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Abstract: The exact response theory based on the Dissipation Function applies to general
dynamical systems and has yielded excellent results in various applications. In this article,
we propose a method to apply it to quantum mechanics. In many quantum systems, it
has not yet been possible to overcome the perturbative approach, and the most developed
theory is the linear one. Extensions of the exact response theory developed in the field
of nonequilibrium molecular dynamics could prove useful in quantum mechanics, as
perturbations of small systems or far-from-equilibrium states cannot always be taken as
small perturbations. Here, we introduce a quantum analogue of the classical Dissipation
Function. We then derive a quantum expression for the exact calculation of time-dependent
expectation values of observables, in a form analogous to that of the classical theory. We
restrict our analysis to finite-dimensional Hilbert spaces, for the sake of simplicity, and
we apply our method to specific examples, like qubit systems, for which exact results can
be obtained by standard techniques. This way, we prove the consistency of our approach
with the existing methods, where they apply. Although not required for open systems, we
propose a self-adjoint version of our Dissipation Operator, obtaining a second equivalent
expression of response, where the contribution of an anti-self-adjoint operator appears. We
conclude by using new formalism to solve the Lindblad equations, obtaining exact results
for a specific case of qubit decoherence, and suggesting possible future developments of
this work.

Keywords: quantum response theory; qubits; Lindblad equations

1. Introduction

Statistical physics provides a successful description of systems in thermodynamic equi-
librium through probability distributions known as ensembles. However, most systems of
interest are not in equilibrium. Response theory studies their behavior when subject to ex-
ternal actions, usually adopting a perturbative approach that received substantial attention
in the 1950s with the works of Callen, Green, Kubo and others [1-6]. The perturbation is
assumed to be small compared to the Hamiltonian and can be time-dependent. In classical
mechanics, paralleled by quantum mechanics, the initial unperturbed state of the system is
represented by a probability distribution in phase space, which is postulated to be affected
by the external action like a fluid in real space is affected by external forces but preserves its
mass. Therefore, a continuity equation for the probability, known as the Liouville equation,
is taken to hold in phase space [7]. If the external action is small, one assumes that the effect
on the probability density can be approximated to the first order in the magnitude of the
action, using the time correlation function of the perturbation and the observable of interest,
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computed with respect to the equilibrium probability. Kubo provided a single formalism
to treat both classical and quantum dynamics, concerning probability densities in the first
case and density matrices in the second, that, in the linear approximation, yields suscep-
tibilities for systems not far from the thermodynamic equilibrium. The need to develop
suitable techniques in the quantum branch of this field is ever more important [8-10]. For
instance, the phenomenon of decoherence, typical of open quantum systems, represents
a major challenge in quantum computing [11,12]. A deeper understanding of quantum
dissipative dynamics could lead to significant advances in several fields. In this regard,
Kubo’s theory has recently been generalized to nonequilibrium situations described by
general time-local master equations [13-15], such as Lindblad equations, which are the
most widely used for describing open quantum dynamics. Thermal equilibrium states are
replaced by nonequilibrium steady states, and dissipative perturbations are considered
in addition to the Hamiltonian ones [16]. Extensions of linear response theory have been
developed to also account for non-Markovian effects [17]. Different formulations of the
response function have enriched the theory [18]. While these formulations produce equiva-
lent results in numerous applications, the existence of different types of response functions
provides important theoretical and experimental advantages, allowing one to choose the
best one depending on the specific application.

As a result, this perturbative approach has achieved broad applicability and a consider-
able degree of completeness [19,20]. However, nonlinearities are common [21,22], especially
when dissipation, phase transitions, and decoherence phenomena occur. In these situations,
even a small perturbation can lead to significant modifications of the state, impairing the
applicability of linear response. One possible approach to these issues consists in taking
higher-order terms in the perturbation expansions, which may provide greater precision,
but it is often cumbersome and expensive, and may still fail to capture phenomena like
phase transitions and anomalous behaviors. More generally, the perturbations may not be
small. In all such cases, the best solution would be an exact theory of response. In recent
years, research aiming at this goal has started to emerge. One interesting approach is the
use of stochastic methods from classical physics to study quantum dynamics [23,24]. The
stochastic reset technique is particularly suitable for representing measurement processes
and, in this context, for describing open quantum systems exactly [25]. While promising,
this method has the disadvantage of being applicable only to a narrow range of quantum
systems, and it is not always possible to move to “classical” stochastic dynamics.

In contrast, an exact response theory already exists in classical statistical mechanics,
which originated from fluctuation theorems [6,26-29], a generalization of the second law of
thermodynamics for small systems, allowing the dissipation to become a random variable
that can take negative values. A quite general classical exact response theory has been built
on the basis of the transient time correlation function (TTCF) [7] and of the fluctuation rela-
tions. The key ingredient of this theory is the Dissipation Function, first defined by Evans
and Searles as the physically relevant quantity that verifies the fluctuation relation [30-32].
Its connection with exact response theory is referred to as the dissipation theorem in
Ref. [33]; it concerns systems subjected to time-independent perturbations, such as an
external constant field. A dynamical system interpretation has been provided [34]. This
theory has offered numerous advantages and new perspectives, and it has been applied in
several contexts [35,36]. It has allowed for treating hard nonequilibrium problems, at low
drivings [37,38], drastically improving the signal-to-noise ratio, and providing a superior
method with respect to direct averaging for such calculations. In recent applications, it
was demonstrated that this method dramatically improves the accuracy of the results at
low shear rates, and that it is suitable to investigate atomistically detailed confined fluids
at realistic flow rates [37]. It has also been shown that the TTCF can be used to define a
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local diffusion coefficient, leading to important practical implications for nanoscale and
inhomogeneous systems [39]. More recently, the Dissipation Function has been applied
to polar molecules in an electric field, yielding excellent results [40]. Machine learning
techniques have further advanced the study of the Dissipation Function in nonequilib-
rium steady states, leading to a more accurate, short-time valid steady-state fluctuation
theorem [41]. Moreover, this exact response theory has recently been extended to more
complex perturbations, such as stochastic ones [36]. The Dissipation Function and related
response theory remain subjects of active research, and further interesting developments
are expected in various fields.

