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Abstract: The exact response theory based on the Dissipation Function applies to general

dynamical systems and has yielded excellent results in various applications. In this article,

we propose a method to apply it to quantum mechanics. In many quantum systems, it

has not yet been possible to overcome the perturbative approach, and the most developed

theory is the linear one. Extensions of the exact response theory developed in the field

of nonequilibrium molecular dynamics could prove useful in quantum mechanics, as

perturbations of small systems or far-from-equilibrium states cannot always be taken as

small perturbations. Here, we introduce a quantum analogue of the classical Dissipation

Function. We then derive a quantum expression for the exact calculation of time-dependent

expectation values of observables, in a form analogous to that of the classical theory. We

restrict our analysis to finite-dimensional Hilbert spaces, for the sake of simplicity, and

we apply our method to specific examples, like qubit systems, for which exact results can

be obtained by standard techniques. This way, we prove the consistency of our approach

with the existing methods, where they apply. Although not required for open systems, we

propose a self-adjoint version of our Dissipation Operator, obtaining a second equivalent

expression of response, where the contribution of an anti-self-adjoint operator appears. We

conclude by using new formalism to solve the Lindblad equations, obtaining exact results

for a specific case of qubit decoherence, and suggesting possible future developments of

this work.

Keywords: quantum response theory; qubits; Lindblad equations

1. Introduction

Statistical physics provides a successful description of systems in thermodynamic equi-

librium through probability distributions known as ensembles. However, most systems of

interest are not in equilibrium. Response theory studies their behavior when subject to ex-

ternal actions, usually adopting a perturbative approach that received substantial attention

in the 1950s with the works of Callen, Green, Kubo and others [1–6]. The perturbation is

assumed to be small compared to the Hamiltonian and can be time-dependent. In classical

mechanics, paralleled by quantum mechanics, the initial unperturbed state of the system is

represented by a probability distribution in phase space, which is postulated to be affected

by the external action like a fluid in real space is affected by external forces but preserves its

mass. Therefore, a continuity equation for the probability, known as the Liouville equation,

is taken to hold in phase space [7]. If the external action is small, one assumes that the effect

on the probability density can be approximated to the first order in the magnitude of the

action, using the time correlation function of the perturbation and the observable of interest,
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computed with respect to the equilibrium probability. Kubo provided a single formalism

to treat both classical and quantum dynamics, concerning probability densities in the first

case and density matrices in the second, that, in the linear approximation, yields suscep-

tibilities for systems not far from the thermodynamic equilibrium. The need to develop

suitable techniques in the quantum branch of this field is ever more important [8–10]. For

instance, the phenomenon of decoherence, typical of open quantum systems, represents

a major challenge in quantum computing [11,12]. A deeper understanding of quantum

dissipative dynamics could lead to significant advances in several fields. In this regard,

Kubo’s theory has recently been generalized to nonequilibrium situations described by

general time-local master equations [13–15], such as Lindblad equations, which are the

most widely used for describing open quantum dynamics. Thermal equilibrium states are

replaced by nonequilibrium steady states, and dissipative perturbations are considered

in addition to the Hamiltonian ones [16]. Extensions of linear response theory have been

developed to also account for non-Markovian effects [17]. Different formulations of the

response function have enriched the theory [18]. While these formulations produce equiva-

lent results in numerous applications, the existence of different types of response functions

provides important theoretical and experimental advantages, allowing one to choose the

best one depending on the specific application.

As a result, this perturbative approach has achieved broad applicability and a consider-

able degree of completeness [19,20]. However, nonlinearities are common [21,22], especially

when dissipation, phase transitions, and decoherence phenomena occur. In these situations,

even a small perturbation can lead to significant modifications of the state, impairing the

applicability of linear response. One possible approach to these issues consists in taking

higher-order terms in the perturbation expansions, which may provide greater precision,

but it is often cumbersome and expensive, and may still fail to capture phenomena like

phase transitions and anomalous behaviors. More generally, the perturbations may not be

small. In all such cases, the best solution would be an exact theory of response. In recent

years, research aiming at this goal has started to emerge. One interesting approach is the

use of stochastic methods from classical physics to study quantum dynamics [23,24]. The

stochastic reset technique is particularly suitable for representing measurement processes

and, in this context, for describing open quantum systems exactly [25]. While promising,

this method has the disadvantage of being applicable only to a narrow range of quantum

systems, and it is not always possible to move to “classical” stochastic dynamics.

In contrast, an exact response theory already exists in classical statistical mechanics,

which originated from fluctuation theorems [6,26–29], a generalization of the second law of

thermodynamics for small systems, allowing the dissipation to become a random variable

that can take negative values. A quite general classical exact response theory has been built

on the basis of the transient time correlation function (TTCF) [7] and of the fluctuation rela-

tions. The key ingredient of this theory is the Dissipation Function, first defined by Evans

and Searles as the physically relevant quantity that verifies the fluctuation relation [30–32].

Its connection with exact response theory is referred to as the dissipation theorem in

Ref. [33]; it concerns systems subjected to time-independent perturbations, such as an

external constant field. A dynamical system interpretation has been provided [34]. This

theory has offered numerous advantages and new perspectives, and it has been applied in

several contexts [35,36]. It has allowed for treating hard nonequilibrium problems, at low

drivings [37,38], drastically improving the signal-to-noise ratio, and providing a superior

method with respect to direct averaging for such calculations. In recent applications, it

was demonstrated that this method dramatically improves the accuracy of the results at

low shear rates, and that it is suitable to investigate atomistically detailed confined fluids

at realistic flow rates [37]. It has also been shown that the TTCF can be used to define a
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local diffusion coefficient, leading to important practical implications for nanoscale and

inhomogeneous systems [39]. More recently, the Dissipation Function has been applied

to polar molecules in an electric field, yielding excellent results [40]. Machine learning

techniques have further advanced the study of the Dissipation Function in nonequilib-

rium steady states, leading to a more accurate, short-time valid steady-state fluctuation

theorem [41]. Moreover, this exact response theory has recently been extended to more

complex perturbations, such as stochastic ones [36]. The Dissipation Function and related

response theory remain subjects of active research, and further interesting developments

are expected in various fields.

Attempts to link quantum response theory with quantum fluctuation theorems have

been explored but without advancing beyond perturbative approaches [42]. Therefore, in

the present paper, we propose an exact quantum response theory based on the Dissipation

Function. In Section 2, we review the fundamental aspects of the classical exact response

theory. We formulate a quantum analogue of the Dissipation Function, introducing possible

definitions for the corresponding Dissipation Operators. Finally, we derive two exact

expressions for the computation of the observables expectation values, based on the new

Dissipation Operator, analogously to the corresponding classical response theory. In

Section 5, we apply the new expressions to qubit systems, where exact results can be

obtained in other ways as well. We then compare the new approach with linear response

theory in an application to a spin-1/2 particle in a magnetic field. This example highlights

the advantages that an exact response theory can offer. In Section 6, we conduct a study of

the Dissipation Operator, providing some results that could be useful in future research. In

Section 7, we extend the new method to Lindblad dynamics, and apply it to an open qubit

system characterized by decoherence. Under appropriate assumptions, the new expression

based on the Dissipation Operator gives exact results for this particular case. In Section 8,

we discuss the obtained results and suggest future developments.

