∗(&q)HNZJ(&q, &q′)fNZJσ(&q′)d&qd&q′

∫
fNZJσ∗(&q)NNZJ(&q, &q′)fNZJσ(&q′)d&qd&q′

. (3.134)

Si el conjunto de coordenadas generadoras es discretizado en un conjunto
finito de puntos, tenemos:

|ΨNZJσ〉 =
∑

)q

fNZJσ(&q)P JPNPZ|Φ(&q)〉, (3.135)

la integral de la ecuación HW (3.131) acaba siendo una suma:

∑

)q′

(
〈ΦNZJ(&q)|HNZJ |ΦNZJ(&q′)〉 − ENZJσ〈ΦNZJ(&q)|ΦNZJ(&q′)〉

)
fNZJσ(&q′) = 0.

(3.136)
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Para abordar la resolución de la ecuación de HW, es necesario transformarla
en un problema de autovalores normal siguiendo los siguientes pasos:
1-. Diagonalización del solapamiento de la norma:

∑

)q′

〈ΦNZJ(&q)|ΦNZJ(&q′)〉uNZJ
k (&q′) = nNZJ

k uNZJ
k (&q). (3.137)

2-. Construcción de una base natural, ortonormal:
Se construye a partir de los autovalores (nNZJ

k ) distintos de cero y sus corres-
pondientes autovectores, obtenidos al diagonalizar la matriz del solape de la
norma en el paso anterior, los estados naturales:

|kNZJ〉 =
∑

)q

uNZJ
k (&q)√
nNZJ
k

|ΦNZJ(&q)〉, (3.138)

con nNZJ
k ≥ ε. Estos estado naturales śı son ortogonales por construcción

y van a servir de base en la que va a ser desarrollada la función de onda
original (3.130). Debido a que las funciones de onda proyectadas |ΦNZJ(&q)〉
no son ortogonales, habrá autovalores nNZJ

k de la matriz de los solapes de
la norma que van a ser cero, por lo que no deben ser tenidos en cuenta en
la construcción de los estados naturales. De modo que es posible estudiar la
convergencia de las soluciones a medida que se incluyen estados naturales con
autovalor de la norma más pequeño en el desarrollo de la función de onda
(3.139).

3-. Expansión de la función de onda en la base natural:

|ΨNZJσ〉 =
∑

k

gNZJσ
k |kNZJ〉. (3.139)

El número de estados de la base natural que son tenidos en cuenta para la
expansión de la función de onda, es en cierta medida arbitrario ya que depen-
de de hasta qué valor del autovalor de la norma correspondiente queremos
usar. Si el autovalor es muy pequeño, entonces estaremos introduciendo mu-
chos estados en la base natural y dependencia lineal en nuestra base. Si en
cambio sólo tomamos unos pocos estados, no estaremos aprovechando todas
las posibles correlaciones que están incluidas en el conjunto de funciones ori-
ginal. Debemos alcanzar un compromiso entre ambas situaciones. Se estudia
la enerǵıa en función de los estados de la base natural que se tomen y cuando
se alcance un valor más o menos constante de la misma (plateau) ese seŕıa el
valor definitivo. También hay que imponer la condición de ortonormalización
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de los estados correspondientes a un mismo J . Si se escogen distintas bases
naturales para calcular estados con el mismo momento angular pero distinto
σ, entonces estos estados dejan de ser ortogonales (y eso no puede ser). Pa-
ra distinto J, son ortogonales por construcción con lo que śı se puede coger
distintas bases naturales.

4-. Resolución de la ecuación de HW en la base natural:

Siguiendo las anteriores consideraciones, es posible escribir la ecuación de
HW como una ecuación de autovalores habitual.

∑

k′

〈kNZJ |Ĥ|k′NZJ〉gNZJσ
k′ = ENZJσgNZJσ

k . (3.140)

Por tanto, resolviendo la ecuación (3.140) obtenemos las enerǵıas ENZJσ y
los coeficientes gNZJσ

k que determinan las funciones de onda GCM.

5-. Cálculo de la función de onda colectiva:

Resolviendo la ecuación anterior se obtienen las enerǵıas ENZJσ y los coefi-
cientes gNZJσ

k que determinan los pesos de las funciones de onda de GCM.
Con estos coeficientes es posible escribir la función de onda colectiva:

GNZJσ(&q) =
∑

)q′

[NNZJ(&q, &q′)]1/2 · fNZJσ(&q′) =
∑

k

gNZJσ
k uNZJ

k (&q). (3.141)

La función de onda colectiva al cuadrado está normalizada a 1 (
∑

q |G(q)|2 =
1) y da los pesos de cada coordenada intŕınseca en la función de onda GCM.

6-. Cálculo de los valores esperados:

Resuelta la ecuación de autovalores, es posible también determinar los valores
esperados de cualquier operador.

〈ΨNZJσ|Ô|ΨNZJ ′σ′〉 =
∑

kk′

gNZJσ∗
k 〈kNZJ |Ô|k′NZJ ′〉gNZJ ′σ′

k′ .

(3.142)

El elemento de matriz entre los estados de la base natural será:

〈kNZJ |Ô|k′NZJ ′〉 =
∫

(uNZJ
k (&q))∗〈ΦNZJ(&q)|Ô|ΦNZJ ′

(&q′)〉uNZJ ′

k′ (&q′)
d&qd&q′√

nNZJ
k nNZJ ′

k′

.

(3.143)

57



58 BMF

Si se quieren calcular valores esperados con funciones de onda GCM pro-
yectadas a buen número de part́ıculas y buen momento angular, es necesario
tener en cuenta que las expresiones de la sección 3.4.4 deben ser reescritas
(Consultar apéndice D), pues para una proyección PNAMP los valores bus-
cados son los elementos diagonales de la matriz a diagonalizar ahora. Esto
supone que los solapes, antes calculados entre estados 〈Φ(&q)|Φ(&q)〉, ahora son
entre estados 〈Φ(&q)|Φ(&q′)〉 .

Es importante en este punto hacer la siguiente aclaración: Cuando se
restaura sólo la simetŕıa rotacional, proyectando funciones de onda tipo HFB
sólo a buen momento angular y no se incluye la proyección a buen número de
part́ıculas [78,83,92,93], para que en promedio las funciones de onda tengan
el número de part́ıculas correcto se debe hacer la siguiente corrección a la
ecuación de HW y a la enerǵıa proyectada [84]:

∑

)q′

(
〈ΦJ(&q)|Ĥ ′J |ΦJ(&q′)〉 −EJσ〈ΦJ(&q)|ΦJ(&q′)〉

)
fJσ(&q′) = 0, (3.144)

con

〈ΦJ(&q)|Ĥ ′J |ΦJ(&q′)〉 = 〈ΦJ(&q)|ĤJ |ΦJ(&q′)〉

−λN

(
〈ΦJ(&q)|N̂ |ΦJ(&q′)〉 −N

)
− λZ

(
〈ΦJ(&q)|Ẑ|ΦJ(&q′)〉 − Z

)
,

(3.145)

donde λN λZ son los multiplicadores de Lagrange promediados que han sido
obtenidos al resolver las ecuaciones de HFB y N y Z los valores correctos
del número de neutrones y protones respectivamente. No obstante, el valor
esperado del número de neutrones (protones) en la función de onda GCM no
es en general N0 (Z0). Esto se discutirá en detalle más adelante (5.2).
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Caṕıtulo 4

Estudio de las fluctuaciones de

apareamiento en el 52Ti

4.1. Introducción

En este caṕıtulo se presenta el método con el que se van obtener los resul-
tados que serán presentados más adelante, tomando como ejemplo, el núcleo
52Ti. Se introduce la nueva coordenada y se tratan los detalles más técnicos
de los cálculos relacionados con este hecho. Además, para ilustrar como es
un cálculo completo, se muestran las superficies de enerǵıa potencial y se
discuten los espectros de excitación para este ejemplo.

Para los cálculos numéricos ha sido utilizada la fuerza de Gogny depen-
diente de la densidad y de rango finito con la parametrización D1S (caṕıtulo
2).
Los cálculos tomando dos grados de libertad implican gran tiempo de cálcu-
lo computacional por lo que han sido restringidos a 8 capas mayores de
oscilador armónico [94] y, como ya se ha mencionado, a formas axialmente
simétricas. Las simetŕıas autoconsistentes de inversión temporal, paridad y
simplex (e−iπĴx) también han sido impuestas.
Se estudian tres aproximaciones diferentes que han sido explicadas en el
caṕıtulo 3 y se pueden ver, a modo de śıntesis, en la tabla 4.1.
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Nombre de la f.o intŕınseca |φ〉 calculada P̂
aproximación: minimizando:

HFB+AMP 〈Φ|Ĥ|Φ〉/〈Φ|Φ〉 P̂ J

HFB+PNAMP 〈Φ|Ĥ|Φ〉/〈Φ|Φ〉 P̂ J P̂N

PN-VAP+PNAMP 〈Φ|ĤP̂N |Φ〉/〈Φ|P̂N |Φ〉 P̂ J P̂N

Tabla 4.1: Aproximaciones utilizadas para calcular las funciones de onda P̂ |Φ〉
de la ecuación (3.130). En el nombre de la aproximación las primeras letras antes
del signo de suma indican el método (HFB o PN-VAP) con el que se han calcu-
lado las funciones de onda intŕınsecas. Las letras posteriores, indican las simetŕıas
que se han restaurado (AMP o PNAMP). Las expresiones particulares para cada
aproximación correspondientes al cálculo de la enerǵıa se pueden encontrar en el
apéndice (C).

4.2. Superficies de enerǵıa potencial como fun-

ción de la deformación

Es sabido que la coordenada más relevante que debe tomarse es la defor-
mación cuadrupolar axial [17], ésta viene dada por el operador [58]:

Q̂20 =
∑

kk′

〈k|r2Y20|k′〉c†kck′, (4.1)

siendo Y20 la componente del armónico esférico de orden 2. Definimos:

q = 〈φ|Q̂20|φ〉. (4.2)

Una vez que hemos definido q, se aplica el formalismo detallado en el
caṕıtulo 3; se van a generar funciones de onda intŕınsecas, |φ〉, tipo HFB
para valores diferentes fijados de la deformación resolviendo la ecuación va-
riacional:

δE ′[φ(q, )] = 0, (4.3)

con

E ′ =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 − λq〈φ|Q̂20|φ〉, (4.4)

donde λq es el correspondiente multiplicador de Lagrange para el operador
definido en la ecuación (4.2) y Φ es la función de onda proyectada. Para ilus-
trar los diferentes aspectos de un cálculo HFB y uno PN-VAP con diferentes
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proyecciones, dentro de las tres aproximaciones dadas en la tabla anterior, se
estudian las superficies de enerǵıa potencial (potential energy surfaces, PES)
a lo largo de la dirección q, figura (4.1). La expresión más general para las
superficies de enerǵıa potencial representadas en esta figura, será:

E1D =
〈ΦNZJ(q)|Ĥ|ΦNZJ(q)〉
〈ΦNZJ(q)|ΦNZJ(q)〉

(4.5)

Para la variable q se ha definido un intervalo que se extiende desde los -220
fm2 hasta los 400 fm2, con un intervalo de 20 fm2. De manera que tenemos
32 valores para la deformación.

-120 0 120 240 360
q (fm2)

-456

-452

-448

-444

-440

E 
(M

eV
)

PN-VAP+PNAMP
HFB+PNAMP
HFB+AMP

52Ti

Figura 4.1: Superficies de enerǵıa potencial en función de q para el 52Ti en
diferentes aproximaciones (ver leyenda) y para momento angular J = 0.

La curva que se encuentra a mayor enerǵıa se corresponde con el caso
HFB+AMP. La proyección a ambos operadores (HFB+PNAMP) hace que
se gane más enerǵıa. Observamos que, en este segundo caso, el mı́nimo oblate
se ve acentuado y desplazado al valor -80 fm2 y que en la parte prolate
aparece una estructura de dos mı́nimos (entre 80 y 120 fm2). Esto es debido
a que en un núcleo las correlaciones de apareamiento dependen fuertemente
de la cantidad de niveles de part́ıcula independiente (Nilsson) alrededor del
nivel de Fermi. Si la densidad de niveles es baja, el apareamiento será débil
presentando mı́nimos en las deformaciones en las que se produzcan cruces
de niveles. Es sabido que la aproximación de HFB es buena en el régimen
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de fuertes correlaciones de apareamiento y mala en el caso de débiles. Es
por ello que se hace necesario salvar este inconveniente implementando otra
aproximación que arroje mejores resultados, llamada PN-VAP+PNAMP.
Dicha aproximación es la que presenta la superficie menos plana de las tres
(mı́nimos y máximos más acentuados) y con una barrera (distancia entre el
máximo relativo y el mı́nimo) mayor, además es la más profunda de las tres.
Desaparece la estructura de dos mı́nimos en la parte prolate, aparece sólo un
mı́nimo relativo mayor que el que se aprecia en la parte oblate y se encuentra
un hombro prolate superdeformado.

4.3. Una nueva coordenada: δ

El apareamiento es una parte esencial de la interacción nuclear. La parte
de corto alcance de la interacción favorece energéticamente la formación de
pares de nucleones acoplados a momento angular cero. El modelo de HFB
permite tratar al mismo nivel las correlaciones nucleares de largo alcance (co-
rrelaciones part́ıcula-hueco) y las correlaciones que vienen de la parte de corto
alcance de la fuerza nuclear (correlaciones part́ıcula-part́ıcula). Las primeras
están relacionadas con la deformación nuclear y, por tanto, se pueden estu-
diar mediante fluctuaciones en la variable q. Las segundas están relacionadas
con el apareamiento y permiten explicar evidencias experimentales como son
entre otras [58]: que los estados fundamentales de los núcleos par-par tienen
un momento angular total igual a cero; sólo hay cuatro núcleos impar-impar
estables o el conocido efecto par-impar en la enerǵıa de ligadura. Como no-
vedad que se presenta en este trabajo, vamos a incluir otro grado de libertad
extra para estudiar las fluctuaciones de apareamiento.

En el espacio gauge asociado al apareamiento, la función de onda HFB
tiene dos grados de libertad colectivos. Por un lado el gap de apareamiento,
∆, que nos da una medida de la cantidad de las correlaciones de aparea-
miento, esto es, la deformación en el espacio gauge asociado [95]. Por otro,
el ángulo ϕ (3.52), el cual indica la orientación del estado en este espacio.
Una minimización tipo HFB nos permite determinar la función de onda y
por tanto ∆, mientras que el ángulo ϕ no va a jugar ningún papel a nivel de
campo medio como se ha visto en el caṕıtulo anterior. Si se toman combina-
ciones lineales apropiadas de las funciones de onda con diferente orientación
en el espacio gauge se obtienen funciones de onda con el número de part́ıculas
conservado [71]. Sin embargo, las fluctuaciones de apareamiento en torno al
valor de ∆0 que se encuentra para el valor mı́nimo de la enerǵıa asociado a
funciones de onda con diferentes gaps de apareamiento no han sido estudia-
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das con tanto detalle. De hecho, solo han sido consideradas en el marco del
hamiltoniano colectivo [96–99]; cálculos con modelos microscópicos [100,101],
o con espacios de configuración reducidos [102] o bien sin considerar proyec-
ciones [103].

Conviene aclarar que, en el marco teórico en el que se desarrollan los
cálculos, sólo se contempla el canal (T = 1, Tz = ±1) de apareamiento, no
hay apareamiento en T = 0 ni en (T = 1, Tz = 0), por lo que sólo se tie-
ne apareamiento protón-protón y neutrón-neutrón mientras que se desprecia
el apareamiento protón-neutrón. Para los casos en los que N - Z, los res-
pectivos niveles de Fermi son muy parecidos, y podŕıa resultar interesante
incluirlo.
Si se considerara el apareamiento protón-neutrón, se violaŕıa la simetŕıa de
la tercera componente de isosṕın y seŕıa necesario restaurarla con una pro-
yección. Además, se rompeŕıa la estructura de bloques del tensor de aparea-
miento por lo que la complejidad de los cálculos aumentaŕıa, motivo por el
cual esta cuestión está fuera del ámbito de este trabajo.

Para ver la relación entre el gap de apareamiento con las fluctuaciones en
el número de part́ıculas tomamos como punto de partida una de las aproxi-
maciones más sencillas en la que esté presente el apareamiento, esto es, una
función tipo BCS:

|BCS〉 =
∏

k

(uk + vkc
†
k+c

†
k−|−〉 (4.6)

La minimización de la enerǵıa BCS va a dar como solución los coeficientes
vk, uk y el gap de apareamiento ∆ = G

∑
k ukvk. Esta cantidad va a dar una

medida de la deformación [95] en el espacio gauge asociado a N̂ . Como el
hamiltoniano conmuta con N̂ la variable ϕ va a medir la orientación de ∆
en el espacio y puede tomar cualquier valor. Esta degeneración en la enerǵıa
puede ser utilizada en la expresión (3.52) para construir los autoestados del
número de part́ıculas PN |BCS〉. La función de onda incluye todas las fluctua-
ciones asociadas a ϕ, sin embargo, se corresponde con un valor del gap fijo.
Una manera de considerar fluctuaciones a lo largo de ∆ es generar soluciones
tipo BCS con diferentes gaps. Al resolver el conjunto de ecuaciones BCS,
encontraremos la solución autoconsistente para la ecuación del gap [58], que
será |BCS(∆0)〉 siendo ∆0 el valor más probable para el gap.
Es necesario mencionar que con la interacción que se está utilizando, no es
posible constreñir en ∆ debido a que en dicha interacción, los ∆s dependen
del orbital, esto es, ∆l. De modo que es necesario encontrar un operador que
nos de una medida de las correlaciones de apareamiento y permita fluctuacio-
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nes en su valor. Para este propósito se ha utilizado la desviación cuadrática
media del número de part́ıculas, ∆N2. Esta cantidad es cero en ausencia de
las correlaciones de apareamiento y tiene valores grandes para sistemas fuer-
temente correlacionados.
En una interacción de apareamiento esquemática monopolar, las fluctuacio-
nes en el número de part́ıculas están determinadas por:

〈(∆N̂)2〉 = 4
∑

k>0

u2
kv

2
k = ∆2

∑

k>0

1

E2
k

, (4.7)

donde Ek es la enerǵıa de quasipart́ıcula. Si la función de onda es autoes-
tado del número de part́ıculas el valor ∆N2 = 0. Esto se corresponde con
una solución pura de HF que no contiene correlaciones de apareamiento. Si
trabajamos dentro de la aproximación de HFB, la transformación dada en la
expresión (3.3) no conserva el número de part́ıculas pues mezcla operadores
de creación y destrucción. Si la densidad de niveles alrededor del nivel de
Fermi es grande, lo que provoca una intensidad de la interacción de aparea-
miento efectiva más o menos grande, la solución de HFB rompe la simetŕıa
del número de part́ıculas y las superficies de enerǵıa van a presentar un mı́ni-
mo para un valor de ∆N2 *= 0. En caso contrario, la solución de HFB colapsa
a la solución de HF con ∆N2 = 0.
Como queda reflejado en la ecuación (4.7), se da una relación de proporcio-
nalidad que existe entre el operador y el gap apareamiento:

∆ ∝ 〈(∆N̂)2〉1/2. (4.8)

De manera que (∆N̂)2 nos da una medida del contenido de apareamiento
presente en la función de onda. Por tanto, parece razonable tomar este ope-
rador para estudiar las fluctuaciones de apareamiento.

Quedan aśı definidos los dos operadores: Q̂20 y (∆N̂)2, que van a ser
utilizados a lo largo de esta memoria. Haciendo uso de la expresión (3.39)
aplicada sobre el nuevo operador, denotamos:

δ = 〈φ|(∆N̂)2|φ〉1/2, (4.9)

siendo δ la coordenada que nos va a permitir generar funciones de onda con
diferente apareamiento. Para la otra coordenada, asociada a la forma del
núcleo o deformación, tenemos la expresión dada en la ecuación (4.2).
De modo que q y δ son los dos grados de libertad o coordenadas generadoras
a las que nos referiremos a partir de ahora. Llamaremos 1D a los cálculos que
solo incluyan de forma expĺıcita q y 2D a aquellos que dependan simultánea-
mente de q y δ.
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4.3 Una nueva coordenada: δ 65

Para justificar la conveniencia de la elección de la coordenada δ para
estudiar las correlaciones de apareamiento, representamos en la figura (4.2)
la enerǵıa de apareamiento, ecuaciones (3.28) y (3.74), en el plano (q,δ) para
funciones de onda intŕınsecas tipo HFB (izquierda) y PN-VAP (derecha) para
el núcleo tomado como ejemplo, el 52Ti.
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Figura 4.2: Curvas equipotenciales del valor de la enerǵıa de apareamiento en
MeV en el plano (q, δ) para los dos tipos de función de onda intŕınseca que estamos
estudiando; HFB (izquierda) y PN-VAP (derecha) para el núcleo 52Ti

Si miramos la figura, observamos que el rango de enerǵıa de apareamiento
que estamos cubriendo es muy amplio, de 0 a 50 MeV, lo que nos va a
permitir tener funciones de onda con bajo, medio y alto apareamiento y
estudiar estos reǵımenes en cualquier núcleo, independientemente de cuantos
nucleones fuera de capa tenga a priori. Los cálculos con una sola ligadura en
la deformación (q) hacen que el grado de libertad de apareamiento se adapte
a la densidad de niveles alrededor del nivel de Fermi que se tenga para cada
q y quede restringido a un régimen determinado. Con esta nueva ligadura,
por tanto, se va a poder soslayar dicha limitación, obteniéndose una relación
entre la enerǵıa de apareamiento y el parámetro delta casi independiente del
núcleo en cuestión, como se puede apreciar en la figura (4.2).
Se obtienen ĺıneas rectas que nos indican que la enerǵıa de apareamiento
crece de manera continua con δ y que es independiente de q para un δ dado,
excepto pequeñas oscilaciones para valores pequeños de delta. Esto coincide
con la simplificación del sistema dada en la ecuación (4.7). De este modo,
es posible justificar que la elección de la coordenada δ para constreñir en
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ella y generar funciones de onda con diferente contenido de apareamiento es
acertada.
La diferencia que se da entre los dos casos con diferentes funciones de onda
intŕınsecas es, principalmente, que para un δ fijo las enerǵıas de apareamiento
son un poco mayores para el caso PN-VAP.
Por último, estos cálculos son posibles gracias al método de los gradientes
conjugados [67]. Dicho método, aplicado para resolver las ecuaciones HFB
y/o PN-VAP, hace que se puedan construir las funciones de onda intŕınsecas
que minimizan la enerǵıa (HFB o PN-VAP) para valores a la carta de (q, δ)
incluso para funciones de onda cuya enerǵıa (HFB o PN-VAP) está muy lejos
de la óptima (la correspondiente al cálculo sin ligaduras).

4.4. PES 2D en diferentes aproximaciones pa-

ra el 52Ti

Una vez que hemos definido la nueva coordenada δ y hemos visto las su-
perficies de enerǵıa potencial como función de la deformación, extendemos el
análisis de las superficies de enerǵıa potencial visto en la sección 4.2 al caso
en el que se incluye δ. El uso de ligaduras nos permite definir superficies de
enerǵıa potencial en las direcciones marcadas por los valores esperados de
los operadores en los que se constriñen, en esta sección, la deformación cua-
drupolar axial q, y la fluctuación de la enerǵıa de apareamiento, δ. Para este
caso en dos dimensiones las superficies de enerǵıa potencial vienen definidas
por la expresión general:

E2D =
〈ΦNZJ(q, δ)|Ĥ|ΦNZJ(q, δ)〉
〈ΦNZJ(q, δ)|ΦNZJ(q, δ)〉

(4.10)

Tendremos, por tanto, la enerǵıa en el plano (q, δ) y en lugar de curvas,
tendremos ahora contornos equipotenciales, donde los valores para q están
en fm2 y la enerǵıa en MeV. Las superficies de enerǵıa potencial en 2D para
el Titanio se pueden ver en la figura (4.3). Vamos a tener diferentes superfi-
cies para varias aproximaciones en función de las proyecciones que han sido
tenidas en cuenta y se va a analizar el papel que desempeña cada una.
Al hacer un primer análisis unidimensional de la enerǵıa, tomando como di-
rección relevante el momento cuadrupolar, hemos obtenido para cada valor
de la deformación el valor asociado de δ. Ésta, es la solución autoconsistente
que se puede ver representada en forma de puntos que siguen un camino per-
pendicular a las ĺıneas equipotenciales. Vamos a tener dos tipos de ĺıneas, una
para cada tipo de función de onda intŕınseca, HFB o PN-VAP, que van a ser
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4.4 PES 2D en diferentes aproximaciones para el 52Ti 67

comunes a todas las aproximaciones que partan de la misma función de onda.

Si partimos del caso puramente HFB, panel (a), encontramos una región
delimitada, en el eje de las abscisas por q= -60 fm2 y q= 100 fm2 y en el eje
de ordenadas por δ =0 y δ = 2.5, dentro de la cual el potencial es blando
en ambas direcciones. Por blando queremos señalar que dado un valor de
δ (o q) cuesta poca enerǵıa, alrededor de 1 MeV para la región indicada,
desplazarnos a lo largo de ese valor.
Dentro del mismo intervalo de deformación, pero para un δ entre 2.5 y 4,
la enerǵıa necesaria para aumentar las correlaciones de apareamiento del
sistema es mucho mayor, en torno a 10 MeV. Para valores mayores de delta
esa enerǵıa crece hasta superar los 20 MeV.
Si nos movemos dentro de la variable q el resultado es análogo; fuera del
rango indicado el potencial se vuelve duro (crece muy rápido con pequeñas
variaciones de la deformación) y llevar al núcleo hasta esas deformaciones es
muy costoso energéticamente.
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Figura 4.3: Superficies de enerǵıa potencial para el 52Ti en el plano (q, δ) para
diferentes aproximaciones. En ĺıneas de trazos se pueden ver los contornos desde
0 hasta 3 MeV de uno en uno. En ĺınea continua los contornos desde 4 a 10 MeV
en intervalos de 2 MeV. A la derecha se puede ver la escala de colores en MeV.
Cada superficie ha sido normalizada a cero de forma independiente con respecto
a su mı́nimo de enerǵıa. Los puntos son la solución autoconsistente tipo HFB o
PN-VAP, según corresponda.

A continuación, proyectamos la solución del caso anterior a buen número
de part́ıculas. Para una proyección PAV encontramos la solución HFB+PNP
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que se muestra en el panel (b). El potencial alrededor del mı́nimo sigue sien-
do muy plano y éste se desplaza hasta δ = 2.5 mientras que su enerǵıa baja
en 1.37 MeV.
Si se hace una proyección VAP encontraremos la solución con funciones de
onda intŕınsecas tipo PN-VAP, panel (c). Esta curva se parece a la anterior,
ya que también se observa el potencial desplazado a valores mayores de delta
y un mı́nimo más profundo. Que ambas curvas se parezcan, es debido a que
si a la aproximación HFB+PNP se le permite explorar las fluctuaciones de
apareamiento, tenderá hacia la solución que se obtiene con la aproximación
PN-VAP.
No obstante, en este caso, aparecen definidos dos mı́nimos, uno más profundo
prolate en (q = -40 fm2, δ = 2.5) y otro oblate en (q = 60 fm2, δ = 2.5). El
mı́nimo absoluto es más profundo, baja 2.54 MeV con respecto a la solución
pura de HFB. Esto supone 1.17 MeV con respecto al tipo de proyección an-
terior, lo que remarca la importancia que tiene hacer la proyección antes de
la variación. Se puede ver, como en este caso, la ĺınea de puntos que marca la
solución autoconsistente pasa exactamente por los mı́nimos de la superficie.
Estas dos ideas son un indicativo de que la aproximación PN-VAP es la ma-
nera correcta de aplicar el principio variacional, pues se minimiza la enerǵıa
calculada ya con el número correcto de part́ıculas. No sólo es importante
por el hecho de que el principio variacional sea más efectivo encontrando la
enerǵıa sino que además, para otros observables relevantes pueden obtenerse
divergencias en los resultados por la falta de autoconsistencia.

Continuamos con la proyección del momento angular, para momento
J = 0. Empezamos proyectando la solución HFB lo que nos lleva a la aproxi-
mación HFB+AMP que se puede ver en el panel (d). Dado que las funciones
de onda en esta aproximación no dan en promedio el número de part́ıculas
correcto, se ha aplicado a cada punto de la red la corrección al número de
part́ıculas dada por los multiplicadores de Lagrange. Esta corrección es dis-
cutida con más detalle en la sección 6.3.1 en la que se va a analizar de manera
más pormenorizada la proyección al momento angular.
Se observa que la solución autoconsistente se encuentra por debajo de los
mı́nimos.
La proyección a momento angular hace que se encuentren dos mı́nimos mu-
cho más diferenciados que si solo se tiene en cuenta la proyección al número
de part́ıculas. Los efectos de una proyección AMP hacen que los potenciales
sean más anchos y los mı́nimos sean más profundos y desplazados a valores
mayores de q. En este caso, q= -80 fm2 para el mı́nimo oblate y q= 80 fm2

para el prolate.
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En los paneles (e) y (f) podemos ver los potenciales que guardan más
parecido entre śı, correspondientes a las aproximaciones HFB+PNAMP y
PN-VAP+PNAMP respectivamente. El mı́nimo oblado se encuentra ahora
en q= -80 fm2 y el prolado en q= 100 fm2. Con respecto al otro grado de
libertad, los mı́nimos se dan para δ = 2.5, mientras que para el HFB+AMP se
encontraba en δ = 2 lo que supone una diferencia de enerǵıa de apareamiento
de aproximadamente 4 MeV si miramos la gráfica (4.2). El hecho de que el
mı́nimo para el caso HFB+AMP esté en una región de débil apareamiento
tendrá importantes consecuencias, ya que el momento de inercia asociado a
la dinámica del sistema va a ser mayor que los asociados a los que tengan
proyecciones al número de part́ıculas (PN), dando como resultado un espectro
más comprimido. La enerǵıa que gana el mı́nimo absoluto de la aproximación
PN-VAP+PNAMP con respecto al caso HFB es de 4.53 MeV y de 2.71 MeV
con respecto a PN-VAP.