Attempts to link quantum response theory with quantum fluctuation theorems have
been explored but without advancing beyond perturbative approaches [42]. Therefore, in
the present paper, we propose an exact quantum response theory based on the Dissipation
Function. In Section 2, we review the fundamental aspects of the classical exact response
theory. We formulate a quantum analogue of the Dissipation Function, introducing possible
definitions for the corresponding Dissipation Operators. Finally, we derive two exact
expressions for the computation of the observables expectation values, based on the new
Dissipation Operator, analogously to the corresponding classical response theory. In
Section 5, we apply the new expressions to qubit systems, where exact results can be
obtained in other ways as well. We then compare the new approach with linear response
theory in an application to a spin-1/2 particle in a magnetic field. This example highlights
the advantages that an exact response theory can offer. In Section 6, we conduct a study of
the Dissipation Operator, providing some results that could be useful in future research. In
Section 7, we extend the new method to Lindblad dynamics, and apply it to an open qubit
system characterized by decoherence. Under appropriate assumptions, the new expression
based on the Dissipation Operator gives exact results for this particular case. In Section 8,
we discuss the obtained results and suggest future developments.

2. Classical and Quantum Response Theory

In this section, we review the fundamental aspects of the classical Dissipation Function
and its use in response theory [34]. We then propose a formulation for quantum dynamics.

Let us consider a system whose microscopic phase I' € M evolves according to the
equation of motion I' = G(I'). We define the map S’ : M — M. S'T is the solution at time ¢
of the system with initial condition I' € M. We assume that the phase space M is endowed
with a probability measure dpo(I') = fo(T')dT, of density fp, which evolves according to the
generalized Liouville equation d; f;(T') = —Vr - (f;G(T')). This can be rewritten in terms of
the Dissipation Function [34]

Of(T) = —[A(T) 4+ G(T) - Vrinfi(T)] 1)

as

ofi - )
5 (1) = fO*(D), @)

where A = Vr - G is the phase space variation rate. The evolution of the ensemble average,
defined by

(©)i = [ o fr)ar ©

can be expressed with respect to the initial distribution fj as

(O)r = (O)o+ /Ot<((’) o Ss)Qf0>0 ds. 4)
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See, e.g., Refs. [7,33,34,43] for detailed derivations. This result allows us to calculate the
system’s response to an external perturbation in an exact, not approximate, way. Here,
fo is the unperturbed distribution, which is usually the equilibrium ensemble for the
unperturbed dynamics, while S! represents the exact (perturbed) dynamics. The origin of
the name Dissipation Function comes from the fact that this quantity, for nonequilibrium
molecular dynamics (NEMD), corresponds precisely to the energy dissipation rate: the
product of dissipative force—time-associated flux. This is clear by comparing Expression (4)
with those obtained using the TTCF for a thermodynamic system under the influence of an
external field F,,; [33]:

(O) = (O — - t<((9055)].5xt>0d5. 5)

k BT 0
Another interesting interpretation of () arises in the more general context of dynamical
systems. Let ngs denote the time integral of the Dissipation Function between the time
instants 0 and s:

o) = [ 0f(s'T)du ©®)
Then, one gets
(0f), = (n(fo/f-)) 20 )

which is the relative entropy D(fy|| f—s) [34], or Kullback-Leibler divergence of the distri-
butions fy and f_s. This is of interest, for instance, in large deviation theory, where of
plays the role of the large deviation functional, and has numerous consequences in applica-
tions [44]. Expression (4) also offers other advantages. Firstly, it keeps the probability fixed
while allowing only the observables to evolve over time. Probability evolution requires
the reversed dynamics, which is more difficult to use, whereas observables do not. For
Equation (4), the dynamics are assumed to be invertible [34], although not necessarily time-
reversal invariant, as often required in statistical mechanics. The use of the equilibrium
distribution fj is fortunate because it is known and has the property of smoothing the
result, effectively improving the signal-to-noise ratio [37]. In linear response theory, one
uses fo as well, but in that case, the result is approximate rather than exact. Additionally,
the notion of T-mixing, which is a necessary condition for the Fluctuation Relations to hold
in nonequilibrium steady states [30], through its connection with the Dissipation Function
(QT —mixing),

(Of(00s)) = (Qf) (0os"); =0 fort— e, 8)

provides a new approach for describing relaxation towards equilibrium [34].

The objective of this paper is to develop the quantum counterpart of the classical
expression (4), since it could allow the extension to quantum mechanics of the benefits of
the classical response theory. For sake of simplicity, we focus on finite-dimensional Hilbert
spaces, allowing us to concentrate on constructing the new formalism while avoiding the
technicalities of infinite dimensional analysis.

In quantum mechanics, a system is completely determined by its quantum state |¢)
which obeys the Schrodinger Equation [45]:

iha%lp(x,t) = Hy(x,t) )

a deterministic evolution of a probabilistic entity. In this case, one assumes that all degrees
of freedom of interest are represented in the Hamiltonian H; hence, one refers to an isolated
system. Observables are then expressed by self-adjoint operators [46]. The analogous
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notion of classical ensembles is here given by collections of states [;), each taken with
probability p;, with j running over a suitable set. Collectively, these states are represented
by the density operator

p =2 pjle) (vl (10)
j

suitable for treating both pure and mixed states [46]. This operator is self-adjoint, p* = p,
has a unitary trace, Tr(p) = 1, and is semi-definite positive, ({|p|p) > 0 V. The expec-
tation value of an observable O is expressed through the trace operation, (O) = Tr(pO),
which replaces the integral (3) of the classical theory.

There are two equivalent pictures [45]. In the Schrodinger picture, observables are
time-independent, and p evolves over time according to the Von Neumann (Quantum Liou-

ill tion:
ville) equation 5 1

Fria

Instead, in the Heisenberg picture, p remains fixed and the observables evolve in time

H, pt]- (11)

according to

d 1
EAt = a[At, H] + 9 A. (12)

If the Hamiltonian is constant, the time propagator U(t) is defined as
U(t) = e ™, UT(t) =eti . (13)

This time propagator is a one-parameter unitary group [46], i.e., it is unitary, U(t)U* (t) =
Ut (t)U(t) = Id, and it satisfies the group property U(t +s) = U(t)U(s) and U(0) = Id.
Then, if the Hamiltonian is time-independent, the solutions of the previous equations can
be written as

(Schrodinger) p; = U(t)poU" (t); (Heisenberg) A; = U (t)AU(t). (14)
These are the main tools we will use in the following.