2. Classical and Quantum Response Theory

In this section, we review the fundamental aspects of the classical Dissipation Function

and its use in response theory [34]. We then propose a formulation for quantum dynamics.

Let us consider a system whose microscopic phase Γ ∈ M evolves according to the

equation of motion Γ̇ = G(Γ). We define the map St : M → M. StΓ is the solution at time t

of the system with initial condition Γ ∈ M. We assume that the phase space M is endowed

with a probability measure dµ0(Γ) = f0(Γ)dΓ, of density f0, which evolves according to the

generalized Liouville equation ∂t ft(Γ) = −∇Γ · ( ftG(Γ)). This can be rewritten in terms of

the Dissipation Function [34]

Ω ft(Γ) ≡ −[Λ(Γ) + G(Γ) · ∇Γln ft(Γ)] (1)

as
∂ ft

∂t
(Γ) = ftΩ

ft(Γ), (2)

where Λ = ∇Γ · G is the phase space variation rate. The evolution of the ensemble average,

defined by

⟨O⟩t =
∫

M
O(Γ) ft(Γ) dΓ (3)

can be expressed with respect to the initial distribution f0 as

⟨O⟩t = ⟨O⟩0 +
∫ t

0

〈
(O ◦ Ss)Ω f0

〉
0

ds. (4)
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See, e.g., Refs. [7,33,34,43] for detailed derivations. This result allows us to calculate the

system’s response to an external perturbation in an exact, not approximate, way. Here,

f0 is the unperturbed distribution, which is usually the equilibrium ensemble for the

unperturbed dynamics, while St represents the exact (perturbed) dynamics. The origin of

the name Dissipation Function comes from the fact that this quantity, for nonequilibrium

molecular dynamics (NEMD), corresponds precisely to the energy dissipation rate: the

product of dissipative force–time-associated flux. This is clear by comparing Expression (4)

with those obtained using the TTCF for a thermodynamic system under the influence of an

external field Fext [33]:

⟨O⟩t = ⟨O⟩0 −
V

kBT

∫ t

0

〈
(O ◦ Ss)J · Fext

〉
0

ds. (5)

Another interesting interpretation of Ω arises in the more general context of dynamical

systems. Let Ω
f0
0,s denote the time integral of the Dissipation Function between the time

instants 0 and s:

Ω
f0
0,s(Γ) ≡

∫ s

0
Ω f0(SuΓ)du (6)

Then, one gets 〈
Ω

f0
0,s

〉
0
=

〈
ln( f0/ f−s)

〉

0
≥ 0 (7)

which is the relative entropy D( f0∥ f−s) [34], or Kullback–Leibler divergence of the distri-

butions f0 and f−s. This is of interest, for instance, in large deviation theory, where Ω f

plays the role of the large deviation functional, and has numerous consequences in applica-

tions [44]. Expression (4) also offers other advantages. Firstly, it keeps the probability fixed

while allowing only the observables to evolve over time. Probability evolution requires

the reversed dynamics, which is more difficult to use, whereas observables do not. For

Equation (4), the dynamics are assumed to be invertible [34], although not necessarily time-

reversal invariant, as often required in statistical mechanics. The use of the equilibrium

distribution f0 is fortunate because it is known and has the property of smoothing the

result, effectively improving the signal-to-noise ratio [37]. In linear response theory, one

uses f0 as well, but in that case, the result is approximate rather than exact. Additionally,

the notion of T-mixing, which is a necessary condition for the Fluctuation Relations to hold

in nonequilibrium steady states [30], through its connection with the Dissipation Function

(ΩT−mixing),

〈
Ω f0(O ◦ St)

〉
0
→

〈
Ω f0

〉
0

〈
O ◦ St

〉
0
= 0 for t → ∞, (8)

provides a new approach for describing relaxation towards equilibrium [34].

The objective of this paper is to develop the quantum counterpart of the classical

expression (4), since it could allow the extension to quantum mechanics of the benefits of

the classical response theory. For sake of simplicity, we focus on finite-dimensional Hilbert

spaces, allowing us to concentrate on constructing the new formalism while avoiding the

technicalities of infinite dimensional analysis.

In quantum mechanics, a system is completely determined by its quantum state |ψ⟩
which obeys the Schrödinger Equation [45]:

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t) (9)

a deterministic evolution of a probabilistic entity. In this case, one assumes that all degrees

of freedom of interest are represented in the Hamiltonian H; hence, one refers to an isolated

system. Observables are then expressed by self-adjoint operators [46]. The analogous
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notion of classical ensembles is here given by collections of states |ψj⟩, each taken with

probability pj, with j running over a suitable set. Collectively, these states are represented

by the density operator

ρ ≡ ∑
j

pj|ψj⟩⟨ψj| (10)

suitable for treating both pure and mixed states [46]. This operator is self-adjoint, ρ† = ρ,

has a unitary trace, Tr(ρ) = 1, and is semi-definite positive, ⟨ψ|ρ|ψ⟩ ≥ 0 ∀ψ. The expec-

tation value of an observable O is expressed through the trace operation, ⟨O⟩ = Tr(ρO),

which replaces the integral (3) of the classical theory.

There are two equivalent pictures [45]. In the Schrödinger picture, observables are

time-independent, and ρ evolves over time according to the Von Neumann (Quantum Liou-

ville) equation:
∂

∂t
ρt =

1

ih̄
[H, ρt]. (11)

Instead, in the Heisenberg picture, ρ remains fixed and the observables evolve in time

according to
d

dt
At =

1

ih̄
[At,H] + ∂t A. (12)

If the Hamiltonian is constant, the time propagator U(t) is defined as

U(t) ≡ e−
it
h̄ H, U†(t) = e+

it
h̄ H. (13)

This time propagator is a one-parameter unitary group [46], i.e., it is unitary, U(t)U†(t) =

U†(t)U(t) = Id, and it satisfies the group property U(t + s) = U(t)U(s) and U(0) = Id.

Then, if the Hamiltonian is time-independent, the solutions of the previous equations can

be written as

(Schrödinger) ρt = U(t)ρ0U†(t); (Heisenberg) At = U†(t)AU(t). (14)

These are the main tools we will use in the following.

3. Quantum Dissipation Function for Time-Independent Perturbations

We formulate the quantum exact response theory based on the Dissipation Function

starting from scratch, so it is good to start by considering simple cases. Take a time-

independent Hamiltonian H0 and an arbitrary initial density operator ρ0. Introduce a

perturbation, producing a new Hamiltonian:

H = H0 + θ(t)λHext, (15)

where θ(t) is the Heaviside function. H0 represents the equilibrium dynamics, and usually

ρ0 is the corresponding equilibrium density operator, which is stationary with respect

to H0:

[H0, ρ0] = 0. (16)

The external perturbation λHext is assumed to be turned on at time t = 0, and then

kept constant over time, with λ ∈ R. Then, Hext makes ρ0 no longer invariant, and the

expectation values of the observables become time-dependent. Trying to translate the

classical notion of Dissipation Function in this framework, we find there are some issues

to tackle, such as the ordering problem. This requires us to choose a proper form for the

Dissipation Function. From the classical expression (2), we obtain

Ω f0(Γ) = f−1
0 (Γ)

∂ f0(Γ)

∂t
. (17)
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that holds only in the part of the phase space in which f0(Γ) > 0. This is reminiscent of

the more general notion of absolute continuity of the evolved distributions with respect

to the initial [47], and has been called ergodic consistency in molecular dynamics [43,48].