4.5. Cálculos GCM

Por último, tras obtener los diferentes estados |Φ(q, δ)〉 que van a con-
formar una base para cada aproximación usada, se utiliza el método GCM,
explicado en la sección 3.5. A lo largo de las siguientes subsecciones, conti-
nuamos estudiando los principales aspectos del método seguido para estudiar
las fluctuaciones de apareamiento, pero ahora con cálculos que involucran el
método GCM.
La función de onda va a ser superposición de funciones de onda con diferentes
valores de q y δ.

ΦNZJσ =

∫ ∞

0

fσ(q, δ)P̂ |φ(q, δ)〉dqdδ (4.11)

Resolviendo la ecuación 3.131 obtenemos las enerǵıas ENZJσ. Se muestran
los niveles GCM de enerǵıa etiquetados por σ = 1 para el fundamental y
σ = 2, σ = 3, σ = 4 para los siguientes estados excitados.

4.5.1. Tamaño de la base para la coordenada δ

Lo primero que vamos a analizar, es el tamaño apropiado que debe tener
la nueva base en la que vamos a trabajar. Mientras que el intervalo y el
tamaño de la base cuando se considera q como coordenada es conocido, pues
es la que ha sido, por lo general, considerada hasta ahora [14, 17, 78], la
inclusión de una nueva coordenada implica tener que conocer el tamaño de
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la base idóneo asociado al grado de libertad δ. En la sección 4.3 ya se ha
visto la relación entre δ y la enerǵıa de apareamiento, pero, aparte de los
extremos del intervalo, es necesario determinar el número de puntos que
es necesario tomar entre ambos. Tomamos el núcleo 52Ti y resolvemos la
ecuación (3.131) en la aproximación PN-VAP+PNAMP tomando el intervalo
de δ fijo, desde 0 hasta 4.5, pero tomando diferente número de puntos (Nδ)
entre dicho intervalo. Hemos tomado Nδ= 3, 5, 10 y 19. De esta manera, se
va a determinar el tamaño óptimo del conjunto de estados intŕınsecos que se
usan para hallar los estados GCM, ecuación (3.130).
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Figura 4.4: Enerǵıas de los estados excitados más bajos de 0+ y 2+, unidos por
ĺıneas, como función del número de valores de δ (3, 5, 10 ó 19) usados en el cálculo
de la enerǵıa con la aproximación PN-VAP+PNAMP para el núcleo 52Ti.

En la figura (4.4) podemos ver las enerǵıas que se obtienen para los tres
primeros estados con momento angular J = 0 y J = 2 en función de Nδ. Vien-
do los resultados, podemos concluir que tomar 10 valores entre δ = 0 − 4.5
para cada valor fijo de q es una buena elección que garantiza que la enerǵıa
tenga buena convergencia.
Por lo tanto, se va a definir una red bidimensional, en la que se van a desarro-
llar los cálculos, que va a depender de dos coordenadas. La coordenada q, va
a variar desde -220 fm2 hasta los 400 fm2, con un incremento de 20 fm2. Para
la coordenada que explora el apareamiento, δ, se van a tomar valores desde
0 hasta 4.5 con un incremento de 0.5. Esto supone un total de 32 puntos
para el caso unidimensional, en el que solo q es considerado y una red de 320
puntos para el caso bidimensional.
Es importante aclarar que no sólo los extremos, de ambas coordenadas, han
sido seleccionados de manera que, para los diferentes núcleos que han sido
escogidos para el estudio, se obtenga convergencia en la enerǵıa, sino que
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además se garantice que las funciones de onda colectivas caigan hasta tomar
el valor cero dentro de ambos intervalos. Estas funciones de onda se pueden
encontrar en la sección 8.3.

4.5.2. Convergencia para la enerǵıa

Existe otro problema de convergencia, pero en este caso inherente a la
resolución de la ecuación de HW (3.131). Está originado, como ya ha sido
mencionado, por la no ortogonalidad de los estados |φ(q, δ)〉 que forman la
base. Para resolver este problema se construye una base natural, ecuación
(3.138), que śı va a ser ortonormal, donde solo van a entrar los estados li-
nealmente independientes, quedando excluidos los que tengan un autovalor
de la norma cero o muy cercana a cero, que son los que seŕıan linealmente
dependientes [58]. Sin embargo, el número de estados de la base natural que
van a ser tenidos en cuenta en la diagonalización de la ecuación de HW es,
en cierto modo, arbitrario pues depende de un valor de corte que se debe
fijar para el autovalor de la norma que sea cercano a cero, por debajo del
cual esos estados naturales van a ser desechados. Determinar ese valor de
corte, no solo no es fácil, sino que su dificultad se incrementa al aumentar el
tamaño de la base, ya que se tiene una disminución muy progresiva de dichos
autovalores hasta alcanzar valores muy pequeños. Para lidiar con este pro-
blema, se estudia la convergencia de la enerǵıa y la correspondiente función
de onda como función del número de estados de la base natural, denotado
como (NE)b.n, que se toman en la diagonalización de la ecuación de HW.
Para obtener convergencia en la enerǵıa, o en cualquier otro observable, se
pide alcanzar en una región un valor más o menos constante del mismo, lo
que se conoce con el nombre de plateaus [84]. La elección final de (NE)b.n es
aquel en el que se observa un plateau grande para todos los estados con el
mismo momento angular y para el cual las funciones de onda colectivas no
cambian. Para estados con el mismo J el valor de (NE)b.n debe ser el mismo,
pues se debe garantizar la ortogonalidad de las funciones de onda correspon-
dientes.
Esta convergencia se puede ver en los plateaus de la figura (4.5) donde se ha
representado las enerǵıas como función de (NE)b.n para los estados 0+ en un
cálculo 2D (figuras de la izquierda) y 1D (figuras de la derecha) en las tres
aproximaciones en las que se trabaja. Las funciones de onda correspondientes
se pueden encontrar en las secciones 8.3 y 8.4.

Pese a las diferencias devenidas de la dependencia lineal de la base u
otros aspectos, vamos a obtener un comportamiento general muy parecido,
que puede verse en la figura (4.5), cuando los estados naturales son ordena-
dos por orden decreciente de los autovalores de la norma: para autovalores
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Figura 4.5: Enerǵıas de los 4 estados excitados 0+ más bajos para el núcleo 52Ti
(0+1 en cuadrados azules, 0+2 en ćırculos magentas, 0+3 en asteriscos verdes y 0+4
en diamantes naranjas). Los paneles de izquierda se corresponden con cálculos 2D
mientras que los de la derecha con los del caso 1D. Se puede ver la aproximación
utilizada en cada caso en la leyenda de la figura.

grandes de la norma, la enerǵıa va disminuyendo de forma considerable hasta
alcanzar un valor, más o menos constante, donde las contribuciones que se
obtienen al añadir un nuevo estado a la base natural son casi inapreciables.
Como el valor de las normas va a seguir decreciendo hasta hacerse casi cero,
se puede encontrar un punto en el cual la enerǵıa diverge a valores negativos
muy profundos.
En general, se va encontrar una mejor convergencia para aquellos estados
más bajos en enerǵıa.
En particular para la figura (4.5), si miramos las gráficas (a) y (b), encon-
tramos que para el caso 2D, por debajo de 30 estados naturales, estamos en
una zona en la que todav́ıa no se encuentra la convergencia. Entre 30 y 90
estados, hay un plateau donde las contribuciones que se obtienen al añadir
más estados, son muy pequeñas. Para un número mayor de estados, en torno
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a 90 y 100 respectivamente para cada caso, se tiene una gran dependencia
lineal, las contribuciones a la enerǵıa son espurias y muy grandes. En este
punto, las funciones de onda también van modificar su estructura y, cualquier
observable que se intente calcular con este número de estados, va a tomar
valores no realistas.

Si nos centramos en los casos 2D, observamos plateaus relativamente gran-
des para las aproximaciones HFB+PNAMP y PN-VAP+PNAMP lo que nos
indica que tenemos una buena convergencia, además se puede establecer un
parecido entre ellos. Sin embargo, para el caso HFB+AMP la situación es
diferente; obtenemos peor convergencia pues los plateaus son peores, los ni-
veles están más amontonados entre śı, incluso unos caen encima de los otros
y los plateaus son de menor tamaño. El hecho de no proyectar al número de
part́ıculas acarrea mayor dependencia lineal y estados menos puros, esto es,
más mezcla. Esto será una constante para esta aproximación que afectará a
diferentes propiedades y se mostrará más adelante.
Si nos movemos a la derecha y observamos los plateaus que se producen para
los casos de 1D, veremos que la situación es parecida, para el caso HFB+AMP
los plateaus que se encuentran son peores. Sin embargo, para el caso 1D te-
nemos una base diez veces más pequeña de modo que su dependencia lineal
es nula o muy pequeña, por lo que este efecto es menos acusado que en el
caso 2D.

Este estudio de la convergencia se realiza para cada núcleo que se calcula
y para los diferentes momentos angulares (J = 0, 2, 4, 6) que son examinados.
La situación descrita aqúı se repite, de modo que las conclusiones menciona-
das son aplicables a estos otros casos diferentes.

4.5.3. Espectros para el 52Ti

Una vez definida la red de valores para q y δ, aśı como el criterio de
convergencia para la solución de la ecuación HW, obtenemos como resultado
final del cálculo los estados GCM para el núcleo 52Ti.
Las superficies de enerǵıa potencial analizadas en la sección anterior repre-
sentan, de alguna manera, los elementos de matriz diagonales del solape del
hamiltoniano normalizado. A continuación, se aplica el método GCM al con-
junto de las diferentes funciones de onda intŕınsecas con sus correspondientes
proyecciones, de manera que los elementos fuera de la diagonal van a ser in-
corporados al resolver la ecuación de HW (3.131). Esto nos permite ver la
ganancia de enerǵıa que se obtiene de la mezcla de configuraciones a la vez
que se pueden estudiar los espectros de excitación, entendidos como la dife-
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rencia de enerǵıas que se obtiene entre un estado excitado con respecto a la
del estado fundamental.
La ganancia de enerǵıa va a estar relacionada con la aproximación que utilice-
mos. Por este motivo, esperamos que las correlaciones dinámicas que va a dar
el método GCM den contribuciones menores para el caso PN-VAP+PNAMP
ya que en este método la proyección se hace antes de la variación y es auto-
consistente.

Analizamos primero la evolución del valor absoluto de las enerǵıas cuando
se va afinando la función de onda mediante el uso de diferentes proyecciones.
Para ello, se han representado en la figura (4.6) dichas enerǵıas, tanto para
el caso 1D como 2D, para los estados 0+1 , 0

+
2 y 0+3 . Los valores de las enerǵıas

están recogidos en la tabla (4.2).
En el eje de abscisas se puede ver la aproximación que se usa. El punto de
partida seŕıa el estado etiquetado como HFB o PN-VAP, que son los dos
tipos de funciones intŕınsecas a las que posteriormente se le van a aplicar dis-
tintos proyectores. El comportamiento general es el siguiente: por un lado,
dentro de una misma aproximación, el caso 2D siempre está energéticamente
por debajo del 1D. Esto es claro, ya que lo que implica pasar de un cálculo
1D a otro 2D, es añadir un grado de libertad extra. Por otro, la enerǵıa del
estado fundamental siempre decrece según la complejidad de la función de
onda aumenta.

Si nos centramos en los estados tipo HFB, observamos que si miramos
de forma separada a la izquierda de esta solución, caso PNP, y a la dere-
cha, caso AMP, lo que se obtiene es una enerǵıa menor en ambos casos. Sin
embargo, las dos proyecciones tenidas en cuenta de forma simultánea, caso
PNAMP, no supone un efecto suma de lo que se obtiene por separado para
cada una de las proyecciones. Se produce un efecto de interferencia por el cual
algunos estados, como el 0+2 y el 0+3 , en 1D y 2D, sufren un incremento de
la enerǵıa en comparación a cuando solo se implementa una única proyección.

Para las aproximaciones PN-VAP y PN-VAP+PNAMP, se observa, como
es esperado, menor ganancia de enerǵıa entre el caso 1D y 2D en compara-
ción a lo que ocurre con las aproximaciones que tienen como punto de partida
funciones de onda intŕınsecas tipo HFB (HFB+PNP y HFB+PNAMP).

Si miramos los dos casos situados más a la izquierda (o bien los dos que
están más a la derecha), se puede ver la diferencia entre una proyección al
número de part́ıculas tipo VAP o PAV tanto para el caso 1D como para el
2D. Para el fundamental en 1D, la ganancia entre el caso VAP y PAV es de
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aproximadamente 1.5 MeV. Para las mismas aproximaciones, pero en 2D,
esta diferencia pasa a ser de 0.75 MeV. Si se incluye la proyección al mo-
mento angular la ganancia que se va a obtener, tanto para los casos HFB o
PN-VAP como para los casos 1D o 2D, es de aproximadamente 3 MeV. La
diferencia de enerǵıa que se obtiene entre las aproximaciones HFB+PNAMP
y PN-VAP+PNAMP es de 1.3 MeV para el caso 1D y 0.73 MeV para el caso
2D. Según aumentamos la precisión en nuestro método, se gana exactitud en
la enerǵıa de manera convergente.

Por último, podemos ver que la enerǵıa que se gana para el estado fun-
damental (0+1 ) desde la aproximación más simple, HFB en 1D hasta la más
sofisticada, PN-VAP+PNAMP en 2D, es de 5.4 MeV, lo que supone una
importante cantidad.

A continuación, analizamos los espectros para el 52Ti en la figura (4.7)
en cálculos 1D (ĺınea azul discontinua) y 2D (ĺınea roja continua). Los va-
lores de las enerǵıas han sido normalizados al valor del estado fundamental
(J = 0, σ = 1) y los espectros no han sido agrupados en bandas en base a
algún observable, sino que han sido numerados según el orden en el que se
han calculado teóricamente con σ creciente para estados más excitados.

Si miramos la parte izquierda de la figura, encontramos el espectro que se
corresponde con la aproximación PN-VAP+PNAMP. Cuando las fluctuacio-
nes de apareamiento son incorporadas, el espectro se comprime. Es posible
justificar esta idea en base al siguiente argumento: dado que estos cálculos en
1D y 2D son autoconsistentes la enerǵıa del estado fundamental antes de la
resolver la ecuación de HW, esto es, el mı́nimo de las superficies de enerǵıa
potencial, es el mismo en ambos cálculos e incluso muy similar después de
resolver la ecuación de HW, como hemos visto en la tabla (4.2). Este resul-
tado es la consecuencia del hecho de que el principio variacional usado para
determinar las funciones de onda favorece el estado fundamental. En el caso
1D no hay cabida para que los estados excitados cambien el contenido de apa-
reamiento presente en una función de onda. Sin embargo, el hecho de añadir
el grado de libertad del apareamiento para el caso 2D, abre la posibilidad
de que las funciones de onda para un determinado q vaŕıen su apareamiento,
consiguiendo con esto una bajada de la enerǵıa que hace que los niveles de
los espectros se encuentren ahora más juntos.
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Figura 4.6: Evolución de los valores absolutos de las enerǵıas para el 52Ti del
estado fundamental para el 0+1 (azul) y los excitados 0+2 y 0+3 (magenta y verde
respectivamente) como función de las diferentes aproximaciones (nombres en el eje
inferior). La ĺınea continua es para los cálculo en 2D y la discontinua para los de
1D.

0+1 0+2 0+3
PN-VAP 1D -450.991 -450.415 -447.579

2D -451.140 -450.598 -448.213
HFB+PNP 1D -449.528 -448.883 -446.145

2D -450.395 -449.428 -447.176
HFB 1D -448.872 -447.578 -445.598

2D -449.056 -448.111 -447.355
HFB+AMP 1D -451.547 -448.561 -446.217

2D -451.800 -449.629 -449.173
HFB+PNAMP 1D -452.837 -446.915 -446.208

2D -453.543 -447.863 -447.135
PN-VAP+PNAMP 1D -454.136 -448.570 -446.832

2D -454.275 -449.245 -447.632

Tabla 4.2: Enerǵıas absolutas (en MeV) de los tres estados: 0+1 , 0
+
2 y 0+3 en varias

aproximaciones para el 52Ti.
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En el medio de la misma figura encontramos el caso HFB+PNAMP. Esta
aproximación, en general, ofrece unos espectros más estirados que los que
da la aproximación anterior. Otra caracteŕıstica que podemos observar aqúı,
es que varios estados, sobre todo los de la banda Yrast y la siguiente, están
invertidos entre śı, encontrando los niveles 1D por encima de los de 2D.
Por un lado, tenemos el efecto que supone incluir el grado de libertad δ dis-
cutido para el caso PN-VAP+PNAMP. Por otro, tenemos el efecto de la falta
de autoconsistencia que se da en este caso. Si miramos el panel (e) de la figura
(4.3) vemos que el camino marcado por los puntos, que siguen los valores de δ
del caso 1D, pasan por debajo de los mı́nimos obtenidos en el caso 2D, por lo
que se tienen correlaciones de apareamiento menores. El momento de inercia
asociado al movimiento colectivo va a ser mayor para el caso 1D por lo que
se va a obtener un espectro más comprimido. Estos dos hechos combinados
hacen que encontremos solo los niveles excitados más bajos invertidos.

Como tercer caso, tenemos la aproximación HFB+AMP, a la derecha de
la figura. En este caso se encuentra mayor autoconsistencia entre los cálculos
1D y 2D como puede verse en la superficie de enerǵıa potencial, panel (d)
de la figura (4.3), de modo que ya no encontramos esa inversión que se daba
en el caso anterior y los niveles 2D están por debajo de los de 1D. Lo más
notable de esta aproximación, es que encontramos unos espectros, tanto para
el caso monodimensional como bidimensional, muy comprimidos comparados
con los de las otras dos aproximaciones. En el análisis de la convergencia para
los estados GCM, figura (4.5), ya vimos como la convergencia era peor para
esta aproximación, se observaba una mayor dependencia lineal en la base lo
que hace que los estados sean menos puros. Esto supone una limitación de
esta aproximación para describir de forma correcta magnitudes relevantes
nucleares. Nos centraremos de nuevo en esta cuestión más adelante: en el
caṕıtulo 5 y en la sección 6.4 en la que se van a discutir otros espectros.
Mirando las superficies de enerǵıa potencial (paneles inferiores:(d), (e) y (f)
de la figura (4.3)) se puede anticipar cómo de comprimidos van a estar los
espectros. Si miramos los valores de δ para los cuales se dan los mı́nimos y
las zonas de alrededor, encontramos que, la que tiene menos correlaciones de
apareamiento y es más suave en esta dirección, es la correspondiente al caso
HFB+AMP y, por tanto, va a dar el espectro más comprimido. Para los casos
PN-VAP+PNAMP y HFB+PNAMP vemos que ambas superficies se parecen
más, pero, obtenemos valores más altos en la del caso HFB+PNAMP, por
tanto, obtendremos espectros similares para estas dos siendo más estirado el
del segundo caso.
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Figura 4.7: Espectros para el 52Ti para las aproximaciones PN-VAP+PNAMP
(izquierda), HFB+PNAMP (medio) y HFB+AMP(derecha)

4.5.4. Ligaduras en δZ, δN y δ

Para acabar el estudio de la coordenada δ dentro del método GCM, ha-
cemos la siguiente consideración: una aproximación más completa del grado
de libertad de apareamiento se obtendŕıa estudiando por separado los pro-
tones y neutrones, es decir, constriñendo en las fluctuaciones del número de
part́ıculas siguientes:

〈φ|(∆N̂)2|φ〉1/2 = δN 〈φ|(∆Ẑ)2|φ〉1/2 = δZ (4.12)

Sin embargo, esta separación aumentaŕıa sobremanera el número de estados
incluidos en el cálculo GCM, haciéndolo computacionalmente casi inalcan-
zable con la capacidad de cálculo actual. Más si cabe, si se van a analizar
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37 núcleos, como son analizados en este trabajo y utilizando, para varios de
ellos, diferentes aproximaciones.
Para comprobar la validez de la aproximación que se hace en este trabajo,
es decir, utilizando las fluctuaciones en el número de part́ıculas total, δ, se
hacen tres tipos de cálculos. En el primer caso, se constriñe solo a δZ de-
jando que 〈φ|(∆N̂)2|φ〉1/2 alcance el valor autoconsistente que se obtenga al
minimizar la enerǵıa por el principio variacional. En el segundo caso, es δN
la coordenada que se constriñe, dejando que 〈φ|(∆Ẑ)2|φ〉1/2 vaŕıe libremente.
Y por último, el caso que se ha sido utilizado para todo los cálculos que se
exponen en esta memoria, donde se constriñe al δ total.

δZ δN δ
E∗ PZ PN E∗ PZ PN E∗ PZ PN

0+1 0.00 − 4.1 − 5.9 0.00 − 4.2 − 6.2 0.00 − 4.0 − 5.7
0+2 4.58 − 5.0 − 5.9 4.80 − 4.5 − 6.0 4.65 − 4.7 − 5.7
0+3 7.80 − 5.1 − 4.7 6.76 − 4.7 − 4.3 7.17 − 4.1 − 3.7

2+1 2.60 − 4.0 − 4.0 2.11 − 4.0 − 3.1 2.21 − 3.5 − 3.2
2+2 5.75 − 4.7 − 5.2 5.31 − 4.5 − 3.3 5.59 − 4.2 − 4.2
2+3 6.05 − 4.2 − 4.0 5.88 − 4.6 − 4.9 5.90 − 3.7 − 4.0

Tabla 4.3: Enerǵıa de excitación E∗, enerǵıa de apareamiento para protones (PZ)
y neutrones (PN ), para los 3 estados más bajos 0+ y 2+ de la ecuación de HW en
aproximación PN-VAP+PNAMP constriñendo en δZ , δN ó δ.

Es importante notar que, en este caso, los cálculos se han hecho dentro
de la aproximación PN-VAP+PNAMP para el núcleo 50Ca, en lugar de pa-
ra nuestro ejemplo hasta ahora, el 52Ti, por un motivo didáctico, ya que su
carácter mágico en protones puede ayudar a interpretar mejor los resultados
de ambas aproximaciones.
Podemos ver en la tabla (4.3) las enerǵıas de excitación y las enerǵıas de apa-
reamiento de protones y neutrones para los tres primeros estados excitados
de 0+ y 2+. Las enerǵıas del estado fundamental que se encuentran son las
siguientes: -428.991 MeV (constriñendo en δZ), -428.962 MeV (constriñendo
en δZ) y -429.037 MeV (constriñendo en δ). La más baja es, como es espe-
rable, para el caso en el que se constriñe a δ. Sin embargo, los tres valores
son prácticamente iguales. Para los valores mostrados en la tabla, tampo-
co encontramos desviaciones que tengan que ser subrayadas. Por tanto, al
no haberse encontrado grandes diferencias, podemos concluir que la aproxi-
mación que estamos haciendo es apropiada para estudiar las fluctuaciones
de apareamiento. Un análisis análogo se ha hecho para el 32Mg, núcleo que
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presenta más part́ıculas fuera de capa, obteniendo la misma conclusión.

80



Caṕıtulo 5

Estudio de la aproximación

HFB+AMP

Como ya se ha visto en el caṕıtulo anterior, en este trabajo se hace
uso de tres aproximaciones diferentes (pueden ser consultadas en la tabla
4.1), en las que se observan importantes diferencias. Las denotadas por PN-
VAP+PNAMP y HFB+PNAMP, contemplan la restauración del número de
part́ıculas aunque el orden en que se hace la proyección y se minimiza el
funcional es diferente (VAP versus PAV). En la tercera de ellas, de nombre
HFB+AMP, esta proyección no es tenida en cuenta. Esta última aproxima-
ción ofrece unos resultados (consultar caṕıtulos 4 y 6) que no se encuentran
en ĺınea con los que se obtienen cuando se utilizan los otros dos métodos.
En este caṕıtulo queremos indagar en la procedencia de esas diferencias que
hacen que la restauración al número de part́ıculas tenga que ser implementa-
da, por ser crucial para la correcta descripción del sistema. Con este objetivo,
se van a hacer dos análisis. Primero, se van a estudiar los elementos de matriz
de la norma cuando se proyecta a buen número de part́ıculas y cuando no.
Segundo, se va a estudiar la distribución del número de part́ıculas dentro de
la aproximación HFB+AMP. Para ello, volvemos a tomar como ejemplo el
núcleo 52Ti.

5.1. Elementos de matriz de la norma.

En la diagonalización de la ecuación de HW (3.131) aparecen dos can-
tidades; el solape del hamiltoniano y el solape de la norma. En la sección
(4.4) se puede encontrar la discusión de los elementos de matriz diagonales
del hamiltoniano. Ahora, vamos a concentrarnos en el solape de la norma.

81



82 Estudio de la aproximación HFB+AMP

Las diferencias principales que se dan en el solape de las norma, vienen
entre las aproximaciones que tienen en cuenta la proyección al número de
part́ıculas (PNP) frente a las que no la consideran.
En la figura (5.1) se muestran las normas para momento angular J = 0, 2, 4
en las aproximaciones HFB+AMP (sin proyección al número de part́ıculas)
y HFB+PNAMP (incluyendo dicha proyección). Las normas obtenidas con
el método PN-VAP+PNAMP son similares a las del caso HFB +PNAMP y
no se muestran. Además, para comparar mejor el efecto de la proyección al
número de part́ıculas, conviene tomar las mismas funciones de onda intŕınse-
cas.
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Figura 5.1: Solapes de las normas para el 52Ti. Estos valores se encuentran renor-
malizados habiendo sido divididos por un factor tal que, para cada panel, el valor
máximo que se obtenga sea igual a uno. En la parte de arriba de la gráfica tene-
mos la aproximación HFB+AMP. De izquierda a derecha con los correspondientes
factores de normalización: J = 0 (factor=1.0), J = 2 (factor=0.484) y J = 4 (fac-
tor=0.316). En la parte de abajo, tenemos la aproximación HFB+PNAMP y los
momentos angulares normalizados a J = 0 (factor=0.191), J = 2 (factor=0.218) y
J = 4 (factor=0.202). En ĺınea discontinua están representados los contornos 0.1 y
0.9 correspondientemente etiquetados y en ĺınea continua los contornos desde 0.2
hasta 0.8 en intervalos de 0.2

Para incluir en el análisis los elementos no diagonales y poder hacer una
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representación, es obvio que solo puede hacerse en función de una coordenada.
En esta figura se han tomado las normas del caso 1D y se han representado
en el plano (q, q′). Para poder evaluar el comportamiento cualitativo de di-
chas normas y compararlas en los diferentes casos, todas las aproximaciones
han sido divididas por un factor de escala para que el máximo en todas ellas
valga la unidad. Para el análisis cuantitativo, esos factores se muestran en el
pie de dicha figura.

En los paneles (a) (c) y (e) de la figura (5.1) representamos el valor de la
norma:

〈Φ(q)|P J |Φ(q′)〉. (5.1)

En el panel (a) tenemos el caso J = 0. Las funciones de onda intŕınsecas
HFB están normalizadas a la unidad, por lo que la norma va a ser la unidad
para el caso esférico (q = q′ = 0) como puede verse en la figura. Tomando
ese punto como centro y siguiendo los contornos hacia fuera, observamos una
disminución radial exponencial de la norma con q, hasta encontrar que, para
valores con q = 100 fm2, el máximo es una décima parte de ese valor.

En los paneles (b) (d) y (f) de la misma figura (5.1) se representa la
norma:

〈φ(q)|P JPN |φ(q′)〉. (5.2)

Si miramos el panel (b) que se corresponde de nuevo con momento angular
cero, observamos que, en este caso, para q = q′ = 0 el valor que se obtiene es
0.191. Este valor está lejos de ser la unidad ya que cuantos más proyectores
se tengan en cuenta, menor va a ser el valor del solape de la norma. Para
este momento angular vemos que las normas de ambas aproximaciones se
parecen, aunque para el caso HFB+PNAMP son más anchas y están más
extendidas en la diagonal.

Para momento angular J = 2 (paneles (c) y (d)) las normas se hacen
cero para el caso esférico. Observamos que las normas van decreciendo sua-
vemente a lo largo de la diagonal (q=q′) y las ĺıneas q+ q′ = constante. En el
caso HFB+AMP la distribución que se obtiene es casi simétrica respecto a
la ĺınea (q = −q′), es decir, la parte oblate con la parte prolate, encontrando
el máximo valor alrededor de la deformación de |60| fm2.
Para el caso HFB+PNAMP se encuentra una predominancia del lado prola-
te debido a que la norma es sensible al contenido de apareamiento presente
en la función de onda. En este caso, el máximo valor se encuentra para una
deformación prolate de 100 fm2.
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84 Estudio de la aproximación HFB+AMP

En los paneles (e) y (f) se muestran los contornos para momento angular
J = 4. El comportamiento que se observa sigue la ĺınea de lo descrito para
J = 2 pero con las diferencias que hemos apuntado más marcadas. Aparte de
la asimetŕıa oblate-prolate presente en el caso HFB+PNAMP, se observa que
las normas para la aproximación HFB+AMP y momento angular mayor que
cero están más extendidas. Esto es indicativo de que tenemos mezcla en el
número de part́ıculas y evidencia que se van a obtener correlaciones espurias
para el caso HFB+AMP.