3. Quantum Dissipation Function for Time-Independent Perturbations

We formulate the quantum exact response theory based on the Dissipation Function
starting from scratch, so it is good to start by considering simple cases. Take a time-
independent Hamiltonian # and an arbitrary initial density operator pg. Introduce a
perturbation, producing a new Hamiltonian:

H = Ho+0(t)A Hext, (15)

where 6(t) is the Heaviside function. # represents the equilibrium dynamics, and usually
0o is the corresponding equilibrium density operator, which is stationary with respect
to Ho:

[Ho, po] = 0. (16)

The external perturbation AH,y; is assumed to be turned on at time t = 0, and then
kept constant over time, with A € R. Then, H,,; makes pg no longer invariant, and the
expectation values of the observables become time-dependent. Trying to translate the
classical notion of Dissipation Function in this framework, we find there are some issues
to tackle, such as the ordering problem. This requires us to choose a proper form for the
Dissipation Function. From the classical expression (2), we obtain

ah(r) = ) 20, (17)
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that holds only in the part of the phase space in which fy(I') > 0. This is reminiscent of
the more general notion of absolute continuity of the evolved distributions with respect
to the initial [47], and has been called ergodic consistency in molecular dynamics [43,48].
This limitation is not serious in many applications because the initial distribution usually
corresponds to an unperturbed equilibrium state and does not vanish anywhere in the phase
space of the perturbed evolution, if this satisfies the same constraints of the equilibrium
dynamics [34,48].

The quantum mechanical counterpart of the classical Dissipation Function can then be
guessed, using the von Neumann Equation (11), to be defined as follows:

Definition 1. Let pg be an initial density operator and H = Ho + AHext a time-independent
Hamiltonian operator. The Dissipation Operator can be defined as

Q' = %pa '[H, pol. (18)

As there are different equivalent definitions of the classical Dissipation Function, our
choice is to some extent arbitrary, and other choices can be considered. We are going to show,
however, that this form of Q0 is consistent with linear response for small perturbations,
and yields the exact solutions of problems whose exact solution is known. It remains that
this definition faces two issues. First, the Dissipation Operator (18) is not self-adjoint, so
its expectation value can be a complex number, (()°); € C. For isolated systems, this may
be a challenge, since it does not represent a directly measurable quantity. However, this
is not a problem per se in the case of open systems, where relying solely on self-adjoint
operators may not be possible or necessary [49,50]. While it would be preferable to have a
self-adjoint 7, this is not a priority. The second issue is that pg is not always invertible,
as in the case for pure states. There are, however, ways to handle such a difficulty. One
approach is to reduce the dimension of the Hilbert space, if one knows that the evolution
remains within a subspace in which py is invertible. Another way is to add arbitrarily
small amounts p, to part of the entries of pg so that its rank becomes full, and later analyze
the results in the p. — 0 limit. In any event, it is the same issue known in classical
mechanics, and, analogously, the problem is solved if the initial distribution has support
wider than that of the evolved distributions [47,48]. Despite these issues, Definition (18) has
various advantages. It allows us to derive a quantum expression analogous to Equation (4).
Moreover, it satisfies two important properties already present in the classical context of
the Dissipation Function.

Proposition 1. The expectation value of the Dissipation Operator calculated with respect to the
density operator pg is always zero, and its initial time derivative is always positive:

d
(0% =0, —(Q%);|i=0 > 0. (19)
Proof of Proposition 1.
i _ i
(@) = 1v (o (" [P0l ) ) = 5714 7, pu) 20

Now, we can use first the linear property and then the cyclic property of the trace:
i i i
= Tr(Hpo — poH) = = (Tr(Hpo) — Tr(poH)) = + (Tr(Hpo) — Tr(Hpo)) =0 (21)

We conclude that (%) = 0.
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We can show the second property by making the incremental limit explicit in the
derivative operation:

d

400 limo = lim <[(Q%), — ()] = lim * [Tr(p.0") — Tr(po02")

:Tr(limps p000>: (ap000>
5—0 S ot

We now use a result that we will show later in Equation (43): we can also use the adjoint of

(22)

the Dissipation Operator, (Q2°), to express 9;00:

900

5 = ()0 (23)

Substituting this into the last expression, we obtain

4,40 900 0 0yt, 0
J— N = = >
(0o W(mfz 1r((Q0) o) > 0 (1)
where the last inequality holds for the semi-positivity of pg. In fact, let A € C"*" be a
self-adjoint and semi-definite positive matrix and C € C"*™ be an arbitrary matrix, then,

m
Tr(CTAC) = } (CTAC); Zc*Acl >0 (25)
i=1 i=1

where c; are the columns of C, and the last inequality follows from the definition of a
semi-definite positive matrix. [J

We now derive one of the key results of this paper: an exact expression for the
expectation value of observables, based on the new Dissipation Operator (18).

