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Abstract We review the statistical properties of the main populations of radio
sources, as emerging from radio and millimeter sky surveys. Recent determina-
tions of local luminosity functions are presented and compared with earlier esti-
mates still in widespread use. A number of unresolved issues are discussed. These
include: the (possibly luminosity-dependent) decline of source space densities at
high redshifts; the possible dichotomies between evolutionary properties of low-
versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio
sources; and the nature of sources accounting for the upturn of source counts at
sub-milli-Jansky (mly) levels. It is shown that straightforward extrapolations of
evolutionary models, accounting for both the far-IR counts and redshift distribu-
tions of star-forming galaxies, match the radio source counts at flux-density levels
of tens of uJy remarkably well. We consider the statistical properties of rare but
physically very interesting classes of sources, such as GHz Peak Spectrum and
ADAF/ADIOS sources, and radio afterglows of y-ray bursts. We also discuss the
exploitation of large-area radio surveys to investigate large-scale structure through
studies of clustering and the Integrated Sachs—Wolfe effect. Finally, we briefly
describe the potential of the new and forthcoming generations of radio telescopes.
A compendium of source counts at different frequencies is given in Supplemen-
tary Material.
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1 Introduction

For several decades, extragalactic radio surveys remained the most powerful tool
to probe the distant universe. Even ‘shallow’ radio surveys, those of limited radio
sensitivity, reach sources with redshifts predominantly above 0.5. Since the 1960s,
the most effective method for finding high-z galaxies has been the optical identifi-
cation of radio sources, a situation persisting until the mid-1990s, when the arrival
of the new generation of 8—10m class optical/infrared telescopes, the refurbish-
ment of the Hubble Space Telescope, the Lyman-break technique (Steidel et al.
1996) and the Sloan Digital Sky Survey (York et al.[2000) produced an explosion
of data on high-redshift galaxies.

This is not a historical account (see |Sullivan III}2009); but listing the revolu-
tions in astrophysics and cosmology wrought by radio surveys serves to set out
concepts and terminology.

On the astrophysics side, we note the following:

(1)  Active galactic nuclei (AGNs): The discovery of radio galaxies (Bolton et al.
1949; Ryle et al.|[1950) whose apparently prodigious energy release (Bur-
bidge|1959) suggested Compton catastrophe, calling the cosmological inter-
pretation of redshifts into question.

(2)  Synchrotron emission: The identification of synchrotron emission (Ginzburg
1951; |Shklovskiil[1952) as the dominant continuum process producing the
apparent power-law spectra of radio sources.

(3) Quasars: The discovery of quasars, starting with 3C273 (Hazard et al.
1963} [Schmidt||1963), leading to the picture of the collapsed supermassive
nucleus (Hoyle and Fowler||1963), and hence to the now-accepted view of
the powerful AGN—massive black-hole + accretion-disk systems (Lynden-
Bell||1969) powering double-lobed (Jennison and Das Guptal|{1953) radio
sources via ‘twin-exhaust’ relativistic beams (Blandford and Rees||[1974;
Scheuer|1974).

(4)  Relativistic beaming: The discovery of superluminal motions of quasar radio
components (Cohen et al.|1971]), this non-anisotropic emission [anticipated
by Rees|(1967)] resolving the Compton non-catastrophe (Woltjer|1966)) and
leading to the development of unified models of radio sources: quasars and
radio galaxies are one and the same, with orientation of the axis to the
viewer’s line of sight determining classification via observational appear-
ance (Antonucci and Miller|1985}; [Barthel| 1989; [Urry and Padovani|[1995).

On the cosmology side, we note the following:

(1) Scale of the observable Universe: An irrefutable argument by Ryle and
Scheuer| (1955)) placed the bulk of ‘radio stars’ beyond 50 Mpc, and it was
quickly realized when arcmin positional accuracy became available (Smith
1952) that the majority of the host galaxies were beyond the reach of the opti-
cal telescopes of the epoch. Minkowski (1960) measured a redshift of 0.46
for 3C 295, the redshift record for a galaxy for 10 years. Astronomers had
discovered a set of objects substantially ‘beyond’ the recognized Universe.
In 1965, the redshift record was 2.0 for the quasar 3C9 (Schmidt|[1965).
Only after the turn of the century did the redshift record become routinely
set by objects discovered in surveys other than at radio wavelengths (e.g.
Stern|2000).
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(2) History of the Universe: Early radio surveys generated a passionate and per-
sonal debate, the Steady-State versus Big Bang controversy. It was rooted
in the simplest statistics to be derived from any survey: the integral source
counts, the number of objects per unit sky area above given intensities or
flux densities. As discussed by Ryle and Scheuer (1955)), the source count
from the 2C radio survey (Shakeshaft et al.|[1955) showed a cumulative
(integral) slope of approximately —3, far steeper than that expected either
from the steady-state prediction, any reasonable Friedman model, or from a
static Euclidean universe. For each of these, the initial slope at the highest
flux densities is —3/2. (Euclidean case: the number of sources N is propor-
tional to the volume, i.e. to > for a sphere; the flux density is o< r~2, o that
N o< S_3/2.) Bondi and Gold|(1948) together with Hoyle| (1948)) were uncom-
promising proponents of the new Steady-State theory. Ryle et al. interpreted
the 2C apparent excess of faint sources in terms of the radio sources hav-
ing far greater space density at earlier epochs of the Universe. Confusion,
the blending of weak sources to produce a continuum of strong sources, was
then shown to have disastrous effects on the early Cambridge source counts.
From an independent survey in the South, [Mills et al.| (1958) found an ini-
tial slope of —1.65 after corrections for instrumental effects, significantly
lower than that found for 2C. Scheuer| (1957)) developed the P(D) technique,
circumventing confusion and showing that the interferometer results of 2C
were consistent with the findings of Mills et al. But the damage had been
done: cosmologists, led by Hoyle, believed that radio astronomers did not
know how to interpret their data.

In 1965, the ‘source-count controversy’ became irrelevant in one sense. [Penzias
and Wilson| (1965) found what was immediately interpreted (Dicke et al.|[1965)
as the relic radiation from a hot dense phase of the Universe. The Big Bang was
confirmed.

Ryle was right all the time. Integral source-count slopes of —1.8 or even
as shallow as —1.5 were nowhere near what the known redshifts plus Steady-
State cosmology—or even any standard Friedman cosmology—predicted. These
all come out at —1.2 or —1.3, shallower than the asymptotic —1.5 as sources of
infinite flux density are not observed, and nobody has ever claimed the initial
source-count slope at any frequency to be as flat as this. The discovery of the fos-
sil radiation (see |[Peebles et al.|2009) may indeed have shown that a Big Bang
took place; but the source counts demonstrated further that objects in the Universe
evolve either individually or as a population—a concept not fully accepted by
the astronomy community until both galaxy sizes and star-formation rates were
shown to change with epoch.

Source counts from radio and mm surveys—with errors and biases now
understood—are currently recognized as essential data in delineating the different
radio-source populations and in defining the cosmology of AGNs. These counts
are dominated down to milli-Jansky (mJy) levels by the canonical radio sources,
believed to be powered by supermassive black-holes (e.g.[Begelman et al.||1984)
in AGNs. At fainter flux-density levels, a flattening of slope in the Euclidean nor-
malized differential counts (i.e. counts of sources with flux density S, within dS,
multiplied by 25 see § was found (Windhorst et al. |{1984; Fomalont et al.
1984; |Condon and Mitchell|[1984)), interpreted at the time as the appearance of a
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new population whose radio emission is, to some still-debated extent, associated
with star-forming galaxies.

Radio-source spectra are usually described as power laws (Sy o< v‘“ﬂ;
the early low-frequency meter-wavelength (e.g. 178 MHz) surveys found radio
sources with spectra almost exclusively of steep power-law form, with o ~ 0.8.
Later surveys at cm-wavelengths (higher frequencies, e.g. 5 GHz) found objects of
diverse spectral types, some with spectra rising to the high frequencies, some with
steep low-frequency portions flattening and rising to the high frequencies, and yet
others with a hump in the radio regime, or indeed two or more humps. In general,
anything which was not ‘steep-spectrum’ in form was called ‘flat-spectrum’, an
inaccurate nomenclature: very few truly flat-spectrum sources have been found
and even then the flatness persists over only a limited frequency range. Never-
theless, AGN-powered radio sources are traditionally classified in two main cate-
gories: steep- (& > 0.5) and flat-spectrum (@ < 0.5). Broadly speaking, to radio
telescopes the steep-spectrum objects showed extended double-lobed structures,
while the flat-spectrum objects were point sources, unresolved until the Very-
Long-Baseline Interferometry (VLBI) technique provided sub-arcsecond map-
ping. The compact nature of flat-spectrum sources led to the conventional interpre-
tation of synchrotron self-absorption at frequencies below the bump(s), implying
brightness temperatures of ~ 10!! K for the estimated magnetic field strengths.

From a physical point of view, it is appropriate to consider the integrated
spectra as composites, built of the combination of different components of radio
sources. Unified models provide a framework for such a discussion.

In the widely accepted ‘unification’ scheme (Scheuer and Readhead||1979;
Orr and Browne|[1982}; |Scheuer||1987} [Barthel||1989), the appearance of sources,
including this steep-spectrum/flat-spectrum dichotomy, depends primarily on their
axis orientation relative to the observer. This paradigm stems from the discovery
of relativistic jets (Cohen et al.|[1971 Moffet et al.|[1972) giving rise to strongly
anisotropic emission. In the radio regime (Fig.[I), a line of sight close to the source
jet axis offers a view of the compact, Doppler-boosted, flat-spectrum base of the
approaching jet. Doppler-boosted low-radio-power [Fanaroff and Riley|1974, type
I (FRI; edge-dimmed)] sources are associated with BL. Lac objects, character-
ized by optically featureless continua, while the powerful type II (FRII; edge-
brightened) sources are seen as flat-spectrum radio quasars (FSRQs). The view
down the axis offers unobstructed sight of the black-hole—accretion-disk nucleus
at wavelengths from soft X-rays to UV to IR, and this accretion-disk radiation may
outshine the starlight of the galaxy by five magnitudes. The source appears stel-
lar, either as a FSRQ or as a BL Lac object. FSRQs and BL Lacs are collectively
referred to as blazars. In the case of a side-on view, the observed low-frequency
emission is dominated by the extended, optically thin, steep-spectrum compo-
nents, the radio lobes; and the optical counterpart generally appears as an ellip-
tical galaxy. A dusty torus (Antonucci and Miller||1985) hides the black-hole—
accretion-disk system from our sight (Fig.[I). At intermediate angles between the
line of sight and the jet axis, angles at which we can see into the torus, but the

' We note that this negative sign convention for ¢ is not universal; however, the convention
has been adopted for the K-corrections of optical quasars and for the extrapolation from optical
to X-rays (‘Qpy’).
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Fig. 1 Unified scheme for high radio-power Fanaroff—Riley (1974; FRII) sources (following
Jackson and Wall|1999)

Fig. 2 Spectral behaviour in the millimeter band of the radio galaxy NGC6251 (left panel)
and (right panel) 11 GHz isophotes overlaid on the 0.3 GHz map (Mack et al. 1997). The low-
frequency spectrum is due to the steep-spectrum outer lobes while at higher frequencies the
flatter-spectrum core-jet system dominates

alignment is not good enough to see the Doppler-boosted jet bases, the object
appears as a ‘steep-spectrum quasar’.

In general, then, each source has both a compact, flat-spectrum core and
extended steep-spectrum lobes (Fig.[2). This already implies that a simple power-
law representation of the integrated radio spectrum can only apply to a limited
frequency range. The reality is even more complex (Wall|[1994). External absorp-
tion or, more frequently, self-absorption (synchrotron and free-free) can produce
spectra rising with frequency at the low-frequency optically thick regime, while
at high frequencies, the synchrotron emission becomes optically thin, power law;
and energy losses of relativistic electrons (Kellermann|[1966, ‘electron ageing’,)
translate into a spectral steepening.

Two classes of ultra-steep-spectrum (& > 1.3) sources have been discovered.
One is associated with galaxy clusters; the objects are of relatively low luminos-
ity, and generally are not associated with any host galaxy. They are diffuse and
of several types, including cluster ‘radio halos’, ‘radio relics’ and ‘mini-halos’,
and each type appears to involve reactivation of the hot intra-cluster medium by
shocks or cooling flows, the observed form depending on the cluster evolutionary
state (Ferett1|2008)). These ‘radio ghosts’ will not be discussed further here. The
second class of ultra-steep-spectrum source is very radio-luminous, and these are
mostly identified with very high-redshift radio galaxies. The high redshifts tempt
the suggestion that the steep spectral index is due to the effect of redshift mov-
ing the steepest part of the spectrum (where electron ageing effects are strong)
into the observed frequency range. However, |[Klamer et al.| (2006) demonstrated
that this is not the dominant mechanism, and that high-redshift radio galaxies,
discovered by the steep-spectrum technique, have intrinsically power-law spectra.
The selection of ultra-steep-spectrum sources is a very effective, but not the only
(Jarvis et al.[2009), way to find high-redshift radio galaxies (see Miley and De
Breuck|(2008)) for a comprehensive review), including the one holding the current
record, TN J0924—-2201 at z = 5.19 (065_'3‘65 ~ 1.6;|van Breugel et al.[[{1999). The
highest-redshift radio-loud guasar known to date, the z = 6.12 QSO J1427+3312
(McGreer et al.[2006)), also has a steep radio spectrum (oclg"jf =1.1) although it was
not discovered through this characteristic.

In very compact regions, synchrotron self-absorption can occur up to very high
radio frequencies, giving rise to sources with spectral peaks in the GHz range.
At high radio luminosities, this category comprises the GHz Peaked Spectrum
(GPS) sources (O’ Deal1998)) some of which peak at tens of GHz (High Frequency
Peakers; [Edge et al|[1998} Dallacasa et al.|[2000, 2002 |Tinti et al.[2005). At low
luminosities, high-frequency spectral peaks, again due to strong synchrotron self-
absorption, may be indicative of radiatively inefficient accretion, thought to corre-
spond to late phases of the AGN evolution, with luminosities below a few per cent
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Fig. 3 Examples of radio-source spectra at mm wavelengths: a flat-spectrum source (fop left
panel); a steep-spectrum source (bottom left panel); a source whose spectrum flattens at v ~
10 GHz (top right panel); a High Frequency Peaker (HFP) source (bottom right panel). Data
from the NEWPS Catalogue (asterisks;|Lopez-Caniego et al.[2007) and from the AT20G Survey
(diamonds, Massardi et al.[2008al)

of the Eddington limit (advection-dominated accretion flows (ADAF); (Quataert
and Narayan|1999) or adiabatic inflow—outflow scenarios (ADIOS; |Blandford and:
Begelman/[1999, 2004)).

As the ‘flat’ spectra are actually the superposition of emitting regions peak-
ing over a broad frequency range (Kellermann and Pauliny-Toth||{1969; |(Cotton
et al.|[1980), whose emission is strongly amplified and blue-shifted by relativis-
tic beaming effects, a power-law description is a particularly bad approxima-
tion. The spectral shapes are found to be complicated, and generally show sin-
gle or multiple humps. Many of these show flux-density variations, attributed to
the birth and expansion of new components and shocks forming in relativistic
flows in parsec-scale regions. The variations may be on times scales from hours to
months or even years, and substantial resources have been devoted to monitoring
these variable sources, led by groups at Michigan (USA) and Metsahovi (Fin-
land; e.g. |Aller et al.[[2003} |Valtonen et al.|[2008])). The latter reference shows how
global (multi-wavelength and multi-telescope) these monitoring programmes have
become; moreover, the quasi-periodicity for the object in question, OJ 287, indi-
cates that it is probably a binary black-hole system. With regard to flux variations,
we also note the ‘Intra-Day Variables’ (IDVs), blazars whose flux densities vary
wildly on time scales from minutes to days: these are flat-spectrum objects with
extremely small components that show inter-stellar scintillation (ISS) via the tur-
bulent, ionized inter-stellar medium (ISM) of our Galaxy (e.g.|Lovell et al.|2007).
Detailed discussion of all these variable objects is beyond the scope of this review.

The discovery of Compact Steep Spectrum sources (CSS; |[Kapahil|1981}; |Pea-
cock and Wall||1982; |O’Deal[1998) originally appeared to be an exception to the
conventional wisdom that steep and flat spectra are associated with extended and
compact sources, respectively. CSS sources are unresolved or barely resolved
by standard interferometric observations (arcsec resolution), and the integrated
spectra show peaks at 0.5 GHz, above which the spectral indices (on average,
a ~0.75) are typical of extended radio sources. There is compelling evidence that
these objects, as well as GPS and associated types of object (HFPs and CSOs—
Compact Symmetric Objects) are young radio galaxies, as summarized concisely
by Snellen| (2008)).

It follows from the above that the conventional two-population approach (flat-
and steep-spectrum), assuming power-law spectra is particularly defective at high
radio frequencies, where several different factors (emergence of compact cores
of powerful extended sources, steepening by electron energy losses, transition
from the optically thick to the optically thin synchrotron regime of very compact
emitting regions etc.) combine to produce complex spectra (see Fig.[3). Neverthe-
less, for many practical applications, the conventional approach remains useful in
describing the bulk population properties of AGN-powered radio sources.