El análisis anterior puede extenderse, de alguna manera, al caso con dos
coordenadas generadoras como se muestra a continuación en la figura (5.2).
El número de coordenadas que se tiene en este caso para elementos no dia-
gonales, nos llevaŕıa a una representación como función de (q, q′, δ, δ′). Como
esto no es posible y ya hemos visto su comportamiento en el plano (q, q′), fija-
mos ahora dos deformaciones -80 fm2 y 100 fm2, que se corresponden con los
valores en los que la enerǵıa es mı́nima (ver figura (4.3)) y tomamos q = q′.
Para la otra variable, tomaremos tres valores que cubran el rango de del-
tas en el que estamos trabajando: δ = 0.5 (apareamiento débil); δ = 2.0
(apareamiento medio) y δ = 3.5 (apareamiento fuerte). Utilizamos las deno-
minaciones de bajo, medio y alto, en relación al contenido de apareamiento
presente en la solución autoconsistente en torno a esas deformaciones que
son: δ = 2.33 para q = -80 fm2 y δ = 2.22 para q = 80 fm2. Mientras que δ′

tomará todos los valores del rango seleccionado y estará representada en el
eje de abscisas.
Esta representación nos va a permitir analizar el comportamiento del solape
de las normas en función de la coordenada δ, pero sin eliminar completamen-
te la dependencia con la variable q, ya que es la coordenada dominante.
De nuevo, el objetivo es ver el efecto que tiene la proyección al número de
part́ıculas, por lo que se estudian las siguientes normas:

〈Φ(q, δ)|P JPN |Φ(q′, δ′)〉 HFB + PNAMP (5.3)

〈Φ(q, δ)|P J |Φ(q′, δ′)〉 HFB + AMP (5.4)

〈Φ(q, δ)|Φ(q′, δ′)〉 HFB (5.5)

En la figura (5.2), la norma definida en (5.3) se representa en ćırculos
azules, la que se corresponde con la ecuación (5.4) por cuadrados magentas
y la de la expresión (5.4) por triángulos verdes. J va a tomar los valores 0 y
2 en los casos en los que se proyecte al momento angular.
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Figura 5.2: Elementos de matriz del solape de la norma para el 52Ti para algunos
casos del cálculo en 2D (ver el texto principal para una explicación más detallada).
Los valores para la aproximación HFB+PNAMP se corresponden con los ćırculos
azules, mientras que los cuadrados magentas son para la aproximación HFB+AMP.
También se incluye, en triángulos verdes, la norma entre estados HFB (multiplicada
por un factor 0.5).

Lo primero que observamos mirando la figura es que el caso HFB y
HFB+AMP presentan un comportamiento gaussiano con centro en δ′ = δ
mientras que esto no ocurre para el caso HFB+PNAMP, donde las normas o
decrecen o se mantienen más o menos constantes para valores crecientes de
δ′. Para entender esto último, podemos expandir las funciones de onda como
autoestados del operador del número de part́ıculas [58]:

|Φ(q, δ′)〉 =
∑

α′N ′

Cα′N ′(q, δ′)|α′, N ′〉. (5.6)
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86 Estudio de la aproximación HFB+AMP

La norma HFB+PNP entonces se define como:

〈Φ(q, δ)|PN |Φ(q, δ′)〉 =
∑

α

CαN (q, δ)CαN(q, δ
′). (5.7)

En la expresión anterior, para (q, δ) fijo, el coeficiente Cα,N(q, δ) es una cons-
tante (menor o igual a 1 por la normalización de los estados dados en la
ecuación (5.6)), mientras que CαN(q, δ′) es máximo en δ′ = 0. Esto se debe
a que, en ese punto, la función de onda intŕınseca (5.6) es ya autoestado
del número de part́ıculas y la suma en N ′ se reduce a un solo sumando. De
nuevo, la normalización a 1 de la función de onda hace que esos coeficien-
tes CαN(q, δ′ = 0) sean mayores que para un δ′ arbitrario, donde la norma
está repartida en más autoestados de N̂ .

Si comparamos las aproximaciones HFB+AMP y HFB+PNAMP como
función de δ, observamos que, independientemente del valor de q, las curvas
de ambas aproximaciones, para un régimen de bajo apareamiento, van muy
juntas y van divergiendo encontrando mayores diferencias para el caso de me-
dio apareamiento y, este efecto, es todav́ıa mayor para el δ correspondiente a
valores grandes de apareamiento (paneles de izquierda a derecha). Es en este
caso, cuando la diferencia entre ellas es máxima, en el que la curva del caso
HFB+AMP, para J = 0, guarda mayor similitud con la del caso HFB.
Con respecto al momento angular, para el caso J = 2, las desviaciones entre
las curvas HFB+AMP y HFB+PNAMP son mayores.
Si miramos como de diferentes son las curvas ahora en función de δ′ obser-
vamos lo siguiente: mientras que HFB+PNAMP es el caso que más rápi-
do decrecen las normas según aumenta δ′, el caso HFB+AMP coincide con
HFB+PNAMP para valores pequeños de δ′. La diferencia entre estas curvas
va aumentado según δ′ aumenta hasta el valor máximo δ′ = δ. A partir de
este punto, la diferencia vuelve a decrecer y en el ĺımite de δ′ coincidiŕıa con
el valor HFB+PNAMP pues estaŕıamos en ĺımite semiclásico. Si δ es pequeño
la separación entre las curvas es mı́nima.

Concluimos que, las normas proyectadas a momento angular, se com-
portan de manera diferente con respecto al apareamiento si los estados se
proyectan o no a buen número de part́ıculas. Estas diferencias se producen
en los valores de apareamiento que son t́ıpicos en los núcleos y van a verse
reflejadas posteriormente en los observables calculados con el método GCM.
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5.2. Distribución del número de part́ıculas

En la aproximación HFB+AMP, para tratar el aspecto crucial de la no
conservación del número de part́ıculas, se introduce una corrección mediante
los multiplicadores de Lagrange que hace que el número de part́ıculas sea
ajustado en promedio en las funciones de onda HFB. Cuando se utiliza el
método GCM, de nuevo se hace una corrección mediante el término intro-
ducido en la ecuación (3.38). La cuestión que queremos abordar es cómo de
acertada es la conservación del número de part́ıculas para los estados |ΦJ,σ〉.
Para ello, analizaremos la distribución del número de part́ıculas en la función
de onda |ΦJ,σ〉.

La probabilidad de encontrar un autoestado del operador N̂ con autovalor
N en la función de onda |ΦJ,σ〉, viene dada por:

WN =
∑

α

|〈αN |ΦJ,σ〉|2 =
∑

α

〈ΦJ,σ|αN〉〈αN |ΦJ,σ〉

= 〈ΦJ,σ|PN |ΦJ,σ〉. (5.8)

De forma análoga, si tomamos WZ,N nos dará la probabilidad de tener si-
multáneamente un autoestado de Ẑ y N̂ , con autovalores Z y N respectiva-
mente. Con la definición de |ΦJ,σ〉, dada en la ecuación 3.130, la expresión de
la probabilidad vendrá dada en el marco de la ecuación de HW, por:

WZ,N = 〈ΦJ,σ|PNPZ|ΦJ,σ〉 =
∫

dqdq′dδdδ′

×f ∗NZJ,σ(q, δ)〈φ(q, δ)|P̂ JP̂N P̂Z|φ(q′, δ′)fNZJ,σ(q′, δ′) (5.9)

La función de onda |ΦJ,σ〉 se encuentra normalizada a la unidad, y dado que:
∑

N

PN =
∑

αN

|αN〉〈αN | = 1, (5.10)

encontramos que: ∑

N,Z

WZ,N = 1. (5.11)

La forma de proceder es la siguiente: se hace un cálculo GCM con HFB+AMP
y se calcula el solape que aparece en la expresión (5.9) proyectando a dife-
rentes valores de Z y N , yendo desde Z − 6 hasta Z + 6 y lo mismo para el
número de neutrones N .
En el caso BCS, donde la función de onda que no es autoestado del número
de part́ıculas pero cuyo valor promedio es el adecuado, se tiene una distribu-
ción gaussiana centrada en dicho valor N (〈BCS|N̂ |BCS〉 = N) [58].
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88 Estudio de la aproximación HFB+AMP

En la tabla (5.1) se pueden ver los valores esperados de protones (Zλ) y
neutrones (Nλ), corregidos por los multiplicadores de Lagrange (3.145), que
se obtienen del cálculo HFB+AMP en 1D y 2D. Para el 52Ti, los valores
correctos que se debeŕıan obtener, seŕıan Z = 22 y N = 30.

Zλ Nλ

0+1 1D 21.819 29.934
2D 21.789 29.907

0+2 1D 21.784 29.923
2D 21.743 29.977

0+3 1D 21.707 29.955
2D 21.865 29.873

0+4 1D 21.903 29.940
2D 21.660 29.887

Tabla 5.1: Valores esperados del número de protones (Zλ) y de neutrones (Nλ)
corregidos con multiplicadores de Lagrange, para los estados 0+1 , 0

+
2 , 0

+
3 y 0+4 de

las distribuciones mostradas en 5.3 (1D) y 5.4 (2D).

En las figuras (5.3) y (5.4), se muestra el caso de las funciones de onda
HFB+AMP en el núcleo 52Ti, cuando se tiene una o dos coordenadas res-
pectivamente y para momento angular J = 0+ y sus cuatro autoestados más
bajos. En el eje X están representados el número de protones y en el eje Y los
neutrones. Para cada pareja de valores (Z,N) se representa en 2D, como se
puede ver en el código de colores de la derecha, la distribución de W (Z,N).
Esa distribución debeŕıa tener un comportamiento gaussiano con un máximo
en Z = 22 y N = 30 para este núcleo.

Si miramos el caso unidimensional, figura (5.3), observamos que el estado
fundamental 0+1 , panel de arriba a la izquierda, tiene toda su distribución de
probabilidad centrada en el valor correcto del número de part́ıculas y que se
acerca bastante a la forma esperada. Sin embargo, no va a ocurrir lo mismo
para los estados excitados.
La distribución para el primer excitado 0+2 , panel superior derecho, tiene una
distribución parecida al estado anterior, pero asimétrica con respecto a la
ĺınea N + Z = 52, por lo que dista de ser tipo gaussiana.
Para el siguiente estado excitado 0+3 , panel inferior izquierdo, tenemos una
distribución más extendida en protones, encontramos una alta intensidad en
el punto Z = 20 y N = 30.
El estado excitado más alto 0+4 , panel inferior derecho, presenta una distri-
bución más extendida ahora en protones, si bien está centrada en la posición
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correcta, tenemos también alta intensidad en Z = 22 N = 28 y, de nuevo, no
se corresponde con un comportamiento puramente gaussiano.

 16  18  20  22  24  26  28
Z

 24
 26
 28
 30
 32
 34
 36

N

 0

 0.05

 0.1

 0.15

 0.2
0+

3

 16  18  20  22  24  26  28
Z 

 24
 26
 28
 30
 32
 34
 36

N

 0

 0.05

 0.1

 0.15

 0.2
0+

4

 16  18  20  22  24  26  28
Z

 24
 26
 28
 30
 32
 34
 36

N

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3

0+
1

 16  18  20  22  24  26  28
Z

 24
 26
 28
 30
 32
 34
 36

N

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3

0+
2

Figura 5.3: Distribución del número de part́ıculas en la aproximación HFB+AMP
para el estado fundamental y los 3 primeros estados excitados con momento angular
cero para el 52Ti en 1D.

Vayamos al caso de dos dimensiones que se muestra en la figura (5.4). En
este caso, la situación empeora y ninguna de las distribuciones que se obtiene
para los diferentes estados, cumple la esperada distribución gaussiana.
El patrón que muestra el estado fundamental se parece a lo obtenido en el
caso 1D, pero su intensidad es mayor en valor absoluto en la posición esperada
Z = 22 y N = 30. Prácticamente la mitad de la intensidad se concentra entre
este punto y correspondiente a Z = 20 y N = 30.
El estado 0+2 tiene una distribución claramente asimétrica extendida en la
dirección de Z, donde se localiza prácticamente toda la intensidad.
El estado 0+3 se extiende a lo largo del número de neutrones y el máximo
se encuentra para un valor incorrecto de N , N = 28 en lugar de N = 30.
Además, el siguiente máximo tampoco es para el valor esperado que debeŕıa
ser el correcto, sino que se da para N = 26.
La distribución del estado 0+4 es la que presenta la distribución más asimétrica
de todas. La posición del máximo no se corresponde con el valor de N ni de
Z que esperamos.
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Figura 5.4: Distribución del número de part́ıculas en la aproximación HFB+AMP
para el estado fundamental y los 3 primeros estados excitados con momento angular
cero para el 52Ti en 2D.

Es importante destacar que, pese a que los valores esperados del número
de part́ıculas cuando son corregidos por los multiplicadores de Lagrange se
acercan bastante a lo que debeŕıa obtenerse, con diferencias en torno a 0.3
para protones y 0.1 para neutrones (se muestran en la tabla 5.1), las distri-
buciones que se obtienen no son correctas, llegando incluso a estar centradas
para otros valores de N y Z que no son los propios del núcleo que se estudia.
Podemos concluir, que la distribución del número de part́ıculas en la aproxi-
mación HFB+AMP, tiene un comportamiento que dista de lo que se espera
de forma teórica. El hecho de incluir las fluctuaciones de apareamiento no
es el origen de dichas distribuciones irregulares, ya que como hemos visto,
cuando solo se considera la deformación cuadrupolar, se encuentran distri-
buciones anómalas también.

Como śıntesis global de este caṕıtulo, podemos decir que se ha abordado,
desde dos perspectivas diferentes, el tema de la importancia de la proyección
al número de part́ıculas, encontrando que es fundamental su implementación
para describir de forma adecuada las propiedades atómicas del núcleo.
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Caṕıtulo 6

Superficies de enerǵıa potencial

y espectros con q y δ

6.1. Introducción

En este caṕıtulo se discuten las PES (secciones 6.2 y 6.3) y los espectros de
excitación (sección 6.4), de manera análoga a lo que ya se hizo en el caṕıtulo
4 para el 52Ti, pero extendido a otros núcleos. Éstos, conforman un escenario
de casos diferentes y representativos a la vez, lo que hace atractivo el estudio
de todos ellos. Además, va a permitir comprobar si las conclusiones que se
obtuvieron para el Titanio se pueden extrapolar a otros casos.

6.2. Superficies de enerǵıa potencial 1D

Como gúıa para los cálculos más sofisticados en 2D, presentamos primero
las curvas de enerǵıa potencial cuando solo es tenida en cuenta la defor-
mación, figura (6.1). Su visualización servirá como gúıa para interpretar las
superficies bidimensionales de la siguiente sección y para entender resultados
que serán discutidos posteriormente.
Se muestran a la izquierda las curvas para los núcleos 54Cr, 52Ti 24Mg y
32Mg (de arriba a abajo) con los dos tipos de función de onda utilizados y
diferentes proyecciones. En la parte derecha de dicha figura y al lado de su
correspondiente potencial, se muestra el apareamiento que se obtiene para
protones y neutrones.
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Figura 6.1: En la parte izquierda podemos ver los pozos de potencial en función
solamente de la variable q para el 54Cr, 52Ti 24Mg y 32Mg (de arriba a abajo) en
diferentes aproximaciones, ver leyenda del panel (a), y para J = 0 en los casos en
los que se proyecta a momento angular. A la derecha de cada núcleo se muestran
las enerǵıas de apareamiento para los dos tipos diferentes de funciones de onda,
ver leyenda del panel (b).
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Las superficies del Cromo presentan todas dos mı́nimos, uno prolate y
otro oblate, siendo la curva HFB la más plana y la que se encuentra a una
enerǵıa más alta. Si se proyecta a momento angular (HFB+AMP) la cur-
va de potencial se hace un poco más profunda y los mı́nimos se desplazan
ligeramente a deformaciones mayores. La proyección con ambos operado-
res (HFB+PNAMP) hace que todav́ıa se gane más enerǵıa, excepto en los
puntos en los que las correlaciones de apareamiento son cero. El caso PN-
VAP+PNAMP es para el que se tiene la curva más profunda, el mı́nimo
prolate aparece más marcado y se encuentra un ”hombro” en q = 240 fm2

que, en este caso, va a estar producido por un cruce de niveles.
En la aproximación PN-VAP+PNAMP para el núcleo 52Ti encontramos una
coexistencia de formas oblate y prolate con un hombro prolate superdefor-
mado. En el núcleo 24Mg observamos un mı́nimo deformado profundo prolate
y otro, aproximadamente a 5 MeV por encima, oblate. El 32Mg presenta una
superficie más plana, con un mı́nimo deformado prolate y a dos MeV de
enerǵıa por encima, otro mı́nimo oblate.
Las curvas que se obtienen a nivel de campo medio son las que más difieren
con respecto a las de las otras aproximaciones, obteniendo incluso una forma
esférica para el 52Ti. Sin embargo, las correspondientes a las aproximaciones
HFB+AMP, HFB+PNAMP y PN-VAP+PNAMP, muestran formas pareci-
das entre śı, aunque es esta última la que proporciona mayor ganancia de
enerǵıa en todos los casos.

En la parte derecha de la misma figura, podemos ver el apareamiento
de forma separada para neutrones y protones correspondiente a funciones
de onda intŕınsecas tipo PN-VAP o HFB como función de la deformación,
consultar la leyenda del panel (b).
Para el 54Cr, el apareamiento que viene de la aproximación de HFB se hace
cero tanto para protones (q = 100-240 fm2) como para neutrones (q = 100-
120, 280-340 fm2). El mı́nimo prolate se encuentra en una deformación de
120 fm2, en la que ambas correlaciones han colapsado a cero. Para el caso
PN-VAP, el apareamiento oscila, de media, entre de 4 y 7 MeV aunque, para
deformaciones muy oblates, llega hasta los 10 MeV.
En el 52Ti, obtenemos un comportamiento oscilante del apareamiento en
función de la deformación. Análogamente que para el núcleo anterior, en la
aproximación HFB se da un colapso de las correlaciones de apareamiento, en
este caso para los neutrones, en dos deformaciones que coinciden con las mis-
mas en las que se localizan el mı́nimo prolate y el hombro superdeformado.
La misma tendencia vista para los dos núcleos anteriores se observa en los
Magnesios. Por una lado, la enerǵıa de apareamiento es cero en las deforma-
ciones en las que se obtiene el mı́nimo HFB y por otro, tenemos valores de
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apareamiento mayores que no llegan a colapsar nunca, para las funciones PN-
VAP. Merece la pena destacar el caso del 24Mg, que tiene el mismo número
de protones que neutrones y, sin embargo, se puede ver que las correlaciones
de apareamiento obtenidas en ambos canales es diferente, lo que se expli-
ca gracias al efecto anti-apareamiento de Coulomb (Coulomb anti-pairing
effect) [104].

6.3. Superficies de enerǵıa potencial 2D

En esta sección, estudiamos las curvas de enerǵıa potencial, pero ahora
con respecto a los dos grados colectivos de libertad para una selección de
núcleos. A la deformación cuadrupolar, del apartado anterior, se suman aho-
ra las fluctuaciones en el apareamiento, incluidas al constreñir en la nueva
coordenada δ, como se mostró en la sección (4.4).

En todas las superficies de enerǵıa en 2D mostradas a continuación, los va-
lores para q están en fm2 y la enerǵıa en MeV. Asimismo, se puede ver la
solución autoconsistente correspondiente a cada una de ellas como una ĺınea
de puntos.
Aparte del interés intŕınseco de las PES, nos van a mostrar las diferencias
que surgen al utilizar una u otra de las aproximaciones estudiadas y van a
ayudarnos a entender e interpretar los espectros de excitación que veremos
en la siguiente sección.

6.3.1. PES con proyección a diferente momento angu-

lar

En esta sección queremos analizar, principalmente, como son las superfi-
cies de enerǵıa cuando se proyecta a diferente momento angular. No obstante,
también se van a explicar algunas superficies en las mismas aproximaciones
que vimos con anterioridad para el Titanio. Para hacer este análisis hemos
elegido el núcleo 54Cr. Sus superficies se muestran en la figura (6.2).
Empezamos por el caso HFB, panel (a). La superficie tiene un mı́nimo prola-
te a 100 fm2 y otro menor oblate a 60 fm2. El mı́nimo prolate se extiende en
el eje Y hasta zonas donde las correlaciones de apareamiento se van a cero.
Observamos que para valores de q mayores que 50 fm2, las equipotenciales
son paralelas al eje de las deltas (eje y) para δ pequeños y perpendiculares
para valores grandes de δ. Ese valor de delta, para el que se da el cambio, se
encuentra alrededor de δmax = 2.5 para la región de las q donde es energéti-
camente interesante, esto es, donde encontramos el mı́nimo del potencial y

94



6.3 PES 2D 95

alrededores. Esto nos indica que, si fijamos el q, para valores de δ < δmax

cambiar el apareamiento de una función de onda no cuesta mucha enerǵıa,
teniendo un potencial blando en esa dirección. Sin embargo, superado ese
valor de δmax, ese potencial se vuelve duro y moverse en la dirección δ im-
plica un gran coste de enerǵıa. Si miramos ahora lo que ocurre cerca de la
configuración esférica, encontramos un valle alrededor de δ = 2.5 donde la
enerǵıa crece si uno trata de aumentar o disminuir las correlaciones de apa-
reamiento. Esto está relacionado con el hecho de que alrededor de la forma
esférica la configuración es muy pura, teniendo cuatro protones en la subcapa
f7/2 y dos neutrones en la p3/2. Las otras subcapas están lejos en enerǵıa, de
modo que modificar el apareamiento va a implicar un coste de enerǵıa grande.

A continuación, analizamos el efecto de proyectar al número de part́ıculas
en aproximación VAP, panel (b). Observamos que las equipotenciales se des-
plazan a valores más altos de δ. En concreto el mı́nimo prolate se desplaza
hasta δ = 2. Los mı́nimos ahora están más pronunciados y son un poco más
profundos.

Pasamos ahora a ver el efecto puramente de la proyección del momento
angular (AMP) para momento angular J=0. En el panel (c) se muestran los
resultados para el caso HFB+AMP sin ningún tipo de corrección. En este
caso, al igual que para el puro HFB y contrariamente al caso PN-VAP, el
mı́nimo del potencial se extiende hasta δ = 0, lo que nos está indicando que
es necesario restaurar la simetŕıa del número de part́ıculas para incluir, de
forma correcta, las correlaciones de apareamiento.
Dado que no tenemos en promedio el número de part́ıculas, se hace a cada
punto de la red la corrección al número de part́ıculas dada por los multipli-
cadores de Lagrange:

Ecorr = EI + λZ(NZ0 −NZ) + λN(NN0 −NN), (6.1)

donde λZ y λN son los multiplicadores de Lagrange para protones y neu-
trones respectivamente; EI la enerǵıa proyectada a momento angular; NZ0 y
NN0 es el número exacto de protones y neutrones; y NZ NN el número de
protones y neutrones que se obtienen en la proyección.
Esta corrección con los multiplicadores de Lagrange es implementada para
obtener los estados del espectro, ya que es introducida en la ecuación de HW
(3.145), por lo que es interesante visualizar la superficie asociada ya corregida
que se muestra en el panel (d).
Esta corrección principalmente tiene el efecto de desplazar los mı́nimos a zo-
nas con correlaciones de apareamiento distintas de cero, haciendo que este ti-
po de superficies sean muy parecidas a las de la aproximación HFB+PNAMP.
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En este caso, pasamos de tener el mı́nimo a cero correlaciones de apareamien-
to, a tenerlo en δ = 1.5.
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Figura 6.2: Superficies de enerǵıa potencial para el 54Cr en el plano (q, δ). En
ĺıneas de puntos se pueden ver los contornos de 0 hasta 3 MeV de 1 MeV cada
uno. En ĺınea continua los contornos desde 4 a 10 Mev en intervalos de 2 MeV.
A la derecha se puede ver la escala de colores en MeV. Cada superficie ha sido
normalizada a cero de forma independiente con respecto a su mı́nimo de enerǵıa.

Podemos ver el efecto de ambas proyecciones a la vez en las curvas
HFB+PNAMP (e) y PN-VAP+PNAMP (f). Si comparamos el caso PN-
VAP con el PN-VAP+PNAMP podemos ver el efecto de la proyección al
momento angular cuando ya se ha tenido en cuenta la proyección del número
de part́ıculas. Vemos que los mı́nimos se desplazan a valores un poco ma-
yores de q y se hacen más profundos, sin embargo no se encuentra ningún
movimiento en la dirección de δ. Si comparamos ahora ambas superficies
(HFB+PNAMP versus PN-VAP+PNAMP) entre śı, vemos que presentan
un comportamiento cualitativamente similar, sin embargo, los mı́nimos para
el primero de los casos son mucho más blandos, en especial el prolate, para
valores pequeños del δ.
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Por último, en las figuras (g) (h) y (i), se muestran los potenciales dentro
de la aproximación PN-VAP+PNAMP para momento angular creciente J =
2, J = 4 y J = 6 respectivamente.
Antes de discutir estas superficies, es conveniente hacer una aclaración. En
la aproximación semiclásica de Cranking [58] se debeŕıa añadir el término
−ωJx a la ecuación variacional (3.40), de manera que ésta quedaŕıa:

δ

δΦ
〈Φ|Ĥ|Φ〉 − ω

δ

δΦ
〈Φ|Ĵ |Φ〉 = 0 (6.2)

La frecuencia de Cranking es determinada por la relación 〈Ĵ〉 =
√

J(J + 1)
y ω es el multiplicador de Lagrange que asegura que el valor medio del mo-
mento angular sea 〈Φ|Ĵ |Φ〉 = J . En este caso, este término no es tenido en
cuenta, por lo que estamos describiendo el caso J = 0, ya que como nuestras
funciones de onda no rompen simetŕıa temporal la condición 〈Ĵ〉 = 0 siempre
se cumple. Para un estudio más completo este término debeŕıa ser incluido
y calculado para cada valor de J . El hecho de imponer esa condición a las
funciones de onda intŕınsecas, que forman la malla de puntos con los que
se realizan los cálculos (en una o dos dimensiones), implica que la enerǵıa
va a ser minimizada para un momento angular óptimo igual a cero. Esto
supone que tenemos una función de onda tipo PN-VAP optimizada para el
número de part́ıculas correcto y momento angular J = 0, de tal manera que
al permitir las fluctuaciones y hacer el generador de coordenadas, el valor
de la enerǵıa para J = 0 no va a verse afectado mucho mientras que las
de los estados con diferente J śı se van a ver corregidas. Esto hace que las
variaciones en las enerǵıas de excitación sean más importantes para Js más
altos cuando se hace el PN-VAP, como podrá apreciarse en los espectros de
la siguiente sección.
Volviendo a los potenciales, observamos en estos paneles, como al proyectar
para diferentes valores del momento angular las superficies se van achatan-
do para valores más altos del momento angular. Esto supone que el mı́nimo
de la enerǵıa se encuentra en valores más bajos de δ. Lo que indica que si
se aumenta el momento angular, el sistema tiende a tener enerǵıas de apa-
reamiento menores. Además, podemos ver que el mı́nimo oblate se desplaza
ligeramente hacia el caso esférico.
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6.3.2. PES para núcleos con diferente grado de colec-

tividad

Esta sección está dedicada a las superficies de contorno de la enerǵıa
para núcleos con diferente grado de colectividad. Se estudian las superficies
de enerǵıa potencial para los isótopos del Magnesio 32Mg, 24Mg y para los
isótopos del Calcio, que tienen un cierre de capa en Z=20, 50Ca, 52Ca y 54Ca.
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Figura 6.3: Superficies de enerǵıa equipotencial para el 24Mg.

En la figura (6.3) podemos ver los potenciales para el 24Mg. Presenta,
de todos los núcleos analizados, los potenciales más estrechos y con mayor
pendiente de todos. Tiene un máximo prolate muy profundo y otro mı́nimo
oblate a varios MeV de enerǵıa por encima.
La solución autoconsistente, para los casos de HFB, tiene cero correlacio-
nes de apareamiento para las deformaciones 60, 80 y 100 fm2. Además, si
la comparamos con la que se obtiene para el caso PN-VAP, vemos que para
deformaciones prolates mayores se obtienen valores más bajos para las corre-
laciones. Es importante notar que en los casos en los que los puntos no pasen
por los mı́nimos no tendremos autoconsistencia.
Cuando no se tiene en cuenta la proyección al número de part́ıculas, casos
HFB y HFB+AMP, paneles (a) y (d), el mı́nimo se encuentra para δ = 0.
Si es tenida en cuenta, el mı́nimo se desplaza hasta δ = 1.5 para los casos
HFB+PNP y HFB+PNAMP, paneles (b) y (e), o δ = 2 si se utilizan funcio-
nes intŕınsecas tipo PN-VAP, paneles (c) y (f).
Si no se tiene en cuenta la proyección del momento angular, casos de fila
superior de la figura, el mı́nimo absoluto se da para una deformación de 60
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fm2 mientras que si es tenida en cuenta, fila inferior de la misma figura, se
produce un desplazamiento hasta q=80 fm2.

El 32Mg se muestra en la figura (6.4). Si comparamos estas superficies
con respecto a las superficies del 24Mg observamos que las primeras son más
anchas y más planas en la dirección q pero, sin embargo, presentan mayor
pendiente en la coordenada δ.
Cuando no se hace la proyección al momento angular (fila superior) presenta
una estructura esférica, con el mı́nimo en q = 0. Las mismas ideas explicadas
anteriormente para los otros núcleos aplican en este caso también.
Si nos centramos en la aproximación más completa, PN-VAP+PNAMP (pa-
nel f) se observan dos mı́nimos deformados, el más profundo para una defor-
mación de 100 fm2 y δ = 2. El otro es oblate para una deformación de -40
fm2 y δ = 2.5 encontrándose aproximadamente a una enerǵıa de 2 MeV por
encima del primero.
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Figura 6.4: Superficies de enerǵıa equipotencial para el 32Mg.

Para acabar con esta sección de superficies equipotenciales, se muestran
en la figura (6.5) las correspondientes a los isótopos del Calcio: 50Ca 52Ca y
54Ca sólo para el caso PN-VAP y su caso proyectado PN-VAP+PNAMP.
Es posible, por medio de esta gráfica, estudiar la evolución de las superficies
equipotenciales como función del número de neutrones. Si miramos la fila
de arriba, caso PN-VAP, todos tienen un potencial esférico debido al cierre
de capa para Z=20. Los contornos crecen rápido en la dirección de q dando
potenciales con gran pendiente aunque son bastante suaves en la coordenada
δ, por debajo del valor δ = 3.5. Según aumenta la colectividad, uno esperaŕıa
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obtener en la dirección q, potenciales que pasaŕıan de más estrecho a más
ancho. Sin embargo, esto no es lo que se observa para el caso del 52Ca. Este
hecho está relacionado con un cierre de subcapa para N=32, tema que se
volverá a tratar más tarde.
Si miramos las filas inferiores para los casos PN-VAP+PNAMP con J = 0
vemos el efecto que tiene la proyección del momento angular y que ya ha sido
notado con anterioridad. El potencial se suaviza en la dirección q produciendo
una estructura de dos mı́nimos, uno oblate y otro prolate en 60 fm2 y -60
fm2 respectivamente.
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Figura 6.5: Superficies equipotenciales para el 50Ca 52Ca y 54Ca (de izquierda a
derecha) y en aproximaciones PN-VAP (fila de arriba) y PN-VAP+PNAMP (fila
de abajo) para J = 0.

