
5.42.2

Towards a Warm Holographic
Equation of State by an Einstein–
Maxwell-Dilaton Model

Rico Zöllner and Burkhard Kämpfer

Article

https://doi.org/10.3390/sym16080999

https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com
https://doi.org/10.3390/sym16080999


Citation: Zöllner, R.; Kämpfer, B.

Towards a Warm Holographic

Equation of State by an

Einstein–Maxwell-Dilaton Model.

Symmetry 2024, 16, 999. https://

doi.org/10.3390/sym16080999

Academic Editor: Dubravko Klabučar
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Abstract: The holographic Einstein–Maxwell-dilaton model is employed to map state-of-the-art lattice

QCD thermodynamics data from the temperature (T) axis towards the baryon–chemical potential

(µB) axis and aims to gain a warm equation of state (EoS) of deconfined QCD matter which can

be supplemented with a cool and confined part suitable for subsequent compact (neutron) star

(merger) investigations. The model exhibits a critical end point (CEP) at TCEP = O(100) MeV and

µB CEP = 500 . . . 700 MeV with an emerging first-order phase transition (FOPT) curve which extends

to large values of µB without approaching the µB axis. We consider the impact and peculiarities of

the related phase structure on the EoS for the employed dilaton potential and dynamical coupling

parameterizations. These seem to prevent the design of an overall trustable EoS without recourse to

hybrid constructions.

Keywords: holographic Einstein–Maxwell-dilaton model; critical end point; equation of state

1. Introduction

The advent of detecting gravitational waves of merging neutron stars [1] and improved
determinations of mass–radius relations of neutron stars, e.g., by NICER [2–4], has triggered
a cascade of related investigations, most notably focused on accessing the cool equation of
state (EoS) of dense strong-interaction matter. Among the various approaches to compact
(neutron) star EoS is the application of the famous AdS/CFT correspondence, which mimics
dense matter by a suitable gravity dual of QCD [5–7]. Here, we employ such a holographic
approach based on the Einstein–Maxwell-dilaton (EMd) model pioneered in [8,9] and
used further in [10–21]. References [22,23] provide a survey of and a valuable comparison
between of Dirac–Born–Infeld AdS/CFT models.

Our motivation is as follows: Given lattice QCD thermodynamics results, e.g., the
scaled pressure, p/T4, on the temperature (T) axis [24,25] supplemented with the suscep-
tibility χ2 = ∂2 p/∂µ2

B|µB=0 [26], the EMd model primarily delivers the entropy density
s(T, µB) and the baryon density nB(T, µB), which can be integrated to arrive at the potential

p(T, µB) (even at µB = 0, p(T, µB = 0) = p(Tmin) +
∫ T

Tmin
dT̄s(T̄) is a nonlocal quantity

which needs p(Tmin) as input parameter, supposing that s(T ≥ Tmin, µB = 0) is accurately
given. More favorable is to directly use p(T, µB = 0) from lattice QCD results and map
it without further assumptions into the T-µB plane, as advocated below). These quanti-
ties additionally depend on the baryon–chemical potential µB. The lattice input [24] is
provided, at µB = 0, for T ∈ [T1, T2] = [125, 240] MeV and allows the adjustment of the
dilaton potential and the dynamical coupling of the EMd model. The lattice data [24] for
µB/T = 0.5, 1, . . . , 3.5 serve as a control, again with T ∈ [125, 240] MeV for 2+1 flavors (for
other relevant lattice datasets, cf. [27–29]). Curves of p(T, µB) = const, i.e., isobars, can
then be utilized to continue the lattice-given EoS p(T, µB = 0) into the T-µB plane, and
finally—if no obstacle is met—to p(T = 0, µB). That is, the EoS—here, the pressure—is

Symmetry 2024, 16, 999. https://doi.org/10.3390/sym16080999 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16080999
https://doi.org/10.3390/sym16080999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3544-6622
https://doi.org/10.3390/sym16080999
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16080999?type=check_update&version=1


Symmetry 2024, 16, 999 2 of 15

directly mapped from the T axis on the µB axis. Curves of p(T, µB) = const are determined
by solving

dT(µB)

dµB

∣
∣
∣
∣

p=const

= −
nB(T, µB)

s(T, µB)
, (1)

where the inverse entropy-per-baryon determines the slope field. Solutions are T(µB)|p=p0

with T(µB = 0)|p=p0 = T0 and p(T0, µB = 0) = p0. Via Gibbs–Duhem equation, the energy
density (e) follows from e = −p + sT + nBµB.