Proposition 2. Let pg be the initial density operator and H = Ho + AHext the time-independent
Hamiltonian operator. The expectation value of any observable O can be calculated exactly using
the Dissipation Operator as

(0); = (O)o + / (Q004)ods 26)

Proof of Proposition 2. Let us derive a useful expression for % (O)s:

2(0)s = lim L[(O)s — (O):] = lim 1 [T(Opei) — T(Ops)]
= ;11135% [Tr(ou(s +h)poU (s + 1)) — Tr(OU(s)polﬁ(s))} (27)
= lim [Tr(w(s +h)OU(s + h)py) — Tr(u+(s)(9u(s)p0)]

Thanks to the group property of the operator U(t) for time-independent Hamiltonians,
U(s+h) = U(h)U(s), U'(s+h)=U"(s)U"(h), (28)

thanks to the fact that observables and density matrix evolve “at opposite times”, and
introducing the evolved operators O5 = U'(s)OU(s) we can write
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%13%% {Tr(U*(h)OSU(h)pO) — Tr(Ospg)} (29)
= lim % {Tr(@su(h)pow(h)) - TT’(OsPo)} (30)
1
= tim [0 (upou* ) — )| @
_ N A 900
= Tr (Os %13(1) h) =Tr (Osat> (32)

From the definition (18) of the Dissipation Operator, we have

2F poQY (33)

and substituting into (32), we obtain

9

Tr (Osapto) = Tr((’)spoﬂo) = Tr(pOQOOS) = (0°0y),. (34)

Then, we have ;
%<O>s = (Q00s)o. (35)

and ¢ g ,
(0} = (O + [ 4-(O)ds = (©)o+ [ (000, ds (36)
O

First, we note the strong similarity with the analogous Expression (4) in classical
statistical mechanics. The system’s response is expressed in terms of the correlation function
of the Dissipation Operator OV and the observable O, evolved according to the exact
dynamics H, calculated with respect to the equilibrium density operator pg. This use
of the initial distribution is common to the linear response, but like in the classical case,
Equation (26) is not an approximate expression and is not limited to small perturbations.

In general, QO and O do not commute, (Q°O;)¢ # (0s0°)¢. Therefore, we cannot
use (0;Q%; in Equation (26). In quantum mechanics, other types of correlations are
often used, such as Kubo’s canonical correlation or symmetric correlation [3], in order
to obtain real numbers as results, but for Expression (26), this is automatically obtained.
Thus, the meaning of the quantum response function can be assigned to the form used
in Equation (26). Nevertheless, we now consider a symmetrized version of our response
formula, introducing the following notation:

AB+ BA

(4;B)o = Tr|po ——— (37)

4. Self-Adjoint Quantum Dissipation Operator

For the isolated time-independent dynamics considered above, the response of an
observable (O); is computable in the Heisenberg and Schrodinger pictures without any
need to introduce the Dissipation Function. In this sense, Expression (26) only represents a
different formalism for expressing a well-known result. However, the different perspective
it offers may be useful in the solution of complex time-independent problems, as it happens
in classical mechanics, especially in the presence of poor signal-to-noise ratios [37]. Fur-
thermore, its analogy with the classical Expression (4) may prove useful in time-dependent
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situations. Additionally, as in Equation (5), there may be opportunities to associate the
Dissipation Operator Q)° with the production of generalized entropy, involving, for instance
the notion of Kullback-Leibler divergence (7). These interpretations are supported by the
fact that Proposition 1 seems to imply the existence of # > 0 such that

()0 >0 for 0<s<h. (38)

Finally, it could be possible to use the ()T —mixing property [34,43] to study the relaxation of
observables toward stationary states. This question would be especially interesting in the con-
text of open quantum systems. Choosing O = 1, we find an excellent consistency condition:
the probabilistic interpretation of the density operator is preserved using Expression (26).
To explore this possibility, let us start observing that the minimum requirements of response
theory are satisfied by the notions introduced above. In particular, Proposition 1 implies

t
(1 = Do+ [ (O0)ods =1+ 0 =1. (39)
0
and, for a perturbation H,,+ that commutes with pp, we have QY = 0, hence

t
(0} = (O + [ (O)ods = (O)o (40)

for all observables, as desired.

In the case where we take @ = Q0 and we wish to obtain a real number, as the
dissipation should be, we have however a difficulty: QU is not self-adjoint and (Q)°); may
be complex. While this is not necessarily a problem for the theory of open systems, it
is interesting to develop a self-adjoint Dissipation Operator. Therefore, we propose the
following symmetrized operator:

0o 4 (QO)'I'

Q= — (41)

as the Dissipation Function. Then, we note that

ot _ (1 4 P 1 N 1 PoLos
@ = (ihpo ool ) = (G0 Moo= 757 ) = =5 (00 o) + 571
1 . 1 L1 .
= ——(poHoy! = H) = —=[o0 H]pg" = = [Hpo] 0y (42)
so that 5
% = (Q%"po (43)

which leads to the following:

Proposition 3. By means of the self-adjoint operator (41), Equation (26) for time-independent
perturbations can be expressed as

() = (O)o+ [ (1% -+ 3,030 ), m

(0). = Tr(@sam> (45)
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To introduce the Hermitian Dissipation Operator (~)0, we use
dpo _ 0. 900 _ ;0\t
ST poQY; T Q%) po. (46)

Therefore, we can write

dpo\ _ 1 dpo) 1 9p0
T1’<Osat) - ETT‘ <Osat + ET" Osj (47)
1 1 1
= ETr ((QspoQO) + ETr(OS(QO)*p()) = ETr (QOOspo + (QO)+p0(’)5).
We can rewrite this last expression as

Tr (000500 + (Q°)*000s ) = Tr (Q°Osp0 + () (Ospo + 00, O5)) (48)
= Tr((QO + (QO)+)ospo) + Tr((00)+[po, os]) = zw(ﬁoospo) + Tr((00)+[p0, os]).

where the last equality follows from the definition (41). We would like to eliminate the
presence of ()", For this purpose, we note that with similar procedures, but using the
commutator property for the first term in the trace, we can equivalently write

Tr(Qo(’)spo + (QO)+poOs) - Tr(QOpOOs + Q00 po] + (Q°)+poos). (49)

We find
Tr (00050 + (0°)*000; ) = 2Tr (Q°po0s ) + Tr(Q°[Os, po] ) (50)

Now, we combine Equations (48) and (50). Starting from Equation (47), we have

) 1
Tr(@sa"f) =7 (Tr(QOOspo +(Q")000s ) + Tr (Q°Oyp0 + (QO)*poos)) (51)

We can use Equation (48) in place of the first term and Equation (50) in place of the second
one, obtaining

% (m(ﬁoospo) +Tr () [oo, O] ) +2Tr (00005 ) + Tr(QO[Os,po])>
_ %Tr(ﬁoospo) + %Tr (ﬁopoos) + i (Tr((oo)*[po, O, + QO[OS,p()D) (52)
= 3(00) + 31(0.0%0) + § (1 (@ - @) 0w p]) ).