The radio emission of star-forming galaxies is mostly optically thin syn-
chrotron from relativistic electrons interacting with the galactic magnetic field,
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Fig. 4 Differential source counts at 150, 325, 408 and 610 MHz normalized to cS;z'S, with
¢ = 1,000, 100, 10 and 1, respectively. Reference codes are spelt out in the notes to Tables 1,
3, and 4—Supplementary Material. The lines are fits yielded by an updated evolution model
(Massardi et al.|2009al)

but with significant free—free contributions from the ionized interstellar medium
(Condon!|1992; [Bressan et al.|[2002} [Clemens et al.|2008). At mm wavelengths,
however, the radio emission is swamped by (thermal) dust emission, whose spec-
trum rises steeply with increasing frequency. The well-known tight correlation
between radio and far-IR emission of star-forming galaxies (Helou et al.|[1985;
Gavazzi et al.[1986} Condon et al.|1991)) vastly increases the body of data relevant
to characterize, or at least constrain the evolutionary properties of this population.
However, to date, few attempts have been made to build comprehensive models
encompassing both radio and far-IR/sub- mm data (see Gruppioni et al.[2003).

In this article, we first review the observed radio to mm-wave source counts
(§[2), the data on the local luminosity function of different radio source populations
(8[3) and the source spectral properties (§f4). Next (§[3), we look at evolutionary
models for the classical radio sources as well as for individual populations, such
as GPS sources, ADAF/ADIOS sources and (§[6) star-forming galaxies and y-ray
afterglows at radio wavelengths. We deal briefly with the Radio Background (§[7)
and the Sunyaev— Zeldovich effect on cluster and galaxy scales(§[8)). Section 9]
contains a summary of the information on large-scale structure stemming from
large-area radio surveys. Finally, in §[T0] we summarize perspectives for the future,
and §[IT] contains some conclusions.

Unless otherwise noted, we adopt a flat ACDM cosmology with 24 = 0.7 and
Hy=70kms~ ! Mpc~!.

2 Observed source counts
2.1 From surveys to counts

The counts of sources demand cosmic evolution, but by themselves provide lim-
ited information on this evolution. Since even bright radio sources are frequently
optically faint to invisible, the traditional way to characterize the evolutionary
properties relies heavily on source counts from blind surveys, with limited and
incomplete cross-waveband identification and redshift information. However, as
discovered in the 2C survey, getting from a sky survey to a source count is dif-
ficult, and modern instrumentation, while generally avoiding the confusion issue
which bedevilled 2C, does not remove the difficulties.

It is surface brightness, or rather differential surface brightness above a
background (CMB, Galactic radiation, ground radiation), which is measured in
radio/mm surveys. Discrete sources stand out from this background by virtue of
apparent high differential surface brightness ATy,. The simple relations linking
ATy, to point-source flux density (via the Rayleigh—Jeans approximation and the
radiometer equation incorporating telescope and receiver parameters) appear in
basic radio astronomy texts (e.g. Burke and Graham-Smith|[1997).
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Surveys are complete only to a given limit in ATy, translating to Jy per beam
areaE] For point sources, this limit is clearly defined. For extended sources, the
total flux density

Sy :/Bv(97¢>d97 (1)
Q

i.e. the incremental brightness B must be integrated over the extent of the source
to find the total flux density. If a source is extended and its brightness temperature
is constant across the beam response, then given the Rayleigh—Jeans approxima-
tion B = 2kgT;,/A? (kg is the Boltzmann constant, A is wavelength), for a survey
sensitivity limit of Sy, per beam, we have from Eq.[I]

A2 Slim
2kp [dQ°

The integral is the beam solid angle; for a circular Gaussian beam with full
width at half maximum of FWHM arcsec, this may be approximated as 2.66 -
10~ "' FWHM? sterad. Two iconic sky surveys at 1.4 GHz with the NRAO Very
Large Array illustrate the brightness limit issue. For the FIRST survey (Becker
et al][1995) with FWHM = 5arcsec and Spin = 1 mJy, Eq.]2] gives Tiin =~ 24K,
while for the NVSS survey (Condon et al.|[1998) with a 45 arcsec beam and
Smin = 3mly, Thin = 0.9 K. There are significant selection effects which arise
as a consequence, most notably the lack of sensitivity in FIRST to the majority
of spiral galaxies, near and far, as well as to low surface brightness features such
as ghost or relic radiation. The redeeming features of its higher resolution are
emphasized below.

It is a major undertaking to proceed from a list of deflections in Jy per beam,
either apparently unresolved or resolved as regions of emission, to a complete
catalogue of radio/ mm sources. In the first place, there is the surface brightness
limitation described above; in the compromises of survey design, it is critical to
decide just what population(s) of sources will be incompletely represented. There
is the issue of overlap: for instance, Centaurus A, NGC 5128, the nearest canonical
radio galaxy, extends over 9° of the southern sky; there are many discrete distant
sources catalogued within the area covered by Cen A. There is also the double
nature of radio-galaxy emission: this requires that components found as individual
detections be ‘matched up’ or assembled to find the true flux density of single
sources, cores as well as double lobes. Moreover, many sources show extended
regions of lower surface brightness which are poorly aligned. If source scale is
large enough, pencil-beam or filled aperture telescopes are better at finding and
mapping these than are aperture-synthesis interferometers. The issue of ‘missing
flux’ is notorious for interferometers, due to their limited response to the longer
wavelengths of the spatial Fourier transform of the brightness distribution.

The difficulties have been brought to sharp focus by the excellent decision
to carry out the two major VLA surveys, FIRST (Becker et al.||1995) and NVSS
(Condon et al.|[1998), both at 1.4 GHz but differing in resolution by a factor of
9. From these highly complementary surveys, the reality of how different resolu-
tions affect raw source lists may be seen immediately (Blake and Wall|2002b)).

2)

T, min =

2 1 Jy (Jansky) = 1072 WHz 'm~2 or 10~ P ergem 25~ Hz™!
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FIRST and NVSS are far more than the sum of the parts. The low resolution of
NVSS gains the spiral galaxies and much other low surface brightness detail not
seen in FIRST. The relatively high resolution of FIRST can be used to sort out
the blends and overlaps in NVSS, and it enables direct cross-waveband identi-
fications, a shortcoming of the lower NVSS resolution. Used together, they can
provide samples complete on many criteria; but significant effort in examining
many individual emission features is still required.

With regard to surveys using interferometers, the noise level in an interfero-
metric image is given by:

o _ ﬁkB Tsys / 1 (3)
mase Ane Nq t NbaseA v’

where Ty, is the system temperature, A is the antenna surface area, 7 is the
aperture efficiency, the ratio of effective collecting area to surface area, 1 is the
sampling efficiency depending on digitization levels and sampling rate, ¢ is the
integration time, Nyase = N(N — 1)/2 is the number of baselines, N is the num-
ber of antennas and AV is the bandwidth. (7. is, generally, 0.3-0.8 and 7 is
0.7-0.9.) The integration time per pointing needed to reach a detection limit of
say Siim = SOimage can be straightforwardly obtained from Eq.[3} The number of
pointilﬁs necessary to cover a sky solid angle Qg with a telescope field-of-view
FOV i

np = Q, FOV. )

If the integral counts of sources scale as sB , the number of sources detected in
a given area scales as tB/2. For a given flux density, the number of detections is
proportional to the surveyed area, i.e. to t. Thus, to maximize the number of detec-
tions in a given observing time, it is necessary to go deeper if 8 > 2 and to survey
a larger area if B < 2. The ‘narrow and deep’ versus ‘wide and shallow’ argument
for maximizing source yield always resolves, at radio frequencies, in favour of the
latter, because 3 > 2, implying a differential count slope of less than —3, has never
been observed at any flux-density level. On the other hand, very steep counts are
observed at millimeter and sub-millimeter wavelengths (Austermann et al.|[2009;
Coppin et al.2000).

Compilation of complete and reliable catalogues, complete samples, almost
invariably involves data at other frequencies. Source-component assembly, for
example, is an iterative process which may require cross-waveband identification
of the host object, galaxy, quasar etc. The identification process leads on to the
construction of complete samples, complete at both the survey frequency and at
some other wavelength, i.e. in optical/IR identifications. Such samples are rare
and require great observational effort. One of the best known of these, the ‘3CRR’
sample (Laing et al.|[1983)) is a revised version of the revised 3C catalogue (Ben-
nett/|1962) from the original 3C survey of |[Edge et al.| (1959). (The sample is also

3 This assumes uniform response over the field-of-view. The inevitable non-uniformity across
the FOV implies an additional factor of ~2 for uniform sky coverage. The data from separate
pointings are combined by squaring the relative response to weight the data by the square of
the signal-to-noise ratio (SNR). If the beam is approximated by a Gaussian, then this process
effectively halves the beam size; see/Condon et al.|(1998).
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Fig. 5 Normalized differential source counts at 1.4 GHz. Note that the filled diamonds show
the counts of AGNs only, while all the other symbols refer to total counts. Reference codes are
spelt out in the note to Table 5—Supplementary Material. A straightforward extrapolation of
evolutionary models fitting the far-IR to mm counts of populations of star-forming (normal late-
type (spirals or sp), starburst (sb), and proto-spheroidal) galaxies, exploiting the well-established
far-IR/radio correlation, naturally accounts for the observed counts below ~ 30 uJy (see §@) At
higher flux densities, the counts are dominated by radio-loud AGNs: the thick solid line shows
the fit of the same model as in Fig.[d] The dot-dashed line shows the counts of y-ray burst (GRB)
afterglows predicted by the|Ciardi and Loeb|(2000) model

Fig. 6 Differential source counts at 4.8 and 8.4 GHz normalized to ¢ x S;, >, with ¢ = 1 and
0.1, respectively. Reference codes are spelt out in the notes to Tables 6 and 7—Supplementary
Material. In the upper inset sp, sb, and sph stand for spiral, starburst and proto-spheroidal galax-
ies, respectively. The fit to the 4.8 GHz counts is from the same model as in Figs.[4]and[5] while
at 8.4 GHz, we show the fit yielded by the |De Zotti et al.| (2005) model, tailored for data above
5 GHz. The dotted line shows the counts of GRB afterglows at 3 GHz predicted by the |Ciardi
and Loeb| (2000) model

Fig. 7 Differential source counts normalized to S;, > for the 15 GHz 9C survey (Waldram et al.
2003} 2009), for the 20 GHz ATCA Bright Source Sample (Massardi et al.|2008a), and for the
WMAP 23 GHz survey (Massardi et al.[2009b). The model by De Zotti et al.| (2005) is also
shown for comparison (solid line: 20 GHz, dotted: 15 GHz)

the most extreme sample of high-power radio AGN, and its contents are far from
typical of the radio- mm survey population.) The process will become easier with
large-area optical surveys such as SDSS (York et al.[[2000) and with the advent of
synoptic telescopes such as LSST.

Given complete samples, then, we can compile source counts. (It should be
noted that these are frequently constructed by approximations from raw deflec-
tion lists, to circumvent the labour discussed above. Caveat emptor.E]) Today the
task of checking for systematic effects from approximations or statistical proce-
dures is made easier because the counts from different survey samples—except
for the very deepest ones—overlap at various flux-density levels. The counts are
usually presented in ‘relative differential” form, the differential counts dV /dS giv-
ing the number of sources per unit area with flux density S within dS, subse-
quently and conveniently normalized to the ‘Euclidean’ form, i.e. multiplied by
823, with ¢ being a suitably chosen constant. (A uniform source distribution in a
static Euclidean universe yields dN/dS o S7% as described earlier). A summary
of the available source counts at different frequencies is given in Tables 1-10—
Supplementary Material (see also Figs.[] [5] [6|and[7).

In the case of surveys covering small areas, the field-to-field variations arising
from the source clustering (sampling variance) further adds to the uncertainties.

4 The buyer should also beware of confusing as complete samples (a) lists of sources, in
which large volumes of data are assembled from different surveys and different completeness
algorithms (e.g. PKSCat90,|Wright and Otrupcek|1990), and (b) spectral samples, in which flux-
density measurements at different frequencies are assembled to obtain the integrated spectra of
samples of sources not necessarily selected by survey completeness (e.g. [Pauliny-Toth et al.
1966; Kellermann et al.|1969)).
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The fractional variance of the counts is (Peebles||1980):

() =gt

with
1 n a
o2 = &//w(e)dgldsz% ©)

where 6 is the angle between the solid angle elements d2; and d€Q;, w(0) is the
angular correlation function, and the integrals are over the solid angle €2 covered
by the survey.

The angular correlation function of NVSS and FIRST sources (see §[9) is con-
sistent with a power-law shape (Blake and Wall|2002alb; |Overzier et al.[2003):

w(8) = 107°(6/deg) ™%, ()
for angular separations up to at least 4°. Inserting Eq.[7]into Eq.[] we get
02 =236 x1073(Q /deg?) 4. (8)

The errors given in Tables 1-7—Supplementary Material include this contribution
for surveys over areas < 25deg”.

Differences between source counts for independent fields are in general far
larger than these errors imply (Condon/2007). There is little doubt that different
calibrations, beam corrections and resolution corrections are the dominant if not
exclusive culprits. Further advances in calibration procedures and characterization
of the structures of faint sources will be required before sampling variance comes
to dominate the errors in faint counts of radio sources.

2.2 Low frequency surveys

Low-frequency surveys have a long and illustrious (but initially chequered) his-
tory, as we have mentioned. The most extensive ones, both in terms of area (see
also §EI) and of depth, are those at ~1 GHz and at ~5 GHz. The NRAO VLA
Sky Survey (NVSS;|Condon et al.[1998)) covers the sky north of 6 = —40° (82%
of the celestial sphere) at 1.4 GHz, down to ~2.5 mJy/beam. It has resolution of
45 arcsec FWHM and the raw catalogue contains 1.8 x 10° entries. It is comple-
mented by the Sydney University Molonglo Sky Survey (SUMSS; Mauch et al.
2003) at 0.843 GHz. The survey was completed in 2007 with the Molonglo Galac-
tic Plane Survey (MGPS; [Murphy et al.|2007), and now covers the whole sky
south of declination —30°.

The VLA 1.4 GHz FIRST survey (for Faint Images of the Radio Sky at 20 cm;
Becker et al.|1995) is the high-resolution (5 arcsec FWHM) counterpart of NVSS,
and has yielded accurate (j1 arcsec rms) radio positions of faint compact sources.
The new catalogue, released in July 2008 (format errors corrected in October
2008), covers ~8444deg” in the North Galactic cap and 611deg? in the south
Galactic cap, for a total of 9055 deg? yielding a list of ~816,000 objects. Northern
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and Southern areas were both chosen to coincide approximately with the area cov-
ered by the SDSS. The typical flux-density detection threshold of point sources
is about 1 mJy/beam, decreasing to 0.75 mJy/beam in the southern Galactic cap
equatorial stripe.

Almost full-sky coverage was also achieved at ~5 GHz—albeit to a much
higher flux-density level—by the combination of the Northern Green Bank GB6
survey with the Southern Parkes—MIT-NRAO (PMN) survey. The GB6 catalogue
(Gregory et al.||1996) covers the range 0° < § < 75° down to ~18 mJy/beam; the
FWHM major and minor diameters are 3.6 and 3'.4, respectively. The flux-density
limit of the PMN catalogue (Griffith and Wright||1993)) is typically ~30 mJy/beam
but varies with declination, which spans the range from —87.5° to +10°; the
FWHM is ~4'.2.

Other large-area, low-frequency surveys:

— the VLA Low-Frequency Sky Survey (VLSS;|Cohen et al.[2007)) is a 74-MHz
continuum survey covering the entire sky North of 6 = —30° to a typical point-
source detection limit of 0.7 Jy;

— the Cambridge 6C survey at 151 MHz (Hales et al.| 1993 and references
therein) covers most of the extragalactic sky above 6 = 30°, but generally
away from the Galactic plane, with 4.2’ x 4.2’ ¢csc & resolution. The 7C sur-
vey (Hales et al.|[2007)), at the same frequency, covers a similar region of the
sky with higher resolution (70" x 70" csc(8)). A somewhat lower-resolution
survey has been carried out in the low-declination strip 94 < RA < 164,
20° < 6 < 35° (Waldram et al.|1996).

— The 8C survey (Rees|1990; Hales et al.|[1995) covers the polar cap above § =
60° at 38 MHz with a typical limiting flux density of about 1 Jy/beam.

— The Westerbork Northern Sky Survey (WENSS; Rengelink et al.|[1997; |de
Bruyn et al|[2000) covers the 3.14 sr north of 6 = +30° at 326 MHz with
54" x 54" csc(8) resolution in total intensity and linear polarization, to a flux-
density limit of approximately 18 mJy/beam.

For more complete references to low-frequency radio surveys, see Tables 1-7—
Supplementary Material.

2.3 Deep surveys and sub-mlJy counts

The deepest surveys cover small areas of sky on the scales of the primary beams
of synthesis telescopes; they are carried out with such telescopes in single long
exposures, or in nested overlapping sets of such exposures. Because source counts
are steep, only small survey areas are required to obtain large enough samples of
faint sources to be statistically significant.