6.4. Espectros

En esta sección se van a analizar los espectros de los núcleos cuyas PES se
han estudiado en la sección anterior. Los espectros se han calculado siguiendo
las mismas indicaciones que se explicaron en la subsección 4.5.3. De nuevo,
para evaluar el impacto de las fluctuaciones de apareamiento, los estados de
los espectros se representan en azul y rojo, según se haya tomado una varia-
ble (1D) o dos (2D) respectivamente.

Para entender los espectros hay que hacer las siguientes consideraciones.
Cuanto más deformado sea un objeto, mayor va a ser su momento de inercia,
lo que conlleva un espectro más comprimido, por lo que para interpretar el es-
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pectro habrá que tener en cuenta si el objeto se hace más o menos deformado
cuando se exploran más grados de libertad. Además, para la restauración del
momento angular, tendremos estados con momento angular distinto de cero,
que estarán energéticamente más altos de lo que debeŕıan pues la aproxima-
ción tipo PAV (que es la que está siendo usada aqúı) presenta un momento de
inercia menor que el que se obtendŕıa en una aproximación tipo AM-VAP [58]
siendo éste uno de los motivos que hace que los espectros se estiren. El efecto
contrario lo va a dar el apareamiento. Para una misma deformación, a mayor
apareamiento se obtiene un núcleo más superfluido y por tanto, el momento
de inercia asociado es menor. Esto quiere decir que cuando obtengamos so-
luciones con más apareamiento (caso PN-VAP frente a HFB) los espectros
van a ser más estirados.

6.4.1. Espectros para el 54Cr

Empezamos analizando los espectros que se obtienen para el 54Cr, figura
(6.6).

Si tomamos el espectro que viene de la aproximación PN-VAP+PNAMP
(espectro de la izquierda de la figura) y comparamos el caso 1D con el 2D,
observamos que el segundo se encuentra más comprimido que el primero y
esta bajada de enerǵıa aumenta a mayor momento angular y para estados más
excitados. Para aclarar este punto, conviene hacer las siguientes aclaraciones.
Una aproximación VAP al momento angular, de acuerdo a la expansión a
primer orden de Kamlah [105], se haŕıa de la siguiente manera: la función de
onda intŕınseca |Φ〉, se determinaŕıa minimizando la enerǵıa:

E ′ = 〈Φ|Ĥ|Φ〉 − ω〈Φ|Ĵx|Φ〉. (6.3)

Mientras que ω estaŕıa determinado al constreñir 〈Jx〉 =
√

J(J + 1). La
enerǵıa entonces, vendrá dada por:

EJ =
〈Φ|ĤP J |Φ〉
〈Φ|P J |Φ〉

(6.4)

Esta prescripción aplica para las tres aproximaciones utilizadas. Para el caso
J = 0 se cumple que: 〈Φ|Ĵx|Φ〉 = 0. Para momento angular distinto de
cero, esto ya no es cierto porque nuestra función de onda no rompe inversión
temporal, de modo que ya no va a satisfacer la ligadura del momento angular.
Esto implica que nuestras aproximaciones favorecen los estados con J = 0
porque, en este caso, estamos haciendo una aproximación VAP mientras que
para otros momentos angulares estamos haciendo una proyección PAV. Desde
esta perspectiva, es obvio que la calidad de la aproximación disminuye con
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valores crecientes del momento angular. Por tanto, estas predicciones teóricas
que dan espectros muy estirados, esperaŕıamos que mejoraran si se permitiera
la ruptura de la simetŕıa de inversión temporal [106].

0

2

4

6

8

10

12

14

E 
(M

eV
)

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

01
+

21
+

41
+

61
+

02
+

22
+

42
+

62
+

03
+

23
+

43
+

63
+

04
+

24
+

44
+

64
+

PN-VAP+PNAMP HFB+PNAMP HFB+AMP

54Cr

Iσ
π 2D

Iσ
π 1D

Figura 6.6: Espectros de excitación para el 54Cr, obtenidos tras implementar un
generador de coordenadas a las tres aproximaciones que se vienen estudiando y que
están indicadas en la parte inferior de la figura. El color azul o ĺınea discontinua se
corresponde con un cálculo unidimensional, mientras que el rojo o ĺınea continua
es para uno bidimensional. Las enerǵıas están normalizadas al estado fundamental
y los espectros no han sido agrupados en bandas en base a algún observable, sino
que han sido numerados según el orden en el que se han calculado teóricamente
con σ creciente para estados más excitados.

El hecho de que el valor óptimo de la función intŕınseca se dé para J = 0,
se traduce en que si permitimos las fluctuaciones en el sistema y la mezcla de
configuraciones con otras funciones de onda, no sólo con la autoconsistente,
las correcciones que vamos a encontrar para la enerǵıa del estado J = 0 van
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a ser pequeñas. Sin embargo, para los demás estados excitados tendremos un
cambio apreciable.
Por otro lado, la autoconsistencia, también juega un papel importante pues,
de alguna forma, va a limitar la ganancia de enerǵıa que se va a obtener cuan-
do se pasa de un cálculo 1D a otro 2D al estar en el segundo caso contenidos
los valores del primero y hacer uso del principio variacional. Se puede ver,
paneles (f) y (i) de la figura (6.2), como los puntos de la solución autocon-
sistente van a seguir un camino que pasa por los mı́nimos y puntos de silla
de la superficie bidimensional para el caso en el que el momento angular es
J = 0 mientras que esto no ocurre para el caso J = 6.

Todo esto se traduce en que el método GCM baja la enerǵıa de los estados
con momento angular alto (2+, 4+, 6+) más que la del fundamental (0+), lo
mismo que para estados que no pertenezcan a la banda Yrast (σ mayor que
uno), cuando se hace un análisis bidimensional frente al unidimensional. Esto
se puede apreciar en los valores absolutos de los niveles de enerǵıa del espectro
recogidos en la tabla (6.1).
Podŕıamos decir que, considerar un grado de libertad adicional, compensa de
manera parcial el problema ya mencionado acerca de una proyección VAP
para momento angular igual a cero y otra PAV para cuando es distinto de
cero. En realidad, lo que estamos haciendo al tener en cuenta otro grado
de libertad, es una aproximación VAP restringida (restricted variation after
projection, RVAP) para el momento angular [17].

A continuación, nos centramos en el espectro que se obtiene si se utiliza
la aproximación HFB+PNAMP (espectro del medio de la figura (6.6)). El
aspecto general es similar al que se observa para la aproximación anterior,
lo cual es consistente con el hecho de que las superficies de enerǵıa de estos
dos casos también teńıan un gran parecido. Sin embargo, el comportamiento
cuando se incluye el segundo grado de libertad, de nuevo, es diferente en
este caso que lo que se obteńıa en la aproximación PN-VAP+PNAMP. Se
observa que varios de los estados 2D se encuentran por debajo de los corres-
pondientes 1D y, en particular, la banda del fundamental está más estirada
en 2D que en 1D. La razón por la que esto ocurre es debido a la falta de
autoconsistencia en esta aproximación, que puede verse en los paneles (b) y
(e) de la figura (6.2). Se observa que la solución autoconsistente no pasa por
el mı́nimo que se obtiene en 2D, de modo que ahora el fundamental ya no
tiene por qué encontrarse casi para el mismo valor, pudiendo experimentar
una ganancia en la enerǵıa considerable.
Esto, unido a que una exploración de las fluctuaciones de apareamiento inclu-
ye correlaciones que conllevan un momento de inercia asociado menor, hace
que los espectros mostrados en esta aproximación se alarguen para el caso
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0+1 0+2 0+3 0+4
PN-VAP+PNAMP 1D -476.636 -471.566 -469.188 -467.530

2D -476.865 -472.232 -469.951 -469.004
HFB+PNAMP 1D -474.985 -470.285 -467.371 -466.677

2D -475.809 -470.720 -468.951 -467.311
HFB+AMP 1D -473.522 -471.282 -468.630 -466.018

2D -474.137 -473.182 -472.734 -470.452

4+1 4+2 4+3 4+4
PN-VAP+PNAMP 1D -473.735 -468.881 -467.890 -466.329

2D -474.010 -470.430 -468.493 -467.906
HFB+PNAMP 1D -471.957 -467.126 -465.919 -464.291

2D -472.290 -468.297 -467.289 -466.139
HFB+AMP 1D -471.266 -467.626 -466.576 -464.753

2D -471.675 -469.401 -468.749 -467.984

Tabla 6.1: Enerǵıas absolutas (en MeV) para los cuatros estados más bajos del
54Cr para dos momentos angulares distintos; parte superior J = 0 y parte inferior
J = 4.

en que se tienen en cuenta dos dimensiones.
Pese a que el caso HFB+PNAMP en 2D, según se incluyen más correlaciones
y se permite la mezcla de configuraciones, se va acercando a la solución PN-
VAP+PNAMP, podemos decir a la vista de los espectros, que no la alcanza
a un nivel suficiente.

Por último, analizamos el espectro obtenido para el caso HFB+AMP (es-
pectro de la derecha de la figura (6.6)). Es el que presenta una apariencia más
comprimida de los tres casos estudiados, ya sea cuando se toma un grado de
libertad o dos. Esto es debido, para este núcleo en esta aproximación, a que
para los mı́nimos de la enerǵıa, tanto en una como en dos dimensiones, se ob-
tienen menos correlaciones de apareamiento. Incluso van a hacerse cero para
el caso unidimensional, panel (d) de la figura (6.2). Esto va asociado, como
ya hemos dicho, a momentos de inercia mayores y espectros más comprimi-
dos. Sin embargo, esta compresión del espectro ocurre también en núcleos
con diferentes estructura, como era para el caso del Titanio (figura (4.7)) y
se verá en la siguiente sección para los Magnesios (figuras 6.7 y 6.8), por lo
que podemos afirmar que existe una explicación a este hecho relacionada con
la ausencia de la proyección al número de part́ıculas en esta aproximación,
como ya se explicó en el análisis que se haćıa en el caṕıtulo 5 donde se es-
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tudiaban aspectos relacionados con esta aproximación. Las soluciones de la
ecuación de HW, en esta aproximación, van a tener mucha mezcla debido
a contribuciones espurias cuyo origen es la no conservación del número de
part́ıculas.

6.4.2. Espectros para los Magnesios

A continuación, pasamos a estudiar los espectros de dos isótopos del Mag-
nesio. Estos núcleos son más ligeros que los dos primeros, siendo su número
atómico 12, con 12 y 20 neutrones respectivamente. En lo que respecta al
comportamiento de los espectros en función de la aproximación tomada, en-
contramos que es el mismo que ha sido discutido con detalle para los núcleos
54Cr y 52Ti, constatando aśı la validez de nuestras interpretaciones.
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Figura 6.7: Espectros para el 32Mg en diferentes aproximaciones.

105



106 PES y espectros

En la figura (6.7) se muestra el espectro del 32Mg. Podemos ver que glo-
balmente el espectro PN-VAP+PNAMP se encuentra comprimido debido a
que este núcleo presenta un carácter muy colectivo, como puede observarse
en los potenciales de la figura 6.4, ya que si son comparados con el otro isóto-
po del mismo elemento, se observa que los primeros son mucho más anchos.
Si comparamos este espectro con el de la aproximación HFB+AMP, vemos
que pese a que existen marcadas diferencias, especialmente para los estados
más excitados (σ = 3 y 4), entre aquellos menos excitados con σ = 1 y 2, se
encuentran diferencias menores que en el caso del Titanio o el Cromo.
Este núcleo se ha demostrado experimentalmente que es deformado pese a
ser mágico en neutrones, ya que tiene N=20. Los valores de sus enerǵıas de
excitación E(2+), E(2+)/E(4+) y su valor de la probabilidad de transición
B(E2 0+1 → 2+1 ) indican la existencia de una banda rotacional para este
núcleo [107] [108].

Los espectros del 24Mg se muestran en la figura (6.8). Este núcleo pre-
sentaba un potencial duro en ambas direcciones. En comparación con el caso
anterior, encontramos grandes diferencias entre las aproximaciones. Para el
caso HFB+AMP se observa, una vez más, una bajada de los niveles 2D que
en esta aproximación es inusualmente grande. En este caso, las correlaciones
de apareamiento para funciones de onda intŕınsecas tipo HFB se van a cero
en el mı́nimo del potencial, figura (6.3), lo que va inducir un momento de
inercia asociado grande. Además de este efecto, tendremos que añadir el efec-
to de la contribución espuria de la no conservación del número de part́ıculas.
En la descripción de los estados que conforman los espectros, estamos con-
siderando dos grados de libertad colectivos; la deformación cuadrupolar y el
gap de apareamiento. Es por este motivo, que los estados que sean colecti-
vos van a estar muy bien descritos en nuestras aproximaciones. Sin embargo,
los estados genuinos de part́ıcula independiente, solo son descritos de for-
ma aproximada. En este núcleo se puede observar que el estado excitado 0+2
está muy alto en enerǵıa comparado con el dato experimental que lo sitúa en
10.855 MeV, lo que nos indica que no está bien descrito por tratarse de un
estado de dos cuasipart́ıculas.
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Figura 6.8: Espectros para el 24Mg en diferentes aproximaciones

6.4.3. Espectros para los Calcios

Por cerrar esta sección dedicada a los espectros, se muestran en la figura
(6.9) los espectros para los isótopos 50−52−54Ca solo en la aproximación PN-
VAP+PNAMP, por ser la más completa. De esta forma, se puede ver como
es la evolución de los espectros con el número de neutrones y, si tenemos en
cuenta el 54Cr y el 52Ti, el mismo análisis puede aplicarse con respecto al
número de protones. Observamos desplazamientos entre los niveles 2D y 1D
siguiendo la misma tendencia que los núcleos discutidos más arriba en esta
aproximación.
Según crece el número de neutrones, uno esperaŕıa un aumento de la colecti-
vidad, sin embargo si miramos los espectros, vemos que esto no es cierto pues
el 52Ca no parece una interpolación entre los otros dos núcleos vecinos. De
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hecho, varios de los estados excitados de la primera y segunda banda están a
una enerǵıa superior que los correspondientes al 50Ca y 54Ca, en particular,
es interesante el estado 2+1 . Este hecho ha sido interpretado como un posible
subcierre de capa en N = 32. Esta discusión se retomará en el caṕıtulo 7.
Destacar el hecho de que, sólo para en el 50Ca, se observa una inversión de
los niveles 2+3 y 2+4 que se encuentran por debajo de de los 0+3 y 0+4 corres-
pondientes.
Si comparamos este espectro con el obtenido para el 52Ti podemos ver el efec-
to de abrir la capa cerrada Z = 20. Los niveles para el Titanio, se encuentran
visiblemente por debajo de los del 50Ca.
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Figura 6.9: Espectros para los núcleos 50Ca 52Ca 54Ca en la aproximación PN-
VAP+PNAMP

En esta sección se han analizado los espectros de varios núcleos de dife-
rentes caracteŕısticas por un doble motivo. Por un lado entender el papel que
juegan las fluctuaciones de apareamiento en función de la estructura nuclear
y la aproximación empleada. Por otro, mostrar como los efectos a gran esca-
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la que se observan para el primer núcleo que hemos tomado de ejemplo, se
repiten en todos ellos en un modo sistemático.
Como resumen podemos decir que es el método PN-VAP+PNAMP en dos di-
mensiones, el que ofrece la mejor aproximación a la solución real del sistema.
No sólo por la inclusión de forma óptima de las correlaciones de apareamiento
en ambas dimensiones sino porque, además, la ganancia que se obtiene en la
enerǵıa para el espectro, debida el efecto de la inclusión de este grado extra
de libertad, va en una dirección más acorde con lo obtenido experimental-
mente.
Con respecto a las otras aproximaciones podemos decir que, los espectros
HFB+AMP difieren mucho de los obtenidos con las otras dos aproximaciones.
Para los de tipo HFB+PNAMP, tenemos el problema de la autoconsistencia,
pero podemos decir que se parecen más a los de tipo PN-VAP+PNAMP,
si bien sus estados están en general a enerǵıas superiores. Sin embargo, los
espectros HFB+AMP y HFB+PNAMP tienen las mismas funciones de on-
da intŕınsecas por lo que se puede deducir, que parte de esas divergencias
obtenidas, tienen su origen en el número incorrecto de part́ıculas.

6.5. Resumen

Como resumen a este descriptivo y extenso caṕıtulo, en el que se han dis-
cutido las superficies de enerǵıa potencial y los espectros para varios núcleos
como función de q y δ recogemos, a modo de śıntesis, las principales conclu-
siones que han sido extráıdas:

Podemos decir que, en general y de manera independiente a la apro-
ximación elegida, las superficies de enerǵıa potencial muestran que los
núcleos presentan una dependencia más suave con el grado de libertad
del apareamiento. Si bien para un régimen donde el apareamiento es
muy fuerte, la superficie de enerǵıa potencial se vuelve escarpada pues
la enerǵıa crece rápidamente.

Hemos visto que la autoconsistencia en los cálculos es un importante
ingrediente. Los espectros de las aproximaciones PN-VAP+PNAMP y
HFB+PNAMP mostraban diferencias atribuibles a este factor.

Para la aproximación más completa, PN-VAP+PNAMP, la ganancia
de enerǵıa que resulta al incluir la nueva coordenada, por ejemplo para
el caso del 54Cr (tabla (6.1)), va desde 0.229 MeV para el estado 0+1 ;
0.666 MeV para el 0+2 hasta 1.549 MeV para el 4+2 .
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En los espectros hemos visto que por construcción los estados J = 0
están favorecidos en una proyección tipo PAV del momento angular.
Esto conlleva que los estados más excitados, ya sean del mismo o dife-
rente J , presenten mayores bajadas en la enerǵıa.
Para el caso en el que se tenga una proyección al momento angular,
seŕıa interesante poder implementar una proyección tipo VAP (tema
que está fuera del propósito de esta memoria) para obtener el momen-
to de inercia adecuado.

Si no se tiene en cuenta la proyección al número de part́ıculas, las corre-
laciones de apareamiento no van a ser incluidas de manera adecuada. Es
necesario, al menos, como hemos visto para las superficies de enerǵıa,
una corrección con multiplicadores de Lagrange.

Los espectros obtenidos sin proyección al número de part́ıculas tienen
los estados mucho más juntos, mostrando una apariencia de espectros
muy comprimidos hasta llegar a hacerlos poco realistas. Se han dado
argumentos que justifican esta situación.

Los espectros enfatizan por un lado, la relevancia de la proyección al
número de part́ıculas y por otro, el impacto que tienen sobre ellos las
correlaciones de apareamiento.

Para obtener mejores descripciones de los espectros, se debeŕıa permitir
la ruptura de la simetŕıa de inversión temporal e incluir excitaciones de
cuasipart́ıcula, tomando como punto de partida la aproximación PN-
VAP+PNAMP 2D.
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Caṕıtulo 7

Resultados de observables

nucleares como función de q y δ

Tras haber explicado el método que se ha seguido para el estudio de las
fluctuaciones de apareamiento en el caṕıtulo 4, haber discutido las diferencias
que se dan entre las distintas aproximaciones en los caṕıtulos 5 y 6, y haber
extendido el análisis de las superficies de enerǵıa potencial y los espectros
a diferentes núcleos en el caṕıtulo 6, pasamos a examinar otras magnitudes
nucleares relevantes. En particular; las enerǵıas de separación (sección 7.1),
las probabilidades de transición reducidas B(E2) (sección 7.2), las enerǵıas
de excitación 2+ para los isótopos del Calcio 50−54Ca (sección 7.3) y las tran-
siciones transiciones eléctricas monopolares ρ2(E0) (sección 7.4). Además, se
comparan los valores teóricos con los correspondientes datos experimentales.

Todos los cálculos de esta sección se obtienen con la aproximación PN-
VAP+PNAMP y la interacción de Gogny D1S, ya que se ha concluido en
los análisis anteriores que es la más completa.

7.1. Enerǵıas de separación

Las enerǵıas de separación de protones/neutrones sirven para determinar
posibles cierres de capa, apareciendo saltos bruscos en los números mágicos.
Además, determinan los ĺımites de la existencia de los núcleos como sistemas
ligados (ĺıneas de goteo) y juegan un papel clave en la astrof́ısica nuclear [109].
Dado que, por el momento, no se pueden calcular núcleos impares con este
grado de sofisticación de la teoŕıa, nos centramos en las enerǵıas de separación
de dos part́ıculas.
Empezamos con las enerǵıas de separación de dos neutrones. Se definen como
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la diferencia entre las enerǵıas de ligadura de los isótopos con N y N − 2
protones.

S2n(N) = BE(Z,N)−BE(Z,N − 2) (7.1)
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Figura 7.1: Enerǵıas de separación de dos neutrones en MeV para la cadena
isotópica del Mg.

En la figura (7.1) se representan las enerǵıas de separación de dos neu-
trones. Observamos que según aumenta el número de neutrones la enerǵıa
disminuye, como es lógico, si nos alejamos de la estabilidad. Para N = 16 se
produce una bajada abrupta de la enerǵıa que se corresponde con el subcie-
rre de la capa s1/2. Sin embargo, para el cierre N = 20 no se observa una
gran bajada en la enerǵıa, como cabŕıa esperar por ser un cierre de capa, ya
que el núcleo con ese número de neutrones, el 32Mg, es un caso especial, que
volverá a centrar nuestra atención en la sección 7.4. La conformidad entre los
datos experimentales y los valores teóricos es excelente ya que no se aprecian
diferencias significativas cuantitativas entre ellos.

De modo análogo, se puede definir la enerǵıa de separación de dos proto-
nes, como la diferencia entre las enerǵıas de ligadura de dos isótonos.

S2p(Z) = BE(Z,N)− BE(Z − 2, N) (7.2)

En este caso, damos los datos para la cadena N=30 formada por los núcleos
50Ca, 52Ti y 54Cr, tabla (7.1).
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7.2 Probabilidades de transición 113

S2p 1D 2D Exp
52Ti 25.349 25.314 24.472
54Cr 22.483 22.408 22.046

Tabla 7.1: Enerǵıas de separación entre dos protones (S2p) calculadas para la
cadena N = 30 y expresadas en MeV. Se muestra por columnas los resultados
de un cálculo unidimensional, otro bidimensional y los datos experimentales res-
pectivamente.

Las enerǵıas de separación, por definición, solo implican las propiedades
del estado fundamental. Por este motivo, las diferencias que se observan entre
los casos 1D y 2D son muy pequeñas, a la vez que se aprecia un notable
acuerdo con los datos experimentales (figura 7.1 y tabla 7.1). Dichos valores
para ambas enerǵıas de separación están tomados de [110].

7.2. Probabilidades de transición cuadrupo-

lares

Una medida complementaria a las enerǵıas de excitación para determinar
la colectividad de los estados nucleares, son las probabilidades de transición
reducidas B(E2). En esta sección estudiamos las probabilidades de transi-
ción cuadrupolares eléctricas reducidas, E2, entre estados 0+1 −→ 2+1 usando
funciones de onda calculadas con el método del generador de coordenadas y
proyectados simultáneamente a buen N y J . En general, la probabilidad de
una transición eléctrica reducida viene dada por la expresión:

B(Eλ, J2σ2 → J1σ1) =
1

2J2 + 1
|〈ΦNZJ1σ1‖M̂elec

λ ‖ΦNZJ2σ2〉|2, (7.3)

siendo:
M̂elec

λ = rλY2µ(θ,φ) (7.4)

el operador de transición que actúa sobre los protones. Para transiciones E2,
se toma λ = 2. Además, Y2µ(θ,φ) son los armónicos esféricos.
El elemento de matriz reducido 〈ΦNZJ1σ1 ||M̂elec

2 ||ΦNZJ2σ2〉 se calcula con los
estados del generador (3.139) [58, 65, 78, 111].
Debido a que se usan bases de part́ıcula independiente grandes, sin core, las
cargas efectivas de protones y neutrones son sus respectivas cargas desnudas:
qπ = 1 y qν = 0 [14, 112].
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En la figura (7.2) se pueden ver las probabilidades de transición cuadru-
polares eléctricas reducidas: B(E2, 0+1 −→ 2+1 ), para las cadenas isotópicas
formadas por isótopos del Magnesio (izquierda) y del Calcio (derecha) que
ya han sido utilizadas anteriormente.
En el primer caso, se observa que los resultados teóricos siguen, más o menos,
el comportamiento de forma experimental. Sin embargo, el comportamien-
to en zigzag no es tan acusado como en el caso experimental ya que en el
valor teórico para el 30Mg está ligeramente sobreestimado. Se observa que
los núcleos: 24Mg, 32Mg y 34Mg, tienen los valores de las B(E2) más altos,
indicando que dichos núcleos son más colectivos. Particularmente interesante
es el caso del 32Mg ya que tiene N = 20 y se esperaŕıa que el valor de B(E2)
en este caso fuese pequeño, sin embargo es superior al que se obtiene para el
30Mg.
Podemos decir que en general, las predicciones teóricas para la cadena del
Magnesio reproducen cualitativamente bien el comportamiento que muestran
los datos experimentales aunque los valores teóricos son más elevados. Cuan-
do se incluyen las fluctuaciones de apareamiento, se observa que el efecto que
producen, es disminuir los valores de las predicciones teóricas y acercarlos a
los datos experimentales.
Para los isótopos del Calcio, las fluctuaciones de apareamiento, tienen un
efecto mayor, llegando a reducir su valor en un 30% con respecto a los va-
lores de 1D. En este caso faltan datos experimentales para poder ofrecer
conclusiones.
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Figura 7.2: Probabilidades de transición B(E2, 0+1 −→ 2+1 ) para Magnesios y
Calcios. Los datos experimentales están tomados de [110] [113], [108], [114] y [115]

Para otros núcleos estudiados, se muestran las probabilidades de transi-
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7.3 Enerǵıa de excitación para los Calcios 115

ción en la tabla (7.2). Comparando estos valores podemos comprobar que los
núcleos más deformados, por ejemplo 54Cr frente al 50Ca o 52Ti presentan
transiciones de valores más altos. A medida que aumenta el número de pro-
tones fuera del cierre de capa (Z=20, Z=22 y Z=24 respectivamente para los
tres núcleos mencionados) los efectos colectivos tendrán mayor peso.
Por otro lado, observamos de nuevo que los valores teóricos obtenidos a par-
tir de estados que dependen de la fluctuación del número de part́ıculas y del
momento cuadrupolar son menores (para todas las transiciones calculadas)
que los que se obtienen en el caso de depender sólo del segundo.

B(E2↑) 54Cr 1D 54Cr 2D 54Cr exp 52Ti 1D 52Ti 2D 52Ti 2D
0+1 → 2+1 1256.233 1244.361 885.05 (36) 643.252 601.238 567 (51)

Tabla 7.2: Diferentes probabilidades de transición, B(E2↑), calculadas en una y
dos dimensiones expresadas en e2fm4 y comparadas con los datos experimentales
[110,113,116].

Podemos concluir que la tendencia que se observa cuando se incluye δ
consiste en disminuir las B(E2) con respecto a los casos 1D y, en los casos
estudiados, obtener un mejor acuerdo con el experimento, si bien los valores
teóricos para ciertos núcleos siguen siendo bastante elevados, mostrando las
limitaciones del presente marco teórico.

7.3. Enerǵıas de excitación 2+ para la cadena

isotópica del Calcio

El Modelo de Capas, tomando un potencial de oscilador armónico más
un término de esṕın órbita, predice la existencia de los ya bien conocidos
números mágicos [35, 117] (cierres de capa de dicho potencial): 2, 8, 20, 28,
50, 82 y 126. Estos números se corresponden con el número de protones o
neutrones que tiene ciertos núcleos y que presentan unas ciertas propiedades
notorias, como mayor estabilidad, saltos en las enerǵıas de separación, dife-
rencias entre las enerǵıas de ligadura con respecto a lo que se obteńıa para
el modelo de la gota ĺıquida, esfericidad, etc.
El desarrollo experimentado tanto por la f́ısica nuclear teórica como expe-
rimental ha permitido explorar nuevas regiones de la tabla de núcleos, po-
niendo nuevas cuestiones sobre la mesa como la discusión de la degradación
o aparición de nuevos cierres de capa fuera del valle de la estabilidad. Hemos
recuperado aqúı el análisis para los posibles cierres en N=32 y N=34 tomando
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la cadena isotópica del Calcio que ha sido ampliamente discutida [14,118,119]
introduciendo el nuevo grado de libertad.
Los observables relevantes para determinar un posible cierre de capa van a
ser, por las propiedades citadas más arriba, la enerǵıa del primer estado ex-
citado 2+ (presentaŕıa un valor alto); la probabilidad de transición entre ese
estado y el fundamental (por correlación con la enerǵıa de excitación serán
valores pequeños) y las enerǵıas de separación correspondientes presentaŕıan
un salto abrupto.
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Figura 7.3: enerǵıas de excitación para los primeros estados 2+1 de los isótopos
del Calcio: 50Ca, 52Ca y 54Ca. Los śımbolos azul y magenta (ćırculos y cuadrados
respectivamente) se corresponden con las enerǵıas de excitación calculadas con el
generador de coordenadas en una y dos dimensiones respectivamente, mientras que
los diamantes verdes muestran los datos experimentales.

Mostramos la enerǵıa de excitación del estado 2+1 para la cadena isotópica
50Ca, 52Ca y 54Ca, figura (7.3), dentro del marco de la coordenada genera-
dora con funciones de onda PN-VAP proyectadas a buen momento angular
y a buen número de part́ıculas. En azul y magenta están representados los
valores teóricos para cálculos 1D y 2D respectivamente y en verde los datos
experimentales.
Como ya hemos visto en los espectros, si comparamos los datos de 1D y
2D obtenemos valores más bajos de la enerǵıa de excitación para el segundo
caso. Por otro lado, las predicciones teóricas en 2D muestran el mismo com-
portamiento cualitativo que los datos experimentales para los puntos dados
por el 50Ca y el 52Ca y 54Ca. Sin embargo, cuantitativamente las predicciones
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7.4 Transiciones eléctricas monopolares. 117

teóricas dan valores más elevados. Para obtener mejores resultados, en este
caso en el que los Calcios tienen un cierre en Z = 20, seŕıa interesante poder
incluir en la descripción teórica excitaciones de cuasipart́ıcula.