The gained cool EoS p(e) can be then used as input for compact (neutron) star
calculations. This vision is illustrated in Figure A1 in Appendix A with a toy model.
The abovementioned state-of-the-art lattice data uncovers, in fact, a relevant pressure
interval: p(T1, µB = 0) = O(101) MeV/fm3 and p(T2, µB = 0) = O(103) MeV/fm3.
For the toy model, these values translate into p(T = 0, µB 1) = O(101) MeV/fm3 and
p(T = 0, µB 2) = O(103) MeV/fm3 localized just above the reliable pressure interval acces-
sible by nuclear-physics many-body methods (cf. Figure 1 in [30,31] and Figure 12 in [32]
which suggest the matching point to be at about 3 MeV/fm3 (pressure) and 200 MeV/fm3

(energy density)). The corresponding energy densities e(T = 0, µB 1) and e(T = 0, µB 2)
depend, of course, on the details of the mapping along p = const curves from the T axis to
the µB axis, as do the actual values of µB 1,2.

However, such a vision meets potential obstacles. These are (i) already for µB = 0, an
unwanted first-order or Hawking–Page phase transition may occur outside the controlled
region T ∈ [T1, T2], where T1,2 are again the lower and upper limits of the safe EoS, which
are used to adjust dilaton potential and dynamical coupling of the EMd model; (ii) a critical
end point (CEP) and related first-order phase transition (FOPT) curve may disturb the
expected pattern of curves T(µB)|p=const, displayed in Appendix A for the toy model; and
(iii) the expected pattern of curves T(µB)|p=const does not continue smoothly to the µB

axis. In fact, item (i) is met in [13] (TFOPT(µB = 0) ≈ 45 MeV), which focuses on the
neighborhood of a CEP at µB > 0, and in [11] (TFOPT(µB = 0) ≈ 1 MeV). The occurrence
of a CEP at µB > 0 is known [8,9] and a welcome effect to study. Within such a model
class is its impact on the EoS and related dynamics, thus explicating the conjecture posed
in [33–36] and motivating a continuation of the ongoing energy scan at RHIC [37,38]. (For
the tight connection of heavy ion–neutron star physics, cf. [39,40].)

To avoid irritations by item (i), we optionally impose here novel side conditions for
the dilaton potential. It happens that this enforces parameterizations which facilitate a
change of the FOPT curve below the CEP from convex to concave, i.e., the FOPT curve
levels off and seems to asymptotically approach to the µB axis, thus hindering a concise
cool EoS prediction. Nevertheless, the warm EoS, characterized by p(e)|T or the scaled
trace anomaly/conformality measure ∆(e)|T := (e − 3p)/(3e)|T [41,42], is accessible and
may be useful for numerical studies.

While many preceding EMD studies focus on the CEP localization and/or transport
coefficients near the CEP and across the FOPT curve, here, we place emphasis on the EoS.
Among the hitherto less discussed issues is the pattern of isentropes near the CEP and
FOPT. In [13], it has been pointed out that the isentropes, with respect to “incoming” and
“outgoing” under adiabatic expansion, in various EMd models can be fairly different. A
general classification of such isentropic patterns was proposed recently in [43]. Such a
study and holographic perspective is of relevance for heavy-ion collisions experiments
and speculations on sourcing stochastic gravitation waves in the cosmic confinement
transition [44,45].

Our paper is organized as follows. We recap the EMd model and its data adjustment in
Section 2. Numerical results are presented in Section 3, where we discuss the CEP position,
the shape of the FOPT curve up to fairly large values of µB, the shape of the p = const
curves, and a closer inspection of the resulting EoS by means of various contour plots
and related cross-sections of thermodynamic quantities. We conclude and summarize in
Section 4. A brief series of appendices complements our analysis. Appendix A sketches
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our vision of mapping QCD data from the T axis into the T-µB plane, and Appendix B
supplements details of the EMd model used. Appendix C considers the density and
pressure near and across the FOPT curve. Appendix D presents a numerical study of a new
dilaton potential parameterization adjusted to data, which allows for the construction of a
χ2 landscape.

2. Holographic Einstein–Maxwell-Dilaton Model

In line with [8,11,12] we employ the EMd action (reference [6] relates the EMd model (2)
to a D3-D7 action and Taylor-expanded versions of string theory-anchored approaches.
Hadron, nucleon, and quark degrees of freedom are added separately in [21]) in a fiducial
five-dimensional pseudo-Riemann spacetime with asymptotic AdS symmetry:

SEMd =
1

2κ2
5

∫

d4x dr
√
−g5

(

R −
1

2
∂Mϕ ∂Mϕ − V(ϕ)−

1

4
G(ϕ)F2

B

)

