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Resumen

Una comprensión profunda de los procesos que gobiernan una dinámica cuántica, ya
sea en un sistema aislado o en interacción con un ambiente, es necesaria para el avance
de muchas áreas de la ciencia. Esta permitiría la mejora de las propiedades de transporte
en sistemas mesoscópicos y nanoscópicos, el procesamiento y transmisión de información
cuántica, el desarrollo de sensores que superen las limitaciones clásicas, e incluso, explicar
e imitar la eficiencia de muchos procesos biológicos.

En esta tesis estudiamos, numérica y analíticamente, la dinámica cuántica de sistemas
complejos: cadenas de espines y excitaciones electrónicas, en presencia de potenciales
aleatorios y pseudoaleatorios. Consideramos tanto interacciones de un cuerpo como de
muchos cuerpos. En ambos casos estas pueden ser tanto a primeros vecinos como de largo
alcance, aislados o abiertos a los efectos de un ambiente. Para estos sistemas buscamos
entender cómo la presencia de interacciones de muchos cuerpos o de un ambiente afecta
la dinámica. Simultáneamente, desarrollamos técnicas basadas en un procedimiento de
reversión temporal (Eco de Loschmidt, LE) que nos permiten extraer información oculta
en una dinámica compleja, así como evaluar el impacto de la decoherencia generada por
distintos ambientes.

El Eco de Loschmidt resulta de revertir la dinámica de un sistema cuántico, y se
observa como un retorno, total o parcial, al estado inicial del sistema. Idealmente, si la
reversión es perfecta, la magnitud del eco es la unidad. Si la reversión no es perfecta, el
eco de Loschmidt cuantifica la diferencia entre la dinámica original y la perturbada. Esta
frustración del sistema en volver a su estado inicial, resulta de perturbaciones que pueden
ser tanto naturales como diseñadas a voluntad.

En el primer caso, el LE permite cuantificar los efectos de ruido y perturbaciones en
un sistema cuántico, las cuales pueden originarse tanto por la falta de suficiente control
sobre el sistema como por la presencia de un ambiente. En el último caso, con una elección
astuta de perturbaciones, el LE se convierte en una herramienta potente para estudiar la
evolución de un Hamiltoniano. Permitiendo acceder a información previamente codificada
en la dinámica. Tal sería el caso del procedimiento denominado Coherencias Cuánticas
Múltiples en experimentos de Resonancia Magnética Nuclear.

Particularmente, el LE nos permitirá medir el grado de “desparramo” o “revoltijo” que
se genera tanto en el espacio real como en el espacio de Hilbert. Mostramos que este proce-
dimiento permite extraer información global del sistema midiendo solo observables locales.
En otras palabras, en experimentos donde solo se tiene acceso a medir algunos observables
locales del sistema, el LE permite sortear esta dificultad para obtener información de la
distribución espacial de la función de onda o del número de espines correlacionados por
la dinámica. A partir del desarrollo de un LE específico [i.e. Funciones de Correlación sin
orden temporal (OTOC)] buscamos esclarecer la relación de éstos con algunas magnitu-
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des que caracterizan la dinámica de un sistema, como el ancho del paquete de ondas o el
inverso de la razón de participación (IPR). Esto nos permite evaluar el efecto de añadir
interacciones de muchos cuerpos en la dinámica y determinar cuándo ésta es compatible
con el fenómeno de localización introducido por P. W. Anderson (many-body localization,
MBL).

Muchos procesos físicos a nivel molecular necesitan de cierta estabilidad frente a un
ambiente, i.e. frente a la decoherencia. Esto es especialmente cierto en el transporte de
excitaciones de carga o energía en sistemas biológicos. Este problema es abordado en es-
ta tesis al incluir fluctuaciones temporales sobre la dinámica cuántica de una excitación
elemental, observando el efecto de este ambiente sobre el coeficiente de difusión, y con-
secuentemente, en las propiedades de transporte del mismo. Una simultánea evaluación
numérica de diferentes modelos, junto a un estudio analítico de colapsos cuánticos loca-
les generados por el ambiente, nos permite reconocer en qué condiciones el coeficiente
de difusión es robusto frente los efectos de un ambiente. En este contexto, el LE permite
cuantificar los efectos de ruido y perturbaciones (decoherencia) en la dinámica cuántica de
un sistema. Por tanto, no solo es una herramienta que permite realizar cálculos numéricos
eficientemente, sino que también brinda la posibilidad de entender cómo la decoherencia
afecta al sistema y de distinguir el origen de la dinámica (e.g. coherente o inducida por el
ambiente).

Finalmente, estudiamos en qué condiciones los ecos de observables globales pueden
dar información sobre magnitudes locales. Esto es algo de particular interés en varios
experimentos de Resonancia Magnética Nuclear, donde los observables accesibles son,
principalmente, globales. Observamos que en sistemas “complejos” con un gran número
de espines involucrados en la dinámica, estos ecos globales, y los OTOCs derivados, son
equivalentes a un promedio de magnitudes locales.
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Abstract

A deep understanding of quantum dynamics is crucial for advancing numerous scienti-
fic fields, including improving transport properties in mesoscopic and nanoscopic systems,
enhancing quantum information processing, developing sensors surpassing classical limits,
and mimicking the efficiency of biological processes.

This thesis explores numerically and analytically the quantum dynamics of complex
systems such as spin chains and electronic excitations under random and pseudo-random
potentials. We examine both one-body and many-body interactions, which can be either
nearest-neighbor or long-range, and consider their effects in isolated systems as well as
those influenced by environmental interactions. For these systems, we seek to understand
how many-body interactions and environmental factors impact their dynamics.

We introduce time-reversal techniques, specifically Loschmidt Echo (LE), to extract
hidden information from complex dynamics and assess the impact of decoherence. The
Loschmidt Echo results from reversing the dynamics of a quantum system, and it is
observed as a return, total or partial, to its initial state. Ideally, a perfect reversal results
in an LE of unity; deviations quantify the difference between original and perturbed
dynamics. This frustration of the system in returning to its initial state arises from both
natural and engineered perturbations. In the first case, LE allows us to quantify the
effects of noise and disturbances in a quantum system, which can originate from a lack of
sufficient control over the system or the presence of an environment. In the latter case,
with an astute choice of perturbations, the LE becomes a powerful tool for probing the
Hamiltonian evolution and accessing information previously encoded in the dynamics. A
paradigmatic case would be Multiple Quantum Coherences sequence in Nuclear Magnetic
Resonance experiments.

In this thesis, the LE will allow us to measure the degree of “spreading” or “scram-
bling” generated in both real and Hilbert space. We show that this procedure enables
the extraction of global information by measuring only local observables. In other words,
in experiments where you only have access to measuring some local observables, the LE
circumvents this difficulty and allows you to extract information on the spatial distribu-
tion of the wave function or the number of spins correlated by the dynamics. From the
development of a specific LE [i.e. Out-of-time ordered commutator (OTOC)], we seek to
clarify the relationship between the OTOCs and some magnitudes that characterize the
dynamics of a system, such as the width of the wave packet or the inverse of the partici-
pation ratio (IPR). This is used to evaluate the effect of adding many-body interactions
in the dynamics and determine when this is compatible with the localization phenomenon
introduced by P. W. Anderson (many-body localization, MBL).

Many physical processes at the molecular level need a certain degree of stability against
environmental effects, i.e. against decoherence. This is especially true in charge or energy
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transport for excitations in biological systems. This problem is addressed by including
temporal fluctuations in the quantum dynamics of an elemental excitation and observing
its effect on the diffusion coefficient and, consequently, on its transport properties. A si-
multaneous numerical evaluation of different models and analytical study of local quantum
collapses generated by the environment, allows us to recognize under which conditions the
diffusion coefficient is robust to environmental effects. In this context, LE quantifies the
effects of noise and disturbances (decoherence) on the quantum dynamics of a system.
Therefore, it is not only a tool for efficient numerical implementation, but it also provides
the possibility of understanding how decoherence affects the system and distinguishing
the origin of the dynamics (e.g. coherent or induced by the environment).

Finally, we study under what conditions echoes from global observables provide infor-
mation about local magnitudes. This is particularly significant in various Nuclear Mag-
netic Resonance experiments, where the primary observable quantities are global. We
observe that in “complex” systems with numerous spins involved in the dynamics, these
global echoes, and the derived OTOCs, are equivalent to an average of local magnitudes.

VI



Índice general

Índice de figuras XI

1. Introducción. 3
1.1. Sistemas cuánticos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Termalización, Ergodicidad y Caos. . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1. Hipótesis de termalización de los autoestados (ETH). . . . . . . . . 6
1.2.2. El caos como un camino a la difusión. . . . . . . . . . . . . . . . . . 7

1.3. Ausencia de termalización. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1. Localización. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Ecos de Loschmidt y OTOCs. . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1. Ecos de Loschmidt en el mundo cuántico. . . . . . . . . . . . . . . . 10
1.4.2. OTOCs: Funciones de Correlación sin orden temporal. . . . . . . . 11

1.5. Ruido y Decoherencia: Sistemas abiertos. . . . . . . . . . . . . . . . . . . . 12
1.5.1. Landauer→Büttiker →D’Amato-Pastawski. . . . . . . . . . . . . . 14
1.5.2. Quantum-Drift, Quantum-Jumps, y Haken-Strobl. . . . . . . . . . . 14

1.6. Sistemas biológicos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7. Hipótesis central de Irreversibilidad. . . . . . . . . . . . . . . . . . . . . . . 16
1.8. Organización de la Tesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Dinámica y OTOCs en la cadena de Harper-Hofstadter-Andrè-Aubry. 19
2.1. El modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1. Generalización, auto-dualidad y transición de fase. . . . . . . . . . . 21
2.1.2. Notaciones actuales y realización experimental. . . . . . . . . . . . 22

2.2. La dinámica de un cuerpo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1. El IPR dinámico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2. El segundo momento de la excitación. . . . . . . . . . . . . . . . . . 24
2.2.3. Densidad Local de estados. . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. Resultados Numéricos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1. Condición inicial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2. Dinámica del desparramo de la excitación. . . . . . . . . . . . . . . 26

2.4. La secuencia GEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1. Definición. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2. Resultados numéricos/analíticos. . . . . . . . . . . . . . . . . . . . 32

2.5. Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

VII



ÍNDICE GENERAL

3. Dinámica cuántica en un ambiente decoherente. 35
3.1. El ambiente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1. El Quantum-Drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2. La cadena HHAA con decoherencia I. . . . . . . . . . . . . . . . . . . . . . 38
3.3. Un modelo de mediciones cuánticas. . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1. Generalización para condiciones iniciales no locales. . . . . . . . . . 43
3.4. La cadena HHAA con decoherencia II. . . . . . . . . . . . . . . . . . . . . 45

3.4.1. Los regímenes límite. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2. Variando la inconmensurabilidad del potencial. . . . . . . . . . . . . 48

3.5. ¿Criticidad o difusión? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1. La cadena de Fibonacci. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2. Power-law banded random matrix (PBRM). . . . . . . . . . . . . . 52
3.5.3. Discusión: Caos, fractalidad y difusión. . . . . . . . . . . . . . . . . 55

3.6. Estabilidad universal contra la decoherencia. . . . . . . . . . . . . . . . . . 56
3.7. Loschmidt echo (pureza). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.1. Ecos en la cadena de HHAA. . . . . . . . . . . . . . . . . . . . . . 59
3.7.2. Paquetes como condición inicial. . . . . . . . . . . . . . . . . . . . . 61

3.8. Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. Dinámica y OTOCs en sistemas de espines interactuantes. 65
4.1. Un sistema modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1. Condición inicial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2. Generalización de la GEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1. Diferencias entre las amplitudes GEA de un cuerpo y MB. . . . . . 71
4.3. Resultados numéricos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1. Espectro GEA de una partícula vs. MB. . . . . . . . . . . . . . . . 73
4.3.2. Camino al estudio de la localización. . . . . . . . . . . . . . . . . . 75

4.4. Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5. OTOCs Globales como una caracterización del desparramo en la diná-
mica de observables Locales. 85
5.1. Ecos y OTOCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1. Ecos generalizados en RMN. . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2. Observables Locales y Globales. . . . . . . . . . . . . . . . . . . . . 90

5.2. Resultados Numéricos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1. Ecos y coherencias. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2. Crecimiento, saturación y fluctuaciones en OTOCs locales y globales. 94

5.3. Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6. Conclusiones. 101

A. Segundo momento del espectro GEA. 105
A.1. Un cuerpo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2. Sistemas de espines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

VIII



ÍNDICE GENERAL

B. Corriente Estacionaria y Fórmula de Green-Kubo. 107
B.1. Corriente Estacionaria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.1.1. Corriente en estado estacionario: método de tiempo de transferencia
promedio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.2. Fórmula de Green-Kubo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C. Solución analítica para la difusión. 113

D. Cálculos Auxiliares Capítulo 5. 115
D.1. Coherencias Cuánticas Múltiples. . . . . . . . . . . . . . . . . . . . . . . . 115
D.2. Mapeo de las contribuciones locales y globales al tamaño del grupo K con

OTOC diagonales y no-diagonales. . . . . . . . . . . . . . . . . . . . . . . 116
D.3. Crecimiento a tiempos muy cortos. . . . . . . . . . . . . . . . . . . . . . . 117
D.4. Comportamiento de magnitudes individuales Ki

∗(t) y covarianza. . . . . . . 118
D.5. Anillo ordenado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E. Consideraciones numéricas 123
E.1. Algoritmo de Trotter-Suzuki . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.1.1. Una partícula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.1.2. Sistemas de espines . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E.2. Paralelismo cuántiantico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

IX





Índice de figuras

1.1. Esquematización de los efectos de un ambiente en diferentes áreas de la física. 5
1.2. Representación esquemática de las posibles formas de introducir los efectos

de un ambiente decoherente a un sistema cuántico. . . . . . . . . . . . . . 13

2.1. Mariposa de Hofstadter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. IPR en función de la amplitud del potencial de HHAA. Densidad local de

estados é IPRν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3. Evolución coherente de la varianza de excitación inicialmente localizada en

el centro de la cadena para el modelo HHAA. . . . . . . . . . . . . . . . . 27
2.4. Esquema del procedimiento OTOC desarrollado (GEA). Espectro GEA

obtenido en la cadena de HHAA. . . . . . . . . . . . . . . . . . . . . . . . 31

3.1. Representación del modelo HHHA con un ambiente. . . . . . . . . . . . . . 38
3.2. Evolución del segundo momento de la excitación para el modelo HHAA en

función del tiempo: Ecuación maestra vs. Quantum-Drift. . . . . . . . . . . 39
3.3. Difusión de excitación en función del tiempo y coeficiente de difusión en

función de la decoherencia para la cadena de HHAA. . . . . . . . . . . . . 41
3.4. Coeficiente de difusión en función de la decoherencia: Comparación de di-

ferentes técnicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5. Coeficiente de difusión vs. decoherencia en la cadena de HHAA: Compara-

ción entre resultados numéricos y analíticos. . . . . . . . . . . . . . . . . . 46
3.6. Dinámica y coeficiente de difusión vs. decoherencia en la cadena de HHAA

variando el vector de onda del potencial. . . . . . . . . . . . . . . . . . . . 49
3.7. Evolución temporal de la varianza coherente y coeficiente de difusión vs. la

magnitud de decoherencia en la cadena de Fibonacci. . . . . . . . . . . . . 51
3.8. Evolución temporal de la varianza coherente y coeficiente de difusión vs. la

magnitud de decoherencia en el modelo PBRM. . . . . . . . . . . . . . . . 54
3.9. Comportamiento universal del coeficiente de difusión en función de la de-

coherencia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10. Evolución de la probabilidad de retorno total en un proceso de reversión

temporal. Eco de Loschmidt en función del tiempo para una cadena HHAA
con decoherencia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.11. Eco de Loschmidt en función del tiempo para una cadena HHAA con de-
coherencia. Régimen extendido y localizado. . . . . . . . . . . . . . . . . . 60

3.12. Eco de Loschmidt en función de la magnitud de la decoherencia una cadena
HHAA en el punto crítico. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

XI



ÍNDICE DE FIGURAS

3.13. Eco de Loschmidt en función del tiempo para una cadena HHAA con de-
coherencia para un estado inicial no local. . . . . . . . . . . . . . . . . . . 62

4.1. Esquema del espacio de Hilbert en un sistema de espines. Autovalores del
operador gradiente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. Magnetización media, ecos y espectro de la secuencia GEA en tres Hamil-
tonianos de prueba. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3. Comparación entre la evolución de la ZOGE y la suma de las magnetiza-
ciones al cuadrado en un sistema MB. . . . . . . . . . . . . . . . . . . . . . 75

4.4. Evolución temporal de la suma de las magnetizaciones al cuadrado (S2) en
las fases extendida y localizada de la cadena de HHHA MB. . . . . . . . . 77

4.5. Valor de equilibrio de la suma de la suma de las magnetizaciones cuadradas
como función de W y U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6. Mapa de densidad de S2 en función de la amplitud del potencial W y las
interacciones U . Cadena de espines HHAA. . . . . . . . . . . . . . . . . . . 79

4.7. Resultados experimentales tomados de Ref. Schreiber et. al. Science, vol.
349, pp. 842-845, (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8. Evolución temporal de S2(t) y P00(t). Exponente característico de estas
dinámicas en función de la amplitud del potencial. Cadena de espines HHAA. 81

5.1. Esquema de un experimento de Coherencias cuánticas múltiples y su inter-
pretación local. Esquema de un anillo de espines. . . . . . . . . . . . . . . 88

5.2. Ecos y coherencias globales y locales en un anillo de espines. . . . . . . . . 93
5.3. Eco promedio observado a una distancia n del sitio inicial en función del

tiempo. Anillo de espines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4. Realizaciones individuales por sitio, Ki

∗, para un anillo de N = 12 espines. 95
5.5. Evolución temporal de la OTOC local KL(t) y global KG(t) en un anillo

de espines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6. Comportamiento a tiempos cortos de la OTOC local KL(t) y global KG(t)

en un anillo de espines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7. Promedio temporal de la contribución cruzada al número de espines corre-

lacionados en función del tamaño del anillo. . . . . . . . . . . . . . . . . . 98
5.8. Valor de saturación ⟨KCT ⟩/N en función del número de espines en el anillo

en escala log-log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1. Corriente de estado estacionario vs. decoherencia en la cadena de HHAA. . 109
B.2. Coeficiente de difusión vs. decoherencia en función de N para la cadena

HHAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.1. Promedio temporal y desviación estándar de la contribución cruzada al
número de espines correlacionados en un anillo de espines. Análisis de la
desviación estándar del valor promedio. . . . . . . . . . . . . . . . . . . . . 119

D.2. Desviación estándar del valor de saturación de KCT en función de N en un
anillo de espines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D.3. Anillo de espines en ausencia de campos Zeeman locales. . . . . . . . . . . 121

XII



ÍNDICE DE FIGURAS

E.1. Esquema de la “Trotterización” de un Hamiltoniano tight-binding a prime-
ros vecinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

XIII





Índice de tablas

3.1. Fracción continua de los irracionales utilizados q = qg/m. Los números
entre llaves se repiten infinitamente en la fracción. . . . . . . . . . . . . . . 50

XV





Acrónimos:

• AL: Localización de Anderson (Anderson Localization).

• DP: D’Amato-Pastawski.

• ETH: Hipótesis de termalización de los autoestados (Eigenstate thermalization Hy-
pothesis).

• GEA: Amplitudes de Entrelazamiento de Gradiente (Gradient Entanglement Am-
plitudes).

• GLBE: Ecuaciones de Landauer-Büttiker generalizadas (Generalized Landauer-Büttiker
Equations).

• CIH: Hipótesis Central de Irreversivilidad, (Central Irreversibility Hypothesis).

• HHAA: Harper-Hofstadter-Andrè-Aubry.

• IPR: Inverso del Ratio de Participación (Inverse Participation Ratio).

• LE: Eco de Loschmidt (Loschmidt Echo).

• MBL: Localización de muchos cuerpos (Many-Body Localization).

• OTOCs: Funciones de correlación sin orden temporal (Out-of-Time Order Correla-
tor).

• PBRM: Power Banded Random Matrix.

• QD: Quantum-Drift.

• NMR: Resonancia Magnética Nuclear (Nuclear Magnetic Resonance).

• ZOGE: Entrelazamiento de Gradiente de Orden Cero (Zero Order Gradient Entan-
glement).





Mientras dure esta música, seremos dignos del amor de Helena de Troya.
Mientras dure esta música, seremos dignos de haber muerto en Arbela.

Mientras dure esta música, creeremos en el libre albedrío, esa ilusión de cada instante.
Mientras dure esta música, sabremos que la nave de Ulises volverá a Itaca.

Mientras dure esta música, seremos la palabra y la espada.
Mientras dure esta música, seremos dignos del cristal y de la caoba, de la nieve y del

mármol.
Mientras dure esta música, seremos dignos de las cosas comunes, que ahora no lo son.

Mientras dure esta música, seremos en el aire la flecha.
Mientras dure esta música, creeremos en la misericordia del lobo y en la justicia de los

justos.
Mientras dure esta música, mereceremos tu gran voz Walt Whitman.

Mientras dure esta música, mereceremos haber visto, desde una cumbre,
la tierra prometida.

J.L. Borges

1





Capítulo 1

Introducción.

En el cuento “La otra muerte”, Borges, mientras narra la historia de un gaucho entre-
rriano escribe: “Modificar el pasado no es modificar un solo hecho; es anular sus conse-
cuencias, que tienden a ser infinitas. Dicho sea con otras palabras; es crear dos historias
universales.”. En estas dos oraciones, a mi parecer, se representan dos conceptos físicos
que configuran el andamiaje en esta tesis: la hipótesis central de irreversibilidad (CIH) y
el Eco de Loschmidt (LE). El primero, oculto en la aclaración de que las consecuencias a
anular tienden a ser infinitas, y el segundo como una comparación (total o parcial) de las
dos historias universales.

Ambos conceptos nacen de preguntarse si las leyes de la física son reversibles, i.e. si se
puede anular todas las consecuencias de un hecho. Si bien esta pregunta fue, en mayor o
menor medida discutida por varios científicos a lo largo de la historia, fueron algunos de
los padres de la termodinámica quienes lidiaron con estas inquietudes. Incluso hasta llegar
a fines trágicos. Particularmente, L. Boltzmann, estaba fascinado con lo que él concebía
como una paradoja: cómo puede surgir la irreversibilidad, descrita por la segunda ley
de la termodinámica, a partir de leyes microscópicamente reversibles [1, 2]. El proceso
de evolucionar hacia el equilibrio, descrito en la termodinámica, parece determinar una
dirección temporal. Una gota de tinta vertida en un vaso, se diluye en él hasta formar una
mezcla homogénea. La taza de café, se enfría hasta estar a temperatura ambiente. Uno
nunca observa que la taza de café espontáneamente se caliente, o que la tinta diluida en un
vaso de agua se reagrupe en una gota. Durante gran parte de su vida, Boltzmann pensó
varias estrategias para explicar el mecanismo detrás de esta ineludible irreversibilidad,
introduciendo su famoso teorema H.

Poco tiempo después de la publicación del teorema H, su amigo J. J. Loschmidt plan-
teó objeciones a estos conceptos, dando origen a lo que hoy se conoce como la Paradoja
de Loschmidt [3]. Su argumento se basa en la idea de que si todas las velocidades de
las partículas de un gas (sistema que Boltzmann estaba considerando) fueran invertidas,
el sistema evolucionaría hacia un estado anterior, lo que implicaría una disminución en
la entropía. En aquel momento, Boltzmann desafió a Loschmidt a invertir todas las ve-
locidades de las partículas de un gas, convirtiendo así esta paradoja en meramente un
experimento mental (Gedankenexperiment).

El tiempo le dio revancha a Loschmidt y los avances tecnológicos hicieron posible rea-
lizar experimentos donde la evolución de distintos sistemas físicos es revertida, al menos
parcialmente (siempre existe algo que no vuelve a su estado original). El trabajo pionero
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1.1. SISTEMAS CUÁNTICOS.

fue el Eco de Hahn en Resonancia Magnética Nuclear (NMR) [4]. Hahn observó que la
dinámica de espines individuales en presencia de un campo externo puede ser reverti-
da, incluso después de que estos se hayan desfasado debido a diferentes campos locales,
mediante la aplicación de un pulso de radiofrecuencia, lo que resulta en la inversión de
su sentido de precesión. Este tipo de experimento, el primero de una categoría que hoy
denominamos Ecos de Loschmidt (LEs), no solo probó ser una manera directa de estudiar
algo tan fundamental como la reversibilidad de una dinámica, si no que también logró
establecerse como una técnica crucial para obtener información de los sistemas cuánticos y
sus ambientes [5]. Se convirtieron así, en una herramienta fundamental tanto de la ciencia
básica como de varias aplicaciones tecnológicas, en un rango que va desde el estudio del
caos cuántico [6] hasta la generación de imágenes médicas [7, 8].

En esta tesis, utilizamos los Ecos de Loschmidt tanto como una herramienta genérica
para estudiar la evolución coherente de un Hamiltoniano como para cuantificar los efectos
de ruido y perturbaciones en un sistema en contacto con un ambiente.

En el primer caso, el LE nos permitirá medir el nivel de “desparramo” o “revoltijo” que
genera tanto en el espacio real como en el espacio de Hilbert. Este procedimiento permite
extraer información global del sistema midiendo solo observables locales. En otras pala-
bras, en experimentos donde solo se tiene acceso a medir algunos observables locales del
sistema, el LE permite sortear esta dificultad para obtener información de la distribución
espacial total de la función de onda que describe las excitaciones o del número de espines
correlacionados por la dinámica.

En el segundo, permite cuantificar los efectos de ruido y perturbaciones (decoherencia)
en la dinámica cuántica de un sistema. Para estos casos, no solo es una herramienta que
permite realizar cálculos numéricos eficientemente, si no que también brinda la posibilidad
de entender a un nivel más profundo cómo la decoherencia afecta al sistema.

Usualmente se piensa que las perturbaciones, que pueden ser ruido, interacciones con
el ambiente o cualquier efecto que no podemos revertir, como algo negativo. Sin embargo,
estas pueden ser utilizadas como una herramienta, por ejemplo, para diferenciar un tejido
de otro en una imagen de NMR [8]; puede facilitar la formación ó ruptura de una molécula
en un proceso catalítico [9]; ó incluso, puede jugar un papel fundamental en varios procesos
biológicos [10, 11], facilitando la transferencia eficiente de carga y energía [12] que hacen
sustentable la vida. Estos procesos están ejemplificados en la Fig. 1.1.

En las secciones siguientes de este capítulo introduciré, con mayor detalle, varios con-
ceptos que se utilizan a lo largo de esta tesis, finalizando con una sección donde se describe
la organización de los capítulos restantes y su relación con los conceptos discutidos en este
capítulo.

1.1. Sistemas cuánticos.

Un sistema cuántico está descrito por un vector de onda |ψ⟩ cuya evolución viene dada
por la Ec. de Schrödinger:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (1.1)
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Figura 1.1: (a) Izquierda: Representación del sistema, una molécula AB, sobre la cual actúa un
ambiente en B y se realiza un experimento de tunelamiento a través de A. Derecha: Transmitancia
(mapa de color) a través en función de la energía y magnitud del ambiente, la magnitud del
ambiente genera una transición de fase identificada con la disociación de la molécula. Figura
tomada de: Simulating a catalyst induced quantum dynamical phase transition of a Heyrovsky
reaction with different models for the environment Lozano-Negro et al. [9]. (b) Imagen de NMR
del cerebro del autor obtenida utilizando la secuencia de echo planar imaging, donde la alta
sensibilidad a la pérdida de coherencia por inhomogeneidades en el campo y relajación espín-
espín permite discriminar distintos tejidos e incluso su respuesta hemodinámica. La imagen fue
tomada como parte de la tesis doctoral de Milena Capiglioni [13]. (c) Esquema de un complejo
fotosintético de antenas clorofílicas donde los fotones dan lugar a excitaciones cuya dinámica
podría ser optimizada por el ambiente. Figura tomada de Quantum Biology Lambert et al. [14].

consecuentemente, la dinámica de la función de onda estará determinada por los autovec-
tores y autovalores (energías) del Hamiltoniano Ĥ:

|ψ(t)⟩ = e−iĤt/ℏ |ψ(0)⟩ =
∑
ν

aνe
−iενt/ℏ |φν⟩ , (1.2)

donde |φν⟩ es un autovector del Hamiltoniano con autoenergía εν , y aν = ⟨φν |ψ(0)⟩.
Usualmente, se denota Û(t) = e−iĤt/ℏ al operador evolución.

De una forma más general, podemos tener inicialmente un ensamble de estados cuán-
ticos |ψi⟩ con probabilidades pi (

∑
i pi = 1). La dinámica de este ensamble es descrita por

el operador matriz densidad,
ρ̂0 =

∑
i

pi |ψi⟩ ⟨ψi| . (1.3)

Su evolución está determinada por la ecuación de von Neumann o Liouville,

dρ̂(t)

dt
= − i

ℏ
[Ĥ, ρ̂(t)] (1.4)

siendo el operador matriz densidad evolucionado:

ρ̂(t) = Û(t)ρ0Û
†(t) =

∑
i

pi |ψi(t)⟩ ⟨ψi(t)| . (1.5)

Un observable se define mediante un operador Hermítico, representado de manera
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1.2. TERMALIZACIÓN, ERGODICIDAD Y CAOS.

genérica como Ô. Los posibles valores medibles de un observable están determinados por
sus autovalores. En consecuencia, el valor medio de un observable, es decir, la suma de
cada posible valor ponderado por su probabilidad en un estado dado, viene dada por
O(t) = ⟨ψ(t)| Ô |ψ(t)⟩, o bien, utilizando el formalismo de matriz densidad Tr{Ôρ̂(t)}.

1.2. Termalización, Ergodicidad y Caos.

Supongamos un sistema aislado sujeto a algunas restricciones macroscópicas (energía,
volumen, magnetización, etc). Para calcular sus propiedades de equilibrio, utilizando la
mecánica estadística, se toma un ensamble de estados que evolucionan con el mismo
Hamiltoniano sujetos a las mismas restricciones, se asigna alguna probabilidad para cada
uno y se calculan las propiedades tomando promedios sobre este ensamble.

Este procedimiento difiere notoriamente de lo que sucede usualmente en un experimen-
to, donde hay un único sistema. Típicamente, el mismo se encuentra inicialmente fuera de
equilibrio, observando tanto su respuesta, dinámica, y valores de equilibrio (tiempos lar-
gos). La relación, y eventual equivalencia, entre estos experimentos y los cálculos usuales
de la mecánica estadística está lejos de ser obvia.

Para unir estas visiones, prácticamente todos los libros de mecánica estadística intro-
ducen la Hipótesis Ergódica [15], la cual establece que durante su evolución temporal,
un sistema ergódico visita todas las regiones del espacio de fases, y en consecuencia los
promedios temporales de la dinámica son equivalentes a los promedios de ensamble. Si
bien esta hipótesis fue demostrada para unos cuantos sistemas clásicos (Billar de Sinai,
estadio de Bunimovich, etc) [16], son necesarias algunas consideraciones:

Primero, las escalas de tiempo necesarias para explorar todo el espacio de fases crecen
exponencialmente con el número de grados de libertad, i.e., inalcanzables en un sistema
macroscópico. Segundo, implica la termalización en un sentido débil : los observables al-
canzan los valores térmicos después de promediar temporalmente. En contraposición, la
termalización fuerte implica una convergencia directa del observable al valor térmico [17],
siendo además mucho más rápida.

Una línea de pensamiento diferente, nota que los observables macroscópicos tienen
los mismos valores en casi todas las configuraciones del espacio de fases (compatibles con
las restricciones macroscópicas). Dentro de este esquema, para lograr la termalización,
el sistema solamente debería llegar a estados “típicos”, lo cual puede suceder mucho más
rápido que una exploración extensiva del espacio de fases. Una observación en la misma
dirección fue hecha por von Neumann en 1929 [18,19], donde argumentó que para estudiar
la termalización de un sistema uno debe enfocarse en observables físicos específicos y no
en la función de onda o en la matriz densidad del sistema.

1.2.1. Hipótesis de termalización de los autoestados (ETH).

Analicemos en mayor detalle las ideas propuestas por von Neumann. Para que el
sistema termalice es necesario que O(t), después de algún tiempo de relajación, coincida
(en media) con el valor medio del observable tomado sobre un ensamble microcanónico,
siendo las fluctuaciones temporales pequeñas.
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Computando el valor medio O(t) para un estado inicialmente fuera de equilibrio, como
|ψ(0)⟩ no es autoestado del Hamiltoniano, tenemos,

O(t) =
∑
νµ

a∗µaνe
i(εν−εµ)t/ℏOνµ =

∑
ν

|aν |2Oνν +
∑
ν ̸=µ

a∗µaνe
i(εν−εµ)t/ℏOνµ (1.6)

siendo Oνµ = ⟨φν |Ô|φµ⟩.
Suponiendo que no existen degeneraciones en el sistema debido a la presencia de

desorden, falta de simetrías e interacciones de largo alcance, es directo que al tomar
promedio temporal de este observable el segundo término irá a cero. Sin embargo, es
posible que necesitemos tiempos extremadamente largos para que esto suceda, ya que
(εν − εµ) puede ser exponencialmente chico en el tamaño del sistema. Aun suponiendo
que esto no sucede, sigue abierta la pregunta: ¿cómo es posible que, incluso para diferentes
condiciones iniciales,

∑
ν |aν |2Oνν coincida con el valor medio tomado sobre el ensamble?

Una posible solución sería que los valores de Oνν fuesen (a menos de alguna fluc-
tuación pequeña), independientes de ν. Este es el caso al suponer que Ĥ es una matriz
aleatoria [20]. Es más, bajo esta suposición Oνµ (ν ̸= µ) es exponencialmente chico con el
tamaño del sistema, evitando la necesidad de esperar tiempos extremadamente largos. No
obstante, al suponer un Hamiltoniano aleatorio, hay mucha física que se pierde, por ejem-
plo, la dependencia del tiempo de relajación en el observable considerado. Es decir, existe
información en los elementos no diagonales del observable que no debe ser despreciada
para una descripción adecuada de los sistemas experimentales.

La hipótesis de termalización de los autoestados (ETH), propuesta por M. Srednic-
ki [21] generalizó las propiedades de Hamiltonianos aleatorios a sistemas físicos específi-
cos [22]. La misma establece que

Oνµ = O(Ē)δνµ + e−S(Ē)fO((Ē), ω)Rνµ (1.7)

donde Ē = (εν + εµ)/2, ω = (εν − εµ), S(Ē) es la entropía termodinámica a energía
Ē, O(Ē) coincide con el valor de expectación en el ensamble microcanónico, fO es una
función continua, y Rνµ elementos aleatorios de media cero y varianza uno.

Esta hipótesis fue confirmada para varios sistemas y observables, aunque no está total-
mente claro cuáles deben ser las condiciones a satisfacer tanto por el Hamiltoniano como
por el observable. Se espera que sea válida para observables con “significado físico” en
situaciones típicas de Hamiltonianos complejos de muchos cuerpos [23]. En cierta forma,
la ergodicidad, el caos, y la termalización del sistema están codificados en los autoestados
del Hamiltoniano y se reflejan en la dinámica de las excitaciones.

1.2.2. El caos como un camino a la difusión.

¿Qué es lo primero que pensamos al hablar de caos? Personalmente, pienso en el
efecto mariposa o el péndulo doble. Lo primero, una representación genérica (o mejor
dicho popular) de la “impredictibilidad” o pseudo-aleatoriedad de los sistemas caóticos, lo
segundo, un caso particular donde puede ser observado de manera simple. Sin embargo,
el caos es también un camino al determinismo, a las leyes simples [24].

Este último concepto es incluso previo al desarrollo del caos como una materia de es-
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tudio autónoma. Estaba presente en las ideas originales de los padres de la termodinámica
y es claramente plasmado en “What is life?” por Schrödinger al discutir lo que él llama
“Orden a partir del desorden (order-from-disorder)”. Pero pensemos en un ejemplo simple,
tomemos un pistón con un resorte, y algunas partículas en la cavidad. Si tenemos una
sola partícula, la misma irá rebotando contra las paredes y contra el pistón (generando un
movimiento en el mismo) y afectando futuros rebotes. Si el número de partículas aumenta,
pero sigue siendo relativamente pequeño, la dinámica se vuelve caótica. Sin embargo, si
el número de partículas es extremadamente grande, esta dinámica caótica conduce a un
movimiento determinista en el pistón: una oscilación amortiguada. Este es el origen de
muchos fenómenos físicos, fricción, viscosidad, presión, propiedades elásticas y eléctricas
de los materiales, propagación del sonido, difusión, etc. Todos estos fenómenos predecibles
emergen del caos a escalas menores, a costa de perder predictibilidad microscópica.

Particularmente, considerando un sistema difusivo clásico, se puede conectar directa-
mente el coeficiente de difusión con magnitudes microscópicas del sistema expresándolo
como una suma de los exponentes de Lyapunov positivos y la entropía de Kolmogorov-
Sinai en el límite del tamaño del sistema yendo a infinito [25]. En el dominio cuántico
fue Robert Laughlin quien propuso que la conductividad es medida de la inestabilidad
“caótica” del movimiento de los electrones, conectando la difusión con el caos, y dando
origen a la ley de Ohm [26]. En cierto modo, resolviendo el dilema de que la distribución
de impurezas en un metal, termina siendo una distribución única y no aleatoria [27].

En lo que concierne a la evolución y termalización de un observable cuántico, el caos
genera un comportamiento de los autoestados y autoenergías que se asemeja al observado
en matrices aleatorias. Es decir, autoenergías con una distribución de separación del tipo
Wigner-Dyson y autoestados que asemejan vectores aleatorios [23, 28]. Este fenómeno,
por lo general, resulta ser suficiente para asegurar el cumplimiento de la Hipótesis de
Termalización de los Autoestados (ETH).

1.3. Ausencia de termalización.

Naturalmente, surge la búsqueda de sistemas, generalmente ideales, que no cumplen
con la hipótesis de termalización de los autoestados. Es evidente que tales sistemas existen;
por ejemplo, en los sistemas integrables, donde la dinámica está determinada por un
conjunto de cantidades conservadas. Las cadenas de espines ordenadas, como la cadena de
Ising, exhiben grandes fluctuaciones y recurrencias debido al confinamiento de excitaciones
cuánticas. Además, hay sistemas que muestran “cicatrices cuánticas” (quantum scars),
donde los valores medios de los observables tienen oscilaciones periódicas [29]. Incluso hay
casos en los que ciertos sistemas evolucionan hacia un estado pre-térmico, permaneciendo
en este estado durante largos períodos de tiempo [30,31]. Otro ejemplo son los materiales
aislantes topológicos, inspirados en el efecto Hall cuántico entero. En estos materiales,
a pesar de comportarse como aislantes en su interior, presentan en su superficie estados
conductores protegidos por simetría [32]. Sin embargo, el caso de ausencia de termalización
más destacado sigue siendo la localización de Anderson, el cual será ampliamente discutido
en esta tesis y merece una sección en sí misma.
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1.3.1. Localización.

P. W. Anderson, inspirado por los experimentos de resonancia magnética de G. Feher
[33], exploró la difusión de una excitación de espín a través de las impurezas de un semicon-
ductor. Específicamente, con el propósito de establecer un modelo que, sin simplificaciones
excesivas, abordara la ausencia de transporte, investigó la dinámica cuántica en una red
en presencia de desorden. Su objetivo era comprender el origen de este fenómeno y sus
implicaciones, entre las cuales destacaba la importancia de encontrar un ejemplo de,

“...a real physical system with an infinite number of degrees of freedom, having
no obvious oversimplification, in which the approach to equilibrium is simply
impossible.”

El modelo desarrollado por Anderson [33] no solo demostró que la presencia de des-
orden aleatorio en las energías de los sitios conduce a la localización de las funciones de
onda en redes unidimensionales y bidimensionales [34,35], sino que también evidenció que
en tres dimensiones existe un valor crítico de desorden que provoca una transición de fase
entre estados extendidos y localizados [36]. Esta transición, conocida como la transición
de Anderson (AL, Anderson Localization), se reveló de, en palabras de Nakamura [27],
“una importancia comparable a la transición sólido-líquido en la física” [37].

Los resultados de Anderson, válidos para sistemas de una sola partícula, demostraron
que en presencia de la localización, el sistema no puede alcanzar la termalización. Además,
sugirió que este efecto persistiría incluso con la introducción de interacciones de muchos
cuerpos [38]. Esto no era obvio en absoluto, ya que el número exponencialmente grande de
configuraciones de muchas partículas podría generar nuevos caminos a través de los cuales
la excitación podría difundirse. La búsqueda de una respuesta acerca de si la localización
sobrevive a la presencia de interacciones abrió el (ahora inmenso) campo de Localización
de Muchos Cuerpos (MBL, Many-Body Localization) [20, 22,39,40,40–44].

MBL: Localización de muchos cuerpos.