From such surveys, the deepest counts at 1.4—8.4 GHz show an inflection point
at <1 mJy (Mitchell and Condon|1985;Windhorst et al.|1985} Hopkins et al.| 1998,
2003; Richards|2000; Bondi et al.[2003, 2007}, |2008; |Ciliegi et al.[2003; |Seymour
et al.|2004; Huynh et al.|2005; [Prandoni et al.[2006; Fomalont et al.[2006; Simpson
et al.[2006; Ivison et al.[2007; |Owen and Morrison|2008)). The point of inflection
was originally interpreted as signalling the emergence of a new source population
(e.g.|/Condon| 19844l 1989). Windhorst et al. (1985) suggested that the majority of
sub-mlJy radio sources are faint blue galaxies, presumably undergoing significant
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star formation (SF), and |Danese et al.| (1987) successfully modelled the sub-mlJy
excess counts with evolving starburst galaxies, a model that also described the
IRAS 60 um counts.

More recent data and analyses have confirmed that starburst galaxies are
indeed a major component of the sub-mJy 1.4 GHz source counts, perhaps dom-
inating below 0.3-0.1 mJy (Benn et al.|[1993} Rowan-Robinson et al.||[1993; Hop-
kins et al.|1998],2000; Seymour et al.|2004, [2008; [ Muxlow et al.[2005; Moss et al.
2007). However, spectroscopic results by (Gruppionti et al.| (1999b) suggested that
early type galaxies were the dominant population at sub-mJy levels. Further, it was
recently suggested (and modelled) that the flattening of the source counts may be
caused by ‘radio-quiet’ AGN (radio-quiet quasars and type 2 AGN), rather than
star-forming galaxies (Simpson et al.|[2006). Distinct counts for high and low-
luminosity radio galaxies show that low-luminosity FR I-type galaxies probably
make a substantial contribution to the counts at 1 mJy and somewhat below (Gen-
dre and Wall/2008)). Based on a combination of optical and radio morphology as
an identifier for AGN and SF galaxies, [Fomalont et al.| (2006) suggested that at
most 40% of the sub-mJy radio sources are AGNs, while |Padovani et al.| (2009)
indicated that this fraction may be >~ 40%. Huynh et al.| (2008)) found that the
host galaxy colours and radio-to-optical ratios indicate that low-luminosity (or
‘radio-quiet’) AGN make up a significant proportion of the sub-mlJy radio pop-
ulation. [Smolci¢ et al.| (2008) using a newly developed rest-frame-colour based
classification in conjunction with the VLA-COSMOS 1.4 GHz observations, con-
cluded that the radio population in the flux-density range of ~50 uJy to 0.7 mJy is
a mixture of 30—40% of star-forming galaxies and 50-60% of AGN galaxies, with
a minor contribution (~10%) of QSOs.

The origin of these discrepancies can be traced to three main reasons (see also
§[3). First, the identification fraction of radio sources with optical counterparts,
which is generally taken to be representative of the full-radio population, spans a
wide range (20-90%) in literature depending on the depth of both the available
radio and optical data. Second, it is important to make a distinction between the
presence of an AGN in the optical counterpart of a radio source, and its contribu-
tion to the radio emission (Seymour et al.|[2008). Non-radio AGN indicators like
optical/IR colours, emission lines, mid-IR SEDs, X-ray emission etc. are not well-
correlated with the radio emission of the AGNs and, therefore, are not necessarily
valid diagnostics of radio emission powered by accretion onto a supermassive
black-hole (Muxlow et al.[|2005). Third, there are uncertainties in specifying sur-
vey level: deep surveys normally cover but one primary beam area, heavily non-
uniform in sensitivity. A survey claimed complete at some specified flux density
in the central region alone is in fact heavily biased to sources of 5-10 times this
flux density; the survey as a result is biased to the higher flux-density population,
namely, AGNSs.

Seymour et al.| (2008)) used four diagnostics (radio morphology, radio spectral
index, radio/near-IR and mid-IR/radio flux-density ratios) to single out, in a statis-
tical sense, radio emission powered by AGN activity. They were able to calculate
the source counts separately for AGNs and star-forming galaxies. The latter were
found to dominate below ~0.1 mJy at 1.4 GHz, while AGNss still make up around
one quarter of the counts at ~50 uJy.
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Bondi et al.| (2008) pointed to evidence of a decline of the 1.4 GHz counts
below ~0.1 mJy. It is possible that a new upturn may be seen at <1 uJy, due to the
emergence of normal star-forming galaxies (Windhorst et al.|1999; Hopkins et al.
2000).

Essentially all surveys and catalogues are carried out and compiled with-
out reference to polarization (the NVSS being an important exception): linear
polarization is generally less than a few per cent, and certainly at mlJy lev-
els, below the uncertainties in flux densities due to calibration, noise and con-
fusion. An average of circular polarizations is generally used. (Subsequent to
surveys, thousands of measurements of polarization on individual sources have
been carried out at different frequencies, with the rotation measures thus derived
used to map the details of the Galactic magnetic field—see e.g. Brown et al.
(2007)). The DRAO 1.4 GHz survey of the ELAIS N1 field (Taylor et al.|2007)
was carried out expressly to examine polarization statistics. The data at the
faintest flux densities (0.5-1.0 mJy) show a trend of increasing polarization frac-
tion with decreasing flux density, previously noted by Mesa et al.| (2002) and
Tucci et al.| (2004), at variance with current models of population mix and evo-
lution.

2.4 High frequency surveys and counts

High-frequency surveys up into the mm-wavelength regime vitally comple-
ment their low-frequency counterparts. The early cm-wavelength surveys (Parkes
2.7GHz; NRAO 5GHz) in the late 1960s and 1970s found that flat-spectrum
sources—or at least sources whose integrated spectra were dominated by com-
ponents showing synchrotron self-absorption—constitute 50% or more of all
sources in high flux-density samples. Modelling space density to examine evolu-
tion demands determination of the extent and nature of this emergent population,
most members of which are blazars.

High-frequency surveys are very time-consuming. For telescopes with diffraction-
limited fields of view, the number of pointings necessary to cover a given area
scales as v2. For a given receiver noise and bandwidth, the time per pointing to
reach the flux level S scales as S~2, so that for a typical optically thin synchrotron
spectrum (S o< v’0'7), the survey time scales as v34, However, usable bandwidth
is roughly proportional to frequency, so that the scaling becomes ~ v2*; but a
20 GHz survey still takes more than ~ 25 times longer than a 5 GHz survey to
cover the same area to the same flux-density limit.

High-frequency surveys have an additional aspect of uncertainty: variability.
The self-absorbed components are frequently unstable, young and rapidly evolv-
ing. Variability by itself would not be an issue except for the fact that it leads to
serious biases. This is primarily because a survey will always select objects in a
high state at the expense of those in a low state, and the steep source count at
high flux densities exacerbates this situation. A second issue concerns the spectra.
Sources are predominantly detected ‘high’; to return after the survey for flux-
density measurements at other frequencies guarantees (statistically) that these
new measurements will relate to a lower state. Non-contemporaneous spectral
measurements—if above the survey frequency—will be biased in the sense of
yielding spectra apparently steeper than at the survey epoch. The bias can have
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serious consequences for e.g. K-corrections in space-density studies, as described
below.

Cosmic microwave background (CMB) studies, boosted by the on-going
NASA WMAP and ESA Planck missions, require an accurate characterization
of the high-frequency properties of foreground radio sources both in total inten-
sity and in polarization. Radio sources are the dominant contaminant of small-
scale CMB anisotropies at mm wavelengths. This can be seen by recalling that the
mean contribution of unresolved sources with flux S;j to the antenna temperature
T measured within a solid angle € is:
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where kg is the Boltzmann constant, A is the observing wavelength, and we have
taken into account that for high multipoles (£ > 1), 2 ~ (27/¢)%. If sources are
randomly distributed on the sky, the variance of Ty is equal to the mean, and their
contribution to the power spectrum of temperature fluctuations grows as 2, while
the power spectra of the CMB and of Galactic diffuse emissions decline at large £’s
(small angular scales). Therefore, Poisson fluctuations due to extragalactic sources
are the dominant contaminant of CMB maps on scales <30/, i.e. £ = 400 (De Zotti
et al.[1999; Toffolatti et al.|[1999).

The diversity and complexity of radio-source spectra, particularly for sources
detected at the higher frequencies, make extrapolations from low frequencies,
where extensive surveys exist, unreliable for the purpose of establishing CMB
contamination. Removing this uncertainty was the primary motivation of the Ryle-
Telescope 9C surveys at 15.2 GHz (Taylor et al.| 2001} 'Waldram et al.[2003)). These
were specifically designed for source subtraction from CMB maps produced by
the Very Small Array (VSA) at 34 GHz. The surveys have covered an area of
~ 520deg? to a ~25 mJy completeness limit. Waldram et al.| (2009) reported on a
series of deeper regions, amounting to an area of 115deg” complete to ~10mly,
and of 29 deg2 complete to ~5.5 mJy. The counts over the full range 5.5 mJy—1Jy
are well-described by a simple power-law:

dN S —2.15 | .
— ~51( — Jy tsrl. 10
s <Jy> y st (10)

A 20- GHz survey of the full Southern sky to a limit of ~50 mJy has been carried
out by exploiting the Australia Telescope Compact Array (ATCA) fast-scanning
capabilities (15° min~! in declination along the meridian) and the 8- GHz band-
width of an analogue correlator. The correlator was originally developed for the
Taiwanese CMB experiment AMiBA (Lo et al.|2001), but has been applied to
three of the six 22 m dishes of the ATCA. A pilot survey (Ricci et al.|[2004; [Sadler
et al. 2000)) at 18.5 GHz was carried out in 2002 and 2003. It detected 173 sources
in the declination range —60° to —70° down to 100 mJy. The full survey was
begun in 2004 and was completed in 2008. More than 5,800 sources brighter that
45 mJy were detected below declination § = 0°. An analysis of a complete flux-
limited sub-sample (SxogHz > 0.50Jy) comprising 320 extragalactic radio sources
was presented by Massardi et al.|(2008a).

Shallow (completeness levels 2 1Jy) all-sky surveys at 23, 33, 41, 61 and
94 GHz have been carried out by the Wilkinson Microwave Anisotropy Probe
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(WMAP). Analyses of WMAP 5-year data have yielded from 388 (Wright et al.
2009) to 516 (Massardi et al.|2009b) detections. Of the latter, 457 are identified
with previously catalogued extragalactic sources, 27 with Galactic sources, 32 do
not have counterparts in lower frequency all-sky surveys and may therefore be just
high peaks of the highly non-Gaussian fluctuation field.

Counts at ~30 GHz have been estimated from DASI data over the range 0.1-
10Jy (Kovac et al.|[2002)), from CBI maps in the range 5-50 mJy (Mason et al.
2003), and down to 1 mJy from the SZA blind cluster survey (Muchovej et al.
2009, in preparation).

Cleary et al.| (2005) used 33 GHz observations of sources detected at 15 GHz
to extrapolate the 9C counts in the range 20mJy < S33 < 114mlJy. Mason et al.
(2009) carried out Green Bank Telescope (GBT) and Owens Valley Radio Obser-
vatory (OVRO) 31 GHz observations of 3,165 NVSS sources; 15% of them were
detected. On the assumption that the S3;Gu,/S1.46H7 flux ratio distribution is inde-
pendent of the 1.4 GHz flux density over the range of interest, they derived the
maximume-likelihood 1.4-31 GHz spectral-index distribution, taking into account
31 GHz upper limits, and exploited it to estimate the 31 GHz source counts at mJy
levels: N(> S) = (16.7 +0.4) deg ™2 (S/1 mlJy) 080001 (0 5mJy < § < 10mJy).
The derived counts were found to be 15% lower than predicted by the De Zotti
et al.[|(2005) model.

Preliminary indications of a spectral steepening of flat-spectrum sources above
~20 GHz, beyond the expectations of the blazar sequence model (Fossati et al.
1998;; |Ghisellini et al.||1998) have been reported. Waldram et al.| (2007) used the
spectral-index distributions over the range 1.4-43 GHz based on ‘simultaneous’
multifrequency follow-up observations (Bolton et al.|2004)) of a sample of extra-
galactic sources from the 9C survey at 15 GHz to make empirical estimates of the
source counts at 22, 30, 43, 70 and 90 GHz by extrapolating the power-law repre-
sentation of the 15 GHz counts (Eq.['ll)]). Sadler et al.|(2008]) carried out simultane-
ous 20 and 95 GHz flux densities measurements for a sample of AT20G sources.
The inferred spectral-index distribution was used to extrapolate the AT20G counts
to 95 GHz. The extrapolated counts are lower than those predicted by the |De
Zott1 et al.| (2005) model, and (except at the brightest flux densities) also lower
than the extrapolation by Holdaway et al.| (1994) of the 5 GHz counts. On the
other hand, they are within the range of the |Waldram et al.| (2007) estimates in
the limited flux-density range where both data sets are valid, although the slopes
are significantly different. Both [Waldram et al.[| (2007) and |Sadler et al.| (2008)
assume that the spectral-index distribution is independent of flux density. This can
only be true for a limited flux-density interval, since the mixture of steep-, flat-,
and inverted-spectrum sources varies with flux density. In fact, the median 20—
95 GHz spectrum (o = 0.39) found by [Sadler et al.| (2008)) is much flatter than
that (o = 0.89) measured at 15-43 GHz by [Waldram et al.| (2007) for a fainter
sample.

Of course, extrapolations from low frequencies can hardly deal with the
full complexity of source spectral and variability properties, and may miss
sources with anomalously inverted spectra falling below the threshold of the
low-frequency selection. Therefore, they are no substitute for direct blind high-
frequency surveys. On the other hand, the recent high-frequency surveys (9C,
AT20G, WMAP) did not produce ‘surprises’, such as a population of sources not
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present in samples selected at lower frequencies. The analysis of WMAP 5-year
data by Massardi et al.| (2009b) has shown that the counts at bright flux densi-
ties are consistent with a constant spectral index up to 61 GHz, although at that
frequency there is a marginal indication of a spectral steepening. The WMAP
counts at 94 GHz are highly uncertain due to the limited number of detections and
the lack of a reliable flux calibration. However, taken at face value, the WMAP
94 GHz counts are below the predictions by the |De Zotti et al.| (2005) model by
~30%. This indication is confirmed by recent measurements of the QUaD col-
laboration (Friedman and QUaD Collaboration|2009) who suggest that the model
counts should be rescaled by a factor of 0.7 and of 0.6 at 100 and 150 GHz, respec-
tively.

An indication in the opposite direction, albeit with very poor statistics, comes
from the MAMBO 1.2 mm (250 GHz) blank-field imaging survey of ~0.75 deg?
by Voss et al.[(2006). This survey has uncovered three flat-spectrum radio sources
brighter than 10 mly, corresponding to an areal density several times higher than
expected from extrapolations of low-frequency counts without spectral steepen-
ing.

A 43-GHz survey of ~ 0.5deg?, carried out with ~1,600 snapshot observa-
tions with the VLA in D-configuration, found only one certain source down to
10 mJy (Wall et al., in preparation). A statistical analysis of the survey data yielded
a source-count law in good agreement with predictions of [Waldram et al.| (2007
and|Sadler et al.[(2008)). There is no strong indication of a previously unrecognized
population intruding at this level.

3 Local luminosity functions

The local luminosity function (LLF) describes the local space density of sources
as a function of luminosity: it constitutes an important boundary condition for evo-
Iutionary models. Its determination is complicated by several factors discussed by
Toffolatti et al.| (1987). Ideally we would like to have a large, complete radio-
selected sample of sources, all with redshift measurements, all at low enough
redshifts for evolutionary effects to be insignificant, yet distant enough for the
redshifts to be accurate distant estimators. The sources should be distributed over
large enough volumes for clustering effects to average away.

In practice, however, the well-known fact that the redshift distribution of com-
plete samples of radio sources peaks at z ~ 1 for all flux-density levels down to
~10mly implies that local sources are swamped by the much more numerous
distant ones. Singling them out by means of complete redshift measurements is
therefore impractical, and we must confine ourselves to those brighter than some
optical magnitude limit, i.e. we must deal with both radio and optical selection.
If the magnitude limit for redshift measurements is too shallow, we lose the con-
tribution of optically faint galaxies. To some extent, this bias may be corrected
using bivariate (optical/radio) luminosity functions (Felten|1976;|Auriemma et al.
1977). Alternatively, radio surveys of optically selected samples can be used.

Spectacular progress has been recently achieved combining large-area spectro-
scopic surveys (Las Campanas, SDSS, 2dF and 6dF) with the NVSS and FIRST
surveys (Machalski and Godlowski|2000; Magliocchetti et al.|2002; [Sadler et al.
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Fig. 8 Local luminosity functions at 1.4 Hz of radio AGNs (red dots) and of star-forming galax-
ies (blue dots), as estimated by Mauch and Sadler| (2007). The lines show extrapolations to
1.4 GHz of the 60 um local luminosity functions of ‘warm’ (usually interpreted as starburst;
dashed) and ‘cold’ (normal late-type; dotted) IRAS galaxies by Takeuchi et al.|(2003)); the solid
lines are the sum of the two contributions. The yellow lines refer to the linear radio/far-IR rela-
tionship of Eq.[T4] while the black lines are based on that of Eq.[T3] which deviates from linearity
at low luminosities

2002; Best et al.||2005; Mauch and Sadler;[2007)). A more local sample has been
used by (Condon et al.| (2002)).