, (2)

where R denotes the Einstein–Hilbert gravity part, and FMN
B = ∂MBN − ∂NBM stands for

the field strength tensor of an Abelian gauge field B à la Maxwell with BMdxM = Φ(r)dt
defining the electrostatic potential. An embedded black hole facilitates the description of a
hot and dense medium (due to its Hawking surface temperature) and sources an electric
field, thus holographically encoding a temperature and an entropy density of the system.
Dynamical objects are the scalar dilaton field ϕ and a Maxwell-type field Φ which are
governed by a dilaton potential V(ϕ), a dynamical coupling G(ϕ), and the spacetime which
is described by the line element squared

ds2 = gMNdxMdxN = e2A(r)
(

− f (r)dt2 + dx⃗ 2
)

+
dr2

f (r)
, (3)

where r = 0 is the horizon position, r ∈ [0, ∞] the radial coordinate, A the warp factor,
and f the blackness function. The resulting Einstein equations are a set of coupled second-
order ODEs to be solved with appropriate boundary conditions; see Appendix B. Within
the present bottom-up approach, the quantities V and G are tuned (“tuning” within the
bottom-up approach faces three issues: choices of the functional forms of V and G and
parameter adjustments at data. For Bayesian analyses cf. [46]) to reproduce the lattice QCD
data [24,47] for 2+1 flavor strong-interaction matter (quark–gluon plasma).

Our ansätze for the dilaton potential V and dynamical coupling G are

W ≡ ∂ϕ ln V(ϕ) = (p1ϕ + p2ϕ2 + p3ϕ3) exp{−γϕ}, (4)

G(ϕ) =
1

1 + c3

(
1

cosh(c1ϕ + c2ϕ2)
+

c3

cosh c4ϕ

)

(5)

with parameters {p1,2,3} = {0.165919, 0.269459, −0.017133}, γ = 0.471384, and {c1,2,3,4} =
{−0.276851, 0.394100, 0.651725, 101.6378}; the prefactor 1/(1 + c3) ensures G(ϕ = 0) = 1.

The scale is set by L−1 = 216 MeV, in L2V(ϕ) = −12 exp{
∫ ϕ

0 dφ̃W(φ̃)} and κ5 = 1.87L3/2

is used. The conditions (i) limϕ→∞ W(p3 > 0) = 0 and (ii) monotony of V towards the
boundary exclude a purely thermal phase transition at µB = 0, cf. [48,49]. The parameters
chosen here facilitate a smooth shape of W with maximum of 0.605 at ϕ = 3.373 and a zero
at ϕ = 16.321, which corresponds to an exceedingly small temperature far below 1 MeV.
Appendix D presents more details on the impact of the dilaton potential.

In contrast to former work, here, we place emphasis on the optional side condition p3 >

0 which ensures that, at µB = 0, no phase transition is facilitated outside the temperature
range uncovered by the lattice data. Details of our handling of the EMd model are relegated
to the Appendix B.

Despite the richness of the dataset [24], only in scarce cases is a direct comparison with
our EoS results exhibited in various figures below possible. We therefore present in Figure 1
a more detailed comparison focused on T ∈ [100, 250] MeV and for µB/T = 0.5, . . . , 3.0.
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While the scaled pressure (left column) seems to perfectly agree, the scaled baryon density
(middle column) points to some tension, in particular for larger values of µB/T, as already
noticed in [11] and stressed in [10]. This calls for an improved dynamical coupling ansätze.

However, we could also argue for the failure of the model when extending it into
the confinement region, in particular towards lower temperatures being of relevance for
compact star physics. This is in line with statements in [11]. Thus, one could scrutinize the
implications of the critical end point and related first-order phase transition which emerge
in the EMd model for parameterizations employed hitherto in the literature. Reference [19]
sharpens the above warning, further enhanced by statements in [23] (“. . ., the fact that the
present EMD model is in good quantitative agreement with the latest lattice QCD data
at finite baryon density does not automatically guarantee that the predictions made for
regions of the QCD phase diagram well beyond the reach of current lattice simulations are
phenomenologically reliable. Indeed, the fact that the EMD model of Ref. [10] is also able to
obtain a good quantitative agreement with lattice QCD thermodynamics at zero and finite
baryon density, while still predicting the QCD CEP at a significantly different location than
in our model, shows that the available lattice data is not enough to strongly constraint such
a prediction in the EMD class of holographic models.” Further critical remarks on specific
limitations and drawbacks of the holographic EMd model, see [22]).