Después de varios años desde su proposición inicial, se estableció (teóricamente) la
existencia de la Many-Body Localization (MBL) en sistemas finitos (puntos cuánticos) [39]
y en sistemas de dimensiones superiores con interacciones locales [45,46]. Desde el punto
de vista experimental, la implementación de sistemas de muchos cuerpos cuidadosamente
aislados de un ambiente externo posibilitó el estudio de la dinámica cuántica intrínseca de
estos sistemas. Esto incluye la observación directa de la localización de Anderson, tanto en
ausencia como en presencia de interacciones [43]. Tales avances han permitido investigar de
manera directa, en sistemas relativamente pequeños, la aparición o ausencia del proceso de
termalización. Algunos sistemas típicos donde se observa MBL para diferentes magnitudes
las de interacciones de muchos cuerpos, son las cadenas de espines desordenadas [47] o en
presencia de un potencial cuasi-periódico [44,48].

Desde el punto de vista fundamental, la localización de muchos cuerpos se diferen-
cia de otros ejemplos de sistemas que no termalizan debido a su estabilidad intrínseca.
En general, muchos sistemas integrables termalizan al agregar pequeñas interacciones o
al cambiar levemente la forma del Hamiltoniano [23]. Esta robustez abre las puertas a
nuevos fenómenos que no pueden ser descritos por la mecánica estadística. Por ejemplo:
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“localization-protected quantum orders” [49], cristales en el tiempo [50, 51] y aislantes de
Floquet [52].

Este cambio de paradigma en los experimentos corrió el foco del estudio de magnitudes
macroscópicas a magnitudes inherentes a la dinámica cuántica, a saber, la dispersión del
observable posición de una excitación local, el inverso de la razón de participación, la
probabilidad de supervivencia, o diferentes tipos de entropía. Una manera de extraer
esta información en sistemas experimentales es mediante la utilización de técnicas de Eco
de Loschmidt o Funciones de correlación sin orden temporal (OTOCs, out-of-time order
correlator).

1.4. Ecos de Loschmidt y OTOCs.

Los ecos de Loschmidt (LE, Loschmidt Echoes), son observables inherentemente am-
plios, siendo el común denominador el hecho que surgen de un procedimiento de reversión
temporal. Un eco de Loschmidt resulta de observar si, luego de tal reversión, una exci-
tación regresa al mismo estado inicial, o a algún estado con características compartidas
(por ejemplo, el mismo valor medio sobre un dado observable) [53]. El concepto base
nace, como fue descrito, en una discusión entre Boltzmann y Loschmidt para un gas de
partículas.

El primer experimento numérico fue computado por Tuck [54], tratando de ver la
influencia de errores numéricos en un sistema de Fermi-Pasta-Ulam-Tsingou [55]. Después
de varios ciclos de evolución, la dinámica es invertida, observándose, una reversión total
del sistema. Si bien esto pasó desapercibido en aquel momento, era una prueba numérica
de la regularidad de la dinámica en el modelo [56]. Una dinámica caótica, clásicamente
caracterizada por una sensibilidad exponencial a cambios en las condiciones iniciales,
hubiera generado cambios drásticos en la dinámica revertida (debido a errores numéricos)
imposibilitando la observación de un eco.

Hoy en día, los ecos de Loschmidt son una de las principales herramientas para es-
tudiar el caos cuántico, la termalización, la dinámica de excitaciones, la codificación de
información y la localización de muchos cuerpos. Los mismos han sido implementados
tanto en experimentos de NMR, como en sistemas experimentales innovadores, usual-
mente con técnicas inspiradas en la NMR [50, 57–61]. La implementación de la inversión
temporal también juega un papel clave para desenmascarar el ruido ambiental, logrando
eventualmente su eliminación con estrategias ampliamente conocidas como “desacopla-
miento dinámico” (dynamical decoupling) [62–65].

1.4.1. Ecos de Loschmidt en el mundo cuántico.

En un sistema cuántico, la comparación entre dos funciones de onda viene dada por el
producto interno | ⟨ψ′

0|ψ0⟩ |2. Es fácil notar que al evolucionar cada uno de estos estados el
valor de esta magnitud no cambia | ⟨ψ′

0|eiĤt/ℏe−iĤt/ℏ|ψ0⟩ |2 = | ⟨ψ′
0|ψ0⟩ |2, este hecho generó

controversias alrededor de la existencia del caos cuántico dinámico, ya que no se observa
una sensibilidad al cambio de condiciones iniciales.

Una nueva perspectiva surgió al notar que la perturbación no necesariamente modifica
el estado, sino que puede aparecer una como modificación del Hamiltoniano que gobierna
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la evolución [53, 66, 67]. Bajo esta perspectiva, en un problema de un cuerpo, el Eco de
Loschmidt puede escribirse como:

M(t) = | ⟨ψ0|eiĤ2t/ℏe−iĤ1t/ℏ|ψ0⟩ |2, (1.8)

donde Ĥ1 y Ĥ2 corresponden a los Hamiltonianos de la evolución hacia adelante y ha-
cia atrás respectivamente. Generalmente, se considera que Ĥ1 = Ĥ2 + Σ̂, siendo Σ̂ una
perturbación no controlada.

En muchos casos experimentales, es útil considerar una perturbación que actúa solo
durante un breve período ∆t entre la evolución hacia delante y hacia atrás, es decir, como
un operador unitario eiΣ̂∆t/ℏ , de manera que:

M(t) = | ⟨ψ0|eiĤ1t/ℏeiΣ̂∆t/ℏe−iĤ1t/ℏ|ψ0⟩ |2. (1.9)

Estos conceptos pueden ser generalizados observando, no el retorno a un estado parti-
cular, si no el retorno del valor medio de un observable. En este caso el decaimiento es
generalmente más lento, ya que el estado puede regresar a un estado diferente compatible
con el valor medio de un observable [68], | ⟨ψ0|eiĤ1t/ℏe−iĤ2t/ℏÔeiĤ2t/ℏe−iĤ1t/ℏ|ψ0⟩ |2. En el
formalismo de Matriz Densidad, donde el estado inicial no es necesariamente un estado
puro, tendríamos:

MO(t) = Tr
{
ÔeiĤ2t/ℏe−iĤ1t/ℏρ0e

iĤ1t/ℏe−iĤ2t/ℏ
}
. (1.10)

La implementación de ecos de Loschmidt es estándar en Resonancia Magnética Nuclear
desde los años 50, convirtiéndolo en el marco pionero en el testeo de la controversia
de Loschmidt-Boltzmann [69, 70]. El eco de Loschmidt permite extraer información de
diferentes características del sistema observando su decaimiento a distintas escalas de
tiempo y cuantificando sus valores de equilibración y fluctuaciones [68,71–75]. Finalmente,
uno podría considerar el Eco de Loschmidt al realizar una evolución no-Hermítica (en un
sistema abierto), lo que será discutido en el Capítulo 3.

1.4.2. OTOCs: Funciones de Correlación sin orden temporal.

El concepto de Funciones de Correlación sin orden temporal (OTOC,out-of-time order
correlator), fue introducido por Larkin y Ovchinnikov, mientras estudiaban del efecto de
la dispersión de electrones debido a las impurezas en superconductores desordenados [76].
En estas condiciones predijeron el crecimiento dinámico exponencial del módulo cuadrado
del conmutador de un par de operadores de Heisenberg que inicialmente conmutan, por
ej. x̂ y p̂y. Los OTOC permanecieron mayormente inadvertidos, hasta que se reconoció su
relevancia en el estudio del caos cuántico en problemas de muchos cuerpos, en particular
campos cuánticos en la proximidad de un agujero negro [77,78].

De manera simplificada, los OTOCs describen una evolución promedio de operadores
a tiempos diferentes. Siendo definidos genéricamente como:

CV̂ Ŵ (t) = Tr

{[
Ŵ (t), V̂

]† [
Ŵ (t), V̂

]}
. (1.11)
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Si los operadores son Hermíticos resulta,

CV̂ Ŵ (t) = −Tr

{[
Ŵ (t), V̂

]2}
, (1.12)

y si además la dinámica es unitaria podemos reescribirlo como,

CV̂ Ŵ (t) = 2
(
1− Tr

{
Ŵ (t)†V̂ †Ŵ (t)V̂

})
(1.13)

donde el segundo término puede ser interpretado como un Eco de Loschmidt, donde el
estado inicial V̂ evoluciona durante un tiempo t, y luego es perturbado por Ŵ . Pos-
teriormente, sigue una evolución de inversión temporal antes de aplicar una medición
(V̂ †) [79, 80]:

Tr
{
Ŵ (t)†V̂ †Ŵ (t)V̂

}
= Tr

{
V̂ †U(t)ŴU †(t)V̂ U(t)Ŵ †U †(t)

}
= Tr

{
V̂ †Φ̂(t)V̂ Φ̂†(t)

}
siendo Φ̂Ŵ (t) = U(t)ŴU †(t) el operador Eco de Loschmidt.

Usualmente, se asume que el soporte de los operadores V̂ y Ŵ es local. Por ejemplo,
en un sistema de espines, se suelen asociar a operadores de espín locales Ŝz

i .
Como es de esperar, debido a correspondencia entre los OTOCs y los ecos de Losch-

midt, los mismos han sido ampliamente utilizados en Resonancia Magnética Nuclear de
forma independientemente y bajo otros nombres. Entre las aplicaciones pioneras se des-
acata la secuencia de Coherencias Cuánticas Múltiples [81, 82] que permite determinar
KG(t), el número de espines correlacionados en el sistema [57,83], a partir de un OTOC
derivado de múltiples experimentos de eco:

KG(t) = − 1

Tr{(Ŝz)2}
Tr
{[
Ŝz, Ŝz(t)

] [
Ŝz, Ŝz(t)

]}
, (1.14)

siendo Ŝz el operador magnetización total en la muestra.

1.5. Ruido y Decoherencia: Sistemas abiertos.

La decoherencia entró en el mundo del estudio de sistemas cuánticos a través de dos
senderos sinuosos pero entrelazados. Por un lado, desde una perspectiva fundamental,
en el estudio de la emergencia de la mecánica clásica desde la mecánica cuántica y en
el problema de la medición; entre los trabajos pioneros se encuentra el de N. Mott en
1929 [84, 85]. Por otro lado, desde un enfoque más práctico, considerando el transporte
electrónico por R. Landauer [86] y M. Büttiker [87]. En esencia, la decoherencia surge
como consecuencia de todas las interacciones que, debido a su complejidad, no podemos
integrar al modelo que sabemos resolver, pero que influyen en la dinámica cuántica.

Típicamente, tanto para electrones como para espines, los efectos del entorno pueden
originarse en interacciones con fotones, fonones, momentos magnéticos, campos eléctricos
y otros electrones/espines. Cada uno de estos procesos genera, ya sea de forma individual
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Evolución

Haken-Strobl

Ruido

Estocástico

Colapso

Evolución

1 2 3 4 5 6 7

L

L

R

R

Landauer-Büttiker

D'Amato-Pastawski

Estacionario Dinámico
Quantum-Drift

Quantum-Jump

 Lindblad

Colapso ( (0

0

( (
( (

Figura 1.2: Representación esquemática de las posibles formas de introducir los efectos de
un ambiente decoherente a un sistema cuántico. Panel izquierdo: Un acercamiento estaciona-
rio al problema permite calcular propiedades a energía constante (e.g. transmitancias, long. de
localización, camino libre medio, etc). Generalmente, el sistema cuántico está conectado a dos
terminales (L y R, representadas en verde y azul) que actúan como fuente y sumidero de excita-
ciones. Los procesos decoherentes son introducidos por reservorios (ϕi, representados en naran-
ja). Landauer-Büttiker: Los procesos decoherentes son introducidos por un único voltímetro
afectando un sitio particular del sistema. D’Amato-Pastawski: Cada sitio es afectado por un
reservorio independiente. Panel derecho: Un acercamiento dinámico al problema permite observar
los efectos del ambiente en la evolución de excitaciones. El efecto sobre la dinámica puede verse
mediante: Quantum-Drift: La excitación evoluciona en presencia de fluctuaciones temporales
en las energías de sitio (representado como incertidumbres Lorentzianas). Quantum-Jumps:
El ambiente genera sucesivos procesos de colapso local intercalados por evoluciones coherentes.
Haken-Strobl (Linbland): Atenúa exponencialmente los elementos no-diagonales de la matriz
densidad, permitiendo una evaluación directa de valores medios de los observables. En media,
todas estas visiones son equivalentes.
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o en un conjunto, una degradación en la dinámica, atenuando las recurrencias e interfe-
rencias características de los sistemas cuánticos sencillos. Se denomina decoherencia a esta
degradación en las fases específicas que permiten interferencias y recurrencias propias de
modelo simplificado. A continuación, introduciremos brevemente algunos de los modelos
fundamentales de decoherencia en la dinámica y el transporte cuántico esquematizados
en la Figura 1.2.

1.5.1. Landauer→Büttiker →D’Amato-Pastawski.

Landuer considera el transporte estacionario en un sistema cuántico conectado a dos
reservorios de electrones. Cada uno de estos reservorios entrega electrones al sistema
de manera incoherente e independiente uno del otro [86]. Estos son, en este análisis, la
única fuente de decoherencia del sistema. Sin embargo, al igual que los dos reservorios,
cualquier elemento de medición conectado al sistema podría actuar de manera similar. En
particular, Büttiker incorporó la presencia de un voltímetro en la descripción del sistema,
el cual toma electrones y los devuelve de manera incoherente [87]. En cierto modo, la
medición implicaría el colapso de la función de onda del electrón, ya que cada electrón
es devuelto al sistema (asegurando que el voltímetro no toma corriente) sin memoria de
su estado anterior, generando decoherencia. La inclusión de estos procesos implica que la
transmitancia efectiva entre los reservorios, no solo esté dada por la transmitancia directa
entre ambos reservorios, sino que también está condicionada por la transmitancia entre
cada reservorio y el voltímetro, lo que se conoce como transporte incoherente.

D’Amato y Pastawski (DP) notaron que los efectos de grados de libertad ambientales
acoplados a cada estado electrónico “local” podrían considerarse como un voltímetro inde-
pendiente. Visualmente, podemos pensar que el ambiente “mide” los electrones, generando
un colapso, o equivalentemente que toma un electrón y lo devuelve de forma totalmente
incoherente [88]. Ambos modelos, Landauer-Büttiker y D’Amato-Pastawski, permiten cal-
cular la transmitancia efectiva a una dada energía, por lo cual son considerados modelos
estacionarios (Panel izquierdo de la Fig. 1.2).

La extensión de este modelo (Generalized Landauer-Büttiker Equations, GLBE) permi-
te incluir una distribución continua de “voltímetros” [89], aportando también una visión
dinámica del problema, y brindando una interpretación física exquisita en términos de
colapsos cuánticos recurrentes de la función de onda que será explotada en esta tesis.

1.5.2. Quantum-Drift, Quantum-Jumps, y Haken-Strobl.

La principal desventaja del modelo GLBE radica en su elevada demanda de recursos
al ser tratado numéricamente. Esta limitación fue superada mediante la aplicación del
modelo de Quantum-Drift [90], esquematizado en el panel derecho de la Fig. 1.2. En este
enfoque dinámico, una excitación cuántica evoluciona a partir de una dinámica Trotter-
Suzuki (dinámica paso a paso, siguiendo la evolución coherente de acuerdo al Hamiltoniano
del sistema). A esta se le superpone una dinámica estocástica que implica fluctuaciones
en las energías de los sitios [90].

Este modelo mostró estar intrínsecamente ligado a modelos (dinámicos) de colapso de
la función de onda (quantum jumps). En tales modelos, el sistema evoluciona coherente-
mente durante un intervalo de tiempo aleatorio, para luego colapsar en un sitio con una
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probabilidad determinada por la evolución coherente. Este tipo de modelos fue utilizado
por Ghirardi-Rimini-Webber [91] para justificar un comportamiento clásico en las escalas
macroscópicos.

Al considerar un conjunto de realizaciones de los procesos mencionados anteriormente
(Quantum-Drift y Quantum-Jumps), ambos conducen a la misma dinámica del operador
matriz densidad del sistema. Según el formalismo de Lindblad para sistemas cuánticos
abiertos [92], esta evolución está determinada por la ecuación:

dρ̂

dt
= L[ρ̂] = − i

ℏ

[
Ĥ, ρ̂

]
− γϕ

2ℏ

N∑
n=1

[|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ̂]] , (1.15)

donde γϕ/ℏ representa una tasa de decoherencia relacionada tanto con la varianza de
las fluctuaciones en el modelo Quantum-Drift como con el tiempo medio de colapso en
el Quantum-Jump. Nótese que − i

ℏ

[
Ĥ, ρ̂

]
determina la evolución coherente del Hamilto-

niano, mientras que −γϕ
2ℏ
∑N

n=1 [|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ̂]] condensa los efectos del ambiente. En
este caso, una atenuación exponencial de los términos no diagonales de la matriz densidad
(coherencias) en la base de sitio. Este modelo de Lindbladiano, conocido como modelo de
Haken-Strobl [93], es ampliamente utilizado para calcular el transporte de excitones en
sistemas biológicos.

La equivalencia de estos tres modelos, resumidos en el panel derecho de la Fig. 1.2,
radica en varias suposiciones no discutidas en los párrafos anteriores: tanto las fluctua-
ciones como los colapsos son totalmente independientes de los eventos anteriores (son
Markovianos), y los procesos ocurren en la base de sitios. Por lo tanto, las coherencias
en esta base son efectivamente las que se ven atenuadas exponencialmente. Estas mismas
hipótesis forman parte del modelo D’Amato-Pastawski, lo que permite considerar al QD
uno como una realización dinámica del primero o viceversa.

1.6. Sistemas biológicos.
Hasta aquí hemos discutido cómo los avances tecnológicos nos han capacitado para

estudiar sistemas cuánticos “simples” y observar los efectos generados por una aleatorie-
dad controlada, incluso revirtiendo su dinámica. Sin embargo, estos avances también nos
permiten investigar con mayor detalle los procesos biológicos, lo que implica adentrarnos
en un terreno opuesto: la complejidad de los sistemas y sus entornos se incrementa. Esto
ha abierto la posibilidad de que diversas ramas de la física y las matemáticas encuentren
su aplicación en la biología, como la biofísica celular y molecular. Eventualmente, uno
llega a preguntarse si no existen efectos cuánticos que estén involucrados en la biología.
La respuesta obvia es: Sí, existen. Todo proceso químico depende de la mecánica cuántica.
Sin embargo, uno puede afinar ligeramente la pregunta, volviéndola no trivial: ¿Existen
sistemas biológicos que utilicen los efectos cuánticos para realizar una tarea de forma más
eficiente, robusta o que de alguna manera no pueda realizarse de manera clásica? ¿Pudo
la evolución haberle dado “poderes cuánticos” a ciertos organismos?

El primer lugar donde mirar son los sistemas fotosintéticos, de donde proviene prác-
ticamente toda la energía que permite la vida en la tierra. En estos sistemas los fotones
provenientes del sol son absorbidos por las llamadas light-harvesting antennas, generando
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una excitación electrónica, la cual es transportada hasta un centro de reacción donde una
separación de cargas permite el almacenamiento de su energía en una forma más estable,
la energía química.

Sorprendentemente, se ha observado que prácticamente el 100% de los fotones ab-
sorbidos son transportados al centro de reacción, incluso cuando la vida media de estas
excitaciones es muy corta. En 2007, Engel et al. [94] observaron evidencia de coherencias
cuánticas en la estructura Fenna-Matthews-Olson (FMO), que permite la transferencia de
excitaciones hacia el centro de reacción en las bacterias verdes del azufre (green sulfur bac-
teria). Si bien esta observación fue a baja temperatura (77 K), experimentos posteriores
sugieren que la coherencia sigue sin ser despreciable incluso a temperatura ambiente [14].
Esto nos lleva a plantearnos preguntas significativas: ¿Puede esta dinámica coherente
aportar eficiencia a proceso de absorción de energía? ¿El sistema encuentra la forma de
escapar a la decoherencia o la utiliza a su favor?

Varios modelos fueron propuestos para representar la física de este problema, prin-
cipalmente considerando al ambiente como baño térmico descorrelacionado y Marko-
viano [10,12,95]. En estos estudios, teóricos y experimentales, se observó que un entorno
puede mejorar el transporte. De hecho, se argumenta que un transporte completamente
coherente resulta inconsistente con el nivel de eficiencia observado en estos sistemas bio-
lógicos. En tal caso, la naturaleza podría estar explotando al ambiente a través de una
“ingeniería” de interacciones con el entorno [96].

Siguiendo estas ideas, S. Kauffman [97] propuso la intrigante hipótesis del poised realm,
“reino en equilibrio”, la cual afirma que muchos procesos biológicos ocurren al borde del
chaos [98]. Esta hipótesis llevó a Vattay y colab. [99] a proponer que sistemas unidi-
mensionales cerca de una transición metal-aislante (metal-insulator transition MIT) son
óptimos para el transporte. Para ello, argumentaron que en la vecindad del punto crítico,
la decoherencia no debería afectar al sistema con la misma magnitud que en el régimen
extendido, y al mismo tiempo garantizaría la deslocalización necesaria para el transporte.

1.7. Hipótesis central de Irreversibilidad.

Supongamos que podemos realizar un experimento de Loschmidt, el cual podemos
ir perfeccionando progresivamente, es decir, nuestro Hamiltoniano de reversión es siste-
máticamente más cercano al que originó la evolución en primer lugar. Por simplicidad,
imaginemos un sistema simple, una dinámica de espines en una molécula pequeña, total-
mente aislada del resto del universo. Al ir refinando nuestro experimento, nos acercaríamos
cada vez más a un eco perfecto. Si fuéramos capaces de invertir todo en este sistema, des-
de el Hamiltoniano de espín hasta la vibración más pequeña, encontraríamos un retorno
perfecto a la condición inicial.

Ahora supongamos que esta molécula no está aislada del resto del universo, sino que
interactúa con algunas moléculas de su entorno (que también interactúan con otras), siente
el efecto de vibraciones térmicas, recibe algo de radiación, etc. En este caso, no es obvio
que la mejora sucesiva de los experimentos de reversión que incluya todo este colectivo nos
lleve a un eco perfecto. Quizás, “More is different”, quizás existe un cambio la naturaleza
del problema que impediría la reversión perfecta. El límite N → ∞ nunca es trivial, y el
problema primero debería ser resuelto para un sistema infinito, y solo entonces modificados
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sus parámetros para describir un problema finito, lo que podría traer inconsistencias con
nuestra descripción inicial del primer párrafo. En palabras de Anderson:

The essential idea is that in the so-called N → ∞ limit of large systems (on
our own, macroscopic scale) it is not only convenient but essential to realize
that matter will undergo mathematically sharp, singular “phase transitions” to
states in which the microscopic symmetries, and the microscopic equations of
motion, are in a sense violated.

En este contexto, la idea se traduce en que, en el límite de un sistema infinito, de
muchos cuerpos, cualquier perturbación podría verse extremadamente amplificada. Por
consiguiente, su efecto no tiende a cero al disminuir la perturbación. Esta es la esencia de
la Hipótesis Central de Irreversibilidad.

Experimentalmente, esta hipótesis encuentra su inspiración en observaciones de di-
námica de espín en cristales orgánicos estudiados por NMR [100, 101], donde se observó
un tiempo de irreversibilidad T3, que no podía ser mejorado de ninguna manera. Una
conclusión apresurada podría ser que esta irreversibilidad T3 tiene su origen en los ele-
mentos de la dinámica que no se invirtieron, particularmente en NMR, la parte no secular
del Hamiltoniano. Sin embargo, experimentos que corrigen términos de mayor orden en
la perturbación aún muestran un T3 siempre más grande y proporcional a la escala de
tiempo T2 que caracteriza al Hamiltoniano revertido [6, 60]. Consecuentemente, el origen
de esta irreversibilidad debería ser intrínseco al sistema (macroscópico), siendo postulado
como una manifestación de la caoticidad del sistema, asociando T3 , al menos en casos muy
idealizados donde se puede aplicar una aproximación semiclásica, al inverso del coeficiente
de Lyapunov que domina la dinámica clásica [60,67].

1.8. Organización de la Tesis.

Esta tesis estudiamos, principalmente, la dinámica de sistemas cuánticos complejos. En
cierto modo, la progresión de esta tesis se desarrolla de la mano al grado de complejidad
del sistema cuántico. Comenzamos trabajando con sistemas aislados de una partícula;
luego sistemas abiertos, al acoplarlos con un ambiente; y finalmente consideramos una
dinámica de muchos cuerpos. Esto nos permite explorar varios de los temas discutidos
en este capítulo: la equilibración; la localización, incluyendo su equivalente de muchos
cuerpos; los efectos de un ambiente; la reversibilidad; la extensión de efectos cuánticos a
sistemas biológicos y el límite termodinámico. Si bien los capítulos no son ortogonales,
cada uno de ellos se centra en un problema particular, como se detalla a continuación.

En el Capítulo 2, introducimos y exploramos la potencialidad analítica del modelo
Harper-Hofstadter-Andrè-Aubry (HHAA), el cual considera una cadena unidimensional
sometida a un potencial cuasi-periódico. Este permite obtener una transición de fase en-
tre estados localizados y extendidos a un valor finito de la amplitud del potencial. Una
propiedad notable y muy útil es que esta transición ocurre simultáneamente para todos
los autoestados. Nos centramos en la dinámica coherente de una excitación de un cuerpo,
determinando su comportamiento y tiempos característicos tanto analítica como numé-
ricamente. Esta caracterización sienta las bases para el estudio de este mismo potencial
en sistemas con mayor complejidad en capítulos posteriores. Asimismo, se desarrolla un
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OTOC que permite investigar la localización del sistema cuando solo se tiene acceso a la
observación de un único sitio de la red. Evaluando este OTOC en el sistema arquetípico de
HHAA, obtenemos una interpretación directa del OTOC y de sus magnitudes derivadas
en términos físicos.

En el Capítulo 3, profundizamos en el estudio de la dinámica cuántica en sistemas de
una partícula al incluir la presencia de un ambiente. Comenzamos analizado la cadena
de HHAA en presencia de un ambiente de Haken-Strobl, lo que nos permite explorar
la hipótesis de que los sistemas unidimensionales cerca de una transición metal-aislante
son óptimos para el transporte. Observaciones en este modelo nos llevan a introducir un
modelo de colapsos cuánticos que nos permite una resolución analítica en varios regímenes
extremos. La búsqueda de generalidad nos lleva a estudiar numéricamente otros modelos
que también tienen regímenes extendidos y localizados: la cadena de Fibonacci, y el modelo
de matriz aleatoria PBRM (power banded random matrix ). Además, para el modelo HHAA
discutimos cómo la decoherencia introducida por el ambiente afecta, no solo la dinámica,
sino también la reversibilidad de la misma (Eco de Loschmidt).

En el Capítulo 4, extendemos el OTOC desarrollado en el Capítulo 2 para sistemas de
espines interactuantes. Investigamos cómo este OTOC puede ser utilizado para estudiar
el nivel de localización en la dinámica de espines (many-body), qué magnitudes aproxima,
y cuánto difieren estos observables de los que resultan en el problema de una partícula.
Utilizando el observable suma de magnetizaciones locales al cuadrado, cuyo cómputo es
más eficiente, estudiamos el nivel de localización cuando interacciones many-body son
incluidas en el Hamiltoniano de HHAA, observando la dinámica de equilibración, y sus
valores de equilibrio como testigos de la localización.

En el Capítulo 5, exploramos la hipótesis, necesaria para interpretar adecuadamente
los experimentos de NMR [79], de que es posible extraer información sobre la OTOCs
locales a partir de observables globales. Esta “equivalencia” se pone a prueba numérica-
mente evaluando la secuencia de reversión denominada coherencias cuánticas múltiples,
de relevancia experimental. Para ello se consideran anillos de espines con interacciones
de largo alcance que están dentro de los límites computables. La dinámica y valores de
saturación de los OTOCs locales y globales derivados de esta secuencia se estudian en
función del tamaño del sistema y el rango de las interacciones entre los espines, observan-
do en qué condiciones los OTOCs locales y globales son equivalentes. Una separación de
las contribuciones al OTOC en términos de ecos locales y términos cruzados nos permite
rastrear esta equivalencia a la interferencia destructiva de los procesos multiespín.

Cada capítulo contiene una introducción y conclusión específica, siendo las conclu-
siones generales de esta tesis discutidas en el Capítulo 6, donde se exploran posibles
generalizaciones y extensiones de los desarrollos presentados a lo largo de este trabajo.
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Capítulo 2

Dinámica y OTOCs en la cadena de
Harper-Hofstadter-Andrè-Aubry.

Este capítulo explora la cadena de Harper-Hofstadter-Andrè-Aubry, centrán-
dose en la dinámica de una excitación en este sistema. Se examinan diversas
condiciones iniciales y magnitudes para caracterizar la naturaleza de la di-
námica. Utilizando este Hamiltoniano de una partícula como un sistema de
prueba ideal, se desarrolla un OTOC que permite investigar la localización del
sistema cuando solo se tiene acceso a un único sitio.

La primera discusión sobre localización o transición metal-aislante (MIT) apareció
en el contexto de sistemas de muchos espines [33, 35]. Sin embargo, la complejidad de
la situación obligó a P. W. Anderson a considerar una única partícula que se propaga
en una red tight-binding en presencia de desorden en las energías de sitio. Anderson
demostró que el desorden por encima de un valor crítico conduce a la ausencia de difusión
de la excitación, es decir, una MIT. Dos décadas más tarde, quedó claro que en los
sistemas 1D y 2D, incluso el desorden más pequeño localiza todos los autoestados de
una sola partícula [36]. Por lo tanto, para tener toda la riqueza de la transición de fase
de localización con un desorden crítico finito, se necesitaría un sistema 3D. Incluso con
estas fuertes simplificaciones, manejar la criticidad del fenómeno requiere amplios recursos
computacionales [102,103]. No obstante, es posible encontrar este comportamiento crítico,
con toda su riqueza, en sistemas 1D utilizando desorden correlacionado. Un paradigma
de esta situación es un potencial periódico inconmensurado con la red subyacente.

Harper y Hofstadter [104–106] introdujeron el primer modelo físicamente relevante
para describir electrones bajo el efecto de un campo magnético en una red cuadrada dos
dimensional. Este modelo, de ahora en adelante HHAA, fue generalizado por Aubry y
Andrè [107, 108] quienes encontraron que los autoestados son extendidos si el potencial
es débil y se localizan después de un cierto valor crítico en la amplitud potencial. Esta
transición puede observarse a través de la convergencia de una expansión perturbati-
va [108, 109], a través de la caída exponencial de la conductancia de Landauer [110, 111],
o evaluando el inverso del ratio de participación (inverse participation ratio, IPR) de los
autoestados [112–117]. En consecuencia, se han estudiado con frecuencia modelos 1D in-
conmensurados para imitar la transición de Anderson de sistemas desordenados de alta
dimensión [107], no solo el modelo HHAA, sino generalizaciones que añaden diferentes
características y matices, por ejemplo, bordes de movilidad [118,119].
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Actualmente, la implementación experimental de estos modelos en arreglos (arrays)
de átomos ultrafríos [48, 120] abre un atajo natural para estudiar experimentalmente la
transición entre estados extendidos y localizados, no solo como es planteado en el modelo
original, sino también incluyendo interacciones de muchos cuerpos y decoherencia.

Este capítulo gira en torno al modelo HHAA, específicamente su dinámica. En la
primera sección, derivamos el modelo siguiendo los desarrollos originales de Harper y
Hofstadter, mostrando sus propiedades autoduales en el punto crítico, y finalmente co-
mentamos sobre las notaciones utilizadas en la actualidad en diferentes campos de la física.
En las siguientes secciones se estudian dos magnitudes de la dinámica de una excitación,
el inverse participation ratio y el segundo momento de la excitación. Adicionalmente, se
computa la densidad local de estados (LDoS, local density of states), ya que nos permite
racionalizar por qué algunas condiciones iniciales resultan patológicas.

2.1. El modelo.
“The problem of Bloch electrons in magnetic fields is a very peculiar problem,
because it is one of the very few places in physics where the difference bet-
ween rational numbers and irrational numbers makes itself felt.” - Douglas R.
Hofstadter

Tomemos en consideración una red cuadrada 2D con un espaciado entre sitios a y una
energía de salto/acoplamiento J (hopping), cuya relación de dispersión en ausencia del
campo magnético viene dada por W (k⃗) = J(cos (kxa)+ cos (kya)). El efecto de un campo
magnético B perpendicular es introducido mediante la sustitución de Peierls [121, 122],
donde ℏk⃗ es reemplazado por p⃗+ eA⃗, siendo p⃗ el operador momento, e la carga elemental,
y A⃗ = (0, Bx, 0) el potencial vector. Dado que eipxa/ℏ representa el operador de traslación,
eipxa/ℏψ(x, y) = ψ(x+a, y), podemos expresar el Hamiltoniano efectivo de nuestro sistema
como:

Eψ(x, y) =
J

2

[
ψ(x+ a, y) + ψ(x− a, y) + ψ(x, y + a)e−

ieBxa
ℏ + ψ(x, y − a)e

ieBxa
ℏ

]
.

En este punto basta considerar que en nuestra modelización las partículas pueden
saltar entre distintos puntos de la red (x = na e y = ma, siendo n y m enteros) y que
ψ(x = na, y = ma) = g(n)eikyma (el comportamiento de la función en la coordenada y no
cambió). Reescribiendo la ecuación anterior y definiendo el flujo de campo magnético por
“plaqueta” Φ = Ba2 , y el cuánto de flujo magnético, Φ0 = 2πℏc/e tenemos:

g(n+ 1) + g(n− 1) + 2 cos(2πnq + θ)g(n) = 2E/Jg(n) (2.1)

siendo θ = −kya y q = Φ/Φ0 la relación entre el flujo de campo por plaqueta y el cuánto
de flujo magnético. La Ec. (2.1) se conoce como ecuación de Harper. El espectro que se
obtiene de esta ecuación 2E/J tiene la particularidad que depende de la racionalidad de
q. Al imponer periodicidad sobre n, es decir q = P/Q (racional, P y Q números coprimos
distintos), existen exactamente Q bandas en el espectro de energía. Sí Q≫ P , las bandas
de energía convergen a bandas de energía delgadas que corresponden a los niveles de
Landau [106].
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Figura 2.1: Mariposa de Hofstadter: Patrón fractal al observar los niveles de energía en función
del flujo del campo magnético. Esta estructura muestra la riqueza y la complejidad de los estados
cuánticos en sistemas de redes bidimensionales sujetos a un campo magnético. Esta figura es
computada utilizando valores racionales de q con 0 ≤ P ≤ Q ≤ 30.

Si, en cambio, q es irracional, el espectro tiene una forma fractal autosimilar. El es-
pectro de energías como función de 2πq (básicamente, el flujo de campo por plaqueta) se
conoce célebremente como la mariposa de Hofstadter (Ver Fig. 2.1).

2.1.1. Generalización, auto-dualidad y transición de fase.

Utilizando operadores de sitio |n⟩, podemos expresar el Hamiltoniano unidimensional
correspondiente a la dirección x en la forma típica de los Hamiltonianos tight-binding :

Ĥ =
∑
n

−J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) +
∑
n

εn |n⟩ ⟨n| , (2.2)

donde εn = W cos(2πqna + θ). En este contexto, hemos generalizado el modelo, per-
mitiendo que la amplitud del potencial sea un parámetro libre (W = 2J en el modelo
original). Usualmente, en esta forma se lo conoce como modelo de Aubry-Andrè, nosotros
lo referimos como Harper-Hofstadter-Aubry-Andrè (HHAA), en reconocimiento a todos
los involucrados.

Aunque este modelo tuvo un origen específico, actualmente se aplica en diversos cam-
pos [48, 123–126]. Esto lleva a que ciertos parámetros queden desconectados de las mag-
nitudes físicas originales; comúnmente, θ representa una fase aleatoria sobre la cual se
promedia en simulaciones o experimentos. Por otro lado, el valor de q suele ser la fracción
áurea en simulaciones numéricas, es decir, q = qg = (

√
5 − 1)/(2a), ya que este número

es el más irracional posible [127], lo que facilita la obtención de resultados más claros y

21



2.1. EL MODELO.

definidos. En realizaciones experimentales, los valores de q están restringidos por el setup
particular. Por ejemplo, en sistemas de átomos fríos, por la disponibilidad de longitu-
des de ondas en los láseres, siendo q = 1032/862 ≡ 170/862 = 85/431 en Ref. [123] y
q = 532/738 en Ref. [48], en ambos casos podemos considerar el sistema como incon-
mensurado (o “irracional”) para redes cortas (con un número de sitios menor a 431 y 369
respectivamente).

La ecuación (2.2) tiene varias propiedades interesantes. En primer lugar, es autodual,
lo cual se observa al realizar la transformación |n⟩ =

∑
s e

i2πqksn |ks⟩ obteniendo:

Ĥ =
∑
s

−W/2(|ks⟩ ⟨ks+1|+ |ks+1⟩ ⟨ks|) +
∑
s

εs |ks⟩ ⟨ks| , (2.3)

con εs = 2J cos(2πqs + θ). Podemos ver que es un Hamiltoniano de la misma forma que
(2.2) pero reemplazando J → W/2 y W → 2J . Para W = 2J se recupera el modelo de
Harper y el Hamiltoniano es el mismo en ambas bases. Para W ̸= 2J podemos pensar,
utilizando el principio de incertidumbre, que si el sistema está localizado en la base de
sitio estará deslocalizado en el espacio de momento y viceversa.

2.1.2. Notaciones actuales y realización experimental.

Es importante destacar que el Hamiltoniano de HHAA puede presentarse en varias
notaciones dependiendo del área de la física en la que se esté trabajando, no solamente
utilizando la notación de enlace fuerte (tight binding).

Por ejemplo, en el contexto de Resonancia Magnética Nuclear, es necesario (y conve-
niente) expresar el Hamiltoniano en término de operadores de espín:

Ĥ = J
∑
n

(
Ŝx
nŜ

x
n+1 + Ŝy

nŜ
y
n+1

)
+
∑
n

εnŜ
z
n (2.4)

≡ J

2

∑
n

(
Ŝ+
n Ŝ

−
n+1 + Ŝ−

n Ŝ
+
n+1

)
+
∑
n

εnŜ
+
n Ŝ

−
n , (2.5)

donde para la ultima equivalencia hemos utilizado que Ŝz
n = Ŝ+

n Ŝ
−
n − Î/2, notando que la

identidad solo genera un cambio en la referencia de energías y no afecta la dinámica gene-
rada por el Hamiltoniano. Por otro lado, en el estudio de excitaciones en el estado sólido,
el Hamiltoniano suele expresarse en término de operadores de creación de destrucción,

Ĥ = J
∑
n

(ĉ†nĉn+1 + ĉnĉ
†
n+1) +

∑
n

εnĉ
†
nĉn. (2.6)

Cada una de estas notaciones ofrece perspectivas útiles para comprender diversos as-
pectos del sistema y su elección puede depender del enfoque de investigación o de las
propiedades específicas que se deseen estudiar. En capítulos posteriores, por ejemplo, las
notaciones aquí introducidas serán útiles para añadir interacciones de muchos cuerpos en
el Hamiltoniano de HHAA.
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2.2. La dinámica de un cuerpo.

Las implementaciones experimentales recientes de sistemas cuánticos han cambiado
significativamente el paradigma tradicional de estudio de estos sistemas. Anteriormente,
la observación de efectos cuánticos se centraba principalmente en fenómenos macros-
cópicos como la conductividad y la magneto-resistencia. Sin embargo, ahora es posible
observar directamente la dinámica de las excitaciones cuánticas, algo previamente solo
reservado para algunos experimentos de RMN [100, 128–130]. Este enfoque experimental
abre nuevas vías para explorar y comprender fenómenos fundamentales en la mecánica
cuántica, estableciendo conexiones más sólidas entre los resultados teóricos/numéricos y
los experimentales. Además, esta capacidad para estudiar la dinámica de las excitaciones
cuánticas proporciona una perspectiva única sobre la naturaleza intrínseca de los siste-
mas cuánticos, su interacción con diferentes ambientes (decoherencia), y el eventual paso
a sistemas macroscópicos.

Para comprender y analizar estas dinámicas, se emplean diversas magnitudes, como el
desequilibrio (imbalance), la probabilidad de supervivencia, las funciones de correlación, la
entropía e incluso la densidad de probabilidad de medir un operador específico, típicamente
la posición. El enfoque de este capítulo se centra en dos magnitudes particulares: el inverso
del ratio de participación (IPR, por sus siglas en inglés) y la varianza de la distribución de
probabilidad espacial. Finalmente, vemos, como esta misma información puede obtenerse
utilizando Ecos de Loschmidt.