We can clearly use the symmetric correlation (37) for terms with (¥, but we are unable
to completely replace Q° and (Q°)" with the hermitian OO°. We can also observe that
QY — (Q%1 is the anti-self-adjoint part of Q%

Qo

Lo 0yt
E(Q —(Q%) ) (53)
In conclusion, we obtain

%<O>s = <ﬁO?OS>0 + %T”(ﬁo[os/PO]) = <ﬁo? Os)o + %([@, Os])o- (54)
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Integrating as already conducted previously, we obtain

(O = O+ [ (16500 + 5 (@, 0.l ). 5

O

This is an alternative form of Expression (26), which yields equivalent exact results.
Since we are still in the early stages of formulating this theory, it is not clear which form
best represents the method based on the Dissipation Operator. Therefore, we present
both formulas. Equation (26) is in a simpler form, and its analogy with the classical
expression is immediately apparent. On the other hand, the analogy between Expres-
sion (44) and the classical counterpart is less obvious, but it has the advantage of involving
only self-adjoint (and anti-self-adjoint) operators. These operators are commonly used
in quantum mechanics and possess well-known properties. Now, <(~)0> € R, and (ﬁ())
is a pure imaginary number. Additionally, Expression (44) is based on the symmetric
correlation (37), which shares characteristics much closer to the classical one. For instance,
Q0% 05)g = (Os; Q0. Finally, with steps similar to those of the proof of Proposition 1,
we obtain

~ — d ~ d —
(0% = (% =0, (D)sle=0 >0, —-(Q0)s]s=0 =0, (56)

which makes this new Dissipation Operator () also suitable as a candidate for being
associated with the production of generalized entropy.

5. Applications to Qubits and Numerical Tests

In this section, we apply our expressions for the response to perturbations of qubit sys-
tems, and we compare with the results obtained using the Heisenberg picture. To perform
these comparisons, we calculated the results numerically using MATLAB R2024a code. For
mathematical convenience, we set i = 1 and treat all physical quantities as dimensionless.
A quantum system with only two energy states is referred to as a qubit. Qubits play a fun-
damental role in quantum computing, as they are the basic units of quantum information.
They are described within two-dimensional Hilbert spaces. In this context, all possible
physical observables are represented by linear combinations of the identity matrix and the
Pauli matrices o;, while the density operator is expressed as the Bloch vector 4. One has

H=C0, O=7-7y CGecRh

1 o (57)
pzi(Id—i—a-U), aeR’, |d <1

where ¢ = (0%, 0y,0:) and 64 = (Id,7), and

SR I A
1 0 i 0 0 -1 0 1

We arbitrarily chose the vectors @, ¢ and 7, and then we numerically simulated the subse-
quent evolution. This process was repeated for several different combinations of Hamilto-
nian, initial density, observable, and time interval. In all cases, Expressions (26) and (44)
yielded equivalent results, coinciding with those of the Heisenberg and Schrodinger pic-
tures, which are exact. Two examples of these tests are shown in Figure 1.
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Figure 1. (Left): 7 = (0.3,0.3,—-0.3);¢ = (4,0.8,0.5,3); 7§ = (1,0.2,3,1.5). (Right): @ = (0,0.1, —0.5);
¢=(10"3,10"3,2-1073,0); § = (—0.1,-0.2,0, —0.5). Green: Qo expression; blue: 0 expression;
red: Heisenberg expression. The three curves always overlap.

Because for some simple problems, approximate theories yield exact results [51], it is
interesting to compare the new approach with linear response theory. Let us consider a
spin-% particle in a magnetic field B, directed along the z-axis. The dynamics are described
by the Hamiltonian

hew
Ho = upB.o, = Toaz. (59)

The system is initially in equilibrium and described by the density operator

0
po=ptl DT I+pl D= ﬁ m] (60)

which is invariant under the unperturbed Hamiltonian, [Ho, pg] = 0. The equilibrium
dynamics is then disturbed by the interaction Hamiltonian Hy;:

wo

wo
2

H=Ho+AHext = ﬂUz +A(%Ux - 5

5 0z) = (1-A)

o, + A%UX 61)
decreasing the z-direction component of the magnetic field, B,, and producing a non-
vanishing x-direction component By.

The linear response [3] considers perturbed dynamics of the form H; = H — K(t) A4,
where K(t) is a time-dependent external force applied from the infinite past, t = —oo, when
the system was at thermal equilibrium and described by an equilibrium density matrix
Pe, 1.€., p(—o0) = p,. A is a dynamical quantity conjugate to the applied force K. For this
system, the linear response formula is

(B)t = (B)o, + AB(t), AB(t) :/_twdt’K(t’)rlmA(t—t’), Ppa(t) = %<[A,B(t)]>pg; (62)

where B is an arbitrary observable and B(t) = eiMBe~ i Mt is the Heisenberg-evolved
operator according to the unperturbed dynamics H (different from the total dynamics H;).
The dynamics in (61) are simpler than this, as we are considering a constant disturbance
over time. We can assume the disturbance is absent before time ¢ = 0 and is impulsively
turned on at t = 0. Let us apply a change of notation from [3] to our notation:

A= —Hew; K(£) = AO(H);  Hy — H = Ho+ A0()Hex; B — O. (63)

where 0(t) is the Heaviside function. Kubo’s formula can now be rewritten for our problem
and simplified as
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t

<AO>t:/ at'o(t ) Ap(t —t) /dt Ap(t
o (64)
/ dr Ag(t* / dt' Ag(t
The response function is
1 i _i i

9(t) = = ([How, en 0! 0170 )g = — = ([U5 (1) OUp(t), Hewt] o, (65)

where we used the subscript 0 in Uy (t) to distinguish the evolution operator related to
the equilibrium dynamics H from U(t) of the total dynamic H: U (t)OUy(t) # O =
Ut (t)OU(t). In conclusion, by setting /# = 1, we obtain

(©)1 = (O)o—iA [ (U} OOUs(®), Hotlodt )

In Figure 2, we compare the results with different values of A, pp, time interval and
observable O, for the expressions of O = ¢, given by the linear theory, by the Heisenberg
picture and by the Dissipation Function formalism. Qualitatively very similar results (as A
varies) were found for other self-adjoint observables and different initial density operators
po (with [Ho, po] = 0).