Completing the discussion of Figure 1, we mention that s/T3 (not displayed) is in
similarly good agreement with data to p/T4. The resulting energy density, in particular,
when displayed as the ratio e/p (right column), again displays some deviations: the EMd
model does not reproduce the apparent structures of the data when ignoring the error bars;
including them (not displayed) makes such structures much less pronounced. Note the
slight increase of the peak of e/p and its left-shift with increasing values of µB/T. Recap
also the relations of e/p to the conformality measure e/p = ( 1

3 − ∆)−1 and the scaled trace
anomaly (e − 3p)/T4 = (p/T4)(e/p − 3).

The dimensionless susceptibility χ2(T) is compared successfully to precision lattice
data in Figure 7 (right) in [50].

p/T4 nB/T3 e/p

Figure 1. Cont.
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Figure 1. Comparison of the EMd model results with lattice data [24] (crosses) for µB/T = n/2,

n = 1 (top), . . . , 6 (bottom): p/T4 (left column), nB/T3 (middle column), and e/p (right column) as a

function of T. Note the different scales for nB/T3 and e/p.

3. Numerical Results: EoS

3.1. CEP Location and FOPT

The employed parameterizations of V and G facilitate a CEP with coordinates
TCEP = 97.2 MeV and µB CEP = 694.7 MeV (fat bullet) (similar CEP locations are ob-
tained in [8,11–13]. Interestingly, QCD-functional methods deliver fairly consistent values,
cf. [51], and for finite-volume effects [52]. CEP and FOPT loci are inherent in the present
model, steered by the parameterizations of V and G, in contrast, e.g., to the approach
in [53,54] which allows for a free choice) and an FOPT curve TFOPT(µB) as exhibited in
Figures 2 and 3. Remarkably, the FOPT curve displays a concave shape near the CEP (as
in [8,11–13]; note the agreement of TFOPT(µB = 1000 MeV) ≈ 55 MeV with Figure 11
in [11]) which, however, turns, for larger values of µB, into a convex shape, obviously
asymptotic to the µB axis with dramatic consequences for the cool EoS. Our numerically
accessible domain is by far larger than that of [11].
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Figure 2. Contour plots of scaled entropy density s/T3 (left top panel), baryon density nB/T3 (right

top panel), entropy per baryon s/nB (left bottom panel, relevant for adiabatic expansion), and

pressure p/T4 (right bottom panel) over the T-µB plane. The CEP is depicted as a bullet and the solid

black curve is the emerging FOPT. The labeling numbers “N” mean 10N of the respective quantity.

Note the weak dependence of s/T3 and p/T4 on µB to the left of the FOPT at T < 100 MeV.

The crosses depict results of the lattice QCD calculations [24]. The scaled energy density,

e/T4 = −p/T4 + s/T3 + (µB/T)nB/T3, can be inferred from the displayed information.

Figure 3. Contour plot of the EoS as isobars p(T, µB) = const (left panel) and iso-energy density

curves e(T, µB) = const (right panel) over the T-µB plane. The CEP, FOPT, line style, and meaning of

labeling (here in units of MeV/fm3) are as in Figure 2. Note again the weak dependence on µB to the

left of the FOPT at T < 100 MeV. The crosses depict results of the lattice QCD calculations [24].

3.2. Scaled Entropy, Density, Pressure, and Specific Entropy

The contour plots of s/T3, nB/T3, s/nB and p/T4 exhibited in Figure 2 point to a
mysteriously weak dependence of s/T3 and p/T4 on µB to the left and below the FOPT (the
contour plot of nB/T3 (right top panel) can be used to construct the unstable region in a T
vs. nB diagram: A given point (T, µB) on the FOPT curve TFOPT(µB) leads to two values
of the density, n±

B (T) := nB(T, µB)|T=TFOPT(µB)±ϵ. The unstable region has a maximum at
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TCEP, where n±
B (TCEP) merge. The left-hand side flank, i.e., for the smaller values of nB(T),

may be more or less steep, depending on details of the underlying model setup. Figure 4
in [13] exhibits that the slopes of isentropes are either to bypass the unstable region or
enter and exit it for not too small values of s/nB. As noted in [13], the examples in [8,9]
are such to enter also the unstable region on the left-hand side without graceful exit.
Subtle deformations of the isentropic trajectories and/or the left-hand side of the unstable
region (e.g., by a bumpy structure) may cause a more involved picture with bypassing
and entering-only and entering-and-exiting trajectories). Additionally, the quantities s/T3,
nB/T3, and s/nB jump across the FOPT, while p/T4 is continuous. The right-hand side
continuations of the left-hand side iso-lines, e.g., p/T4 = 10−0.5 and 10−1, are not visible
on the displayed scale; they are squeezed into a narrow corridor between the FOPT curve
and the hardly visible curve p/T4 = 10 (see Appendix C for some details). The agreement
of the EMd model results and lattice data [24] (crosses, error bars are ignored here and
below), whenever possible, looks near-perfect (see also Figure 8 in [50]).