2.2.1. El IPR dinámico.

El inverso del ratio de participación (IPR) es una magnitud usual en la física de la ma-
teria condensada. La misma proporciona información sobre la localización de los estados
en un sistema, siendo fundamental para comprender fenómenos como la localización de
Anderson y la transición metal-aislante (MIT). La definición usual del mismo es a partir
de los autoestados ν del Hamiltoniano de sistema:

IPR = ⟨
∑
xn

|ψν(xn)|4⟩ν , (2.7)

donde ⟨...⟩ν indica el promedio sobre todos los autoestados. Consiguientemente, un IPR
cercano a 1 indica una mayor localización de los autoestados (IPR = 1 indica una loca-
lización total), mientras que un IPR pequeño sugiere una distribución más uniforme de
estos estados en el sistema (IPR = 1/N indica una distribución equiprobable entre N
sitios).

Nuestro enfoque propone trabajar con un IPR dinámico, es decir, calculado sobre un
solo estado, el cual evoluciona temporalmente. En este caso, partiendo de un estado inicial
ψ0(x), tenemos,

IPRt =
∑
xn

|ψ0(xn, t)|4. (2.8)
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2.2.2. El segundo momento de la excitación.

El segundo momento o la varianza de la distribución de probabilidad espacial es una
magnitud esencial en el estudio de la dinámica de sistemas cuánticos. Esta medida propor-
ciona información sobre la dispersión o extensión espacial de la función de onda asociada
a un estado cuántico. La varianza es el segundo momento centrado de la distribución de
probabilidad 1:

σ2
0(t) = ⟨x− ⟨x⟩⟩2 = ⟨x2⟩ − ⟨x⟩2, (2.9)

con lo que para una distribución discreta es simplemente:

σ2
0(t) = a2

[∑
n

pn(t)n
2 − (

∑
n

pn(t)n)
2

]
, (2.10)

siendo a la distancia entre sitios y pn la probabilidad de encontrar a la partícula en el sitio
n (usualmente pn = |ψn|2 o pn = ρn,n, siendo ρ la matriz densidad del sistema). Si bien
desde el punto de vista numérico es una magnitud simple, experimentalmente requiere un
gran número de realizaciones para obtener σ2

0(t) con un error relativamente chico. Hacia
el final del capítulo presentaremos una estrategia diferente para la obtención de la misma.

2.2.3. Densidad Local de estados.

La densidad local de estados (LDoS, Local Density of States) nos da una medida de
la densidad de estados accesibles localmente en una región del espacio [131]. Es decir, a
diferencia de la densidad de estados usual, D(E) =

∑
ν δ(E − ϵν), la densidad local de

estados considera el peso que cada uno de los autoestados ν tienen en una posición dada
xn:

N (ϵ, xn) =
∑
ν

|ψν(xn)|2δ(ϵ− ϵν). (2.11)

Esta magnitud puede ser evaluada utilizando el formalismo de función de Green,

N (ϵ, xn) = − 1

π
ĺım
η→0+

ImGR
00(ϵ+ iη), (2.12)

siendo su implementación muy eficiente para sistemas unidimensionales con acoples a
primeros vecinos. Una discusión más profunda y la descripción de los algoritmos puede
ser encontrada en la tesis de Elena Rufeil-Fiori [132].

Desde el punto de vista dinámico nos una medida de los posibles sitios a los que puede
decaer una excitación inicial local, pudiendo utilizarse de forma directa para calcular la
probabilidad de supervivencia:

P00(t) =

∣∣∣∣θ(t)∫ ∞

−∞
N (ϵ, 0)e−iϵt/ℏdϵ

∣∣∣∣2 , (2.13)

donde, sin perdida de generalidad, se consideró xn = 0. Alternativamente, se puede ex-
1El uso del subíndice 0 en σ2

0(t) refiere a que es la varianza tomada sobre la dinámica coherente de
un cuerpo. Esta notación se mantendrá en capítulos posteriores, donde los efectos de un ambiente e
interacciones de muchos cuerpos son introducidos.
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Figura 2.2: (a) Valor de medio del IPR dinámico a tiempos largos (equilibrio) en función de W
para diferentes realizaciones de desorden (θ) en una cadena de 500 sitios. Distintos tonos de verde
y azul representan diferentes realizaciones del potencial. Arriba: la excitación inicial se coloca en
el medio de la cadena. En naranja se muestra el promedio de realizaciones. Abajo: La excitación
se coloca en un extremo de la cadena. En negro se muestra la realización correspondiente a θ = 0.
(b) Principal: Densidad local de estados del Hamiltoniano Ĥ con W = 1 < Wc (Rojo). IPRν de
los autovectores de Ĥ con W = 1J < Wc y N = 500 para dos realizaciones de desorden. Los
estados no localizados se muestran en verde (bulk states), mientras que los estados localizados
de cada realización se muestran en celeste (θ = 0) y naranja (θ = 7π/20). Recuadro: Relación de
participación de los estados del sitio sobre los estados propios IPRn (mismo esquema de color).

presar esta integral como la transformada de Fourier de la función de autocorrelación
J0(ω),

P00(t) = θ(t)

∫ ∞

−∞
J0(ω)e

−iωt/ℏdω, (2.14)

siendo,

J0(ω) = ℏ
∫ ∞

−∞
N (ϵ, 0)N (ϵ+ ℏω, 0)e−iϵt/ℏdϵ. (2.15)

Estas magnitudes permiten, bajo ciertas condiciones, factorizar el decaimiento de
P00(t) en componentes provenientes de la regla de oro de Fermi y retornos propios de
la dinámica cuántica [133, 134]. Además, con pequeñas generalizaciones como considerar
bases particulares en lugar de la base local (i.e. strenght function), estos conceptos son de
utilidad en el estudio de sistemas de muchos cuerpos y caos [113,135,136].

2.3. Resultados Numéricos.

2.3.1. Condición inicial.

Al estudiar la dinámica de una excitación en un sistema cuántico, podemos comenzar
de diversos estados iniciales (o combinación incoherente de ellos). En esta sección nos
enfocaremos en estados iniciales puros, en particular, totalmente localizados en la base
de sitio, esto es |ψ0⟩ = |n0⟩. Queda libre, por consiguiente, la posición particular donde
colocamos esta condición inicial. Lo natural es pensar en el extremo o en el centro de
la cadena, esta elección dependerá del tipo de información al que uno quiera acceder.
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Colocar la excitación en un extremo será conveniente para simular algunos problemas de
transporte [137], mientras que colocarla en el centro puede ayudar a evitar problemas de
borde/tamaño finito caracterizando mejor las propiedades generales del Hamiltoniano.

En esta sección estudiamos el efecto de colocar la excitación inicial en un extremo
|ψ0⟩ = |0⟩ o en el centro |ψ0⟩ = |N/2⟩ de la cadena sobre el IPR dinámico. La figura 2.2a
muestra el valor de equilibrio del IPR dinámico (promediado en el tiempo) en función
de la amplitud de modulación (W ) para diferentes realizaciones (θ). Observamos que
cuando la condición inicial está en el medio de la cadena, para W < Wc la excitación
siempre puede extenderse por toda la cadena, mientras que para W > Wc la excitación
permanece cerca del sitio inicial. Esto es consistente con la transición encontrada por
Aubry-André en una cadena infinita. Sin embargo, si la excitación se sitúa en un extremo
de la cadena, observamos que incluso para modulaciones por debajo de la crítica, existen
realizaciones donde la magnetización local no puede extenderse a toda la cadena. Este
efecto se muestra en la Fig. 2.2a donde se observa que solo una realización (negro, θ = 0)
refleja el comportamiento crítico esperado en Wc = 2J . En el resto de realizaciones, la
excitación queda parcialmente localizada para W < Wc.

Para comprender este efecto hemos estudiado las auto-energías y los autovectores del
Hamiltoniano en una cadena de 500 espines. La figura 2.2b muestra la densidad local
de estados de una cadena larga (N > 10000, calculada usando el método de decimación
[109,138]) y el grado de deslocalización de los vectores propios en función de la energía para
una cadena deN = 500. Este último se evalúa a través de las cantidades: IPRk =

∑
n |akn|4

y IPRn =
∑

k |akn|4.
Cuando la cadena es finita (500 espines), algunos autoestados tienen un IPRk más alto,

lo que significa que hay autoestados localizados. Estos estados aparecen en los extremos
(bordes) de la cadena y son un efecto de tamaño finito. Esto puede observarse al calcular la
razón de participación de los estados del sitio sobre los estados propios, donde observamos
que estos estados localizados están en los extremos de la cadena (inset Fig. 2.2b). Estos
estados no deben confundirse con estados solitónicos altamente improbables cuyo peso
principal reside en sitios donde el potencial in-situ es antisimétrico [109], estos solitones
de baja movilidad pueden aparecer en el interior de la cadena, pero no se espera que
contribuyan con un efecto apreciable en la dinámica de excitación. Es interesante notar
que la fase θ = 0 tiene propiedades especiales. En ese caso, no hay un estado localizado en
dicho borde, sino que hay estados localizados en el extremo opuesto. Alternativamente,
para fases arbitrarias, digamos θ = 7π/20, ambos extremos admiten estados de borde. La
ausencia de efectos de tamaño finito para θ = 0 garantiza que este IPR dinámico muestre
la localización solo para W > Wc. Sin embargo, otras fases iniciales, como θ = 7π/20,
producen estados de borde para W < Wc. Esta variabilidad incontrolada nos motivó a
utilizar las condiciones iniciales en el medio de la cadena como un representante confiable
de la transición de fase en el límite termodinámico.

2.3.2. Dinámica del desparramo de la excitación.

El análisis previo se centró en valores de equilibrio del IPR, en esta sección estudiamos
la dinámica coherente de un paquete de ondas inicialmente localizado en el centro de
la cadena HHAA. En particular, nos centramos en la evolución temporal del segundo
momento σ2

0 de la distribución de probabilidad de encontrar la partícula a lo largo de
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Figura 2.3: Evolución de la varianza de excitación inicialmente localizada en el centro de la
cadena para el modelo HHAA con N = 10000 para diferentes W (colores). La flecha vertical
muestra el tiempo medio de dispersión elástica τW , Ec. (2.22). Las líneas negras con diferentes
trazos representan los resultados analíticos: la línea a trazos el comportamiento cuadrático a
tiempos cortos, la línea punteada sobre la curva roja (W = 2J) representa la estimación analítica
para el comportamiento de la varianza en el punto crítico, mientras que las líneas a trazos y
puntos (simple y doble) representan el comportamiento a tiempos largos para la fase extendida
y localizada respectivamente.
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la cadena. En ausencia de decoherencia y para tiempos suficientemente largos, se sabe
que el segundo momento crece balísticamente para W < 2J , difusivamente para W = 2J
y satura para W > 2J [139]. A continuación se detalla, numérica y analíticamente, el
comportamiento en cada régimen.

Fase extendida.

En la fase extendida, la dinámica de la varianza a tiempos muy largos se vuelve
balística, σ2

0(t) = u2t2. En los casos donde el Hamiltoniano, Ec. (2.2), corresponde a q = 0
(cadena ordenada) y q = 1/2 (cadena dimerizada) hemos demostrado analíticamente (no
se muestra) que la velocidad u está directamente relacionada con el soporte B de las
bandas espectrales: u2 = a2B2

8ℏ2 . Para q = 0 hay una sola banda, B = 4J y para q = 1/2

tenemos dos bandas, con B = 2
√
W 2 + 4J2 − 2

√
W 2.

Aquí conjeturamos que la misma expresión es válida para cualquier valor de q en el
modelo HHAA. Para q dado por la media áurea, en Ref. [140] se mostró qué B = 2|2J−W |.
Tenemos entonces que u2 = 4a2|2J −W |2, siendo el comportamiento de la varianza en
tiempos largos viene dado por:

σ2
0(t) =

a2|2J −W |2

2ℏ2
t2.

La Figura 2.3 presenta el comportamiento analítico para W/J = {1, 1.8} como líneas
negras a trazos y puntos, junto con la evolución Hamiltoniana obtenida numéricamente
(curvas verdes), corroborando los resultados. La saturación a tiempos largos corresponde
a un efecto de tamaño finito (la función de onda alcanza los bordes de la cadena).

Punto Crítico.

La dispersión de una excitación local en la cadena de HHAA en el punto crítico
eventualmente se vuelve difusiva [141]. Además, se observa que W = 2J es el único
valor de amplitud del potencial donde este crecimiento es difusivo indefinidamente. En
esta sección, calculamos de forma analítica el coeficiente de difusión de esta dinámica,
algo que, hasta donde sabemos, no ha sido abordado en la literatura.

Al calcular la evolución del paquete de ondas ψ(t) perturbativamente a tiempos cortos
(antes de que los efectos de las energías de sitio entren en la dinámica), la probabilidad
de estar en el sitio n en el momento t es: Pn(t) = | ⟨n|ψ(t)⟩ |2 ≃ | ⟨n| (1 − iĤt/ℏ) |n0⟩ |2,
donde n0 es el sitio donde la excitación esta inicialmente. Definiendo Hn,n0 = ⟨n| Ĥ |n0⟩,
y considerando, sin perdida de generalidad, n0 = 0, podemos escribir:

σ2
0(t) = a2

∑
n

Pn(t)n
2 − a2(

∑
n

Pn(t)n)
2 (2.16)

≈ (t/ℏ)2a2
∑
n

H2
n,0n

2 − a2(t/ℏ)4
∑
n

H4
n,0n

2 (2.17)

≈ (t/ℏ)2a2
∑
n

H2
n,0n

2 = v20t
2 (2.18)
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siendo,
v20 = 2a2(J/ℏ)2, (2.19)

ya que el modelo de HHAA solo presenta acoples a primeros vecinos.
Ahora debemos encontrar una escala de tiempo donde la propagación balística inicial

termina debido a la presencia de un potencial cuasi-periódico de amplitud W , generando
el desparramo difusivo. Para ver esto, la expansión perturbativa debe llevarse a cabo
hasta el cuarto orden: Pn(t) = | ⟨n|ψ(t)⟩ |2 ≃ | ⟨n| (1 − iĤt/ℏ − 1

2
Ĥ2t2/ℏ − i1

6
Ĥ3t3/ℏ +

1
24
Ĥ4t4/ℏ) |n0⟩ |2. A este nivel de aproximación se obtiene:

σ2
0(t)/a

2 ≈ 2J2(t/ℏ)2 − 1

12
((H0,0 −H1,1)

2 + (H0,0 −H−1,−1)
2)J2(t/ℏ)4,

σ2
0(t)/a

2 ≈ 2J2(t/ℏ)2 − 2

12
⟨(Hn,n −Hn+1,n+1)

2⟩J2(t/ℏ)4.

Donde las diferencias de energía al cuadrado fueron reemplazadas por su valor promedio:

(∆E)2 = ⟨(Hn,n −Hn+1,n+1)
2⟩ = 1

N − 1

N−1∑
n=1

(Hn,n −Hn+1,n+1)
2

2
. (2.20)

Nótese que esta definición tiene en cuenta la “correlación” entre vecinos y que, para el
modelo HHAA, el promedio puede tomarse equivalentemente sobre los sitios n o las rea-
lizaciones del potencial (fase θ en la Ec. 2.2). Si se considera el desorden de Anderson,
donde las energías de sitio son independientes, se obtiene directamente la varianza del
desorden

(
(∆E)2 = 1

N−1

∑N−1
n=1 H2

n,n

)
, que es la magnitud estándar para caracterizar el

desorden.
El primer efecto de esta corrección cuártica es cambiar la concavidad de σ2

0(t). Esto
sucederá cuando la segunda derivada de σ2

0(t)/a
2 se anule a un tiempo τW :

τW =

√(
⟨(Hn,n −Hn+1,n+1)2⟩

2ℏ2

)−1

=
ℏ

∆E
, (2.21)

al cual nos referiremos como tiempo medio de dispersión elástica. Reemplazando con las
energías del sitio HHAA, usando identidades trigonométricas y sumando sobre los sitios,
se puede demostrar que ∆E = W

√
(1− cos (2πq))/2, resultando:

τW =

√
2ℏ

W
√

(1− cos (2πq))
. (2.22)

Consecuentemente, el coeficiente de difusión, D0, se calcula como:

D0 =
v20τW
2

=
a2J2

ℏ

√
2

W
√
(1− cos (2πq))

. (2.23)

Esta estimación se muestra en la Fig. 2.3 para q = qg como una línea negra punteada
sobre la curva roja. Es interesante notar cómo las correlaciones del modelo (dadas por el
vector de onda de modulación q) influyen en los tiempos de dispersión y, por tanto, en la
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difusión σ2
0(t) = 2D0t = v20τW t. Esta característica será explotada en el siguiente capítulo.

Obsérvese que la magnitud del potencial entra con una ley de potencia diferente que
en el tiempo libre medio (mean-free time) entre colisiones que resulta de la aplicación
de la regla de oro de Fermi a un estado de energía de Bloch ε para el desorden no
correlacionado del modelo de Anderson [142] 1/τFGR = (2π/ℏ)(W 2/12)N1(ε) con N1(ε) ∝
1/4πJ

√
1− (ε/2J)2 la densidad de estados directamente conectados.

Fase localizada.

Se sabe que, en el régimen localizado, la longitud de localización de todas los au-
toestados es 2ξ = a/ ln[W/2J ] [107, 139, 141]. De ello se deduce que la distribución de
probabilidad del paquete de ondas en el estado estacionario se localiza cerca del sitio
inicial n0, P (n) = | ⟨n|ψ(t)⟩ |2 = 1

2ξ
(e−|n−n0|/ξ). Por lo tanto, el valor de saturación de la

varianza será ĺımt→∞ σ2
0(t) = l2 = 2ξ2 = 2a2(2 ln(W/2J))−2.

Numéricamente, observamos que cuando W ≫ 2J , los valores de saturación obtenidos
son ligeramente menores que los valores analíticos, como se muestra en la Figura 2.3, don-
de las curvas azules corresponden a simulaciones numéricas y las líneas a trazos y doble
punteado representan las expresiones analíticas. Una posible explicación de esta discre-
pancia podría ser la necesidad de incluir correcciones debido a la naturaleza discreta de las
distribuciones de probabilidad. Sin embargo, en términos prácticos, aunque estas discre-
pancias existan, no impactan significativamente en nuestra capacidad para comprender,
aplicar y generalizar el modelo.

2.4. La secuencia GEA.

En esta sección proponemos un nuevo método para cuantificar la transición de Aubry-
André que permite calcular al IPR y la varianza de la excitación sin necesidad de conocer
la probabilidad en cada sitio del sistema. Solo es necesario poder medir en el sitio inicial,
aplicar un gradiente de potencial (podemos pensarlo como un campo eléctrico, o en siste-
mas de espines, un gradiente de campo magnético), e invertir la dinámica Hamiltoniana,
algo totalmente razonable en muchos sistemas experimentales.

La metodología se basa en el concepto de Funciones de Correlación sin orden temporal
(OTOC), y está inspirado en la secuencia de coherencias cuánticas múltiples de RMN [143].
Sin embargo, dado la naturaleza one-body de estos sistemas, su interpretación es más
directa. La idea, representada en la figura 2.4a, es mediante la aplicación de un gradiente
de potencial, etiquetar diferentes partes una excitación ya desparramada en la cadena,
y luego imponer un procedimiento de inversión temporal (LE) que nos permita extraer
la información del etiquetado condensada en el retorno al sitio inicial. Nótese, que el
uso del LE en esta secuencia, se diferencia de trabajos recientes en el modelo HHAA
[118,144,145], ya que el mismo no se aplica sobre la evolución perturbada de un autoestado,
sino que compara la dinámica perturbada y sin perturbar de la excitación. En cierto modo,
volvemos al la idea original del LE.
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Figura 2.4: (a) Representación esquemática del estado del sistema en diferentes momentos.
Describe la secuencia de Hamiltonianos que operan con una excitación inicialmente localizada
en el espín central. Las fases φ resultan de pulsos de gradiente de potencial (evolución con Ĥg).
Finalmente, se observa cuánto regresó al sitio inicial. Una transformada de Fourier de estos
observables proporciona el espectro de amplitudes de entrelazamiento de gradiente (GEA). (b)
Valores medios a tiempos largos obtenidos para el espectro GEA en la cadena HHA en la fase
localizada (azul) y extendida (verde). Cualitativamente se observa como el espectro representa
el nivel de desparramo de la excitación. Cuantitativamente, el término central del espectro,
denominado entrelazamiento de gradiente de orden cero Q0 (ZOGE), que es el inverso del ratio
de participación (IPR), mientras que la varianza de esta distribución equivale a la varianza de la
función de onda.

2.4.1. Definición.

El procedimiento GEA, Fig. 2.4a, parte de un estado inicialmente localizado ψ(t =
0) = |n0⟩. Esta excitación local es, en principio, desparramada a lo largo de la cadena al
aplicar el operador de evolución temporal:

|ψ(t)⟩ = e−iĤt/ℏ |n0⟩ =
∑
n

bn(t) |n⟩ , (2.24)

con bn(t) =
∑

ν e
−iενt/ℏa∗νnaνn0

, siendo εν la energía del autoestado ν.
En este punto, se aplica un gradiente de potencial sobre la cadena, de modo que el

mismo evoluciona con el Hamiltoniano Ĥg =
∑

n n |n⟩ ⟨n| (pulso de gradiente). El efecto
de esta evolución dependerá de la magnitud del producto entre la intensidad del gradiente
φ y el tiempo aplicado. Por simplicidad, consideraremos que Ĥg como un gradiente unidad,
siendo el efecto total directamente contemplado en la magnitud φ. Al ser Ĥg un gradiente
de energías de sitio, los cambios sobre el estado |ψ(t)⟩ pueden observarse directamente:

e−iφĤg |ψ(t)⟩ = e−iφĤge−iĤt/ℏ |n0⟩ =
∑
n

bn(t)e
−iφn |n⟩ . (2.25)

en síntesis, la perturbación asigna a cada componente local de la función de onda con una
fase nφ. Después de esto, el sistema evoluciona hacia atrás en el tiempo (evoluciona bajo
−Ĥ durante un tiempo adicional t). Esta evolución condensa la información, marcada con
la perturbación, sobre del nivel de desparramo del estado evolucionado en el sitio inicial.
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En consecuencia, el eco de Loschmidt:

M(t, φ) =
∣∣∣⟨n0| eiĤt/ℏe−iĤgφe−iĤt/ℏ |n0⟩

∣∣∣2 , (2.26)

tiene codificada esta información como una dependencia en φ. Esta información puede ser
decodificada e interpretada mediante una transformada de Fourier en φ.

Al identificar el operador Φ̂φ(t) = eiĤt/ℏe−iφĤge−i ˆHt/ℏ y empleando la notación de
matriz densidad, donde el estado inicial es ρ̂0 = |n0⟩ ⟨n0|, podemos expresar el eco como:

M(t, φ) = Tr
{
ρ̂0Φ̂

†
φ(t)ρ̂0Φ̂φ(t)]

}
, (2.27)

relacionándolo con la OTOC,

Tr
{
[Φ̂φ(t), ρ̂0]

†[Φ̂φ(t), ρ̂0]
}
= 2(1−M(t, φ)). (2.28)

lo que permitirá una posterior generalización de la secuencia. Es necesario notar que el
efecto de aplicar el gradiente de campo entra en la dinámica como una evolución inde-
pendiente de la evolución natural (con Ĥ) del sistema, experimentalmente esto puede
concebirse de varias maneras: por ejemplo, mediante un pulso intenso de gradiente de una
duración menor a las escalas naturales del Hamiltoniano o mediante la supresión (cuando
es posible) de la evolución natural.

2.4.2. Resultados numéricos/analíticos.

La simplicidad del espacio de Hilbert de una partícula nos permite, no solo una in-
terpretación clara de esta secuencia y OTOC sino también de las magnitudes que se
desprenden del mismo. Utilizando Ec. (2.24) y (2.25) podemos expandir Ec. (2.26)

M(t, φ) =

∣∣∣∣∣∑
n

|bn(t)|2e−iφn

∣∣∣∣∣
2

=
∑
m,n

|bn(t)|2|bm(t)|2e−iφ(m−n) (2.29)

=
∑
j

Q(t, j)e−iφj, (2.30)

donde se puede ver directamente que, transformando Fourier en φ, se obtiene un espectro
Q(t, j) que contiene información de la función de onda en todo el espacio. El valor medio
del espectro a tiempos largos se muestra en Fig. 2.4)b para la cadena HHAA con W = 1J
y W = 4J (verde y azul respectivamente), donde se observa que el mismo muestra la
localización (o no) de la excitación.

En particular, es evidente que el elemento central de la distribución de Fourier Q(t, j =
0) corresponde al IPR dinámico, ya que simplemente se relaciona con los términos en la
Ecuación (2.29) donde n = m:

Q(t, j = 0) =
∑
n

|bn(t)|4. (2.31)

Con un poco más de álgebra (Ver Apéndice A), se puede demostrar que la varianza de la
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distribución es igual a la varianza de la función de onda,

σ2
0(t) = 1/2

∑
j

j2Q(t, j) =
∑
n

n2|bn(t)|. (2.32)

Ambas igualdades han sido corroboradas numéricamente. Para j ̸= 0, Q(t, j) muestra la
correlación media entre la probabilidad de ocupación de sitios a una distancia j, conse-
cuentemente, en el régimen localizado, este valor se vuelve exponencialmente pequeño con
j.

Esta secuencia puede ser generalizada utilizando distintas dependencias en el potencial,
no necesariamente un gradiente (lineal), permitiendo extraer información complementaria,
por ejemplo, momentos superiores de la distribución de probabilidad espacial.

2.5. Conclusiones.
En este capítulo, hemos presentamos el modelo de Harper-Hofstadter-Andrè-Aubry,

el cual será extensamente utilizado en los capítulos posteriores de esta tesis. Este modelo
se destaca por la claridad y limpieza de la física que proporciona: una transición entre
estados deslocalizados a localizados en todo el espectro a un valor finito del potencial. Al
mismo tiempo, la dinámica se distingue claramente en cada régimen: balística, difusiva y
localizada.

En el punto crítico, donde la dinámica se vuelve difusiva, el Hamiltoniano es autodual,
y las auto-energías y autoestados del Hamiltoniano exhiben un carácter fractal. Estos dos
fenómenos, estrechamente relacionados entre sí [146], podrían conferir cierta estabilidad
al sistema, especialmente frente a influencias externas, i.e. la decoherencia generada por
un ambiente.

Centrándonos en la dinámica de excitaciones en este modelo, concluimos que es con-
veniente utilizar excitaciones inicialmente en el centro de la cadena, a modo de minimizar
(prácticamente evitar) los efectos de estados de borde.

Entre las contribuciones originales de este capítulo se incluyen la caracterización del
tiempo medio de dispersión elástica τW y su relación con el coeficiente de difusión en el
punto crítico, la velocidad de crecimiento del segundo momento a tiempos largos u para
el régimen extendido y la introducción del IPR dinámico.

Por último, desarrollamos un procedimiento que nos permite extraer de manera exac-
ta el IPR dinámico y la varianza de la excitación, midiendo solamente la probabilidad
de que la excitación se encuentre en el sitio inicial y manipulando globalmente el sis-
tema. Este procedimiento, basado en la perturbación de la excitación y la inversión de
su evolución (Eco de Losdchmidt/OTOC), fue testeado exitosamente en el modelo de
Harper-Hofstadter-Andrè-Aubry.

Las contribuciones originales de este capítulo fueron publicadas en:

• Lozano-Negro, F. S., Zangara, P. R., & Pastawski, H. M. (2021). Ergodicity breaking
in an incommensurate system observed by OTOCs and Loschmidt echoes: From
quantum diffusion to sub-diffusion. Chaos, Solitons & Fractals, 150, 111175.

• Lozano-Negro, F. S., Navarro, E. A., Chávez, N. C., Mattiotti, F., Borgonovi, F.,
Pastawski, H. M., & Celardo, G. L. (2023). Universal stability towards decoherence
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in quantum diffusive 1D chains. Physical Review A 109 (4), 042213.
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Capítulo 3

Dinámica cuántica en un ambiente
decoherente.

En este Capítulo estudiamos la dinámica cuántica en sistemas de una partí-
cula en presencia de un ambiente. En particular, nos enfocamos en estudiar
bajo qué condiciones la dinámica no se ve afectada por decoherencia genera-
da por el ambiente. Consideraremos tres modelos paradigmáticos, a saber, las
cadenas de Harper-Hofstadter-Aubry-André y Fibonacci, junto con el modelo
de matriz aleatoria PBRM (power banded random matrix). Se discutirá cómo
la decoherencia afecta el coeficiente de difusión, la corriente estacionaria, y
el eco de Loschmidt (pureza). Un modelo de colapso cuántico nos permitirá
obtener expresiones analíticas universales para los tres modelos, aclarando en
qué condiciones la dinámica es estable frente a un ambiente.

La comprensión y el control del transporte cuántico en presencia de ruido ambiental
es crucial en muchas áreas de la física como los átomos fríos [147], los sistemas mesoscópi-
cos [148] y la biología cuántica [149, 150]. Una comprensión más profunda nos permitiría
diseñar sistemas de captación de luz solar más eficientes [95, 151, 152], dispositivos que
transfieran carga o energía con una mínima disipación [137, 153] y sensores de fotones
biomiméticos [154], así como para explicar la funcionalidad de muchos agregados biológi-
cos [155–158].

Como fue mencionado en los capítulos anteriores, fue P. W. Anderson [36] quien en-
tendió que la dispersión elástica de un desorden aleatorio descorrelacionado que excede
un valor crítico induce la localización de excitaciones cuánticas y una transición metal-
aislante (MIT). Mientras que en 3D este desorden crítico es finito, en 1D cualquier can-
tidad de desorden es suficiente para generar esta localización. Dos décadas más tarde se
descubrió que el desorden correlacionado y los acoplamientos (hopping) de largo alcance
podrían permitir un MIT incluso en 1D [107,159–161].

Los diferentes efectos del ambiente fueron considerados por R. Landauer [86], N.
Mott [162] y H. Haken [163]. Específicamente, Landauer notó que un sistema finito real
intercambia partículas con reservorios externos a través de sondas de corriente y voltaje,
una noción que M. Büttiker utilizó para describir la decoherencia ambiental y la termali-
zación [87,88]. Tanto Haken como Mott intentaron abordar el papel de un baño térmico.
Un modelo muy simple, pero ampliamente utilizado, para el baño ambiental es el modelo
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de Haken-Strobl, que describe fluctuaciones dinámicas no correlacionadas en las energías
del sitio.

Más tarde, Mott predijo un régimen de acoplamiento variable (variable range hopping)
en el que el intercambio de energía entre fonones y los estados localizados de Anderson
favorecería la conductividad antes de que la decoherencia congele la dinámica [164]. Así,
en el régimen localizado, la conductividad 1D alcanza un máximo [88,95,142,165] cuando
la incertidumbre energética asociada con la dispersión elástica y la resultante del acopla-
miento con el medio ambiente (es decir, procesos de decoherencia) [166, 167] se vuelven
comparables. Por el contrario, la dinámica balística de un cristal perfecto siempre se de-
grada por los procesos de dispersión decoherentes inducidos térmicamente [168]. Un tópico
mucho menos estudiado es cómo el ruido decoherente afecta al transporte alrededor del
MIT y, más generalmente, en presencia de una dinámica de difusión cuántica (coherente).

Trabajos recientes sobre el transporte excitónico en biomoléculas grandes, como los
complejos de antenas fotosintéticas, buscan explicar la desconcertante gran eficiencia de
muchos sistemas naturales y biomiméticos [95, 165, 169, 170]. En este contexto, S. Kauff-
man [97] propuso la intrigante hipótesis del “reino en equilibrio” (“poised realm”) de que,
en los sistemas biológicos, el transporte de excitónico ocurre al “borde del caos”. Esto llevó
a Vattay y col. [99] a proponer que los sistemas 1D cerca del MIT son óptimos para el
transporte porque la decoherencia no afecta al sistema tan fuertemente como lo hace en el
régimen extendido, al tiempo que garantiza la deslocalización necesaria para el transporte.

Esta hipótesis parece estar en desacuerdo con un análisis teórico previo [89] que indica
que es la dinámica intrínsecamente difusiva de algunos sistemas 1D lo que produce una
estabilidad particular del transporte hacia la decoherencia.

Este capítulo apunta a resolver este conflicto. Para ello, estudiamos algunos modelos
paradigmáticos que permitan una difusión coherente. Comenzando con el modelo Harper-
Hofstadter-Aubry-André (HHAA) [107], ya que, la presencia de un punto crítico y una
dinámica difusiva (Capítulo 2), lo vuelven un sistema ideal para poner a prueba estos
principios.

En la cadena HHAA encontramos que mientras la magnitud de la decoherencia perma-
nezca por debajo de un valor característico γcϕ, ver Fig. 3.3b, el coeficiente de difusión D
depende muy débilmente del ruido decoherente. Por otro lado, las propiedades del trans-
porte tanto en el régimen extendido como en el localizado se ven fuertemente afectadas por
la decoherencia. También vemos que, en tiempos prolongados, D determina la corriente
y la reversibilidad del sistema evaluada por la desintegración del eco de Loschmidt (LE).
Por lo tanto, en la MIT, ambas magnitudes son casi independientes de la intensidad del
ruido decoherente. Para entender el origen de esta estabilidad consideramos un modelo
de colapso cuántico para la decoherencia que nos permite un acercamiento analítico al
coeficiente de difusión en presencia de decoherencia.

Sin embargo, estos hallazgos no son suficientes para responder a la pregunta de si
la estabilidad frente a la decoherencia proviene específicamente de la dinámica cuántica
difusiva o si, en cambio, esta estabilidad es intrínseca al punto crítico. Por esta razón
también estudiamos la cadena de Fibonacci [171] y las matrices aleatorias (PBRM, power
banded random matrices) [161], donde existe un régimen del tipo difusivo para un rango
de parámetros independientemente de su criticidad. Nuestros resultados muestran que,
siempre que un sistema se encuentra en un régimen difusivo coherente, el transporte es
extremadamente estable frente a la decoherencia, incluso fuera del punto crítico. Por
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último, pero no menos importante, pudimos encontrar una expresión universal para D,
válida en el régimen difusivo coherente, que depende únicamente de un único parámetro
físico: la relación entre el tiempo medio de dispersión elástica y el tiempo de decoherencia.

3.1. El ambiente.

El ambiente considerado en este capítulo será representado por la presencia de un
potencial estocástico (ruido blanco) local V (t) =

∑
n ε̃n(t) |n⟩ ⟨n|. El mismo se descri-

be mediante el modelo Haken-Strobl (HS) [93], ampliamente utilizado para el transporte
excitónico e introducido en el Capítulo 1. Consecuentemente, las fluctuaciones estocás-
ticas y no correlacionadas de las energías de sitio cumplen ⟨ε̃i(t)⟩ = 0 y ⟨ε̃n(t)ε̃m(t′)⟩ =
ℏγϕδnmδ(t− t′).

La dinámica puede obtenerse mediante la ecuación maestra (ME) de Lindblad:

dρ̂

dt
= L[ρ̂] = − i

ℏ

[
Ĥ, ρ̂

]
− γϕ

2ℏ

N∑
n=1

[|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ̂]] , (3.1)

donde γϕ/ℏ es una tasa de decoherencia relacionada con la temperatura. Esta aproxima-
ción es razonable cuando la energía térmica es del mismo orden que el ancho espectral del
sistema, como ocurre en muchos sistemas biológicos [95,172]. La ecuación maestra de HS
conduce, en tiempos infinitos, a una población estacionaria igualmente probable en todos
los sitios [151]. La dinámica de la excitación hacia los valores equilibrios es, en el lími-
te de tamaño infinito y para tiempos mayores al tiempo de decoherencia, difusiva [166].
El coeficiente de difusión puede ser obtenido directamente de la dinámica, ó de forma
alternativa, utilizando la fórmula de Green-Kubo [167]:

D(u⃗) =
ℏ
N

N∑
µ,ν=1

γϕ
γ2ϕ + ω2

µ,ν

|ĵµ,ν(u⃗)|2 , (3.2)

donde u⃗ es un vector unitario que indica la dirección del transporte, γϕ es la magnitud de
la decoherencia, ωµ,ν = εµ − εν es la diferencia de energía entre los autoestados µ y ν, y
ĵµ,ν es el operador de flujo en la base de autoestados del Hamiltoniano. Una descripción
más detallada puede encontrarse en el Apéndice B.2.

Obtener el coeficiente de difusión a partir de la dinámica, a partir de la resolución
numérica de la ecuación maestra, requiere manejar matrices N2 ×N2. Para superar este
límite utilizamos el modelo Quantum-Drift (QD) [90], un enfoque estocástico que vuelve
mucho más eficiente el cálculo numérico, permitiéndonos manejar cadenas de más de 104

sitios.

3.1.1. El Quantum-Drift.

El Quantum-Drift fue concebido como una realización de las sondas de tensión locales
de Büttiker [89] en un contexto dinámico. Aquí, la función de onda del sistema sigue una
dinámica de Trotter-Suzuki con procesos de colapso locales representados como energías
de sitio que fluctúan según un proceso de Poisson. Esto reduce el coste computacional
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3.2. LA CADENA HHAA CON DECOHERENCIA I.

Figura 3.1: Modelo HHAA decoherente: las líneas horizontales son energías del sitio dadas por el
potencial sinusoidal de amplitudW , J es la amplitud de hopping, las incertidumbres Lorentzianas
indican las fluctuaciones en las energías de sitio generando decoherencia.

del cálculo de la dinámica en presencia de decoherencia, ya que sólo implica la evolución
de Trotter-Suzuki del vector de onda (tamaño N) [90, 173]. La implementación eficiente
(relación precisión/costo computacional) del algoritmo de Trotter-Suzuki es discutida en
detalle en las tesis doctorales de Fernando Cucchietti, Pablo Zangara, y Lucas Fernán-
dez [174–176], y es brevemente discutida en el apéndice E.

La dinámica se obtiene mediante la aplicación secuencial de operadores de evolución
unitarios a la función de onda en pequeños pasos de tiempo (dt). El ruido/decoherencia
(interacción con el medio ambiente), se introduce agregando fluctuaciones de energías
estocásticas en cada sitio a cada paso, Γ̂ϕ =

∑
n βn |n⟩ ⟨n|, no correlacionadas temporal o

espacialmente. La distribución de probabilidad de estas fluctuaciones es una función de
Lorentz,

P (βn) =
1

π

γϕ
2

β2
n + (

γϕ
2
)2
. (3.3)

Consiguientemente, la evolución unitaria dada en un pequeño paso temporal dt es:

Û(dt) ≈ eiΓ̂ϕdt/ℏe−iĤdt/ℏ, (3.4)

donde Ĥ es el Hamiltoniano del sistema. Finalmente, la función de onda evolucionada a
tiempo t = Ntdt viene dada por:

|ψ(t)⟩ =
Nt∏
j=1

eiΓ̂ϕ(j)dt/ℏe−iĤdt/ℏ|ψ(0)⟩. (3.5)

3.2. La cadena HHAA con decoherencia I.

El modelo de HHHA (Fig. 3.1), discutido en el capítulo anterior, consiste en un Ha-
miltoniano de enlace fuerte con un potencial de sitio sinusoidal:

Ĥ =
∑
n

−J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) +
∑
n

W cos(2πqna+ θ) |n⟩ ⟨n| , (3.6)

donde q es un vector de onda incomensurado con la red, a la distancia entre sitios y 0 <
θ < 2π una fase aleatoria. En principio consideramos q = qg = (

√
5− 1)/2a, sin embargo,

otros valores de q serán discutidos en la sección 3.4.2. En esta sección analizaremos los
efectos de incorporar un ambiente decoherente descrito por el modelo de Haken-Strobl
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Figura 3.2: Evolución del segundo momento de la excitación para el modelo HHAA. El estado
inicial es localizado sobre un sitio en el medio de la cadena. Curvas sólidas: Haken-Strobl calculado
a partir de una evolución Lindlandiana (ME). Curvas discontinuas: simulación utilizando el
Quantum-Drift (QD). Los parámetros utilizados son N = 100, (a) W = 0, (b) W = 2J and (c)
W = 20J .

(Ec. (3.1)).
Los efectos de un ambiente HS en el Hamiltoniano de HHAA han sido estudiados

previamente [177–179]. En particular, nuestros colaboradores E. Alvarez Navarro y G. L.
Celardo encontraron cierta estabilidad de la corriente estacionaria observada al conectar
una fuente y un sumidero a la cadena HHAA en el punto crítico [179]. Estos resultados son
detallados en el Apéndice B.1. Sintetizando, la corriente estacionaria siempre decrece al
aumentar la magnitud de la decoherencia cuando el sistema está en la fase extendida (W <
2J); aumenta hasta llegar a una corriente máxima para luego decrecer en la fase localizada
(W > 2J) y es estable hasta un dado valor de la decoherencia en el punto crítico (W = 2J).
Sin embargo, estos cálculos se limitan a un tamaño del sistema relativamente pequeño
(N ≤ 100). Esta dificultad puede ser sorteada al extender la dinámica del Quantum-
Drift incluyendo la presencia de una fuente y un sumidero, o notando que la corriente
estacionaria está determinada por el coeficiente de difusión de una excitación en la cadena
(Apéndice B.1.1) y utilizando la evolución QD para encontrar el mismo.