Observamos que el estado 2+1 del núcleo 52Ca está claramente más alto
en enerǵıa que sus vecinos, por lo que N=32 puede ser interpretado como un
buen subcierre de capa [14].
Menos claro es el caso del 54Ca; la enerǵıa de su estado 2+1 correspondiente, no
es tan alta como la del mismo estado para el núcleo 52Ca pero tampoco baja,
como se esperaŕıa, hasta el nivel (o incluso más abajo) al que se encuentra el
del núcleo 50Ca. Recientemente se ha medido la enerǵıa de excitación para el
54Ca [120]. Nuestras predicciones se muestran de acuerdo con este resultado
experimental.
Concluimos, a la vista de la gráfica, que nuestros resultados con un generador
bidimensional se muestran de acuerdo con un posible subcierre de capa en
N=32 y N=34.

7.4. Transiciones eléctricas monopolares.

Estudiamos ahora las probabilidades de transición eléctricas monopolares.
En estas transiciones se cumple que ∆J = 0 y no hay cambio en la paridad.
En nuestro caso, vamos a estudiarlas entre estados 0+2 −→ 0+1 . Como las
correlaciones de apareamiento juegan un papel destacado en la descripción
de los estados 0+2 esperamos que para esta cantidad se encuentren diferencias
remarcables entre los casos 1D y 2D. El observable asociado a una transición
eléctrica monopolar es ρ2(E0), ecuación (7.6), y es relevante para estudiar
la coexistencia de forma cuando las enerǵıas de excitación de los estados 0+2
sean relativamente pequeñas o sean los primeros estados excitados del núcleo.
Se define el operador eléctrico monopolar a un cuerpo E0 como [121]:

T̂ (E0) =
∑

k

ekr̂
2
k (7.5)

Los elementos de matriz diagonales del solape de este operador definen el
radio de carga mientras que los no diagonales van a estar asociados a las
transiciones.
La probabilidad de transición monopolar se define como:

ρ2(E0) =
1

R4

∣∣∣∣∣〈Φf |
∑

k

ekr
2
k|Φi〉

∣∣∣∣∣

2

, (7.6)
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siendo R = 1.2A1/3 y Φi, Φf las funciones de onda de los estados iniciales y
final respectivamente, en este caso, la de los estados 0+2 and 0+1 .

Si los núcleos poseen estados con distintos mı́nimos en las PES para dife-
rentes deformaciones, entonces uno observa diferencias en el radio cuadrático
medio de carga. Por otro lado, debido a que la forma y el radio del núcleo
están ı́ntimamente relacionados, las correspondientes transiciones E0 van a
estar relacionadas con la forma que tienen los estados inicial y final implica-
dos [122,123]. Si un núcleo posee configuraciones con diferentes deformaciones
y se mezclan, se observarán transiciones eléctricas monopolares mayores. Por
ejemplo, la transición E0(0+2 −→ 0+1 ) permite diferenciar situaciones en las
que dos configuraciones compiten por ser el estado fundamental o el primer
excitado como es el caso de la isla de inversión para el 32Mg. En el marco del
modelo de capas, dos neutrones son excitados desde la capa d3/2 al orbital
intruso f7/2 dando lugar a una configuración deformada que compite con la
configuración esférica pudiendo incluso el estado intruso convertirse en el fun-
damental [115, 124]. En esta situación de competición entre configuraciones
y en ausencia de mezcla, uno esperaŕıa un estado deformado 0+1 y otro cerca
del esférico 0+2 o a la inversa.

En la figura (7.4), gráficas superiores, se muestran las enerǵıas de excita-
ción y los valores de E0(0+2 −→ 0+1 ) para los isótopos del Magnesio.
Si miramos la enerǵıa de excitación del estado 0+2 , gráfica superior izquier-
da (a), observamos que la diferencia entre los cálculos de 1D y 2D es de
aproximadamente de 1MeV y que ambos siguen la tendencia de los datos
experimentales, si bien los datos del caso bidimensional están ligeramente en
mayor acuerdo que los de una dimensión. El valor para el 24Mg presenta una
notable diferencia entre las predicciones teóricas y los datos experimentales,
probablemente porque éste es un estado de dos cuasipart́ıculas que no pode-
mos describir adecuadamente.
En la gráfica superior derecha (b) se representan los valores de ρ2(E0, 0+2 −→
0+1 ) para la cadena 24−34Mg. De nuevo, no encontramos diferencias cualitati-
vas entre los tres datos expuestos pues todos presentan el mismo comporta-
miento, aunque las predicciones del caso 2D presenta valores inferiores que
pueden llegar a ser significativos como el caso del 30Mg, para el cual el cálculo
2D reduce el valor que se obtiene para el caso 1D en un factor dos, reprodu-
ciendo de este modo el valor experimental.
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Figura 7.4: Enerǵıas de excitación para los estados 0+2 y ρ2(E0, 0+2 → 0+1 ) para
los isótopos del Magnesio (gráficas de arriba), los isótopos de Silicio (en el medio) y
isótopos del azufre (gráficas de abajo). Los datos experimentales han sido tomados
de las referencias: [125], [110], [122], [115].
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〈r2〉1/2ch (fm) 1D 2D Exp
24Mg 3.095 3.098 3.057
26Mg 3.065 3.068 3.034
28Mg 3.078 3.082 3.070
30Mg 3.106 3.110 3.111
32Mg 3.158 3.159 3.186
34Mg 3.210 3.213

Tabla 7.3: Radio nuclear de carga para el estado fundamental de los isótopos del
Magnesio, los datos experimentales han sido tomados de [126]

En la tabla (7.3) se dan los valores para el radio de carga en los isótopos
del Magnesio, para los dos tipos de cálculo y se compara con el experimento.
Ambos cálculos difieren ligeramente y muestran buen acuerdo con los datos
experimentales.

En los paneles del medio de la figura (7.4) se representan las enerǵıas de
excitación de los estados 0+2 (c) y las probabilidades de transición monopo-
lares (d) para los isótopos 28Si y 30Si del Silicio.
En este caso observamos apreciables diferencias tanto cualitativas como cuan-
titativas entre ambos casos. Las predicciones en 1D no ofrecen, para ninguna
de las dos magnitudes, ni el comportamiento ni el valor correcto, mientras
que el caso 2D mejora de forma considerable el acuerdo con los datos expe-
rimentales. En concreto, para el caso 30Si, encontramos una reducción en la
enerǵıa de excitación de 1.5 MeV con respecto al otro cálculo que hace que
baje hasta reproducir la tendencia experimental. Para el ρ, el valor 2D es un
factor 3 más pequeño que para el caso 1D, hasta situarlo de nuevo en acuerdo
con el comportamiento experimental.
Estos cambios tan grandes que observamos al incluir las fluctuaciones de
apareamiento, es probable que estén relacionados con el subcierre de la capa
2s1/2 que se tiene para N = 16. El hecho de permitir en dicha configuración
al sistema que explore el grado de libertad del apareamiento trae importantes
correlaciones que son las que van a originar estas bajadas que observamos en
los valores 2D.

Por último, en la zona inferior de la figura (7.4) se muestran los mismos
resultados para la enerǵıa y las transiciones monopolares, paneles (e) y (f)
respectivamente, ahora para los isótopos del Azufre.
Las conclusiones que pueden sacarse en este caso son análogas al caso de los
isótopos del Silicio. La aproximación con 1D no reproduce en modo alguno
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la enerǵıa de los estados 0+2 pues va incluso en sentido contrario al com-
portamiento experimental para el caso 32S. El considerar las fluctuaciones
de apareamiento reduce en 3 MeV el valor de la enerǵıa hasta situarlo en
ĺınea con el dato experimental. Lo mismo se puede decir para la intensidad
la transición monopolar donde una aproximación en 2D reduce el valor uni-
dimensional en un factor 2 de modo que los datos experimentales están en
este caso mejor reproducidos.

A partir de los resultados mostrados en este caṕıtulo, podemos concluir
que:

Se obtienen buenas predicciones teóricas para los observables calcu-
lados: enerǵıas de ligadura, transiciones, etc, que reproducen el com-
portamiento cualitativo experimental, obteniendo un mayor grado de
acuerdo cuando se incorpora la coordenada δ.

Los valores teóricos para ciertos núcleos siguen siendo bastante eleva-
dos, lo que nos indica que es necesario hacer mejoras en el método para
poder reproducir el comportamiento cuantitativo. Se espera que se ob-
tenga un mayor grado de precisión si:
a) Se hace una proyección VAP al momento angular.
b) Se incluyen grados de libertad extra, por ejemplo, mediante la rup-
tura de más simetŕıas, como la de inversión temporal.
c) Se pueden considerar excitaciones de quasipart́ıculas.
d) Se extienden los cálculos al caso triaxial.

Se dan los resultados de las enerǵıas de excitación de los estados 2+

para los Calcios. Tras analizar su comportamiento se puede interpretar
N=32 como un buen subcierre de capa mientras que para N=34 no es
tan robusto.
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Caṕıtulo 8

Vibraciones colectivas

Cuando en un núcleo se tienen excitaciones colectivas, esto es, excitacio-
nes que involucran varios nucleones, generalmente, se va a dar lugar al mo-
vimiento coherente de varios nucleones dentro del núcleo que se manifiestan
como un movimiento macroscópico del mismo. El estudio de los movimientos
colectivos nucleares es interesante ya que constituyen otra aproximación para
estudiar las interacciones a n-cuerpos y la fuerza nuclear. Estas excitaciones
colectivas pueden ser de diferente tipo. En este trabajo, estamos interesados
en las vibraciones cuadrupolares y de apareamiento. Para las primeras, se dio
una breve descripción en la sección 2.4. El concepto de vibración de aparea-
miento es análogo al de las vibraciones espaciales, pero para la coordenada
δ, en lugar de en la deformación, q.

Dedicamos la primera parte de este caṕıtulo al estudio de estas vibraciones
colectivas cuadrupolares y de apareamiento, sección 8.2. Es particularmente
interesante el caso de las segundas, ya que han sido objeto de estudio [88]
y son las que se encuentran asociadas a la nueva coordenada que se ha in-
corporado en este trabajo. Se investigará, si es posible, interpretar alguno
de los estados con momento angular J = 0 como una vibración genuina de
apareamiento. La cuestión principal que se plantea, es si existen de forma ge-
nuina o si están de alguna forma desdibujadas o amortiguadas por el grado
de libertad cuadrupolar.
Con el objetivo de encontrar las vibraciones asociadas a la forma y al apa-
reamiento de forma separada, es interesante saber el papel que juega cada
una de las coordenadas. Para ello, podemos desacoplar de algún modo am-
bos grados de libertad. Lo que se propone es lo siguiente; hacer dos series de
cálculos unidimensionales. En uno no se considera la interacción entre las di-
ferentes formas nucleares y en el otro, la interacción entre funciones de onda
con diferente apareamiento. Se estudian las funciones de onda en aproxima-
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ción PN-VAP+PNAMP del 52Ti con acoplamiento en q, esto es, cuando se
toma ésta como coordenada generadora y δ fijo para estudiar las vibraciones
cuadrupolares, subsección 8.2.1, aśı como el caso contrario, funciones de onda
con acoplamiento en δ y q fijo para estudiar las vibraciones de apareamiento,
subsección 8.2.2.

En la otra mitad de este caṕıtulo se discuten las funciones de onda colec-
tivas para estados 0+ del mismo núcleo, como función de la deformación y de
las fluctuaciones de apareamiento. Es decir, ya con un cálculo completo en
el que se considera el acoplamiento en δ y q. Las funciones de onda calcula-
das dentro de la aproximación PN-VAP+PNAMP se muestran en la sección
8.3 donde, además, se comparan con las funciones de onda obtenidas en las
subsecciones anteriores, 8.2.1 y 8.2.2.
Las mismas funciones de onda pero dentro de las otras dos aproximaciones
que estamos contemplando, se tratan en la sección 8.4. Es de esperar que se
encuentren diferencias apreciables según tomemos una aproximación u otra.
Nos van a ofrecer una interpretación f́ısica de los estados que representan, lo
que va a resultar de utilidad para entender efectos tales como la dependencia
lineal y la mezcla de estados, que se observan en la aproximación HFB+AMP.
Las funciones de onda 1D del Titanio también se discuten en la sección 8.1
como aproximación al estudio de las vibraciones cuadrupolares a partir del
caso autoconsistente, siendo el punto de partida de este caṕıtulo.

8.1. Vibraciones cuadrupolares. Caso autocon-

sistente

Para estudiar la posible aparición de modos de vibración en el espectro
nuclear, vamos a estudiar la estructura nodal de las funciones de onda co-
lectivas correspondientes al estado fundamental y los dos primeros estados
excitados 0+. La función de onda colectiva viene dada por la expresión de
G(q, δ) definida en (3.141), que se obtiene como resultado de resolver la ecua-
ción HW. Es usual tomar esta magnitud al cuadrado, sin embargo, si no se
toma el cuadrado, las funciones de onda van a cambiar de signo cortando el
eje de abscisas, y esta representación va a ser de utilidad a la hora de des-
cribir las vibraciones de forma o de apareamiento. El signo arbitrario de la
función de onda se escoge de manera que el estado fundamental sea positivo.
Tomamos como ejemplo el caso del 52Ti. Empezamos primero mostrando el
caso unidimensional, figura (8.1).
En la figura (8.1), panel (a), representamos los estados calculados en la apro-
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8.1 Vibraciones cuadrupolares. Caso autoconsistente 125

ximación PN-VAP+PNAMP. La función de onda del estado fundamental
está comprendida en un intervalo q ∈ [−160, 220] fm2 y presenta un máximo
oblate en q = −100 fm2 y otro prolate ligeramente más alto en q = 100 fm2.
Estos puntos se corresponden con los mı́nimos en la PES, panel (c) de la fi-
gura (6.1). El estado excitado 0+2 está definido también en el mismo intervalo
de deformación y tiene una estructura parecida a la del estado fundamental,
pero con el signo invertido en la parte prolate y una pequeña oscilación al-
rededor del punto esférico. Este tipo de estado, en el que se corta una vez la
ĺınea G = 0, es caracteŕıstico de una vibración tipo beta asociada a la de-
formación. El estado 0+3 presenta una estructura de dos nodos, esto es, corta
dos veces al eje X, y los máximos, en valor absoluto, se localizan, en este
caso, para valores mayores de q tanto en la parte prolate como en la oblate.
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Figura 8.1: Funciones de onda colectivas para el 52Ti con momento angular J = 0
como función de la deformación cuadrupolar q, en diferentes aproximaciones. La
ĺınea azul continua representa el estado 0+1 , la ĺınea de trazos magenta el estado
0+2 y ĺınea verde de puntos el 0+3 . La función de onda del estado 0+2 en la aproxi-
mación HFB+AMP ha sido multiplicada por un factor de escala igual a 0.5 para
poder representar los tres estados en la misma escala y que se puedan visualizar
correctamente. La ĺınea G = 0 está marcada para diferenciar la zona positiva del
eje Y de la negativa.

En el panel del medio de la figura están las funciones de onda correspon-
dientes al caso HFB+PNAMP. La función de onda del estado 0+1 tiene el
máximo prolate roto en dos, debido al colapso de la enerǵıa de apareamiento
de HFB para los neutrones que se da justo para esa deformación, 100 fm2,
panel (d) de la figura (6.1).
La función de onda para el estado 0+2 presenta una estructura de un nodo
con un máximo y un mı́nimo, siendo muy similar a la correspondiente para
el mismo estado en la aproximación anterior.
La función colectiva del estado 0+3 , si bien es similar a la del caso PN-
VAP+PNAMP, muestra un comportamiento más irregular alrededor de la
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126 Vibraciones colectivas

forma esférica y el mı́nimo oblate se encuentra por debajo del prolate en este
caso.

En la parte derecha de la figura están las funciones de onda correspon-
dientes al caso HFB+AMP. Su potencial, que se puede ver en el panel (c)
de la figura (6.1), presentaba la misma estructura de dos mı́nimos que los
anteriores por lo que es de esperar que las funciones de onda tengan una
distribución parecida.
El estado fundamental 0+1 , al igual que en el caso HFB+PNAMP, presenta
la separación en dos máximos del máximo prolate con respecto al caso visto
en la aproximación PN-VAP+PNAMP. Por lo demás, es bastante similar a
los dos casos previamente estudiados.
El primer estado excitado 0+2 es el que es más diferente, con respecto a sus
homónimos, de los que hemos visto hasta ahora. Presenta un mı́nimo muy
intenso (nótese que además está multiplicado por un factor 0.5 para que se
ajuste a la escala utilizada) para la deformación donde la enerǵıa de aparea-
miento de neutrones se anula.
El segundo estado excitado, 0+3 , presenta un primer máximo prolate muy
plano alrededor del esférico y dos mı́nimos de intensidad parecida, uno obla-
te y otro prolate, a deformaciones similares a las encontrados en los dos casos
anteriores.

8.2. Vibraciones simuladas en dos dimensio-

nes

8.2.1. Vibraciones cuadrupolares. Cálculos con acoplo

en q y δ fijo

Empezamos analizando qué ocurre cuando sólo tenemos acoplo en la coor-
denada q, como en el caso anterior, pero para otros valores de δ distintos a
la solución autoconsistente, tomando uno menor y otro mayor y mantenien-
do estos valores constantes para todo q. En la figura (8.2) podemos ver los
potenciales y las funciones de onda como función de q, pero en este caso solo
para los estados PN-VAP+PNAMP 0+1 y 0+2 .
Observamos que el pozo de potencial para el caso δ = 1.5, panel (a), está a
2.7 MeV más profundo que el del δ = 3.5, panel (b), de modo que cuando
se incorporen las correlaciones de apareamiento, las funciones de onda van
a estar inhibidas para valores altos de δ. Esto significa que en el análisis
que vamos a hacer conformando funciones de onda bidimensionales en base
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8.2 Vibraciones simuladas en dos dimensiones 127

a cálculos 1D, esto es, tomando una de las coordenadas como generadora y
haciendo un generador para cada valor fijo de la otra coordenada, no se van
a tener en cuenta consideraciones con respecto a la enerǵıa sobre qué valores
de q o δ son favorecidos o inhibidos. Este efecto va a jugar un papel impor-
tante para la interpretación de las funciones de onda en 2D. Por ejemplo, los
máximos que encontremos para valores grandes de δ es poco probable que se
mantengan y aparezcan en la función de onda total.
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Figura 8.2: Pozos de potencial (ĺınea continua negra) y funciones de onda para
los estados 0+1 (azul) y 0+2 (magenta) en un cálculo unidimensional en el que la
coordenada generadora es q y se fija el valor de δ = 1.5, panel (a) y δ = 3.5, panel
(b).

A continuación, extendemos el análisis a todos los valores de δ que for-
man la red en la que se realizan los cálculos, pero seguimos sin permitir que
interactúen estados con diferente enerǵıa de apareamiento. De modo que te-
nemos 10 valores de δ para los que se va a hacer, para cada uno de ellos, un
generador de coordenadas de 32 estados, que son el número de valores que
tenemos para q.
Si resolvemos la ecuación de HW (3.131) para todos los valores de δ que se
tienen, obtenemos 10 curvas similares a las de la figura (8.2). Estas curvas
se pueden fusionar en una y formar una superficie con las coordenadas (q,
δ). Si la representamos gráficamente, se obtienen las funciones de onda bidi-
mensionales para diferentes estados de la figura (8.3), paneles (a) (b) y (c).
Estas superficies son idealizadas puesto que se ha suprimido la interacción
entre distintos δ. Esto es, las funciones de onda que se observan en la figura
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128 Vibraciones colectivas

(8.3) son las que se habŕıan obtenido si hubiésemos resuelto la ecuación de
HW en dos dimensiones reales, con acoplo en q y δ pero suponiendo que:

〈q1δ1|HP̂NP̂ J |q2δ2〉 = 〈q1δ1|HP̂N P̂ J |q2δ1〉δδ2δ1 (8.1)

Además para una ecuación HW, como es el caso, hay que asumir también:

〈q1δ1|P̂N P̂ J |q2δ2〉 = 〈q1δ1|P̂N P̂ J |q1δ2〉δq2q1 (8.2)
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Figura 8.3: Funciones de onda GCM para los estados 0+1 , 0
+
2 y 0+3 (de arriba a

abajo) obtenidas combinando generadores en 1D para δ fija y con q como coorde-
nada generadora. Todas son en aproximación PN-VAP+PNAMP y para el núcleo
52Ti. Consultar el texto principal para una información más detallada.

Es importante notar dos aspectos. En primer lugar, cuando se representa
una función de onda bidimensional de un estado excitado y se produce un
cambio de signo, esto, va a dar lugar a una ĺınea nodal en vez de observar
solo un nodo. En segundo lugar, habrá que distinguir entre esta ĺınea y las
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8.2 Vibraciones simuladas en dos dimensiones 129

ĺıneas de contorno igual a cero y que nada tienen que ver con una ĺınea nodal,
sino que indican las colas de la función de onda cuando caen a cero.
En esta figura, en analoǵıa a lo que ocurŕıa en el caso unidimensional, se
observa una vibración beta de uno o dos fonones para los estados 0+1 y 0+2
respectivamente.

8.2.2. Vibraciones de apareamiento. Cálculos con aco-

plo en δ y q fijo

De manera análoga a como se han encontrado las vibraciones cuadrupola-
res asociadas a la deformación, es posible hacer una búsqueda de otro modo
nuclear colectivo de vibración, asociado en este caso al segundo grado de li-
bertad que estamos considerando, lo que se correspondeŕıa con una vibración
de apareamiento.

Empezamos por el caso más sencillo. Se toma como coordenada genera-
dora δ y se mantiene la deformación fija en valores para los que sabemos que
la función de onda tiene presencia, en este caso: q = 80 fm2 y q = −80 fm2.
Obtenemos los potenciales y las funciones de onda (a) y (b) de la figura (8.4)
respectivamente para esas deformaciones.
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Figura 8.4: Pozos de potencial (ĺınea continua negra) y funciones de onda para
los estados 0+1 (azul) y 0+2 (magenta) en un cálculo unidimensional. En los paneles
(a) y (b) se fija la deformación en q = 80 fm2 y q = −80 fm2 respectivamente y se
utiliza δ como coordenada generadora.
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130 Vibraciones colectivas

La enerǵıa viene representada en ĺınea negra continua. En ambos casos,
se muestra la forma de un pozo de potencial que decrece suavemente desde
δ = 0 hasta el mı́nimo en δ ≈ 2.5 y posteriormente crece con bastante pen-
diente a medida que crece el apareamiento δ. Las funciones de onda están
representadas por una linea discontinua azul para el estado 0+1 y magenta
para el estado 0+2 .
Para ambas deformaciones, q = ±80 fm2, el estado fundamental se encuentra
en la parte positiva del eje Y, mientras que el primer excitado muestra un
nodo, pues corta una vez el eje X. Por lo tanto, este estado se puede inter-
pretar como una vibración de apareamiento.

Después de mostrar un ejemplo de cálculo como función de δ y con q cons-
tante, seguimos una argumentación equivalente a la de la subsección 8.2.1.
Para cada uno de los 32 valores del intervalo de q que estamos tomando, se
hace un cálculo 1D usando δ como coordenada generadora. Es decir, tene-
mos 32 generadores de 10 puntos cada uno, que unidos, van a conformar una
función de onda en 2D que sólo tiene acoplo en δ.
De esta manera, se obtienen las funciones de onda de los paneles (a) (b) y
(c) de la figura (8.5) para los estados 0+1 , 0

+
2 y 0+3 respectivamente.

En este caso, la analoǵıa con el caso 2D real nos llevaŕıa a que la condición
(8.1) seŕıa ahora:

〈q1δ1|HP̂N P̂ J |q2δ2〉 = 〈q1δ1|HP̂N P̂ J |q1δ2〉δq2q1 , (8.3)

más, de nuevo, la condición dada por (8.2).

El estado fundamental tiene una interpretación clara pues no presenta
ningún cambio de signo. En el panel (b), para el estado 0+2 , se observa una
ĺınea nodal a lo largo de δ lo que nos indica que tenemos una vibración
genuina de apareamiento. El estado 0+3 se corresponde con una vibración de
apareamiento de dos fonones.
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Figura 8.5: Funciones de onda GCM para los estados 0+1 , 0
+
2 y 0+3 (de arriba a

abajo) obtenidas combinando generadores en 1D para q fija y δ como coordenada
generadora. Consultar el texto principal para una información más detallada.

8.3. Funciones de onda 2D reales, en un cálcu-

lo completo con acoplo en la deformación

y en el apareamiento

Las mismas funciones de onda para el mismo núcleo son representadas
ahora para el caso puramente bidimensional, sin hacer ninguna simplificación,
en el plano (q, δ), figura (8.6). Las superficies de enerǵıa potencial asociadas
a estas funciones de onda y que sirven de gúıa para interpretar las funciones
de onda se muestran en la figura (4.3).

Los contornos de la función de onda para el estado 0+1 se muestran en
el panel (a) de la figura (8.6). Encontramos, en fuerte correspondencia con
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132 Vibraciones colectivas

lo que se observa para el potencial, una estructura de dos máximos, aunque
ahora se observa una dependencia más suave con el grado de libertad del
apareamiento, con predominancia del lado prolate. Las deformaciones a las
que se encuentran son casi las mismas que para el caso 1D visto con anterio-
ridad, mientras que los valores de δ coinciden prácticamente con la solución
autoconsistente, que se puede ver marcada por puntos sobre la figura.

El estado 0+2 , panel (b) de la figura (8.6), tiene un máximo prolate y un
mı́nimo oblate, siendo ahora mayor en valor absoluto este último. Estos ex-
tremos están ahora en valores de δ menores que para el estado 0+2 . Hay un
cambio de signo entre el máximo positivo en q ≈ −60 fm2 y el mı́nimo que
toma valores negativos en q ≈ 140 fm2. Se encuentran separados por una
ĺınea nodal en q ≈ 40 fm2, por lo que este estado, se puede interpretar como
una vibración β en dos dimensiones. Conviene hacer la distinción entre esta
ĺınea y la ĺınea de contorno igual a cero que se observa aproximadamente
para -160 fm2 y 220 fm2 y que no es parte de la ĺınea nodal, sino que indica
que es la cola de la función de onda cuando cae a cero.

En el panel (c) está la función de onda para el estado 0+3 . Se ve una
estructura de tres picos: dos con valores negativos para formas muy deforma-
das y con grandes correlaciones de apareamiento (uno prolate y otro, el más
intenso de los tres, oblate). El tercero, con valores positivos, se encuentra en
80 fm2 y con valores bajos de apareamiento (0 < δ < 1.5).
Las posiciones a las que se encuentran los máximos con respecto a la coorde-
nada q son similares a lo que se ha obtenido para el caso unidimensional. El
hecho de que los picos que se dan para grandes deformaciones tengan fuertes
correlaciones de apareamiento es debido a que para esas deformaciones la
densidad de niveles es alta y el hecho de permitir al sistema moverse en la
coordenada δ dado un q fijo le permite a los estados colectivos moverse a
zonas con diferente apareamiento.
En esta función de onda encontramos dos partes diferenciadas marcadas por
la ĺınea nodal. Una está formada por dos segmentos perpendiculares al eje
q, uno en q ≈ −100 fm2 y otro en q ≈ 200 fm2. Esta zona puede asociarse
con una vibración beta de dos fonones. En la otra parte, la ĺınea nodal es
curvada, más o menos paralela al eje q y puede ser asociada a una vibración
de apareamiento. Por tanto, este estado no puede interpretarse como una
vibración pura de apareamiento.
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Figura 8.6: Funciones de onda colectivas para los estados 0+1 0+2 y 0+3 , de arriba a
abajo, del 52Ti en cálculos 2D y en la aproximación PN-VAP+PNAMP. Obsérvese
que la escala de la deformación ha sido reducida en relación a la que hemos em-
pleado regularmente, para obtener mejor resolución en la zona de interés donde
se localiza la intensidad de la función de onda. Los contornos se corresponden con
intervalos de separación 0.02 y la ĺınea discontinua más gruesa marca los ceros de
las funciones de onda.

Para tratar de entender lo que ocurre con la vibración pura de aparea-
miento hacemos el siguiente análisis. El objetivo es comparar las funciones
de onda completas de un cálculo en 2D, figura (8.6) con las obtenidas de
una forma artificial, que hemos explicado anteriormente, acoplando δ o q por
separado, figuras (8.3, 8.5).
Es importante hacer primero la siguiente consideración; la normalización de
las funciones de onda es diferente si se trata de la función de onda bidimen-
sional estándar

∑
δ,q |G(qδ)|2 = 1; o si es para las construidas con q fijo,∑

q |G(qδ)|2 = 1 ; o δ fijo,
∑

δ |G(qδ)|2 = 1. Esto va a producir un efecto que
consiste en que las funciones de onda se estiran. Aśı, para δ fijo, figura (8.3),
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las funciones de onda se expanden a lo largo del eje Y, obteniendo intensidad
de las funciones de onda en valores inusualmente grandes de las correlaciones
de apareamiento, como puede verse en la figura. Del mismo modo, para el
caso de q fijo, las funciones de onda se estiran en la dirección del eje X, panel
izquierdo de la figura (8.5).