This limitation is not serious in many applications because the initial distribution usually

corresponds to an unperturbed equilibrium state and does not vanish anywhere in the phase

space of the perturbed evolution, if this satisfies the same constraints of the equilibrium

dynamics [34,48].

The quantum mechanical counterpart of the classical Dissipation Function can then be

guessed, using the von Neumann Equation (11), to be defined as follows:

Definition 1. Let ρ0 be an initial density operator and H = H0 + λHext a time-independent

Hamiltonian operator. The Dissipation Operator can be defined as

Ω0 ≡ 1

ih̄
ρ−1

0 [H, ρ0]. (18)

As there are different equivalent definitions of the classical Dissipation Function, our

choice is to some extent arbitrary, and other choices can be considered. We are going to show,

however, that this form of Ω0 is consistent with linear response for small perturbations,

and yields the exact solutions of problems whose exact solution is known. It remains that

this definition faces two issues. First, the Dissipation Operator (18) is not self-adjoint, so

its expectation value can be a complex number, ⟨Ω0⟩t ∈ C. For isolated systems, this may

be a challenge, since it does not represent a directly measurable quantity. However, this

is not a problem per se in the case of open systems, where relying solely on self-adjoint

operators may not be possible or necessary [49,50]. While it would be preferable to have a

self-adjoint Ω0, this is not a priority. The second issue is that ρ0 is not always invertible,

as in the case for pure states. There are, however, ways to handle such a difficulty. One

approach is to reduce the dimension of the Hilbert space, if one knows that the evolution

remains within a subspace in which ρ0 is invertible. Another way is to add arbitrarily

small amounts pϵ to part of the entries of ρ0 so that its rank becomes full, and later analyze

the results in the pϵ → 0 limit. In any event, it is the same issue known in classical

mechanics, and, analogously, the problem is solved if the initial distribution has support

wider than that of the evolved distributions [47,48]. Despite these issues, Definition (18) has

various advantages. It allows us to derive a quantum expression analogous to Equation (4).

Moreover, it satisfies two important properties already present in the classical context of

the Dissipation Function.

Proposition 1. The expectation value of the Dissipation Operator calculated with respect to the

density operator ρ0 is always zero, and its initial time derivative is always positive:

⟨Ω0⟩0 = 0,
d

ds
⟨Ω0⟩s|s=0 ≥ 0. (19)

Proof of Proposition 1.

⟨Ω0⟩0 = Tr

(
ρ0

(
i

h̄
ρ−1

0 [H, ρ0]

))
=

i

h̄
Tr(Id · [H, ρ0]) (20)

Now, we can use first the linear property and then the cyclic property of the trace:

i

h̄
Tr(Hρ0 − ρ0H) =

i

h̄

(
Tr(Hρ0)− Tr(ρ0H)

)
=

i

h̄

(
Tr(Hρ0)− Tr(Hρ0)

)
= 0 (21)

We conclude that ⟨Ω0⟩0 = 0.
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We can show the second property by making the incremental limit explicit in the

derivative operation:

d

ds
⟨Ω0⟩s|s=0 = lim

s→0

1

s
[⟨Ω0⟩s − ⟨Ω0⟩0] = lim

s→0

1

s

[
Tr(ρsΩ0)− Tr(ρ0Ω0)

]

= Tr

(
lim
s→0

ρs − ρ0

s
Ω0

)
= Tr

(
∂ρ0

∂t
Ω0

) (22)

We now use a result that we will show later in Equation (43): we can also use the adjoint of

the Dissipation Operator, (Ω0)†, to express ∂tρ0:

∂ρ0

∂t
= (Ω0)†ρ0 (23)

Substituting this into the last expression, we obtain

d

ds
⟨Ω0⟩s|s=0 = Tr

(
∂ρ0

∂t
Ω0

)
= Tr

(
(Ω0)†ρ0Ω0

)
≥ 0 (24)

where the last inequality holds for the semi-positivity of ρ0. In fact, let A ∈ Cn×n be a

self-adjoint and semi-definite positive matrix and C ∈ Cn×m be an arbitrary matrix, then,

Tr(C† AC) =
m

∑
i=1

(C† AC)ii =
m

∑
i=1

c†
i Aci ≥ 0 (25)

where ci are the columns of C, and the last inequality follows from the definition of a

semi-definite positive matrix.

We now derive one of the key results of this paper: an exact expression for the

expectation value of observables, based on the new Dissipation Operator (18).

Proposition 2. Let ρ0 be the initial density operator and H = H0 + λHext the time-independent

Hamiltonian operator. The expectation value of any observable O can be calculated exactly using

the Dissipation Operator as

⟨O⟩t = ⟨O⟩0 +
∫ t

0
⟨Ω0Os⟩0ds (26)

Proof of Proposition 2. Let us derive a useful expression for d
ds ⟨O⟩s:

d

ds
⟨O⟩s = lim

h→0

1

h

[
⟨O⟩s+h − ⟨O⟩s

]
= lim

h→0

1

h

[
Tr(Oρs+h)− Tr(Oρs)

]

= lim
h→0

1

h

[
Tr
(
OU(s + h)ρ0U†(s + h)

)
− Tr

(
OU(s)ρ0U†(s)

)]

= lim
h→0

1

h

[
Tr
(
U†(s + h)OU(s + h)ρ0

)
− Tr

(
U†(s)OU(s)ρ0

)]
.

(27)

Thanks to the group property of the operator U(t) for time-independent Hamiltonians,

U(s + h) = U(h)U(s), U†(s + h) = U†(s)U†(h) , (28)

thanks to the fact that observables and density matrix evolve “at opposite times”, and

introducing the evolved operators Os = U†(s)OU(s) we can write
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lim
h→0

1

h

[
Tr
(
U†(h)OsU(h)ρ0

)
− Tr

(
Osρ0

)]
(29)

= lim
h→0

1

h

[
Tr
(
OsU(h)ρ0U†(h)

)
− Tr

(
Osρ0

)]
(30)

= lim
h→0

1

h

[
Tr
(
Os

(
U(h)ρ0U†(h)

)
− ρ0

)]
(31)

= Tr

(
Os lim

h→0

ρh − ρ0

h

)
= Tr

(
Os

∂ρ0

∂t

)
(32)

From the definition (18) of the Dissipation Operator, we have

∂ρ0

∂t
= ρ0Ω0 (33)

and substituting into (32), we obtain

Tr

(
Os

∂ρ0

∂t

)
= Tr

(
Osρ0Ω0

)
= Tr

(
ρ0Ω0Os

)
= ⟨Ω0Os⟩0. (34)

Then, we have
d

ds
⟨O⟩s = ⟨Ω0Os⟩0. (35)

and

⟨O⟩t = ⟨O⟩0 +
∫ t

0

d

ds
⟨O⟩sds = ⟨O⟩0 +

∫ t

0

〈
Ω0Os

〉
0
ds (36)

First, we note the strong similarity with the analogous Expression (4) in classical

statistical mechanics. The system’s response is expressed in terms of the correlation function

of the Dissipation Operator Ω0 and the observable Ot, evolved according to the exact

dynamics H, calculated with respect to the equilibrium density operator ρ0. This use

of the initial distribution is common to the linear response, but like in the classical case,

Equation (26) is not an approximate expression and is not limited to small perturbations.