Consecuentemente, en esta sección nos centramos en el estudio de la evolución de la
varianza σ2(t) = a2 [

∑
n ρn,n(t)n

2 − (
∑

n ρn,n(t)n)
2]. Como estado inicial se utiliza una

excitación local en el medio de la cadena, evitando efectos de borde. De la evolución de
esta excitación extraemos el coeficiente de difusión D = σ2(t)/(2t) a tiempos largos. De
manera independiente, el coeficiente de difusión también puede ser computado basándonos
en los autoestados y autoenergías del Hamiltoniano siguiendo el enfoque de Green-Kubo
(Apéndice B.2).

La evolución es generada utilizando el algoritmo de Quantum-Drift para valores de
N > 100. Para N ≤ 100, el cálculo fue realizado tanto utilizando el QD como mediante
diagonalización exacta del Lindblandiano de Haken-Strobl (Ec. (3.1)). La Fig. 3.2 muestra
la varianza en función del tiempo en los tres regímenes y para diferentes valores del
ambiente γϕ computada con ambos métodos. Como se puede ver, existe una muy buena
concordancia entre la evolución Lindbladiana y del QD para el segundo momento de una
excitación tanto para diferentes intensidades de desfase y parámetros del sistema (en este
caso, la amplitud del potencial W ).
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3.2. LA CADENA HHAA CON DECOHERENCIA I.

Cuando el sistema está en contacto con un entorno, las fluctuaciones de las energías de
sitio afectan la dinámica, induciendo un comportamiento difusivo. En la Fig. 3.3a mostra-
mos (símbolos), para W < 2J y W > 2J , cómo la dinámica se vuelve difusiva después de
un tiempo τϕ ≈ ℏ/γϕ (ver línea de puntos vertical). En general, el coeficiente de difusión de
esta dinámica, originada en la interacción entre la dinámica coherente y el ruido, depende
de la magnitud de la decoherencia. Excepto en el MIT, donde, curiosamente, la dinámica
sigue siendo difusiva con un coeficiente de difusión muy cercano a D0, el coeficiente de
difusión en ausencia de ruido.

A medida que aumenta la magnitud de la decoherencia, D disminuye en el régimen
extendido, ya que las interferencias específicas que permiten la dinámica balística son
destruidas por el ruido. En el régimen localizado D alcanza un máximo, es decir, para
valores pequeños de γϕ la decoherencia contribuye a romper la localización de la exci-
tación y, por lo tanto, a la difusión. Sin embargo, si γϕ es demasiado grande, el propio
ruido comienza a entorpecer la dinámica y consiguientemente D disminuye a medida que
γϕ aumenta. Ambos comportamientos se muestran claramente en la Fig. 3.3b (símbolos
verdes y azules respectivamente). Sorprendentemente, en el MIT, D es casi independiente
de la decoherencia hasta γcϕ = 2ℏ/τW , ver los cuadrados rojos y la línea de puntos vertical
en la Fig. 3.3b. En este caso, la decoherencia parece no afectar al sistema hasta entrado
en el régimen de decoherencia alta o Quantum-Zeno observado en todos los regímenes
del Hamiltoniano para γϕ > γcϕ. En función de la magnitud del potencial en el sitio W ,
las curvas del coeficiente de difusión para diferentes valores de decoherencia se cruzan en
W = 2J , lo que sugiere la independencia de la decoherencia precisamente en el punto
crítico (Ver Fig. 3.3c.).

Para comprender la dependencia exacta de D de γϕ aplicamos un modelo de colapso
cuántico para los efectos del ambiente. Esto último puede asimilarse a una secuencia de
mediciones de la posición de la excitación [90], que induce un colapso local que conduce a
una caminata aleatoria [89]. Entonces D se puede determinar fácilmente a partir de σ2

0(t)
como:

D ≃
∫ ∞

0

dtip (ti)σ
2
0 (ti) /(2τ), (3.7)

donde p(ti) es la densidad de probabilidad de la medición en el momento ti y τ =∫∞
0
dtitip (ti). Dado que el modelo HS corresponde a un proceso de Poisson para los

colapsos de medición [90], p(ti) = e−ti/τϕ/τϕ. A partir de σ2
0(t), obtenido en ausencia de

decoherencia, y luego integrando numéricamente la Ec. (3.7) obtenemos resultados que
concuerdan excelentemente con los datos numéricos, curvas negras en la Fig. 3.3b.

A partir de la Ec. (3.7) se obtiene un primer indicio sobre el origen de la estabilidad
observada. Suponiendo una dinámica coherente difusiva, σ2

0(t) = 2D0t, inmediatamente
se obtiene que D = D0, es decir, independiente de γϕ.

En la siguiente sección se desarrolla el modelo de colapso cuántico de donde se deriva
(3.7). El mismo nos permitirá un estudio analítico del coeficiente de difusión en los límites
de decoherencia débil y fuerte. Los resultados son comparados con la dinámica simulada
mediante el QD y con el coeficiente de difusión obtenido a partir de la expresión de
Green-Kubo.

40



CAPÍTULO 3. DINÁMICA CUÁNTICA EN UN AMBIENTE DECOHERENTE.

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

W=1.0J
W=1.8J
W=2.0J
W=2.2J
W=3.0J

D0

1.8 2

γϕ=0.001
γϕ=0.002
γϕ=0.01
γϕ=0.1

γϕ=1

Ec. (3.2)  QD 

2.22.11.9

(a) (b)

10-2

100

102

104

106

10-1 100 101 102 103 104

W=1.8J
W=2.0J
W=2.2J

Tiempo Jt/ℏ Potencial W/J

C
oe

f. 
D

if.

Va
ria

nz
a

Decoherencia

0

Analítico

0.01J

(c)

10-2

10-1

100

101

Figura 3.3: (a) Difusión de excitación para el modelo HHAA con N = 10000 para diferentes
W . Las dinámicas coherentes se muestran con curvas sólidas, mientras que los símbolos mues-
tran curvas decoherentes con un valor fijo de γϕ = 0.01J . Tanto los símbolos como las curvas
comparten el mismo color para indicar una W determinada. La flecha vertical muestra el tiempo
medio de dispersión elástica τW , Ec. (2.22). Las líneas discontinuas negras son las estimaciones
analíticas de γϕ = 0, ver texto. La línea de puntos vertical muestra el tiempo de decoherencia
τϕ = ℏ/γϕ. (b) Coeficiente de difusión escalado D/a2 frente a la magnitud de decoherencia γϕ/J
para diferentes W . Las curvas negras sólidas resultan de la Ec. (3.7). Los diferentes regímenes son
extendidos (círculos verdes), críticos (cuadrados rojos) y localizados (triángulos azules). La línea
punteada negra horizontal es la estimación teórica coherente D0/a

2; la línea discontinua negra
es la asintótica D/a2 ≃ 2J2/ℏγϕ, y la línea punteada vertical es la decoherencia característica
γcϕ = 2ℏ/τW . Datos numéricos obtenidos por el método QD (símbolos) para N = 1000. En todos
los paneles: q = (

√
5− 1)/2, J = 1 y ℏ = 1. (c) Coeficiente de difusión D/a2 frente a W/J para

diferentes γϕ. Las curvas coloreadas se calculan a partir de la ecuación (3.2). Los símbolos se
obtienen de Quantum Drift. N = 1000.
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3.3. Un modelo de mediciones cuánticas.

Cuando un sistema cuántico es afectado por ruido, considerado a partir del modelo
de Haken-Strobl, puede pensarse que el mismo es sistemáticamente medido por el en-
torno [90,180]. Estas mediciones ocurren en momentos aleatorios, donde los tiempos entre
mediciones se distribuyen como p(t) = e−t/τϕ/τϕ, con τϕ = ℏ/γϕ. En esta sección, em-
pleamos esta interpretación de la decoherencia para obtener expresiones analíticas para
el coeficiente de difusión.

Cuando se produce la medición, el sistema tiene una distribución de probabilidad de
estar en la posición r, P0(r, t, r0, t0), determinada por la dinámica Hamiltoniana coherente.
La posición inicial, r0 en t0, solo definirá el centro de la densidad de probabilidad, ya
que el sistema es isotrópico. Esta suposición es válida en los tres modelos discutidos
en este trabajo, a menos que la excitación esté cerca de los bordes. En consecuencia,
P0 (r, t, r0, t0) = P0 (r − r0, t− t0, 0, 0). Por simplicidad consideraremos r0 = 0, t0 = 0.

La densidad de probabilidad de medir el sistema en el sitio r en el tiempo t una vez
incluido el proceso de medición (P̃ (r, t, 0, 0)) está determinada por la ecuación integral:

P̃ (r, t, 0, 0) = P0(r, t, 0, 0)

(
1−

∫ t

0

p(ti)dti

)
︸ ︷︷ ︸

Sin medición.

+

∫
dri

∫ t

0

dtip (ti) P̃ (r, t, ri, ti)P0 (ri, ti, 0, 0)︸ ︷︷ ︸
Medición en (ti,ri)

,

(3.8)
que consideraba la probabilidad de no ser medido y, recurrentemente, de ser medido varias
veces.

Para analizar directamente el segundo momento de la distribución multiplicamos por
r2 e integramos sobre r en ambos lados:

σ2(t) = σ2
0(t)

(
1−

∫ t

0

p(ti)dti

)
+

∫
dri

∫ t

0

dtip (ti)

∫
drP̃ (r, t, ri, ti) r

2︸ ︷︷ ︸
r2i+σ2(t−ti)

P0 (ri, ti, 0, 0) ,

σ2(t) = σ2
0(t)

(
1−

∫ t

0

p(ti)dti

)
+

∫ t

0

dtip (ti)σ
2
0 (ti) +

∫ t

0

dtip (ti)σ
2 (t− ti) , (3.9)

donde hemos utilizado la independencia de las probabilidades del sitio y tiempo inicial.
Puede demostrarse mediante la transformada de Laplace en la ecuación (3.9) (Apén-

dice C), que para p(t) y σ2
0(t) “bien comportadas” (cumplido trivialmente en los sistemas

que consideramos), la dinámica de la varianza σ2(t) se vuelve difusiva a tiempos suficien-
temente largos. Por lo tanto, en el límite de tiempo largo (t→ ∞) tenemos:

σ2(t) ≃ 2Dt,(
1−

∫ t

0

p(ti)dti

)
≃ 0,∫ t

0

dtip (ti) ti ≃ τ,
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y, reemplazando en Ec. (3.9) se obtiene Ec. (3.7):

D =

∫∞
0
dtip (ti)σ

2
0 (ti)

2τ
.

Entonces, si σ2
0(t) = 2D0t ∀t el proceso de medición no afecta el coeficiente de difusión:

D = 2D0

∫∞
0
p(ti)tidti

2τ
= D0. (3.10)

Una dinámica físicamente más realista puede ser modelada como inicialmente balística
hasta algún tiempo τW , seguida de una dinámica difusiva:

σ2
0(t) =

{
v20t

2 si t < τW
2D0t si t > τW

con D0 =
v20τW
2

(3.11)

de donde sigue,

D =
1

2τ

(∫ τW

0

2D0

τW
t2p(t)dt+

∫ ∞

τW

2D0tp(t)dt

)
, (3.12)

esta expresión permite observar que la dependencia de D con el ambiente dependerá de
en que régimen dinámico ocurren la mayoría de las mediciones. Si las mediciones suceden
siempre en el régimen difusivo, D es en consecuencia igual a su valor coherente. En caso
contrario, si las mediciones caen en el régimen balístico, D decrecerá proporcionalmente
a ⟨t2⟩p(t)/⟨t⟩p(t), usualmente ∝ 1/γϕ.

Utilizando un proceso de Poisson para las mediciones: p(t) = e
−t/τϕ

τϕ
, tenemos:

D(τϕ) = D0

(
2τϕ
τW

−
(
1 +

2τϕ
τW

)
e−τW /τϕ

)
, (3.13)

esta expresión captura la dependencia de D para valores grandes y pequeños de τϕ frente
a τW , de modo que D ≈ D0(1 − 1

6
( τW
τϕ
)2) y D ≈ v20τϕ respectivamente. En una primera

aproximación, se podría considerar un proceso pδ(t) = δ(t − 2τϕ), que produciría un
comportamiento totalmente independiente de la decoherencia para τϕ < τW/2 entrando
luego en el régimen de Zenón cuántico: D̃ = v20τW = D0 para τϕ > τW/2 y D̃ = v202τϕ =
D02τϕ/τW para τϕ < τW/2.

3.3.1. Generalización para condiciones iniciales no locales.

Las ecuaciones (3.8) y (3.9) son aplicables cuando el estado inicial está localizado en la
base de sitios, es decir, un estado similar a una función delta. En esta sección, exploraremos
el efecto de comenzar con un paquete de ondas coherente que no sea una delta. En este
caso, la evolución de la probabilidad tras las mediciones no es necesariamente la misma
que inicialmente, dado que ahora no partimos de un estado local.

A continuación, la siguiente notación será utilizada: P̃ (r, t) será la densidad de pro-
babilidad final, P̃0(r, t, 0, 0) la densidad probabilidad en presencia del entorno cuando
la condición inicial es una delta, P0(r, t, 0, 0) la evolución coherente de un estado delta,
y PCI(r, t) la evolución coherente con una condición inicial particular. La probabilidad
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P̃ (r, t) será consecuencia de una evolución coherente del estado inicial PCI(r, t) y de una
evolución que tiene en cuenta el colapso del estado. Este último término describe una
evolución coherente hasta un tiempo dado ti, donde el ambiente colapsa la función de
onda a un estado local, este estado evoluciona en presencia del ambiente (P̃0 (r, t, ri, ti)):

P̃ (r, t) = PCI(r, t)

(
1−

∫ t

0

p(ti)dti

)
+

∫
dri

∫ t

0

dtip (ti) P̃0 (r, t, ri, ti)PCI (ri, ti) ,

donde P̃0 (r, t, ri, ti) queda determinado a partir de

P̃0(r, t, 0, 0) = P0(r, t, 0, 0)

(
1−

∫ t

0
p(ti)dti

)
+

∫
dri

∫ t

0
dtip (ti) P̃0 (r, t, ri, ti)P0 (ri, ti, 0, 0) ,

siendo equivalente a la ecuación (3.8) y resolviéndose de manera independiente de la
primera.

Suponiendo simetría de translación en el tiempo y el espacio, podemos escribir:

σ̃2
CI(t) = σ2

CI(t)

(
1−

∫ t

0

p(ti)dti

)
+

∫ t

0

dtip (ti)σ
2
CI (ti) +

∫ t

0

dtip (ti)σ
2 (t− ti) , (3.14)

donde σ̃CI es la dispersión en presencia de ruido de una excitación particular (no local)
con una dispersión coherente σ2

CI(t), σ2(t) es la varianza de un estado inicial local (tipo
delta) dado por la ecuación (3.9). Puede notarse que el efecto de la condición inicial es
transitorio, siendo los valores a tiempos largos gobernados por la dinámica decoherente de
excitaciones locales. Esto es consistente con la perdida de memoria durante la evolución
debido a la presencia del ambiente.

Estado inicial Gaussiano.

Ahora consideramos un paquete de ondas Gaussianas estacionarias como estado inicial:

ψn(t = 0) =

√
2 cos(k0n)√√
π[1 + e−k20σ

2
x ]
exp[− n2

2σ2
x

], (3.15)

donde σx es el ancho del paquete, y k0 el módulo medio del momento. La propagación
coherente de esta función de onda será:

σ2
G(t) = 2J2t2 (1− f(k0, σx)) + σ2

G(t = 0)2. (3.16)

con f(k0, σx) = e
− 1

σ2
x
ek

2
0σ

2
x cos(2k0)+1

ek
2
0σ

2
x+1

. Usando las ecuaciones descritas anteriormente, se de-
riva:

σ̃2
G(t) =

4J2

Γ2

[
(Γt− 1) + e−tΓ − f(k0, σx)(1− (tΓ + 1)e−tΓ)

]
+ σ2

G(t = 0)2, (3.17)

lo cual coincide con el resultado obtenido mediante el formalismo de Lindblad [181]. Si
bien el comportamiento a tiempos largos queda determinado totalmente por la diná-
mica de excitaciones locales, el análisis del transitorio generado por paquetes coherentes
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Figura 3.4: (a,b) Coeficiente de difusión versus decoherencia para el modelo HHAA. Los sím-
bolos se han obtenido de la evolución temporal, las curvas punteadas de la Ec. (3.2) [Expresión
Green-Kubo], curvas coloreadas con guiones y puntos (en tonos grises) de la ecuación (3.18)
[Proceso Delta] y curvas negras sólidas de la ecuación (3.7) [Proceso de Poisson]. También se
muestra: el coeficiente de difusión en el régimen de decoherencia fuerte (línea discontinua ne-
gra) y el coeficiente de difusión intrínseco en la MIT (D0) como una línea de puntos horizontal,
Ec. (2.23). La curva amarilla corresponde a la ec. (3.13). El panel (b) es el mismo que (a) pero
en escala logarítmica lineal y excluyendo los datos del régimen extendido.

determinados es relevante en experimentos en materiales como en varias tecnologías cuán-
ticas [181].

3.4. La cadena HHAA con decoherencia II.

En esta sección, se lleva a cabo un análisis numérico y analítico de la cadena de
HHAA con decoherencia, detallando el comportamiento del coeficiente de difusión en
cada régimen. Se comparan (y combinan) resultados de simulaciones QD, el método de
colapso cuántico y el método de Green-Kubo. Se examina cómo varía el coeficiente de
difusión D en los límites de decoherencia débil y fuerte, así como su dependencia con el
vector de onda q asociado al potencial de HHAA.

3.4.1. Los regímenes límite.

Combinando los resultados analíticos para la dinámica de σ2
0(t) en el modelo HHAA

(Sección 2.3.2) con la Ec. (3.7), es posible obtener el comportamiento de D en el límite
de decoherencia fuerte y débil.

La ecuación (3.7) puede interpretarse como el coeficiente de difusión generado por una
caminata aleatoria de pasos temporales δt camino libre medio l. El mismo se calcula a
partir del valor esperado de la dispersión coherente l2 =

∫∞
0
σ2
0(t)p(t)dt. En esta sección

consideramos una caminata aleatoria correspondiente a un proceso delta [182] donde el
sistema es medido por el entorno en tiempos iguales δt = 2ℏ/γϕ (proceso delta) y un
proceso de Poisson, p(t) = e−t/τϕ/τϕ. En el primer caso, el coeficiente de difusión está
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Figura 3.5: Coeficiente de difusión versus decoherencia para el modelo HHAA. Los símbolos
se han obtenido de la evolución temporal de QD, las curvas punteadas de la fórmula de Green-
Kubo y las líneas discontinuas representan las estimaciones analíticas. (a) Fase extendida, los
resultados analíticos corresponden a la Ec. (3.20) (líneas discontinuas de color negro). (b) Fase
localizada, los resultados analíticos corresponden a la Ec. (3.23) (líneas discontinuas de color
negro). Los parámetros son N = 1000, Q = (

√
5− 1)/2, J = 1 y ℏ = 1.

directamente determinado por la dispersión coherente en el momento de la medición:

D =
l2

2δt
=
σ2
0(t =

2ℏ
γϕ
)

2 2ℏ
γϕ

, (3.18)

esta expresión, por inexacta que sea, puede considerarse una primera aproximación al
coeficiente de difusión.

Las figuras 3.4 muestran el coeficiente de difusión obtenido de la evolución temporal
(símbolos), utilizando la fórmula de Green-Kubo Ec. (3.2) (curvas punteadas), el proceso
delta Ec. (3.18) (curvas coloreadas con puntos y guiones) y de la integración numérica
de Ec. (3.7) con un proceso de Poisson (curvas negras sólidas). La curva amarilla corres-
ponde a la Ec. (3.13) donde σ2

0(t) es aproximado por una función a trazos. Observamos
que usando un proceso de Poisson (Ec. (3.7)) obtenemos resultados más suaves que con
un proceso Delta (Ec. (3.18)), ya que las fluctuaciones producidas por interferencias par-
ticulares se borronean debido a “mediciones” a distintos tiempos. Ambas curvas pueden
obtenerse con un costo computacional casi idéntico, lo que indica que el proceso delta es
útil principalmente como una primera aproximación o para obtener una intuición sobre
el comportamiento esperado.

Decoherencia Fuerte.

Para una decoherencia lo suficientemente grande, γϕ ≫ ℏ/τW , el ruido interrumpe la
dinámica antes de que la excitación note la naturaleza del sistema, por ejemplo, una fase
extendida, crítica o localizada. Esto se conoce como el régimen de Zenón fuerte o Zenón
cuántico directamente. En este caso, la medición (o la mayoría de las mediciones) ocurre
durante la dinámica balística inicial, donde la varianza crece como σ2

0(t) = 2a2 J
2

ℏ2 t
2. Por

lo tanto, la dinámica corresponde a una caminata aleatoria con un camino libre medio
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l2 = 2a2 J
2

ℏ2 δt
2 y un tiempo libre medio δt = 2ℏ

γϕ
. Sigue que el coeficiente de difusión es:

D =
1

2

2a2J2

(γϕ/2)2
γϕ
2ℏ

=
2a2J2

ℏγϕ
. (3.19)

El mismo resultado se obtiene con el proceso de Poisson p(t) = e−t/τϕ/τϕ. Este resultado
es válido para todo valor de γϕ en una cadena ordenada infinita (W = 0) [183], ya que
en ese caso τW → ∞. Observe que la Ec. (3.19) también es válida en presencia de ruido
correlacionado (por ejemplo, procesos binarios y gaussianos), donde se ha demostrado
que solo implica una renormalización de la intensidad de la decoherencia para tiempos de
correlación cortos [90, 184].

Fase extendida (W < 2J).

Para una magnitud de decoherencia suficientemente pequeña (mientras más cerca
estemos de la MIT, más pequeña), el sistema evoluciona coherentemente hasta alcanzar
el régimen balístico de tiempos largos discutido en el capítulo anterior. En este caso,
σ2
0(t) =

a2|2J−W |2
2ℏ2 t2 de donde tenemos:

D =
a2|2J −W |2

2ℏγϕ
. (3.20)

Como fue percatado en el párrafo anterior, es necesario notar que a medida que nos
acercamos al MIT, nuestra estimación es válida para un valor de decoherencia cada vez
menor, ya que el sistema ingresa al régimen balístico a tiempos más largos. Usando el
proceso de Poisson p(t) y la Ec. (3.7) obtenemos los mismos resultados. En la Fig. 3.5a
comparamos el coeficiente de difusión obtenido de las simulaciones numéricas (símbolos)
con la aproximación analítica Ec. (3.20).

MIT (W = 2J).

En el punto crítico, para t > τW la dinámica es difusiva y la varianza depende lineal-
mente del tiempo de medición σ2

0(δt) = 2D0δt. Dado que tenemos l2 = 2D0δt, siempre
que γϕ < 2ℏ/τW , y D = l2/(2δt) obtenemos:

D =
2D0δt

2δt
= D0, (3.21)

es decir, un coeficiente de difusión independiente de la decoherencia.
Este resultado se demostró con anterioridad en la Sección 3.3, siendo válido para

una dinámica difusiva a todo tiempo. Por otro lado, cuando consideramos una dinámica
balística para tiempos cortos y un proceso de medición de Poisson aparecen algunas
correcciones.

Fase localizada (W > 2J).

Al igual que en la fase deslocalizada, para una decoherencia suficientemente pequeña
(dependiendo de qué tan cerca estemos del MIT), el sistema se localiza con una longitud
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de localización ξ = l/
√
2 antes de que el ambiente produzca un efecto notable. Entonces,

considerando σ2
0 = l2 en la ecuación (3.7):

σ2(t) =
l2

τϕ
t = l2

γϕ
ℏ
t = 2ξ2

γϕ
ℏ
t. (3.22)

Este límite también se encuentra en la Ref. [167] partiendo de la ecuación 3.2. Dado que
en el modelo HHAA 2ξ2 = 2a2(2 ln(W/2J))−2, el coeficiente de difusión es:

D =
ξ2γϕ
ℏ

=
a2γϕ

(2 ln(W/2J))2ℏ
. (3.23)

El resultado analítico se muestra en la Fig. 3.5b en comparación con los resultados numé-
ricos. Observamos una pequeña discrepancia con la fórmula anterior, basada en el hecho
de que el l2 encontrado numéricamente es ligeramente más pequeño que el teórico. Obser-
ve que, a diferencia de los otros regímenes, el proceso delta y el de Poisson no producen
la misma expresión (el uso de un proceso delta subestimaría el coeficiente de difusión en
un factor de dos).

3.4.2. Variando la inconmensurabilidad del potencial.

El tiempo medio de dispersión elástica τW y, consecuentemente, el coeficiente de di-
fusión derivado para el punto crítico en ausencia de decoherencia en el Capítulo 2 (Ec.
(2.23)) muestra una dependencia de q. Esto vuelve al vector de onda del potencial q un
parámetro ideal para testear la validez de nuestra predicción analítica y la generalidad del
régimen independiente de decoherencia. En esta sección analizamos la dinámica, coherente
y en presencia del ambiente, con otros valores irracionales de q en el punto crítico.

Particularmente estudiamos la dinámica del sistema usando fracciones de la proporción
áurea como números irracionales q = qg/m, donde m es una potencia entera de dos. Las
fracciones continuas de los irracionales utilizados se presentan en la Tabla I. Las pruebas
con números irracionales de la forma [0, {m}] arrojan resultados similares.

El desparramo en función del tiempo del paquete de ondas en ausencia y presencia de
decoherencia, junto con la estimación analítica para el coeficiente (Ec. (2.23)) de difusión,
se muestra en la Fig. 3.6a,b. Como se puede ver, el crecimiento balístico inicial (Ec. (2.18))
dura hasta un tiempo τW (Ec. (2.22)), indicado como líneas verticales. A partir de τW
la dinámica es difusiva con un coeficiente de difusión dado por la Ec. (2.23). Notamos,
ver panel (a), la presencia de oscilaciones en el segundo momento cuya amplitud aumenta
a medida que q disminuye. Estas oscilaciones se borran parcialmente en presencia de
decoherencia a tiempos prolongados, como se muestra en la Fig. 3.6b para γϕ = 0.02.

La Figura 3.6c muestra los valores ajustados de D (símbolos) junto con los valores
obtenidos de la ecuación (3.2) (curvas discontinuas) como función de γϕ para diferentes q
en la MIT. Como líneas discontinuas verticales trazamos γcϕ = 2ℏ

τW
, que coinciden con el

inicio del régimen de decoherencia fuerte, donde el coeficiente de difusión disminuye con la
decoherencia. Observe que para valores grandes de m, el coeficiente de difusión D exhibe
oscilaciones significativas con respecto a γϕ. Este fenómeno surge de las oscilaciones obser-
vadas en la dinámica coherente (Ec. (3.7)), probablemente debido a la irracionalidad más
débil de q en comparación con qg, lo que conduciría a periodos de crecimiento “balístico” y
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Figura 3.6: Paneles superiores: Evolución temporal de la propagación de una excitación en
una cadena HHAA con q = qg/m en criticidad. Las líneas discontinuas verticales muestran
τW (Ec. (2.22)), las líneas discontinuas transversales corresponden a σ2(t) = 2D0t (Ec. (2.23)),
mientras que la línea de puntos muestra la evolución balística inicial (Ec. (2.18)). (a) γϕ = 0,
(b) γϕ = 0.02. Paneles inferiores: (c): Coeficiente de difusión en función de la decoherencia γϕ.
D se calcula a partir de la dinámica QD (símbolos) y de la ecuación. (3.2) (líneas discontinuas).
Las líneas de puntos horizontales muestran D0 (Ec. (2.23)) y las líneas de puntos verticales
γcϕ = 2ℏ

τW
. (d): El coeficiente de difusión y la magnitud de desfase se vuelven a escalar en D0 y

γcϕ respectivamente. En los cuatro paneles, los colores (tonos de grises) indican diferentes valores
de m. Los parámetros son N = 10000, W = 2J .
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Tabla 3.1: Fracción continua de los irracionales utilizados q = qg/m. Los números entre llaves
se repiten infinitamente en la fracción.

Fracción continua
√
5−1
2

= [0, {1}] = 1

1 +
1

1 + · · ·

1
2

√
5−1
2

= [0, 3, {4}] = 1

3 +
1

4 +
1

4 + · · ·

1
4

√
5−1
2

= [0, 6, {2, 8}] = 1

6 +
1

2 +
1

8 +
1

2 + · · ·

1
8

√
5−1
2

= [0, 12, {1, 16}] = 1

12 +
1

1 +
1

16 +
1

1 + · · ·

periodos de estancamiento. Una investigación más detallada es necesaria para comprender
en detalle el origen de estas interesantes oscilaciones. En la Fig. 3.6d se muestra el coefi-
ciente de difusión reescalado por el valor teórico en ausencia de decoherencia (Ec. (2.23))
y γϕ reescalado por la tasa de dispersión elástica γcϕ = 2ℏ

τW
. La superposición observada

Fig. 3.6d confirma la validez de nuestras expresiones analíticas de D y τW en función de
q.

3.5. ¿Criticidad o difusión?

En este punto, parece estar claro que es la dinámica coherente del sistema lo que induce
la estabilidad (o no) del coeficiente de difusión. Sin embargo, debido a que el modelo de
HHAA es difusivo solo en el punto crítico, la separación de ambos casos resulta imposible.
Es necesario, por consiguiente, encontrar modelos donde exista una dinámica difusiva
independientemente de la presencia o no de un punto crítico.

Por este motivo en las siguientes secciones se estudiarán otros dos modelos: A) la cade-
na de Fibonacci [141,171,185] donde no hay MIT, pero el transporte cambia suavemente
de superdifusivo a subdifusivo a medida que varía la amplitud del potencial en el sitio;
B) El modelo PBRM [161] que presenta una MIT y un segundo momento difusivo en un
rango finito de parámetros alrededor del MIT.
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Figura 3.7: (a) Evolución temporal de la varianza de la excitación en ausencia de decoherencia
para W/J = {1, 3.15, 5} en la cadena de Fibonacci. Las líneas de puntos negros muestran la
dispersión balística inicial (Ec. (2.18)), las flechas verticales τW (Ec. (2.21)), y las líneas a trazos
negras muestran el comportamiento de la ley de potencia después de τW . (b) Coeficiente de
difusión en función de la magnitud de la decoherencia. Los símbolos se ajustan directamente de
la dinámica QD, las curvas negras muestran la Ec. (3.7) integrada numéricamente usando un
proceso de Poisson, y las curvas en amarillo la expresión analítica (3.26). Las flechas verticales
corresponden a 2ℏ/τW , donde comienza el régimen de decoherencia fuerte indicado por una línea
de puntos negros. Las líneas discontinuas de color negro indican el comportamiento tipo ley de
potencias a valores pequeños de γϕ. Las simulaciones se realizaron en una cadena de longitud
N = 104.

3.5.1. La cadena de Fibonacci.

El modelo de Fibonacci es un primo hermano del modelo HHAA, también es un modelo
del tipo tight-binding a primeros vecinos, descrito por el Hamiltoniano:

Ĥ =
∑
n

J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) + εn |n⟩ ⟨n| , (3.24)

con la diferencia que las energías de sitio vienen dadas por εn = W (⌊(n+ 1)q2g⌋ − ⌊nq2g⌋),
siendo ⌊x⌋ la parte entera de x y qg =

√
5−1
2

la razón áurea. En este potencial, εn correspon-
de al enésimo elemento de la “Palabra de Fibonacci”, que puede ser obtenida concatenando
repetidamente las dos palabras anteriores de la secuencia: 0, 0W, 0W0, 0W00W, 0W00W0W0, ....

La dinámica en la cadena de Fibonacci ha sido estudiada en tanto coherentemente
como en presencia de decoherencia [186–188]. En ausencia de decoherencia se sabe que
el segundo momento crece, después de la dispersión cuadrática inicial, como una ley de
potencias σ2

0(t) ∝ tα con un exponente que depende de la amplitud del potencial en el
sitio. Crece subdifusivamente (α < 1) para W > 3.15J , difusivamente (α = 1) para
W = 3.15J y superdifusivamente (α > 1) para W < 3.15J , como puede ser observado
en la Fig. 3.7a. Las flechas verticales en la Fig. 3.7a, representan τW , calculadas a partir
de las ecuaciones Ec. (2.20) y (2.21) dando 1/τW = qgW/ℏ. Después de este tiempo, la
dinámica balística se transforma en una dinámica algebraica.

Este crecimiento del desparramo se puede escribir analíticamente, en forma aproxima-
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da y simplificada, de la siguiente manera:

σ2
0(t) =

{
v20t

2 si t < τW
2Atα si t > τW

con A =
v20τ

2−α
W

2
. (3.25)

En particular, para W = 3.15J , cuando la dinámica posterior es difusiva, obtenemos
D0 =

v20τW
2

. Esta predicción se muestra como una línea discontinua negra encima de la
curva roja.

Una vez que se introduce decoherencia, la dinámica se vuelve difusiva para todos los
valores de W . El coeficiente de difusión en función de la intensidad de la decoheren-
cia se calculó numéricamente mediante una dinámica utilizando el Quantum-Drift para
diferentes valores de W . Estos resultados se muestran como símbolos en la Fig. 3.7b.

A partir de la dinámica aproximada por la Ec. (3.25) y utilizando la Ec. (3.7) con un
proceso de Poisson obtenemos una expresión analítica para el coeficiente de difusión en
presencia de decoherencia:

D =
v20

(
τ3WE−α

(
τW
τϕ

)
+ατϕτ

2
WΓ(α)

(
ταϕ τ−α

W −
(

τW
τϕ

)−α
)
+2τ3ϕ−τϕe

− τW
τϕ (2τ2ϕ+2τϕτW+τ2W )

)
2τ2ϕ

, (3.26)

donde Γ(α) es la función Gamma de Euler, y E−α

(
τW
τϕ

)
=
∫∞
1
e
− τW

τϕ
t
tαdt.

En la Fig. 3.7b se compara el coeficiente de difusión obtenido de la dinámica (sím-
bolos) con la integración numérica de la Ec. (3.7) usando un proceso de Poisson (curvas
negras) y la expresión analítica (Ec. (3.7), curvas amarillas). De la superposición de las
curvas con los símbolos concluimos que el coeficiente de difusión depende únicamente de
la dinámica coherente y de la intensidad (y forma) del ruido. Note que la integración
numérica (curva negra) tiene una discrepancia con el coeficiente de difusión para valores
de W ≲ 3.15J cuando γϕ ≈ J . Esto se debe a que no existe un promedio sobre “fase”
y, como el comportamiento de excitaciones en posiciones distintas a un tiempo del orden
de uno sobre la amplitud del acoplamiento depende de las energías particulares de sus
vecinos, se observa esta interferencia particular.

De las ecuaciones (3.26) y (3.7), es claro que la dependencia de σ2
0(t) determina el

comportamiento de D(γϕ). Particularmente, sí σ2
0(t) ∝ tα entonces D(γϕ) ∝ γ

(1−α)
ϕ para

γϕ ≪ 2ℏ/τW . Este comportamiento es muestra en la Fig. 3.7b con líneas discontinuas
negras superpuestas a los datos numéricos. Estos resultados son consistentes con hallazgos
recientes reportados en Ref. [187].

3.5.2. Power-law banded random matrix (PBRM).

El modelo PBRM power-law banded random matrix describe cadenas tight-binding
unidimensionales (1D) de longitud N con acoples (hoppings) de largo alcance y energías
de sitio aleatorias. Este modelo está representado por matrices simétricas y reales de
tamaño N ×N , cuyos elementos son variables aleatorias estadísticamente independientes
caracterizadas por una distribución normal con media cero y varianza dada por,

⟨|Hii|2⟩ = J2 y ⟨|Hij|2⟩ = J21

2

1

1 + (|i− j|/b)2µ
con i ̸= j. (3.27)
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El modelo PBRM, Ec. (3.27), depende de dos parámetros de control: µ y b representan-
do el rango y longitud característica de los hoppings respectivamente, mientras que J es
una escala de energía que puede considerarse 1 para todo fin práctico. Para µ > 1 (µ < 1)
el modelo está en una fase aislante (metálica), es decir, sus autoestados son localizados
(deslocalizados). La transición entre la fase localizada y extendida (MIT), ocurre inde-
pendiente del valor de b para µ = 1 (punto crítico), donde es sabido que las autofunciones
son fractales.

Las propiedades estadísticas de las autofunciones y autovalores de este modelo han
sido ampliamente estudiadas [161,189–192]. Aquí estudiamos la dinámica de propagación
de una excitación inicialmente localizada en el medio de la cadena en ausencia y presencia
de un entorno decoherente.

Como en los sistemas anteriores, la propagación inicial de la excitación local es balísti-
ca, donde el segundo momento viene dado por σ2

0 = v20t
2. Generalizando la ecuación (2.18)

para tener en cuenta la aleatoriedad del Hamiltoniano, encontramos que la velocidad v0
es:

v20 = 2

N/2∑
n=1

⟨H2
n,0⟩n2 =

N/2∑
n=1

J2

1 + (n/b)2µ
n2, (3.28)

donde hemos sumado los sitios a la derecha e izquierda (factor 2) del sitio inicial (denotado
como 0). Esta velocidad inicial (Ec. (3.28)) diverge para µ < 3/2 al incrementar N como
N3−2µ. Para N grandes, b ≪ 1 y µ < 3/2, la suma se puede aproximar mediante una
integral, lo que lleva a v20 ≈ J2b2µ N3−2µ

(3−2µ)23−2µ .

Este desparramo inicial balístico dura hasta t = τW , el cual debe ser calculado numé-
ricamente, ya que la ecuación (2.20) solo es válida para cadenas con hopping a primeros
vecinos y un análisis similar con este modelo no produce una expresión simple. Sin em-
bargo, en una primera aproximación, si usamos la ecuación (2.20), con energías de sitio
no correlacionadas y distribuidas Gaussianas con ⟨|Hii|2⟩ = J2, obtenemos τW ∼ 1.

Para t > τW , encontramos numéricamente que si 0.5 < µ < 1.5 el segundo momento
de la excitación crece difusivamente (ver Fig. 3.8a para µ = 1). Notar que el parámetro b
modifica la velocidad inicial y el coeficiente de difusión. En consecuencia, elegir un pequeño
b (b = 0.01, por ejemplo) permite reducir tanto la magnitud de la dispersión inicial como
el coeficiente de difusión, generando una dinámica más lenta y teniendo una ventana
más grande para la dinámica difusiva antes de que el sistema alcance la saturación (a N
finito). En el régimen difusivo, encontramos σ2

0 ≈ v20(
√
2τW )t. El factor

√
2 se introduce

en función de los resultados numéricos para corregir la discrepancia en τW debido a los
hoppings de largo alcance.

Es importante señalar que, aunque el sistema está localizado para 1.0 < µ < 1.5, sus
autofunciones tienen colas que decrecen como una ley de potencias con exponente 2µ, por
lo tanto, su segundo momento divergeN → ∞. La presencia de estas colas gruesas permite
un crecimiento ilimitado en el tiempo del segundo momento en el límite de N → ∞. Para
µ < 1.5 el valor de saturación del segundo momento σ2

0,SV es σ2
0,SV = N2

12
f(b, µ), donde

f(b, µ) ≤ 1. Por consiguiente, para µ < 1.5 y asumiendo un crecimiento del segundo
momento de la forma σ2

0(t > τW ) = v20τ
2
W +

√
2v20τW (t− τW ), podemos calcular el tiempo

necesario para alcanzar el valor de saturación ts imponiendo σ2
0,SV = σ2

0(ts) de donde se
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Figura 3.8: (a) Evolución temporal del ancho de una excitación inicialmente localizada en au-
sencia de decoherencia en el modelo PBRM para µ = 1, b = 0.01 y N = {100, 1000, 5000, 10000}.
Las líneas verticales denotan τW (negro) y ts (color), mientras que la línea discontinua transver-
sal representa la dispersión difusiva teórica σ20(t)/v20 ≈

√
(2)t. (b) De arriba a abajo, las figuras

muestran el coeficiente de difusión obtenido mediante la Ec. (3.2) para µ = {0.80, 1.00, 1.30}. La
línea vertical discontinua de color negro marca la decoherencia característica donde la dinámica
comienza a estar dominada por el ruido y la dinámica balística inicial (fuerte régimen de Zenón).
Las líneas verticales discontinuas de colores muestran los valores de γϕ = 2ℏ/ts por debajo de los
cuales el efecto de tamaño finito comienza a ser relevante; la dependencia con N de los valores
se indica en cada gráfico.

obtiene:

ts =
σ2
0,SV√
2v20τW

+ τW
(
√
2− 1)√
2

∝ N2µ−1. (3.29)

Nuestra estimación de ts concuerda con el hallazgo numérico (ver Fig. 3.8a para µ = 1).
La ecuación (3.29) implica que a medida que N aumenta, para µ < 1/2 el valor de
saturación se alcanzará en tiempos más cortos y eventualmente la dinámica será siempre
balística (ts se vuelve más pequeña que τW ). En el caso contrario, para 1/2 < µ < 3/2, ts
aumenta con N y tenemos un crecimiento difusivo hasta la saturación.