If full redshift information is available for a flux-limited radio-selected sample
containing too few local sources for a meaningful LLF to be directly derived,
the LLF can be estimated from the luminosity distribution of the sample, for any
chosen evolution function (Wall et al.||[1980). The results are, by definition, model
dependent, although the evolution function may be tightly constrained by source
counts and other data.

The key to this process is disentangling the star-forming galaxies from the
AGNSs. Radio AGNs dominate above S} 461, ~ 10mlJy; at lower flux densities an
increasing fraction of nearby galaxies whose radio emission is fuelled by active
star formation appears. Optical spectra can be used to identify the dominant pro-
cess responsible for the radio emission of each source. Star-forming galaxies have
spectra typical of HII regions with strong narrow emission lines of Hoe and Hf,
while AGNs may have a variety of spectra, including pure absorption lines (like
spectra of giant elliptical galaxies), LINER or conventional type 1 or type 2 AGN
spectra. Optical AGN spectra, however, do not necessarily imply that the radio
emission is of nuclear origin. In fact, there is a body of evidence that the star-
formation and nuclear activities are tightly connected, but the radio and optical
emissions of AGNss are largely uncorrelated—about 90% of AGNss are radio-quiet.
An important diagnostic tool to distinguish between galaxies whose radio emis-
sion is due to star formation and those harbouring a radio-loud AGN is the very
well-established, remarkably tight and nearly linear correlation between FIR and
radio continuum emission from star-forming galaxies (Helou et al.[ 1985} |Gavazzi
et al.||1986} |(Condon et al.[1991). A frequently-used criterion (Condon et al.[2002)
is that galaxies with radio to far-IR flux ratio more than three times higher than the
mean for star-forming galaxies are classified as AGN-powered. Mauch and Sadler
(2007) found disagreement between spectroscopic classification and the radio/FIR
diagnostic at the ~10% level; a similar reliability was estimated for their classi-
fication based on optical spectroscopy. Objects with composite AGN + starburst
radio emission are probably a primary source of classification ambiguity. This
suggests that the classification uncertainties may contribute significantly to the
overall errors on the local luminosity function of each population. Nevertheless,
rather accurate estimates of the separate 1.4 GHz local luminosity functions of
AGNSs and star-burst galaxies are now available (see Fig.[8).

With the star-formers disentangled from the radio AGNs, a further dichotomy
in the local luminosity function evaluation is required. Evolutionary models for
radio AGNs generally split the total radio AGN local luminosity function into
the contributions of the steep- and flat-spectrum sources. As discussed in §[4] this
is a rather crude, but frequently unavoidable, simplification. (Obviously, also the
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Fig. 9 Contributions of steep- (upper panel) and flat/inverted-spectrum (lower panel) sources
to the local luminosity functions at 1.4 GHz. In both panels, the solid line shows Mauch and
Sadler’s (2007) estimate of the total (i.e. flat/inverted- plus steep-spectrum) local radio luminos-
ity function of AGNs. In the upper panel, the dashed line shows Mauch and Sadler’s (2007)
estimate of the local luminosity function of starburst galaxies (mostly steep-spectrum), that

dominate for log L(ergs~' Hz™!) < 30; the estimates by (Toffolatti et al. (1987) and |Dunlop
and Peacock| (1990) of the local luminosity functions of steep-spectrum sources include both
starburst galaxies and AGNs. The Toffolatti et al. local luminosity function of flat-spectrum
sources (lower panel) joins smoothly with the estimated local luminosity function of BL Lac
objects obtained by |[Padovani et al.|(2007). The cross-hatched area shows the range spanned by
the estimates by |Pierpaoli and Perna) (2004) of the local luminosity functions of ADAF sources.

radio spectra of star-forming galaxies must be known for evolution models, but
the problem is simpler because in most cases the spectra are ‘steep’, with mean
a ~ 0.7 and a relatively narrow dispersion.)

The 1.4GHz selection emphasizes steep-spectrum sources, but the flat-
spectrum sources may be important in some luminosity ranges. The estimates
of separated local luminosity functions for the two populations go back to Wall
et al| (1981), Peacock! (1985), [Toffolatti et al.| (1987), Subrahmanya and Har-
nett| (1987), with little progress thereafter. Rigby et al.| (2008) estimated that
the density of steep-spectrum sources with log L(1.4GHz)/ergs ' Hz ™! > 32 is
~ (3.0£1.2) x 107" Mpc 3.

Moderate to low-luminosity flat- or inverted-spectrum sources are mostly clas-
sified as BL Lac objects. Very weak, inverted-spectrum radio sources in the centers
of otherwise quiescent ellipticals may correspond to late phases of AGN evolution
(ADAF or ADIOS sources, see §[5.5.2). The observational information on this lat-
ter population is very limited. Pierpaoli and Pernal (2004)) assumed that their space
density equals that of elliptical galaxies brighter than L,, and adopted a log-normal
luminosity function with mean logZ(2.7 GHz)/ergs~' Hz~! in the range 27-28,
and dispersion ¢ = 0.25. As illustrated by Fig.[9] the data on the local luminosity
function of flat/inverted-spectrum sources already constrain the space density of
these sources.

As for BL Lacs, a serious hindrance in the determination of the luminosity
function is their essentially featureless spectrum, complicating (or defeating) red-
shift determination. However, several lines of evidence suggest that their lumi-
nosity function evolves weakly if at all (Padovani et al.|2007), so that the useful
volume for computing the local luminosity function extends up to substantial red-
shifts. The estimate by [Padovani et al.|(2007) compares well with the LLF of flat-
spectrum sources obtained by Toffolatti et al.|(1987)). In contrast, high-luminosity
flat-spectrum sources are very rare locally and evolve strongly, so that a model
independent estimate of the local luminosity function is essentially impossible.

4 Source spectra and evolution

This discussion of radio spectra is far from exhaustive: it sets out to serve two pur-
poses. One is related to the K-corrections, the correction for spectral form which
must be used to derive luminosities at rest-frame frequencies. Getting these cor-
rections right is essential in determining space density. The second issue concerns
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relating source counts at different frequencies, and in particular modelling the
poorly determined high-frequency counts from the well-defined low-frequency
counts. This limited discussion thus ignores some aspects of radio spectral mea-
surements which are critical to the astrophysics of radio AGNs, such as variability
and monitoring, mentioned briefly in

We have noted that spectra of radio sources are frequently represented as sim-
ple power-laws, S o< v~%, with the spectral index o ~ 0.8 for steep-spectrum
sources and ~0 for the flat-spectrum ones. However, all radio galaxies deviate
from this simple behaviour. Various physical mechanisms contribute to shaping
the emission spectrum. At low rest-frame frequencies spectra generally show a
sharp decline with decreasing frequency, attributed to synchrotron self-absorption;
a low-energy cut-off to the spectrum of relativistic electrons may also have a role
(Leahy et al.|[1989). The decline is mostly observed at rest frequencies of tens of
MHz, but the absorption turnover frequency can be orders of magnitude higher, as
in GPS and ADAF/ADIOS sources.

In the optically thin regime, the spectral index of synchrotron emission, the
dominant radiation mechanism encountered in classical radio astronomy, reflects
the index of the energy distribution of relativistic electrons. This distribution is
steepened at high energies by synchrotron losses as the source radiates, and by
inverse Compton losses on either the synchrotron photons themselves or the pho-
tons of the external environment (Krolik and Chen|1991). Inverse Compton losses
off the cosmic microwave background (CMB) increase dramatically with redshift,
since the radiation energy density grows as (14z)*. As a consequence, a decline
with increasing redshift of the frequency at which the spectral steepening occurs
can be expected.

While inverse Compton losses are most important to sources with weak mag-
netic fields, powerful sources may possess more intense magnetic fields enhanc-
ing the synchrotron emission. The faster electron energy losses yield a more pro-
nounced steepening, correlated with radio power (P). Disentangling the effects
of radio power and redshift is difficult because in flux-limited samples the more
powerful sources are preferentially found at higher redshifts. A further compli-
cation arises because a convex spectral shape means that redshifting produces an
apparent systematic steepening of the spectrum between two fixed observed fre-
quencies as redshift increases. Since the redshift information is frequently miss-
ing, K-corrections cannot be applied and a P— correlation may arise from any
combination of these three causes.

This is the situation for the correlation reported by [Laing and Peacock| (1980).
Employing (a large proportion of) redshift estimates for a sample drawn from
the 38 MHz 8C survey, Lacy et al.|(1993)) showed that the high-frequency (2 GHz)
spectral index correlated more closely with redshift than with luminosity. While at
first sight, this may suggest the dominant importance of inverse Compton losses on
high-frequency spectra,|Lacy et al.|(1993) pointed out that the correlation between
spectral index and redshift weakens when the radio K-correction is applied. This
means that such correlation may be induced, at least in part, by the spectral curva-
ture due to self-absorption at the very low selection frequency. In fact, magnetic
fields in the very luminous Lacy et al. sources should be strong enough for syn-
chrotron losses to dominate inverse Compton losses. Blundell et al.{(1999), study-
ing a number of complete samples of radio sources selected at frequencies close to
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151 MHz, with a coverage of the P—z plane (see §[5)) substantially improved over
previous studies, concluded that:

(1) The rest-frame spectral index at low frequency depends not only on the
source luminosity (P—o¢ correlation) but also on physical size (D—o cor-
relation) in the sense that sources with larger physical sizes D have steeper
spectra.

(2) The rest-frame spectral index at high frequency (GHz) depends on the
source redshift.

Simple expressions for the average rest-frame spectra of FRI and FRII radio
galaxies as a function of radio power and Fanaroff-Riley type (Fanaroff and Riley
1974) were derived by Jackson and Wall| (2001)).

With regard to the second issue, relating source counts at different frequen-
cies, relevant aspects are to what extent a power-law approximation of the source
spectra may be viable, i.e. to what extent low-frequency self-absorption, electron
ageing effects at high frequencies etc. can be neglected; up to what frequencies
do blazars have ‘flat’ spectra; are source spectra correlated with other parameters
(luminosity and redshift) and, if so, how can these correlations be described?

In this regard, we have noted that surveys at frequencies of 5 GHz and higher
are dominated (at least at the higher flux densities) by ‘flat-spectrum’ sources.
The spectra of these sources are generally not power-laws, but have complex
and individual behaviour, showing spectral bumps, flattenings or inversions (i.e.
flux increasing with increasing frequency), frequently bending to steeper power-
laws at higher frequencies. Examples are shown in Fig.[3] The complex behaviour
results from the superposition of the peaked (self-absorption) spectra of up to sev-
eral components. These components are generally beamed relativistically with the
object-axis close to the line of sight; they are the parts of jet-base components
racing towards the observer at highly relativistic speeds.

The dominant populations of flat-spectrum sources are BL Lac objects and
flat-spectrum radio quasars (FSRQs), collectively referred to as ‘blazars’. Their
spectral energy distributions (i.e. the distributions of VL) show two broad peaks.
The low-energy one, extending from the radio to the UV and sometimes also
to X-rays, is attributed to synchrotron emission from a relativistic jet, while the
high-energy one, in the y-ray range, is interpreted as an inverse Compton com-
ponent arising from upscattering of either the synchrotron photons themselves
[synchrotron self-Compton process (SSC) e.g:\Maraschi et al.||1992; |Bloom and
Marscher|[1993]] or the photons produced by the accretion disc near the central
black-hole and/or scattered/reprocessed in the broad-line region (Blandford|1993;
Sikora et al.|1994).

Gear et al.|(1994)) investigated the radio to sub-millimeter spectra of a random
sample of very luminous BL Lacs and radio-loud violently variable quasars. They
found generally flat or slowly rising 5-37 GHz spectra (median (x537 ~ O for both
populations), and declining 150-375 GHz spectra, with a statistically significant
difference between BL Lacs and quasars, the former having flatter spectra (median
0613573 ~ (.43) than the latter (median Oc1357§ ~(0.73).

Indication of strong spectral curvature was reported by [Jarvis and Rawlings
(2000) for a quasi-complete sample drawn from the 2.7 GHz Parkes half-Jansky
flat-spectrum sample (Drinkwater et al.[[1997). It should be noted, however, that
the data used to construct the radio spectra are heterogeneous, and the bias which
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this introduces is very serious (Wall et al.[2005)). An extrapolation of this spectral
behaviour to frequencies above 20 GHz would be in conflict with WMAP finding
of a median spectral index o ~ 0 (Bennett et al.[2003).

Fossati et al.| (1998)) found evidence for an anti-correlation between the fre-
quency of the synchrotron peak v, and the blazar luminosity, and proposed a
scenario, dubbed ‘the blazar sequence’, for a unified physical understanding of
the vast range of blazar properties. The scenario was further extended by |Ghis-
ellini et al.| (1998)). The idea is that blazars indeed constitute a spectral sequence,
the source power being the fundamental parameter. The more luminous sources
are ‘redder’, i.e. have both the synchrotron and the inverse Compton components
peaking at lower frequencies than the lower-luminosity ‘blue’ blazars. If so, the
sub-mm steepening could be a property of only the brightest sources. However, the
validity of the scenario has been questioned (e.g.|Giommi et al.||1999; [Padovani
et al.|2003}|Caccianiga and Marcha|2004; Anton and Browne|2005j; Nieppola et al.
20065 Landt et al.|2006; Padovani|2007; Nieppola et al.|[2008)).

On the whole, the spectral curvature question is still subject to dispute. Sub-
stantial progress is expected from the forthcoming surveys by the Planck mission
(The Planck Collaboration||2006) covering the range 30-857 GHz, that will pro-
vide the first complete samples allowing unbiased studies of the high-frequency
behaviour.

5 Evolutionary models: radio AGNs

In 1966, the counts produced from the Cambridge 3C and 4C surveys at 178 MHz
(Gower||1966) had already defined the characteristic shape confirmed and refined
by later surveys: in the Euclidean normalized presentation, a ‘Euclidean’ portion
at the brightest flux densities, followed at lower flux densities by a ‘bump’ (dubbed
‘bulge’ by [Wall|1994)), and then a roll-off towards the faint intensities. The ‘bump’
is the signature of strong cosmic evolution, implying that the universe must have
evolved from a state of ‘violent activity’ in the past to a more quiescent phase at
the present epoch, in contradiction to the Steady-State model as pointed out by
Ryle and Clarke| (1961). It is also in complete contradiction to uniformly pop-
ulated Friedman models (e.g. 'Wall et al.|[1980). A further implication of strong
evolution, also noted by Ryle and Clarke| (1961), is that it swamps the effect on
the source counts of different cosmological models, frustrating the original hopes
that the counts could inform on the geometry of the universe. The evolution is
indeed spectacular, yielding co-moving source densities at z ~ 1-2 a factor of
> 103 higher than those of local sources of similarly high luminosities (Longair
1966). As stressed by |Condon| (1989), this means that the fraction of nearby radio
sources is low even at large flux densities; the median redshifts of radio sources in
complete samples with limits ranging from mlJy to Jy are close to 0.8.

Two reference evolutionary scenarios for radio sources (not to be interpreted
literally) were used in the 1960s to interpret the counts; they remain popular today.
In the luminosity evolution scenario, the co-moving density of sources is con-
stant but luminosities vary with cosmic epoch, whereas in the density evolution
scenario, the co-moving density of sources of any luminosity varies. A density
and luminosity evolution of the luminosity function at the frequency v can be
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described as:

p(L,z:v) = fa(z)p(L/fi(z), 2= 0;V), (11)

where fy(z) and fi(z) are the functions describing the density and the luminosity
evolution, respectively.
In his pioneering investigation, [Longair| (1966) showed that either f4(z) =

(1+42)™ or fi(z) = (1+z)™ would fit his data, provided that only sources with
high radio luminosity (log(Lj7smm;) = 33.5 in the case of luminosity evolution or
log(Li7smmz) 2 34.9 in the case of density evolution; luminosities in erg s~ Hz’l)
evolve. This is called power-law evolution in which the function is a power of the
expansion factor of the Universe. (To be precise, Longair quoted evolution func-
tions proportional to " in an Einstein—de Sitter universe, where the cosmic time ¢
is proportional to (1 +z)_3/ 2). The power-law evolution diverges at high redshifts,
and must be truncated. The problem is avoided in the exponential evolution model
proposed both by |Doroshkevich et al.| (1970) and by |Rowan-Robinson| (1970),
fa(z) = exp(kt(z)) or fi(z) = exp(k't(z)), where 7 is the look-back time in units
of the Hubble time H; "and k! or K~! are the evolutionary timescales in the
same units.