In general, Ω0 and O do not commute, ⟨Ω0Os⟩0 ̸= ⟨OsΩ0⟩0. Therefore, we cannot

use ⟨OsΩ0⟩0 in Equation (26). In quantum mechanics, other types of correlations are

often used, such as Kubo’s canonical correlation or symmetric correlation [3], in order

to obtain real numbers as results, but for Expression (26), this is automatically obtained.

Thus, the meaning of the quantum response function can be assigned to the form used

in Equation (26). Nevertheless, we now consider a symmetrized version of our response

formula, introducing the following notation:

⟨A; B⟩0 = Tr

[
ρ0

AB + BA

2

]
. (37)

4. Self-Adjoint Quantum Dissipation Operator

For the isolated time-independent dynamics considered above, the response of an

observable ⟨O⟩t is computable in the Heisenberg and Schrödinger pictures without any

need to introduce the Dissipation Function. In this sense, Expression (26) only represents a

different formalism for expressing a well-known result. However, the different perspective

it offers may be useful in the solution of complex time-independent problems, as it happens

in classical mechanics, especially in the presence of poor signal-to-noise ratios [37]. Fur-

thermore, its analogy with the classical Expression (4) may prove useful in time-dependent
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situations. Additionally, as in Equation (5), there may be opportunities to associate the

Dissipation Operator Ω0 with the production of generalized entropy, involving, for instance

the notion of Kullback–Leibler divergence (7). These interpretations are supported by the

fact that Proposition 1 seems to imply the existence of h > 0 such that

⟨Ω0
0,s⟩0 ≥ 0 for 0 < s < h. (38)

Finally, it could be possible to use the ΩT−mixing property [34,43] to study the relaxation of

observables toward stationary states. This question would be especially interesting in the con-

text of open quantum systems. Choosing O = 1, we find an excellent consistency condition:

the probabilistic interpretation of the density operator is preserved using Expression (26).

To explore this possibility, let us start observing that the minimum requirements of response

theory are satisfied by the notions introduced above. In particular, Proposition 1 implies

⟨1⟩t = ⟨1⟩0 +
∫ t

0
⟨Ω01⟩0ds = 1 + 0t = 1. (39)

and, for a perturbation Hext that commutes with ρ0, we have Ω0 = 0, hence

⟨O⟩t = ⟨O⟩0 +
∫ t

0
⟨0⟩0ds = ⟨O⟩0 (40)

for all observables, as desired.

In the case where we take O = Ω0, and we wish to obtain a real number, as the

dissipation should be, we have however a difficulty: Ω0 is not self-adjoint and ⟨Ω0⟩t may

be complex. While this is not necessarily a problem for the theory of open systems, it

is interesting to develop a self-adjoint Dissipation Operator. Therefore, we propose the

following symmetrized operator:

Ω̃0 ≡ Ω0 + (Ω0)†

2
. (41)

as the Dissipation Function. Then, we note that

(Ω0)† =

(
1

ih̄
ρ−1

0 [H, ρ0]

)†

=

(
1

ih̄
ρ−1

0 Hρ0 −
1

ih̄
H
)†

= − 1

ih̄

(
ρ−1

0 Hρ0

)†
+

1

ih̄
H†

= − 1

ih̄

(
ρ0Hρ−1

0 −H
)
= − 1

ih̄

[
ρ0,H

]
ρ−1

0 =
1

ih̄

[
H, ρ0

]
ρ−1

0 (42)

so that
∂ρ0

∂t
= (Ω0)†ρ0 (43)

which leads to the following:

Proposition 3. By means of the self-adjoint operator (41), Equation (26) for time-independent

perturbations can be expressed as

⟨O⟩t = ⟨O⟩0 +
∫ t

0

(
⟨Ω̃0;Os⟩0 +

1

2
⟨[Ω0,Os]⟩0

)
ds, (44)

where Ω0 is the anti-self-adjoint operator Ω0 ≡ 1
2

(
Ω0 − (Ω0)†

)
.

Proof. From the proof of (26), we know

d

ds
⟨O⟩s = Tr

(
Os

∂ρ0

∂t

)
(45)
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To introduce the Hermitian Dissipation Operator Ω̃0, we use

∂ρ0

∂t
= ρ0Ω0;

∂ρ0

∂t
= (Ω0)†ρ0. (46)

Therefore, we can write

Tr

(
Os

∂ρ0

∂t

)
=

1

2
Tr

(
Os

∂ρ0

∂t

)
+

1

2
Tr

(
Os

∂ρ0

∂t

)
(47)

=
1

2
Tr
(
Osρ0Ω0

)
+

1

2
Tr
(
Os(Ω

0)†ρ0

)
=

1

2
Tr
(

Ω0Osρ0 + (Ω0)†ρ0Os

)
.

We can rewrite this last expression as

Tr
(

Ω0Osρ0 + (Ω0)†ρ0Os

)
= Tr

(
Ω0Osρ0 + (Ω0)†(Osρ0 + [ρ0,Os])

)
(48)

= Tr
(
(Ω0 + (Ω0)†)Osρ0

)
+ Tr

(
(Ω0)†[ρ0,Os]

)
= 2Tr

(
Ω̃0Osρ0

)
+ Tr

(
(Ω0)†[ρ0,Os]

)
.

where the last equality follows from the definition (41). We would like to eliminate the

presence of (Ω0)†. For this purpose, we note that with similar procedures, but using the

commutator property for the first term in the trace, we can equivalently write

Tr
(

Ω0Osρ0 + (Ω0)†ρ0Os

)
= Tr

(
Ω0ρ0Os + Ω0[Os, ρ0] + (Ω0)†ρ0Os

)
. (49)

We find

Tr
(

Ω0Osρ0 + (Ω0)†ρ0Os

)
= 2Tr

(
Ω̃0ρ0Os

)
+ Tr

(
Ω0[Os, ρ0]

)
. (50)

Now, we combine Equations (48) and (50). Starting from Equation (47), we have

Tr

(
Os

∂ρ0

∂t

)
=

1

4

(
Tr
(

Ω0Osρ0 + (Ω0)†ρ0Os

)
+ Tr

(
Ω0Osρ0 + (Ω0)†ρ0Os

))
. (51)

We can use Equation (48) in place of the first term and Equation (50) in place of the second

one, obtaining

1

4

(
2Tr

(
Ω̃0Osρ0

)
+ Tr

(
(Ω0)†[ρ0,Os]

)
+ 2Tr

(
Ω̃0ρ0Os

)
+ Tr

(
Ω0[Os, ρ0]

))

=
1

2
Tr
(

Ω̃0Osρ0

)
+

1

2
Tr
(

Ω̃0ρ0Os

)
+

1

4

(
Tr
(
(Ω0)†[ρ0,Os] + Ω0[Os, ρ0]

))

=
1

2
Tr
(

Ω̃0Osρ0

)
+

1

2
Tr
(
OsΩ̃0ρ0

)
+

1

4

(
Tr
(
(Ω0 − (Ω0)†)[Os, ρ0]

))
.