Como en los modelos anteriores, la presencia de difusión cuántica coherente (para
1/2 < µ < 3/2), genera un régimen difusivo casi independiente de la decoherencia. La
Fig. 3.8b muestra el coeficiente de difusión como función de γϕ para µ = {0.80, 1.00, 1.30}
y diferentes valores de N obtenido mediante la Ec. (3.2) junto con los valores de 2ℏ/ts
y 2ℏ/τW , (líneas verticales). Se puede observar que para 2ℏ/ts ≲ γϕ ≲ 2ℏ/τW , D es casi
constante, ya que la mayoría de las “mediciones” generadas por el ambiente caen en el
régimen difusivo (después de τW y antes del tiempo de saturación ts). Cuando γϕ ≪ 2ℏ/ts
el ruido entra en la dinámica después de la saturación, generando efectos de tamaño finito.
De la ecuación (3.29) podemos ver que para 1/2 < µ < 3/2, ts aumenta con N , y los
efectos de tamaños finitos comienzan en valores más pequeños de la decoherencia, ver
Fig. 3.8b. Para γϕ > 2ℏ/τW , la decoherencia afecta la dinámica principalmente durante
la dispersión balística inicial, lo que lleva a una disminución del coeficiente de difusión
proporcional a v20.

Para µ < 1/2, la velocidad de la propagación inicial balística, ecuación (3.28), aumenta
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con N más rápido que el valor de saturación correspondiente. Por lo tanto, ts disminuye
con N , volviéndose más pequeño que τW y no dejando lugar a una dinámica difusiva.
Es decir, no se puede encontrar ninguna región independiente de la decoherencia para el
coeficiente de difusión.

Para µ > 3/2, ts converge a un valor constante a medida que N aumenta. Por lo tanto,
para γϕ < 2ℏ/ts el coeficiente de difusión dependerá linealmente de γϕ y no podemos
tener un régimen independiente de desfase. Esta situación es similar al caso localizado de
Harper-Hofstadter-Aubry-André.

Al igual que en las cadenas de HHAA y Fibonacci, a pesar de las amplias diferencias
entre los modelos, el mismo comportamiento es observado cuando se introduce decoheren-
cia: El coeficiente de difusión está prácticamente determinado por la dinámica coherente,
y si la misma es difusiva (aunque sea en una ventana temporal), D heredará de este la
estabilidad frente a la decoherencia para un rango de valores de γϕ.

La evolución cuántica de una excitación local comienza con una expansión cuadrática
del segundo momento de la función de onda. Esto implica que el coeficiente de difusión
en presencia de decoherencia, en el límite de decoherencia fuerte, decrecerá como 1/γϕ.
Por otro lado, si el comportamiento a tiempos largos es difusivo, la influencia de γϕ de
D será insignificante si la amplitud de decoherencia pequeña. La relación observada entre
D y v0, τW , sugiere que para muchos sistemas la transición entre estas dos dinámicas
será relativamente rápida, sin un régimen intermedio evidente. Esto nos lleva a plantear
la hipótesis de que, después de reescalar las magnitudes características del problema, la
relación entre D y γϕ exhibirá un comportamiento universal cuando el sistema presente
difusión coherente. Esta suposición será examinada en la sección 3.6.

3.5.3. Discusión: Caos, fractalidad y difusión.

Hasta este punto, queda claro que la difusión coherente contribuye a la estabilidad del
coeficiente de difusión al incorporar la decoherencia. Este fenómeno se observa de manera
consistente, independientemente de que el sistema esté en el estado crítico, es decir, pronto
a tener una transición de fase. Ahora surge la pregunta sobre el origen de esta difusión
coherente. En esta sección, se especula sobre la posible relación entre la difusión y el caos,
y de estos con la fractalidad del espectro y de las autofunciones.

Una característica compartida por los tres modelos es la presencia de fractalidad tanto
en el espectro como en las autofunciones. Para el modelo HHAA la fractalidad emerge
solo en el punto crítico, en la cadena de Fibonacci, sin embargo, está presente para cual-
quier amplitud del potencial de sitio. En el modelo PBRM las autofunciones son fractales
hasta una longitud característica que diverge (asimétricamente) en el punto crítico. Este
sistema se puede considerar como multifractal débil o fuerte dependiendo de la longitud
característica, específicamente, si b ≪ 1 ó b ≫ 1. Como hemos descrito en la sección
anterior, solamente podemos observar un comportamiento difusivo para b ≪ 1, es decir,
en la región fuertemente multifractal.

La relación entre la fractalidad del espectro, la presencia de caos cuántico, y la forma
de dinámica, si bien es discutida (aunque con bastante precaución) en la literatura, está
lejos de ser un tópico cerrado. Heurísticamente, uno puede imaginar que una evolución
desde un estado local va resolviendo el espectro hasta una escala δε ≈ ℏ/t. Por otro lado,
el número de modos que contribuyen efectivamente a la dinámica podría identificarse con
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el número de sitios, que crece como tα/2 (raíz de la varianza). En consecuencia, tenemos
una resolución δε ≈ ℏ/t a partir de δε−α/2 sitios, lo que sugiere un espectro fractal de una
dimensión menor a α/2 [146]. La relación entre autoestados fractales y el caos cuántico
no es clara, en algunos sistemas de muchos cuerpos se ha observado un comportamiento
multifractal en regiones de parámetros próximas a las asociadas al caos [193].

Por otro lado, conexión entre un comportamiento difusivo y el caos fue propuesta por
Robert Laughlin. Las mismas colisiones que producen el camino libre medio, facilitando
los procesos de relajación y determinan la resistividad de los metales y la ley de Ohm [26],
son las que originan el exponente de Lyapunov. En este caso, es el caos cuántico quien
proporciona un mecanismo posible para el movimiento aleatorio de los electrones. Es decir,
la conductividad es una medida de la aleatoriedad del potencial, en este caso se vuelve
una medida de la inestabilidad “caótica” del movimiento de los electrones. Los detalles
de esta visión son corregidos por la teoría de localización débil de Abrahams et al. [36]
que establecen los sutiles límites de esta visión. Es decir, la dinámica difusiva cuántica
conserva la fase cuántica, lo que puede ser evidenciado en el efecto Aharonov-Bohm y la
retrodispersión anómala [194,195].

Durante el desarrollo de este trabajo, buscando modelos donde sea posible observar una
dinámica difusiva, examinamos algunos modelos cuasi-1D. Variando en nivel de desorden
en cada sitio, la longitud en cada dimensión (número de sitios N y canales M), y el rango
de las interacciones en la dimensión ortogonal a la principal, notamos que es posible
generar una dinámica difusiva en una ventana temporal. Esto es una consecuencia directa
de la separación entre la longitud de localización y el camino libre medio. Un análisis
de las características espectrales de estos modelos podrían revelar alguna característica
pseudo-fractal, añadiendo soporte a la discusión previa.

3.6. Estabilidad universal contra la decoherencia.

Como analizamos a continuación de la Ec. (3.7), si la dinámica coherente es difusiva
en todo momento, entonces D = D0 para todas las intensidades de decoherencia. Por
otro lado, en el caso más realista, donde una dinámica balística inicial, σ2

0(t) = v20t
2 para

t < τW , es seguida por una dispersión difusiva σ2
0(t) = 2D0t, encontramos (Sección 3.3)

que la Ec. (3.7) desprende:

D(x)/D0 =
[
2/x− (1 + 2/x) e−x

]
, (3.30)

donde x = τW/τϕ, que captura la dependencia de D con valores grandes y pequeños de
τW/τϕ. Para τW/τϕ ≪ 1, el coeficiente de difusión D ≈ D0(1− 1

6
( τW
τϕ
)2), mientras que para

τW/τϕ ≫ 1, ingresamos al régimen cuántico fuerte de Zenón y D/D0 ≈ 2τϕ/τW .
Como se puede ver, depende solo de un único parámetro, la relación entre el tiempo

medio de dispersión elástica y el tiempo de decoherencia. Así, describe universalmente
cualquier modelo cuántico 1D caracterizado por una dinámica difusiva coherente, inde-
pendientemente de los detalles de su dinámica microscópica. Nuestros resultados analíticos
han sido confirmados numéricamente en la Figura 3.9, donde se muestra el coeficiente de
difusión normalizado D/D0 para los modelos HHAA, Fibonacci y PBRM, enfocándose
solo en el régimen de dinámica coherente de tipo difusivo, donde D0 es bien definido. El
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Figura 3.9: Coeficiente de difusión normalizado D/D0 frente a intensidad de decoherencia
renormalizada τW /τϕ (D0 = D(γϕ = 0)). Símbolos obtenidos de la dinámica QD: i) la cadena
HHAA en el punto crítico (cuadrados rojos), ii) la cadena de Fibonacci (triángulos rojo oscuro)
y iii) el modelo PBRM en el modo extendido fase (rombos huecos verdes), en el punto crítico
(cuadrados huecos rojos) y en la fase localizada (círculos huecos azules). La curva sólida es la
ecuación universal (3.30) mientras que la línea negra discontinua es el límite de τW /τϕ > 2.
La línea de puntos horizontal es D = D0. Para las cadenas HHAA y Fibonacci, τW y D0 se
calcularon analíticamente, Ec. (2.21). Para el modelo PBRM b = 0.01 y D0 resultan de un τW
ajustado.

comportamiento universal predicho por la Ec. (3.30) concuerda excelentemente con los
resultados numéricos de todos los modelos.

El hecho de que una dinámica cuántica difusiva coherente sea extremadamente robusta
al ruido ambiental contrasta notablemente con lo que uno esperaría considerando la dis-
persión (con una escala de tiempo τW ) y el ruido ambiental (con una escala de tiempo τϕ)
como dos procesos de Poisson independientes. En este caso, los dos procesos pueden con-
siderarse como un único proceso de Poisson con una escala de tiempo 1/τ = 1/τW +1/τϕ.
Así, para valores pequeños de τW/τϕ ≪ 1, tenemos D ≈ D0(1− τW/τϕ), en contraste con
la corrección cuadrática presente en la Ec. (3.30). Nuestros hallazgos también contrastan
con los resultados estándar en sistemas clásicos, donde el coeficiente de difusión para la
dinámica en presencia de ruido externo es la suma de los coeficientes de difusión dados
por los dos procesos [196].

3.7. Loschmidt echo (pureza).

La robustez de la dinámica difusiva ante decoherencia lleva a preguntarse cómo podría
diferenciarse una difusión coherente de una inducida por algún proceso, quizás oculto, de-
coherente. La respuesta aparece naturalmente al estudiar cómo la decoherencia afecta la
reversibilidad. Una dinámica difusiva coherente puede revertirse cambiando el signo del
Hamiltoniano. Sin embargo, la presencia de un ambiente destruye (valga la redundancia)
la coherencia que permite una reversibilidad perfecta. Esto se puede estudiar experimen-
talmente mediante el decaimiento de la pureza o eco de Loschmidt [67, 71]. La pureza,
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Figura 3.10: (a) Probabilidad de encontrar la excitación en el sitio inicial P00(t) para una
cadena HHAA para un sistema que evoluciona con L hasta τR = 25 (primera línea discontinua
vertical) cuando el signo del Hamiltoniano se invierte (es decir, continúa evolucionando con L†).
El eco de Loschmidt ocurre en P00(t = 2τR) ≡M(t = τR) (segunda línea discontinua vertical) y
su magnitud corresponde a la pureza. Los diferentes colores distinguen la tasa de la decoherencia.
Para los valores de decoherencia mayores, el eco no es evidente y P00(t) se acerca a una dinámica
difusiva (curva negra). (b) Decaimiento del eco de Loschmidt M(t) para diferentes γϕ en el
punto crítico calculado con el QD. La línea discontinua es una predicción basada en el coeficiente
de difusión coherente resultante de la dinámica Hamiltoniana. Las líneas de puntos verticales
muestran t = 4ℏ

γϕ
. Todos los datos con q = (

√
5− 1)/2, J = 1, ℏ = 1, W = 2J y N = 1000.

M(t) = Tr{ρ̂(t)2}, se ha utilizado ampliamente para medir cómo afecta la decoherencia a
un sistema, ya que M(t) ≡ 1 para un estado puro, mientras que M(t) < 1 para un estado
mixto. El eco de Loschmidt (LE), en presencia de un ambiente, resulta de revertir la parte
Hamiltoniana de una dinámica en un tiempo tR mediante el cambio en el signo general
del Hamiltoniano mientras el ruido ambiental se mantiene activo. La probabilidad de re-
torno al estado inicial P00(t) tiende a mostrar un resurgimiento en 2tR. Si bien el eco de
Loschmidt abarca un gran número efectos, siempre involucrando una reversión temporal,
para este sistema resulta ser equivalente a la pureza.

Matemáticamente, esto puede ser mostrado a partir del superoperador L,

L[ρ̂] = − i

ℏ

[
Ĥρ̂− ρ̂Ĥ

]
+ Lϕ[ρ̂] = L0 + Lϕ, (3.31)

donde Ĥ es el Hamiltoniano y Lϕ el operador de decoherencia de HS. Podemos ver que
L† = L†

0 + L†
ϕ = −L0 + Lϕ, y dado que la matriz de densidad es un operador Hermítico,

tenemos, ρ̂(t) = ρ̂†(t) =⇒ eLtρ̂0 = ρ̂0e
L†t. Usando estas propiedades reescribimos la

definición de pureza de la siguiente forma,

M(t) = Tr{ρ̂(t)ρ̂(t)} = Tr{eLtρ̂0eLtρ̂0} (3.32)

= Tr{ρ̂0eL
†teLtρ̂0} ≡ Tr{ρ̂0ρ̂LE(2t)}, (3.33)

donde queda claro que la pureza es una comparación entre la matriz de densidad inicial y
la matriz de densidad ρ̂LE(2t) que es el resultado de dos evoluciones. En detalle, hay una
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evolución inicial hacia adelante ρ̂(t) = e(L0+Lϕ)tρ̂0 y una segunda evolución con el signo
del Hamiltoniano invertido (evolución hacia atrás) ρ̂LE(2t) = e(−L0+Lϕ)tρ̂(t), es decir, la
pureza corresponde al eco observado en ρ̂0 después de revertir el tiempo. Si el estado
inicial es un estado puro ρ̂0 = |0⟩ ⟨0|, podemos obtener directamente la pureza numérica-
mente mediante una simulación estocástica de la evolución hacia adelante y hacia atrás,
observando la probabilidad de regresar al estado inicial (en nuestro caso, el sitio inicial),
lo que permite un cálculo eficiente utilizando el método Quantum-Drift.

3.7.1. Ecos en la cadena de HHAA.

La Figura 3.10a muestra la probabilidad de encontrar la excitación en el sitio inicial
P00(t) en función del tiempo total de la evolución para diferentes valores de γϕ, la excita-
ción evoluciona con L, ver Ec. (3.1), hasta τR (primera línea discontinua vertical) cuando
se invierte el signo del Hamiltoniano (es decir, para t > tR continúa evolucionando con
L†). El eco de Loschmidt ocurre en P00(t = 2τR) ≡M(t = τR) (segunda línea discontinua
vertical). Sin embargo, en caso de una decoherencia cuyo tiempo característico es mucho
menor que tR, el eco se pasa por alto entre las fluctuaciones estadísticas. En este caso,
el valor en t = 2τR está determinado principalmente por una “dinámica hacia delante”
P00(t) ∼ 1/

√
4πDt. Esto significa que la memoria del estado inicial se ha perdido casi

por completo. Así, la matriz de densidad tiende a la superposición incoherente de todos
los estados posibles. En este sentido, para t > 4ℏ/γϕ la difusión observada en el MIT
se diferencia de la difusión cuántica coherente en el hecho de que la dinámica ya no es
reversible.

Fig. 3.10b muestra LE/Pureza M(t) en función del tiempo. Para t ≳ 4ℏ/γϕ la caída
exponencial inicial LE/Pureza, caracterizada por la tasa de decoherencia 2γϕ, se convierte
en una ley de potencia determinada solo por el coeficiente de difusión: M(t) ∼ 1/

√
8πDt.

Este régimen es consecuencia de la imposibilidad de revertir la propagación de la excitación
más allá de una escala de tiempo 2ℏ/γϕ. Por lo tanto, la caída de LE solo detecta la
dinámica de expansión, que para W = 2J , es difusiva y por ende robusta contra la
decoherencia. Para magnitudes de decoherecia mucho más fuertes (γϕ ≫ γcϕ) D está en el
régimen de Zenón cuántico, generando un decaimiento lento en la pureza según D ∝ 1/γϕ.

Un comportamiento similar se encuentra para los regímenes extendido y localizado
(Figuras 3.11), donde pasado el decaimiento exponencial inicial, el LE decae con una ley
de potencias dependiente solo de D(γϕ,W ). De los resultados de las secciones anteriores
(para γϕ < γcϕ) inferimos que la tasa de decaimiento de la pureza en este régimen de ley
de potencia disminuye con γϕ en el régimen extendido, aumenta en el régimen localizado,
y permanece constante en el punto crítico. Esto puede interpretarse considerando que los
estados localizados están más protegidos de la decoherencia, ya que la decoherencia afecta
a menos sitios. En este caso, a medida que aumentamos la fuerza de la decoherencia, la
caída de la pureza es más fuerte tanto en el régimen de tiempo corto como en el de
largo tiempo como consecuencia de la deslocalización de la función de onda. En segundo
lugar, en el régimen extendido, mientras que una decoherencia más fuerte causa una
caída más rápida de la pureza en tiempos cortos, en tiempos largos, donde la dinámica
directa determina la tasa de caída, se vuelve más lenta para una decoherencia más fuerte.
Este resultado contraintuitivo se entiende como consecuencia del crecimiento balístico del
paquete de ondas, que con el tiempo lo hace más sensible a las fluctuaciones.
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Figura 3.11: Evolución temporal de la pureza (eco de Loschmidt) M(t) con diferentes valores
de decoherencia en una cadena HHAA con N = 1000. (a) W = J , fase extendida. (b) W = 3J ,
fase localizada. Las curvas coloreadas (en tonos grises) representan diferentes γϕ. Las líneas
discontinuas de color negro son predicciones teóricas (M(t) ∝ 1√

Dt
) donde D se obtuvo de la

ecuación (3.2).

La estabilidad del LE en para W = 2J también es reflejada al analizar el valor del eco
a tiempos fijos variando γϕ (Fig. 3.12a) o el ancho del paquete luego de invertir el signo del
Hamiltoniano. En el primer caso, la información obtenida es idéntica a la dada por la Fig.
3.10b, solo simplificando la visualización de las escalas de tiempo. Al estudiar la evolución
de la varianza, vemos que luego del cambio en el signo Hamiltoniano la función de onda
comienza a contraerse, sin embargo, esta reducción dura hasta el tiempo de eco (2τR) solo
sí τϕ > 2τR. Sí τϕ < 2τR, el paquete comienza a expandirse nuevamente. Esto se muestra en
la Fig. 3.12b, donde el tiempo en el que el segundo momento alcanza su mínimo (contado
a partir del tiempo de reversión τR), se representa como una función de τϕ. Cuando
τϕ < 2τR, el ancho del paquete de ondas alcanza su mínimo en aproximadamente t ≈ τϕ/2
y comienza a ampliarse nuevamente. Es interesante notar que para 2ℏ/τR < γϕ < 4ℏ/τR, la
función de onda comienza a expandirse nuevamente, aunque de todos modos observamos
un eco en la polarización.

En síntesis, observamos que la dependencia del coeficiente de difusión con la amplitud
de decoherencia es heredada por la dinámica de pureza (LE), ya que a tiempos largos decae
con una ley de potencia que depende únicamente de D. Como consecuencia, el decaimien-
to de la pureza en el punto crítico entra en un régimen independiente de decoherencia.
Sin embargo, este régimen difiere sustancialmente del decaimiento independiente de la
perturbación inducido por el caos propuesto por Jalabert & Pastawski [67], como podría-
mos haber insinuado en la Ref. [99]. De hecho, en nuestro caso, la longitud de correlación
de las fluctuaciones del ruido es menor que el camino libre medio, lo que no satisface las
condiciones necesarias para una caída del LE independiente de las perturbaciones. Para
nuestro ruido local, las colisiones con el ambiente generan una pérdida de memoria en la
función de onda, siendo el mismo tipo de irreversibilidad que la generada por un voltíme-
tro de Büttiker. En ese sentido, la caída de LE/pureza independiente del entorno no debe
interpretarse en el contexto de decoherencia independiente de la perturbación, sino más
bien como una fuerte irreversibilidad.
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Figura 3.12: (a) Pureza (eco de Loschmidt) en un tiempo fijo τR = {10, 25, 100, 500} en función
del tiempo de desfase τϕ = ℏ/γϕ en la cadena HHAA con W = 2J . Las líneas discontinuas
verticales de color (en tonos grises) marcan τR/4, mientras que las líneas de puntos y guiones
coloreadas (en tonos grises) muestran el comportamiento analítico de τϕ ≪ τR. (b) Tiempo
en el que la varianza del paquete de ondas alcanza su mínimo después de una inversión del
Hamiltoniano en τR en una cadena HHAA con W = 2J . Las líneas discontinuas de color vertical
(en tonos grises) representan 2τR mientras que las horizontales representan τR.

3.7.2. Paquetes como condición inicial.

En esta sección veremos los efectos en el decaimiento de la pureza (LE) cuando el
estado inicial no es un estado local. En particular, consideramos un paquete Gaussiano
en el centro de la cadena: |ψσx⟩ = 1

N
∑

i ai|i⟩ = 1
N
∑

i e
−(i−N/2)2/(2σ2

x)|i⟩, siendo N 2 la
constante de normalización. Escrito como una matriz densidad, este estado corresponde
a ρ̂σx(0) =

∑
i,j aia

∗
j |i⟩⟨j| → |ρ̂σx⟩ =

∑
i,j aia

∗
j(|i⟩ ⊗ |j⟩). En este caso, el decaimiento de

la pureza no comienza con una pendiente nula, ya que existen, inicialmente, coherencias
entre distintos sitios, las cuales empiezan a ser atenuadas por el término de HS.

Para ver esto, basta con una simple expansión perturbativa para tiempos pequeños:

M(t) = ⟨ρ̂(0)|et(−L0+Lϕ)et(L0+Lϕ)|ρ̂(0)⟩ (3.34)
≈ ⟨ρ̂(0)|(I + 2tLϕ + t2(L2

ϕ + [Lϕ,L0]))|ρ̂(0)⟩. (3.35)

Analizando el término lineal de la expansión, ⟨ρ̂σx|2tLϕ|ρ̂σx⟩ = −2γϕ
∑

i ̸=j |ai|2|aj|2 =

−2γϕ(1 −
∑

i |ai|4)t, observamos que cuando el IPR de la condición inicial es 1 (estado
totalmente localizado) el decaimiento de la pureza comienza con pendiente nula. Por el
contrario, mientras más desparramado está el estado inicial en la cadena (menor IPR),
mayor será la pendiente del decaimiento inicial. Siendo el caso límite 2γϕ para una cade-
na infinita y un estado inicial totalmente extendido. En situaciones intermedias podemos
aproximar

∑
i |ai|4 ≈

σx√
2π

. Este decaimiento inicial es parte de un decaimiento exponencial
de la pureza hasta que las coherencias del estado inicial desaparecen y la pureza se vuelve∑

i |ai|4, es decir, el estado se transforma en una superposición totalmente incoherente de
excitaciones locales con probabilidades determinadas por el estado inicial. Intrigantemen-
te, en este punto la pureza permanece en un plateau hasta que, eventualmente, comienza
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Figura 3.13: Evolución temporal del eco de Loschmidt (pureza) M(t) para una cadena HHAA
con N = 1000 y una magnitud de decoherencia γϕ = J . Cada panel corresponde a una fase
distinta (a) W = J , (b) W = 2J , (c) W = 3J . El estado inicial viene dado por una Gaussiana
en la base de sitios |ψσx⟩. Los colores de las curvas representan diferentes varianzas σx, donde
σx = 0 representa una excitación local. Las líneas horizontales a trazos muestran el IPR del
estado inicial para algunos valores de σx. La línea negra horizontal representa el valor mínimo
de la pureza observable para el tamaño del sistema utilizado.

a decaer con ley de potencias. En este punto, el decaimiento de la pureza tiene el mismo
comportamiento tanto para un paquete inicial como para una condición inicial local. Es
decir, los efectos causados por el estado inicial particular se pierden y el LE decae la mis-
ma manera que una excitación local (como una dinámica forward). Este comportamiento
se muestra en la Fig. 3.13 para los tres regímenes de la cadena HHAA, una decoherencia
de magnitud γϕ = J , y estados iniciales Gaussianos de diferente σx.

Cuál es origen y la interpretación del plateau observado sigue siendo una pregunta
abierta. Inicialmente, especulamos sobre un régimen donde la dinámica Hamiltoniana
crea coherencias al mismo tiempo que el término de HS las destruye. Sin embargo, esta
visión sería inconsistente con el hecho de que una dinámica Hamiltoniana conserva la
pureza. Otra posibilidad es que corresponda a un régimen del tipo Zenón cuántico donde
el propio ambiente no permite la creación de coherencia y por consiguiente su posterior
destrucción. Un análisis más profundo de este régimen es necesario, ya en muchos sistemas
la excitación inicial corresponde a una superposición coherente de varios estados.

3.8. Conclusiones.

Al estudiar el transporte cuántico en tres modelos 1D paradigmáticos, todos ellos
capaces de soportar un régimen de difusión cuántica, encontramos una sorprendente es-
tabilidad del transporte hacia procesos locales decoherentes que también se muestra en
el decaimiento del eco de pureza/Loschmidt. Esta estabilidad se origina en la naturaleza
difusiva de la dinámica cuántica coherente y se manifiesta en el hecho de que el coeficiente
de difusión es en gran medida independiente de la magnitud de decoherencia (es decir,
aproximadamente igual al coeficiente de difusión en ausencia de decoherencia) siempre
que el tiempo de decoherencia sea más largo que el tiempo medio de dispersión elástica.
Además, mediante un modelo de colapso cuántico para el ambiente desarrollamos una
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manera de calcular el coeficiente de difusión a partir de la dinámica coherente. Para el
régimen de difusión coherente, derivamos analíticamente una ley universal en la que el
coeficiente de difusión depende de un único parámetro: la relación entre estos tiempos
característicos. Destacamos que esta estabilidad no se presenta cuando una muestra está
en un régimen balístico o localizado, donde el coeficiente de difusión es altamente sensible
a la decoherencia.

Estos resultados pueden ser válidos en muchas situaciones realistas, incluso más allá de
los sistemas 1D. En muchos sistemas cuasi-1D, como ocurre en el modelo PBRM, el camino
libre medio elástico puede llegar a ser mucho mayor que la longitud de localización [148] y,
por lo tanto, el régimen similar a la difusión ocurriría en un amplio rango de parámetros.
Por lo tanto, incluso cuando la difusión coherente solo se produce dentro de una escala de
longitud (y tiempo) limitada, podría ser suficiente para garantizar un transporte eficiente
y estable bajo ruido ambiental.

Particularmente, nuestros resultados podrían probarse experimentalmente en átomos
fríos de Yb en una red óptica 1D donde el modelo HHAA ya está implementado [123,197].
La decoherencia local podría ser impuesta por fluctuaciones de ruido blanco dependientes
del tiempo que explotan patrones de interferencia no correlacionados en el tiempo y el
espacio. Otra situación que se ajusta a la condición anterior es la propagación de excitacio-
nes de espín nuclear en cristales cuasi 1D [198]. Allí, las interacciones dipolares naturales
son de largo alcance y el desorden se pueden activar y desactivar mediante pulsos de radio-
frecuencia apropiados, lo que permite un cambio entre regímenes balísticos y de difusión
cuántica. En particular, los términos de muchos cuerpos se manifiestan como una escala
de tiempo de decoherencia [126, 199]. Otros experimentos podrían probar la estabilidad
de la difusión del espín hacia la decoherencia. Además, algunos compuestos poliméricos
conductores reales, dispuestos en haces con canales activos degenerados, pueden estar en
el régimen de estabilidad que se analiza aquí [200–204].

Nuestras predicciones también pueden inspirar estudios de sistemas biológicos cuasi-
1D donde un transporte de carga o excitones robusto es funcionalmente relevante. Entre
ellas se encuentran la transferencia de energía y la autorreparación de las estructuras
helicoidales del ADN [205,206]. Allí, uno podría insinuar un papel crucial en la propaga-
ción de las excitaciones [207] en el desconcertante mecanismo a través del cual el ADN
transmite señales alostéricas a largas distancias [208]. En los sistemas fotosintéticos es
esencial un transporte eficiente de energía desde el complejo de antenas al centro de reac-
ción, seguido de una transferencia de electrones independiente de la temperatura desde
una clorofila a una quinona distante. Esto suscitó la pregunta de si la transferencia de
electrones ocurre como un proceso coherente a través de bandas de conducción, o a través
de múltiples saltos de túneles decoherentes entre estados localizados [209, 210]. La difu-
sión decoherente descrita en este capítulo es un mecanismo alternativo que merece más
estudio. En el propio complejo de antenas, hay una convergencia de escalas de energía (es
decir, los acoplamientos, el desorden y las fluctuaciones térmicas son aproximadamente
del mismo orden), que podría garantizar el régimen universalmente robusto que analiza-
mos. Además, el análisis de las estadísticas espectrales de varias moléculas biológicamente
relevantes sugiere que normalmente se encuentran en el límite entre un régimen balístico y
uno localizado [149]. De hecho, algunas proteínas, microtúbulos y ARN [155,158,211,212],
muestran un transporte sorprendentemente robusto contra la decoherencia inducida por
la temperatura [213,214].
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En resumen, damos una nueva perspectiva a la hipótesis, promovida para los sistemas
biológicos [97, 99], de que estar al borde del caos es favorable al transporte de carga o
excitónico. De hecho, el caos puede conducir a la difusión [26] y, por tanto, a una dinámica
cuántica extremadamente robusta con respecto al ruido ambiental. En perspectiva, sería
interesante analizar la presencia de difusión cuántica intrínseca en sistemas biológicos
realistas para establecer la relevancia funcional de nuestros hallazgos. Conjeturamos que
la difusión cuántica es una característica relevante del reino equilibrado de la Naturaleza.
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• Lozano-Negro, F. S., Navarro, E. A., Chávez, N. C., Mattiotti, F., Borgonovi, F.,
Pastawski, H. M., & Celardo, G. L. (2023). Universal stability towards decoherence
in quantum diffusive 1D chains. Physical Review A 109 (4), 042213
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Capítulo 4

Dinámica y OTOCs en sistemas de
espines interactuantes.

En este capítulo extendemos la secuencia GEA presentada en el Capítulo 2
a sistemas de muchos cuerpos, particularmente sistemas de espines interac-
tuantes. Se estudia cómo la misma puede ser utilizada para evaluar el nivel
de localización en la dinámica. Utilizado un aproximante de la ZOGE, de-
bido a su implementación más eficiente, se estudia el nivel de localización
cuando interacciones many-body son incluidas en el Hamiltoniano de Harper-
Hofstadter-Andrè-Aubry.

En la última década, se han hecho muchos esfuerzos para estudiar los efectos de las
excitaciones cuánticas de muchos cuerpos en redes con miras a comprender y controlar
su dinámica en sistemas cuánticos aislados [28]. En particular, si bien el desorden puede
producir la ausencia de difusión de excitaciones, i.e. localización de Anderson [33,35], las
interacciones débiles entre muchos cuerpos generalmente tienden a favorecer su propaga-
ción. Por lo tanto, estas interacciones deberían contribuir al equilibrio y la termalización.
Sin embargo, interacciones más fuertes conducirían a la localización de muchos cuerpos
(MBL) [40,41]. En una situación límite clara, los Fermiones que interactúan fuertemente
en una red producen un aislante de Mott [162]. En estas fases localizadas, la ergodicidad
se rompe y los observables locales no se relajan a los valores térmicos [43]. Por lo tanto,
se ha invocado a la MBL como un mecanismo que podría evitar el desparramo de una
excitación [20,22,40,44].

La caracterización experimental y numérica de la transición MBL en 3D ha sido ex-
tremadamente difícil de lograr. Un atajo natural es utilizar sistemas 1D cuyo potencial
externo es inconmensurado con la red subyacente, donde ya existe evidencia numérica
y teórica de que esta transición sobrevive a la presencia de interacciones [44]. Se reali-
zaron experimentos particularmente importantes en arreglos de átomos ultrafríos donde
se implementaron potenciales periódicos inconmensurados con la red [48, 120]. Dichos
sistemas se caracterizaron, experimental y teóricamente, calculando la entropía de entre-
lazamiento [48, 125], los desequilibrios de probabilidad [48, 125] y la dinámica de estados
perturbados [118, 144, 145]. Más recientemente, el desorden aleatorio natural en ciertos
sistemas de espín 1D se estudió mediante RMN [215]. En este caso, se pueden utilizar
implementaciones de las técnicas de Eco de Loschmidt (LE) que implican la medición de
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diferentes observables luego de aplicar una perturbación al sistema e invertir temporal-
mente su dinámica [216]. En la ref. [215] se utilizó una combinación de procedimientos
LE en cadenas de espín desordenadas para evaluar diferentes Funciones de Correlación
sin orden temporal (OTOC). A partir de estos, estudiaron el desparramo de excitaciones
colectivas de espín bajo diferentes Hamiltonianos y obtuvieron una estimación de la en-
tropía de entrelazamiento, que a su vez proporciona una evaluación de la transición de
fase MBL.

Dado que la RMN puede medir funciones de correlación local luego de una inversión
temporal [100,217], deberíamos poder desarrollar una nueva estrategia experimental para
monitorear excitaciones locales a medida que se propagan en una cadena de espín. Esto
podría convertirse en una herramienta única para caracterizar la transición MBL en un
sistema 1D. La idea es generalizar la secuencia GEA, discutida en el Capítulo 2, a sistemas
de espines, etiquetando el grado de desparramo después de que la excitación, en este caso
una magnetización, haya evolucionado bajo una dinámica Hamiltoniana. Este etiquetado
se logra mediante un pulso de gradiente de campo Zeeman, que da una fase diferente a
cada componente local de la polarización. Por tanto, la efectividad de la inversión temporal
que sigue a esta perturbación depende de cada una de estas fases locales. Este concepto
tiene una analogía con la secuencia utilizada para obtener las Coherencias Cuánticas
Múltiples (MQC) [82,143,218] de RMN, donde la fase Zeeman etiqueta el componente de
la excitación a lo largo de cada uno de los subespacios de proyección total de espín. Al igual
que en un experimento MQC, se puede medir un conjunto de OTOCs aplicando diferentes
gradientes de campo antes de la inversión del tiempo. Es posible aplicar la transformada
de Fourier sobre esta familia de LE en función de la perturbación, siendo su modo de
Fourier fundamental es nuestra magnitud objetivo: el entrelazamiento de gradiente de
orden cero (ZOGE). En ausencia de interacciones hemos visto que el ZOGE coincide con
el inverso de la razón de participación de la excitación evolucionada. En presencia de
interacciones, el ZOGE aproxima a la suma de los cuadrados de las componentes locales
de la magnetización.

En este capítulo, desarrollamos la base conceptual del procedimiento ZOGE y lo pro-
bamos numéricamente mediante el estudio de la dinámica de excitación en una cadena
de espín con un “desorden” dado por un potencial de Harper-Hofstadter-Aubry-André
(HHAA). La dinámica de espín es inducida por el Hamiltoniano XY, cuyos procesos de
flip-flop son equivalentes a un hopping para sistemas de un cuerpo. Este Hamiltoniano ha
sido utilizado para revelar la naturaleza cuántica de la dinámica de excitación en experi-
mentos de RMN [128,129]. En consecuencia, la evolución de una excitación de polarización
a partir de este Hamiltoniano, posee una correspondencia uno a uno con los resultados ob-
tenidos en el Capítulo 2. Sobre esta dinámica incluiremos interacciones de muchos cuerpos
considerando los Hamiltonianos XXZ, es decir, las interacciones anisotrópicas espín-espín,
rompiendo la correspondencia anterior y generando una dinámica completamente many-
body (MB). Estudiaremos la diferencias que surgen al introducir interacciones MB en la
secuencia diseñada y caracterizaremos la dinámica al incluir estas interacciones en los tres
regímenes (extendido, crítico y localizado) existentes en el Hamiltoniano HHAA.
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4.1. Un sistema modelo.

El modelo específico evaluado en este capítulo consiste en una cadena de N espines
1/2 a una distancia a. Las interacciones están determinadas por el Hamiltoniano de espín,

Ĥ = Ĥxy + ĤW + ĤI , (4.1)

donde:

Ĥxy = J

N−1∑
n=1

(Ŝx
nŜ

x
n+1 + Ŝy

nŜ
y
n+1) =

J

2

N−1∑
n=1

(Ŝ+
n Ŝ

−
n+1 + Ŝ−

n Ŝ
+
n+1), (4.2)

ĤW = W
N∑

n=1

cos (2πqna+ ϕ)Ŝz
n, (4.3)

ĤI = U
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(Ŝ+
n Ŝ

−
n Ŝ

+
n+1Ŝ
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Ŝz
n + Ŝz

n+1

2
+

1

4
). (4.4)

El Hamiltoniano Ĥxy contiene solo interacciones xy (o in-plane) entre los espines, lo cual
produce procesos de flip-flop (inversión de dos espines contiguos), y por consiguiente es
responsable de mover las excitaciones a lo largo de la cadena. Para entender mejor el
modelo es útil realizar una transformación a una representación Fermiónica utilizando la
prescripción de Jordan y Wigner [219]. En resumen, Ĥxy + ĤW solo involucra amplitudes
de salto entre diferentes sitios de la red (single electron hopping amplitudes) y energías
de sitio para una densidad local de Fermiones. En ambos casos, el Hamiltoniano es solo
un producto entre un operador de creación y destrucción, directamente mapeable al Ha-
miltoniano de una partícula (Ec. (2.2)). Consecuentemente, en ausencia de ĤI , nuestra
cadena de espines es totalmente análoga al sistema HHAA discutido en los Capítulos 2 y
3. La única salvedad necesaria es que esta equivalencia introduce un factor 1/2 en la mag-
nitud del hopping, por lo tanto, el valor crítico de la magnitud del potencial que induce
la transición de fases entre estados localizados y extendidos será Wc = J .

El Hamiltoniano de Ising ĤI considera la interacción de muchos cuerpos, ya que en la
representación Fermiónica requiere cuatro operadores Fermiónicos. Es evidente que este
término, por sí solo, no es capaz de inducir dinámica en la polarización. Así, cuando
esta interacción domina, cualquier excitación permanece esencialmente congelada en una
especie de fase de vitrosa (spin-glass). Sin embargo, cuando las interacciones se suman a
las excitaciones localizadas, el término ĤI proporciona múltiples vías a través del espacio
de Hilbert, lo que le permite continuar su proceso de difusión cuántica [74,75].

Si solo consideráramos el término xy y el término de Ising, Ĥxy + ĤI , el Hamiltoniano
es conocido como modelo XXZ y puede ser resuelto mediante el Bethe ansatz [220]. En
presencia de campos Zeeman locales, como puede ser ĤW , se observó que el modelo
presenta una distribución de niveles del tipo Wigner-Dyson [221], usualmente asociada al
caos cuántico.
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4.1.1. Condición inicial.

Para fijar ideas, consideramos los ingredientes idealizados de una configuración expe-
rimental de RMN [73], ya que otras configuraciones experimentales son a menudo adap-
taciones de estos conceptos. Se supone una energía térmica kBT = 1/β que es muy alta
en comparación con la frecuencia de Zeeman, ωo, y los parámetros relevantes en el Hamil-
toniano (kBT ≫ ωo ≫ J, U). Al igual que en el experimento del eco de polarización [100],
se utiliza una sonda local, por ejemplo un núcleo diferente, que está conectado a un espín
individual, digamos el sitio 0, para generar y medir la excitación inicial. Independiente-
mente, puede asegurarse que la polarización de cada uno de los demás espines se anule.
Por tanto, el estado inicial está representado por la matriz de densidad:

ρ̂0 =
Î + βωoŜ

z
0

Tr
{
Î + βωoŜz

0

} . (4.5)

Ya que Î no contribuye a la dinámica, ρ̂0 ∝ Ŝz
0 describe un estado pseudo-puro [222].

Cabe destacar que el subíndice 0 solamente alude a un sitio inicial, sin implicar la posición
del mismo dentro del sistema. En un experimento de RMN real, se utiliza una muestra
macroscópica en la que se abordan simultáneamente varios sitios distantes. Sin embargo,
esto sólo produce un observable más robusto que promedia las fluctuaciones cuánticas no
deseadas que caracterizan las mediciones individuales.

La naturaleza de la excitación se comprende mejor en términos de los operadores de
subida y bajada de espín, cuya correspondencia con los operadores Fermiónicos de creación
y aniquilación es directa. Estos operan en el estado de equilibrio térmico de N -espines
descrito por |Ψeq⟩ [73]. Consiguientemente,

|Ψ0⟩ =
Ŝ+
0 |Ψeq⟩∣∣∣⟨Ψeq| Ŝ−
0 Ŝ

+
0

∣∣∣Ψeq⟩
∣∣∣1/2 (4.6)

=
2N−1∑
r=1

eiϕr

2(N−1)/2
|↑0⟩ ⊗ |βr⟩ , (4.7)

donde el denominador asegura la correcta normalización del estado, ϕr es una fase aleatoria
y |βr⟩ describe un estado de la forma:

|βr⟩ = |s1⟩ ⊗ |s2⟩ ⊗ |s3⟩ ⊗ ...⊗ |sN−1⟩

con |sk⟩ ∈ {|↑k⟩ , |↓k⟩} .