A further step in exploring radio-AGN evolution was taken by |Schmidt
(1968)) and [Rowan-Robinson| (1968)): the development of the Vi x or ‘luminosity—
volume’ test. The test avoids mentioning source counts, at the time still lingering
under a cloud of suspicion. It requires a complete sample, and it requires that, if
two or more limits to this completeness are in play, they all be considered. For
example, Schmidt| (1968) applied the test to the quasars of the 3CR catalogue,
a sample defined by the radio flux-density survey limit and by the optical magni-
tude limit of the original Palomar Observatory Sky Survey. The test is simple: take
each object and ‘push’ it out in increasing redshift until it becomes faint enough
to encounter one of the two limits, radio or optical. (The process requires that the
optical and radio spectra be known so as to define K-corrections in each band.)
Stop ‘pushing’ at the first limit encountered; this defines zm,x and hence Vi, the
maximum co-moving volume in which the object could be found. Calculate the
co-moving V for the object, the volume defined by the object’s redshift, and then
form the ratio V /Vimax. Do this for all objects in the sample. It is easy to show
that, if they are uniformly distributed in space, the values should be uniformly dis-
tributed between 0 and 1.0, i.e. (V /Viax) = 0.5+ 1/v/ 12N, where N is the number
of objects in the sample. The statistic is a maximum-likelihood estimator and is
unbiased. It remains in widespread use and has undergone many refinements, e.g.
the C~ method of Lynden-Bell (1971)), the application to combined samples (Avni
and Bahcall|[1980), Vinax methods to extract an evolution function (Choloniewski
1987, and references therein), methods to estimate the luminosity function directly
(Felten||1976; [Eales| 1993)), and the banded V /Viax method (Dunlop and Peacock
1990). There is a vast literature; Willmer (1997) is a good starting point.

Schmidt (1968) found strong evolution for the 3CR quasars, in accord with
the evolution derived by Longair| (1966). Longair and Scheuer|(1970) showed how
very closely the test was related to the source-count test, and emphasized that the
two methods were far from independent. However, V /Vin,x is versatile, simple in
concept, model-free and comes with a statistical pedigree, in contrast to source
counts, the trial and error process of guessing suitable evolution functions, and
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the frequently less than transparent statistical methods used to compare these with
source-count and redshift data.

However, the evolution functions mentioned above may carry physical sig-
nificance. For example, a physical interpretation was offered by (Cavaliere et al.
(1985), who pointed out that models for gravitational energy release near col-
lapsed massive objects yield dL/dt = —A(t)L'*P. If A = constant and p = 0, we
get the exponential luminosity evolution function with timescale k! = A=, If
A(t) o< t~!, we get a power-law evolution. It must be stressed that these evolu-
tionary laws apply to source populations, not to individual sources: the evolu-
tionary timescales, k!, are found to be of the order of a few to several Gyrs,
while the lifetimes of bright radio AGN phases are at least one and probably two
orders of magnitude shorter (Bird et al.|2008). |Grueff and Vigotti| (1977) made
an early attempt to build a model explicitly constrained by astrophysical factors.
They linked the radio-source formation to that of parent galaxies and assumed
radio-emitting lifetimes inversely proportional to radio luminosities.

Most evolution models have ignored the distributions of spectral indices
around the mean values (which may be luminosity-dependent) for both steep- and
flat-spectrum sources (see (Condon||[1984a). If such distributions can be approxi-
mated as Gaussians with dispersion o, and the differential counts have a power-
law shape, n(S) = kS~P, the mean spectral index & of sources with given value
of § shifts with frequency (Kellermann| 1964} Condon|1984a; Danese and de Zotti
1984):

a=ay+0(1—p)In(v/v), (12)

and the amplitude of the counts scales with frequency as k = ko(v/vp)9, with:

q=0o(1-B)+0.56%(1—B)*In(v/v). (13)

The dispersion of the mean spectral indices thus counteracts the effect on counts
of the high-frequency steepening (§H). The effect is amplified by the increase
with frequency of the variability amplitude (Impey and Neugebauer||1988}; |Cia-
ramella et al.|2004). We note, however, that (a) power-law approximations for
source counts hold over very limited flux-density ranges only, and (b) a Gaussian
approximation for spectral-index distributions holds only for low-frequency sur-
veys. By 1.4 GHz, spectral-index distributions have pronounced tails towards flat
spectra, and by 5 GHz, the spectral-index distribution is almost the sum of two
Gaussians with peaks at ~0.8 (steep-spectrum sources) and ~0.0 (flat-spectrum
sources). Clearly, the above equations can be used to calculate & and g for each
population.

5.1 Low versus high luminosities

Extensive discussions can be found in the literature on whether the cosmological
evolution is a property of powerful radio sources only. The origin of the discus-
sion is|Longair|(1966)’s classic study. He adopted a luminosity function extending
over about eight decades in luminosity and with a shape not far from a power-law,
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so that density and luminosity evolution were essentially equivalent over the flux-
density range covered by the counts available at the time. Under these assump-
tions, the relative narrowness of the evolution bump in normalized counts (width
less than 2 orders of magnitude) compared to the breadth of the luminosity func-
tion (8 orders of magnitude) could be accounted for if only the brightest sources
evolve strongly. It was a fundamental discovery of [Longair| (1966))’s investigation
that ‘differential evolution’ was therefore essential: if all sources evolved equally,
there are far too many faint sources, i.e. the model bump is far too broad.

As more data accumulated, the evolutionary models were refined. [Robertson
(1978, [1980) and |Wall et al.| (1980) factorized the evolving luminosity function
as p(L,z) = F(L,z)po(L), where F(L,z) is the evolution function, able to repre-
sent density or luminosity evolution, or a combination of both. Models assuming a
luminosity- independent evolution function were found to produce unsatisfactory
results, while (following the qualitative description of the previous paragraph)
good fits of the data were obtained only by assuming a far stronger F(L,z) for
more luminous sources. Danese et al.| (1987) proposed a luminosity-dependent
luminosity evolution model in which the luminosity evolution timescale increases
with decreasing luminosity and exceeds H ! so that sources evolve weakly (if at
all), below some critical luminosity L; ~ 10°" ergs~! Hz~!. This is in keeping with
the indications that a variety of physical processes can sustain a steady low-level
fueling of the central engine for times longer than the Hubble time (Cavaliere et al.
1985). The |Danese et al.| (1987) model was exploited by [Toffolatti et al.| (1998)) to
carry out remarkably successful predictions of radio-source contributions to small-
scale anisotropies measured by CMB experiments.

The differential evolution is suggestive of two populations. Pushing the high-
and low-luminosity dichotomy to the extreme, some investigators explicitly con-
sidered two populations, one of non-evolving low-luminosity sources, and the
other of high-luminosity, strongly evolving sources. Wall|(1980) identified the two
populations with FR I and FR II radio galaxies. The border between FR I and FR II
is, approximately, at L| 4GHz ~ 1032 erg sT1Hz !, although the division appears to
be dependent on both radio power and optical luminosity of the host galaxy (cf.
Ledlow and Owen!|{1996). |Jackson and Wall| (1999) extended the scheme to flat-
spectrum sources, assuming that BL Lac objects and flat-spectrum radio quasars
are the beamed counterparts of FR 1 and FR II objects, respectively, as discussed
in §[5.4]

Before the advent of 2dF and SDSS sky surveys, the space distribution
of low- luminosity radio AGN was a matter of speculation. For example,
Laing et al| (1983) showed that the low-luminosity radio galaxies of 3CRR
[log(Li7gmuz/ergs~ ' Hz~1)<34] gave values of (V /Viax) = 0.50, suggesting lit-
tle or no evolution. This view was supported by (Clewley and Jarvis| (2004),
who found that the co-moving space density of sources fainter than L; 4gH; ~
4-10*%ergs~'Hz ™! remains approximately constant with increasing redshift up
to z ~ 0.5. However, numbers were small and uncertainties undoubtedly permit-
ted some mild evolution. On the basis of discovering two distant FR I galaxies
in the Hubble Deep Field, [Snellen and Best| (2001)) proposed that FR I galaxies
showed significant evolution. With recourse to the 2dF sample of galaxy red-
shifts, Sadler et al.| (2007) quantified this: they found substantial cosmological
evolution over the redshift range 0 < z < 0.7 of radio galaxies with 103! <
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LiacHz < 1032 erg s'Hz7!, i.e. in the luminosity range of FR 1 sources. They
also found indications that the most powerful radio galaxies in their sample (with
Li4GH, > 1073 erg s THz™ 1) undergo more rapid evolution over the same redshift
range. The latter findings are consistent with those by |Willott et al.| (2001), who
used emission-line strength rather than morphology (FR I/FR1I) to discriminate
between radio-source populations. The critical radio luminosity dividing sources
with weak/absent emission lines (the less radio-luminous population of FRI and
FR II), and the more radio-luminous population of strong-line FR II radio galaxies
and quasars, is approximately L; 4gu, ~ 6 - 103?ergs™' Hz~!. Both populations
show evidence for evolution, but the co-moving density of the more powerful
sources rises far more dramatically than that of the low-luminosity population.

It must be noted, however, that a luminosity-dependent evolution function
F(L,z) does not necessarily imply a luminosity-dependent luminosity evolution.
For example, in the case of a luminosity function p o L~7, a uniform power-
law evolution L(z) = L(0)(1+z)“ yields p[L(z)] = p[L(0)](1 4 z)*; the evolution
function depends on the slope of the luminosity function. If the luminosity func-
tion levels off below some ‘bending’ luminosity Lj, a luminosity-independent
luminosity evolution translates into a constant co-moving space density at low
luminosities, with strong variations with epoch confined to the steep portion of
the luminosity function. As shown by |Condon| (1984b), it is then possible to fit a
wide range of radio data with a model assuming that all sources evolve equally in
luminosity.

Finally, we note that the debate on the evolution of low-luminosity radio AGNs
has been somewhat muddled for some time by the poor knowledge of their local
luminosity function. As discussed in §[3] it is now clear that the faint portion of the
radio luminosity function is dominated by starburst galaxies, while the luminosity
function of radio AGNs flattens below log L(1.4GHz) /ergs ™' Hz ™! ~ 31.

5.2 Steep- versus flat-spectrum sources

The width of the bump in the Euclidean normalized counts increases with increas-
ing frequency. The bump of the steep-spectrum population dominating the low-
frequency counts shifts to fainter flux densities and gradually fades as survey fre-
quency increases. But, as survey frequency increases the evolution bump of flat-
spectrum sources becomes steadily more prominent, combining with the steep-
spectrum bump to produce an increasingly broad overall maximum, a broader
range of flux densities over which the count slope is close to Euclidean (Keller-
mann and Wall|[1987). This initially misled investigators to consider different
space distributions and evolutionary laws for steep- and flat-spectrum sources,
with less evolution for the latter. Demonstrating the lack of independence of
V /Vmax and source-count results, similar indications of little evolution for flat-
spectrum objects came from this direction. |Schmidt (1968)) found a slight indi-
cation in the 3CR sample of quasars that (V /Vix) appeared to be less for the
flatter-spectrum objects. When substantial flat-spectrum quasar samples became
available from cm-wavelength surveys, it was found that (V' /Vinax) =~ 0.5, consis-
tent with a uniform distribution (Schmidt|/|1976; Masson and Wall|[1977). This is
in contrast to (V/Vyax) = 0.7 for steep-spectrum quasars, indicative of a strong
increase of their space density with z.
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Peacock and Gull (1981) stressed that the data available at the time poorly
constrained the luminosity function over most areas of the luminosity-redshift
plane (see also|Wall et al.[|1981])), and pointed out that within the regions where the
luminosity function was reasonably well-defined, steep- and flat-spectrum sources
behave similarly: both spectral types undergo differential evolution, the strength of
evolution increasing with luminosity. The analysis by (Condon| (1984a) confirmed
that the two spectral classes may indeed evolve similarly within the constraints
of the data. This position received further support from comparative analysis of
evolution of AGNs in the radio, optical and X-ray bands by |Danese et al.[(1985),
who noted that the apparently weaker evolution of flat-spectrum sources might
be related to relativistic beaming effects that boost the apparent radio luminosity.
In particular, BL Lac objects are probably associated with low-luminosity steep-
spectrum radio sources which also show weak evolution. More extensive data and
further analyses (Danese et al.[|1987; Dunlop and Peacock|[1990) reconciled the
epoch-dependent spatial distributions of the two populations, showing that they
were essentially identical. This finding produced a necessary consistency for the
success of the unified scheme for radio-loud AGNs; it is clearly not possible for
side-on and end-on versions of the same populations to have different space distri-
butions. ‘Unified evolutionary schemes’, in which flat-spectrum quasars and BL
Lac objects are ‘beamed’ versions of FRI and FRII sources, were presented by
Urry and Padovani|(1995) and Jackson and Wall|(1999) and are discussed in §

Some of the apparent discrepancy between these analyses can perhaps be
resolved noting that, while (V /Vinax) > 0.5 means an increase with redshift of
the source density, (V /Vinax) =~ 0.5 does not necessarily mean no evolution. Evo-
lution increasing the source density up to z ~ 2 and decreasing it afterwards may
yield (V /Vimax) = 0.5 for quasars visible up to high z; at high-z the visibility of
flat/inverted-spectrum quasars is enhanced when compared to the steep-spectrum
ones by the more favourable K-correction. This may be part of the explanation; but
probably the majority of the explanation for disparate (V /Viax) results arises from
selecting the steep-spectrum samples from their initial steep portion of source
count, while selecting the flat- spectrum sources from an effectively fainter (and
flatter) portion of the source count.

5.3 High-z evolution

At some epoch, radio galaxies and quasars have to be born; some epoch after
recombination has to have assembled galaxies suitable to harbour both massive
black-hole cores and fuel systems for these to produce collimated twin-beam radio
AGNs. We have described how easily we can trace the very strong increase of the
co-moving number density of powerful radio sources between redshift ~0 and 2.
How hard is it to find the more distant epoch at which this relatively high co-
moving density falls to signify the epoch of AGN birth?

This is an important issue. The radio activity is associated with processes driv-
ing the growth of supermassive black-holes (SMBHs) in galactic nuclei, which in
turn is tied to galaxy formation and evolution. The radio activity may also drive
feedback processes that have a key role in the evolution of black-holes and their
host galaxies (Granato et al.[2004; [Best et al.|2006}; Bower et al.|2006}; Croton et al.
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20006). Powerful radio galaxies and quasars trace the most massive SMBHs (Dun-
lop et al.|2003;[McLure et al.[2004) which are hosted by the most massive galaxies
(Ferrarese and Ford 2005). Radio survey data are unaffected by dust extinction and
may thus provide crucial tests of the optical/IR results on galaxy formation.

One of the achievements of the outstanding |Dunlop and Peacock| (1990) free-
form evolution analysis was to provide evidence for a decline (or high-redshift
‘cut-off”) in the number density of sources with both steep and flat spectra at red-
shifts beyond 2.5-3.0. However, their samples were incomplete in redshift infor-
mation, and the results were dependent on the accuracy of photometric redshifts
ascribed to sources of the optically faintest host galaxies.

Tracing the redshift cut-off is still under investigation. [Shaver et al.[ (1996)
reported evidence of a strong decrease of the space density of flat-spectrum radio-
loud quasars (FSRQs) for z > 3.Jarvis and Rawlings| (2000) disputed this, point-
ing out that the apparently curved nature of many of the radio spectra involved,
and, in particular, a spectral steepening to the high frequencies, might reduce or
remove the significance of an apparent redshift cutoff. Ignoring such steepening
leads to the prediction of more high-z sources than are actually seen, and this
could be misinterpreted as evidence for a decline of the space density. They con-
cluded that the co-moving volume covered by the available samples is too small
to make definitive statements about any redshift cut-off for the most luminous
flat-spectrum sources, although both a constant co-moving density and a decline
as abrupt as those envisaged by |Shaver et al.|(1996) were found to be marginally
inconsistent with the data. Using a larger sample with a more rigorous analysis,
Wall et al.| (2005) found evidence, significant at >40, of a diminution in space
density of flat-spectrum quasars at z > 3, consistent with the redshift cut-off forms
of both optically selected (Schmidt et al.[1995; |Fan et al.|2004) and X-ray selected
(Hasinger et al.|[2005; Silverman et al.|2005) quasars. Wall et al. drew attention to
a major source of bias in the Jarvis et al. sample, the non-contemporaneous nature
of the radio flux-density measurements. It is certain that this introduces too much
apparent high-frequency curvature and decline into the radio spectra. The effect
of the bias was demonstrated by Wall et al., using both contemporaneous and non-
contemporaneous spectral data.

Using three samples selected at low frequencies, Jarvis et al.|(2001)) found that
the space density of the most radio-luminous steep-spectrum radio sources is con-
sistent with being constant between z ~ 2.5 and z ~ 4.5 and excluded a decline as
steep as suggested by Shaver et al.| (1996, 1999)). This conclusion was confirmed
by |Cruz et al|(2007). However, the samples remain small and incomplete in red-
shift information and as for/Dunlop and Peacock](1990), the faintest host galaxies
require redshift estimation from a K — z plot. It is much harder to track any redshift
diminution for steep-spectrum radio galaxies than for FSRQ, and the statistical
uncertainties are inevitably greater; showing that the steep-spectrum samples are
consistent with a uniform distribution does not disprove the redshift cut-off found
by [Wall et al.| (2005) for FSRQ.