We emphasize the pattern of isentropic trajectories, s/nB = const (left bottom panel),
which points to a nonmonotonic specific entropy at the low-temperature side in the pro-
posed classification of [43]. The pattern is qualitatively analogous to the one of [8,9] but
different to that found in [13], where “outgoing” isentropic trajectories are attributed to
“incoming” trajectories across the FOPT upon adiabatic expansion. It seems that various
“good fits” of the same lattice data can deliver quite different contours of s/nB = const, even
though we did not attempt here a dedicated χ2 optimization with our dilaton potential
and dynamical coupling parameterizations. Curves e(T, µB) = const are determined by
dT(µB)

dµB
|e=const = −(T∂s/∂µB + µB∂nB/∂µB)/(T∂s/∂T + µB∂nB/∂T).

3.3. Isobars and Iso-Energy Lines

The pattern of the isobars, see left panel in Figure 3, strongly deviates from the naive
expectations shown in Figure A1 for the toy model. Neither left nor right of the FOPT, does
one recognize a near-vertical dropping of the curves p = const. Instead, the mysterious
low-temperature–low-µB behavior of the scaled pressure exhibited in the right panel of
Figure 2 is retained, and, most importantly for our goals, the FOPT curves seem to repel
the isobars. Thus, a smooth continuation of curves p = const to the µB axis is hindered in
the explored range. A warm EoS at T > 50 MeV is conceivable by our approach, but the
envisaged cool EoS at small or zero temperature remains elusive. Also in the current case,
the agreement with lattice data [24] (crosses) looks fine.

3.4. Warm EoS

To illustrate further features of the obtained EoS, we exhibit in Figure 4 (left panel)
energy density e and pressure p0 as functions of temperature T along the isobars T(µB)|p=p0

(or µB(T)|p=p0 by inversion) for various values of T0, which generate p0 = p(T0, µB = 0).
That is, the EoS in parametric form, e(T, µB(T)|p=p0) and p(T, µB(T)|p=p0), can be inferred
from this information on e/p due to the log scale. Note the relation to the trace anomaly
measure [41] via e/p = 1/( 1

3 − ∆)) or p(e) (see right panel). As mentioned above, the
envisaged access to the small-T region is hampered by the failed approach of isobars
down to the baryon–chemical potential axis, even for the “safer” isobars emerging from or
running through the T-µB region uncovered by the lattice QCD results [24]. We stress the
enormous stiffness of the EOS on the right-hand side of the FOPT. In line with the peculiar
features of the EoS at T < TCEP and matter properties for the left-hand side of the FOPT is
the huge energy density jump.

The connection of the holographic EoS with the nuclear-physics-based EoS at a certain
matching point requires a special treatment, beyond the goal of the present paper. Analo-
gously, the transit to the perturbative QCD regime above about 4× 103 MeV/fm3 (pressure)
and 1.3 × 104 MeV/fm3 (energy density) also requires separate work. As a guideline, one
could follow the construction of a hybrid EoS in the spirit of Figure 15 in [5] and plug in
the present holographic EoS as one building block among others. However, we find that, at
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a given energy density, e.g., 103 MeV/fm3, our pressure seems too low for T < 100 MeV in
comparison with currently advocated credible EoSs, cf. Figure 1 in [30,31].

Figure 4. (Left panel): Energy density e (solid curves) as a function of temperature T along the “safe”

isobars T(µB)|p=p0 (see Figure 3—left) for various values of T0 = 125 (black), 150 (cyan), 175 (yellow),

and 200 MeV (magenta), and, thus, p0 = p(T0, µB = 0). In addition, the case of a “less reliable” isobar

with T0 = 100 MeV is also displayed (red). The right-hand side endpoints (“o”) are for µB = 0, both

for e and pressure p = p0 (horizontal thin lines with the same color code as the corresponding energy

density). The difference of e and p (both in units of MeV/fm3) in the employed log scale delivers

directly e/p as a function of T along the respective isobar. Equally well, e and p for a selected constant

value of T can be read off, thus providing the iso-thermal EoS p(e)|T=const, exhibited in the (right

panel) for various temperatures as provided by labels. The right-hand side endpoints “+” are for

µB = 2000 MeV. One could also combine the results of Figure 2 along cuts of T = const to arrive at

the same picture. The crosses depict results of the lattice QCD calculations [24] in both panels. The

bullet depicts the onset point of the perturbative QCD regime for T = 0. Nuclear many-body theory

is expected to apply below the left bottom corner.