(52)

We can clearly use the symmetric correlation (37) for terms with Ω̃0, but we are unable

to completely replace Ω0 and (Ω0)† with the hermitian Ω̃0. We can also observe that

Ω0 − (Ω0)† is the anti-self-adjoint part of Ω0:

Ω0 ≡ 1

2

(
Ω0 − (Ω0)†

)
. (53)

In conclusion, we obtain

d

ds
⟨O⟩s = ⟨Ω̃0;Os⟩0 +

1

2
Tr
(
Ω

0
[Os, ρ0]

)
= ⟨Ω̃0;Os⟩0 +

1

2
⟨[Ω0,Os]⟩0. (54)
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Integrating as already conducted previously, we obtain

⟨O⟩t = ⟨O⟩0 +
∫ t

0

(
⟨Ω̃0;Os⟩0 +

1

2
⟨[Ω0,Os]⟩0

)
ds. (55)

This is an alternative form of Expression (26), which yields equivalent exact results.

Since we are still in the early stages of formulating this theory, it is not clear which form

best represents the method based on the Dissipation Operator. Therefore, we present

both formulas. Equation (26) is in a simpler form, and its analogy with the classical

expression is immediately apparent. On the other hand, the analogy between Expres-

sion (44) and the classical counterpart is less obvious, but it has the advantage of involving

only self-adjoint (and anti-self-adjoint) operators. These operators are commonly used

in quantum mechanics and possess well-known properties. Now, ⟨Ω̃0⟩ ∈ R, and ⟨Ω0⟩
is a pure imaginary number. Additionally, Expression (44) is based on the symmetric

correlation (37), which shares characteristics much closer to the classical one. For instance,

⟨Ω̃0;Os⟩0 = ⟨Os; Ω̃0⟩0. Finally, with steps similar to those of the proof of Proposition 1,

we obtain

⟨Ω̃0⟩0 = ⟨Ω0⟩0 = 0;
d

ds
⟨Ω̃0⟩s|s=0 ≥ 0,

d

ds
⟨Ω0⟩s|s=0 = 0, (56)

which makes this new Dissipation Operator Ω̃ also suitable as a candidate for being

associated with the production of generalized entropy.

5. Applications to Qubits and Numerical Tests

In this section, we apply our expressions for the response to perturbations of qubit sys-

tems, and we compare with the results obtained using the Heisenberg picture. To perform

these comparisons, we calculated the results numerically using MATLAB R2024a code. For

mathematical convenience, we set h̄ = 1 and treat all physical quantities as dimensionless.

A quantum system with only two energy states is referred to as a qubit. Qubits play a fun-

damental role in quantum computing, as they are the basic units of quantum information.

They are described within two-dimensional Hilbert spaces. In this context, all possible

physical observables are represented by linear combinations of the identity matrix and the

Pauli matrices σi, while the density operator is expressed as the Bloch vector a⃗. One has

H = c⃗ · σ⃗4, O = q⃗ · σ⃗4; c⃗, q⃗ ∈ R
4.

ρ =
1

2
(Id + a⃗ · σ⃗), a⃗ ∈ R

3, |⃗a| ≤ 1.
(57)

where σ⃗ = (σx, σy, σz) and σ⃗4 = (Id, σ⃗), and

σx =

[
0 1

1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0

0 −1

]
, Id =

[
1 0

0 1

]
. (58)

We arbitrarily chose the vectors a⃗, c⃗ and q⃗, and then we numerically simulated the subse-

quent evolution. This process was repeated for several different combinations of Hamilto-

nian, initial density, observable, and time interval. In all cases, Expressions (26) and (44)

yielded equivalent results, coinciding with those of the Heisenberg and Schrödinger pic-

tures, which are exact. Two examples of these tests are shown in Figure 1.
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Figure 1. (Left): a⃗ = (0.3, 0.3,−0.3); c⃗ = (4, 0.8, 0.5, 3); q⃗ = (1, 0.2, 3, 1.5). (Right): a⃗ = (0, 0.1,−0.5);

c⃗ = (10−3, 10−3, 2 · 10−3, 0); q⃗ = (−0.1,−0.2, 0,−0.5). Green: Ω̃0 expression; blue: Ω0 expression;

red: Heisenberg expression. The three curves always overlap.

Because for some simple problems, approximate theories yield exact results [51], it is

interesting to compare the new approach with linear response theory. Let us consider a

spin- 1
2 particle in a magnetic field Bz directed along the z-axis. The dynamics are described

by the Hamiltonian

H0 = µBBzσz =
h̄ω0

2
σz. (59)

The system is initially in equilibrium and described by the density operator

ρ0 = p↑| ↑⟩⟨↑ |+ p↓| ↓⟩⟨↓ | =
[

p↑ 0

0 p↓

]
(60)

which is invariant under the unperturbed Hamiltonian, [H0, ρ0] = 0. The equilibrium

dynamics is then disturbed by the interaction Hamiltonian Hext:

H = H0 + λHext =
ω0

2
σz + λ(

ωx

2
σx −

ω0

2
σz) = (1 − λ)

ω0

2
σz + λ

ωx

2
σx (61)

decreasing the z-direction component of the magnetic field, Bz, and producing a non-

vanishing x-direction component Bx.

The linear response [3] considers perturbed dynamics of the form Ht = H− K(t)A,

where K(t) is a time-dependent external force applied from the infinite past, t = −∞, when

the system was at thermal equilibrium and described by an equilibrium density matrix

ρe, i.e., ρ(−∞) = ρe. A is a dynamical quantity conjugate to the applied force K. For this

system, the linear response formula is

⟨B⟩t = ⟨B⟩ρe + ∆B(t), ∆B(t) =
∫ t

−∞
dt′K(t′)ϕBA(t − t′), ϕBA(t) =

1

ih̄
⟨[A, B(t)]⟩ρe ; (62)

where B is an arbitrary observable and B(t) = e
i
h̄ HtBe−

i
h̄ Ht is the Heisenberg-evolved

operator according to the unperturbed dynamics H (different from the total dynamics Ht).

The dynamics in (61) are simpler than this, as we are considering a constant disturbance

over time. We can assume the disturbance is absent before time t = 0 and is impulsively

turned on at t = 0. Let us apply a change of notation from [3] to our notation:

A → −Hext; K(t) → λθ(t); Ht → H = H0 + λθ(t)Hext; B → O. (63)

where θ(t) is the Heaviside function. Kubo’s formula can now be rewritten for our problem

and simplified as
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⟨∆O⟩t =
∫ t

−∞
dt′θ(t′)λϕ(t − t′) =

∫ t

0
dt′λϕ(t − t′)

= −
∫ 0

t
dt∗λϕ(t∗) =

∫ t

0
dt′λϕ(t′).