For small A, the linear approximation is accurate, and the difference between linear
and QP formulas is indistinguishable to the eye. As A increases, the linear approximation
becomes increasingly worse, as expected, while the O’ —response continues to provide
results consistent with those of the Heisenberg picture. Moreover, the linear response
theory becomes less accurate as time increases, whereas the expression in (26) does not
exhibit this flaw. This illustrates the limitations of linear theories even in simple systems.
However, for small perturbations, the linear response can handle much more complex
dynamics than these ones. It remains to be seen how useful the Dissipation Function can
be in such situations.

A=0.001, comparison for ( 9 ) . A=0.01, comparison for 9, ) )

x107 X107

(o))

(

—q°
— — Heisenberg
Linear

/ v v v vl Iljeisenberg
inear

A
—_—
o= _
IS ®
2
°

(a) (b)

Figure 2. Cont.
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Figure 2. Comparison between linear (blue), Heisenberg (red) and dissipation (black) responses for
increasing perturbation values. In all panels, we have O = oy, pr =075, p; = 0.25, wy = wp = 1.
QO —Expression (26) always coincides with the Heisenberg picture (the two curves overlap); the linear
response does not. (a) A = 0.001, the three responses coincide. (b) A = 0.01, the linear response
differs slightly over long times. (¢) A = 0.5 and (d) A = 5, the difference is big.

6. Properties of Dissipation and Time-Dependent Perturbations

It is clear that the Dissipation Operator plays a very precise role in the temporal
evolution of the density operator p;:

900 _ 0

However, we can consider any time t* as the initial instant of the dynamics and, conse-
quently, define

* 1 _
o = apt*l[H,Pt*] (68)

which allows us to write the Von Neumann Equation (11) as

L =00 p(0) = po. (69)

In general, the formal solution of an equation of this form is expressed using the anti-time-
ordering operator Tr [52]:

pr = poTi el ] 70)
To make use of Equation (70), we need to express ()° without explicitly relying on ps,

which is contained in the definition of the Dissipation Operator. This can be carried out for
constant Hamiltonian dynamics.

Proposition 4. If the Hamiltonian H is time-independent, (O° coincides with the initial Dissipation
Operator Q¥ evolved backward in time:

O = U(s)QUT(s). (71)

Proof. By definition, we have

1 _
O = —p5 ' [H,ps). (72)
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We can express ps using time propagators:
0 = = (U(s)poll'(s)) M, U()oolI"(5)]
if
1 T
= = (U)o U (5)[M, U(s)poll " (5)]
» (73)
==Uu oo T Ut (s (HU (s)pol (s) u(s)pou*(s)H)
1
= = U(s)pg U™ (s)HU(s)poU" (s) — *U( Jog U (s)U(s)pol" (s)H;
and this expression can be simplified noting that
U(s)pp UM (s)U(s)poU™ (s) = Id, and [U(t),H] = 0. (74)
We can then write
Qf = %U(s)po_l?-lpolf(s) _ %U(S)UJF(S)’HU(S)UJF(S)
= () (o5 e — U L) ')
(75)

= U (g 0~ 1)U
— U(s) (;Zp()_l[H,po])UJr(s) — U(s)0°Ut(s).

O

Interestingly, the Dissipation Operator does not evolve in time like standard observ-
ables in the Heisenberg representation, U (t)OU(t). This might seem problematic: we
want to consider () as a physical observable, but it evolves like a probability, i.e., in reverse
time: Qf = U(+)QOUT (¢). This is not due to the order of its operators in the definition. One
could try to redefine the Dissipation Operator by swapping the order of H, pp and p, ",
but it would still evolve in reversed time. The origin of this type of evolution lies in the
operators involved: H and p. The Hamiltonian operator H (in this simple case) commutes
with time propagators, while p and p~! evolve at reversed times.

If we want a Dissipation Operator that evolves like any other physical observable,
we should avoid the use of p. At the moment, this is not of our concern. Indeed, upon
further analysis, this result does not seem to be a disadvantage at all; on the contrary, it
looks more a strength. It provides consistent results, it is equivalent with the Heisenberg
and Schrodinger pictures for usual observables. Using )%, we found

d 9ps
2(0)s = Tr(po000; ) = Tr(O L ) (76)

which conceptually is reminiscent of the Heisenberg picture, with evolving observables,
and of the Schrodinger picture with evolving probabilities. In turn, the equivalence of the
two is obtained thanks to the reverse-time evolution of Q°:

(%(@S)S - Tr(oaap;> = Tr(Ops(¥F) = Tr(ou(s)pow(s)u(s)Qou*(s))
(77)

= Tr(lf(s)(’)ll(s)po()o) = Tr(05p000> = Tr(pOQOOS) = <{js<(9>s>H
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where the superscript S in the first term and the superscript H in the last one respec-
tively stand for Schrodinger and Heisenberg. Moreover, Equation (71) yields another
consistency result:

() = Tr(UHO U (U (1)pol* (1)) = (Q%) = 0 (78)

which correctly means that every moment can be considered as the initial one. The property
of zero-mean, stated in Proposition 1, is propagated in time thanks to Equation (71). Finally,
in applications of classical dynamical systems, a commonly used quantity is (Q°); [35], but
here, (Q%); # (Qf), unlike what happens to the usual observables.

Equation (70) shows that the solution to the Von Neumann problem (11) can be
expressed in several ways: not only in the usual form, Equation (14), but also as in
Equation (70), or equivalently, using the adjoint operator QO and the time-ordering operator
T, as

pr=Tp |elo@ds | oo (79)

If the solution is unique, Expressions (70) and (79) coincide with the usual form (14); they
are just different ways of writing the same thing.

Applying our theory to complex, particularly open quantum systems for which tradi-
tional time propagators do not exist, could prove useful. Let us investigate this possibility.
Take a time-dependent Hamiltonian #(t). The usual time evolution is expressed by [52]

ut(t) —ﬂg[exP<+;/Ot’H(s)ds) ; U(H) —ﬂ[exp<_; Ot’}-[(s)ds)]; (80)

pr = U(t)pold" (t).