Si nos centramos ya en dicha comparación, vemos que el estado funda-
mental 0+1 del cálculo completo en 2D, panel (a) (8.6), tiene dos máximos,
el mayor en +80 fm2 y otro, menor y oblate en −80 fm2. Esta estructura se
da para el estado fundamental de los cálculos con q como coordenada gene-
radora, panel (a) figura (8.3). Si bien, como ya se ha explicado, los máximos
se extienden para un rango muy grande de valores de δ.
El mismo estado pero con el apareamiento como coordenada, panel (a) de
figura (8.5), muestra un patrón diferente. Hay tres máximos; uno para la
forma esférica y otros dos para grandes deformaciones ±200 fm2 lo cual se
corresponde con una situación en la que la densidad de niveles es alta, lo
que favorece correlaciones de apareamiento grandes. Esta función de onda
no se corresponde con la función de onda completa en 2D. Sin embargo, si
la observamos junto a la anterior, es fácil visualizar que cuando se considera
el apareamiento, se modula la función de onda que se obtiene para el caso
en el que se toma q como coordenada generadora, suprimiendo, por ejemplo,
valores de delta próximos a cero y mayores a 4, hasta obtener la imagen del
caso completo 2D, figura (8.6)(a).

El estado 0+2 para la función de onda completa, panel (b) de la figura
(8.6), se parece de nuevo al mismo estado con q como coordenada genera-
dora, panel (b) de la figura (8.3), salvo porque, en este caso, hay una fuerte
supresión de valores altos de δ.
Sin embargo, la vibración genuina de apareamiento del panel (b) de la figura
(8.5), no presenta una equivalencia directa con el segundo estado excitado,
como podŕıa esperarse, del caso completo 2D mostrado en el panel (c) de la
figura (8.6).

Por último, el estado 0+3 de la función de onda completa, panel (c) de la
figura (8.6) para los cálculos 2D, se puede interpretar como la mezcla de una
vibración beta de dos fonones (figura (8.3) (c)) y una vibración de aparea-
miento (figura (8.5) (b)).
El estado 0+3 del panel (c) de la figura (8.3) es una vibración beta de dos
fonones que no parece tener un claro homólogo en la función de onda total
como ocurre para los estados anteriores. Sin embargo, es fácil observar que
si se toma el corte para δ = 2.5, valor que se corresponde aproximadamente

134



8.3 Funciones de onda 2D reales, con acoplo en q y δ 135

con el de la solución autoconsistente, se obtiene una estructura de parecida a
la del mismo estado en una dimensión, ĺınea verde del panel (a) de la figura
(8.1).
La vibración β, panel (c) de la figura (8.3), tiene una estructura principal de
4 picos aproximadamente en los siguientes valores de q: −140,−90,+100 y
+220 fm2. Mientras que la vibración de δ, panel (b) de la figura (8.5), presen-
ta una distribución de dos picos en −160 y +180 y otros dos en −50 y +50
fm2. Se puede inferir, que una combinación de ambas estructuras de nodos
en una sola, de forma energéticamente eficiente, pasa por favorecer los dos
picos de grandes deformaciones (sacando provecho de tener una densidad de
niveles grande) a zonas de grandes correlaciones de apareamiento y los dos de
deformaciones pequeñas a zonas de pequeñas correlaciones de apareamiento.
Los dos picos oblates (lo mismo se da para los prolates) de grandes defor-
maciones provenientes de ambos modos se funden en uno y lo mismo para
los picos a pequeñas deformaciones. El resultado de esta combinación es el
estado 0+3 que se observa para el cálculo completo en 2D.

De esta discusión podemos concluir que es el grado de libertad cuadru-
polar el que proporciona la parte principal de la estructura de la función
de onda. Las posiciones de los puntos singulares en la coordenada q están
moderadamente influenciados por el grado de libertad del apareamiento. Si
miramos la solución autoconsistente marcada en las funciones de onda, obser-
varemos que apenas hay variaciones en el contenido de apareamiento, man-
teniendo un valor casi constante en torno a δ ≈ 2.5−3.0. Esto no es aśı para
el caso 2D completo, en concreto para el estado 0+3 candidato a ser una vi-
bración de apareamiento. Lo que se deduce de las figuras de las funciones
de onda con acoplamiento en δ y q simultáneamente y las funciones de onda
con el acoplo separado en cada una de las variables, es que la vibración de
apareamiento de un fonón se mezcla con la vibración beta de dos fonones
hasta que ambas se acomodan en una función de onda resultante con dife-
rente intensidad en el apareamiento.
Por tanto, la presencia de vibraciones de apareamiento genuinas está fuerte-
mente inhibida por el modo cuadrupolar, que es el que claramente modula
la estructura de la función de onda.
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8.4. Funciones de onda en 2D para diferentes

aproximaciones

Por último, se presentan las funciones de onda bidimensionales equiva-
lentes a las de la figura 8.6, analizadas en la sección anterior pero para los
casos derivados de funciones de onda intŕınsecas tipo HFB.
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Figura 8.7: Funciones de onda colectivas en 2D, análogas a las de la figura
8.6, para los estados 0+1 0+2 y 0+3 (de arriba a abajo) pero en las aproximacio-
nes HFB+PNAMP y HFB+AMP (en columnas). Los contornos se corresponden
con intervalos de separación 0.02 y la ĺınea discontinua más gruesa marca los ceros
de las funciones de onda.

En los paneles (a), (b) (c) de la figura 8.7, encontramos las funciones de
onda HFB+PNAMP para los estados 0+1 0+2 0+3 respectivamente. Si se tienen
en cuenta las superficies de enerǵıa potencial, panel (e) de la figura (4.3),
las funciones de onda 1D para esta aproximación, panel (b) figura (8.1) y
la discusión que se ha hecho para el caso PN-VAP+PNAMP en 2D no hay
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8.4 Funciones de onda en 2D para diferentes aproximaciones 137

prácticamente nada nuevo que aportar a la hora de interpretar estas funcio-
nes de onda. La principal diferencia con lo obtenido para el caso anterior,
es que la vibración beta para el estado 0+2 , y en menor medida también el
estado 0+3 , no son tan puras como en el caso anterior.

Las funciones de onda HFB+AMP se encuentran en los paneles (d), (e),
(f) de la figura 8.7. De nuevo, es la aproximación donde encontramos las
diferencias más acusadas comparadas con las otras dos. Para el estado 0+1
encontramos una clara similitud con los otros dos estados fundamentales
mostrados. Presenta una estructura de dos máximos, aunque ahora son más
intensos y están localizados para valores más cercanos entre ellos de q y
para valores menores de δ. Los estados 0+2 y 0+3 parecen ser el resultado
de una mezcla de los que se observan en las aproximaciones con proyección
al número de part́ıculas. Estas funciones de onda están más comprimidas
en la variable δ, dando la impresión de que son empujadas hacia valores
bajos de correlaciones de apareamiento y no se encuentran picos para las
grandes deformaciones, como se véıa en los otros casos. La tendencia que
observamos, es que la concentración de la función de onda es mayor cuando
la aproximación que se utiliza para obtenerlas es de menor calidad. Para ver
este efecto de manera cuantitativa se muestran en la tabla (8.1) los máximos
(en valor absoluto) de las funciones de onda.

Función de onda 0+1 0+2 0+3
PN-VAP+PNAMP 0.125 0.158 0.198
HFB+PNAMP 0.133 0.183 0.295
HFB+AMP 0.161 0.200 0.357

Tabla 8.1: Valores máximos de G en valor absoluto para las funciones de onda
colectivas representadas en las figuras (8.6) y (8.7).

Es interesante notar que, mientras que las superficies de potencial que
se corresponden a estos tres casos, paneles (d), (e) y (f) de la figura (4.3),
tienen un aspecto similar entre śı, las funciones de onda HFB+AMP son
bastante diferentes a las de las otras aproximaciones. Esto está relacionado,
por un lado con los elementos no diagonales del solape del hamiltoniano y
las correlaciones dinámicas que va a dar el método GCM y por otro, con el
solape de la norma y la dependencia lineal de los estados que forman la base.
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Caṕıtulo 9

Desintegración doble beta sin

emisión de neutrinos

9.1. Introducción

Uno de los principales retos en la f́ısica nuclear y de part́ıculas hoy en d́ıa
es determinar si los neutrinos son part́ıculas tipo Dirac o Majorana y rela-
cionado de manera directa con este asunto, está la cuestión de la detección
de las desintegraciones doble beta sin emisión de neutrinos [127].
La desintegración doble beta es un proceso mediado por la interacción débil
y que se caracteriza por ser muy lento. Se da entre dos isóbaros par-par, uno
decae en otro que tiene dos protones más y dos neutrones menos, cuando una
desintegración sólo beta está energéticamente prohibida. Está situación se da
para una treintena de núcleos, a pesar de que debido a los largos tiempos
de vida asociados a estas desintegraciones, solo serán adecuados para su de-
tección aquellos que tengan un valor factor Qββ grande. Además, los núcleos
iniciales deben ser lo suficientemente abundantes para poder llevar a cabo el
experimento.

Se puede distinguir dos casos de desintegraciones doble beta. Las reaccio-
nes nucleares correspondientes son las siguientes:

A
ZXN →A

Z+2 XN−2 + 2e− + 2ν̄e (9.1)

A
ZXN →A

Z+2 XN−2 + 2e− (9.2)

En el primer modo de desintegración, propuesto inicialmente por Goeppert-
Mayer [128], se emiten dos electrones y dos neutrinos (2νββ). Es un proceso
de segundo orden mediado por la interacción débil, por lo que la probabilidad
para que ocurra es baja, conserva el número leptónico y es compatible con
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que los neutrinos sean part́ıculas tipo Dirac o Majorana. La primera detec-
ción en un laboratorio data de 1987 [129]. Desde entonces, se ha medido para
una docena de núcleos [130].
La otra alternativa, ecuación 9.2, es la desintegración doble beta sin emisión
de neutrinos (0νββ), [131]. Este proceso en el que el número leptónico no se
conserva solamente es posible si los neutrinos son part́ıculas de Majorana,
esto es, que los neutrinos son a la vez su propia antipart́ıcula. Este caso seŕıa
particularmente interesante desde el punto de vista teórico ya que tendŕıa
importantes consecuencias en la f́ısica de part́ıculas, pues este proceso impli-
ca, por ejemplo, que los neutrinos tendŕıan que tener masa y que el número
leptónico no se conserva, ambos conceptos no compatibles con el Modelo
Estándar.
La desintegración 0νββ resulta ser la mejor manera para detectar un proceso
en el que se viole la conservación del número leptónico y por tanto, de esta-
blecer el carácter tipo Majorana de los neutrinos. Además, los experimentos
de oscilaciones de neutrinos demuestran que estas part́ıculas elementales tie-
nen masa y proporcionan una medida de las diferencias entre las masas de
los distintos autoestados de masa. La detección de la desintegración 0νββ
permitiŕıa establecer una escala absoluta para dichas masas y, dependiendo
de dicha escala, su jerarqúıa [127].
Sin embargo, salvo en la aseveración muy controvertida efectuada por parte
de la colaboración del experimento de Heidelberg-Moscow [132] y que ha sido
recientemente casi descartada por los resultados de GERDA [133], la desinte-
gración 0νββ no ha sido observada todav́ıa, de manera que por un lado tene-
mos el reto experimental para detectar dicho proceso. Este objetivo no es fácil
dado que es necesario tener un fondo extremadamente bajo para diferenciar
los escasos eventos del ruido. Actualmente varios experimentos como EXO-
200 [134], KamLAND-Zen [135], GERDA [133, 136, 137], CANDLES [138],
COBRA [139], Majorana [140], NEMO-3 [141], SNO+ [142], AMoRE [143],
CUORICINO [144], CUORE [145], NEXT-DEMO [146] ya están en marcha
o en avanzado estado de desarrollo.

Los candidatos más plausibles para detectar la desintegración 0νββ de
acuerdo a su alto factor Qββ son los siguientes: 48Ca, 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 124Sn, 128Te, 130Te, 136Xe, 150Nd.
Como se verá en la sección 9.2, la semivida, y la vida media, de este proceso
es proporcional al elemento de matriz nuclear (nuclear matrix element, NME)
entre los estados inicial y final. Dichos NME tienen que determinarse teórica-
mente de la manera más precisa posible por dos motivos principalmente. El
primero de ellos es que, en ausencia de resultados experimentales, la elección
de los núcleos más adecuados para tratar de detectar el proceso dependerá de
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si el NME es grande o pequeño. El segundo motivo es que si finalmente se
obtiene una señal experimental, el valor final y la incertidumbre de la masa
efectiva del neutrino dependerá del NME.
Hasta la fecha, los elementos de matriz nuclear han sido calculados utili-
zando diferentes métodos de estructura nuclear como: la QRPA [147–151];
el modelo de capas (ISM) [152–154]; el modelo de bosones interactuantes
(IBM) [155, 156], el método de Hartree-Fock proyectado (PHFB) [157] y el
método de funcionales de la densidad de enerǵıa (energy density functional,
EDF) [158–160].

En este caṕıtulo se estudian los NME para la desintegración doble beta
(double beta decay, DBD) para los 11 candidatos mencionados anteriormente
en el marco de las teoŕıas más allá de campo medio autoconsistente con
restauración de simetŕıas y mezcla de configuraciones tomando como grados
de libertad, el gap de apareamiento y la deformación. Todos los cálculos de
este caṕıtulo están exclusivamente desarrollados para la aproximación PN-
VAP+PNAMP y haciendo uso del método GCM. En este caso, el espacio
de configuración se ha ampliado, con respecto a los cálculos mostrados con
anterioridad a este punto. Se han tomando 11 capas mayores de oscilador.
La coordenada asociada a la deformación o forma nuclear en este caso va a
estar descrita en el plano β, γ [33], en lugar de ser la variable q utilizada hasta
ahora. Sin embargo, ambas están relacionadas de la siguiente forma [58]:

〈φ|Q̂20|φ〉 = βcosγ
3r20A

5/3

√
20π

(9.3)

Nuestros cálculos son axiales, de modo que γ = 0, A es el número másico y
r0 = 1.2 fm. El rango que toma β vaŕıa ligeramente entre los candidatos, pero
t́ıpicamente van desde -0.8 hasta 0.9 con intervalos de 0.05 mientras que el
rango de δ va de 0.5 hasta 6.5 en intervalos de 0.5. De modo que tenemos del
orden de 400 estados intŕınsecos para cada uno de los núcleos que queremos
describir.

El apareamiento es un elemento fundamental en la existencia de una
desintegración doble beta, ya que es esta interacción la que hace que la enerǵıa
de los núcleos par-par baje. Esto hace que se cree una desintegración doble
beta energéticamente más favorable entre dos núcleos con esta caracteŕıstica a
que ocurra una sola desintegración beta pasando por el núcleo vecino impar-
impar. La sensibilidad del operador de transición con las correlaciones de
apareamiento ha sido previamente descrita [148, 151, 153, 158]. Sin embargo,
en este trabajo se estudia por primera vez en los elementos de matriz nuclear
la influencia de las correlaciones de apareamiento y de deformación cuando
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éstas son tratadas al mismo nivel, incluyendo la posibilidad de mezcla de
configuraciones.

9.2. Marco Teórico

La semivida del proceso de desintegración doble beta sin emisión de neu-
trinos entre estados 0+ viene dada por la expresión [127]:

[
T 0ν
1/2(0

+ → 0+)
]−1

= G01

∣∣M0ν
∣∣2
(
〈mν〉
me

)2

, (9.4)

donde:

G01 es una factor de fase cinemático que depende de la carga, masa y
enerǵıa disponible en el proceso [161].

me es la masa del electrón.

〈mν〉 es la masa efectiva del neutrino de Majorana. Se define como:
〈mν〉 = |

∑
k U

2
ekmk|, siendo mk la combinación de las masas del neu-

trino que da la matriz de mezcla U .

M0ν es el elemento de matriz nuclear (NME), esto es, el elemento de
matriz del operador para una desintegración 0νββ entre los estados
iniciales y finales de los núcleos.

Si tenemos en cuenta la aproximación de cierre para hacer la suma en
los estados intermedios del núcleo impar-impar [127], el NME para la desin-
tegración 0νββ, se calcula como un valor esperado entre un operador a dos
cuerpos entre los estados iniciales y finales:

M0ν = 〈0+f | M̂
0ν | 0+i 〉 (9.5)

M0ν consta de tres términos: Fermi (F), Gamow-Teller (GT) y Tensor (T):

M0ν = −
(
gV
gA

)2

M0ν
F +M0ν

GT −M0ν
T (9.6)

Se toman en este caso como valores de las constantes: gV = 1 y gA = 1.25.
M̂F/GT/T son los operadores a dos cuerpos de Fermi, Gamow-Teller y Ten-
sor respectivamente. El término tensor, que tiene una pequeña contribu-
ción [150, 153], no es tenido en cuenta en estos cálculos.
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9.2 Marco Teórico 143

Los operadores F y GT se definen como:

M̂0ν
F = V̂F (r)t̂

(1)
− t̂(2)− (9.7)

M̂0ν
GT = V̂GT (r)(&̂σ

1&̂σ2)t̂(1)− t̂(2)− (9.8)

donde: t̂− es el operador escalera de isosṕın que permite cambiar neutrones
por protones; &̂σ son las matrices de Pauli que actúan sobre la parte de esṕın;
〈 &̂r1 &̂r2| V̂F/GT | &̂r1 &̂r2〉 = vF/GT (|&r1− &r2|), son los potenciales locales que dependen
de la coordenada relativa de los nucleones implicados en la desintegración y
r = |&r1 − &r2|.
Las funciones vF/GT (r) que aparecen en la expresión anterior, son los poten-
ciales de neutrino [153] y tienen la forma:

vF/GT (r) =
2

π

r0A1/3

g2A

∫ ∞

0

j0(qr)
hF/GT (q)

q + µ
qdq, (9.9)

donde r es la distancia entre nucleones; r0 y A ya han sido definidas en la
ecuación (9.3); gA=1.25; µ = 10.22 MeV; q es el momento transferido; hF/GT

es el factor de forma y j0(qr) la función esférica de Bessel. El parámetro µ
depende de cada desintegración y es una enerǵıa promedio de los estados
intermedios del núcleo impar-impar [162, 163].

En el cálculo de los NMEs, es necesario tener en cuenta las correlaciones
de corto alcance (short range correlations, SRC) consideradas en el operador
de la transición. Para incluirlas de manera totalmente consistente, se tendŕıa
que renormalizar el operador 0νββ usando la misma prescripción que para la
interacción desnuda. Sin embargo, esta prescripción general no se pueden em-
plear cuando se usan interacciones fenomenológicas efectivas (como en este
caso y en los métodos usados habitualmente). Por lo tanto, las SRC también
se incluyen de manera fenomenológica usando diferentes parametrizaciones,
en particular:

a) Funciones tipo Jastrow [164]:
En este caso el NME se modifica mediante una transformación unitaria de
la siguiente manera:

〈0+i | v(r)| 0+f 〉src = 〈0+i f(r)| v(r)| f(r)0+f 〉 = 〈0+i | f(r)2v(r)| 0+f 〉, (9.10)

con f(r) = 1− e−ar2(1− br2) y a = 1.1 fm2; b = 0.68 fm−2.

b) Unitary correlation operator method (UCOM) [165]:
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En este caso el NME, es modificado por un operador de traslación de la
siguiente manera:

〈0+i | v(r)| 0+f 〉src = 〈0+i | v(r̃)| 0+f 〉 (9.11)

donde

r̃ = r

(
1 + e−e

r
β α

r

(
r

β

)η)
, (9.12)

con α = 1.3793 fm ; β = 0.8853 fm y η = 0.3724
En este trabajo, las SRC son implementadas dentro del método UCOM. Las
correcciones que ofrece este método son más suaves [166] que las dadas por
el primero.

Para encontrar los elementos de matriz nuclear hace falta describir las
funciones de onda de los estados fundamentales de los estados iniciales y fi-
nales |0+i/f〉, que aparecen en la ecuación (9.5) y entre las que se van a evaluar
los términos explicados anteriormente.

Como ya se ha visto en anteriores caṕıtulos, una vez que se resuelve la
ecuación de HW, cualquier observable como la enerǵıa, las probabilidades
de transición electromagnéticas o los radios cuadráticos medios pueden ser
calculados [13]. En particular, también es posible evaluar el valor esperado
para los operadores M̂0ν

F/GT (consultar el apéndice E para más detalle).
Los estados involucrados en una transición van a venir dados por la ecuación
(3.130) :

|J+σ
i/f 〉 =

∑

β,δ

fNZJσ
i/f (β, δ)|ΦJ

i/f(β, δ)〉, (9.13)

donde J va a ser el momento angular; σ de nuevo, etiqueta de menor a
mayor enerǵıa los estados excitados para el mismo momento angular; β y δ
son los grados de libertad del momento cuadrupolar axial y del apareamiento
respectivamente; fNZJσ

i/f (β, δ) son los coeficientes que se obtienen al resolver
la ecuación (3.136). Las funciones de onda proyectadas vienen dadas por
(3.141):

|ΦJ
i/f(β, δ)〉 = PNi/fPZi/fP J |φ(β, δ)〉, (9.14)

donde PN(Z) y P J son los proyectores del número de protones (neutrones) y
del momento angular respectivamente. Ya que la desintegración se da entre
los estados fundamentales de los núcleos iniciales y finales, estamos interesa-
dos en obtener la solución para el estado fundamental, esto es, en la ecuación
(9.13), tenemos J = 0 y σ = 1.
Los elementos de matriz de la transición entre los estados proyectados vendrá da-
do por:
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M0ν
F/GT (β, δ; β

′, δ′) =

〈ΦJ=0
f (β, δ)|M̂0ν

F/GT |ΦJ=0
i (β ′, δ′)〉

〈ΦJ=0
i (β, δ)|ΦJ=0

i β, δ)〉1/2〈ΦJ=0
f (β ′, δ′)|ΦJ=0

f (β ′, δ′)〉1/2

9.3. Un ejemplo: La desintegración 136Xe

Discutimos en detalle la desintegración del 136Xe → 136Ba para ilustrar
el método que estamos utilizando. Empezamos analizando las superficies de
enerǵıa potencial proyectadas definidas como:

EJ=0(β, δ) =
〈ΦJ=0(β, δ)|Ĥ|ΦJ=0(β, δ)〉
〈ΦJ=0(β, δ)|ΦJ=0(β, δ)〉 (9.15)

Se muestran en la figura (9.1). Panel (a) para el 136Xe y panel (b) para el
136Ba. Las ĺıneas a trazos y continuas delimitan contornos separados 1 MeV
y 2 MeV respectivamente.
Para el núcleo 136Xe obtenemos una superficie equipotencial más o menos
simétrica en torno al caso esférico, con dos mı́nimos degenerados en β =
±0.05 y δ = 3. La superficie tiene una gran pendiente y la enerǵıa aumenta
significativamente cuando se aumenta la deformación o el apareamiento, en
particular para valores superiores de β = ±0.15 y δ ≈ 4.
La superficie para el 136Ba es más ancha en las direcciones marcadas por
ambas coordenadas. Presenta dos mı́nimos; el mı́nimo absoluto es prolate y
se encuentra en (β = 0.15 , δ = 3); el otro es oblate y está localizado en
(β = −0.10 , δ = 3.5). En este caso, se aprecia que el mı́nimo absoluto es
más suave en la dirección de δ, mientras que la enerǵıa en este núcleo crece
considerablemente en la zona de valores β > ±0.2 y δ > 5.
Las superficies de enerǵıa, presentan una zona blanda que se extiende para
deformaciones −0.2 < β < 0.2 y 1 < δ < 4. Es interesante resaltar que
toda esta información relevante sobre las correlaciones de apareamiento no
está contenida en un cálculo 1D en la dirección β, como puede verse en la
solución autoconsistente marcada por los puntos en la superficie de potencial.
Sin embargo, puede desempeñar un papel importante en la descripción de la
estructura final de los estados en los que estamos interesados.
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Figura 9.1: Izquierda: superficies de enerǵıa potencial proyectadas a momento
angular J = 0 y al número de part́ıculas para los núcleos 136Xe (a) y 136Ba (b).
Las ĺıneas discontinuas separan contornos de 1 MeV y las las continuas de 2 MeV
y las superficies están normalizadas con respecto a su correspondiente mı́nimo
absoluto. Derecha: Funciones de onda colectivas al cuadrado, 136Xe (c) y 136Ba
(d). Los puntos marcan el camino de la solución autoconsistente de δ a lo largo de
la dirección β.

Completamos la descripción de los estados fundamentales de estos núcleos
con las funciones de onda colectivas. Éstas vienen dados por la expresión
(3.141).

|GJ=0;σ=1(β, δ)|2 = |
∑

β′,δ′

fNZJ=0;σ=1(β ′, δ′)〈ΦJ=0(β, δ)|ΦJ=0(β ′, δ′)〉1/2|2

(9.16)
Estas funciones de onda se pueden ver en la figura (9.1), panel (c) para el
estado fundamental del núcleo 136Xe y (d) para el correspondiente al núcleo
136Ba. Para el primero se encuentra una distribución prácticamente esférica,
en la misma posición para las que se obteńıan los mı́nimos de la superficie de
enerǵıa potencial. Esta distribución es consistente con el cierre que presenta
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este núcleo en neutrones para el número mágico N=82.
Para el estado fundamental del 136Ba obtenemos dos máximos situados en
las mismas posiciones en las que se situaban los mı́nimos de los pozos de po-
tencial para este núcleo, aunque tenemos mayor concentración de la función
de onda en la zona prolate.
En general, podemos decir que obtenemos pesos grandes para las funciones
de onda en el intervalo (δ = 2 − 4) y esta mezcla en el apareamiento no se
tiene en cuenta en un cálculo unidimensional, por lo que esperamos unos ele-
mentos de matriz ligeramente diferentes cuando se incluya el apareamiento
como veremos a continuación.

Con las funciones de onda calculadas, evaluamos ahora los elementos de
matriz nuclear de la expresión (9.15) y estudiamos su dependencia con las
variables elegidas. Vamos a analizar en la figura (9.2), por separado, la in-
fluencia de ambos grados de libertad en los NMEs para el término GT (el
término F presenta un comportamiento muy parecido pero con valores me-
nores por lo que no se muestra aqúı).
Primero tomamos los valores de δ para los que se encuentra el mı́nimo de
las funciones de onda mostradas en la figura (9.1) del estado inicial (δ = 3)
y del estado final (δ′ = 3) y se hace una representación de los NMEs como
función de la deformación cuadrupolar para ambos estados en el panel (a)
de la figura (9.2). Se observa que la intensidad de la transición está loca-
lizada en la parte diagonal de la figura donde los estados iniciales y finales
tienen deformaciones similares. Esto implica que la desintegración doble beta
sin emisión de neutrinos es más probable que se dé en esta situación siendo
las configuraciones esféricas las más favorecidas pues es donde se localiza en
máximo. También se encuentran valores significativamente altos alrededor de
la forma esférica para valores fuera de la diagonal y con configuración (β =
- β ′).

A continuación, estudiamos la dependencia con las fluctuaciones de apa-
reamiento de los elementos de matriz nucleares. Es decir, como depende la
probabilidad de que el proceso nuclear suceda con respecto al contenido de
apareamiento de las funciones de onda inicial y final. Hacemos una represen-
tación análoga a la del caso anterior. En este caso se toman fijos los valores
de deformación donde las funciones de onda colectivas presentan el máximo
(β = β ′ = 0.1 ) y se toman como variables δ y δ′, panel (b) de la figura (9.2).
Observamos que los NMEs tienen valores casi despreciables para valores de
δ o δ′ inferiores a dos. Sin embargo, para valores mayores, éstos crecen rápi-
damente a medida que se incrementa el valor del apareamiento. Se observa
también que la distribución es bastante ancha lo que implica que la mezcla
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de estados con diferente apareamiento, va a jugar un importante papel en la
descripción de los elementos de matriz nuclear.
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Figura 9.2: Elementos de matriz nuclear proyectados a buen momento angular
y buen número de part́ıculas en función de la deformación (a) y del apareamiento
(b) para los estados iniciales 136Xe y finales 136Ba. Las ĺıneas de contorno están
separadas 0.5 de modo que las ĺıneas continuas se corresponden con valores enteros
(1,2, etc.) y las discontinuas en medios (0.5, 1.5, etc.) A la derecha se puede ver la
escala de colores válida para las dos figuras.