Esta descripción supone que en el equilibrio térmico todas las correlaciones ya han
decaído y, por tanto, las fases pueden considerarse números aleatorios. Por supuesto, los
valores observados estarán sujetos a fluctuaciones cuánticas, como ocurre en un experi-
mento individual real. Sin embargo, este ruido no sobrevive al promedio del ensamble.

Es particularmente útil pensar en el subespacio de excitaciones con proyección de espín
negativa máxima, es decir, una excitación (espín up) y el resto down. Siendo estos estados
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Figura 4.1: (a) Esquematización del espacio de Hilbert en un sistema de espines dividido en
subespacios de magnétización total Mz. (b) Autovalores de Ô = Ŝz +

∑
i(i − 4)φŜz

i para un
sistema de N = 7 espines para φ = 0.05. Los rectángulos encierran estados que tendrían la
misma magnetización en ausencia del gradiente (subespacios Mz). (c-d) Zoom de la figura (b)
en los subespacios de Mz = 5/2 y Mz = 1/2 respectivamente.

descritos en la base computacional en la forma

|β1
n⟩ = | ↓1⟩ ⊗ |↓2⟩ ⊗ ... |↑n⟩ ...⊗ |↓N⟩ , (4.8)

Ĥ|αν⟩ = εν |αν⟩ = εν

N∑
n=1

aνn|β1
n⟩, (4.9)

ya que es el único subespacio donde la dinámica de una partícula (denotado con el supra-
índice 1), controlada por las energías εν , persiste incluso para U ̸= 0. De este modo, la
dinámica de la excitación está descrita por la función de correlación

cn|0(t) = ⟨β1
n| exp[−iĤt]

∣∣β1
0

〉
(4.10)

=
N∑
ν=1

exp[−iενt]a∗νnaν0 (4.11)

en términos de las auto-energías de una partícula εν y equivalente a un sistema tight-
binding.

Contrariamente, en los subespacios de excitaciones con proyección de espín mínima,
donde la cantidad de espines up y down es la misma o difiere en uno dependiendo de
la paridad de N , el sistema es análogo a un sistema de N sitios con N/2 partículas y
consiguientemente es el subespacio donde los efectos de interacciones de muchos cuerpos
son más notables. Al crecer el número de espines del sistema, este subespacio se vuelve
dominante, ya que la dimensión del mismo crece exponencialmente como

(
N

(N−1)/2

)
≈

4N/2/
√
πN/2, a diferencia del crecimiento lineal del subespacio de una partícula.

4.2. Generalización de la GEA.

A pesar de las diferencias que aparecen al considerar muchos espines en lugar de excita-
ciones de un cuerpo, podemos extender de manera natural la secuencia GEA desarrollada
en el Capítulo 2 a este sistema. Para ello, el gradiente de potencial debe transformarse
en un gradiente de campo magnético, la excitación inicial en un exceso de magnetización
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media en un sitio de la cadena y el eco sobre el sitio original en un eco en la magnetización
que vuelve al sitio inicial.

Considerando estas equivalencias, el exceso de polarización producto del estado inicial
∝ Ŝz

0 evoluciona durante un tiempo t. Entonces, cada componente local del estado es
perturbada por la acción de un pulso de gradiente de campo Ĥg =

∑
n nŜ

z
n. Nuevamente,

la intensidad de esta perturbación y la duración del pulso se ven reflejados conjuntamente
en una fase φ. El efecto se entiende fácilmente al considerar el espacio de proyección de
espín máximo negativo de la dimensión

(
N
1

)
discutido anteriormente, y el subespacio de

proyección de espín mínimo 1/2 de dimensión
(

N
(N−1)/2

)
. En el primero de estos subespacios,

el exceso de polarización local se identifica con una probabilidad local de una sola partícula
[70]. Esto implica que esta perturbación etiqueta cada componente local de la polarización
total con una fase nφ, tal como se vio en el Capítulo 1. Después de esto, el sistema
evoluciona hacia atrás en el tiempo (es decir, evolucióna bajo −Ĥ durante un tiempo
adicional t). Luego se registra la cantidad de magnetización que regresa al espín inicial.
Identificando el operador de Heisenberg

Φ̂φ(t) = eitĤ/ℏe−iφĤge-itĤ/ℏ. (4.12)

Podemos escribir todo el proceso como,

M(t, φ) =
⟨Ψeq|Ŝ−

0 Φ̂
†
φ(t)Ŝ

+
0 Ŝ

−
0 Φ̂φ(t)Ŝ

+
0 |Ψeq⟩

⟨Ψeq|Ŝ−
0 Ŝ

+
0 Ŝ

−
0 Ŝ

+
0 |Ψeq⟩

(4.13)

≡
⟨Φ̂†

φ(t)Ŝ
z
0Φ̂φ(t)Ŝ

z
0⟩β

⟨Ŝz
0 Ŝ

z
0⟩β

. (4.14)

donde es claro que el eco de Loschmidt (LE) bajo una perturbación (pulso) súbita tiene
la forma de un OTOC (Out of Time Order Correlator). En sistemas isotrópicos, por
ejemplo cuando la interacción viene dada por el Hamiltoniano de Heisenberg, es posible
expresar este eco en termino de una creación al tiempo inicial y una destrucción a tiempo
t: M(t, φ) = ⟨Ψeq|Φ̂†

φ(t)Ŝ
−
0 Φ̂φ(t)Ŝ

+
0 |Ψeq⟩/|⟨Ψeq|Ŝ−

0 Ŝ
+
0 |Ψeq⟩|.

El uso de dos notaciones alternativas permite enfatizar el significado físico de estos
objetos matemáticos, algo oscuro en la literatura. La primera línea tiene una interpretación
clara en términos de la dinámica de polarización iniciada por un operador que eleva el
espín en un estado térmico dado, |Ψeq⟩ sin polarización neta que se convierte en un
estado excitado |Ψ0⟩ = Ŝ+

0 |Ψeq⟩ en el momento inicial. Luego, evoluciona hacia adelante
en el tiempo bajo una dinámica Hamiltoniana e−itĤ/ℏ que desparrama la excitación. El
sistema es perturbado por un pulso de gradiente de campo e-iφĤg y luego, después de un
cambio repentino en el signo Hamiltoniano, evoluciona hacia atrás en el tiempo con eitĤ/ℏ.
Como la perturbación impide un retorno perfecto, su efecto es detectado como el fracaso
en alcanzar la polarización original. La segunda línea sigue la notación más estándar en
dinámica de espín donde ⟨·⟩β significa promedio sobre todos los estados de la base Zeeman
(Tr[·]) con su correcta normalización. La equivalencia entre estas dos vistas fue analizada
en [223].

La representación en términos de la matriz de densidad nos permite especificar la
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relación de este LE con un OTOC,

⟨[Φ̂φ(t), Ŝ
z
0(0)]

†[Φ̂φ(t), Ŝ
z
0(0)]⟩β = 2⟨Ŝz

0(0)
2⟩β − 2M(t, φ). (4.15)

Nótese que el grado de desparramo de Ŝz
0(t) = eitĤ/ℏŜz

0e
−itĤ/ℏ, dentro de cada subespacio

de proyección de espín total, es etiquetado por una rotación instantánea Φ = e−iφĤg

alrededor de un gradiente de campo Zeeman. Lo que marca una diferencia crucial con
la secuencia MQC donde una rotación uniforme no tendría ningún efecto observable al
aplicarse después de una dinámica que conserva la proyección de espín total.

Al igual que en el Capítulo 2, usamos la transformada de Fourier de M(t, φ) con
respecto a la variable φ, obteniendo, para cada tiempo de evolución, las amplitudes Q̃n,
que llamamos amplitudes de entrelazamiento de gradiente (GEA),

Q̃j(t) =
1

2π

∫ 2π

0

M(t, φ)e−ijφdφ, (4.16)

donde el tilde Q̃n lo distingue de su contraparte de un cuerpo Qn (Ec. (2.30)).

4.2.1. Diferencias entre las amplitudes GEA de un cuerpo y MB.

Al igual que en el caso de un cuerpo, estos coeficientes positivos codifican información
sobre el grado de desparramo de la excitación. Sin embargo, una vez que se pierde la
equivalencia con el sistema de un solo cuerpo, los posibles valores que pueden tomar los
autovalores de Ĥg aumentan, lo que resulta en un espectro de Q̃n con un soporte más am-
plio. Esta ampliación del espectro puede entenderse fácilmente al analizar los autovalores
de Ĥg, los cuales pueden evaluarse directamente al observar que la base computacional
es una base de autoestados. En este contexto, podemos visualizar fácilmente el despla-
zamiento inducido por el gradiente de campo con respecto a la magnetización total del
estado Mz.

Para ilustrar este punto, consideremos el caso con N = 7. Sin perdida de generalidad
podemos pensar en los valores que puede tomar Ô = Ŝz +

∑7
n=1(n − 4)φŜz

n en la base
computacional (espines up y down). Agregar estos dos términos facilita el análisis de la
siguiente manera, (n− 4) centra el gradiente en el centro de la cadena donde inicialmente
está la excitación, mientras que Ŝz nos permite (siempre que φ sea pequeño) diferenciar el
subespacio de origen de los autoestados. Esto no afecta el espectro obtenido siempre que la
magnetización total se conserve ([Ĥ, Ŝz] = 0), en caso contrario es conveniente utilizar el
gradiente centrado, ya que de no hacerlo el espectro estaría superpuesto (y mezclado) con
el espectro de coherencias cuánticas múltiples. En la figura 4.1b se muestra un histograma
de los autovalores de Ô para φ = 0.05. Se puede observar claramente cómo es para los
subespacios de Mz = ±5/2 (one-body) el gradiente de campo nos desdobla todos los
estados, lo que no sucede que para Mz = ±1/2 (figuras 4.1c y d respectivamente).

Es claro que en el subespacio de una partícula tenemos el mismo resultado que en el ca-
pítulo 2, ya que la posición de la excitación es lo único que determina el valor del observable
|↑, ↓, ↓, ↓, ↓, ↓, ↓⟩ o |↓, ↓, ↑, ↓, ↓, ↓, ↓⟩ generan una fase diferente. En cambio, al considerar
el subespacio Mz = 1/2 es imposible discernir entre |↑, ↑, ↓, ↓, ↓, ↑, ↑⟩, |↑, ↓, ↓, ↑, ↑, ↑, ↓⟩ o
|↑, ↓, ↑, ↓, ↑, ↓, ↑⟩ por ejemplo. En estos tres casos, junto con dos más, el valor del obser-
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vable Ô será 0.5, correspondiendo a la barra central del histograma mostrando en la fig.
4.1d.

En este subespacio, a diferencia del subespacio de una partícula donde el número de
fases posibles era 7 (N) en este es de 13 [1 + (N + 1)(N − 1)/4 = (N2 + 3)/4, para
N impar]. Una forma simple de calcular este número consiste en tomar los dos valores
extremos (todos los espines up a la izquierda y/o a la derecha), y considerar que al mover
un espín el cambio en el observable es de una unidad. Note que la dimensión de este
subespacio crece exponencialmente, mientras que el número de fases posibles de forma
cuadrática. Estos valores extra se generan como consecuencia del entrelazamiento de los
diferentes componentes locales de la excitación a una distancia na. Por lo tanto, se espera
que en un régimen localizado sólo los índices bajos Q̃j sean importantes en contraposición
a lo esperado para un régimen extendido.

En presencia de interacciones, U ̸= 0, el valor en el centro de la distribución, Q̃0, no
será igual a una relación de participación inversa (IPR) del estado dinámico en el sentido
usual de una participación en el espacio de Hilbert, sino que aproximará a la suma de las
magnetizaciones locales al cuadrado. Es decir,

Q̃0 −→
U→0

Q0(t) =
∑
n

⟨Ŝz
n(t)⟩2β =

∑
n

Sz
n
2 =

∑
n

|cn|0(t)|4 = IPRt. (4.17)

Q̃0 ≈
∑
n

⟨Ŝz
n(t)⟩2β. (4.18)

Donde cn|0(t) son las amplitudes de correlación dependientes del tiempo de la función de
onda de una partícula en la base local (computacional). Al igual que en el capítulo 2, no
estamos calculando la relación de participación inversa habitual de los estados propios,
sino de la excitación de polarización a medida que evoluciona. Mientras que para U = 0,
Q̃0 coincide con el IPRt, esto no es cierto en presencia de interacciones (U ̸= 0). En este
caso, Q̃0 refleja el grado de dispersión de la excitación a lo largo de la cadena, pero no en
el espacio de Hilbert. Sin embargo, la aparición de términos más altos en el espectro Q̃j

es indicativo del crecimiento del espacio de Hilbert que no corresponde a una dinámica
de un cuerpo.

En el capítulo 2, observamos que la varianza de la distribución Qj es idéntica a la
varianza de la excitación. Esta correspondencia sigue siendo válida para U = 0,∑

j

Qj(t)j
2 = 2

∑
n

Sz
n(t)n

2 − 2(
∑
n

Sz
n(t)n)

2, (4.19)

donde Sz
n(t) = ⟨Ŝz

n(t)⟩2β = Tr{Ŝz
nŜ

z
0(t)}/Tr{Ŝz

0 Ŝ
z
0} representa la magnetización media en

el sitio n a tiempo t normalizada por la magnetización inicial. Sin embargo, para el sistema
de espines many-body podemos observar una mayor riqueza en este segundo momento, ya
que el mismo es equivalente (ver Apéndice A) al OTOC:∑

j

Q̃j(t)j
2 = 2Tr

{
[Ĥg, Ŝ

z
0(t)][Ĥg, Ŝ

z
0(t)]

}
= 2

∑
n,m

nmTr
{
[Ŝz

n, Ŝ
z
0(t)][Ŝ

z
m, Ŝ

z
0(t)]

}
.

(4.20)
En este caso, que Tr

{
[Ŝz

n, Ŝ
z
0(t)][Ŝ

z
m, Ŝ

z
0(t)]

}
sea no nulo, implica el estado Ŝz

0(t) debe
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Figura 4.2: (a) Magnetización media por espín. (b) Eco observado en función de la magnitud
del gradiente de campo φ. (c-d) Distribuciones GEA. Todas las figuras corresponden a una
cadena de N = 7 espines interactuando mediante los Hamiltonianos Ĥ1 (rojo, Ec. (4.21) ), Ĥ2

(verde, Ec. (4.22)), Ĥ3 (azul, Ec. (4.23)). (c) y (d) solo difieren en la escalada. Los resultados
son a tiempo t = 60J/ℏ siendo la condición inicial ρ̂0 ∝ Sz

4 .

estar compuesto de estados producto con peso en los sitios n y m. Al estar cada uno de
estos términos pesado tanto por m y n, la suma total nos da una referencia del nivel de
desparramo de los operadores en el espacio real, más allá de la varianza en la excitación
de magnetización. Como se mencionó en la introducción, a tiempos cortos el crecimiento
de los OTOCs se ha propuesto y utilizado como medida del revoltijo (scrambling) y del
inicio del caos cuántico. Sin embargo, han sido los detalles del comportamiento a largo
plazo de diferentes OTOCs los que captaron gran atención como herramientas para estu-
diar el caos, la termalización y la localización [224–227]. Estos pueden mostrar la variedad
de fenómenos de interferencia notables que caracterizan las funciones de correlación, ta-
les como latidos cuánticos [228], colapso de supervivencia [133] (tiempos intermedios),
agujeros de correlación [115] (tiempos largos), y ecos mesoscópicos en el tiempo de Hei-
senberg [70,229].

En las siguientes secciones presentamos el estudio numérico de los efectos de los tér-
minos MB en el espectro GEA, y de la dinámica de excitaciones en el modelo de espínes
interactuantes de Harper-Hofstadter-Aubry-André utilizando como cuantificadores prin-
cipales los observables que resultan de la secuencia ZOGE. Para evaluar la dinámica para
cadenas de más de 7 espines, empleamos una dinámica Trotter-Suzuki [173, 230] con el
método de paralelismo cuántico [223], reduciendo drásticamente el tiempo de cálculo con
respecto a los enfoques tradicionales de matrices de densidad y diagonalización del Ha-
miltoniano (Ver apéndice E).

4.3. Resultados numéricos.

4.3.1. Espectro GEA de una partícula vs. MB.

En esta sección veremos la diferencia entre los espectros GEA bajo la evolución de
Hamiltonianos de una partícula y many-body. A modo ilustrativo se considera un sistema
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de 7 espines resuelto mediante diagonalización exacta considerando tres Hamiltonianos:

Ĥ1 = Ĥxy + ĤW (4.21)
Ĥ2 = Ĥxy + ĤW + ĤI (4.22)

Ĥ3 =
∑
n<m

Jn,m(Ŝ
x
nŜ

x
m − Ŝy

nŜ
y
m) + Un,mŜ

z
nŜ

z
m + ĤW (4.23)

donde para todos los casos se consideró el valor crítico W = J . Para Ĥ2 U = J y,
para Ĥ3, Jn,m = J Rand(1,−1) y Un,m es elegido aleatoriamente entre 0.9J y 1.1J . La
progresión en la elección de estos Hamiltonianos es directa: Ĥ1 es equivalente a un sistema
de una partícula mediante la transformación de Wigner-Jordan, con lo cual es equivalente
al Hamiltoniano HHAA discutido en el Capítulo 2; Ĥ2 incorpora interacciones de Ising,
volviéndolo un Hamiltoniano MB, pero mantiene las interacciones a primeros vecinos y
conserva la magnetización total; finalmente, Ĥ3 es una combinación de acoples dados por
el Hamiltoniano de Cuantos Dobles (DQ, primer término), interacciones de Ising, y el
potencial de sitio de HHAA. Estos acoples son de largo alcance, MB, con un grado de
aleatoriedad, y, debido el término DQ, no conserva la magnetización total.

La figura 4.2 muestra la distribución de magnetización, los ecos en función de la
magnitud del gradiente φ y el espectro GEA para los tres Hamiltonianos a un tiempo fijo
(arbitrario) t = 60J/ℏ. Se puede observar (Fig. 4.2a), cómo para los Hamiltonianos 1 y 2,
la magnetización se mantiene cercana al sitio inicial, consecuencia de la conservación de la
magnetización total y el tamaño reducido del sistema. En contraposición, la magnetización
inicial sufre un mayor desparramo al evolucionar con el Hamiltoniano 3, observándose
valores medios positivos y negativos con una magnitud menor en cada sitio. En función
de la perturbación, Fig. 4.2b, es clara la progresión al incrementar la complejidad del
Hamiltoniano: la introducción de términos MB borra las oscilaciones presentes en M(φ)
calculado a partir de una dinámica one-body ; sin embargo, la curva se mantiene más o
menos en los mismos órdenes que la correspondiente a H1. Al romper la conservación de
magnetización total, incluir interacciones a largo alcance y aleatoriedad, el efecto es más
pronunciado, siendo los ecos M(φ) relativamente chicos para casi todo valor del gradiente
de campo.

Esto es reflejado en los espectros, Figuras 4.2c y d, donde se observa que el espectro
en los casos MB es mucho más rico, extendiéndose hasta valores de j = 12, a diferen-
cia del caso one-body, donde el valor no nulo máximo corresponde a j = 7. A pesar de
esta diferencia, los espectros obtenidos evolucionando con Ĥ1 y Ĥ2 son similares, siendo
el último suavizado por las interacciones de muchos espines. El Hamiltonaniano Ĥ3, en
cambio, produce un espectro GEA mucho más ancho, con mayor peso a valores de n
mayores. Esto es razonable, ya que el mismo mezcla estados dentro y fuera de los subes-
pacios de magnetización total. Las interacciones aleatorias y de largo alcance contribuyen
a suavizar el espectro, evitando los picos observados en los espectros de Ĥ1 y Ĥ2 (para
j = 4 y j = 10, por ejemplo). En este caso, al tener [Ĥ3, Sz] ̸= 0 es conveniente utilizar el
gradiente centrado (con valor medio 0), ya que de lo contrario se observaría un espectro
superpuesto (y mezclado) entre los términos GEA y las coherencias cuánticas múltiples.

Al computar como función del tiempo el segundo momento de la distribución de mag-
netización, el segundo momento del espectro GEA y el OTOC asociado, confirmamos que
el segundo momento de la GEA y el OTOC coinciden en los tres casos, mientras que este

74



CAPÍTULO 4. DINÁMICA Y OTOCS EN SISTEMAS MANY-BODY.

U=0.02J

U=0.08J

Q0

W=0.90J

W=1.20J

W=0.90J

W=1.20J

S2

Q0

S2

Q0

S2

Q0

S2

Tiempo Jt/ℏ

Q
0
(t
) 
&

S
2
(t
)

Q
0
(t
) 
&

S
2
(t
)

0 200 400 600 800

1000 15005000

0.5

1

0

0.5

1

0

Figura 4.3: Simulación numérica del entrelazamiento de gradiente de orden cero (Q̃0, curvas a
trazos) y la suma de las magnetizaciones al cuadrado (S2, curvas continuas) para dos amplitudes
de interacción U = 0.02J (arriba) y U = 0.08J (abajo). El color de las curvas describe la
amplitud del desorden, W = 0.90J (verde) y W = 1.20J (azul), es decir extendido y localizado
respectivamente. Las simulaciones corresponden a una cadena de 13 espines con una excitación
inicial en el séptimo espín.

valor equivale al segundo momento de la magnetización solo para la evolución de una
partícula.

En la siguiente sección estudiamos, con mayor detalle, la dinámica y secuencia GEA
en una cadena de espines interactuando mediante el Hamiltoniano dado en la Ec. (4.1).
Nótese, que el Hamiltoniano H2, es un caso particular del mismo con N = 7, W = J , y
U = J .

4.3.2. Camino al estudio de la localización.

Cuando se “prende” la interacción, en la aproximación de Trotter la excitación inicial
Sz
0(0) comienza a propagarse a través del espacio de Liouville como Ŝz

0(δt) = Ŝz
0(0) cos(δt/T2)−

i[Ĥ, Ŝz
0(0)] sin(δt/T2). Aunque [Ĥ, Ŝz] = 0, es decir, los subespacios con diferente magne-

tización total M no se mezclan entre sí, a tiempos mayores los conmutadores de orden
mayor [Ĥ, Ŝz

n(t)] producen términos múlti-espín dentro de cada subespacio. Estos térmi-
nos contribuyen positivamente a Q̃0, lo que conduce a una diferencia con el IPR y su
equivalente de muchos cuerpos, la suma de las magnetizaciones al cuadrado,

S2(t) =
∑
n

⟨Ŝz
n(t)⟩2β. (4.24)

A través de simulaciones numéricas para varios tamaños de cadena, observamos que esta
pequeña diferencia entre Q̃0(t) y S2(t) no afecta el análisis de localización/deslocalización.
Aunque aparecen algunas diferencias monótonas, Q̃0 sigue el comportamiento dinámico
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del S2. La Fig. 4.3 muestra la amplitud del ZOGE (Q̃0, curvas a trazos) y la suma de
las magnetizaciones al cuadrado (S2, curvas continuas) para dos intensidades de modula-
ción, W = 0.90J y W = 1.20J , que corresponden a los regímenes extendido y localizado
respectivamente, y fuerzas de interacción suficientes para causar cierta deslocalización
U = 0.02J y U = 0.08J . Hemos observado que, en los casos más localizados, estas canti-
dades necesitan tiempo para hacer más evidente su diferencia. Esta escala larga de tiempo
permite que la interacción difumine tanto los breathing modes de la fase localizada (oscila-
ciones en las curvas azules) como los ecos mesoscópicos de la fase extendida (interferencias
constructivas en las curvas verdes) [70, 128]. En particular, cuando el sistema está en la
fase localizada S2(t) y Q̃0(t) coinciden por tiempos más largos.

Estos resultados (Fig. 4.3) se obtuvieron con un estado inicial que pertenece al subes-
pacio de magnetización total M = 1/2. Esto es equivalente a un sistema con (N + 1)/2
Fermiones, en una cadena con un número impar de sitios N . Por lo tanto, se optimi-
zan los recursos computacionales mientras se trabaja en el subespacio que más interac-
túa. Este subespacio es representativo de un experimento de RMN [100] y también se
usa típicamente en experimentos con átomos fríos, así como en otros estudios numéri-
cos [48, 125, 231–233]. También confirmamos que Q̃0 y S2 siguen una dinámica idéntica
para el subespacio con proyección de espín total M = 1−N/2, donde la dinámica de ex-
citación se vuelve de un solo cuerpo. Utilizando estados iniciales en distintos subespacios
confirmamos que la diferencia entre ambas magnitudes es mayor a medida que la magne-
tización total del subespacio disminuye. Esto significa que la discrepancia observada en la
Fig. 4.3 es la mayor que se podría observar en este sistema.

La principal utilidad experimental de nuestra secuencia es que nos permite obtener
información sobre la codificación de todo el sistema simplemente midiendo algunos espines
individuales del conjunto. Esta es una posibilidad casi única, dada por el uso de un núcleo
raro como sonda local, junto con el procedimiento Eco de Loschmidt/OTOC. El núcleo
raro primero inyecta y, más tarde, detecta la magnetización en un núcleo directamente
conectado [100]. A partir de este núcleo inicial, la secuencia LE/OTOC permite la explo-
ración dinámica del resto del sistema. Esta característica evita la necesidad de realizar
múltiples mediciones individuales de los componentes locales de la magnetización, un lo-
gro bastante excepcional de unos pocos experimentos de RMN [129,234]. Sin embargo, las
simulaciones numéricas se pueden realizar a un costo menor sin implementar la inversión
del tiempo, evaluando solo la suma de la magnetización al cuadrado bajo una dinámica
directa.

La evolución de S2 se simuló en una cadena de 19 espines variando los parámetros U y
W , con una excitación inicial colocada en el centro de la cadena que, como observamos, nos
permite evitar los efectos de borde. Como se señala en la Ref. [125], el modelo HHAA con
interacción podría no mantener la propiedad de que la transición localizada/extendida
ocurre simultáneamente para todas las energías propias de una sola partícula. Esto se
debe a que, en un sentido de campo medio, un potencial renormalizado de una sola
partícula no mantendría la autodualidad [108,235]. Esto significa que para ciertos rangos
de parámetros, los estados de partículas individuales localizados y deslocalizados podrían
coexistir a diferentes energías. Aun así, nuestros resultados numéricos muestran que la
ventaja del modelo HHAA de excluir la necesidad de realizar promedios de conjunto
extensos para observar la transición de fase se mantiene. La única excepción encontrada
es cuando la excitación comienza en un extremo de la cadena, donde los efectos de los
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Figura 4.4: Evolución temporal de la suma de las magnetizaciones al cuadrado (S2) en las fases
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conjunto (curva negra). Panel izquierdo: Fuerza de interacción U = 0.1J . Panel derecho: Fuerza
de interacción U = 1.0J .

estados de borde se pueden malinterpretar como una localización de los autoestados. En
la fase localizada, sin embargo, incluso con condiciones iniciales en el medio de la cadena,
el promedio en realizaciones permite la eliminación de fluctuaciones locales a tiempos
prolongados producto de dinámica particular de S2 en cada realización.

La figura 4.4 muestra la evolución temporal de la suma de las magnetizaciones al
cuadrado S2 en las fases extendida y localizada para dos amplitudes de interacción y
varias realizaciones de desorden. Observamos que en la fase extendida (W = 0.8J) las
diferencias entre las dinámicas individuales y el valor de equilibrio obtenido de diferentes
realizaciones del desorden se vuelven insignificantes. En la fase localizada esta diferencia
puede ser marcada. En particular, cuando la fuerza de interacción U es pequeña, las
recurrencias en S2(t) hacen necesario obtener el valor de equilibrio realizando promedios
de en realizaciones del desorden (curvas negras). Una vez que se han promediado estas
oscilaciones, los valores asintóticos y la ley de decaimiento se manifiestan de forma más
clara.

La polarización asintótica.

En la Fig. 4.5 mostramos los valores asintóticos (promediados en desorden) S2 en
función de W para varias intensidades de interacción. Para U = 0 observamos que esta
cantidad aumenta rápidamente cuando W supera Wc = J indicando la transición de fase
entre estados extendidos y localizados.

A medida que aumenta la amplitud de las interacciones, aparecen dos efectos. Pri-
mero, tanto para el régimen extendido como para el localizado, el valor de S2 disminuye
abruptamente con la interacción. Esto indica que incluso las interacciones pequeñas son
muy efectivas para ayudar a la redistribución de la polarización, evitando interferencias
y recurrencias en la polarización. Algo similar se observa cuando la propagación balística
precisa de paquetes de ondas queda destruida por pequeños valores de W . En segundo
lugar, el crecimiento de S2, que se identifica como una marca distintiva de localización, se
produce cuando la intensidad del potencial es mayor a medida que aumenta la interacción.
Esto es indicativo del efecto deslocalizador de las interacciones de muchos cuerpos.
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Figura 4.5: Valor de equilibrio de la suma de las magnetizaciones cuadradas promediada del
desorden (S2 = ⟨

∑
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j ⟩2β⟩ϕ) en función de la intensidad del desorden (W ) para varias interac-
ciones con fuerza desde U = 0J hasta U = 0.2J en una cadena N = 19.

Para tener una primera visión de la influencia de U en el valor crítico de W analiza-
mos la derivada primera y segunda de S2 en función de W (d(S2)/dW y d2(S2)/dW 2),
observando para que valor de W las mismas son máximas. Un análisis para el caso no in-
teractuante nos indica que el máximo de la primera derivada puede interpretarse, incluso
para un valor pequeño N , como un límite superior para Wc. Por el contrario, el máximo
de la segunda derivada proporciona un límite inferior para Wc. En particular, a medida
que se activan las interacciones U , el valor crítico de W aumenta muy poco; sin embargo,
cuando U > 0.04J el valor crítico tiende a crecer más rápidamente. Esto está de acuerdo
con la observación experimental [48]. Existen resultados numéricos previos que incluyen
interacciones a segundos vecinos que deberían representar mejor el sistema experimental.
Sin embargo, no tienen la misma precisión al evaluar el rango de interacción débil [231].
Además, en este régimen la diferencia entre modelos se considera menos importante.

Los efectos y límites descritos anteriormente se pueden entender mejor en el mapa de
color de S2 en el espacio de parámetros, (W,U), alrededor de la transición de Aubry-
Andre (Fig. 4.6a). Aquí, las partes azules del diagrama representan valores pequeños de
S2, que es una fase deslocalizada/ergódica, mientras que las partes amarillas y rojas del
gráfico corresponden al régimen localizado/no ergódico. Los límites superior e inferior se
muestran como líneas discontinuas negras, mientras que la línea discontinua gris es una
línea de contorno que comienza en el valor crítico que no interactúa (W = 1, U = 0). Por
lo tanto, está claro cómo las interacciones pequeñas mueven la fase localizada a valores
más altos de W .

La Fig. 4.6b expande el mapa de color discutido anteriormente a un espacio de pa-
rámetros más amplio. A partir de U ≈ 0.1J las curvas S2 vs W se vuelven demasiado
suaves analizar la derivada primera y segunda, consecuentemente se muestra solo la curva
de nivel (partiendo del valor crítico, (W = 1, U = 0)) como una medida de la magnitud
crítica del potencial en presencia de interacciones. Es interesante notar como este valor
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Figura 4.6: Mapa de densidad de S2 =

∑
n⟨⟨Sz

n⟩2β⟩ϕ versus U y W , esquematizando el diagrama
de fase del sistema. En la fase ergódica-deslocalizada (azul), el S2 inicial decae rápidamente,
mientras que persiste durante largos períodos en la fase localizada no ergódica (amarillo/rojo).
(a) Cercanías del punto crítico. Las líneas discontinuas negras muestran los límites encontrados
para el valor crítico analizando la primera y segunda derivada de S2. La línea gris corresponde
a la línea de contorno que comienza en el valor crítico para U = 0. (b) Diagrama extendido. La
línea a trazos negra corresponde a una curva de nivel comenzando en el valor crítico para U = 0.

se desplaza rápidamente a W mayores para U ≤ 0.5J . Este rápido crecimiento puede ser
interpretado cómo una consecuencia directa del crecimiento del espacio de Hilbert explo-
rable por la excitación al incluir interacciones. Para valores de 0.5J ≲ U ≲ 2J , la curva
de nivel continua desplazándose hacia valores mayores del “desorden”, alcanzando su valor
máximo aproximadamente en U ≈ 2J . A partir de este punto, si las interacciones conti-
núan creciendo, las mismas comienzan a contribuir a la localización del sistema, incluso
llevando el valor crítico por debajo del valor en ausencia de interacciones para U ≳ 3.5J .
Este límite puede ser entendido una tendencia hacia la fase aislante de Mott, donde las
interacciones de Ising generan un comportamiento vítreo [162].

Estos resultados son consistentes con lo encontrado experimentalmente en Ref. [48]
en una red de átomos fríos. Si bien el sistema considerado en Ref. [48] es ligeramente
diferente, las interacciones MB actúan sobre partículas de distinto espín en un mismo
sitio, los resultados representan los mismos comportamientos físicos. El estado inicial
corresponde a N/2 partículas colocadas en los sitios impares, la magnitud estudiada es el
desbalance (imbalance) entre sitios pares e impares, cuyos valores asintóticos en función
de los parámetros del Hamiltoniano es reproducida en la Fig. 4.7a. Consiguientemente,
una desbalance cercano a cero implica una dinámica ergódica/deslocalizada, mientras que
valores cercanos a la unidad una dinámica no-ergódica/localizada, como es reflejado en el
diagrama de fases esquemático de la Fig. 4.7b (Blanco y amarillo respectivamente). Entre
estos dos regímenes límite se encuentra una región de decaimiento lento.
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Figura 4.7: (a) Valor estacionario del desbalance (I) en función de las interacciones U y la
intensidad del potencial W . Interacciones moderadas reducen el grado de localización en com-
paración con los casos que no interactúan o que interactúan fuertemente. Las líneas de puntos
blancos corresponden a curvas de nivel de I, la línea blanca sólida es la curva de nivel de I que
coincide con la transición de Aubry-André (U = 0 y W/J = 2) extendida al caso de interac-
ción. (b) Esquema del diagrama de fases del sistema. En la región ergódica, fase deslocalizada
(blanca), la condición inicial se descompone rápidamente, mientras que en la fase localizada/no-
ergódica (amarilla) persiste durante mucho tiempo. La línea negra de puntos y trazos representa
la transición observada experimentalmente, extraído de los datos del panel a. Las flechas gri-
ses representan el patrón esperado de los flujos del grupo de renormalización que controlan la
transición de localización. Para U = 0, como así como en el límite de U infinito en ausencia de
doblones, la transición está controlada por el punto crítico de Aubry-André sin interacciones.
Figuras tomadas de Ref. [48].
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Figura 4.8: (a) Evolución temporal de S2(t) y P00(t) (curvas continuas y a trazos) para U =
1.4J y varias realizaciones de desorden. La log-log captura la caída de potencia para el régimen
de tiempo intermedio, pero omite (debido a falta de precisión) la caída de tiempo muy corto,
∝ 1 − 1

2(Jt)
2, que caracteriza tiempos cortos. (b) Exponente α la ley de potencia (1/tα/2) del

decaimiento de la probabilidad de supervivencia de una excitación local P00(t) y de la suma de las
magnetizaciones al cuadrado S2(t). Los α se muestran en función del desorden W para diferentes
fuerzas de interacción U . Para la dinámica cuántica balística ideal, el exponente es α = 2, los
procesos de dispersión alrededor del desorden crítico conducen a un régimen de difusión α = 1
que es bastante robusto ante interacciones de muchos cuerpos. En nuestro sistema finito, la
localización de muchos cuerpos se considera subdifusión, un exponente que tiende a cero para
desorden fuerte.

La probabilidad de supervivencia y la dinámica del desparramo de la OTOC.

El comportamiento dinámico de diferentes condiciones iniciales ante la presencia de in-
teracciones y desorden ha sido ampliamente estudiado, mostrando variedad de resultados
dependiendo de los parámetros. En particular, se ha observado una dinámica lenta (sub-
difusiva) antes de la aparición de la fase de localización de muchos cuerpos [232,233,236],
cuya explicación sigue siendo un tema de debate. En un sistema de una partícula, un
decaimiento de ley de potencias en la probabilidad de supervivencia puede ser una con-
secuencia de procesos de retorno no-markovianos como se describe cuidadosamente en la
Ref. [133]. Para el desorden aleatorio en un sistema de muchos cuerpos, estudios teóricos
han predicho un régimen de Griffiths en el lado térmico de la transición [237], donde la di-
námica está dominada por regiones espaciales “raras” con tiempos de escape anormalmente
grandes. Sin embargo, esta imagen no puede ser aplicada cuando existen correlaciones de
largo alcance en el potencial del sitio (desorden) subyacente [238,239], como puede ser el
caso del desorden de HHAA.

El régimen de dinámica lenta (subdifusiva) también se observa en nuestras simulacio-
nes de S2(t). En la Fig. 4.8a, mostramos este decaimiento subdifusivo para una interac-
ción U = 1.4J y varias amplitudes de desorden. Las curvas continuas representan S2(t),
mientras que las curvas punteadas muestran la probabilidad de supervivencia P00(t). Ob-
servamos que si bien el decaimiento inicial de S2(t) es más rápido que el correspondiente
a P00(t), una vez que se alcanza el régimen subdifusivo, ambas desintegraciones pueden
describirse aproximadamente con el mismo exponente. Esto se puede entender dentro del
modelo simplificado: Supongamos una evolución idealizada de la distribución de magneti-
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zación dada por Px0(t) = 1/(2πσ2)1/2e−(x/
√
2σ)2 , donde σ ∝ [

√
2Dt]α/2. Un caso de α = 2

describiría una difusión cuántica cuasi-balística. Una vez que los procesos de dispersión
se vuelven relevantes, el exponente debería estabilizarse alrededor de α = 1, lo que es
indicativo de difusión en 1D. En nuestro caso la ley de desparramo Gaussiana representa
la magnetización conservada, y α = d∗ podría representar una difusión en un espacio
fractal restringido de dimensión d∗ ≤ 1 [240]. En este modelo simple, la probabilidad de
supervivencia está dada por P00(t) = 1/

√
2πσ2 ∝ t−α/2. La magnitud S2(t) en este mode-

lo sería la integral de la magnetización al cuadrado
∫∞
−∞[Px0(t)]

2dx =
1

2
√
πσ2

∝ t−α/2. A

medida que la localización conspira contra la difusión, α se vuelve más pequeña que 1 lo
que explica una dinámica progresivamente subdifusiva.

La validez de la imagen anterior se ve reforzada por la concordancia de los exponentes
que caracterizan nuestros observables dinámicos: la probabilidad de supervivencia local y
el grado de desparramo cuantificado por la integral de la magnetización al cuadrado. El
comportamiento observado concuerda plenamente con los procesos físicos que esperamos
en los diversos regímenes del sistema a medida que cambiamos la amplitud del “desor-
den”. Para una amplitud de potencial finita, pero débil, en presencia de interacciones, la
propagación de la excitación se ralentiza desde la dinámica balística cuántica a la difusión
clásica (Fig. 4.8b), donde se observa una región estable para un pequeño rango de am-
plitudes del potencial en la vecindad del punto crítico. Un mayor aumento del potencial
ralentiza continuamente el desparramo hasta que entra en la fase MBL.

En cierto modo, tal como vimos en el Capítulo 3 que la difusión coherente generada por
el modelo de HHAA es estable ante decoherencia, aquí observamos que también se vuelve
estable ante la presencia de interacciones many-body. Esto no es del todo sorprendente,
ya que se ha propuesto a la presencia de interacciones many-body no controladas como
una fuente de decoherencia [241,242].

Otra información interesante que se puede extraer de los datos asintóticos de los re-
gímenes difusivos y subdifusivos es que los mismo decrecen con una ley de potencias
S2 ≃ L−d∗ , siendo d∗ la dimensión efectiva ó dimensión fractal. De hecho, esto resulta
ser consistente con el exponente de decaimiento de la probabilidad de supervivencia y la
integral de magnetización al cuadrado. Considerando tiempos entre t ∼ 10/J y t ∼ 500/J ,
ajustamos la ley de potencia del decaimiento de la probabilidad de retorno y de la suma
de la magnetización al cuadrado. Obtuvimos el mismo exponente α de ambos casos, refor-
zando la observación anterior. Su disminución a medida que aumenta el desorden indica
una equilibración progresivamente más lenta (Fig. 4.8b).