4. Conclusions and Summary

Einstein–Maxwell-dilaton (EMd) models have become quite popular in the last few
years. They are aimed at obtaining a quantified hint of the location of a (hypothetical)
critical end point (CEP) and emerging first-order phase transition (FOPT) curve in the
phase diagram of QCD. The experimental search in relativistic heavy-ion collisions and
the conjectured impact on neutron star merger dynamics and compact (neutron) star
configurations up to sources of stochastic gravitational waves formed in the cosmological
confinement epoch provide strong motivation to apply the class of EMd models in a regime
where direct first-principle QCD calculations are not (yet) at our disposal.

EMd models are argued to deliver reliable information in the deconfinement regime.
Once the dilaton potential and the dynamical coupling are adjusted, a specific EMd model
parameterization delivers as primary quantities the entropy density s and the baryon
density nB, thus allowing the construction of isobars p = const. These curves T(µB)|p=const

map the pressure profile, given by lattice QCD data on the temperature axis, onto the
temperature–baryon–chemical potential plane towards the baryon–chemical potential axis.
When supplemented with the available information on s and nB, the accompanying energy
density e and, thus, the warm equation of state p(e) become accessible.

The model facilitates a critical end point and a peculiar first-order phase transition
curve, which levels off partially due to an imposed optionally novel side condition to sup-
press the appearance of an unwanted purely thermal phase transition. Thus the pressure
interval directly accessible by lattice QCD on the temperature axis is transformed to a pres-
sure profile at smaller temperatures: p(T, µB = 0) 7→ p(smaller T ≈ 0, µB > 0). We empha-
size that the lattice QCD pressures in the temperature interval T ∈ [125, 240] MeV continue
(numerically) the equation of state of strong-interaction matter towards a region relevant for
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compact (neutron) stars and their merging dynamics but are not accessible reliably by nu-
clear many-body theory. We also emphasize that pressures p(T /∈ [125, 240] MeV, µB = 0)
are largely unconstrained (and could be merely hampered by the employed ansätze of
the dilaton potential and dynamical coupling of the EMd model), and, therefore, their
mapping p(T, µB = 0) 7→ p(T ≈ 0, µB) is hazardous, in contrast to the valuable control of
pressures p(T ∈ [125, 240] MeV, µB = 0) 7→ p(T ∈ [125, 240] MeV, µB > 0) by lattice data
with 0 < µB/T ≤ 3.5.

Since the EMd model with our presently employed parameterization points to a
peculiar shape of the first-order phase transition curve, one should test other ansätze to
elucidate whether suitable side conditions have a strong impact. In a larger context, a
systematic approach to reliable parameterizations of the dilaton potential and dynamical
coupling within EMd models is desirable. The low-temperature–low-density behavior of
the model appears somewhat mysterious and could point to the need of including explicitly
fermionic degrees of freedom, i.e., nucleons and their hard-core repulsion. First-principle
input would be highly welcome to better constrain the model and provide confidence at
larger densities. For practical applications, however, that region is uncovered by nuclear
many-body approaches, and the present model should be constrained to the high-density
continuation relevant to compact stars. The matching to perturbative QCD is a further
constraint to the holographic EoS to be considered in follow-up work towards a hybrid EoS,
where, eventually, also local charge neutrality and β equilibrium should be imposed. In
hybrid constructions [55], inhomogeneity effects [56] should also be accounted for. The role
of the velocity of sound is to be emphasized [57–59] as well as the general finite-temperature
behavior [60].
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Appendix A. A Toy Model of Isobars

Figure A1 illustrates the envisioned mapping of the hot EoS, p(T, µB = 0), into
the T-µB plane and eventually to the µB axis to arrive at the warm EoS, p(T, µB), and
cool EoS, p(T = 0, µB), respectively, by a toy model. The mapping is accomplished
generically by isobars, i.e., curves p(T, µB) = const determined by Equation (1). The
displayed curves in Figure A1 are for a toy model with p = aT4 + bT2µ2

B + cµ4
B + d implying

ŝ ≡ s/T3 = 4a + 2bµ̂2
B, n̂B ≡ nB/T3 = 4cµ̂3

B + 2bµ̂B and numerical values b/a = 0.02738,
c/a = 0.000154, which refer to a noninteracting two-flavor quark–gluon medium. Note
that, in this special case of ŝ and n̂B depending only on µ̂B ≡ µB/T, an isobar starting at
T = T0 ends at µB 0 = 8.79 T0. Isentropic trajectories, T ∝ µB from s/nB = const, miss the
typical back-bending at T = O(150 MeV) (see Figure 4 in [61], Figure 10 in [53], Figure 11
in [54], and Figure 4 in [62]), thus, evidencing the limited applicability of the toy model in
the confinement region. In particular, a CEP and related FOPT curve are completely missed
in this toy model.
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model output: p(µB)