(64)

The response function is

ϕ(t) = − 1

ih̄
⟨[Hext, e

i
h̄ H0tOe−

i
h̄ H0t]⟩0 = − i

h̄
⟨[U†

0 (t)OU0(t),Hext]⟩0, (65)

where we used the subscript 0 in U0(t) to distinguish the evolution operator related to

the equilibrium dynamics H0 from U(t) of the total dynamic H: U†
0 (t)OU0(t) ̸= Ot =

U†(t)OU(t). In conclusion, by setting h̄ = 1, we obtain

⟨O⟩t = ⟨O⟩0 − iλ
∫ t

0
⟨[U†

0 (t)OU0(t),Hext]⟩0dt′. (66)

In Figure 2, we compare the results with different values of λ, ρ0, time interval and

observable O, for the expressions of O = σy given by the linear theory, by the Heisenberg

picture and by the Dissipation Function formalism. Qualitatively very similar results (as λ

varies) were found for other self-adjoint observables and different initial density operators

ρ0 (with [H0, ρ0] = 0).

For small λ, the linear approximation is accurate, and the difference between linear

and Ω0 formulas is indistinguishable to the eye. As λ increases, the linear approximation

becomes increasingly worse, as expected, while the Ω0−response continues to provide

results consistent with those of the Heisenberg picture. Moreover, the linear response

theory becomes less accurate as time increases, whereas the expression in (26) does not

exhibit this flaw. This illustrates the limitations of linear theories even in simple systems.

However, for small perturbations, the linear response can handle much more complex

dynamics than these ones. It remains to be seen how useful the Dissipation Function can

be in such situations.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Comparison between linear (blue), Heisenberg (red) and dissipation (black) responses for

increasing perturbation values. In all panels, we have O = σy, p↑ = 0.75, p↓ = 0.25, ωx = ω0 = 1.

Ω−Expression (26) always coincides with the Heisenberg picture (the two curves overlap); the linear

response does not. (a) λ = 0.001, the three responses coincide. (b) λ = 0.01, the linear response

differs slightly over long times. (c) λ = 0.5 and (d) λ = 5, the difference is big.

6. Properties of Dissipation and Time-Dependent Perturbations

It is clear that the Dissipation Operator plays a very precise role in the temporal

evolution of the density operator ρt:

∂ρ0

∂t
= ρ0Ω0. (67)

However, we can consider any time t∗ as the initial instant of the dynamics and, conse-

quently, define

Ωt∗ =
1

ih̄
ρ−1

t∗ [H, ρt∗ ] (68)

which allows us to write the Von Neumann Equation (11) as

∂ρt

∂t
= ρtΩ

t; ρ(0) = ρ0. (69)

In general, the formal solution of an equation of this form is expressed using the anti-time-

ordering operator TR [52]:

ρt = ρ0TR

[
e
∫ t

0 Ωsds

]
. (70)

To make use of Equation (70), we need to express Ωs without explicitly relying on ρs,

which is contained in the definition of the Dissipation Operator. This can be carried out for

constant Hamiltonian dynamics.

Proposition 4. If the Hamiltonian H is time-independent, Ωs coincides with the initial Dissipation

Operator Ω0 evolved backward in time:

Ωs = U(s)Ω0U†(s). (71)

Proof. By definition, we have

Ωs =
1

ih̄
ρ−1

s [H, ρs]. (72)
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We can express ρs using time propagators:

Ωs =
1

ih̄

(
U(s)ρ0U†(s)

)−1
[H, U(s)ρ0U†(s)]

=
1

ih̄

(
U†(s)

)−1
ρ−1

0 U−1(s)[H, U(s)ρ0U†(s)]

=
1

ih̄
U(s)ρ−1

0 U†(s)

(
HU(s)ρ0U†(s)− U(s)ρ0U†(s)H

)

=
1

ih̄
U(s)ρ−1

0 U†(s)HU(s)ρ0U†(s)− 1

ih̄
U(s)ρ−1

0 U†(s)U(s)ρ0U†(s)H;

(73)

and this expression can be simplified noting that

U(s)ρ−1
0 U†(s)U(s)ρ0U†(s) = Id, and [U(t),H] = 0. (74)

We can then write

Ωs =
1

ih̄
U(s)ρ−1

0 Hρ0U†(s)− 1

ih̄
U(s)U†(s)HU(s)U†(s)

=
1

ih̄
U(s)

(
ρ−1

0 Hρ0 − U†(s)HU(s)

)
U†(s)

=
1

ih̄
U(s)

(
ρ−1

0 Hρ0 −H
)

U†(s)

= U(s)

(
1

ih̄
ρ−1

0 [H, ρ0]

)
U†(s) = U(s)Ω0U†(s).

(75)

Interestingly, the Dissipation Operator does not evolve in time like standard observ-

ables in the Heisenberg representation, U†(t)OU(t). This might seem problematic: we

want to consider Ω as a physical observable, but it evolves like a probability, i.e., in reverse

time: Ωt = U(t)Ω0U†(t). This is not due to the order of its operators in the definition. One

could try to redefine the Dissipation Operator by swapping the order of H, ρ0 and ρ−1
0 ,

but it would still evolve in reversed time. The origin of this type of evolution lies in the

operators involved: H and ρ. The Hamiltonian operator H (in this simple case) commutes

with time propagators, while ρ and ρ−1 evolve at reversed times.

If we want a Dissipation Operator that evolves like any other physical observable,

we should avoid the use of ρ. At the moment, this is not of our concern. Indeed, upon

further analysis, this result does not seem to be a disadvantage at all; on the contrary, it

looks more a strength. It provides consistent results, it is equivalent with the Heisenberg

and Schrödinger pictures for usual observables. Using Ω0, we found

d

ds
⟨O⟩s = Tr

(
ρ0Ω0Os

)
= Tr

(
O ∂ρs

∂s

)
(76)

which conceptually is reminiscent of the Heisenberg picture, with evolving observables,

and of the Schrödinger picture with evolving probabilities. In turn, the equivalence of the

two is obtained thanks to the reverse-time evolution of Ω0:

( d

ds
⟨O⟩s

)S
= Tr

(
O ∂ρs

∂s

)
= Tr(OρsΩs) = Tr

(
OU(s)ρ0U†(s)U(s)Ω0U†(s)

)

= Tr
(

U†(s)OU(s)ρ0Ω0
)
= Tr

(
Osρ0Ω0

)
= Tr

(
ρ0Ω0Os

)
=

(
d

ds
⟨O⟩s

)H

.

(77)
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where the superscript S in the first term and the superscript H in the last one respec-

tively stand for Schrödinger and Heisenberg. Moreover, Equation (71) yields another

consistency result:

⟨Ωt⟩t = Tr
(

U(t)Ω0U†(t)U(t)ρ0U†(t)
)
= ⟨Ω0⟩0 = 0 (78)

which correctly means that every moment can be considered as the initial one. The property

of zero-mean, stated in Proposition 1, is propagated in time thanks to Equation (71). Finally,

in applications of classical dynamical systems, a commonly used quantity is ⟨Ω0⟩t [35], but

here, ⟨Ω0⟩t ̸= ⟨Ωt⟩0, unlike what happens to the usual observables.

Equation (70) shows that the solution to the Von Neumann problem (11) can be

expressed in several ways: not only in the usual form, Equation (14), but also as in

Equation (70), or equivalently, using the adjoint operator Ω† and the time-ordering operator

TL, as

ρt = TL

[
e
∫ t

0 (Ω
†)sds

]
ρ0. (79)

If the solution is unique, Expressions (70) and (79) coincide with the usual form (14); they

are just different ways of writing the same thing.