4.4. Conclusiones.
En este capítulo generalizamos la secuencia GEA a un sistema de espines interactuan-

tes. Mostramos que puede ser utilizada para medir la deslocalización en el tiempo de
una excitación local en sistemas de espines. Esto es posible a través de la evaluación del
término central del espectro obtenido mediante la secuencia Q̃0, un OTOC que denomi-
namos entrelazamiento de gradiente de orden cero (ZOGE), o de la varianza del espectro.
La secuencia proporciona un método práctico para analizar la transición de localización/-
deslocalización y, de manera más general, una herramienta para cuantificar la dinámica
de excitación a medida que se vuelve no ergódica. Los únicos requisitos son el acceso
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a un observable local, la posibilidad de aplicar un gradiente de campo magnético (o un
gradiente de potencial eléctrico en sistemas de electrones), y que la dinámica global pueda
invertirse en el tiempo, algo bastante estándar en RMN y, por extensión, en otras técnicas
experimentales.

Las propiedades más atractivas del espectro observado mediante esta técnica son, como
se observó en el Capítulo 2, que en el límite de interacción insignificante, Q̃0 se convierte
precisamente en el inverso de la razón de participación, IPR, de la polarización y aproxima
a su definición generalizada S2 para el caso interactuante. Si bien este observable no
satisface una ley de conservación precisa, de alguna manera es equivalente a la integral
de una densidad de carga cuadrada en un gas fermiónico. Esta correspondencia también
proporciona una interpretación física sólida para este OTOC en particular. Asimismo, el
segundo momento del espectro es equivalente al segundo momento de la excitación en el
límite de U → 0, siendo generalizado al OTOC Tr{[Ĥg, ρ̂(t)]

2} para U ̸= 0.
Numéricamente, la similitud entre Q̃0 y S2 nos permite estimar el valor a tiempos largos

de Q̃0 mediante el cálculo de S2 con mucho menos costo computacional. Realizamos un
análisis de S2 en los alrededores del punto críticoWc = J para una magnitud de interacción
pequeña (U ≪ J), lo que nos permite seguir el desorden crítico a medida que U aumenta.
Observamos cómo el desorden crítico aumenta con U , lo que indica que las interacciones
de muchos cuerpos, actuando como fuente de “decoherencia”, disminuyen las interferencias
subyacentes al fenómeno de localización. Las interacciones, entonces, ayudan a mezclar la
magnetización dentro de la fracción más amplia de espacio. En el límite de interacciones
fuertes (U ≫ J) las propias interacciones fragmentan el espacio de Hilbert y congelan
la dinámica. Se ha observado que muchos de estos comportamientos continúan siendo
válidos en generalizaciones del modelo [243, 244], particularmente, cuando se incluyen
interacciones de largo alcance donde la física del sistema es cualitativamente distinta en
el límite U ≫ J .

En nuestra estrategia numérica, estudiamos el comportamiento asintótico de las ex-
citaciones y nuestros resultados son capaces de discriminar entre estados localizados y
extendidos, independientemente de la existencia de decaimientos lentos, aunque observa-
mos regiones con decaimientos lentos consistentemente con la existencia de una fase S
reportada en [125] para este modelo y asociada a una fase “extendida no-ergodica” [245].
Si bien este decaimiento lento es observado en diferentes OTOCs [246], en estados esta-
cionarios [247], o en el decaimiento de excitaciones, como encontramos en este capítulo,
en nuestros sistemas pequeños no nos vimos obligados a asignar una fase diferente.

Es claro que hay mucho espacio para una mayor exploración de la información que
se puede extraer de todo el espectro de entrelazamiento de gradientes, en particular de
los términos de orden alto, como fue visto en la sección 4.3.1. Al enfocarnos, debido a
las exigencias numéricas de la cadena de N = 19, en la dinámica de S2(t) y sus valores
asintóticos, esta información no fue extraída. No obstante, en un experimento real, uno
puede aprovechar no solo Q̃0 sino todos los Q̃j para diferentes j, siendo de particular
interés el segundo momento del espectro.

En un sistema MB, las diferencias crecientes en el espectro, como la aparición de valores
más altos de Q̃j con respecto al caso sin interacción, podrían encontrar un uso adicional
para decodificar información particular sobre la ocupación real del espacio de Hilbert. En
este sentido, una propiedad importante de S2 y, a través de su correspondencia, de Q̃0

es que mide cómo se propaga un observable en el espacio real. Por tanto, no depende
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directamente del tamaño del espacio de Hilbert.
Dado que la polarización es una magnitud conservada en varios sistemas de espines

de muchos cuerpos, una secuencia similar a la propuesta, se puede usar para definir una
entropía de Renyi [248]. La conexión de este último con la razón de participación inversa
(IPR), obtenido como la suma del cuadrado de las polarizaciones locales, lo convierte en
una magnitud natural para cuantificar la localización de muchos cuerpos en una cadena de
espines interactuantes o modelos relacionados. Sin embargo, hasta ahora las implementa-
ciones experimentales se han limitado a sistemas moleculares pequeños [249] u observables
indirectos que son sólo un indicador de las propiedades de localización de cadenas de espín
desordenadas [215]. Nuestro trabajo supera estas limitaciones al proponer una estrategia
que se centra en la obtención de un IPR espacial, exacto en sistemas sin interacciones, a
partir de procedimiento que conserva su potencial en el régimen MBL.

Finalmente, encontramos que el comportamiento dinámico a largo plazo de S2 y P00

está impulsado por los mismos exponentes de decaimiento. Esta relación, que también
derivamos de una modelización simple de la dinámica de la probabilidad espacial, permi-
te caracterizar la dinámica con ambas magnitudes. En este caso, ambas muestran cómo
la dinámica cambia de balística, a difusiva y subdifusiva, para luego entrar en una fa-
se de localización de muchos cuerpos a medida que aumenta el desorden. La región de
decaimiento lento es consistente con resultados anteriores [125, 232, 233, 236]. Además, el
exponente de la ley de potencia α en el régimen subdifusivo se puede conectar directa-
mente con una dinámica no ergódica restringida a una porción del sistema con dimensión
fractal d∗ < 1 [240].

Las contribuciones originales de este capítulo fueron publicadas en:

• Lozano-Negro, F. S., Zangara, P. R., & Pastawski, H. M. (2021). Ergodicity breaking
in an incommensurate system observed by OTOCs and Loschmidt echoes: From
quantum diffusion to sub-diffusion. Chaos, Solitons & Fractals, 150, 111175.
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Capítulo 5

OTOCs Globales como una
caracterización del desparramo en la
dinámica de observables Locales.

En este capítulo se explora la hipótesis, originada en experimentos de RMN
[79], de que es posible extraer información sobre la OTOCs locales a partir
de observables globales. Específicamente, investigamos la evolución de los ecos
generados por la secuencia de coherencias cuánticas múltiples y el número
de espines correlacionados derivados de la misma. En un anillo de espines
evaluamos numéricamente la discrepancia entre magnitudes globales y locales
variando el rango de interacción entre espines y el tamaño del sistema.

En los últimos años, el concepto de Funciones de Correlación sin orden temporal
(OTOC) ha captado la atención tanto de físicos teóricos como experimentales como una
herramienta para detectar caos cuántico [53, 58, 250, 251]. Los OTOCs se han convertido
en una herramienta analítica para identificar manifestaciones del caos en el desparramo o
revoltijo (scrambling) de la información cuántica. Es decir, el proceso en el que la infor-
mación local se propaga entre muchos grados de libertad, creando correlaciones complejas
que impiden extraer la información a partir de mediciones locales. La motivación inicial
surgió de reconocer que un comportamiento caótico es un requisito crucial para que una
teoría cuántica de campos describa adecuadamente las inestabilidades clásicas extremas
inducidas por la gravedad en la proximidad de un agujero negro [78]. Sin embargo, los
OTOC son objetos inherentemente amplios, lo que deja algo oscuro su significado físico
detallado y sus potenciales observaciones experimentales. Alexei Kitaev [252] recono-
ció que el concepto de OTOC estaba contenido en un trabajo de Larkin y Ovchinnikov,
donde estudiaban del efecto de las colisiones con las impurezas en los electrones de su-
perconductores desordenados [76]. En este artículo (Ref. [76]) se observó que los procesos
de dispersión responsables del camino libre medio también dan lugar a un crecimiento
dinámico en el módulo cuadrado de un par de operadores de Heisenberg “locales” que
inicialmente conmutan.

Buscando un modelo cuántico adecuado a las propiedades extremas en las cercanías
de un agujero negro, Kitaev descartó el Hamiltoniano estándar de Heisenberg en favor de
un sistema de Fermiones de Majorana con desorden e interacciones de muchos cuerpos
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con un rango infinito, ahora conocido como Sachdev-Ye-Kitaev (SYK), con el que predijo
un crecimiento exponencial del conmutador OTO. Sin embargo, un enfoque experimental
del problema parecía imposible, ya que implicaría evoluciones tanto hacia adelante como
hacia atrás de diferentes operadores.

En una línea de desarrollo independiente, la comunidad de resonancia magnética nu-
clear (RMN) descubrió y utilizó varios OTOCs específicos en forma de ecos y observables
derivados de estos. Esto se debe a que en RMN, la implementación de una reversión de
la evolución de espines individuales es fundamental para muchos experimentos, siendo
pionero el eco de Hahn, donde la imposibilidad de recuperar el estado inicial cuantifica en
la escala de tiempo de la relajación T2 [4]. Décadas más tarde, la posibilidad de invertir
la dinámica de un Hamiltoniano de múltiples espines dio lugar a la observación de ecos
mágicos y ecos generalizados de estados evolucionados y perturbados [253, 254]. Entre
ellos destaca la secuencia de coherencias cuánticas múltiples y el número de espines corre-
lacionados derivados de la misma, siendo ambas magnitudes un OTOC diferente [81,82].

Sin embargo, una de las principales limitaciones de las mediciones de la RMN reside en
la dificultad para excitar y detectar espines individuales. Aunque esta detección se puede
realizar en algunos casos [129,255], no es lo estándar. En la mayoría de los experimentos,
los observables son operadores globales que involucran todos los espines del conjunto. Este
hecho dificulta la comparación con el análisis teórico de las OTOC, usualmente basado
en operadores locales.

Este capítulo se propone explorar la hipótesis, hecha explícita en la reciente publi-
cación [79], de que un observable evaluado sobre toda la muestra podría representar el
promedio de observables “locales” no correlacionados. Para ello, en la sección 5.1 examina-
mos analíticamente la relación entre ecos generalizados de coherencias cuánticas múltiples
y el número de espines correlacionados usando un OTOC particular derivado de distintos
LE. Para ambas magnitudes identificamos las distintas contribuciones de OTOCs y ecos
locales a los observables globales. En la sección 5.2 evaluamos numéricamente estas mag-
nitudes en un modelo de prueba: un anillo de espines con interacciones de largo alcance.
Comparamos tanto en la evolución temporal como en los valores de equilibrio de OTOCs
locales y globales para diferentes tamaños de sistemas, encontrando evidencia de que la
hipótesis se cumple cuando el tamaño del sistema aumenta junto con su complejidad.

5.1. Ecos y OTOCs.

La forma general del conmutador sin orden temporal (OTO) se define como,

CV̂ Ŵ (t) = Tr

{[
Ŵ (t), V̂

]† [
Ŵ (t), V̂

]}
. (5.1)

En el caso de los operadores de Ŵ y V̂ Hermíticos y evolución unitaria, la expresión se
puede reescribir en la forma:

CV̂ Ŵ (t) = 2
(
1− Tr

{
Ŵ (t)†V̂ †Ŵ (t)V̂

})
, (5.2)
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donde en la literatura teórica y numérica, Ŵ y V̂ son generalmente operadores locales
como, por ejemplo, las matrices de Pauli [256]. Considerando que los operadores V̂ y Ŵ
inicialmente conmutan, el correlador F (t) definido como,

F (t) = Tr
{
Ŵ (t)†V̂ †Ŵ (t)V̂

}
, (5.3)

comienza desde 1 y decae con el tiempo. En algunas condiciones, se observa una caída
exponencial con el mismo exponente de Lyapunov que controla su contraparte clásica [226,
228,257], lo que sirve como diagnóstico del desparramo información y el caos cuántico.

El correlador F (t) implica necesariamente un procedimiento de inversión temporal
y su cálculo puede pensarse como un experimento en el que V̂ establece una excita-
ción cuántica que evoluciona durante un tiempo t, y luego es perturbado por Ŵ . Pos-
teriormente, sigue una evolución de inversión temporal antes de aplicar una medición
(V̂ †) [79,80]. Bajo esta visión F (t) tiene la forma de un eco de Loschmidt con una pertur-
bación Ŵ = exp[−iΘ̂∆t/ℏ], que actúa por un breve período ∆t después de una evolución
hacia adelante [79]. En la mayoría de los experimentos en sistemas de muchos cuerpos,
hay una perturbación incontrolable Σ̂ que persiste durante todo el período de inversión de
tiempo y, por lo tanto, no es posible una factorización en la forma anterior. En este último
caso, la señal recuperada es el eco de Loschmidt que muestra una caída dentro de la escala
de tiempo independiente de la perturbación T3 de unas pocas veces T2. En los modelos
semiclásicos de una sola partícula, el decaimiento es exponencial y una vez que Σ̂ excede
un pequeño valor crítico, la tasa de decoherencia 1/T3 se identifica con el exponente clá-
sico de Lyapunov [67, 69]. También es una medición experimental ampliamente utilizada
en configuraciones experimentales con implicancias prácticas para la normalización y el
comportamiento de la dinámica [6,258]. En nuestro sistema de prueba, asumimos la capa-
cidad de revertir completamente la dinámica hacia adelante, lo que implica la ausencia de
decoherencia o de cualquier componente no controlado en la evolución. En caso contrario,
sería necesario normalizar las curvas obtenidas debido al decaimiento total provocado por
la presencia de factores no controlados.

La dinámica de los OTOC como medida del crecimiento del “tamaño” y complejidad del
operador inicialmente local ha sido estudiada en sistemas cerrados y abiertos [259], donde
se la ha vinculado con la sensibilidad del sistema a la decoherencia, y con la emergencia de
caos cuántico [260]. Los regímenes dinámicos de los OTOC se pueden separar en tiempos
cortos, intermedios y largos. Los tiempos cortos e intermedios dependen en gran medida
del Hamiltoniano y de los operadores iniciales particulares, y de su naturaleza (es decir,
local o global). En tiempos prolongados, los OTOC de un sistema finito oscilan o, para
sistemas altamente caóticos, fluctúan alrededor de un valor medio [228].

En la ref. [79] propuso que la información extraída de los OTOC globales es indicativa
del comportamiento de los observables locales. Expresamente, se infiere el comportamiento
a largo plazo de los OTOC locales a partir de los observables globales, ya que estos
últimos están compuestos principalmente por un conjunto de magnitudes locales casi
idénticas. Posteriormente, Zhou y Swingle [61] estudiaron la contribución de los OTOC
locales a los globales en una cadena de espines, demostrando que en una expansión, los
términos “diagonales” (OTOCs locales) son los que más contribuyen. Aquí, adoptamos una
perspectiva algo diferente, tomando como punto de partida los observables experimentales:
las magnetizaciones asociadas con los diferentes ecos.

87



5.1. ECOS Y OTOCS.

Evolución

D
et

ec
cc

ió
n

ReversiónPerturb.

P
re

p
a
ra

ci
ón Testeo Numérico:

Anillo de espínes.

(a) (b)

Figura 5.1: (a) Arriba: secuencia de evolución de un experimento MQC. Abajo: representación
esquemática del experimento del eco de Loschmidt (MQC). A tiempos largos, el eco de magneti-
zación global Ŝz es una consecuencia de todos los ecos locales, ya que la polarización proveniente
de otros sitios interfiere destructivamente (superposición de verde y granate). (b) Esquema del
sistema de anillos de espines donde testeamos nuestra hipótesis. El rango de los acoplamientos
entre espines se elige en términos de la “distancia de enlace” entre espines, ∝ 1

rα para α = 1, 2, 3.

5.1.1. Ecos generalizados en RMN.

En numerosas situaciones, particularmente conectadas a sistemas de espín de muchos
cuerpos analizados mediante RMN, la señal adquirida está relacionada con operadores
globales. En RMN, el observable es la magnetización total de la muestra, que es propor-
cional al espín total Ŝz =

∑
Ŝz
i , combinando la contribución de cada espín individual,

siendo la dirección z está determinada por el campo magnético externo. En consecuencia,
la condición inicial también suele ser un operador global, la magnetización de equilibrio
de un conjunto de espines polarizados en presencia del campo magnético, donde la matriz
de densidad es ρ̂(t = 0) ∝ Ŝz.

La interacción natural entre espines S = 1/2 en una muestra sólida viene dada por el
Hamiltoniano dipolar [261]. Se han desarrollado varias secuencias que utilizan pulsos de
radiofrecuencia basados en el acoplamiento espín-espín, cada una con aplicaciones prácti-
cas como el desacoplamiento homonuclear, la condición de Lee-Goldburg, la irradiación en
resonancia o el Hamiltoniano de Cuantos dobles (double quantum Hamiltonian) [262,263].
Estos avances han llevado tanto a la formulación de nuevos Hamiltonianos como de in-
teracciones reescaladas, ampliando el alcance de las técnicas de espectroscopia de RMN.
En estos Hamiltonianos, respaldados en la teoría de Hamiltonianos promedio, se basa
típicamente en la expansión de Magnus y la aproximación de Floquet [264–266]. Entre
las posibilidades dadas por esta técnica se destaca la capacidad de simular el efecto de
una evolución inversa a partir de un cambio de signo en el Hamiltoniano. Esto permite
el estudio de fenómenos de eco, como los ecos mágicos, los ecos de Hahn y los ecos de
Loschmidt a través de secuencias de pulsos de inversión temporal. Además, la evolución
de la magnetización inicial y la transición a superposiciones coherentes se puede inves-
tigar utilizando ecos modificados obteniendo una distribución de coherencias cuánticas
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múltiples.

La secuencia de pulsos de coherencias cuánticas múltiple, ampliamente utilizada en
RMN para el conteo de espines, puede considerarse una de las OTOC pioneras. Implica
tres períodos, esquematizados en el panel superior de la Fig. 5.1a. Primero hay una evolu-
ción temporal (hacia adelante) con un Hamiltoniano Ĥ; a esto le sigue la codificación (o
etiquetado de fase) de las coherencias cuánticas y, últimamente, una inversión temporal o
evolución hacia atrás con −Ĥ. Experimentalmente, el observable final y el estado inicial
son proporcionales a la magnetización total del operador Ŝz. Aquí la codificación de fase
(rotación alrededor de z) juega el rol de la perturbación (V̂ ) en el procedimiento OTOC
y es una evolución con un Hamiltoniano proporcional a la magnetización total Ŝz.

Sin embargo, el estado inicial ρ̂(t = 0) ∝ Ŝz =
∑
Ŝz
i puede considerarse como una

suma de espines magnetizados individuales. Cada espín individual experimentará una
evolución y, tras la perturbación y la evolución hacia atrás, contribuyendo con el retorno
de la magnetización no solo en su sitio original sino también en los espines vecinos. Nuestra
hipótesis es que la principal contribución al eco global (magnetización total) surge de la
magnetización individual de cada espín que regresa a sí mismo. Este concepto se ilustra
esquemáticamente en la Fig. 5.1a. Conjeturamos que cualquier magnetización que no
regresa al sitio original de espín se cancela entre sí, ya que arriba con fases “aleatorias”.

La secuencia de eco generalizada de la Fig. 5.1 produce una señal global observable
denominada MG, que se mide después de un pulso de lectura final (no representado en la
figura). Este eco se puede resumir en la siguiente ecuación,

MG(t, ϕ) =
1

Tr
{
ŜzŜz

} Tr
{
Ŝz(t)R†Ŝz(t)R

}
(5.4)

donde R = e−iϕŜz , Ŝz(t) = e−iĤtŜzeiĤt, y la normalización Tr{ŜzŜz} = N2N−2 asegura
MG(0, ϕ) = 1. Aquí se puede observar que R y Ŝz(0) conmutan, sin embargo, esto no
es válido una vez que el estado ha evolucionado. En los experimentos, la fase ϕ se varía
en 2M > mmax pasos entre 0 y 2π, lo que permite la adquisición de la distribución de
coherencias cuánticas múltiples MG(t,m) mediante la transformada de Fourier de las
señales MG(t, ϕ), con m que van desde −mmax a mmax.

En la siguiente sección aclaramos la conexión entre la Ec. (5.4) con un OTOC global
y lo reescribimos como una combinación de un conjunto de OTOC locales.
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5.1.2. Observables Locales y Globales.

El eco, ec. (5.4), se puede expresar en términos de ecos locales y términos cruzados
como,

MG(t, ϕ) =
1

N2N−2
Tr
{
Ŝz(t)R†Ŝz(t)R

}
(5.5)

=
1

N2N−2

∑
i,j

Tr
{
Ŝz
i (t)R

†Ŝz
j (t)R

}
=

1

N2N−2

∑
i

Tr
{
Ŝz
i (t)R

†Ŝz
i (t)R

}
+

1

N2N−2

∑
j ̸=i

Tr
{
Ŝz
i (t)R

†Ŝz
j (t)R

}
=

1

N

∑
i

(
M i

L(t, ϕ) +M i
CT (t, ϕ)

)
(5.6)

= ML(t, ϕ) +MCT (t, ϕ). (5.7)

Mediante la transformación de Fourier del conjunto MG(t, ϕ) con respecto a ϕ, se ob-
tiene la distribución de coherencias cuánticas múltiples (MQC) MG(t,m). Desde los años
80, siguiendo el modelo de Baum y Pines [81], la investigación en RMN ha ampliamente
establecido que el segundo momento de esta distribución se relaciona directamente con el
número de espines correlacionados (también llamado tamaño de cluster), designado como
KG. Luego, como la distribución global de MQC se escribe en términos de contribuciones
locales y cruzadas, MG(t,m) = ML(t,m) + MCT (t,m), podemos reformular el número
global de espines correlacionados KG:

KG(t) = 2
∑
m

m2MG(t,m) (5.8)

= 2
∑
m

m2(ML(t,m) +MCT (t,m))

= KL(t) +KCT (t),

donde explícitamente se discrimina la contribución al número de espines correlacionados
proveniente de los ecos locales y los términos cruzados.

El tamaño de cluster global se puede expresar como OTOC (Apéndice D.1) [267],

KG(t) = − 2

N2N−2
Tr
{[
Ŝz, Ŝz(t)

] [
Ŝz, Ŝz(t)

]}
(5.9)

y de manera similar, se puede expresar la contribución local y cruzada (ver apéndice D.1

90



CAPÍTULO 5. OTOCS GLOBALES VS LOCALES.

y D.2) de la siguiente forma:

KL(t) =
−2

N2N−2

(∑
i,k

Tr

{[
Ŝz
k , Ŝ

z
i (t)
]2}

+
∑
i,q,k
q ̸=k

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
i (t)
]} (5.10)

KCT (t) =
−2

N2N−2

∑
i,j,k,q
i ̸=j

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
j (t)
]}

. (5.11)

Una característica interesante a tener en cuenta es que, así como el eco global se puede
pensar como la suma de diferentes condiciones iniciales Ŝz

i , también se puede hacer con
KL(t) y KCT (t). Luego, se puede separar la suma de sitios i en las expresiones anteriores,
definiendo los promedios en sitio:

KG(t) =
∑
i

Ki
G(t)/N,

KL(t) =
∑
i

Ki
L(t)/N,

KCT (t) =
∑
i

Ki
CT (t)/N.

Observe que si bien los OTOC locales correspondientes a un sitio i, Ki
L(t) están compues-

tos de tanto los llamados [61] términos diagonales Tr

{[
Ŝz
k , Ŝ

z
i (t)
]2}

como también de

términos no diagonales Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
i (t)
]}

, la contribución cruzada correspon-
diente al sitio i, Ki

CT (t), solo tienen términos no diagonales. En consecuencia, lo mismo
es válido para sus promedios en sitio KL(t) y KCT (t).

Numéricamente, podemos calcular la contribución i de estas magnitudes Ki
L(t), K

i
G(t),

Ki
CT (t) usando la secuencia de eco que se muestra en la Fig. 5.1 para un estado inicial

Ŝz
i . Partiendo de una excitación localizada en el sitio i, y observando la evolución de la

magnetización y el posterior retorno (eco) a cada sitio j, podemos reconstruir por separado
M i

L(t, ϕ) y M i
CT (t, ϕ), lo que nos permite calcular los términos cruzados, locales y la suma

de ambos, el OTOC global.

5.2. Resultados Numéricos.

Las magnitudes globales, locales y los términos cruzados descritos en la sección anterior
se calcularon considerando un sistema de prueba como se muestra en la Fig. 5.1b. Este es
un anillo de N espines 1/2 interactúan a través de un Hamiltoniano de Cuantos Dobles
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de largo alcance,
Ĥ =

∑
i

hiŜ
z
i +

∑
i,j
i<j

Dij

[
Ŝx
i Ŝ

x
j − Ŝy

i Ŝ
y
j

]
. (5.12)

El Hamiltoniano de cuántos dobles se puede obtener experimentalmente utilizando las
secuencias de 8 a 16 pulsos [263,266], modificaciones a estas secuencias originales permiten
generar interacciones escaladas [258].

Ampliando aún más las cualidades del modelado, vamos a asumir la interacción entre
espines Dij con diferentes dependencias de las “distancias de enlace” Dij = J/|rij|α pa-
ra α = 1, 2, 3, donde α = 3 es el caso dipolar habitual. Es importante señalar que esta
“distancia de enlace” rij se define como el número mínimo de sitios entre los dos espi-
nes en lugar de una distancia geométrica. Esta definición es fundamental para preservar
la homogeneidad del sistema entre diferentes valores de N . Dado que utilizamos Dij no
aleatorios, es crucial introducir campos aleatorios hi para romper la alta simetría del ani-
llo y evitar recurrencias. Los mismos son muestreados uniformemente entre [−J/2, J/2],
los resultados en ausencia de campos Zeeman se muestran en el apéndice D.5. Las in-
teracciones en los Hamiltonianos moleculares típicos tienen un signo que depende de la
orientación del enlace con respecto al campo externo. Sin embargo, para los fines de este
estudio, adoptamos una convención de signos uniforme, como sería el caso en un anillo de
ferroceno [65, 100]. Además, exploramos la incorporación de asignaciones aleatorias a los
signos en el acoplamiento, considerando α = 1 como un caso paradigmático.

La excitación local inicial tiene la forma ρ̂0 ∝ Ŝz
i , y evoluciona, como en una secuencia

MQC típica (Fig. 5.1a) con el Hamiltoniano definido en la ecuación (5.12). Dado que una
forma de autopromedio está naturalmente presente en un observable global, se considera
solo una realización del desorden. La evolución se realizó siguiendo el algoritmo de Trotter-
Susuki [173, 268, 269] y de paralelismo cuántico [223, 230] (Ver apéndice E). Como se
señaló anteriormente, al repetir las simulaciones para todos los posibles sitios iniciales i,
se pueden calcular los ecos de Loschmidt tanto globales como locales y, consecuentemente,
los OTOCs asociados.

5.2.1. Ecos y coherencias.

Las Figuras 5.2 (a) y (b) muestran los ecos MG(t, ϕ) (curvas a trazos) obtenidos para
un sistema de N = 16 espines con α = 3, partiendo de la condición inicial (es decir, la
excitación) en los diferentes sitios, i, y sumando todas las señales independientemente de
en qué sitio se detecte. Esta magnitud global representa el observable experimental dado
por la Ec. (5.4). Junto con el eco global, las Fig. 5.2 (a) y (b), también muestran el eco
local ML(t, ϕ) (curvas sólidas), únicamente accesible mediante simulación numérica, para
diferentes perturbaciones (fases), en función del tiempo. A tiempos cortos, las diferencias
entre los ecos locales y globales son perceptibles, pero estas se vuelven más pequeñas a
medida que el sistema evoluciona, llegando a ser indistinguibles en a tiempos largos.

Al analizar la señal recuperada a un tiempo dado en función de fases, (Figs. 5.2(c-e)),
queda claro que en tiempos cortos, (c), las diferencias entre lo global y lo local siguen
siendo apreciables, pero disminuyen a medida que el sistema evoluciona. Esto se eviden-
cia en los términos cruzados, que son prácticamente cero en (e). Este comportamiento
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(c-e) MG(t, ϕ) (verde), ML(t, ϕ) (rojo) y MCT (t, ϕ) (azul) como función ϕ para tiempos fijos. (f-
h) Distribución MG(t,m) (rojo), ML(t,m) (verde) y MCT (t,m) (azul) obtenidas al transformar
Fourier las curvas (c-e). Los tiempos son (c/f) t = 0.5J/ℏ, (d/g) t = 7.5J/ℏ, (e/h) t = 100J/ℏ.
Todos los paneles se calculan utilizando un anillo de espines con N = 16 y α = 3.

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

n   ϕ=π/2

0
1
2
3
4
5

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

Jt/ℏ
-0.8

-0.4

0

0.4

0.8

0 1 2 3 4 5Jt/ℏ

n ϕ=π/8

0
1
2
3
4
5

n n

Tiempo Tiempo 
Figura 5.3: Eco promedio observado a una distancia n (colores) del sitio inicial en función del
tiempo. El recuadro muestra los tiempos cortos. El panel (a) corresponde al valor de perturbación
ϕ = π/8, mientras que en el panel (b) a ϕ = π/2. Los datos numéricos corresponden a un anillo
de N = 16 con α = 3.

93



5.2. RESULTADOS NUMÉRICOS.

temporal también se refleja en los aportes de los distintos términos, Global, G; Locales,
L; y Cross-Terms, CT, a la distribución de coherencias, (f-h). Los segundos momentos de
estas distribuciones nos permiten definir KG(t), KL(t) y KCT (t).

La figura 5.2 muestra resultados típicos que, aparte de la discriminación entre contri-
buciones locales y globales, son similares a los encontrados habitualmente en implemen-
taciones experimentales. Sin embargo, al ser un estudio numérico, la disponibilidad de
datos nos permite computar las contribuciones a los ecos globales MG(t, ϕ) de los ecos
observados a una distancia n del sitio inicial:

Mn
G(t, ϕ) =

1

N2N−2

∑
i

Tr
{
(Ŝz

i+n(t) + Ŝz
i−n(t))R

†Ŝz
i (t)R

}
(1− δn,0/2). (5.13)

Nótese que la contribución de los sitios −n y n proviene de la geometría del anillo del
sistema y significa una traslación de n sitios a la derecha e izquierda del sitio i. En la
implementación numérica, la periodicidad de la indexación debe realizarse cuidadosamen-
te. Por ejemplo, para un anillo de N espines M0

G(t, ϕ) =
1

N2N−2

∑
i Tr{Ŝz

i (t)R
†Ŝz

i (t)R} y
M1

G(t, ϕ) =
1

N2N−2

∑
i Tr{(Ŝz

i+1(t) + Ŝz
i−1(t))R

†Ŝz
i (t)R}, donde Ŝz

i+1 y Ŝz
i−1 representan el

espín a la derecha e izquierda de i respectivamente.
Esta discriminación nos permite explorar nuestra hipótesis a un nivel más fundamen-

tal. Evaluando de qué manera la magnetización arriba a los sitios vecinos al inicial. El
comportamiento de estos ecos se muestra en la Fig. 5.3 para dos perturbaciones dife-
rentes. Se podría pensar que, como ocurre en el eco de polarización, lo que se pierde
en el sitio original puede terminar como polarización en los espines vecinos. Sin embar-
go, en el Hamiltoniano DQ puede terminar en correlaciones que no observables. Algunas
perturbaciones, como ϕ = π/2, permiten convertir estas correlaciones en magnetización
observada en los sitios vecinos. Estas correlaciones, sin embargo, desaparecen mucho antes
de los tiempos de saturación. A tiempos cortos, es claro cómo el sistema está altamente
correlacionado, observándose una polarización negativa que regresa a distancias impares
n y una polarización positiva que llega a valores pares de n. Este efecto es más notable
en la Fig. 5.3(b) debido a la magnitud de los ecos. Este máximo en el eco aparece en
tiempos más prolongados a medida que n aumenta. Después de estos efectos transitorios,
observamos que todos los ecos en n ̸= 0 van a cero, como ya se insinuó en el análisis
anterior.

5.2.2. Crecimiento, saturación y fluctuaciones en OTOCs locales
y globales.

Los resultados anteriores muestran que la equivalencia entre OTOCs globales y locales
se observa en nuestro sistema de prueba. A continuación se estudia sistemáticamente y la
diferencia entre ambas magnitudes, variando el tamaño del anillo (N) y el rango de las
interacciones (α).

Los tamaños de cluster, K∗ con ∗ = {G,L,CT}, se obtienen promediando las realiza-
ciones individuales en diferentes sitios, Ki

∗, que se ejemplifican en la Fig. 5.4 para N = 12
y α = {1, 2}. Se observa que los Ki

∗ presentan el mismo comportamiento de los valores
totales, pero difieren en las fluctuaciones. Por lo tanto, al promediar sobre los sitios ini-
ciales, el efecto principal es mitigar estas fluctuaciones, lo que da como resultado curvas
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Figura 5.4: Realizaciones individuales por sitio, Ki
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más suaves.
La Figura 5.5 muestra la evolución temporal del número de espines correlacionados

calculados a partir de ecos globales o locales, KG(t) y KL(t) (curvas a trazos y continuas
respectivamente) para diferentes tamaños del anillo N = 8− 16. De izquierda a derecha,
la Fig. 5.5 muestra los resultados para todos los valores de α de 3 a 1, más α = 1 con
signos aleatorios. Observamos como, tras el régimen inicial, ambas curvas representan
el crecimiento en el número de espines correlacionados y difieren en menos del 10%.
Usaremos el valor de saturación a largo plazo y sus fluctuaciones para cuantificar esta
diferencia a medida que aumenta el número de espines en el sistema N . Al disminuir α,
las magnitudes K∗ alcanzan los valores de saturación en tiempos más cortos, debido a las
interacciones más fuertes. Normalmente, los tiempos de saturación ts son Jts/ℏ ≈ 50 para
la interacción ∝ 1/r3, Jts/ℏ ≈ 20 para ∝ 1/r2 y Jts/ℏ ≈ 10 para ∝ 1/r, un análisis más
detallado arrojaría ts dependiendo de N y α. Podemos observar que tanto KG(t) como
KL(t), al saturar, tienden hacia un valor cercano al tamaño del sistema N .

En el límite de α grande predomina la interacción entre vecinos cercanos, lo que lleva
a un comportamiento tipo cadena. En este límite, el Hamiltoniano Doble Cuántico genera
exclusivamente coherencias de segundo orden [216, 270–272], y la diferencia entre OTOC
globales y locales debería ser más relevante. Por el contrario, en el límite de α muy pe-
queño, la interacción se extiende infinitamente, y en el caso de acoplamientos con signos
aleatorios, debería comportarse como el modelo SYK [252]. El hecho de que para un siste-
ma más grande los términos cruzados se vuelvan relativamente menos importantes significa
que agregar vías a la dinámica aumenta las posibilidades de interferencias destructivas.
Esto sugiere que las interferencias destructivas aumentarían al incorporar aleatoriedad en
los acoples, como se observa al incluir signos aleatorios en Dij (Fig. 5.5(d)). De hecho,
en un cristal real aparecen signos y magnitudes pseudoaleatorias debido a las diferentes
direcciones del acoplamiento.

A tiempos cortos e intermedios, el crecimiento de los OTOC locales y globales es
ligeramente diferente, como se muestra en la Fig. 5.6. Esta diferencia tiene su origen en
los patrones de interferencia particulares en la dinámica de espín del Hamiltoniano DQ
durante la inversión del tiempo. Las componentes que no regresan a sus sitios originales
dentro de este breve período de tiempo exhiben una fuerte tendencia a regresar a sus
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Figura 5.5: Evolución temporal de la OTOC local KL(t) (curvas continuas) y la OTOC global
KG(t) (curvas discontinuas), para un sistema de anillos con interacciones dadas por la ecuación
(5.12). Las interacciones son de la forma, (a) Dij ∝ J

|rij |3 , (b) Dij ∝ J
|rij |2 , (c) Dij ∝ J

|rij | , (d)

Dij ∝ ±J
|rij | con signos aleatorios.

sitios adyacentes, con relaciones de fase específicas.
Matemáticamente, la diferencia a tiempos muy cortos se puede analizar usando la

expansión de Baker-Campbell-Hausdorff [265]. Después de realizar alguna manipulación
algebraica, se puede demostrar (como se detalla en el Apéndice D.3) que para el Hamil-
toniano DQ, tanto el OTOC global como el local exhiben un comportamiento cuadrático
en tiempos cortos, con coeficientes que difieren solo por un factor de dos:

KG(t) ≈ 32

N
t2ℏ2

∑
i,j

D2
ij, (5.14)

KL(t) ≈ 16

N
t2ℏ2

∑
i,j

D2
ij. (5.15)

En consecuencia, KL(t) ≈ KCT (t) en tiempos cortos. Estas expresiones han sido vali-
dadas numéricamente, como se muestra en la Fig. 5.6 (derecha). Además, es evidente que
el crecimiento de los OTOC es más rápido cuando el exponente α se vuelve más pequeño,
ya que aumenta el valor de

∑
i,j D

2
ij. Nótese que este comportamiento no cambia al incluir

signos aleatorios en los valores de Dij.

En tiempos intermedios, después de esta expansión cuadrática inicial, la complejidad
del Hamiltoniano empieza a afectar la dinámica y la ley de crecimiento cambia dependien-
do del exponente α, un comportamiento esperable teóricamente [273–276]. En la Fig. 5.6
observamos que esta ley de crecimiento para OTOC locales y globales muestra el mismo
comportamiento, haciendo que la diferencia relativa KCT (t)/KG(t) sea menor a medida
que el sistema evoluciona. Sin embargo, la ventana de crecimiento relativamente pequeña
del sistema estudiado hace difícil asignar una ley particular a cada Hamiltoniano, dejando
solo el régimen saturado para estudiar sistemáticamente la dependencia de los términos
cruzados KCT (t)/KG(t) con N .

Para cuantificar la diferencia entre los OTOC locales y globales en tiempos lar-
gos, calculamos el promedio temporal del término cruzado en la saturación ⟨Ki

CT ⟩ =
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Figura 5.6: (a) Evolución de KL(t) (curvas continuas) y KG(t) (curvas discontinuas) para
tiempos previos a la saturación. Interacciones de la forma Dij ∝ 1/|rij |α con α = {1, 2, 3}, y un
anillo con N = 16. (b) Zoom del comportamiento a tiempo muy pequeño para α = 3 en escala
log-log. En líneas discontinuas negras se muestra la expresión analítica dada por la Ec. (5.14)
y (5.15).

1
τ

∫ tmax

ts
Ki

CT (t)dt, donde tmax es el tiempo final en nuestra simulación y τ = tmax − ts,
para varios tamaños de sistemas. En la Fig. 5.7, representamos estas magnitudes relativas
al tamaño del sistema como una función de N , lo que puede interpretarse como el error
relativo entre KG y KL, ya que N es aproximadamente su valor de saturación. Las con-
tribuciones del sitio ⟨Ki

CT ⟩/N se muestran con cruces moradas, mientras que su promedio
⟨KCT ⟩/N con puntos rojos. En todos los casos observamos que ⟨KCT ⟩/N no sólo dismi-
nuye con N sino que también cada ⟨Ki

CT ⟩/N lo hace, esto implica que la equivalencia de
la observación global o local es válida para cada estado inicial individual, sin necesidad de
sumar todas las condiciones iniciales para tener el efecto. Las barras de error de los pun-
tos rojos en la Fig. 5.7 corresponden a la desviación estándar normalizada SD(KCT )/N ,
donde

SD(KCT ) =

√
1

τ

∫ tmax

ts

(KCT (t)− ⟨KCT ⟩)2dt, (5.16)

cuantifica las fluctuaciones temporales alrededor del valor de saturación. Se utiliza una
expresión equivalente para definir la desviación estándar del valor promedio de cada sitio
SD(Ki

CT )/N , cuyo valor promedio se muestra en barras moradas desplazadas. Observamos
que, así como ⟨Ki

CT ⟩/N disminuye cuando N aumenta, también lo hacen sus fluctuaciones,
como se puede percibir en la Fig. 5.5. Las fluctuaciones en el comportamiento a tiempos
largos de los OTOC se han asociado directamente con el caos, particularmente, cuanto más
caótico es el sistema, menores son estas fluctuaciones [228]. Dado que las fluctuaciones
de KL son considerablemente menores que las fluctuaciones de KG, podemos afirmar
que SD(KG) ≈ SD(KCT ). En consecuencia, a medida que aumentamos N , los sistemas
se vuelven más caóticos y los OTOC locales y globales se vuelven casi idénticos. Esto se
evidencia por la disminución simultánea del valor promedio de KCT (t) y sus fluctuaciones.