En realidad, la forma y fluctuaciones de apareamiento están siendo consi-
derados a la vez, aunque no es posible representarlos bajo la misma figura. Si
tenemos en cuenta la información obtenida en las funciones de onda iniciales
y finales, (figuras (9.1) (c)-(d)) las cuales dependen de las dos coordenadas
y la que nos aporta el panel (b) de la figura (9.2), podemos ver que para la
zona de relevancia delimitada por las zonas en las que se encuentra la inten-
sidad de la función de onda, (2 < δ(δ′) < 4) la intensidad del término GT
oscila entre un amplio rango de valores (prácticamente entre 0 y 5) lo que
indudablemente va a contribuir a definir el valor final del elemento de matriz
cuando las fluctuaciones de apareamiento son incluidas.
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9.4. Resultados para una desintegración 0νββ

En esta sección discutimos los resultados de los NMEs, y de otros obser-
vables, para las 11 desintegraciones doble beta que se han estudiado.
En la tabla 9.1 se muestran los resultados obtenidos para los núcleos que se
pueden ver en la columna 1. La parte derecha de la tabla (separada por una
doble ĺınea vertical) se corresponde con valores propios de una desintegración
0νββ. Podemos ver los valores de los elementos de matriz cuando sólo se con-
sidera la coordenada de la deformación (columna 8) o las dos coordenadas
(columna 9). En la columna 10 se expone la variación porcentual que supone
sobre el elemento de matriz un cálculo 2D frente a uno 1D. En la columna 11,
haciendo uso de la ecuación (9.4), se da la relación entre entre las semividas
cuando el apareamiento se incluye como grado de libertad adicional.
En la parte izquierda de la tabla se recogen valores de observables nucleares
relevantes para los estados fundamentales. Su comparación con los valores
experimentales (exp), situados en una columna justo al lado del valor teórico
(th), van a permitir comprobar la fiabilidad del método. En las columnas 2
y 3, se da la enerǵıa de ligadura en MeV y en las columnas 4 y 5 se dan los
valores de la ráız del radio cuadrático medio de carga 〈r2〉1/2, sin tener en
cuenta el tamaño finito del nucleón [167]. En las columnas 6 y 7 se da el valor
de un observable relacionado directamente con una desintegración beta, la
intensidad total de Gamow-Teller para los estados iniciales, S−, y finales S+.
Es posible encontrar en la literatura a la intensidad de GT como B(GT),
en clara analoǵıa a las probabilidades de transición electromagnéticas B(Eλ)
y B(Mλ). De nuevo, la comparación con los valores experimentales permite
evaluar la calidad de la descripción tanto de los estados 0+1 , como de la de-
sintegración.
La intensidad de GT, calculada con los operadores de GT O+

GT y O−
GT , deben

satisfacer la regla de suma de Ikeda [65]:

Ŝ− − Ŝ+ =
∑

f

∣∣〈0+i |OGT−|0+f 〉
∣∣2 −

∑

f

∣∣〈0+i |OGT+|0+i 〉
∣∣2 =

= 〈0+i |O
†
GT−OGT−|0+i 〉 − 〈0+i |O

†
GT+OGT+|0+i 〉 = 3(N̂ − Ẑ) (9.17)
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Isotope (BE)th (BE)exp Rth Rexp Sth
−/+ Sexp

−/+ M0ν(β2) M0ν(β, δ) Var (%)
T1/2(β,δ)

T1/2(β2)

48Ca 420.919 415.991 3.467 3.473 13.48 14.4± 2.2 2.3701.9140.456 2.2291.7970.431 -6 1.13
48Ti 423.753 418.699 3.560 3.591 1.94 1.9± 0.5
76Ge 664.604 661.598 4.025 4.081 20.96 19.89 4.6013.7150.886 5.5514.4701.082 21 0.69
76Se 665.268 662.072 4.075 4.139 1.26 1.45± 0.07
82Se 717.034 712.842 4.122 4.139 23.57 21.91 4.2183.3810.837 4.6743.7430.931 11 0.81
82Kr 718.220 714.273 4.131 4.192 1.26
96Zr 829.801 828.995 4.298 4.349 27.73 5.6504.6181.032 6.4985.2961.202 15 0.76
96Mo 834.212 830.778 4.320 4.384 2.64 0.29± 0.08
100Mo 862.003 860.457 4.373 4.445 28.04 26.69 5.0844.1490.935 6.5885.3611.227 30 0.60
100Ru 865.230 861.927 4.388 4.453 2.63
116Cd 988.809 987.440 4.567 4.628 34.40 32.70 4.7953.9310.864 5.3484.3720.976 12 0.80
116Sn 991.390 988.684 4.569 4.626 2.61 1.09± 0.13
124Sn 1051.981 1049.96 4.622 4.675 40.71 4.8083.8930.916 5.7874.6801.107 20 0.69
124Te 1052.019 1050.69 4.664 4.717 1.63
128Te 1082.541 1081.44 4.685 4.735 40.48 40.08 4.1073.0791.027 5.6874.2551.432 38 0.52
128Xe 1081.249 1080.74 4.724 4.775 1.45
130Te 1097.320 1095.94 4.695 4.742 43.69 45.90 5.1304.1410.989 6.4055.1611.244 25 0.64
130Xe 1097.655 1096.91 4.733 4.783 1.33
136Xe 1143.500 1141.88 4.757 4.799 46.77 4.1993.6730.526 4.7734.1700.604 14 0.77
136Ba 1143.606 1142.77 4.789 4.832 1.06
150Nd 1234.729 1237.45 5.033 5.041 50.35 1.7071.2780.429 2.1901.6390.551 29 0.61
150Sm 1236.249 1239.25 4.987 5.040 1.54

Tabla 9.1: Tabla DBD: En las columnas (2-7) se dan los valores teóricos y expe-
rimentales para: las enerǵıas de ligadura (en MeV) [168]; los radios (en fm) [169],
Intensidad de Gamow-Teller S−/+ de los estados iniciales y finales de los candida-
tos a una desintegración 0νββ [170–174] (los valores teóricos están multiplicados
por un factor 0.742). En la columna 8: NMEs tomando como coordenada la fluc-
tuación en la deformación y en la columna 9 simultáneamente fluctuaciones en la
deformación y en el apareamiento. Los supeŕındices dan la contribución del término
GT y los sub́ındices la de Fermi. Las dos últimas columnas dan la variación de
los elementos de matriz y las semividas cuando se tiene en cuenta como grado de
libertad el apareamiento.

Analizando la tabla, encontramos que para el caso analizado de la de-
sintegración 136Xe, el elemento de matriz aumenta en un 14% cuando el
apareamiento es incluido como grado de libertad expĺıcito, lo que conlleva
una reducción de la semivida en un factor 0.77. Este resultado es consistente
con la exploración de regiones con mayores valores de NME que permite el
hecho de tener en cuenta el grado de libertad del apareamiento gracias a las
fluctuaciones en δ que ahora son incluidas en las funciones de onda colecti-
vas. El mismo efecto de aumento de los NMEs se observa para el resto de
candidatos.
Con la excepción de la desintegración del 48Ca, los datos en dos dimensio-
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nes de los NMEs nos conducen a una reducción de las predicciones sobre las
semividas en factores que van desde 0.81 (para el 82Se) hasta 0.52 (para el
128Te).
En forma de supeŕındice y sub́ındice se da por separado la contribución del
término de Gamow-Teller y Fermi respectivamente al valor total del NME.
Lo primero que notamos es que el valor de la componente de Fermi es mucho
más pequeña que la contribución de Gamow-Teller, siendo por tanto, esta
última la dominante. Sin embargo, la ganancia que se obtiene al incluir las
fluctuaciones de apareamiento es similar en ambos canales.

Con respecto al resto de observables nucleares que se muestran en la ta-
bla, se puede apreciar como existe un buen acuerdo entre los datos teóricos
cuando son comparados con sus respectivos valores experimentales. Los ra-
dios son los valores que mejor se reproducen. Para los valores teóricos de S−

y S+ hay que multiplicar por un factor de atenuación 0.742 [12,158,175] para
obtener valores cercanos a los experimentales. Este valor tiene en cuenta prin-
cipalmente efectos de renormalización del operador de Gamow-Teller aunque
otros posibles oŕıgenes están actualmente en discusión como el tamaño del
espacio de valencia [12] o términos de dos corrientes en el lagrangiano elec-
trodébil [176].
Las enerǵıas de ligadura son ligeramente mayores en el caso teórico, si bien
esa diferencia no supera los 5 MeV lo que se encuentra dentro de la precisión
dada por la interacción de Gogny [177] ya que la interacción está ajustada
de modo global a toda la tabla de núcleos.

En relación a la enerǵıa, conviene también recordar que la solución numéri-
ca a la ecuación de HW, está directamente relacionada con la elección del
número de estados naturales de la base. Debe garantizar la independencia
lineal de los estados al mismo tiempo que debe incluir las correlaciones dadas
por el conjunto original de funciones de onda.
Podemos ver la convergencia de las enerǵıa y de los elementos de matriz de la
transición en la figura (9.3). Dado que la enerǵıa del estado fundamental de
los núcleos elegidos como ejemplo, 136Xe y 136Ba, están tan próximas entre
śı que son casi indistinguibles (-1143.5 MeV y -1143.606 MeV respectivamen-
te), se ha tomado en este caso como ejemplo la desintegración 76Ge → 76Se.
Se observan amplios plateaus en los que los valores, tanto para las enerǵıas
de los estados fundamentales como para los NMEs, se mantienen constantes.
Esto se da para los todas las transiciones calculadas, de modo que tenemos
la garant́ıa de obtener valores estables de los elementos de matriz.

En la figura (9.4) se presentan los resultados para los elementos de matriz
nuclear 0νββ calculadas, para los once casos de nuestro estudio, con diferentes
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Figura 9.3: Figura superior: convergencia de la enerǵıa de los estados 0+1 para
el núcleo inicial 76Ge y final 76Se como función del número de estados de la base
natural. Figura inferior: convergencia de los NMEs.

métodos:

En cuadrados rojos se dan los resultados [153,178] que se obtienen para
el modelo de capas (ISM) explicado en la sección 2.2.

En diamantes azules, se representan los elementos de matriz nuclear
[155, 156] para el modelo IBM-2 que se trató en la sección 2.5. Estos
resultados están multiplicados por un factor 1.18 [158] por la diferencia
entre tratar las correlaciones de corto alcance con funciones de onda
tipo Jastrow (este caso) o UCOM (todos los demás resultados que se
muestran en esta figura)

En triángulos verdes y rosas tenemos las soluciones para dos tipos de
cálculos, QRPA(Jy) [150] y QRPA(Tu) [148], ambos pertenecientes a
la familia de la Quasiparticle random-phase aproximation (QRPA). La
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QRPA es un método basado en la aproximación de HF más aparea-
miento BCS en el que se incluyen correlaciones tipo RPA.

Los valores de nuestros cálculos en aproximación PN-VAP+PNAMP
con el métodos GCM para el caso 1D [158] y 2D [29] se pueden ver en
ćırculos negros y triángulos morados respectivamente, ambos unidos
por una ĺınea discontinua de puntos. Se corresponden con los valores
de las columnas 8 y 9 de la tabla (9.1).
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48Ca 76Ge 82Se 96Zr 100Mo116Cd 124Sn 128Te 130Te 136Xe 150Nd

Figura 9.4: Elementos de matriz nucleares calculados utilizando diferentes méto-
dos mostrados en la leyenda (ver texto principal para más información). Nuestros
resultados para la aproximación PN-VAP+PNAMP, que se corresponden con los
datos de la tabla (9.1), se pueden ver en triángulos unidos por una ĺınea de puntos.

Si comparamos los valores de los NMEs que se obtienen con nuestro méto-
do en 1D y 2D observamos que ambos muestran el mismo patrón de com-
portamiento, sin embargo los valores de los NMEs aumentan entre un 10%
y un 40% cuando se incluye como grados de libertad, la deformación y el
apareamiento frente al caso en el que solo el primero es considerado. Esta di-
ferencia en el incremento experimentado está relacionada con la distribución
de las funciones de onda; aquellas que tengan una distribución desplazada a
valores mayores de δ van a poder encontrar valores más altos para los NMEs
al explorar este grado de libertad ya que como se ha visto, estos elementos
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de matriz dependen fuertemente del apareamiento y muestran valores apre-
ciables por encima de δ = 3.
Encontramos para el elemento de matriz un valor medio de 5.07 aunque hay
dos casos especiales; la desintegración del 48Ca y la del 150Nd. En ellos, su
elemento de matriz correspondiente está bastante por debajo del valor medio.
El 48Ca es un caso particular pues es un núcleo doblemente mágico, ya que
lo es en protones (Z=20) y en neutrones (N=28). Por este motivo, la función
de onda de este estado inicial se encuentra considerablemente desplazada a
zonas con apareamiento más bajo, lo que hace que se obtenga en esta caso un
valor para el NME ligeramente menor. Además la posibilidad de explorar la
dirección δ en un núcleo con doble capa cerrada no aporta ninguna mejora.
La desintegración del 150Nd también presenta un valor mucho menor que el
resto. Las funciones de onda de los estados implicados en la desintegración,
presentan mı́nimos bien deformados prolates pero las deformaciones a las que
se encuentran son bastante diferentes (β=0.35 para el estado inicial y β=0.20
para el estado final), siendo este argumento una de las principies fuentes de
supresión del NME [158]. Sin embargo, en este caso, la exploración de la
coordenada δ aporta al valor final del NME un aumento del 29%.

Si comparamos los resultados con los obtenidos por otros métodos vemos
que los nuevos valores con dos coordenadas se acercan más a los resultados
QRPA/IBM para los casos 48Ca 76Ge 128Te y 150Nd, mientras que son ma-
yores para los otros candidatos, ver figura (9.4). No obstante, ni los cálculos
QRPA ni los IBM incluyen de forma expĺıcita las fluctuaciones de aparea-
miento.
Las principales diferencias entre nuestra aproximación y la QRPA son: las
interacciones nucleares son también diferentes en ambos casos; se asume si-
metŕıa esférica en la QRPA; en el caso GCM (1D y 2D) se tiene una base
de part́ıcula independiente mayor que no consta de core y la ausencia de
excitaciones de cuasipart́ıcula.
Todas estas diferencias metodológicas y en las interacciones usadas hace bas-
tante complicado identificar el origen de las discrepancias/similitides encon-
tradas en los NME.
Por otro lado, los cálculos del modelo ISM, presentan valores que están bas-
tante distanciados de las otras aproximaciones, especialmente para la mayoŕıa
de nuestros resultados, hacia valores inferiores. Ambos métodos, ISM y GCM,
han sido recientemente comparados en la referencia [179] con el objetivo de
esclarecer las diferencias entre ambos métodos cuando se calculan los NMEs.
Las correlaciones en las funciones de onda introducidas más allá de la apro-
ximación esférica en el GCM y ’senioridad’ cero en el SM tienden a reducir
el elemento de matriz. Aunque el comportamiento cualitativo de los NME es
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similar en ambos casos, los NME calculados con el GCM son un aproxima-
damente factor 2 mayores que los SM. El origen de esta discrepancia puede
ser la falta de componentes de senioridad alta en el método GCM inherente
a la ausencia de excitaciones expĺıcitas de cuasipart́ıculas en las funciones
de onda. Por otra parte, la proyección a buen isosṕın (en el marco del SM)
tiene un efecto grande en el término de Fermi pero no aśı en el de GT. Este
resultado nos induce a pensar que el aumento en los NME obtenido al intro-
ducir el grado de libertad de apareamiento no se debe a una mayor violación
de isosṕın ya que, como se aprecia en la tabla 9.1, tanto la componente de
Fermi como la GT aumentan de manera similar.

9.5. Resumen

En resumen, en este caṕıtulo se han presentado los elementos de ma-
triz 0νββ para cálculos GCM en aproximación PN-VAP+PNAMP, con la
interacción de Gogny e incluyendo por primera vez el apareamiento como
grado de libertad, además de la deformación cuadrupolar axial, obteniendo
las siguientes conclusiones:

Los elementos de matriz son mayores cuando la transición se hace entre
estados con deformación similar.

Para estados débilmente correlacionados, deltas menores de dos, los
elementos de matriz son prácticamente cero.

Si aumentan las correlaciones de apareamiento los elementos de matriz
se hacen mayores.

Cuando estudiamos la dependencia de los NMEs con las fluctuaciones
de apareamiento, encontramos una amplia zona alrededor de la diago-
nal, delimitada por las rectas: δ′ = δ±3 y δ+δ′ = 3 donde los elementos
de matriz toman valores considerables. Esto, unido al hecho de permitir
fluctuaciones de apareamiento, hace que se obtengan valores para los
elementos de matriz considerablemente más altos, entre un 10%-40%,
que cuando solo se tiene en cuenta la deformación. El hecho de que es-
tos valores sean superiores implica que las semividas de los candidatos
se van a ver reducidas, lo que nos sitúa en mejor escenario para que
desintegraciones 0νββ puedan ser detectadas experimentalmente.

Para una descripción más completa de los NME podŕıa ser interesante
considerar componentes de senioridad altas incluyendo excitaciones de
cuasipart́ıcula, aśı como la proyección a isosṕın.
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Conclusiones y perspectivas

En este trabajo se han utilizado diferentes métodos de resolución de pro-
blemas de muchos cuerpos cuánticos aplicados al estudio de los núcleos atómi-
cos. El punto de partida ha sido el método de HFB, con el que se ha obtenido
un conjunto de funciones de onda intŕınsecas que posteriormente han sido
proyectadas a buen número de part́ıculas y/o buen momento angular. Por
último, hemos completado la descripción utilizando el método GCM permi-
tiendo la mezcla de configuraciones e introduciendo correlaciones dinámicas.
En esta memoria se han detallado los principales aspectos del método, se han
analizado aspectos formales de la teoŕıa y se han presentado los resultados
obtenidos tras aplicar el método al estudio de sistemas f́ısicos.
Por primera vez se han considerado de manera simultánea fluctuaciones cua-
drupolares y de apareamiento en el marco de teoŕıas más allá del campo medio
con interacciones efectivas. A lo largo de esta memoria se muestran e imple-
mentan diferentes métodos hasta obtener una función de onda lo más com-
pleta posible utilizando los dos grados de libertad relevantes. Principalmente
se han discutido tres: HFB+AMP, HFB+PNAMP y PN-VAP+PNAMP.
Se ha concluido que el método GCM con funciones de onda intŕınsecas PN-
VAP proyectadas simultáneamente a buen momento angular y buen número
de part́ıculas (PNAMP), tomando los mencionados dos grados de libertad,
es el que ofrece una mejor descripción del sistema y proporciona unos resul-
tados más consistentes y aproximados a la enerǵıa exacta del sistema cuando
se compara con los datos experimentales. Además, tiene las ventajas de que
el espacio de configuración en el que se trabaja es grande y la interacción
usada es “universal”, en el sentido de que se puede utilizar para todos los
núcleos de la tabla.

Se han analizado los resultados obtenidos para varios observables nuclea-
res: probabilidades de transición, enerǵıas de separación, se han discutido las
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superficies de enerǵıa equipotenciales y, con especial detalle, los espectros de
excitación para diversos núcleos como función de las dos coordenadas con-
sideradas y en base a tres diferentes aproximaciones. Se ha seleccionado: la
cadena isotópica del Magnesio (N = 24− 34), tres núcleos (Cromo, Titanio
y Calcio) con N = 30 y tres isótopos del Calcio con Z = 20. Esto nos ha
permitido, aparte de conocer su estructura nuclear, discutir las diferencias
que se dan según la técnica usada y las dimensiones empleadas (una o dos).
Se ha aplicado el método para investigar la cuestión de los posibles cierres de
capa en N = 32 y N = 34 en los isótopos del Calcio, calculando las enerǵıas
de excitación del estado 2+. Se ha observado un buen acuerdo entre los datos
teóricos y experimentales de los que se disponen hasta el momento.
Se ha visto que los efectos de las fluctuaciones de apareamiento aumentan
con la enerǵıa de excitación y con momento angular mayor y que los valores
teóricos, en general, bajan cuando se incluye δ, lo que hace que se aproximen
más a los datos experimentales.

La aproximación HFB+AMP ha sido estudiada en detalle, ya que los es-
pectros obtenidos dentro de esta aproximación son diferentes a los que dan los
otros dos métodos: tienen un aspecto muy comprimido que es poco razonable.
Para ello, se ha estudiado la distribución del número medio de part́ıculas y
los elementos de matriz de la norma, dentro de esta aproximación, mostrando
que este método ofrece resultados de poca calidad. Se encuentra una mayor
dependencia lineal, por lo que tenemos un espacio variacional menor y una
mayor mezcla, no deseada, de los estados.
También se han discutido las funciones de onda que se obtienen con las di-
ferentes aproximaciones. En especial, para el caso sin proyección al número
de part́ıculas, se observa una concentración de la intensidad de la función de
onda 2D no realista, que sumado al efecto de la dependencia lineal mencio-
nada más arriba, son la causa de que se obtengan unos espectros mucho más
comprimidos que los que se obtienen para el caso en el que hay proyección
al número de part́ıculas.
Se ha llegado a la conclusión de que la proyección al número de part́ıculas
es un ingrediente esencial. También se obtiene una fuerte dependencia con la
manera en la que es generada la base intŕınseca. Es importante implementar
la proyección al número de part́ıculas de manera autoconsistente, esto es, en
una variación después de la proyección (VAP).

Se ha discutido la existencia de las vibraciones puras de apareamiento.
Se observan cuando solo se tiene en cuenta la coordenada δ, pero cuando se
acopla la deformación cuadrupolar, se encuentra que este grado de libertad es
dominante, inhibiendo la presencia de vibraciones de apareamiento genuinas.
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Por último, se han presentado los elementos de matriz nuclear para una
desintegración doble beta sin emisión de neutrinos para 11 posibles candida-
tos.
Por un lado, los núcleos implicados en las desintegraciones representan otros
casos particulares diferentes a los núcleos que se hab́ıan analizado hasta es-
te punto, lo que ha supuesto extender los cálculos de las fluctuaciones de
apareamiento a casos de núcleos más pesados, esféricos o muy deformados.
Para ello, el espacio de configuración ha tenido que ser ampliado (de 8 capas
mayores de oscilador a 11).
Por otro lado, en lo que a los NMEs se refiere, podemos decir que:
a) Hemos confirmado que esta desintegración está favorecida si se da entre
estados con deformación muy similar siendo el caso esférico el preferido.
b) El apareamiento juega un papel importante y que estos elementos de ma-
triz toman valores mayores si las correlaciones de apareamiento se hacen
mayores.
c) Si se tiene en cuenta la coordenada δ el valor de dichos elementos de matriz
experimenta un aumento significativo de su valor, de media 5.07, y que oscila
entre el 10% para el menor y un%40 para el mayor con la correspondiente
disminución de la vida media asociada.

Como se ha ido desgranando a lo largo de esta memoria, el método imple-
mentado, cuando se incluye δ, ofrece unos resultados teóricos que, en general,
disminuyen los valores con respecto a lo obtenido cuando sólo se considera
el grado de libertad de la deformación, mejorando el acuerdo con los datos
experimentales. Aun aśı, los valores que se obtienen de forma teórica se en-
cuentran sobreestimados. Para conseguir un mejor acuerdo cuantitativo es
posible introducir mejoras y ampliar nuestros cálculos. Además, este trabajo
deja vaŕıas ĺıneas abiertas, algunas de ellas ya mencionadas, que seguir explo-
rando. Se pueden abordar como perspectivas futuras de trabajo las siguientes
cuestiones:

Seguir la ĺınea de este trabajo y extender estos cálculos, con dos grados
de libertad, para describir otros observables en cualquier otra zona de la
tabla de núcleos que sean de interés, dada la universalidad del método.

Extender estos cálculos a un caso en 3D, constriñendo por separado en
protones y neutrones, lo que permitiŕıa estudiar caracteŕısticas especi-
ficas que sean genuinas de protones o neutrones.

Introducir progresivamente y por orden de importancia grados de li-
bertad extra en el sistema, como deformaciones de orden mayor. Es
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importante hacer esta incorporación por orden de mayor a menor rele-
vancia en la contribución que van a dar a la enerǵıa. Valga como ejemplo
el estudio del método HFB+AMP incluyendo la fluctuación del número
de part́ıculas. De nada sirve estudiar las superficies de enerǵıa potencial
en función de la deformación cuadrupolar y de la fluctuación del núme-
ro de part́ıculas si no es restaurado el propio número de part́ıculas. Si
queremos afinar el método, tenemos que tener en cuenta, en primer lu-
gar, los aspectos más relevantes que van a modificar en mayor medida
el valor de los observables, como es para el caso citado, la proyección a
N frente a las fluctuaciones.

Extender el estudio de los dos grados de libertad a una base triaxial.

Permitir la ruptura de otras simetŕıas, como por ejemplo la ruptura
de la simetŕıa de inversión temporal. Esto implicaŕıa tener un espacio
variacional más grande y funciones de onda de Cranking, lo que im-
plicaŕıa una mejor descripción para los estados con momento angular
distinto de cero y una mejora en los momentos de inercia. La ruptura
de la tercera componente de isosṕın permitiŕıa incluir en apareamiento
protón- neutrón. Una ruptura de la simetŕıa bajo paridad, permitiŕıa
describir estados de paridad negativa, aśı como explorar el grado de
libertad octupolar.

Seŕıa deseable para el caso de la desintegración doble beta, restaurar
la simetŕıa de isosṕın.

Incorporar de forma expĺıcita estados de más cuasipart́ıculas y excita-
ciones de cuasipart́ıculas.

Realizar una variación después de la proyección para el número de
part́ıculas y para cada valor del momento angular (PNAMP-VAP) para
encontrar las funciones de onda intŕınsecas de tipo producto. De esta
forma, obtendŕıamos los valores correctos de los momentos de inercia.

La interacción fenomenológica efectiva que ha sido utilizada también
puede ser mejorada, bien introduciendo nuevos términos o modificando
otros, aśı como con nuevas parametrizaciones de la interacción que sean
más completas y, por ejemplo, tengan en cuenta efectos más allá del
campo medio.

Pese a que estas ideas para perfeccionar el método podŕıan suponer una
mejora cuantitativa con respecto a los datos experimentales, no esperamos
cambios cualitativos en las principales conclusiones que han sido discutidas
en esta memoria.
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Apéndice A

Acrónimos

Como gúıa para el lector, hemos agrupado en este apéndice los acrónimos
más relevantes por orden de aparición en el texto.

HF Hartree Fock

HFB Hartree Fock Bogoliubov

ISM Modelo de capas

SCMF Campo medio autoconsistente

MF Campo medio

BMF Métodos más allá del campo medio

SCCM Conservación de las simetŕıas y mezcla de configuraciones

GCM Método de la coordenada generadora

RMF Campo medio relativista

QCD Cromodinámica cuántica

IBM Modelo de Bosones Interactuantes.

BCS Bardeen Cooper Schrieffer

PAV Proyección después de la variación

VAP Variación después de la proyección

PN-VAP Particle Number Variation After Projection
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162 Acrónimos

PNP Proyección a buen número de part́ıculas

AMP Proyección a momento angular

PNAMP Proyección a momento angular y buen número de part́ıculas

HW Ecuación de Hill-Wheeler

PES Superficies de enerǵıa potencial

PN Proyección al número de part́ıculas

RVAP Variación después de la proyección restringido

2νββ Desintegración doble beta con dos neutrinos

0νββ Desintegración doble beta sin emisión de neutrinos

NME Elementos de matriz nuclear

DBD Desintegración doble beta

F Fermi

GT Gamow-Teller

QRPA Quasiparticle random phase approximation

EDF Funcionales de la densidad de enerǵıa

SRC Correlaciones de corto alcance

UCOM Unitary correlation operator method
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Apéndice B

Teorema de Wick y contracción

de operadores

Varias de las expresiones derivadas en el caṕıtulo 3 hacen uso del teorema
de Wick que nos permite calcular valores esperados de un producto de ope-
radores de creación y destrucción. En este apéndice se detalla dicho teorema.
Los operadores de quasipart́ıculas deben estar en el producto en el orden nor-
mal, esto es, los de creación a la izquierda y los de destrucción a la derecha.
Por cada número de permutaciones impares que deban realizarse para poner
los operadores en esta disposición aparecerá un signo menos.
Por otro lado, se define las contracciones de dos operadores de creación o
destrucción (ab) entre estados |Φ〉, que son el vaćıo de los operadores de
cuasipart́ıculas, como:

âb =
〈Φ|ab|Φ〉
〈Φ|Φ〉

(B.1)

El teorema de Wick se aplica para expresar el producto de operadores de
creación y destrucción en cualquier representación y en cualquier orden co-
mo la suma del producto en orden normal de dichos operadores en la base
de cuasipart́ıculas más la suma del producto en orden normal con una con-
tracción tomada de todas las maneras posibles más la suma del producto
en orden normal tomando dos contracciones de todas las formas posibles y
aśı sucesivamente.
Teniendo en cuenta las relaciones de anticonmutación y las transformaciones
tipo HFB dadas en el caṕıtulo 3 y considerando el caso más sencillo, cuando
los estados entre los que se va a evaluar los valores esperados se correspondan
con el mismo vaćıo de cuasipart́ıculas, Φ〉. Se obtienen las siguientes expresio-
nes si son aplicamos sobre estados en la base de part́ıculas y cuasipart́ıculas:
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164 Teorema de Wick y contracción de operadores

β̂kβk′ =
̂β†
kβk′ =

̂β†
k′β

†
k′ = 0 (B.2)

̂βkβ
†
k′ =

〈Φ|βkβ
†
k′|Φ〉

〈Φ|Φ〉
= δkk′ (B.3)

β̂kck′ =
〈Φ|βkck′|Φ〉

〈Φ|Φ〉 = V ∗
k′k (B.4)

̂βkc
†
k′ =

〈Φ|βkc
†
k′|Φ〉

〈Φ|Φ〉
= U∗

k′k (B.5)

La matriz densidad vendrá definida como:

ĉ†kcl =
∑

k′l′

〈Φ|(Vkk′βk′ + U∗
kk′β

†
k′)(Vll′βl′ + U∗

ll′β
†
l′)|Φ〉

〈Φ|Φ〉 =

=
∑

kl

Vkk′V
∗
ll′
〈Φ|βk′β

†
l′)|Φ〉

〈Φ|Φ〉 =
∑

kl

Vkk′V
∗
ll′δk′l′ = (V ∗V T )lk (B.6)

Y el tensor de apareamiento:

ĉkcl =
∑

k′l′

〈Φ|(Ukk′βk′ + V ∗
kk′β

†
k′)(Ull′βl′ + V ∗

ll′β
†
l′)|Φ〉

〈Φ|Φ〉
=

=
∑

k′l′

Ukk′V
∗
ll′
〈Φ|βk′β

†
l′)|Φ〉

〈Φ|Φ〉
=
∑

kl

Ukk′V
∗
ll′δk′l′ = (V ∗UT )lk (B.7)

Si se considera la proyección al número de part́ıculas, los solapes que
queremos calcular se dan entre estados que no se corresponden con el mismo
vaćıo de cuasipart́ıculas, de modo que las expresiones anteriores obtenidas
con el teorema de Wick deben ser generalizadas [180]. Tomamos la parame-
trización de Thouless entre dos dos estados que son vaćıos de cuasipart́ıculas
diferentes, |Φ〉 y |Φ̄〉 [58, 66] :

|Φ̄〉 = 〈Φ|Φ̄〉exp
(
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′

)
|Φ〉 (B.8)
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[βmβl] =
〈Φ|βmβl|Φ̄〉

〈Φ|Φ̄〉
=
∑

kk′

〈Φ|βmβlexp

(
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′

)
|Φ〉 =

=
∑

kk′

1

2
Akk′(ϕ)〈Φ|βmβlβ

†
kβ

†
k′|Φ〉 =

∑

kk′

1

2
Akk′(ϕ)(δklδk′m − δkmδk′l) =

= Aml(ϕ) (B.9)

Esta matriz Aml(ϕ) es antisimétrica. En función de esta matriz se definen
las siguientes matrices:

Ū(ϕ) = U∗ + V A(ϕ) (B.10)

V̄ (ϕ) = V ∗ + UA(ϕ) (B.11)

Si continuamos con las contracciones para estados de part́ıculas, se obtie-
ne:

[c†mcl] = ρlm(ϕ) =
〈Φ|c†mcl|Φ̄〉

〈Φ|Φ̄〉
=

= 〈Φ|c†mclexp
(
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′

)
|Φ〉 =

=
∑

m′l′

〈Φ|(Vmm′βm′ + U∗
mm′β

†
m′)(Ull′βl′ + V ∗

ll′β
†
l′).