Figure A1. Illustration of expected isobars p(T, µB) = const over the T-µB plane in a toy model. The

heavy solid bar on the T axis indicates the region, where reliable QCD input data (e.g., p(T) and

χ2(T)) are at our disposal. The continuation to µB > 0 is controlled by lattice data in the hatched

region (with sections of rays µB/T = const highlighted). Isobars not emerging from the heavy

solid vertical bar or not running a noticeable section through the hatched control region are to be

considered as less reliable (dashed or dotted curves). Irrespective of the EoS on the T axis, such a

mapping by “laminar curves” T(µB)|p=const (solid curves) would allow us to arrive unambiguously

at the cool EoS at T = 0, or any other cut through the T-µB plane, thus also providing a warm EoS for

neutron star merger dynamics.

Appendix B. Details of the EMd Model

The action (2) with the metric (3) leads to the field equations

A′′ = −
1

6
ϕ′ 2, (A1)

f ′′ = e−2A G Φ′ 2 − 4A′ f ′, (A2)

ϕ′′ =
1

f

(

∂ϕV −
1

2
e−2A Φ′ 2 ∂ϕG

)

−

(

4A′ +
f ′

f

)

ϕ′, (A3)

Φ′′ = −2A′ϕ′ −
∂ϕG

G
ϕ′ Φ′, (A4)

to be solved with boundary conditions

A(0) = 0, A′(0) = −
1

6

(

2V(ϕ(0)) + Φ2
1 G(ϕ(0))

)

, (A1’)

f (0) = 0, f ′(0) = 1, (A2’)

ϕ(0) = ϕ0, ϕ′(0) = ∂ϕV|ϕ(0) −
1

2
Φ2

1 ∂ϕG|ϕ(0), (A3’)

Φ(0) = 0, Φ′(0) = Φ1, (A4’)

where a prime means derivative with respect to coordinate r.
Entropy density and baryon density follow from (cf. [8])

s(T, µB) =
2π

κ2
5

1

ϕ3/ν
A

, (A5)

nB(T, µB) = −
1

κ2
5

Φfar
2

ϕ3/ν
A

√

f far
0

(A6)
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with T = 1/(4πLϕ1/ν
A

√

f far
0 ) and µB = 4π T Φfar

0 . The needed coefficients f far
0 , Φfar

0,2, and

ϕA are obtained by adjusting the asymptotic series expansions near boundary,

f (r → ∞) = f far
0 + . . . , (A7)

ϕ(r → ∞) = ϕAe−να(r) + ϕBe−∆ϕα(r) + . . . , (A8)

Φ(r → ∞) = Φfar
0 + Φfar

2 e−2α(r) + . . . , (A9)

to numerical solutions of Equations (A1)–(A4) with (A1’)–(A4’), together with the relations
ν = 4 − ∆ϕ, ∆ϕ := 2(1 +

√
1 − 3p1) (cf. Equation (4) for p1). Typical dependencies are

f far
0 → T, Φfar

0 → µB, and Φfar
2 → nB. We emphasize that using the coordinates (3) is

numerically advantageous in comparison with the ones deployed in [50,63,64] since r-
dependent quantities appear near boundary as exponentials (instead of power functions in
the radial bulk coordinate z, z ∈ [0, zH ]), which is mainly favorable for the warp factor A.

In practice, we chose initial conditions set by ϕ0 and Φ1 to generate a rectangular
grid over the T-µB plane. The pressure can be obtained either by a line integral with
p(T = 0, µB = 0) = 0 or by solving Equation (1) with proper boundary conditions at
p(T, µB = 0) given by lattice QCD data. That is, dp = sdT + nBdµB, s = ∂p/∂T and
nB = ∂p/∂µB, is exploited.

Appendix C. Density and Pressure at FOPT

Across the FOPT, the density makes a huge jump, as exhibited in the left panel
of Figure A2. The FOPT curve is determined by the standard construction: find the
self-crossing of the curve p/T4 as a function of T at µB = const. The abovementioned
peculiarities are obvious in the right panel of Figure A2: small values of p/T4, even for low
temperatures, seemingly µB-independence of the low-temperature branch, and weak µB

dependence of the high-temperature branch for µB ≥ 1500 MeV. The squeezing of curves
p = const into a narrow corridor right up to the FOPT curve (see left panel of Figure 3
or right panel of Figure 2 for p/T4) is a consequence of the initial steep increase of the
high-temperature branch with T.