Applying our theory to complex, particularly open quantum systems for which tradi-

tional time propagators do not exist, could prove useful. Let us investigate this possibility.

Take a time-dependent Hamiltonian H(t). The usual time evolution is expressed by [52]

U †(t) = TR

[
exp

(
+

i

h̄

∫ t

0
H(s)ds

)]
; U (t) = TL

[
exp

(
− i

h̄

∫ t

0
H(s)ds

)]
;

ρt = U (t)ρ0U †(t).

(80)

In terms of Dissipation Operators, one can instead follow different approaches. We choose

here self-adjoint Dissipation Operators, introducing the operator ω0 ≡ h̄−1ρ−1
0 Hρ0, and

then we symmetrize it to make it self-adjoint:

ω̃0 =
1

2h̄

(
ρ−1

0 Hρ0 + ρ0Hρ−1
0

)
. (81)

We have:

Ω0 =
1

2

(
Ω0 − (Ω0)†

)
=

1

2ih̄

(
ρ−1

0 [H, ρ0]− [H, ρ0]ρ
−1
0

)

=
1

2ih̄

(
ρ−1

0 Hρ0 − 2H+ ρ0Hρ−1
0

)
=

1

i

(
ω̃0 − 1

h̄
H
)

.
(82)

Now, we can rewrite the Hamiltonian as H(s) = h̄(ω̃s − iΩs) and define the operator

Ω̂s ≡ ω̃s − iΩs = H/h̄. This allows us to write

Û (t) ≡ TLe−iΩ̂0,t , Û †(t) = TRe+iΩ̂0,t = Û−1(t); Ot = Û †(t)OÛ (t). (83)

Clearly, for constant Hamiltonians, these ordered exponentials become mere exponentials,

because the two time-dependent operators Ωt and ω̃t reduce to the constant operator H.

While this is simply a rewriting of the usual operators, it suggests an interesting possibility:

it may be possible to construct time propagators for dissipative dynamics by extending the

Dissipation Operator formalism to open quantum systems.
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7. The Dissipation Operator for Open Quantum Systems

The Lindblad equation [9]

ρ̇ =
1

ih̄
[H, ρ] + ∑

α

(
LαρL†

α −
1

2
{L†

αLα, ρ}
)

, (84)

with the commutator accounting for the unitary non-dissipative evolution and the Lα

operators for the rest, is commonly used to describe open quantum systems. In particular,

H is the effective Hamiltonian operator, which may differ from the Hamiltonian of the

isolated system due to the interaction with the environment. The second term represents the

dissipative part of the evolution, with the Lindblad operators Lα describing the interaction

between the system and external environment. To apply our method to these dynamics,

we extend the Dissipation Operator incorporating the dissipative effects introduced by the

Lindblad operators. Again, there are several equivalent ways to achieve this; we adopt

the following:

Dα ≡ ρ−1LαρL†
α − L†

αLα ⇒ Ω0
L ≡ Ω0 + ∑

α

D0
α. (85)

Here, Ω0 concerns as above the Hamiltonian part of the evolution, and Dα takes into

account the dissipative part:

D†
α =

(
ρ−1LαρL†

α

)† −
(

L†
αLα

)†
=

(
ρL†

α

)†(
ρ−1Lα

)† −
(

Lα

)†(
L†

α

)†
= LαρL†

αρ−1 − L†
αLα (86)

and linearity implies
(

∑α Dα

)†
= ∑α D†

α. Then, the Lindblad equation can be rewritten as

∂ρ

∂t
=

1

2

(
ρΩt

L + (Ωt
L)

†ρ
)

(87)

Indeed, we can write

∂ρ

∂t
=

1

2

(
ρΩt

L + (Ωt
L)

†ρ
)

=
1

2

(
ρΩt + (Ωt)†ρ

)
+

1

2 ∑
α

(
LαρL†

α − ρL†
αLα + LαρL†

α − L†
αLαρ

)
(88)

=
1

ih̄
[H, ρ] + ∑

α

(
LαρL†

α −
1

2
{L†

αLα, ρ}
)
.

We note that, for Hamiltonian dynamics, one can express the Von Neumann equation with

a linear combination of Ω and Ω†:

∂ρ

∂t
= a(Ω)†ρ + bρΩ with a, b ∈ R s.t. a + b = 1. (89)

Applying definition (85) to the Lindblad equation, we take a = b = 1/2, consistently with

Equation (87). Various practical challenges now arise in explicitly solving the equations

of interest. Therefore, to illustrate how our approach works, here, we introduce some

simplifying hypotheses. In particular, we take

Ot = U×
L (t)OUL(t) = e

i
h̄ (H+C×)tOe−

i
h̄ (H+C)t. (90)

where the symbol ‘×’ indicates that the two evolution operators need not necessarily be

adjoints of each other. This hypothesis is suggested by the extension of Ω̂ in the form

Ω̂s
L =

(
ω̃s − iΩs

)
+ (gs − ks) =

1

h̄
(H+ C), (91)
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where g(Lα, L†
α, ρs) and k(Lα, L†

α, ρs) represent the dissipative part of ω̃L and ΩL, respec-

tively. These are time-dependent operators. The term ks is determined by the definition

of ΩL, but the term gs has no specific constraints. This allows us to define gs consistently

with the correct results. It is reasonable to express these terms through a general operator

C, precisely because of this freedom with respect to g. Additionally, assuming that C is

time-independent is not unrealistic. Just as the two time-dependent operators Ωt and ω̃t

reduce to the constant Hamiltonian H, the same could happen for gt and kt, especially

since all the Lindblad operators in Equation (84) are time-independent. We stress that in

Equation (90), we are not assuming UL to be a “real” time propagator, in the sense that

it would extend the Heisenberg representation, ⟨O⟩t = Tr(U×
L (t)OUL(t)ρ0). Instead, we

are stating that these operators behave like evolution operators when combined with the

generalization of expression (26). This generalization can be derived exactly by repeating

the calculations already performed earlier, starting from dt⟨O⟩t = Tr(O∗
t ∂tρ0), where the

only difference is represented by Equation (87). This leads to

⟨O⟩t = ⟨O⟩0 +
1

2

∫ t

0

(
⟨Ω0

LO∗
s ⟩0 + ⟨O∗

s (Ω
0
L)

†⟩0

)
ds. (92)

Let us apply Expression (92) to a particular Lindblad equation, whose analytical solution

is known, suitably defining C and C×, and consequently UL(t) and U×
L (t). Consider

the equation

∂ρ

∂t
= −i[ωσz, ρ] + γ

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
; σ± ≡ 1

2
(σx ± iσy), (93)

which describes a decoherence phenomenon of a qubit open system. This equation is

already in the form of (84); we just need to highlight the correspondence with the gen-

eral notation

α = 1; H = ωσz; L =
√

γσ−; L† =
√

γσ+. (94)

After writing Equation (93) in its single components, the analytical solution can be eas-

ily calculated:

ρ(t) =




ρ0
00e−γt ρ0

01e−(0.5γ+2iω)t

ρ0
10e−(0.5γ−2iω)t ρ0

11 + ρ0
00(1 − e−γt)


 (95)

and then the evolution of observables, ⟨O⟩t = Tr(ρ(t)O) immediately follows. Comparing

this expression with Equation (92), we find the form of C and C× for this particular case.