These apparently contradictory results may again be accounted for by
luminosity-dependent evolution. [Hook et al.| (1998) reported indications that the
high-z decline of the space density of flat-spectrum quasars is more pronounced
and starts at lower redshifts for less powerful sources. These indications were
confirmed by subsequent studies that did not distinguish between flat- and steep-
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Fig. 10 Relative space density of flat-spectrum radio quasars from the Parkes Quarter-Jansky
sample, as derived from a Maximum-Likelihood analysis similar to that of|Wall et al.|(2008). The
sample and Single-Object Survey (SOS) technique used were described by Wall et al.| (2005).
The peak of FSRQ activity is a monotonic function of 2.7 GHz monochromatic radio luminosity
(L in units of ergss~!Hz™!) in the pseudo-downsizing sense, i.e. lower luminosities have the
peak of their activity at lower redshifts. The green curve in each diagram represents the global
solution for the entire sample. This ‘down-sizing’ is similar to that found for quasars selected at
X-ray wavelengths (Hasinger et al.[2005) and for sub- mm galaxies (SMG) from JCMT surveys
(Wall et al.[|2008)

Fig. 11 Redshift distribution of sources brighter than 10 mJy at 1.4 GHz in the CENSORS sam-
ple (Brookes et al.|[2008), compared with that predicted by the PLE model by (Dunlop and
Peacock] [1990} dashed line) and with the fit of Eq.[26] As the model applies to the AGN pop-
ulation, the two sources classified as starburst galaxies (nos. 95 and 124) were excluded from
the histogram. The Kaplan—Meier estimator was used to take into account the lower limits into
account

spectrum sources (Waddington et al.[[2001; [Vigotti et al.| 2003} |Cirasuolo et al.
2005, |2006). The luminosity dependence of the high-z decline is qualitatively
similar to the downsizing observed for galaxies and optically and X-ray selected
quasars (Cowie et al.|[1996; Barger et al.| 2005} |Pérez-Gonzalez et al.|2008). A
new analysis in progress by Wall et al. (in preparation) uses a Bayesian modelling
process similar to that described by|Wall et al.| (2008)), and this pseudo-downsizing
effect is very clear for FSRQ, as shown in Fig.@

There remains further need for complete redshift information on faint samples
of steep-spectrum radio sources to clarify their high-redshift evolution. An impor-
tant step in this direction has been the Combined EIS-NVSS Survey Of Radio
Sources (CENSORS; [Brookes et al.[|2008)) that included spectroscopic observa-
tions of 143 out of a total of 150 sources with S| 4gH, > 3.8mly. Of these, 137
form a complete sample to a flux-density limit of 7.2 mJy. The resulting redshift
distribution agrees well with the distribution in Fig. 28 of |(Condon| (1984a), but is
not well-reproduced by any of the [Dunlop and Peacock] (1990) models (see, e.g.
Fig.[TT). These data promise substantial improvement in this field.

5.4 Unified evolutionary schemes

Urry and Padovani| (1995) carried out a thorough examination of the most widely
accepted version of the unification scheme encompassing steep- and flat-spectrum
radio sources. This scheme is based on the premise that relativistic beaming of
lobe-dominated, steep-spectrum, moderate radio power FR I and high radio-power
FRI1I radio galaxies gives rise to core dominated, flat-spectrum BL Lac objects
and radio-loud quasars, respectively, when the line of sight is close to the jet axis
(Fig.[T). Urry and Padovani based their analysis on a comparison of luminosity
functions for the different objects, and they showed that with reasonable assump-
tions for the beaming parameters, these were in agreement. (We remind the reader
that in the case of beamed emission, the true luminosities are lower than those
inferred from the observed fluxes assuming isotropic emission by a factor ®/4m,
where o is the solid angle of the beaming cone(s). For example, in the case of
twin beams each with semi-aperture angle of 7°, /471 ~ 0.094.)
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More recent analyses (Liu and Zhang|2007; (Cara and Lister| 2008)), using
observations of the jet kinematics and the apparent superluminal speeds for a
complete sample (Lister|2008), have confirmed the general validity of the scheme,
and have improved the accuracy in parameter determination. The assumption that
the observed luminosity function of FR II galaxies has the same power-law shape
as the intrinsic luminosity function of radio-loud quasars was successfully tested
using a maximum-likelihood method. Padovani and Urry| (1992) had originally
developed their method of comparing the calculated beamed luminosity functions
of flat-spectrum quasars and BL Lac objects with the observed ones before their
comprehensive review paper. Now the observed distribution of Lorentz factors of
relativistic jets (Hovatta et al.[|2008)) is found to be in good agreement with their
estimate. The observed distribution of viewing angles also turned out to be con-
sistent with predictions of their unified model. [Hovatta et al. (2008) found that the
transition from blazars to ordinary radio-loud quasars occurs at a viewing angle of
15° to 20°, to be compared with [Urry and Padovani| (1995))’s estimate of 14°.

Wall and Jackson| (1997) and Jackson and Wall| (1999) derived an evolution-
ary model aimed at explaining the behaviour of both the flat- and steep-spectrum
populations within a unified scheme. Following |[Urry and Padovani| (19995)), they
assumed BL Lacs to be the beamed versions of FR1 galaxies, and FSRQs to be
the beamed versions of FRII galaxies. However the analysis differed from that
of Urry and Padovani in deriving model parameters directly from the data rather
than by comparing luminosity functions. As a first step, Jackson and Wall derived
evolution models separately for FRI and FRII radio galaxies, using data (counts
and redshifts) solely from low-frequency surveys to avoid beamed objects and
to establish space-density behaviour for these parent populations. The evolution
models they derived happened to have redshift cutoffs, and for the FR1 galax-
ies the approximation of space density constant with epoch was adopted. These
both gave good fits to the low-frequency data, but neither feature is essential to
the outcome of the experiment. Together with observed ratios of beamed (core)
flux to unbeamed flux, Jackson and Wall then used a Monte Carlo process to ori-
ent statistically large samples of FRI and FRII sources randomly to the line of
sight. Using a grid of beaming parameters (range of Lorentz factors, torus opening
angles), then they calculated the number of beamed objects (BL Lacs and FSRQs)
produced at different flux densities. Identifying these objects with the cm-excess
sources found in cm-wavelength surveys, then they closed the loop by using the
higher-frequency source counts (primarily at 5 GHz) to find the permissible range
of beaming parameters. The process was able to reproduce the exact form of the
higher-frequency counts with their broader bump (§[5.2)) as well as torus opening
angles and Lorentz factors in reasonable agreement with observations. |Liu and
Zhang| (2007) found that the Lorentz factor distribution is much steeper for low-
redshift (z < 0.1) low-luminosity sources than for the more powerful, high-z ones,
although the uncertainties are large. Therefore, the most extreme relativistic jets
are rarer in the low-z population. This indicates that the low- and high-redshift
groups are likely to be from different parent populations, consistent with the dual-
population scheme of Jackson and Wall| (1999).

The Jackson and Wall (1999) unification scheme was adopted by |Wilman
et al.| (2008) to reproduce the observed variety of radio-loud AGNs, including
radio galaxies, steep- and flat-spectrum quasars and strongly beamed sources such
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as BL Lacs and FSRQs. These authors produced a simulation of a sky area of
20 x 20deg? out to z = 20, and down to a flux density of 10 nJy at several fre-
quencies from 151 MHz to 18 GHz. The model comprises five source populations
with different evolutionary properties: FRI and FRII AGNs, ‘radio-quiet” AGNs
(defined as all X-ray-selected AGNs), and star-forming galaxies in quiescent and
star-bursting phases. The simulation includes redshift-dependent size distributions
both for radio-loud AGNs and for star-forming galaxies. Clustering is modelled
by attributing to each population an effective halo mass and computing the cor-
responding bias factors, b(z). The simulations have been built with the SKA in
mind and will serve to inform design of the SKA, design of analysis software and
design of observing programmes.

5.5 Special classes of sources
5.5.1 GHz peaked spectrum sources

GHz peaked spectrum (GPS) sources are powerful (logL; 4cn, = 32 erg s"'Hz ™,
compact (< 1kpc) radio sources with convex spectra peaking at GHz frequen-
cies (see |0’ Dea||1998| for a comprehensive review). They are identified with both
galaxies and quasars. It is now widely agreed that GPS sources correspond to the
early stages of the evolution of powerful radio sources, when the radio-emitting
region grows and expands within the interstellar medium of the host galaxy, before
plunging out into the intergalactic medium and becoming an extended radio source
(Fanti et al.|1995; Readhead et al.|1996;|Begelman|1996;|Snellen et al.[2000). Con-
clusive evidence that these sources are young came from VLBI measurements of
propagation velocities. Speeds of up to ~0.4¢ were measured, implying dynamical
ages ~103 years (Polatidis et al.|1999: [Taylor et al.[2000; Tschager et al.2000).
The identification and investigation of these sources is, therefore, a key element in
the study of the early evolution of radio-loud AGNS.

The model by De Zotti et al.| (2000) implies that extreme GPS quasars,
peaking at v > 20 GHz, should comprise a substantial fraction of bright radio
sources in the WMAP survey at v ~ 20 GHz, while GPS galaxies with simi-
lar Vpeax should be about 10 times less numerous. For a maximum rest-frame
peak frequency v, ; = 200 GHz, the model predicts about 10 GPS quasars with
SsocHz > 2Jy peaking at >30 GHz over the 10.4 sr at |b| > 10°. Although, the
number of quasars with spectral peaks at >30 GHz in the WMAP survey is con-
sistent with this, when additional data (Trushkin/2003)) are taken into account such
sources look more like blazars caught during a flare that is optically thick up to
high frequencies. Furthermore, [Tinti et al.| (2005) showed that most (perhaps two
thirds) of the quasars in the sample of High Frequency Peaker (HFP, GPS sources
peaking above a few GHz) candidates selected by |[Dallacasa et al| (2000) are
likely to be blazars, while all the 10 candidates classified as galaxies are con-
sistent with being truly young sources. This conclusion was strengthened by the
VLBA variability and polarization studies of|Torniainen et al.[(2005]), Orienti et al.
(2006, 2007) and Orienti and Dallacasal (2008)).

An implication of these results is that the samples of confirmed GPS quasars
are too small to allow meaningful study of their evolutionary properties. The situ-
ation is somewhat better for GPS galaxies.|Tinti and de Zotti (2006) found that the
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observed redshift and peak frequency distributions of these sources can be satis-
factorily accounted for in the framework of the self-similar expansion model pro-
posed by Begelman| (1996, [1999)). According to this model, the properties of the
sources are determined by the interaction of a compact, jet-driven, over-pressured,
non-thermal radio lobe with a dense interstellar medium. Fits of the redshift and
peak frequency distributions require a decrease of the emitted power and of the
peak luminosity with source age or with decreasing peak frequency, consistent
with expectations from Begelman’s model, but at variance with the |Snellen et al.
(2000) model.

5.5.2 Late stages of AGN evolution

Late stages of the AGN evolution, characterized by low radiation/accretion effi-
ciency, were brought into sharper focus by the discovery of ubiquitous, moderate-
luminosity hard X-ray emission from nearby ellipticals. VLA studies at high radio
frequencies (up to 43 GHz) have shown, albeit for a limited sample of objects, that
all the observed compact cores of elliptical and SO galaxies have spectra rising up
to ~20-30 GHz (d1 Matteo et al.|1999).

There is growing evidence that essentially all massive ellipticals host super-
massive black holes (e.g.|Ferrarese and Ford| 2005 Yet nuclear activity is not
observed at the level expected from [Bondi| (1952) spherical accretion theory, in
the presence of extensive hot gaseous halos, and for the usually assumed radia-
tive efficiency ~10% (di Matteo et al. [1999). However, as proposed by Rees
et al.| (1982)), the final stages of accretion in elliptical galaxies may occur via
advection-dominated accretion flows (ADAFs), characterized by a very low radia-
tive efficiency (Fabian and Rees|1995). The ADAF scenario implies strongly self-
absorbed thermal cyclo-synchrotron emission due to a near-equipartition magnetic
field in the inner parts of the accretion flows, most easily detected at cm to mm
wavelengths. However, the ADAF scenario is not the only possible explanation
of the data, and is not problem-free. Chandra X-ray observations of Sgr A at the
Galactic Center are suggestive of a considerably lower accretion rate compared
to Bondi’s prediction (Baganoff et al.||2003), so that the very low ADAF radiative
efficiency may not be required.

A stronger argument against a pure ADAF in the Galactic Center is that the
emission is strongly polarized at mm/sub- mm wavelengths (Aitken et al.|[2000;
Agol|[2000). Moreover, |di Matteo et al.[|(1999) and [Di Matteo et al.| (2001) found
that the high- frequency nuclear radio emission of a number of nearby early
type galaxies is substantially below the prediction of standard ADAF models.
The observations are more consistent with the adiabatic inflow—outflow solutions
(ADIOS) developed by |Blandford and Begelman| (1999), whereby the energy lib-
erated by the accretion drives an outflow at the polar region. This outflow carries a
considerable fraction of the mass, energy and angular momentum available in the
accretion flow, thus suppressing the radio emission from the inner regions. Both
the intensity and the peak of the radio emission depend on the mass loss rate.

Tentative estimates of the counts due to these sources and of the associated
small-scale fluctuations were presented by Pierpaoli and Pernal (2004). As shown
in Fig.[0|their model A assumes a local luminosity function (upper boundary of the
cross-hatched area) higher than current estimates of the local luminosity function
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of all flat- and inverted-spectrum sources. Consistency is obtained only for their
minimal model B (lower boundary of the cross-hatched area).

6 Evolutionary models: star-forming galaxies
6.1 Star-forming, normal and sub- mm galaxies

The radio emission of star-forming galaxies correlates with their star forma-
tion rate, as demonstrated by the well-established tight correlation with far-IR
emission (Helou et al.||{1985; |Gavazzi et al.||1986; (Condon||[1992; (Garrett|[2002).
Yun et al. (2001) found that the overall trend in the range L, (60um) ~ 10°'-
10°2 ergs~ ' Hz~! is indistinguishable from a linear relation:

LiacH, = 1.16 x 1072L, (60 um). (14)

Galaxies with Ly (60um) < 103%ergs~!Hz ! are found to have radio to far-IR
luminosity ratios systematically lower than those given by Eq.[T4 The apparent
deviation from linearity in the radio/far-IR correlation at low luminosities is sup-
ported by a comparison of 60 um and 1.4 GHz local luminosity functions (Yun
et al.|2001; Best et al.[2005)). Simply shifting the 60 m luminosity function (Saun-
ders et al.| 1990; Takeuchi et al.2003) along the luminosity axis according to Eq.[I4]
yields a good match to the radio luminosity function (Best et al.[2005; |Mauch and
Sadler|2007) for L 4guz 2 10%8 erg sTTHz 1. At yet lower luminosities, however,

the extrapolated luminosity function lies increasingly above the observed one. Full
agreement is recovered (Fig.[8)) by replacing Eq.[14] with

-1
L —3.1 L —1
L1.4GHZ:1.16><102Lb[(V<6L0‘m> +((6L°“m>> ] , (15)
b b

in which Ly, = 8.8 x 10¥ ergs~'Hz !

While a radio/far-IR correlation is expected since young stars are responsible
both for dust heating and for the generation, via supernova explosions, of syn-
chrotron emitting relativistic electrons, a clear explanation of its tightness and
of its linearity over a large luminosity range is still missing. A decrease of the
Ly 46Hz/Ly(60 um) ratio with increasing far-IR luminosity is expected from the
increase of the effective dust temperature, Ty, with luminosity (Blain and Longair
1996)). For a galaxy like the Milky Way, the far-IR SED peaks at 170 um, whereas
for an ultra luminous infrared galaxy (ULIRG) it peaks at about 60 um (Lagache
et al.|2005). This factor of 3 increase in temperature for a factor ~103 increase in

luminosity corresponds to Ty o< Lll:{lg. If the radio luminosity is proportional to the
global far-IR luminosity, this increase in dust temperature results in a decrease of
the L 4r,/Ly (60 wm) ratio by a factor of 2.5-3.

On the other hand, there are different contributions to the global far-IR lumi-
nosity. In Luminous and Ultra Luminous Infrared galaxies, the emission is domi-
nated by warmer dust, associated with star-formation, while infrared ‘cirrus’ emis-
sion, heated by older stars, becomes increasingly important in galaxies with lower
and lower star-formation rates. The latter component may be weakly correlated
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with radio emission, if at all. Moreover, in very low-luminosity galaxies interstel-
lar magnetic fields may be so weak as to let synchrotron emitting electrons escape
into intergalactic space or to lose energy primarily via inverse Compton scattering
of CMB photons. These processes may over-compensate the effect of decreasing
dust temperature

Anyway, the tight empirical relationship between radio and far-IR luminosi-
ties for star-forming galaxies allows us to take advantage of the wealth of data at
far-IR/sub- mm wavelengths to derive the radio evolution properties. We expect
a different evolution for starburst and normal late-type galaxies as the starburst
activity is likely triggered by interactions and mergers that were more frequent
in the past, while in normal galaxies, the star-formation rate has probably not
changed much over their lifetimes. The bulk of the sub- mm counts measured by
SCUBA surveys (Scott et al.2006; Coppin et al.[2006)) is due to yet another pop-
ulation, the sub- mm galaxies (SMGs), proto-spheroidal galaxies in the process of
forming most of their stars (Granato et al.[2004).