Figure A2. The stable branches of scaled density nB/T3 (left panel) and scaled pressure p/T4 as a

function of temperature T for various values of µB = n 500 MeV for n = 0 (blue), 1 (green), 2 (red),

3 (cyan), and 4 (magenta). The crosses depict the results of the lattice QCD calculations [24].

Upon inspecting the right panel of Figure A2, note (i) the log scale, (ii) the apparent
independence of the low-temperature branch on µB (see also left panel in Figure 3), and
(iii) the weak µB dependence of the high-temperature branches for µB ≥ 1500 MeV which
causes the leveling off of the FOPT curve TFOPT(µB); see black curves in Figures 2 and 3.
For some guidance, one could resort to the Hadron resonance gas model of confined strong-
interaction matter with full quantum statistics and vacuum rest masses. Of course, the

pion gas pressure p = 3
2π2 m2

πT2 ∑
∞
ℓ=1 ℓ

−2K2(
ℓmπ

T ) is independent of µB; it is numerically
consistent with the EMd behavior for T ∈ [50, 100] MeV, but falls significantly short at
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T < 50 MeV. Adding a nucleon Fermi gas at µB = 500 MeV semiquantitatively explains the
rise of the pressure at T > 100 MeV relative to the µB = 0 curve. All that seems elucidate
the failure of such a naive interpretation of the EMd results.

Appendix D. Various Dilaton Potential Parameterizations

Lacking a strict gravity dual of QCD, one adjusts, in bottom-up approaches, the
dilaton potential at suitable QCD input. General guidelines are described in [65] and
used in [5]. Practitioners would prefer to utilize a less theory-based ansatz and extend
the set of parameters to be fixed to numerically catch the wanted quantities, as performed
in Equation (4). Another dilaton potential ansatz is proposed in [13]; it differs from the
ansatz in [8,11,12]. When inspecting plots (not displayed) of the dilaton potential function
W(ϕ) = d log V(ϕ)/dϕ, one recognizes that [10–13] look strikingly the same for ϕ < 3.5:
they display a maximum of Wm ≈ 0.6 at ϕm ≈ 3.25. In adiabatic approximation, the
maximum corresponds to the minimum of squared sound velocity, v2

s ≈ 1
3 − 1

2W . The
mentioned dilaton potentials can be well fitted by our ansatz Equation (4) with some spread
of the coefficients p1,2,3, and γ. The two side conditions make W(ϕ) dependent on p1 (which
fixes the dynamical dimension ∆ϕ) and γ: p2 = (−2p1ϕm +Wm exp{γϕm}[3 − γϕm])/ϕ2

m

and p3 = (p1ϕm −Wm exp{γϕm}[2 − γϕm])/ϕ3
m. The corresponding contour plots of χ2

with respect to scaled entropy density, L−1, and κ5 are exhibited in Figure A3. We define
χ2 = ∑

24
n=1(s/T3|n lattice − s/T3|Tn W(p1,γ))

2/(δs/T3|n lattice)
2 with symmetrized error bars

δs/T3|n lattice at the 24 values Tn of lattice data [24]. At each point (p1, γ), χ2 is minimized
by free and independent variations of L and κ5. Surprising is the wide variation of the scale
setting parameter L−1, while κ5/L3/2 ≈ 1.87. The flickering χ2 contours are understood
as the result of biasing the fit problem by fixing the maximum of W at ϕm = 3.25, which
flattens the χ2 landscape. The left panel in Figure A3 suggests that our choice of the ansatz
and parameters in Equation (4) is not the optimal one when prescribing Wm = 0.6 at
ϕm = 3.25. However, the real χ2 minimum requires a scan through the full (p1,2,3, γ, L, κ5)
space without constraints, preferentially including other observables, too.

Figure A3. Contour plots of χ2 with respect to scaled entropy density (left panel), L−1 (middle

panel), and κ5 (right panel, in units of L3/2) for the dilaton potential function Equation (4) with

local maximum of Wm = 0.6 at ϕm = 3.25 as side conditions. The dashed line depicts the locus of

p3 = 0 determined by p1 = Wm exp{γϕm}(2 − γϕm)/ϕm, i.e., for p3 > 0, an unintended thermal

phase transition is excluded since, beyond the maximum, W(ϕ) is smoothly and monotonously

approaching zero at ϕ → ∞. The bullet in the p3 < 0 region is for the parameter choice of p1,2,3 and γ

listed below Equation (5), which facilitates Wm ≈ 0.6 at ϕm ≈ 3.25.

The dilaton parameterizations proposed in [23,46], which also nicely reproduce the
lattice QCD data, cannot be described quantitatively by our ansatz Equation (4) in the range
ϕ = 0 up to and including the first local maximum of W .
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