Consider first diagonal observables:

O1 =

[
a 0

0 b

]
, a, b ∈ R. (96)

Introducing

C ≡ −iγσ+σ−, C× ≡ +iγσ−σ+, (97)

Formula (92) gives the known analytical solution (95), for any initial condition ρ(0) and

for all real frequencies ω, γ. In Figure 3, this is shown numerically for the projectors

π0 (a = 1, b = 0) and π1 (a = 0, b = 1), from which all diagonal observables can be

obtained. It is important to note that C× differs from the adjoint of C, C† = iγσ+σ−, and

that the two operators UL and U×
L do not form a unitary group. This is consistent with the

dissipative nature of the dynamics.
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Figure 3. Comparison of the results offered by Expression (92) (solid blue line) with those known

theoretically (dashed red line) for the problem (93). On the left, ⟨π0⟩t; on the right, ⟨π1⟩t. In both

panels, ω = 0.5, γ = 3, ρ0 identified by the Bloch vector a⃗ = (0.2; 0.3;−0.4). The curves overlap.

Consider now the following class of observables:

O2 =

[
0 c + id

c − id 0

]
; c, d ∈ R. (98)

which we call diag2 operators. We define the evolution of the observables for this second

class as

O∗
t = e

i
h̄ (H+M×)tO2e−

i
h̄ (H+M)t; M = − i

4
{σ−, σ+} = −M×. (99)

When combined with Expression (92), this provides the exact response for all observables

of the form (98), with M, M† = M×. In Figure 4, we numerically illustrate this fact for

two cases.

Figure 4. Comparison of the results offered by Expression (92) (solid blue line) with those known

theoretically (dashed red line) for the problem (93) and the second-diagonal class O2. On the left,

c = 1, d = 1, ω = 1, γ = 1, ρ0-Bloch vector a⃗ = (0.3, 0.3, −0.4). On the right, c = −3, d = −1,

ω = 2.5, γ = 1.3, a⃗ = (0.2, −0.1, 0.6). The curves always overlap.

Any self-adjoint observable O in a two-dimensional Hilbert space can be expressed

as a linear combination of the two kinds of operators defined by Equations (96) and (98).

For the specific case of Equation (93), the operators C, C×, M and M× all commute with

the Hamiltonian operator H. In conclusion, for this particular Lindblad Equation (93), the

expression (92) gives exact results when the observables evolve according to

O∗
t = e

i
h̄ C×tO1

H(t)e
− i

h̄ Ct + e
i
h̄ M×tO2

H(t)e
− i

h̄ Mt, (100)
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where a simple rule applies:

M = − i

4
{Lα, L†

α} = −M×; C = −iL†
αLα; C× = iLαL†

α (101)

with the subscript ‘H’ indicating evolution in the Heisenberg picture.

How generally the rule (101) applies is the object of our investigation. However, this

is just one way to obtain exact results using the Dissipation Operator. Exact results can be

obtained equivalently by evolving the observables in the Heisenberg picture and assuming

the following time dependence for the Dissipation Operator:

Ω0
L(t) = e−γtΩ0

L for diagonal operators ; Ω0
L(t) = e−

1
2 γtΩ0

L for diag 2 operators (102)

Lindblad equations, while widely used, have certain limitations. One issue is that the

positivity of the density matrix ρ can be violated, particularly in numerical simulations

(1.5.2 in [9]). Moreover, their validity is restricted to linearly dissipative interactions; thus,

choosing Lα operators can be an ambiguous or approximate process [53,54]. Furthermore,

when many energy states are involved, calculating the solution becomes very computation-

ally intensive [55,56]. We conclude by observing that Lindblad equations are intimately

linked to the concept of quantum entropy [57,58], which is affected by dissipation, of course.

Therefore, combining them with the response theory based on the Dissipation Operator

may prove useful.

8. Concluding Remarks

In this paper, we have presented a first approach to the formulation of a quantum exact

response theory as an extension of the classical theory based on the Dissipation Function.

Our future goal is to further develop this approach for studying perturbations in complex

open quantum systems. To this end, we have started from constant Hamiltonian dynamics,

which suggest at least two quite natural quantum versions of the Dissipation Function,

which are equivalent for the cases considered here.

The first quantum Dissipation Operator has been defined by (18), and the correspond-

ing quantum exact response expression has been given by (26), in perfect analogy with the

classical Formula (4). For constant Hamiltonian dynamics, the correctness of the results can

be tested, comparing the expectation values of observables ⟨O⟩t with the corresponding

Schrödinger and Heisenberg pictures.

We then noted that, although it is not strictly required for open dynamics, it is still

interesting to use self-adjoint operators. Therefore, we proposed a self-adjoint Dissipation

Operator, defined by Equation (44), which is equivalent to the first. In our derivation, this

requires the introduction of an anti-self-adjoint operator. In this formulation, symmetric

quantum correlations appear, with properties quite similar to the classical case.

We applied these expressions to qubit systems and obtained numerically correct results.

A comparison with linear response theory revealed that as the perturbation value and

time increase, the linear response naturally worsens, whereas the expressions (26) and (44)

continue to yield exact results. We also examined the role of the Dissipation Operator in the

time evolution of the density matrix ρ. In particular, we found that for constant Hamiltonian

dynamics, the operator Ωt evolves in reverse time, as described in Equation (71). This is

not what observables do, but it is consistent with the classical theory, where the Dissipation

Function is at once an observable and the generator of the evolution of probabilities. As far

as response is concerned, this poses no problem.

As it is preferable to keep the Dissipation Operator Ω0 fixed in time, as in the classical

theory, we introduced time propagators based on the Dissipation Operators, as given in



Entropy 2025, 27, 527 21 of 23

Equation (83). We carried this out consistently, rewriting the Hamiltonian in terms of Dissi-

pation Operators, which may seem trivial but suggests an interesting insight: by extending

this approach, it may be possible to properly treat observables of dissipative dynamics.

Building on this idea, we extended the method to Lindblad equations, incorporating the

dissipative part (described by Lα and L†
α) in the definition of the Dissipation Operator, lead-

ing to the quantum exact response Expression (92). We applied this approach to a specific

Lindblad equation, comparing the results obtained through our new expression with the

known analytical solution. With the aid of assumptions suggested by both previous studies

and by inspection, we obtained exact results with Expression (92).

While this approach is still in its infancy, and it is open to different approaches, it

offers an original perspective on quantum response theory and open quantum systems. Its

main strength lies in its analogy to the classical exact response theory, which is robust and

general [31,33,35–37]. Moreover, the computational advantages recently offered by classical

theory across various applications [37,59], along with the development of new methods

for investigating the Dissipation Function [41], provide further compelling evidence of the

potential held by its proposed quantum analogue. A promising avenue for future research

is to investigate whether Ω can be associated with entropy production rates, and with

the mathematical tools of large deviation theory, such as the Kullback–Leibler divergence.

Future studies intend to clarify this, also in connection with the application to different

equations for open quantum systems. Finally, extension to infinite-dimensional Hilbert

spaces should be considered.
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