There have been a number of attempts to model the evolution of star-forming
galaxies and in particular to account for the apparent intrusion of this population
into the source counts at S|4 gu, <1 mly; see e.g. King and Rowan-Robinson
(2004). A straightforward extrapolation to radio frequencies of the evolutionary
models by |[Negrello et al.| (2007) for the three populations (normal, starburst and
sub- mm galaxies), exploiting Eq.[I5]and the SEDs of NGC 6946 for normal late-
type galaxies and of Arp220 for starburst and proto-spheroidal galaxies, yields
the curves shown in Figs.[4] [5|and[6] nicely reproducing the counts at tens of uJy
levels. We note, however, that new observational data, some of which is described
in §[2.3] may permit substantial refinement of these models.

The cross-over between synchrotron plus free—free emission prevailing at cm-
wavelengths, and thermal dust emission, generally occurs at A ~ 2-3 mm (in the
rest frame), so that at frequencies of tens of GHz there are contributions from both
components (see De Zotti et al.[2005).

6.2 Radio afterglows of y-ray bursts

The afterglow emission of y-ray bursts (GRBs) can be modelled as synchrotron
emission from a decelerating blast wave in an ambient medium, plausibly the
interstellar medium of the host galaxy (Waxman! 1997; Wijers and Galamal[1999;
Mészaros|[1999). The radio flux above the self-absorption break at <5 GHz, is
proportional to vi/3 up to a peak frequency that decreases with time. This implies
that surveys at different frequencies probe different phases of the expansion of the
blast wave. Owing to their high brightnesses, GRB afterglows may be detected
out to exceedingly high redshifts, and are therefore important tracers of (a) the
early star formation in the Universe, and of (b) the absorption properties of the
intergalactic medium across the reionization phase. Estimates of the counts of
GRB afterglows have been made by |Ciardi and Loeb| (2000), who found that at a
fixed time-lag after the GRB in the observer’s frame, there is only a mild change
in the observed flux density at radio wavelengths with increasing redshift. This
stems in part from the fact that afterglows are brighter at earlier times and that a

> We are grateful to J. Condon for enlightening comments on this issue.
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given observed time refers to an intrinsic time in the source frame that is earlier
as the source redshift increases. According to (Ciardi and Loeb| (2000) estimates,
a large-area survey at ~1 cm to a flux limit ~1 mJy should discover some GRBs
(see also [Seaton and Partridge| 2001} |De Zotti et al.|2005). Predictions of Ciardi
and Loeb’s models at 1.4 and 3 GHz are shown in Figs.[5|and [6]

7 The radio background

The radio background provides a key constraint on the counts of sources too faint
to be individually detected. At frequencies below 1 GHz, the extragalactic radio
background is swamped by the much more intense Galactic emission, primarily
the synchrotron emission from diffused and integrated supernova remnants. Esti-
mates at meter wavelengths made over 40 years ago (Bridle|1967) using the T-T
plot method (Turtle et al.[1962)) yielded an antenna temperature of the extragalac-
tic background at 178 MHz of Tk = 30 &= 7K, about one third of the minimum
total sky brightness at that frequency. Subtraction of the Galactic emission assum-
ing that it scales as csc |b|, (b = Galactic latitude) is very inaccurate, as (i) Galac-
tic emission towards the Galactic poles is not removed, and (ii) there are major
features such as the North Galactic Spur which follow no such law. In fact, the
morphology is complex; see, for example, the superb map at 408 MHz by Haslam
et al.| (1982).

An independent estimate of the background intensity was obtained by |Clark
et al.| (1970), exploiting the low-frequency measurements obtained with the Radio
Astronomy Explorer (RAE-1) satellite. While the 7-T plot method exploits the
isotropy of the background and its different spectral index to separate it from
Galactic emission, low-frequency measurements exploit the strong attenuation of
the extragalactic radiation below 1 MHz due to free-absorption by electrons in the
interstellar medium. Measurements at these frequencies can therefore be used to
single out the Galactic-disk component. Extrapolating to higher frequencies and
subtracting from measurements of the total flux Clark et al. were able to obtain an
estimate of the extragalactic background intensity. Obviously, the method works
best in regions of low Galactic emission, such as the ‘north halo minimum’ region
(I ~150°, b ~ 50°). Once again the isotropic component was identified to be about
one-third the minimum total brightness observed at 100 MHz. The spectral index
appeared to be similar to the average spectral index observed for extra-galactic
sources, suggesting that the isotropic component does represent the extragalactic
background rather than an isotropic halo of the Galaxy.

Gervasi et al.| (2008) calculated the brightness of the isotropic background
anticipated from unresolved extragalactic source, using modern compilations of
source counts and fitting smooth functions to these counts. Their results range
from 7, = 38,600K at 151 MHz to 0.41 K at 8.44 GHz; over this range the 7,—
frequency law is close to a power law.

Interest in the radio background was recently revived by the results of the
second-generation balloon-borne experiment Absolute Radiometer for Cosmol-
ogy, Astrophysics, and Diffuse Emission-2 (ARCADE-2). After subtracting a
model for the Galactic emission and the CMB, |Fixsen et al. (2009) found
excess radiation at 3 GHz about five times brighter than the estimated contri-
bution from extragalactic radio sources, as calculated by Gervasi et al. and in
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Fig. 12 Estimates of the extragalactic radio background at different frequencies. The black sym-
bols refer to estimates exploiting the methods mentioned in the first two paragraphs of §[7] while
the red symbols refer to estimates by [Fixsen et al.|(2009) either using ARCADE 2 data (squares)
or re-analyzing published data from large-area surveys (x). The dashed line shows the extra-
galactic background spectrum yielded by the models fitting the counts in Figs.[4] [F] [6] and

the present study (see Fig.[I2). From a re-analysis of several large-area sur-
veys at lower frequencies to separate the Galactic and extragalactic components,
Fixsen et al.| (2009) obtained an extragalactic background power-law spectrum of
T =1.26+0.09K(v/vg)~20+004 with vy = 1 GHz from 22 MHz to 10 GHz, in
addition to a CMB temperature of 2.725 4 0.001 K. These results are compared
to earlier estimates in Fig.[[2] where we show the background brightness, Iy, in
Jy/sr, as a function of frequency. Iy is related to the antenna temperature, T,, by

Iy, v \2 I
= ~ .2 1 75( ) v . 16
2= 2 S NGEE) Ty (16)

where the numerical coefficient holds for 7; in K, and 1Jy = 10" ergem™
s~ 'Hz~!. As shown by the figure, the ARCADE results are inconsistent with ear-
lier measurements. We note that the antenna temperature at 81.5 MHz implied by
the power-law fit of [Fixsen et al|(2009), 854 K, exceeds the minimum fotal sky
brightness temperature of 680 K measured by Bridle| (1967).

2

8 Sunyaev—Zeldovich effects

The Sunyaev and Zeldovich (SZ) effect (Sunyaev and Zeldovich|1972)) arises from
the inverse Compton scatter of CMB photons against hot electrons. For a compre-
hensive background review see Birkinshaw|(1999). The CMB intensity change is
given by

(kTems)?
AL, =2—->"— 17
\% (hC)2 yg(x) ( )
where Teymp = 2.725 £0.002K (Mather et al.[1999) is the CMB temperature and

x=hv / kTCMB-
The spectral form of this ‘thermal effect’ is described by the function

g(x) = x*e*[x-coth(x/2) —4]/(e* — 1)?, (18)

which is negative (positive) at values of x smaller (larger) than xo = 3.83, corre-
sponding to a critical frequency vy = 217 GHz.
The Comptonization parameter is

kT,
y:/ © neordl, (19)
M2

where me, ne and 7T, are the electron mass, density and temperature, respectively,
ot is the Thomson cross section, and the integral is over a line of sight through
the plasma.
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With respect to the incident radiation field, the change of the CMB intensity
across a galaxy or a cluster can be viewed as a net flux emanating from the plasma
cloud, given by the integral of intensity change over the solid angle subtended by
the cloud

AF, = /Alvd.Q «¥ = /yd.Q. (20)

In the case of hot gas trapped in the potential well due to an object of total mass
M, the parameter Y in Eq.[20] called integrated Y-flux, is proportional to the gas-
mass-weighted electron temperature (7;) and to the gas mass M, = f,M:

Y o< fo(Te)M. 1)

At frequencies below 217 GHz, the Y-flux is negative and can therefore be distin-
guished from the positive signals due to the other source populations.

8.1 Sunyaev—Zeldovich effects in galaxy clusters

The Sunyaev—Zeldovich (SZ) effect from the hot gas responsible for the X-
ray emission of rich clusters of galaxies has been detected with high signal-to-
noise and even imaged in many tens of objects (Carlstrom et al.|[2002; Benson
et al.|[2004; Jones et al. 2005; [Bonamente et al.|[2006; Halverson et al.| 2009}
Staniszewski et al.[2009)). Detailed predictions of the counts of SZ effects require
several ingredients, generally not well-known: the cluster mass function, the gas
fraction, the gas temperature and density profiles. All these quantities are evolv-
ing with cosmic time in a poorly understood manner. Therefore, predictions
are endowed with substantial uncertainties. Current models generally assume a
self-similar evolution of the relationships between the main cluster parameters
(mass, gas temperature, gas fraction, X-ray luminosity; Bonamente et al.[2008).
Several predictions for the SZ counts are available (e.g. |de Luca et al.|1995]
Colafrancesco et al.|[1997; De Zotti et al|2005; Chamballu et al.|2008). SZ maps
have been constructed, mostly using the output of hydrodynamical cosmological
simulations, by |Geisbiisch et al.[(2005), Pace et al.| (2008)),|Waizmann and Bartel-
mann| (2009), amongst others.

Our understanding of the physics of the intra-cluster plasma is expected to
improve drastically thanks to ongoing and forthcoming SZ surveys such as those
with the South Pole Telescope (Carlstrom et al.|2009), the Atacama Cosmology
Telescope (Kosowsky|2006), APEX-SZ (Dobbs et al.|2006), AMI (Zwart et al.
2008), SZA (Muchovej et al.[2007), OCRA_p (Lancaster et al.[2007) and the
Planck mission (The Planck Collaboration|[2006).

8.2 Galaxy-scale Sunyaev—Zeldovich effects

The formation and early evolution of massive galaxies is thought to involve the
release of large amounts of energy that may be stored in a high-pressure proto-
galactic plasma, producing a detectable SZ effect. (Note that the amplitude of
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the effect is a measure of the pressure of the plasma.) According to the stan-
dard scenario (Rees and Ostriker||[1977; |White and Rees|[1978)), the collapsing
proto-galactic gas is shock-heated to the virial temperature, at least in the case
of large halo masses (>10'2 M, |Dekel and Birnboim|2006). Further important
contributions to the gas thermal energy may be produced by supernova explosions,
winds from massive young stars, and mechanical energy released by central super-
massive black-holes. The corresponding SZ signals are potentially a direct probe
of the processes governing the early phases of galaxy evolution and on the history
of the baryon content of galaxies. They have been investigated under a variety of
assumptions by many authors (Ohl[1999; [Natarajan and Sigurdsson|1999; Yamada
et al.||1999; |Aghanim et al.|2000; [Majumdar et al.|2001} Platania et al.|2002; (Oh
et al.||2003; |Lapi et al.|2003; Rosa-Gonzalez et al.| 2004, De Zotti et al.|[2004;
Chatterjee and Kosowsky|2007; Massardi et al.[2008b; |Chatterjee et al.[2008).

Widely different formation modes for present-day giant spheroidal galaxies
are being discussed in the literature, in the general framework of the standard
hierarchical clustering scenario. One mode (Granato et al.[2004; Lapi et al.|[2006}
Cook et al.|2009) has it that these galaxies generated most of their stars during
an early, fast collapse featuring a few violent, gas rich, major mergers; only a
minor mass fraction may have been added later by minor mergers. Alternatively,
spheroidal galaxies may have acquired most of their stars through a sequence of,
mostly dry, mergers (De Lucia and Blaizot|2007; /Guo and White|[2008]).

The second scenario obviously predicts far less conspicuous galaxy-scale SZ
signals that the first one. In the framework of the first scenario, Massardi et al.
(2008b) find that the detection of substantial numbers of galaxy-scale thermal
SZ signals is achievable by blind surveys with next generation radio telescope
arrays such as EVLA, Atacama large millimeter array (ALMA) and SKA. This
population is detectable even with a 10% SKA, and wide-field-of-view options
at high frequencies on any of these arrays would greatly increase survey speed.
An analysis of confusion effects and contamination by radio and dust emissions
shows that the optimal frequency range is 10-35 GHz. Note that the baryon to dark
matter mass ratio at virialization is expected to have the cosmic value, i.e. to be
about an order of magnitude higher than in present-day galaxies. Measurements of
the SZ effect will provide a direct test of this as yet unproven assumption, and will
constrain the epoch when most of the initial baryons are swept out of the galaxies.

9 Wide area surveys and large-scale structure

Extragalactic radio sources are well-suited to probe the large-scale structure of
the Universe: detectable over large cosmological distances, they are unaffected by
dust extinction, and can thus provide an unbiased sampling of volumes larger than
those usually probed by optical surveys. On the other hand, their 3D space distri-
bution can be recovered only in the very local Universe (z < 0.1; see [Peacock and
Nicholson|[1991; |[Magliocchetti et al.[2004) because the majority of radio galaxies
detected in the available large-area, yet relatively deep, surveys, carried out at fre-
quencies <1.4 GHz, have very faint optical counterparts, so that redshift measure-
ments are difficult. As a result, only the angular (2D) clustering can be measured
for the entire radio-AGN population. High-frequency surveys have much higher
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identification rates (Sadler et al.[2006)), suggesting that this difficulty may be over-
come when such surveys cover sufficient sky, and are linked to wide-area redshift
surveys.

9.1 The angular correlation function and its implications

Just the basic detection of clustering in the 2D distribution of radio sources proved
to be extremely difficult (e.g. Webster]|[1976; |Seldner and Peebles| 1981} [Shaver
and Pierre|[1989) because at any flux-density limit, the broad luminosity function
translates into a broad redshift distribution, strongly diluting the spatial correla-
tions when projected onto the sky. Only with the advent of deep radio surveys
covering large areas of the sky, FIRST (Becker et al.|[1995), WENSS (Rengelink
et al.|[1997), NVSS (Condon et al.|[1998)) and SUMSS (Mauch et al.|2003), did it
become possible to detect the angular clustering of these objects with high statis-
tical significance: see [Cress and Kamionkowski (1998) and [Magliocchetti et al.
(1998, /1999)); Blake and Walll (2002a)) for FIRST; Blake and Walll (2002bla) and
Overzier et al.| (2003)) for NVSS; |Rengelink| (1999) for WENSS; and Blake et al.
(2004b). Even then there remained difficulties of interpretation due to spurious
correlation at small angular scales caused by the multiple-component nature of
extended radio sources (Blake and Wall|[2002b); the raw catalogues constructed
from these large surveys list components of sources rather than single ‘assembled’
sources. Amongst the cited surveys, NVSS is characterized by the most exten-
sive sky coverage and can thus provide the best clustering statistics, despite its
somewhat higher completeness limit (~3 mJy vs. ~1 mJy of FIRST). The two-
point angular correlation function w(0), measured for NVSS sources brighter
than 10 mJy, is well-described by a power-law of slope —0.8 extending from ~0.1
degrees up to scales of almost 10° (Blake and Wall|2002a). A signal of comparable
amplitude and shape was detected in the FIRST survey at the same flux-density
limit, on scales of up to 2°-3° (see e.g.[Magliocchetti et al.|[1998|1999), while at
larger angular separations any positive clustering signal, if present, is hidden by
the Poisson noise.

Most of the analyses performed so far with the aim of reproducing the clus-
tering of radio galaxies (see e.g. Blake and Wall|2002blja; |Overzier et al.[2003)
assumed a two-point spatial correlation function of the form & (r) = (r/ro)7.
The power-law shape is in fact preserved when projected onto the sky (Limber
1953), so that the observed behaviour of the angular correlation is well-recovered.
The correlation length ry was found to lie in the range 5-15 Mpc, the large range
reflecting the uncertainties in both the redshift distribution of the sources and the
time-evolution of clustering. Despite the wide range in measurement of ry, the
above results suggest that radio galaxies are more strongly clustered than opti-
cally selected galaxies.