In terms of Dissipation Operators, one can instead follow different approaches. We choose
here self-adjoint Dissipation Operators, introducing the operator w® = fi™! Lo 100, and
then we symmetrize it to make it self-adjoint:

~ 1/ _ _
@ = o= (05 "o + oty ). (81)
We have:

0 = (00~ (@) = 52 (5 0] ~ 1M, p0lg”)

S SR 1y _ 1/ 1
—ﬁ(po Hpo —2H + poHp, )—i(w hH)-

(82)
Now, we can rewrite the Hamiltonian as H(s) = h(@&® — iQ)°) and define the operator
O = @° — iQ° = M /h. This allows us to write

U(t) = Tre o, 0t (1) = Tret s = 171(1); O = AT (H)OU(H). (83)

Clearly, for constant Hamiltonians, these ordered exponentials become mere exponentials,
because the two time-dependent operators Qf and @' reduce to the constant operator H.
While this is simply a rewriting of the usual operators, it suggests an interesting possibility:
it may be possible to construct time propagators for dissipative dynamics by extending the
Dissipation Operator formalism to open quantum systems.
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7. The Dissipation Operator for Open Quantum Systems
The Lindblad equation [9]
1 s 1
p= E[H,P] +) . | LapLi — E{LaLmP} , (84)
o

with the commutator accounting for the unitary non-dissipative evolution and the L,
operators for the rest, is commonly used to describe open quantum systems. In particular,
H is the effective Hamiltonian operator, which may differ from the Hamiltonian of the
isolated system due to the interaction with the environment. The second term represents the
dissipative part of the evolution, with the Lindblad operators L, describing the interaction
between the system and external environment. To apply our method to these dynamics,
we extend the Dissipation Operator incorporating the dissipative effects introduced by the
Lindblad operators. Again, there are several equivalent ways to achieve this; we adopt
the following:

Dy=p 'LopL} — LiLy = Q) = Q%+ Y_D). (85)

o

Here, Q0 concerns as above the Hamiltonian part of the evolution, and D, takes into
account the dissipative part:

D} = (o' LapL)" — (LiLe)" = (o) (07 Le)" = (L) (L)' = LupLip™ — LLy (86)
and linearity implies (¥, Dq) t= Y. D}. Then, the Lindblad equation can be rewritten as

o 1
& =3 (p0t + (@) (87)

Indeed, we can write

N

T (P2 +(Q1)p)

(00 + (0)0) + 5 ¥ (LepLi — pLiLe + LpL} ~LiLep)  (89)
24

NI N[ -

—_

1
= T[Hrp] + 2 (lepLZ - E{LZLMP})'

=+

We note that, for Hamiltonian dynamics, one can express the Von Neumann equation with
a linear combination of Q) and Q:

% =a(Q)o +bpQ) witha,b € Rs.t.a+b=1. (89)
Applying definition (85) to the Lindblad equation, we take 2 = b = 1/2, consistently with
Equation (87). Various practical challenges now arise in explicitly solving the equations
of interest. Therefore, to illustrate how our approach works, here, we introduce some
simplifying hypotheses. In particular, we take

Oy = U (H)OUL(t) = en HFC) =7 (O, (90)

where the symbol “x” indicates that the two evolution operators need not necessarily be
adjoints of each other. This hypothesis is suggested by the extension of (2 in the form

0 = (& —i¥) + (¢ —K) = Z(H+0C), 91)

SH| =
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where g(Ly, L}, ps) and k(Ly, LY, ps) represent the dissipative part of @; and O, respec-
tively. These are time-dependent operators. The term k° is determined by the definition
of O, but the term ¢° has no specific constraints. This allows us to define g°* consistently
with the correct results. It is reasonable to express these terms through a general operator
C, precisely because of this freedom with respect to g. Additionally, assuming that C is
time-independent is not unrealistic. Just as the two time-dependent operators Of and &'
reduce to the constant Hamiltonian H, the same could happen for g' and k!, especially
since all the Lindblad operators in Equation (84) are time-independent. We stress that in
Equation (90), we are not assuming Uj, to be a “real” time propagator, in the sense that
it would extend the Heisenberg representation, (O); = Tr(U;* (t)OUL(t)po). Instead, we
are stating that these operators behave like evolution operators when combined with the
generalization of expression (26). This generalization can be derived exactly by repeating
the calculations already performed earlier, starting from d;(O); = Tr(O;} 0¢pp), where the
only difference is represented by Equation (87). This leads to

(O = O+ [ (108050 + (05080 )as. )

Let us apply Expression (92) to a particular Lindblad equation, whose analytical solution
is known, suitably defining C and C*, and consequently U () and U (). Consider
the equation

1 1
% = —i[wo, p] —|—')/<(7p(7+ — 2{U+U,p}>,‘ ot = E(Ux +ioy), (93)
which describes a decoherence phenomenon of a qubit open system. This equation is

already in the form of (84); we just need to highlight the correspondence with the gen-
eral notation

a=1H=wo; L=y ; L' = /y0". (94)
After writing Equation (93) in its single components, the analytical solution can be eas-
ily calculated:
0 — [ 0Q,e 1t | pQ e~ (05720t ] )
e~ 052wt o0, 4 o0 (1 — )

and then the evolution of observables, (O); = Tr(p(t)O) immediately follows. Comparing
this expression with Equation (92), we find the form of C and C* for this particular case.
Consider first diagonal observables:

1 a 0
= , a,beR. 96
@ lo b] ab e (96)
Introducing
C=—iyoto, C* = +iyo o, (97)

Formula (92) gives the known analytical solution (95), for any initial condition p(0) and
for all real frequencies w, . In Figure 3, this is shown numerically for the projectors
my (@ =1 b=0)and m; (a = 0, b = 1), from which all diagonal observables can be
obtained. It is important to note that C* differs from the adjoint of C, Ct =iyoto~,and
that the two operators Uy and U} do not form a unitary group. This is consistent with the
dissipative nature of the dynamics.
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Figure 3. Comparison of the results offered by Expression (92) (solid blue line) with those known
theoretically (dashed red line) for the problem (93). On the left, (7g); on the right, (7r1);. In both
panels, w = 0.5, v = 3, pg identified by the Bloch vector @ = (0.2; 0.3; —0.4). The curves overlap.