.(I +
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′ + ...)|Φ〉 =

=
∑

m′l′

Vmm′V ∗
ll′δm′l′

1

2

∑

kk′m′l′

Akk′(ϕ)Vmm′Ull′〈Φ|βm′βl′β
†
kβ

†
k′ |Φ〉 =

= (V ∗V T )lm + (UA(ϕ)V T )lm = (V̄ (ϕ)V T )lm (B.12)
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[cmcl] = κ10
lm(ϕ) =

〈Φ|cmcl|Φ̄〉
〈Φ|Φ̄〉

=

= 〈Φ|cmclexp
(
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′

)
|Φ〉 =

=
∑

m′l′

〈Φ|(Umm′βm′ + V ∗
mm′β

†
m′)(Ull′βl′ + V ∗

ll′β
†
l′).(I +

1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′ + ...)|Φ〉 =

=
∑

m′l′

Umm′V ∗
ll′δm′l′ +

1

2

∑

kk′m′l′

Akk′(ϕ)Umm′Ull′〈Φ|βm′βl′β
†
kβ

†
k′ |Φ〉 =

= (V ∗UT )lm + (UA(ϕ)UT )lm = (V̄ (ϕ)UT )lm (B.13)

[c†mc
†
l ] = κ01

ml(ϕ)
〈Φ|c†mc

†
l |Φ̄〉

〈Φ|Φ̄〉
=

= 〈Φ|c†mc
†
l exp

(
1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′

)
|Φ〉 =

=
∑

m′l′

〈Φ|(Vmm′βm′ + U∗
mm′β

†
m′)(Vll′βl′ + U∗

ll′β
†
l′).(I +

1

2

∑

kk′

Akk′(ϕ)β
†
kβ

†
k′ + ...)|Φ〉 =

=
∑

m′l′

Vmm′U∗
ll′δm′l′ +

1

2

∑

kk′m′l′

Akk′(ϕ)Vmm′Vll′〈Φ|βm′βl′β
†
kβ

†
k′|Φ〉 =

(V U †)ml − (V A(ϕ)V T )ml = −(U∗V T )ml − (V A(ϕ)V T )ml =

= −(Ū(ϕ)V T )lm (B.14)
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Apéndice C

Expresiones de la enerǵıa

proyectada

En este apéndice se dan las expresiones para la enerǵıa proyectada, según
el tipo de proyección implementada, las simetŕıas que son restauradas y el
número de variables que han sido tenidas en cuenta, según se ha explicado
en el caṕıtulo 3. Para ello, se hacen uso de las propiedades de los operadores
descritos en el mismo caṕıtulo.

Diferenciamos dos grandes bloques, según haya sido calculada la función
de onda intŕınseca, por el método de HFB (3.47) o por el método VAP (3.50)
cuando el proyector es el del número de part́ıculas (PN). Posteriormente di-
ferenciamos la proyección después de la variación que ha sido realizada y por
último se indica si se toman uno; 1D (q) o dos; 2D (q, δ) grados de libertad

El método PAV proyectando sólo a momento angular (Angular mo-
mentum projection, AMP) o sólo a buen número de part́ıculas (particle
number projection, PNP) a partir de funciones de onda tipo HFB obte-
nidas de resolver las ecuaciones correspondientes (3.40, 3.41) con una
o dos ligaduras al mismo tiempo (aparte de las del número de protones
y neutrones, siempre incluidas en ese tipo de cálculos).

3 HFB+PNP 1D

ENZ
1D (q) =

〈ΦHFB(q)|ĤPNPZ|ΦHFB(q)〉
〈ΦHFB(q)|PNPZ|ΦHFB(q)〉

(C.1)
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168 Expresiones de la enerǵıa proyectada

3 HFB+PNP 2D

ENZ
2D (q, δ) =

〈ΦHFB(q, δ)|ĤPNPZ|ΦHFB(q, δ)〉
〈ΦHFB(q, δ)|PNPZ|ΦHFB(q, δ)〉

(C.2)

3 HFB+AMP 1D

EJ
1D(q) =

〈ΦHFB(q)|(P JM)†ĤP JM |ΦHFB(q)〉
〈ΦHFB(q)|(P JM)†P JM |ΦHFB(q)〉

(C.3)

3 HFB+AMP 2D

EJ
2D(q, δ) =

〈ΦHFB(q, δ)|(P JM)†ĤP JM |ΦHFB(q, δ)〉
〈ΦHFB(q, δ)|(P JM)†P JM |ΦHFB(q, δ)〉

(C.4)

El método PAV proyectando simultáneamente al momento angular y al
número de part́ıculas (Particle number angular momentum projection,
PNAMP) a partir de funciones de onda de HFB.

3 HFB+PNAMP 1D

ENZJ
1D (q) =

〈ΦHFB(q)|(P JM)†ĤP JMPNPZ|ΦHFB(q)〉
〈ΦHFB(q)|(P JM)†P JMPNPZ|ΦHFB(q)〉

(C.5)

3 HFB+PNAMP 2D

ENZJ
2D (q, δ) =

〈ΦHFB(q, δ)|(P JM)†ĤP JMPNPZ|ΦHFB(q, δ)〉
〈ΦHFB(q, δ)|(P JM)†P JMPNPZ|ΦHFB(q, δ)〉

(C.6)

El método VAP. En este caso, construiremos superficies de enerǵıa po-
tencial proyectadas a buen número de part́ıculas obtenidas a partir de
funciones intŕınsecas PN-VAP, solución de la ecuación (3.50), con las
mismas ligadura que para el caso de HFB.

3 PN-VAP 1D

ENZ
1D (q) =

〈ΦVAP(q)|ĤPNPZ|ΦVAP(q)〉
〈ΦVAP(q)|PNPZ|ΦVAP(q)〉

(C.7)

3 PN-VAP 2D

ENZ
2D (q, δ) =

〈ΦVAP(q, δ)|ĤPNPZ|ΦVAP(q, δ)〉
〈ΦVAP(q, δ)|PNPZ|ΦVAP(q, δ)〉

(C.8)
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El método PN-VAP más PAV proyectando a buen momento angular.

3 PN-VAP+PNAMP 1D

ENZJM
1D (q) =

〈ΦVAP(q)|(P JM)†ĤP JMPNPZ|ΦVAP(q)〉
〈ΦVAP(q)(P JM)†|P JMPNPZ|ΦVAP(q)〉

(C.9)

3 PN-VAP+PNAMP 2D

ENZJM
2D (q, δ) =

〈ΦVAP(q, δ)|(P JM)†ĤP JMPNPZ|ΦVAP(q, δ)〉
〈ΦVAP(q, δ)|P JMPNPZ|ΦVAP(q, δ)〉

(C.10)

Los desarrollos para el numerador y denominador se analizan con detalle,
para el caso particular más general, en el siguiente apéndice.
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Apéndice D

Cálculos con funciones de onda

proyectadas

En este apéndice se mostrará el cálculo de valores esperados entre esta-
dos GCM con proyección simultánea al número de part́ıculas y al momento
angular. Este es el caso más general posible de todos los tratados. Estas ex-
presiones se simplificarán de la siguiente manera:

a) Si no se hace el generado de coordenadas −→ q = q′

b) Si no se hace proyección al número de part́ıculas −→ ϕ = 0
c) Si no se hace la proyección al momento angular −→ β = 0

En el caṕıtulo 3 se definió el elemento de matriz entre estados de la base
natural, ecuación (3.143) como:

〈kNZJ1|Ô|k′NZJ2〉 =
∫

(uNZJ1
k (&q))∗〈ΦNZJ1(&q)|Ô|ΦNZJ2(&q′)〉uNZJ2

k′ (&q′)
d&qd&q′√

nNZJ1
k nNZJ2

k′

(D.1)
De modo que hay que calcular el solape que aparece:

〈ΦNZJ(&q)|Ô|ΦNZJ ′

(&q′)〉 (D.2)

Si tomamos la definición del proyector a buen número de part́ıculas y sus
propiedades explicados en la sección 3.4.1 y lo mismo para el proyector al
momento angular descrito en la sección 3.4.2 y los sustituimos en la expresión
del solape (D.2) obtenemos:

〈ΦNZJ1(&q)|Ô|ΦNZJ2(&q′)〉 =
∑

K1K2

(aJ1K1
(&q))∗aJ2K2

(&q′)〈Φ(&q)|(P J1
M1K1

)†ÔP J2
M2K2

PNPZ|Φ(&q′)〉

(D.3)
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172 Cálculos con funciones de onda proyectadas

Estas expresiones van a ser válidas si el operador Ô conmuta con el operador
de rotaciones y con los operadores del número de part́ıculas.

〈ΦNZJ1(&q)|Ô|ΦNZJ2(&q′)〉 =

=
∑

K1K2

(aJ1K1
(&q))∗aJ2K2

(&q′)
2J + 1

8π2

∫
DJ∗

K1K2
(Ω)〈Φ(&q)|ÔR̂(Ω)PNPZ|Φ(&q′)〉dΩ,

(D.4)
donde:

Ω = (α, β, γ) son los ángulos de Euler.

R̂(Ω) es el operador de rotaciones.

DJ∗

MK(Ω) son las funciones de Wigner.

Si tomamos las definiciones siguientes:

R̂(Ω) = e−iαĴze−iβĴye−iγĴz , (D.5)

e−iβĴy = ei
π
2 Ĵxe−iβĴxe−iπ2 Ĵz , (D.6)

DJ∗
MK(Ω) = eiαMeiγKdJ∗MK(β), (D.7)

∫
dΩ =

∫ 2π

0

dα

∫ π

0

senβdβ

∫ 2π

0

dγ, (D.8)

y las aplicamos a la ecuación (D.4) el solape a calcular toma la forma:

∑

K1K2

(aJ1K1
(&q))∗aJ2K2

(&q′)
2J + 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

eiαK1eiγK2dJ∗K1K2

〈Φ(&q)|Ôe−iαĴze−iβĴye−iγĴzPNPZ|Φ(&q′)〉dαsenβdβdγ (D.9)

Aplicamos la definición (D.6), imponemos simetŕıa axial, de paridad y de
simplex a la expresión anterior:

2J + 1

8π2
· 2π · 2π

∫ π

0

dJ∗00〈Φ(&q)|Ôe−iβĴxPNPZ|Φ(&q′)〉senβdβ (D.10)
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A continuación, para calcular las expresiones de la norma y la enerǵıa,
utilizamos la definición de los proyectores del número de part́ıculas (3.62)
para protones y neutrones por separado, ya que las funciones de onda tipo
HFB no mezclan isosṕın, para calcular el solape que aparece en la integral:

〈Φ(&q)|Ôe−iβĴxPNPZ|Φ(&q′)〉 = 1

L2

∑

lZ

∑

lN

e−iϕlN
Ne−iϕlZ

Z

〈Φ(&q)|Ôe−iβĴxeiϕlN
N̂e−iϕlZ

Ẑ |Φ(&q′)〉
〈Φ(&q)|e−iβĴxeiϕlN

N̂e−iϕlZ
Ẑ |Φ(&q′)〉

〈Φ(&q)|e−iβĴxeiϕlN
N̂e−iϕlZ

Ẑ|Φ(&q′)〉 (D.11)

Primero, es necesario calcular la norma, definida como:

nNZ(&q, &q′, β) = 〈Φ(&q)|e−iβĴxPNPZ|Φ(&q′)〉 (D.12)

La norma puede ser factorizada en una parte correspondiente de protones y
en otra de neutrones. Si tomamos como ejemplo la de neutrones y aplicamos
la definición del proyector correspondiente (3.62) obtenemos:

nN(&q, &q′, β) =
1

L

∑

lN

e−iϕlN
N〈Φ(&q)|e−iβĴxeiϕlN

N̂ |Φ(&q′)〉 (D.13)

Lo mismo se va a obtener para la norma de protones, de modo que la norma
será:

nNZ(&q, &q′) = nN(&q, &q′)nZ(&q, &q′). (D.14)

El elemento de matriz que aparece en el sumatorio se calcula utilizando la
fórmula de Onishi [75]:

〈Φ(&q)|e−iβĴxeiϕlN
N̂ |Φ(&q′)〉 = (ei[βTr(Jx)−ϕTr(1)]Det[T22(&q, &q′, β,ϕlN )])

(1/2),

(D.15)

donde la matriz T22, (ecuación (3.72)) es una de las matrices que componen la
matriz T [58]. Ésta matriz de dimensión 2Nx2N, permite una transformación
lineal unitaria que relaciona los operadores de cuasipart́ıculas de dos vaćıos
diferentes que conservan las relaciones de conmutación.
En la ecuación anterior vemos que hay un signo indeterminado debido a
la ráız cuadrada. Existen distintos métodos generales para determinar este
signo, como el método de Neergard [181]. Sin embargo, como estamos traba-
jando en el caso axial, es posible utilizar las simetŕıas internas de las funciones
de onda tipo producto para determinar este signo de manera uńıvoca.
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174 Cálculos con funciones de onda proyectadas

Segundo, necesitaremos calcular los elementos de matriz del operador Ô.
En concreto cuando éste sea el hamiltoniano, ecuación (3.16):

Ĥ =
∑

l1l2

tl1l2c
†
l1
cl2 +

1

4

∑

l1l2l3l4

vl1l2l3l4c
†
l1
c†l2cl4cl3

Este operador nos va a dar la expresión de la enerǵıa: eNZ(&q, &q′, β), como
suma de un término cinético más otro potencial. Tomamos el primer término
que se corresponde con la enerǵıa cinética y que es un operador a un cuerpo:

∑

l1l2

tl1l2
〈Φ(&q)|c†l1cl2e

−iβĴxeiϕlN
N̂e−iϕlZ

Ẑ |Φ(&q′)〉
〈Φ(&q)|e−iβĴxeiϕlN

N̂e−iϕlZ
Ẑ |Φ(&q′)〉

=

=
∑

l1l2

tl1l2ρ
10,NZ
l1l2

(&q, &q′, β,ϕlNZ) =

= Tr[tρ10,N (&q, &q′, β,ϕlN )] + Tr[tρ10,Z(&q, &q′, β,ϕlZ)] (D.16)

Para el término correspondiente al potencial estamos en el caso de un
operador a dos cuerpos.

1

4

∑

l1l2l3l4

vl1l2l3l4
〈Φ(&q)|c†l1c

†
l2
cl4cl3e

−iβĴxe−iϕlZ
Ẑe−iϕlN

N̂ |Φ(&q′)〉
〈Φ(&q)|e−iβĴxe−iϕlZ

Ẑe−iϕlN
N̂ |Φ(&q′)〉

=

1

4

∑

l1l2l3l4

vl1l2l3l4
〈ΦN(&q)|c†l1c

†
l2
cl3cl4e

−iβĴxe−iϕlN
N̂ |ΦN(&q′)〉

〈ΦN(&q)|e−iβĴxe−iϕlN
N̂ |ΦN (&q′)〉

+

1

4

∑

l1l2l3l4

vl1l2l3l4
〈ΦZ(&q)|c†l1c

†
l2
cl3cl4e

−iβĴxe−iϕlZ
Ẑ|ΦZ(&q′)〉

〈ΦZ(&q)|e−iβĴxe−iϕlZ
Ẑ |ΦZ(&q′)〉

+

1

2

∑

l1l2l3l4

vl1l2l3l4
〈ΦZ(&q)|c†l1cl3e

−iβĴxe−iϕlZ
Ẑ |ΦZ(&q′)〉

〈ΦZ(&q)|e−iβĴxe−iϕlZ
Ẑ |ΦZ(&q′)〉

·

〈ΦN(&q)|c†l2cl4e
−iβĴxe−iϕlN

N̂ |ΦN(&q′)〉
〈ΦN (&q)|e−iβĴxe−iϕlN

N̂ |ΦN(&q′)〉
+

1

2

∑

l1l2l3l4

vl1l2l3l4
〈ΦZ(&q)|c†l2cl4e

−iβĴxe−iϕlZ
Ẑ |ΦZ(&q′)〉

〈ΦZ(&q)|e−iβĴxe−iϕlZ
Ẑ |ΦZ(&q′)〉

·

〈ΦN(&q)|c†l1cl3e
−iβĴxe−iϕlN

N̂ |ΦN(&q′)〉
〈ΦN(&q)|e−iβĴxe−iϕlN

N̂ |ΦN (&q′)〉
(D.17)
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Se definen los campos de Fock, apareamiento y la matriz densidad pro-
yectada, respectivamente como:

Γ10,N/Z,N ′/Z′

l1l2
(&q, &q′, β,ϕlN′/Z′ ) =

∑

l3l4

vl1l3l2l4ρ
10N ′/Z′

(&q, &q′, β,ϕlN′/Z′ ) (D.18)

∆10,N/Z
l1l2

(&q, &q′, β,ϕlN/Z
) =

∑

l3l4

vl1l2l3l4κ
10N/Z(&q, &q′, β,ϕlN/Z

) (D.19)

ρP,10,N/Z(&q, &q′, β) =
∑

lN

e−iϕlZ
Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ

Ẑ|ΦZ(&q′)〉
∑

lZ
e−iϕlZ

Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ
Ẑ|ΦZ(&q′)〉

ρ10, N/Z(&q, &q′, β,ϕlN/Z
)

(D.20)
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176 Cálculos con funciones de onda proyectadas

De modo que la parte del hamiltoniano, ecuación (D.17), correspondiente
a la enerǵıa potencial se obtiene:

∑

lZ

e−iϕlZ
Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ

Ẑ |ΦZ(&q′)〉
∑

lZ
e−iϕlZ

Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ
Ẑ |ΦZ(&q′)〉

1

2
Tr[Γ10,Z,Z′

(&q, &q′, β,ϕlZ′ )ρ
10,Z′

(&q, &q′, β,ϕlZ′ )]+

∑

lZ

e−iϕlZ
Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ

Ẑ |ΦZ(&q′)〉∑
lZ
e−iϕlZ

Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ
Ẑ |ΦZ(&q′)〉

1

2
Tr[Γ10,N,Z(&q, &q′, β,ϕlZ)ρ

P,10,N(&q, &q′, β)]+

∑

lN

e−iϕlN
N̂〈ΦN (&q)|e−iβĴxeiϕlN

N̂ |ΦN (&q′)〉
∑

lN
e−iϕlN

N̂ 〈ΦN(&q)|e−iβĴxeiϕlN
N̂ |ΦN(&q′)〉

1

2
Tr[Γ10,Z,N(&q, &q′, β,ϕlN )ρ

P,10,Z(&q, &q′, β)]−

∑

lZ

e−iϕlZ
Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ

Ẑ |ΦZ(&q′)〉
∑

lZ
e−iϕlZ

Ẑ〈ΦZ(&q)|e−iβĴxeiϕlZ
Ẑ |ΦZ(&q′)〉

1

2
Tr[∆10,Z(&q, &q′, β,ϕlZ)κ

01,Z(&q, &q′, β,ϕlZ)]−

∑

lN

e−iϕlN
N̂〈ΦN (&q)|e−iβĴxeiϕlN

N̂ |ΦN (&q′)〉
∑

lN
e−iϕlN

N̂ 〈ΦN(&q)|e−iβĴxeiϕlN
N̂ |ΦN(&q′)〉

1

2
Tr[∆10,N(&q, &q′, β,ϕlN )κ

01,N(&q, &q′, β,ϕlN )]

(D.21)

Por último, si sustituimos las definiciones anteriores en (D.10), se obtiene
la expresión final más general de la enerǵıa:

ENZJ(&q, &q′) =

∫ π/2

0

dJ∗00e
NZ(&q, &q′, β)nNZ(&q, &q′, β)senβdβ

∫ π/2

0

dJ∗00n
NZ(&q, &q′, β)senβdβ

(D.22)
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Apéndice E

Elementos de matriz nuclear en

una desintegración 0νββ

En este apéndice se desarrollan con más detalle expresiones para los ele-
mentos de matriz nuclear (NME) para una desintegración doble beta sin
emisión de neutrinos (0νββ), dentro del marco de la teoŕıa BMF cuyos re-
sultados han sido discutidos en el caṕıtulo 9. El elemento de matriz que
queremos evaluar es:

M0ν
F/GT = 〈0+i |Ô0ν

F (GT |0+f 〉 (E.1)

El operador a dos cuerpos de la interacción se escribe como:

Ô0ν
F/GT =

1

4

∑

ijkl

(O
0ν
F/GT )ijkl a

†
ia

†
jblbk, (E.2)

donde los operadores de creación se definen como:

a†i |0〉 → crea un protón con números cuánticos i

b†j |0〉 → crea un neutrón con números cuánticos j

El término antisimetrizado que aparece en la expresión (E.2) será:

(O
0ν
F/GT )ijkl = 〈ij|Ô0ν

F/GT )|kl〉 − 〈ij|Ô0ν
F/GT )|lk〉 (E.3)

La desintegración doble beta es una transición que se da entre los estados
fundamentales de dos núcleos diferentes, por lo que tendremos que: J = 0
y σ = 0. De modo que para funciones PN-VAP con proyección PNAMP y
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generador de coordenadas, sección 3.5, el elemento de matriz que queremos
evaluar tiene la siguiente forma:

〈0+i |Ô0ν
F/GT |0+f 〉 =

∑

)q)q′,kk′



u0,Ni,Zi
k (&q)√
n0,Ni,Zi
k




∗ (

g0,Ni,Zi
k

)∗

〈P J=0PNiPZiΦ(&q)|Ô0ν
F/GT |P J=0PNfPZf Φ(&q′)〉

(
g
0,Nf ,Zf

k′

)


u
0,Nf ,Zf

k′ (&q′)√
n
0,Nf ,Zf

k′





(E.4)

Los dos paréntesis que aparecen a la derecha de la expresión, aśı como
sus expresiones conjugadas que aparecen a la izquierda, vienen del cálculo
GCM con la solución a la ecuación HW, de manera que lo que nos falta
es evaluar el solape que aparece en el medio de la expresión. La diferencia
frente a otras expresiones de cálculo de valores medios, como las desarrolladas
en el apéndice anterior, es que este operador no conmuta con el número
de part́ıculas. Por ello, es necesario para el proyector a buen número de
part́ıculas, definido en (3.62), tener en cuenta las siguientes propiedades:

a†iP
Z = PZ−1a†i ; (E.5)

bjP
N = PN+1bj ; (E.6)

PN1PN2 = δN1,N2P
N2 . (E.7)

El solape queda entonces:

〈0+i |Ô0ν
F/GT |0+f 〉 =

=
〈P 0PNiPZiΦi(&q)|Ô0ν

F/GT |P 0PNfPZf Φf (&q′)〉√
〈P 0PNiPZiΦi(&q)|P 0PNiPZiΦi(&q′)〉〈P 0PNfPZf Φf (&q)|P 0PNfPZf Φf (&q′)〉

(E.8)

Los operadores conmutan, esto es, se satisface: [Ô0ν
F/GT , R̂(Ω)] = 0. Cada uno

de los términos que aparecen en la ráız del denominador, que son iguales, se
calcula como:

〈P 0PNiPZiΦi(&q)|P 0PNiPZiΦi(&q′)〉 =

=
1

8π2

∫
D0∗

00(Ω)〈Φi(&q)|R̂(Ω)PNiPZi|Φi(&q′)〉dΩ (E.9)
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El solape que aparece dentro de la integral, se factoriza de la siguiente
manera:

〈Φi(&q)|R̂(Ω)PNiPZi|Φi(&q′)〉 =
(
1

L

∑

l

〈Φi,p(&q)|R̂(Ω)eiϕl(Ẑ−Z)|Φi,p(&q′)〉
)

·
(
1

L

∑

l

〈Φi,n(&q)|R̂(Ω)eiϕl(N̂−N)|Φi,n(&q′)〉
)

·

(E.10)

Por otro lado el numerador:

〈P 0PNiPZiΦi(&q)|Ô0ν
F/GT |P 0PNfPZf Φi(&q′)〉 =

=
1

8π2

∫
D0∗

00(Ω)〈Φi(&q)|PNiPZiÔ0ν
F/GTP

NfPZf R̂(Ω)|Φf (&q′)〉dΩ =

= δNf ,Ni−2δZf ,Zi+2

1

8π2

∫
D0∗

00(Ω)〈Φi(&q)|Ô0ν
F/GTP

NfPZf R̂(Ω)|Φf (&q′)〉dΩ

(E.11)

De nuevo, aparece dentro de la integral un solape que debe ser evaluado:

〈Φi(&q)|Ô0ν
F/GTP

NfPZf R̂(Ω)|Φf (&q′)〉 =

=
1

4

∑

ijkl

(O
0ν
F/GT )ijkl〈Φi(&q)|a†ia

†
jblbkP

NfPZf R̂(Ω)|Φf (&q′)〉 =

=
1

4

∑

ijkl

(O
0ν
F/GT )ijkl〈Φi,p(&q)|a†ia

†
jP

Zf R̂(Ω)|Φf,p(&q′)〉〈Φi,n(&q)|blbkPN2R̂(Ω)|Φf,n(&q′)〉 =

=
1

4

∑

ijkl

(O
0ν
F/GT )ijkl

(
1

L

∑

l

〈Φi,p(&q)|a†ia
†
je

iϕl(Ẑ−Zf )R̂(Ω)|Φi,p(&q′)〉
〈Φi,p(&q)|eiϕl(Ẑ−Zf )R̂(Ω)|Φi,p(&q′)〉

〈Φi,p(&q)|eiϕl(Ẑ−Zf )R̂(Ω)|Φi,p(&q′)〉
)

·
(
1

L

∑

l

〈Φi,n(&q)|blbkeiϕl(N̂−Nf )R̂(Ω)|Φi,n(&q′)〉
〈Φi,n(&q)|eiϕl(N̂−Nf )R̂(Ω)|Φi,n(&q′)〉

〈Φi,n(&q)|eiϕl(N̂−Nf )R̂(Ω)|Φi,n(&q′)〉
)

(E.12)
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Definimos el tensor de apareamiento (κ) y el campo de apareamiento (∆)
como:

κ21,p
ij (ϕl,Ω) =

〈Φi,p(&q)|a†ia
†
je

iϕl(Ẑ−Zf )R̂(Ω)|Φf,p(&q′)〉
〈Φi,p(&q)|eiϕl(Ẑ−Zf )R̂(Ω)|Φf,p(&q′)〉

(E.13)

κ21,p,P
ij (ϕl,Ω) =

1

L

∑

l

κ21,p
ij (ϕl,Ω)〈Φi,p(&q)|eiϕl(Ẑ−Zf )R̂(Ω)|Φf,p(&q′)〉 (E.14)

κ12,n
kl (ϕl,Ω) =

〈Φi,n(&q)|blbkeiϕl(N̂−Nf )R̂(Ω)|Φf,n(&q′)〉
〈Φi,n(&q)|eiϕl(N̂−Nf )R̂(Ω)|Φf,n(&q′)〉

(E.15)

κ12,n,P
kl (ϕl,Ω) =

1

L

∑

l

κ12,n
kl (ϕl,Ω)〈Φi,n(&q)|eiϕl(N̂−Nf )R̂(Ω)|Φf,n(&q′)〉 (E.16)

(
∆12,n,P

F/GT (Ω)
)

ij
=
∑

kl

(
O

0ν
F/GT

)

ijkl
κ12,n,P
kl (Ω) (E.17)

De modo que con las definiciones anteriores, obtenemos el valor del solape
en el que estamos interesados:

〈Φi(&q)|Ô0ν
F/GTP

NfPZf R̂(Ω)|Φf (&q′)〉 =
1

2
Tr
[
∆12,n,P

F/GT

(
κ21,p,P

)t]
(E.18)
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[53] D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009).

[54] M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009).

[55] T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, and T. Lesinski,
Phys. Rev. C 79, 044320 (2009).

[56] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A696, 467
(2001).

[57] M. Anguiano, J. L. Egido, and L. M. Robledo, Phys. Lett. B545, 62
(2002).

[58] P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer,
1980).

[59] K. Heyde, From nucleons to the atomic nucleus (Springer-Verlag,
1998).

[60] F. Iachello and A. Arima, The Interacting Boson Model. (Cambridge
University Press, 1987).

[61] A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).

[62] J. Bardeen, N. L. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175
(1957).

[63] N. Bogoliubov, Sov. Phys. JETP 7, 41 (1958).

[64] C. Bloch and A. Messiah, Nuclear Physics 39, 95 (1962).

[65] J. Suhonen, From Nucleons to Nucleus (Springer, 2007).

[66] D. J. Thouless, Nuclear Physics 21, 225 (1960).

[67] J. L. Egido, J. Lessing, V. Martin, and L. M. Robledo, Nuclear Physics
A 594, 70 (1995).

[68] H. Mang, Physics Reports 18, 325 (1975).

[69] J. L. Egido and P. Ring, Nuclear Physics A 383, 189 (1982).

[70] F. K.W. Schmid, Progress in Particle and Nuclear Physics 52, 565
(2004).

[71] K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135, B22 (1964).

188



BIBLIOGRAFÍA 189
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[92] R. R. Rodriguez-Guzman, J. L. Egido, and L. M. Robledo, Phys. Rev.
C62, 054308 (2000).

[93] R. R. Rodriguez-Guzman, J. L. Egido, and L. M. Robledo, Phys. Rev.
C62, 054319 (2000).

[94] J. Egido, L. Robledo, and Y. Sun, Nuclear Physics A 560, 253 (1993).

[95] R. Broglia, O. Hansen, and C. Riedel, Advances in Nuclear Physics 6

(1973).

[96] D. Bes, R. Broglia, R. Perazzo, and K. Kumar, Nuclear Physics A 143
(1967).

[97] A. Gozdz, K. Pomorski, M. Brack, and E. Werner, Nuclear Physics A
442 (1985).
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[181] K. Neerg̊ard and E. Wüst, Nuclear Physics A 402, 311 (1983).

194



Agradecimientos

Quiero empezar expresando mi profundo agradecimiento a mi director de
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También me gustaŕıa agradecer a Andrea Jungclaus haberme dado la opor-
tunidad de iniciar este viaje en la investigación.

He tenido la suerte de conocer y trabajar con Tomás R. Rodŕıguez, del
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