A deeper examination of the power-law behaviour of the angular two-point
correlation function up to scales of the order of ~10° highlights interesting issues.
Within the Cold Dark Matter paradigm of structure formation, the spatial cor-
relation function of matter displays a sharp cut-off near a co-moving radius of
r ~ 100Mpc, which at the average redshift for radio sources < z >~ 1, corre-
sponds to angular separations of only a few (~1°-2°) degrees. This is in clear con-
trast to the observations of the angular two-point correlation function. The ques-
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tion is how to reconcile the clustering properties of these sources with the standard
scenario of structure formation. Some authors have tried to explain the large-scale
positive tail of the angular correlation function w(6) as due to a high-density local
population of star-forming galaxies (Blake et al.[2004a). Others (Magliocchetti
et al.|[1999) suggested that the results can be reproduced by a suitable choice
of the time-evolution of the bias parameter, i.e. the way radio galaxies trace the
underlying mass distribution. The first hypothesis can be discarded on the basis
of more recent determinations of the space density of local star-forming galax-
ies with a 1.4- GHz radio counterpart (e.g. Magliocchetti et al.[2002; |Sadler et al.
2002; Mauch and Sadler||2007). Even the second approach, although promising,
suffers a number of limitations due to both theoretical modelling and quality of
data then available.

Theoretical predictions for the angular two-point correlation function of a
given class of objects using Limber| (1953) equation

w(0) = /dz</1/2(z)/d(5z)§[}’(5z,9),1]/[/dz,/i/(z)}2 (22)

require two basic ingredients: their redshift distribution, .4#"(z), i.e. the number of
objects brighter than the flux limit of the survey as a function of redshift, and the
value of the bias factor as a function of redshift, b(z). In Eq.22} r(8z, 8) represents
the co-moving spatial distance between two objects located at redshifts z and z+ 0z
and separated by an angle 8 on the sky. For a flat universe and in the small-angle
approximation (still reasonably accurate for scales of interest here, 0.3° < 6 <

10°)
¢ 2
e
<H0>

E(x) = [Qu(1+2°+ 4], de(z) =

2
(E(Z)) + (dc(z)G)zl , (23)

with

z dZ/
0o E(Z)

(24)

On sufficiently large scales, where the clustering signal is produced by galaxies
residing in distinct dark matter halos and in the assumption of a one-to-one corre-
spondence between sources and their host halos, the spatial two-point correlation
function can be written as the product of the correlation function of dark matter,
EpmM, times the square of the bias parameter, b (Matarrese et al.|1997; [Moscardini
et al.[1998):

é(r,z) = b2<Meff7Z)€DM(sz)' (25)

Here, M. is the effective mass of the dark matter haloes in which the sources
reside and b is derived in the extended |Press and Schechter (1974) formalism
according to the prescriptions of |Sheth and Tormen| (1999).

Negrello et al.| (2006) adopted the .4#"(z) from Dunlop and Peacock| (1990)’s
pure luminosity evolution model. If the effective mass of the dark matter haloes in
which the sources reside does not depend on cosmic time, as found for optically
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Fig. 13 Two-point angular correlation function of NVSS sources with S1 4gr, > 10mlJy as mea-
sured by Blake and Wall|(2002b)) compared with the model by (Negrello et al.| 2006\ red curves)
and with the updated model (blue curves) fitting the redshift distribution by|Brookes et al.|(2008).
The dashed curves include the contribution of a constant offset € = 0.0001 to w(6) to account
for the effect of possible spurious density gradients in the survey

selected quasars (Porciani et al.[2004} |Croom et al.|2004), the predicted angular
correlation function badly fails to reproduce the observed one. This is because
contributions to w(6) on a given angular scale come from both local, relatively
close pairs of sources and from high-redshift, more distant ones. But, for z > 1,
angular scales 8 2 2° correspond to linear scales where the correlation function
is negative. Since the contribution of distant objects is overwhelming, we expect
negative values of w(0), while observations give us positive values.

The only way out appears to be a damping down of the contribution to w(6) of
high-z sources, and this can only be achieved through b(z). Negrello et al.| (2006)
found that the w(0) data can be reproduced by assuming an epoch-dependent
effective mass proportional to the mass scale at which the matter-density fluctu-
ations collapse to form bound structures. Such mass decreases with increasing
redshift, thus abating the negative high-z contributions to w(6). This assumption
may be justified—Ilocally, AGN-powered radio galaxies are found mainly in very
dense environments such as groups or clusters of galaxies, and the characteris-
tic mass of virialized systems, indeed, decreases with increasing redshift. The
best fit to the data was obtained for a high value of the local effective mass,
Meg(z = 0) =~ 10'> M. /h. However, the CENSORS data (Brookes et al. 2008)
have shown that the redshift distribution peaks at lower redshifts than predicted
by [Dunlop and Peacock] (1990) PLE model (Fig.[IT)). Using a smooth description
of the CENSORS redshift distribution

N (2) = 1.29432.372 — 32.897% + 11.132° — 1.252*, (26)

the best fit is obtained with a somewhat lower value for the local effective mass,
Mefe(z = 0) =~ 10'*5 M /h (Fig.[13).

9.2 Integrated Sachs—Wolfe effect

The Integrated Sachs—Wolfe (ISW) effect describes the influence of the evolution
of the gravitational potential in time-variable, linear, metric perturbations on CMB
photons that traverse them. When the CMB photons enter an overdensity, they
are gravitationally blue-shifted, and they are red-shifted when they emerge. In an
Einstein— de Sitter universe, the density contrast grows as the linear scale, so that
the gravitational potential associated with the mass fluctuation is independent of
time. Hence, the red- and the blue-shift exactly compensate each other, and the
net effect is zero. However, a non-zero effect arises if the gravitational potential
decays, as in the case of an open universe when the effect of the space curvature
is important, or when the dynamics of the universe are dominated by dark energy.

As first pointed out by (Crittenden and Turok! (1996)), a promising way of prob-
ing the ISW effect is through correlating fluctuations in the CMB with large-scale
structure. Since the timescale for the decay of the potential is of the order of the
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present-day Hubble time, the effect is largely cancelled on small scales, because
photons travel through multiple density peaks and troughs. This is why surveys
covering large areas of the sky and probing the large-scale distribution up to z ~ 1
are necessary.

A high quality all-sky CMB temperature map has been provided by the
WMAP satellite (Bennett et al.|2003; |[Hinshaw et al.|2007; Hinshaw and Naeye
2008). A particularly well-suited probe of the large-scale structure is the NVSS
survey, and, indeed, this has been extensively exploited to look for the ISW signal
(Boughn and Crittenden| 2004, 2005} [Pietrobon et al.|[2006; McEwen et al.|2007,
2008 Ho et al.|2008; |Giannantonio et al.|2008; [Raccanelli et al.[|2008)).

The comparison of the correlations inferred from the data with model pre-
dictions requires once again the redshift distribution and the bias parameter as
a function of redshift. All analyses carried out, so far, have used redshift distri-
butions inconsistent with the CENSORS results. The product of the latter red-
shift distribution with the redshift-dependent bias factor best fitting the observed
w(0) (see the previous sub-section), whose integral determines the amplitude of
the ISW effect, peaks at redshifts where the contribution to the ISW signal in a
ACDM cosmology also peaks, namely z ~ 0.4. This means that the NVSS sample
is very well-suited to test the effects of dark energy on the growth of structure. The
predicted cross-correlation power spectrum between the surface density fluctua-
tions of NVSS sources and the CMB fluctuations expected for the ‘concordance’
ACDM cosmology turns out to be in good agreement with the empirical deter-
mination using the CMB map obtained from WMAP data. This conclusion is at
odds with that of [Ho et al.| (2008)), who found that the WMAP 3-year model pre-
dicts an ISW amplitude about 26 below their estimate. Hence, we suggest that the
amplitude of the ISW cross-correlation does not support the case for new gravi-
tational physics on cosmological scales (Afshordi et al.[|2008)) or for a large local
primordial non-Gaussianity (Afshordi and Tolley|2008).

10 The future

There are prospects for dramatic steps forward in radio and millimeter-wave
astronomy within the decade, thanks to a new generation of large to gigantic inter-
ferometers as well as refurbishment of old interferometers. Interferometric obser-
vations gain over single-dish observations not only through resolution but also
through improved sensitivity, because correlation of the signals from the antennas
can distinguish signal from noise and background. Long integrations become pos-
sible without the limitation of systematic errors. However, observing with inter-
ferometers requires careful set-up of the antenna array (and its parameters in soft-
ware) to image sources correctly by measuring their flux densities on the appro-
priate angular scales. There is also the dreaded problem of ‘missing flux’ from
(lack of) low-order harmonics in the spatial transform, corresponding to structure
on the larger scales (§ [2). In addition, the amount of post-processing required is
large in comparison to single-dish measurements, to correct for the many instru-
mental and atmospheric issues, to convert the Fourier components into brightness
images of radio sources, and (due to incomplete sampling in the Fourier plane) to
apply algorithms to maximize image fidelity and dynamic range. Interferometers
offer an additional advantage: on the increasingly noise-polluted surface of our



Radio and millimeter continuum surveys and their astrophysical implications 43

planet, the processing can excise radio-frequency interference (RFI), which, even
at the remote sites of future large arrays, would otherwise seriously compromise
observations.

The small beam size at millimeter wavelengths makes large-area deep surveys
extremely difficult due to the time penalty. New scanning techniques will need
to be developed to perform such surveys. The next generation of interferometers,
thanks to larger collecting areas, broader bandwidths and faster scanning capa-
bilities are expected to produce deeper surveys of large sky regions, both in total
intensity and in polarization. Receiver advances have resulted in huge bandwidths
(>10%) and very low equivalent noise temperatures over these bandwidths. In
order to realize these gains in sensitivity with interferometers requires develop-
ment in correlator speed and in processing power. Moreover instead of single-
pixel feeds, the development of focal plane arrays (FPAs; or phased-array feeds)
looks to realize the long-standing dream of making near-full use of the informa-
tion brought to the focal plane (e.g. APERTIF; Verheijen et al.|2008). There are
further implications for correlator- and processor-power requirements.

The focus of current effort in the radio-astronomy community is towards the
realization of the square kilometer array (SKA), the largest and most sensitive
radio telescope ever. The SKA stands to be one of the iconic scientific instruments
of the twenty-first century. It will consist of an array of thousands of dishes, each
10-15 m in diameter, as well as a complementary aperture array—a large number
of small, fixed antenna elements plus receiver chains arranged in a regular or ran-
dom pattern on the ground. Between these two technologies, a frequency range
of 100 MHz-25 GHz will be covered. The collecting area will add up to approx-
imately one million square meters, with baselines ranging from ~15m to more
than 3,000 km. The SKA will require super-fast data transport networks (of order
the current total internet capacity) and computing power far beyond current capa-
bilities. Indeed, the concept is only feasible if Moore’s Law (the packing density of
processing elements approximately doubling every 2 years) continues to hold; and
this in itself requires revolutions in processor technologies. Site-testing has nar-
rowed the choice to remote regions either in Western Australia or in South Africa.
The telescope is expected to be fully operational after 2020, but a 10% SKA
may be operating as early as 2015. Many different technological solutions will
be selected and integrated into the final instrument: they will represent the results
of developing the so-called SKA pathfinders (ASKAP, MeerKAT, ATA, LOFAR,
e-MERLIN, EVLA; www-page descriptions are readily available for each).

These pathfinders carry the shorter-term excitement; they themselves repre-
sent leaps forward in observational capability. Most of them will be operational
by 2015. They will realize dramatic improvements in survey speed and sensitiv-
ity; ASKAP for example, is expected to produce a survey similar to the NVSS
(Condon et al.|[1998) in sky coverage, but bettering it by a factor of 50 in sensi-
tivity and of 5 in angular resolution (Johnston et al.[|2008). These new tools will
allow us to distinguish the star-forming population from the AGN population at
low flux-density levels and to investigate source populations at extreme redshifts.

The SKA itself will impact every area of astronomy and cosmology, from
detection and mapping of planetary systems, study of individual stars, star clus-
ters, pulsars, the structure of our Galaxy in both baryons and in magnetic field,
through to normal galaxies, AGNs, proto-galaxies and large-scale structure of the
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Universe. The compelling science (e.g/Carilli and Rawlings|[2004, and updates on
the SKA website) to be realized makes irresistible reading.

LOFAR (Rottgering et al.|[2006), will open up the frequency window at the
low end of the radio spectrum, below 240 MHz. LOFAR will survey the sky to
unprecedented depths at low frequencies and will therefore be sensitive to the
relatively rare radio sources that have very steep spectra, extreme luminosities
and redshifts (§[I)). A unique area of investigation will be the search for redshifted
21 cm line emission from the epoch of reionization.

At the other end of the radio band, the ALMA is eagerly anticipated by the
mm continuum and molecular-line community. Being built on a high (5,000 m),
dry plain in the Atacama desert, northern Chile, it is an international project, a
giant array of 50 (12 m) sub-millimetre quality antennas, with baselines of several
kilometres. An additional compact array (ACA) of 12 (7 m) and 4 (12 m) antennas
is also foreseen. ALMA will be equipped with mm and sub- mm receivers cov-
ering ultimately all the atmospheric windows at 5,000 m altitude in ten spectral
bands, from 31 to 950 GHz. The array will be operational by 2012 with a subset
of the high-priority receivers. The steep rise of the dust emission spectrum at mm
and sub- mm wavelengths implies that the K-correction compensates, at z = 0.1,
for the dimming due to increasing distance (Blain and Longair|1993)), making the
observed mm flux of dusty galaxies of given bolometric luminosity only weakly
dependent on redshift up to z ~ 10. This makes ALMA the ideal instrument for
investigating the origins of galaxies in the early universe, with confusion made
negligible by the high spatial resolution. Using far-IR emission lines and CO rota-
tional emission, ALMA will reveal the astrophysics of early phases of galaxy for-
mation and provide the redshift of large numbers of obscured star-forming galax-
ies up to very large distances. This will enable us to establish the star-forming
history of the universe, without the uncertainties caused by dust extinction in opti-
cal studies.

Technological advances have resulted in upgrades of existing telescopes that
revolutionize performance. For examples:

(1) The Australia Telescope Compact Array (ATCA), a six 22-m dish array, has
recently completed the upgrade of 7 mm receivers (working in the frequency
range 30-50 GHz), and the increase of the bandwidth from 2 x 12§ MHz to
4 GHz (thanks to the new CABB system). These new capabilities together
with its fast scan rate (15°/ min at the meridian) will allow the extension of
the Australia Telescope 20 GHz (AT20G) Survey to higher frequencies or to
lower flux densities.

(2) The expanded very large array (EVLA) is an upgrade of the sensitivity and
frequency coverage of the VLA. When completed, it will use the 27 (25-m)
dishes of the VLA with 8 GHz bandwidth per polarization in the frequency
bands 18-26.5, 26.5-40 and 40-50 GHz. This is a 10- to 100-fold increase
in sensitivity over the standard VLA. First observations will be in 2010; after
full commissioning (2013), the (E)VLA is destined to remain at the forefront
of radio astronomy for at least a decade.

Finally, several new survey instruments for the Sunyaev—Zeldovich effect have
either started operations or will shortly do so (see §[8.1)).
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11 Conclusions

For decades, radio surveys have been a leading agent for extragalactic research,
as testified by the breakthroughs they triggered, from the discovery of cosmic
evolution, to quasars and the first high-z galaxies. They continue at the forefront
of astrophysics and cosmology; e.g. via large-scale structure studies they pose
challenges for buildup of the cosmic web; and via downsizing and AGN feed-
back deemed to produce this downsizing, they have come to the fore in modelling
galaxy formation and evolution.

However, our physical understanding of the origin and evolution of the AGN-
powered radio emission is still poor. While physical models for the cosmological
evolution of galaxies and radio-quiet quasars have been progressing rapidly in
recent years, the main progress on the radio side has been towards a phenomeno-
logical description of evolution of various radio AGN types.

Even on the phenomenological side, there are aspects that are not fully under-
stood. The epoch-dependent luminosity functions of galaxies and radio-quiet
quasars are now quite accurately determined up to high redshifts, and there are
attempts to provide physical explanations for the evidence for earlier formation of
the more massive objects. Direct evidence for a substantial decline of the space
densities of radio AGNs at z 2> 2 remains somewhat controversial, although mod-
ern evolutionary models accounting for the observed counts and redshift distribu-
tions do include such a decline.

The origin of these uncertainties remains as it has been for the last 30 years—a
lack of concerted effort to obtain complete redshift sets for radio AGN samples.
The new redshift surveys (2dF, SDSS) have helped greatly in defining local space
densities. But, beyond two or three of the brightest samples such as 3CRR, there
are no samples with complete redshift data. Even samples of 100-200 objects
would suffice for most purposes, and could be easily obtained with 8- to 10-m
class telescopes. Our deficiency in this regard is highlighted by the reliance of
most analyses needing complete redshift information on the Dunlop and Pea-
cock| (1990) model distributions—even 20 years on. Doubtless the planned new
deep optical and infrared wide-field surveys such as PAN-STARRS (Hodapp et al.
2004) and those with the VST and VISTA (Arnaboldi et al.|2007) will help. How-
ever, there will remain a need for individual pursuit of the faintest members in
samples via deep imaging in different optical and IR bands and via fast spectro-
graphs to complete the redshift information in samples of limited size.

Sixty years since their discovery, radio AGNs remain at the forefront of astro-
physics and cosmology. Our continued attempts to solve the mysteries which still
surround them will doubtless lead to fresh discoveries of impact as great as those
which have distinguished the first 60 years.
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