Consider now the following class of observables:

;c,deR. (98)

02_ 0 C+ld
- le—id 0

which we call diag2 operators. We define the evolution of the observables for this second
class as

O;k — 6%(H+Mx)t02€_%(H+M)t,' M = _2{0.—10.4-} — —MX. (99)

When combined with Expression (92), this provides the exact response for all observables
of the form (98), with M, M = M*. In Figure 4, we numerically illustrate this fact for
two cases.

Lindblad ) Lindblad

| ——Q-expression ——Q-expression
[ analytical oak 1 analytical

' A2
(O %
)

we
(0%),

time time
Figure 4. Comparison of the results offered by Expression (92) (solid blue line) with those known
theoretically (dashed red line) for the problem (93) and the second-diagonal class 2. On the left,
c=1d=1 w=1, v =1, pp-Bloch vector 4 = (0.3, 0.3, —0.4). On the right, c = -3, d = —1,
w =25 v=13,d= (02, —0.1, 0.6). The curves always overlap.

Any self-adjoint observable O in a two-dimensional Hilbert space can be expressed
as a linear combination of the two kinds of operators defined by Equations (96) and (98).
For the specific case of Equation (93), the operators C, C*, M and M* all commute with
the Hamiltonian operator H. In conclusion, for this particular Lindblad Equation (93), the
expression (92) gives exact results when the observables evolve according to

i

O = eiC 1O (1)e #C + eFM 1O} (1) i M, (100)
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where a simple rule applies:
M= —i{le, L1} = —M*; C=—iLfL,; C* =iL,L} (101)

with the subscript “‘H’ indicating evolution in the Heisenberg picture.

How generally the rule (101) applies is the object of our investigation. However, this
is just one way to obtain exact results using the Dissipation Operator. Exact results can be
obtained equivalently by evolving the observables in the Heisenberg picture and assuming
the following time dependence for the Dissipation Operator:

O9(t) =e QY for diagonal operators; QY (t) = e_%7t0% for diag 2 operators (102)

Lindblad equations, while widely used, have certain limitations. One issue is that the
positivity of the density matrix p can be violated, particularly in numerical simulations
(1.5.2in [9]). Moreover, their validity is restricted to linearly dissipative interactions; thus,
choosing L, operators can be an ambiguous or approximate process [53,54]. Furthermore,
when many energy states are involved, calculating the solution becomes very computation-
ally intensive [55,56]. We conclude by observing that Lindblad equations are intimately
linked to the concept of quantum entropy [57,58], which is affected by dissipation, of course.
Therefore, combining them with the response theory based on the Dissipation Operator
may prove useful.

8. Concluding Remarks

In this paper, we have presented a first approach to the formulation of a quantum exact
response theory as an extension of the classical theory based on the Dissipation Function.
Our future goal is to further develop this approach for studying perturbations in complex
open quantum systems. To this end, we have started from constant Hamiltonian dynamics,
which suggest at least two quite natural quantum versions of the Dissipation Function,
which are equivalent for the cases considered here.

The first quantum Dissipation Operator has been defined by (18), and the correspond-
ing quantum exact response expression has been given by (26), in perfect analogy with the
classical Formula (4). For constant Hamiltonian dynamics, the correctness of the results can
be tested, comparing the expectation values of observables (O); with the corresponding
Schrodinger and Heisenberg pictures.

We then noted that, although it is not strictly required for open dynamics, it is still
interesting to use self-adjoint operators. Therefore, we proposed a self-adjoint Dissipation
Operator, defined by Equation (44), which is equivalent to the first. In our derivation, this
requires the introduction of an anti-self-adjoint operator. In this formulation, symmetric
quantum correlations appear, with properties quite similar to the classical case.

We applied these expressions to qubit systems and obtained numerically correct results.
A comparison with linear response theory revealed that as the perturbation value and
time increase, the linear response naturally worsens, whereas the expressions (26) and (44)
continue to yield exact results. We also examined the role of the Dissipation Operator in the
time evolution of the density matrix p. In particular, we found that for constant Hamiltonian
dynamics, the operator Of evolves in reverse time, as described in Equation (71). This is
not what observables do, but it is consistent with the classical theory, where the Dissipation
Function is at once an observable and the generator of the evolution of probabilities. As far
as response is concerned, this poses no problem.

As it is preferable to keep the Dissipation Operator Q° fixed in time, as in the classical
theory, we introduced time propagators based on the Dissipation Operators, as given in
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Equation (83). We carried this out consistently, rewriting the Hamiltonian in terms of Dissi-
pation Operators, which may seem trivial but suggests an interesting insight: by extending
this approach, it may be possible to properly treat observables of dissipative dynamics.
Building on this idea, we extended the method to Lindblad equations, incorporating the
dissipative part (described by L, and L) in the definition of the Dissipation Operator, lead-
ing to the quantum exact response Expression (92). We applied this approach to a specific
Lindblad equation, comparing the results obtained through our new expression with the
known analytical solution. With the aid of assumptions suggested by both previous studies
and by inspection, we obtained exact results with Expression (92).

While this approach is still in its infancy, and it is open to different approaches, it
offers an original perspective on quantum response theory and open quantum systems. Its
main strength lies in its analogy to the classical exact response theory, which is robust and
general [31,33,35-37]. Moreover, the computational advantages recently offered by classical
theory across various applications [37,59], along with the development of new methods
for investigating the Dissipation Function [41], provide further compelling evidence of the
potential held by its proposed quantum analogue. A promising avenue for future research
is to investigate whether () can be associated with entropy production rates, and with
the mathematical tools of large deviation theory, such as the Kullback-Leibler divergence.
Future studies intend to clarify this, also in connection with the application to different
equations for open quantum systems. Finally, extension to infinite-dimensional Hilbert
spaces should be considered.
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