Además, podemos ampliar el análisis a la magnitud de las fluctuaciones en los OTOC
individuales y totales. Observamos que las fluctuaciones en ⟨KCT ⟩ son considerablemen-
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Figura 5.7: Promedio temporal de la contribución cruzada al número de espines correlacionados,
⟨KCT ⟩/N (círculos sólidos rojos), en comparación con el promedio temporal de la contribución
cruzada de un solo sitio, ⟨Ki

CT ⟩/N (cruces moradas). También se muestra la desviación estándar

SD(KCT )/N (ec.(5.16), barras rojas), y la raíz cuadrada del promedio de varianza del sitio
√
σ2CT

(ec. (5.18), barras moradas) ligeramente desplazadas para mayor claridad. (a) Dij ∝ 1/|rij |3 (b)
Dij ∝ 1/|rij |2, (c) Dij ∝ 1/|rij |, (d) Dij ∝ ±/|rij | con signos aleatorios.

te más pequeñas que la fluctuación de ⟨Ki
CT ⟩. Es fácil ver que la relación entre ambas

magnitudes se satisface,

SD2(KCT ) =
1

N2

∑
i

SD2(Ki
CT )

+
1

N2

∑
i ̸=j

Cov(Ki
CT (t), K

j
CT (t)) (5.17)

=
σ2
CT

N
+

1

N2

∑
i ̸=j

Cov(Ki
CT (t), K

j
CT (t))

donde se denota
σ2
CT =

1

N

∑
i

SD2(Ki
CT ). (5.18)

La línea superior representa un promedio sobre los sitios iniciales (barras moradas en la
figura 5.7). Por lo tanto, si no hubiera correlación entre diferentes Ki

CT (t), tendríamos
SD2(KCT ) = σ2

CT/N . Esta última expresión se muestra válida en el límite de N grande,
como se puede ver en el Apéndice D.4. De hecho, vemos que la correlación total (suma
de las covarianzas) disminuye muy rápidamente con N . Para N = 14 ya son del mismo
orden que nuestra precisión estadística. Particularmente para el Hamiltoniano que incluye
signos aleatorios en Dij, la correlación entre diferentes Ki

CT (t) esto sucede para N = 12.
Igualmente, se observa que la dispersión entre los valores de ⟨Ki

CT ⟩/N es menor cuando α
es menor. Esto se puede racionalizar pensando que para α grandes los espines están menos
interconectados y las fluctuaciones del sitio, observadas en cada ⟨Ki

CT ⟩/N , dependen en
gran medida de los campos locales hi afectando al espín y sus vecinos.

La figura 5.8 muestra el valor promedio ⟨KCT ⟩/N en escala logarítmica, donde desta-
ca el decaimiento discutido anteriormente. Si bien los tamaños no son lo suficientemente
grandes como para que los ajustes discriminen entre la caída exponencial o una ley de
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con el Hamiltoniano (5.12), con Dij = 1/rαij por α = 1, 2, 3.

potencial, en el último caso, el exponente de este decaimiento podría variar entre −4, 3 y
−3, 1. Para sistemas completamente aleatorios se espera una caída exponencial resultante
de una distribución homogénea de los estados en el espacio de Hilbert. Sin embargo, para
un Hamiltoniano DQ se espera que las regiones del espacio de Hilbert correspondientes
a una magnetización total tengan una distribución normal, como es reflejado en la dis-
tribución de coherencias cuánticas. Bajo este supuesto, es razonable que la caída con N
siga una ley de potencia en lugar de una ley exponencial. Independientemente de la forma
particular del decaimiento, la disminución en la magnitud de los términos cruzados con
N deja evidencia de que, en sistemas cuya complejidad es lo suficientemente fuerte como
para generar dinámicas caóticas, los ecos globales están compuestos por una simple suma
de ecos locales. Las contribuciones provenientes de fuera del sitio original serán totalmen-
te descorrelacionadas (pseudoaleatorias) y a tiempos largos se cancelarán entre sí. Por lo
tanto, los OTOC locales y globales proporcionarán la misma información.

5.3. Conclusiones.

Este capítulo, hemos evaluado la hipótesis, nacida a partir de resultados obtenidos en
experimentos de RMN [79], de que la evolución (y magnitud) de OTOCs locales y glo-
bales se vuelve equivalente a medida que la complejidad y el tamaño del sistema crecen.
Específicamente, hemos investigado la evolución de los ecos generados por la secuencia de
coherencias cuánticas múltiples y el conteo del número de espines correlacionados deriva-
dos de la misma. Analíticamente, hemos demostrado que tanto las magnitudes globales
como las locales están compuestas por términos locales y cruzados, donde esperamos que
(los últimos) sean despreciables al aumentar el tamaño y la complejidad del sistema.

A través de la evaluación numérica en un anillo de espines interactuantes con variantes
del Hamiltoniano de cuantos dobles, observamos que la evolución del número de espines co-
rrelacionados obtenido a partir de la secuencia MQC presenta un comportamiento similar
independientemente de si se utilizan observables globales o locales. Tanto las magnitudes
globales KG(t) como las locales KL(t) siguen una misma ley de crecimiento después de un
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régimen inicial, lo que nos permite asociar ambas medidas al crecimiento del número de
espines efectivamente acoplados. La discrepancia KCT (t) = KG(t)−KL(t) se vuelve rápi-
damente menor al 10%, lo que permite, para todo fin práctico, asignar cualquier de estos
valores al número preciso de espines correlacionados por la evolución de una excitación
local.

Después de un breve transitorio inicial, tanto los valores de las correlaciones cruza-
das, KCT , responsables de la discrepancia en observables locales y globales, como sus
fluctuaciones tienden a cero. Esto respalda la idea de asignar a los observables globa-
les determinados experimentalmente (LE y MQC), el significado local que nos interesa
físicamente. La interpretación de las mediciones locales está, consecuentemente, bien res-
paldada. Por otra parte, esto resulta consistente con los resultados de Zhou y Swingle,
Ref. [61], donde se estudia la contribución de las correlaciones “diagonales” y “no diagona-
les” en un sistema de espín. De hecho, sus resultados implican, parcialmente, los nuestros.
Esto se debe a que el tamaño del sistema local (KL(t)) contiene toda la contribución de
los OTOC “diagonales” (junto con algunos “no diagonales”), mientras que lo que nosotros
denominamos correlaciones cruzadas (KCT (t)) está compuesto únicamente por términos
“fuera de la diagonal” (Ec. (5.11)).

Nuestro enfoque destaca que la equivalencia de los OTOCs locales y globales se origina
en la cancelación de las contribuciones a la señal de eco que llegan de sitios distintos al
de la excitación inicial. En este caso, se observa un doble efecto: por un lado, la dinámica
de muchos cuerpos impide directamente el retorno de parte del estado evolucionado; por
otro lado, las partes de la polarización que efectivamente pueden revertirse llegan con
fases pseudoaleatorias a los sitios vecinos, anulándose entre sí.

Este análisis le da un sustento analítico y numérico a la interpretación de muchos
procedimientos experimentales, donde se asume el mismo comportamiento del OTOC
global y el local.

Las contribuciones originales de este capítulo se encuentran en preparación para su
presentación en una revista académica.
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Capítulo 6

Conclusiones.

A lo largo de esta tesis, más allá de las conclusiones específicas alcanzadas en cada
capítulo, me parece fundamental resaltar el valor de los modelos “simples”. Estos modelos,
caracterizados por contener los ingredientes mínimos para manifestar un efecto particular,
desempeñan un papel fundamental en la comprensión de fenómenos físicos. Mucha física
se puede entender desde el análisis de un péndulo o de un sistema de dos niveles (dos
péndulos). Aunque siempre existe la posibilidad de aumentar la complejidad, incorporar
nuevos ingredientes y añadir detalle según sea necesario, es crucial reconocer que, en la
mayoría de los casos, una comprensión profunda de los sistemas simples constituye la
base para entender fenómenos más complejos e incluso para construir nuevos modelos a
piacere.

En esta tesis, esta visión fue una prioridad, comenzamos en el Capítulo 2 con un modelo
de enlaces fuertes (Tight-Binding) de una partícula. La elección del potencial de HHAA
nos permitió tener una transición de fase a un valor finito de la amplitud del potencial sin
necesidad de recurrir a un modelo 3D, lo que hubiera sido numéricamente muy costoso.
Para nuestra motivación esto era suficiente, aunque generalizaciones directas del modelo
permitirían agregar, por ejemplo, bordes de movilidad [108, 235]. Las ideas utilizadas
para caracterizar la dinámica son, también, relativamente simples. La caracterización de
la dinámica a tiempos largos para la región extendida se basó en una extensión directa
de la solución para una cadena ordenada y una cadena dimerizada. En el punto crítico,
aprovechamos desarrollos perturbativos y un juego entre las escalas de tiempo dadas por
las energías de los sitios y la magnitud del acoplamiento intersitio (hopping) nos llevó a
una expresión analítica para el coeficiente de difusión. Esta estrategia, i.e considerar un
sistema simple, nos permitió diseñar un OTOC para extraer información del desparramo
espacial de la excitación accediendo a un único sitio del sistema, sin la necesidad de
lidiar con la complejidad de cadenas de operadores de Pauli, simplemente implementando
proyecciones sobre cada sitio. Al interpretar al OTOC como un experimento de Loschmidt
eco donde el estado inicial evoluciona, es perturbado y evoluciona hacia atrás, es intuitivo
pensar, que si deseamos extraer información del desparramo espacial, es necesario que esta
perturbación marque de manera distinta cada parte de la cadena. El uso de un gradiente
de campo es la forma más simple, y nos permite obtener tanto el IPR como el segundo
momento de la función de onda. No obstante, el eventual uso de otras perturbaciones, por
ejemplo otras dependencias en n del campo aplicado, nos permitirían extraer información
complementaria.
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En el Capítulo 3, los efectos de un ambiente son incorporados a la cadena de HHAA,
de una forma sencilla: como un ruido totalmente descorrelacionado. Esto genera, para
tiempos mayores al de decoherencia, una dinámica difusiva. Si el menor tiempo caracte-
rístico es el de la decoherencia observamos que el coeficiente de difusión decrece con el
inverso de la magnitud de este tiempo, lo que puede verse como una manifestación del
efecto Zenón cuántico, donde el ambiente limita cualquier dinámica. Para magnitudes de
decoherencias menores, el coeficiente de difusión siempre decrece con la decoherencia en
el régimen extendido, mientras que en el régimen localizado aumenta, ya que las fluctua-
ciones ambientales impiden la localización de las excitaciones sistema. En el punto crítico,
donde la dinámica coherente ya es inherentemente difusiva, el coeficiente de difusión se
mantiene aproximadamente constante hasta entrar en el régimen de Zenón cuántico. La
observación de esta estabilidad nos llevó a discutir (acaloradamente) sobre si el origen
de la misma era propia del punto crítico o heredada de la difusión coherente. Esto nos
llevó a buscar otros Hamiltonianos modelo (con y sin transiciones de fase) que presenten
difusión coherente. Simultáneamente, buscamos entender cómo se relacionan el coeficiente
de difusión, la dinámica y el ambiente.

Nuestra primera estrategia fue pensar que el ambiente realiza mediciones a tiempos
fijos. Si bien esta visión “básica” del efecto del ambiente es suficiente para explicar el com-
portamiento del coeficiente de difusión en los regímenes extremos, la misma fue refinada
para incluir una distribución de probabilidad más realista en los tiempos de medición. Este
último enfoque resultó muy efectivo para reproducir resultados numéricos del coeficiente
de difusión a partir de la dinámica coherente. Esto sugiere que es la difusión coherente lo
que origina la estabilidad observaba.

Para generar otros Hamiltonianos modelo con difusión, nuestro primer abordaje fue
construir sistemas cuasi-1D, donde, eligiendo adecuadamente su número de canales dispo-
nibles para el transporte y la magnitud del desorden podíamos generar dinámicas apro-
ximadamente difusivas en un rango de tiempo suficiente para su cómputo. Si bien estos
modelos pueden ser bastante cercanos sistemas realistas, los resultados no fueron inclui-
dos en esta tesis debido a que los modelos de Fibonacci y PBRM presentan una dinámica
difusiva más limpia y con menor costo computacional. En el caso del PBRM, un análisis
de la relación entre los parámetros del sistema, el tamaño del mismo, y la velocidad de la
dinámica, nos permitió aumentar la ventana de tiempo donde la difusión es claramente
observable. Esto es necesario para testear la estabilidad del coeficiente de difusión para
distintas magnitudes del ambiente. En estos modelos, no solo corroboramos el comporta-
miento anticipado por el modelo de colapso, sino que también confirmamos la dependencia
universal en régimen difusivo: el coeficiente de difusión como función de la magnitud de
la decoherencia sigue una curva universal una vez que estas magnitudes son reescaladas
con las características intrínsecas de cada sistema.

Esta difusión estable podría tener implicancias directas en muchos sistemas físicos
y biológicos, como cadenas de espines interactuantes, átomos fríos, cadenas poliméricas,
microtúbulos y cadenas de ADN. Esta robustez frente a la decoherencia, se ve reflejada
en diferentes efectos en el sistema, en particular en el decaimiento del LE a tiempos
largos (Pureza), el cual, a tiempos largos, entra en un decaimiento independiente de
la magnitud de la decoherencia. Sin embargo, este régimen es intrínsecamente distinto
del decaimiento independiente de la perturbación inducido por el caos propuesto por
Jalabert & Pastawski [67], ya que corresponde a un decaimiento totalmente incoherente.
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Esperamos que la inclusión de cierta correlación espacial en el ruido podría llevarnos
al decaimiento independiente de perturbación en analogía con el resultado pronosticado
en [67]. No obstante, el estudio del LE se vuelve imprescindible para diferenciar el origen
de la difusión: si la dinámica difusiva es coherente el LE es cercano a 1 mientras que,
cuando es inducida por un ambiente, se inicia como una exponencial antes de convertirse
en ley de potencias que indica la casi total aleatoriedad del retorno.

En el Capítulo 4, se extiende el OTOC (GEA) desarrollado en el Capítulo 2 a sistemas
de espines interactuantes, estudiando sus diferencias con el equivalente de un cuerpo. Si
bien aparecen tanto diferencias cualitativas como cuantitativas, la secuencia GEA sigue
siendo efectiva para estudiar la localización espacial de excitaciones en sistemas unidimen-
sionales. En el caso de un sistema de espines, el término central del espectro obtenido deja
de ser el IPR para aproximarse a la suma de las magnetizaciones al cuadrado; el segundo
momento de este espectro ya no tiene una exacta correspondencia con la varianza de la
distribución de magnetizaciones, sino que se corresponde con el OTOC Tr

{
[Ĥg, ρ̂(t)]

}
.

Numéricamente, el crecimiento exponencial del espacio de Hilbert nos limita a trabajar
con cadenas de hasta 19 espines. Por esta razón, la secuencia fue testeada en primera
instancia para una cadena corta (7 espines) con tres Hamiltonianos de interacción ba-
sados en la cadena de HHAA. Uno de ellos, no-interactuante, tiene una correspondencia
unívoca con la cadena HHAA. El segundo incluye interacciones MB que conservan la mag-
netización total. El tercero no conserva la magnetización total. El segundo Hamiltoniano
representa una cadena de HHAA generada por campos Zeeman locales e acoplamientos
XY, a los que se añaden interacciones tipo Ising (MB). En este caso, realizamos un análisis
exhaustivo sobre el efecto de incluir estas interacciones. Luego de verificar que la suma
de las magnetizaciones (S2) y el término central de la GEA son aproximadamente igua-
les; estudiamos la dinámica y valores de equilibración de S2 variando la magnitud de las
interacciones de Ising. Observamos que las interacciones MB ayudan a la deslocalización
del sistema, moviendo el “valor crítico” del potencial a amplitudes mayores. Sin embargo,
si las interacciones son fuertes (U ≫ J), las mismas dificultan la dinámica de excitacio-
nes en el sistema, desplazando nuevamente el “valor crítico” hacia valores menores de la
magnitud de la modulación local. Dinámicamente, en las cercanías de la transición entre
estados extendidos y localizados observamos un acercamiento muy lento (ley de potencias)
hacia los valores de equilibrio, lo que dificulta determinar el valor crítico del potencial.
A futuro sería interesante realizar un estudio similar, pero computando los valores de-
rivados de la secuencia GEA. Esto podría representar una nueva fuente de información;
particularmente tomando provecho del segundo momento de esta distribución.

Finalmente, en el Capítulo 5, buscamos evaluar la equivalencia de OTOCs globales y
locales en experimentos de RMN. En particular, un OTOC global (KG) derivado de la
secuencia de coherencias cuánticas múltiples, cuantifica el número de espines correlacio-
nados de la misma manera que su versión local KL, en principio solo accesible de manera
numérica. Intuitivamente, uno espera que la equivalencia de estos OTOCs sea una pro-
piedad intrínseca de los propios experimentos de eco de Loschmidt dados por la secuencia
de MQC. En este caso, cada eco observando es consecuencia los términos locales de estos
ecos, resultando despreciables las contribuciones cruzadas. Cuantitativamente, un poco de
álgebra nos permite, al ser lineal la relación entre los ecos globales observados y su corres-
pondiente KG, separar las contribuciones de ecos locales y cruzados a KG, determinando
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la cancelación de los términos cruzados.
En la práctica, es imposible simular un experimento de RMN, principalmente debido

al número macroscópico de espines y toda la riqueza de su dinámica. En consecuencia,
nuestra evaluación numérica, debe ser restringida a no mucho mas de una docena de es-
pines, en lo posible conteniendo algunos de los elementos necesarios para representar un
sistema real. Por esto, elegimos testear la equivalencia entre observables locales y globales
considerando anillos de espines con interacciones a largo alcance dadas por el Hamilto-
niano de Cuantos Dobles y desorden Zeeman de sitio. La elección de un anillo frente a
una cadena se debe a que buscamos que todos los sitios sean equivalentes, minimizando
los efectos de borde y facilitando el análisis al incrementar N . Sin embargo, es crucial que
sean equivalente pero no iguales, a modo de evitar las recurrencias propias de sistemas
con alta simetría, lo que se logra introduciendo desorden de sitio. La interacción de largo
alcance permite la creación de coherencias de orden mayor a dos, como se observa expe-
rimentalmente. Nuestros resultados numéricos confirman que a medida que se aumenta
el tamaño del sistema y la complejidad de las interacciones, el OTOC local y el OTOC
global se vuelven equivalentes; es decir, la diferencia entre los mismos tiende a cero con
N . Este resultado es fundamental para la interpretación de la dinámica que controla el
desparramo (efecto mariposa) que resulta de los experimentos, especialmente de aquellos
que verifican la Hipótesis Central de Irreversibilidad [6, 79].

Sintetizando, a lo largo de esta tesis hemos explorado dinámicas cuánticas generadas en
una variedad de condiciones: sistemas tanto cerrados como abiertos, de una sola partícula
y de muchos cuerpos. Asimismo, hemos examinado distintas formas de extraer informa-
ción de estos sistemas, tanto directamente de la dinámica como mediante de diferentes
OTOCs y de ecos de Loschmidt. Cada análisis nos ha proporcionado una comprensión más
profunda de los procesos involucrados los sistemas estudiados. Mirando hacia adelante, se
abren múltiples caminos para futuras investigaciones:

• Introducir correlaciones en el ruido ambiental de manera de que la decoherencia
no impida la reversión de la dinámica de las excitaciones, al menos dentro de una
longitud de correlación. Esto permitiría de explorar el decaimiento independiente de
perturbación sugerido en [67] ya adentrados en el régimen cuánticamente difusivo.

• Explorar la estabilidad de la dinámica difusiva ante la introducción de interacciones
MB, de un ambiente correlacionado, o directamente un ambiente con una dinámica
no-Markoviana.

• Introducir ruido Zeeman en la dinámica de un sistema MB y posibilitar la genera-
lización del Quantum-Drift para su implementación numérica.

• Observar el efecto de fluctuaciones en los campos Zeeman (ruido), en la dinámica
de OTOCs en un sistema many-body; en particular, en el crecimiento del número
de espines correlacionados y la equivalencia entre los OTOCs globales y locales en
estas condiciones.

• Evaluar la Hipótesis Central de Irreversibilidad en los sistemas anteriores mediante
un crecimiento sistemático de la complejidad del sistema (incluyendo un aumento
del tamaño) y una simultánea reducción del acoplamiento con el ambiente.
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Apéndice A

Segundo momento del espectro GEA.

En este apéndice se presenta con mayor detalle el cálculo del segundo momento del
espectro GEA, tanto para el caso de una partícula como para su generalización a sistemas
de espines.

A.1. Un cuerpo.

De la evaluación del eco proveniente de la secuencia ZOGE, Ec. 2.29 y 2.30, tenemos:

M(t, φ) =
∑
m,n

|bn(t)|2|bm(t)|2e−iφ(m−n) =
∑
j

Qje
−iφj, (A.1)

se puede observar que el segundo momento del espectro observado (Qj) corresponde al
segundo momento de la función de onda. Para esto, vasta evaluar la derivada segunda del
eco respecto a φ, evaluada en φ = 0:

−∂
2M(t, φ)

∂φ2

∣∣∣∣
φ=0

=
∑
j

Qjj
2 =

∑
m,n

|bn(t)|2|bm(t)|2(m− n)2 (A.2)

=
∑
m,n

|bn(t)|2|bm(t)|2(m2 − 2nm+ n2) (A.3)

= 2
∑
n

|bn(t)|2n2 − 2

(∑
n

n|bn(t)|2
)2

(A.4)

= 2σ2
0(t), (A.5)

donde hemos utilizado
∑

m |bm(t)|2 = 1. Este resultado es válido no solo para una condi-
ción inicial localizada, sino para todo estado inicial puro.
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A.2. SISTEMAS DE ESPINES.

A.2. Sistemas de espines.
Generalizando a sistemas de espines tenemos:

M(t, φ) =
1

Tr{(Ŝz
0)

2}
Tr
{
eiφĤg Ŝz

0(t)e
−iφĤg Ŝz

0(t)
}
=
∑
j

Q̃je
−iφj (A.6)

nuevamente, basta derivar dos veces respecto φ y evaluar en cero para obtener el segundo
momento de la distribución de Q̃j.

∑
j

Q̃je
−iφj = − ∂2M(t, φ)

∂φ2

∣∣∣∣
φ=0

=
2

Tr{(Ŝz
0)

2}
Tr
{
ĤgŜ

z
0(t)ĤgŜ

z
0(t)
}

(A.7)

=
2

Tr{(Ŝz
0)

2}
Tr
{
[Ĥg, Ŝ

z
0(t)]

2
}
. (A.8)
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Apéndice B

Corriente Estacionaria y Fórmula de
Green-Kubo.

En la primera sección de este apéndice definimos la corriente en estado estacionario y
derivamos una expresión aproximada de la corriente en función del coeficiente de difusión.
Los resultados aquí descritos han sido realizados por Emilio Álvarez Navarro como parte
de su tesis de maestría [179].

En la segunda sección mostramos como calcular el coeficiente de difusión a partir
utilizando los autoestados y autoenergías del sistema, a partir de la fórmula de Green-
Kubo.

B.1. Corriente Estacionaria.

Para generar una corriente, se coloca una fuente y un sumidero de excitaciones (in-
coherentes) en los bordes de la cadena. Esto se modela incluyendo términos adicionales
en la ecuación maestra de Lindblad (Ec. (3.1)), que se convierte en

dρ̂

dt
= L[ρ̂] = − i

ℏ

[
Ĥ, ρ̂

]
+ Lϕ[ρ̂] + Lp[ρ̂] + Ld[ρ̂], (B.1)

donde Ĥ es el Hamiltoniano de la cadena, Lϕ = −γϕ
2ℏ
∑N

n=1 [|n⟩ ⟨n| , [|n⟩ ⟨n| , ρ̂]] es el disi-
pador del texto principal, mientras que los términos adicionales,

Lp[ρ̂] =
γp
ℏ

(
|1⟩ ⟨0| ρ̂ |0⟩ ⟨1| − 1

2
|0⟩ ⟨0| ρ̂− 1

2
ρ̂ |0⟩ ⟨0|

)
, (B.2)

y

Ld[ρ̂] =
γd
ℏ

(
|0⟩ ⟨N | ρ̂ |N⟩ ⟨0| − 1

2
|N⟩ ⟨N | ρ̂− 1

2
ρ̂ |N⟩ ⟨N |

)
, (B.3)

son dos operadores modelando el bombeo en el primer sitio (|1⟩) y el drenaje desde el
último sitio (|N⟩). Aquí |0⟩ es el estado de vacío, donde no hay excitación presente en el
sistema [137,277]. Para simplificar, las tasas de bombeo y drenaje se establecen para que
sean iguales en magnitud (γp = γd). Al resolver la ecuación (B.1) en estado estacionario
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B.1. CORRIENTE ESTACIONARIA.

(L[ρ̂ss] = 0) se puede calcular la corriente estacionaria,

Iss =
γd
ℏ
⟨N | ρ̂ss |N⟩ , (B.4)

siendo ρ̂ss el operador de densidad de estado estacionario [137,277].

B.1.1. Corriente en estado estacionario: método de tiempo de
transferencia promedio.

Dado que el enfoque de la ecuación maestra discutido anteriormente es numéricamente
costoso, para N grandes utilizamos el método de tiempo de transferencia promedio (ATT),
como se describe en [137]. El tiempo promedio de transferencia τ se define como

τ =
γd
ℏ

∫ ∞

0

t ⟨N | exp (−Lefft) ρ̂(0)|N⟩ dt = γd
ℏ
⟨N |L−2

eff ρ̂(0)|N⟩ . (B.5)

donde Leff es Ec. (B.1) sin el termino de bombeo.
En [137] se ha demostrado que la corriente de estado estacionario determinada a partir

de la ecuación maestra (B.1) en ausencia de desfase depende únicamente del tiempo
promedio de transferencia, es decir

Iss =
γp

γpτ + ℏ
. (B.6)

Hemos verificado numéricamente que la Ec. (B.6) es válida también en presencia de des-
fase, por lo que a continuación la usamos debido a su menor complejidad numérica junto
con una construcción heurística, que se detalla a continuación.

Construcción heurística del tiempo de transferencia medio.

El método ATT nos brinda la posibilidad de construir heurísticamente el tiempo medio
de transferencia considerando los tiempos característicos de difusión y drenaje inducidos
por desfase.

Dado que en equilibrio la probabilidad de estar en el sitio N es 1/N y la tasa de drenaje
es γd/ℏ, podemos estimar el tiempo de drenaje como ℏN/γd. Luego, para determinar el
tiempo de difusión, sabemos que una excitación se mueve de un sitio a un vecino con un
tiempo promedio a2/(2D). Además, la excitación se mueve como un paseo aleatorio y el
número total de pasos requeridos en 1D es N(N − 1). Por lo tanto, estimamos el tiempo
de difusión como N(N − 1)a2/(2D) [278, 279]. Así, sumando el tiempo de drenaje y el
tiempo de difusión tenemos

τ = ℏ
N

γd
+

(N − 1)N

2D
a2 . (B.7)

La Figura B.1a compara Iss en función de la decoherencia calculada usando los tres
métodos discutidos arriba: la solución estacionaria de la ecuación maestra (B.1) (ME), el
método ATT (B.5-B.6), y la fórmula heurística (B.7). En este último caso, el coeficiente
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APÉNDICE B. CORRIENTE ESTACIONARIA Y FÓRMULA DE GREEN-KUBO.
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Figura B.1: (a) Corriente de estado estacionario vs. γϕ/J para el modelo HHAA para N = 100
y W = 2J obtenido con tres métodos diferentes: (i) Ecuación maestra (ME, curva verde (gris
claro)), (ii) método del tiempo de transferencia promedio (ATT, círculos rojos) y (iii) expresión
heurística (Ec. (B.7), azul (gris oscuro) curva). (b) Corriente de estado estacionario reescalada
ISSN

2 en función del desfase (γϕ/J) en los regímenes extendido, crítico y localizado (colores/gris)
para diferentes tamaños de sistemas N = {20, 40, 100}. ISSN2 se calcula utilizando el método
ME y se muestra con diferentes tipos de guiones dependiendo de N . La estimación (heurística)
basada en el coeficiente de difusión de la corriente para N = 1000 se incluye con curvas de puntos
y guiones amarillos (gris claro).

de difusión D se ha calculado utilizando el enfoque de Green-Kubo, discutido en la sección
siguiente.[Ec. (3.2)]. Se observa una buena concordancia general entre los tres enfoques.
Las desviaciones con un desfase pequeño se deben al tamaño finito del sistema (N = 100),
por lo que la excitación alcanza balísticamente el borde de la cadena en un tiempo menor
que τϕ = ℏ/γϕ.

B.2. Fórmula de Green-Kubo.

El coeficiente de difusión D en presencia de decoherencia para el modelo de Haken-
Strobl se puede calcular a partir de la expresión de Green-Kubo, utilizando solo las (εµ)
autoenergías y los autoestados (ϕµ) del Hamiltoniano,

Ĥϕµ = εµϕ
µ. (B.8)

Siguiendo la derivación de Ref. [167]:

D(u⃗) =
ℏ
N

N∑
µ,ν=1

γϕ
γ2ϕ + ω2

µ,ν

|ĵµ,ν(u⃗)|2 , (B.9)
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Figura B.2: Coeficiente de difusión D/a2, calculado usando Green-Kubo (Ec. (3.2)), vs.
γϕ/J para el modelo HHAA con decoherencia Haken-Stobl para diferentes valores de N =
{40, 100, 1000, 4000}. La figura (a) es para W/J = 0 (régimen metálico), la figura (b) es para
W/J = 2.0 (MIT) y la figura (c) es para W/J = 20 (régimen aislante). Las líneas discontinuas
verticales indican los valores de γϕ debajo de los cuales los efectos de tamaño finito son relevantes.
La dependencia de este valor con N se muestra en la parte superior de la flecha negra.

donde γϕ es la magnitud de la decoherencia, ωµ,ν = εµ − εν es la diferencia de energía
entre los autoestados µ y ν, y ĵµ,ν es el operador de flujo en la base propia:

ĵν,µ(u⃗) =
i

ℏ
∑
n,m

(u⃗ · r⃗n,m)ϕµ∗
n ϕ

ν
mHn,m . (B.10)

En la expresión anterior, u⃗ es un vector unitario que indica la dirección de transporte, r⃗n,m
es el vector que conecta los sitios en posiciones n y m, ϕν

n es la amplitud del autoestado
ν en el sitio n y Hn,m = ⟨n|Ĥ|m⟩ es el acoplamiento entre n y m sitios. Para sistemas 1D
con interacciones a primeros vecinos, u⃗ · r⃗n,m = m−n = ±a y Hn,m = J(δm,n+1 + δm,n−1).
Por lo tanto,

ĵν,µ = i
Ja

ℏ
∑
n

ϕµ∗
n (ϕν

n+1 − ϕν
n−1). (B.11)

La ecuación (3.2) es de utilidad para estudiar simultáneamente la dependencia con γϕ
y N del coeficiente de difusión en varios modelos. La figura B.2 muestra el coeficiente de
difusión D del modelo HHAA en los tres regímenes en función de la fuerza de desfase
para diferentes longitudes de cadena N . Para tasas de decoherencia pequeñas observamos
una clara dependencia de D del tamaño del sistema. Esto se debe al hecho de que cuando
la tasas de decoherencia es pequeña, la excitación alcanza los límites antes de que pueda
establecerse la difusión. Definiendo la escala de tiempo típica para que la decoherencia
afecte la dinámica como τϕ = ℏ

γϕ
, podemos estimar la magnitud de la decoherencia por

debajo de la cual los efectos de tamaño finito son relevantes, comparando τϕ con el tiempo
necesario para alcanzar balísticamente los límites para el caso limpio (W = 0). En el
régimen balístico (W < 2J) el valor de la tasa de decoherencia por debajo la cual el efecto
de tamaño finito comienza a ser relevante disminuirá proporcionalmente a 1/N , mientras
que en el régimen difusivo (W = 2J) con 1/N2 (ver líneas discontinuas verticales en
Figuras B.2ab). En el régimen localizado, los efectos de tamaño finito son insignificantes
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si el tamaño del sistema es mayor que la longitud de localización.

111





Apéndice C

Solución analítica para la difusión.

En este apéndice mostramos que la Ec. (3.9) para p(t) = e−t/τϕ/τϕ genera una di-
námica difusiva a tiempos largos y encontramos soluciones analíticas en algunos casos
paradigmáticos. La ecuación (3.9) se puede reorganizar de la siguiente forma:

σ2(t) = f(t) +

∫ t

0

dtip (ti)σ
2 (t− ti) , (C.1)

notando que
(
1−

∫ t

0
p(t)dt

)
= e−t/τϕ = τϕp(t) y definiendo f(t) = τϕg(t) +

∫ t

0
dtig(ti)

siendo g(t) = σ2
0(t)p(t).

La estrategia habitual para resolver este tipo de ecuación es utilizar la transformada
de Laplace en la ecuación,

σ2
LT (s) = F(s) + σ2

LT (s)P(s),

donde σ2
LT (s), F(s) y P(s) = 1

sτϕ+1
son las transformadas de Laplace de σ2(t), f(t) y p(t)

respectivamente.

Si identificamos G(s) como la transformada de Laplace de g(t), obtenemos F(s) =
G(s)( sτϕ+1

s
), y:

σ2
LT (s) =

F(s)

1− P(s)
= G(s)τϕ

(sτϕ + 1)2

(sτϕ)2
= G(s)τϕ

[
1

(sτϕ)2
+

2

sτϕ
+ 1

]
. (C.2)

Dado que la transformada de Laplace de tnu(t), donde u(t) es la función escalón, es
n!

sn+1 , observamos que σ2(t) será difusiva a largo plazo si G(0) es finito y distinto de cero,
una condición que se cumple trivialmente en los sistemas considerados. En este caso,
D = G(0)

2τϕ
=

∫∞
0 σ2

0(t)p(t)dt

2τϕ
, como encontramos en la ecuación (3.3).

La transformada inversa de σ2
LT (s) se puede realizar analíticamente en varios casos

(por ejemplo σ2
0(t) = Aαt

α), sin embargo, aquí solo discuta dos casos paradigmáticos
σ2
0(t) = 2D0t y σ2

0(t) = v20t
2. En el primer caso, la difusión difusiva, encontramos σ2(t) =

2D0t, es decir, la dinámica de σ2
0 no se ve afectada.
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En el segundo caso, la propagación balística, la solución es

σ2(t) = 2τϕv
2
0

(
τϕ

(
e
− t

τϕ − 1
)
+ t
)
, (C.3)

que para t≪ τϕ, σ2(t) ≈ v20t
2, mantiene su comportamiento balístico, pero se vuelve difu-

sivo para t≫ τϕ, σ2(t) ≈ 2v20τϕt = 2Dt. La misma expresión se encuentra en una cadena
tight-binding ordenada y con decoherencia de Haken-Strobl utilizando el formalismo de
Lindblad [166,183].

Es importante tener en cuenta que si se consideran dos procesos de Poisson, p1(t) =
e−t/τ1/τ1 y p2(t) = e−t/τ2/ tau2, el efecto combinado será equivalente a considerar solo un
proceso con p(t) = e−t/τ/τ con τ = τ1τ2

τ1+τ2
, es decir, la suma de los inversos de los tiempos

característicos. Este resultado es estándar en sistemas clásicos donde se considera una
partícula que se mueve con velocidad v0 hacia la izquierda o hacia la derecha con la misma
probabilidad después de un evento con cualquiera de los dos procesos. El coeficiente de
difusión, en este caso, es D = v20τ = v20

τ1τ2
τ1+τ2

= D1
1

1+τ1/τ2
, que para τ2 ≫ τ1 genera una

corrección lineal al coeficiente de difusión asociado al proceso p1.
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Apéndice D

Cálculos Auxiliares Capítulo 5.

Este apéndice reúne cálculos, derivaciones, y resultados auxiliares del Capítulo 5.

D.1. Coherencias Cuánticas Múltiples.

El orden de coherencia m corresponde a transiciones entre estados de multi-espín en
bases de Zeeman que difieren en la magnetización m. La matriz de densidad se puede
expresar mediante una superposición de contribuciones de diferentes órdenes como

ρ̂ =
∑
m

ρ̂m (D.1)

donde el componente de coherencia cuántica m se comporta bajo una rotación como,

eiϕŜ
z

ρ̂me
−iϕŜz

= ρ̂me
imϕ. (D.2)

Formalmente, la intensidad de coherencia m se puede define como

gm =
1

Tr
{
(Ŝz)2

} Tr {ρ̂mρ̂−m} .

Experimentalmente, al implementar rotaciones sistemáticas alrededor de Z de pasos ϕ, la
distribución de coherencia se puede decodificar mediante la transformación de Fourier de
las señales recopiladas,

MG(ϕ, t) =
1

Tr
{
(Ŝz)2

} Tr
{
e−iϕŜz

ρ̂(t)eiϕŜ
z

eiĤtŜze−iĤt
}
,

donde ϕ = 2π/M , y M/2 representa el orden de coherencia máximo a decodificar. Al
expandir ρ̂(t) en la forma (D.1), considerando ρ̂(0) = Ŝz y usando la ecuación (D.2)
(propiedad de rotación), las señales recopiladas satisfacen

MG(ϕ, t) =
1

Tr
{
(Ŝz)2

] Tr{∑
m

ρ̂me
imϕ
∑
m

ρ̂m

}
=
∑
m

gme
imϕ.
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D.1. MAPEO A OTOCS DIAGONALES Y NO-DIAGONALES.

Se puede notar que MG(ϕ = 0, t) =
∑

m gm es la intensidad del eco de Loschmidt a tiempo
t [258]. Separadamente, se puede observar que el segundo momento de esta distribución
MQC es un OTOC global [267]:∑

m

m2gm = − ∂2ϕMG(ϕ, t)
∣∣
ϕ=0

=
1

Tr
{
(Ŝz)2

} Tr
{[
Ŝz,
[
Ŝz, Ŝz(t)

]]
Ŝz(t)

}
= − 1

Tr
{
(Ŝz)2

} Tr
{[
Ŝz, Ŝz(t)

] [
Ŝz, Ŝz(t)

]}
.

D.2. Mapeo de las contribuciones locales y globales al
tamaño del grupo K con OTOC diagonales y no-
diagonales.

De las Ecs. (5.5, 5.8) tenemos,

MG(t, ϕ) =
1

N2N−2
Tr{Ŝz(t)R†Ŝz(t)R} (D.3)

=
1

N2N−2

∑
i,j

Tr{Ŝz
i (t)R

†Ŝz
j (t)R}

ML(t, ϕ) =
1

N2N−2

∑
i

Tr{Ŝz
i (t)R

†Ŝz
i (t)R}

MCT (t, ϕ) =
1

N2N−2

∑
i,j
i ̸=j

Tr{Ŝz
i (t)R

†Ŝz
j (t)R},

aplicando la derivada segunda a cada término y analizamos sus contribuciones a los
OTOC, ∑

m

m2gm = − ∂2ϕMG(ϕ, t)
∣∣
ϕ=0

= − ∂2ϕML(ϕ, t)
∣∣
ϕ=0

− ∂2ϕMCT (ϕ, t)
∣∣
ϕ=0

,

al hacerlo, podemos escribir explícitamente los ecos como una combinación de contribu-

ciones “diagonales” de la forma
∑

i,k Tr

{[
Ŝz
k , Ŝ

z
i (t)
]2}

y “no-diagonales”

∑
i,j,k,q

j ̸=i o k ̸=q

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
j (t)
]}
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tan como son definidos en Ref. [61]. De donde sigue que los términos “diagonales” solo
contribuyen a los ecos locales ML(t, ϕ):

N2N−2KL(t) = −2
∂2

∂ϕ2
ML(t, ϕ)

∣∣∣∣
ϕ=0

= −2
∑
i

Tr
{
Ŝz
i (t)Ŝ

zŜzŜz
i (t)− Ŝz

i (t)Ŝ
zŜz

i (t)Ŝ
z
}

= −2
∑
i

Tr
{[
Ŝz
i ,
[
Ŝz, Ŝz

i (t)
]
Ŝz
i (t)
]}

= −2
∑
i

Tr

{[
Ŝz, Ŝz

i (t)
]2}

= −2
∑
i,q,k

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
i (t)
]}

= −2

(∑
i,k

Tr

{[
Ŝz
k , Ŝ

z
i (t)
]2}

+
∑
i,q,k
q ̸=k

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
i (t)
]} ,

mientras que en el término cruzado MCT sólo aparecen términos “no-diagonales”:

N2N−2KCT (t) = −2
∂2MCT (t, ϕ)

∂ϕ2

= −2
∑
i ̸=j

Tr
{[
Ŝz, Ŝz

i (t)
] [
Ŝz, Ŝz

j (t)
]}

= −2
∑
i,j,k,q
i ̸=j

Tr
{[
Ŝz
q , Ŝ

z
i (t)
] [
Ŝz
k , Ŝ

z
j (t)
]}

.

D.3. Crecimiento a tiempos muy cortos.

Para derivar la expresión para el comportamiento a corto plazo de KG(t) comenzamos
usando la expansión de Baker-Campbell-Hausdorff en Ŝz(t), que aproxima la evolución
temporal de Ŝz bajo un Hamiltoniano Ĥ:

Ŝz(t) ≈ Ŝz + (−i t
ℏ
)[Ŝz, Ĥ] (D.4)[

Ŝz, Ŝz(t)
]

≈
[
Ŝz, Ŝz + (−i t

ℏ
)[Ŝz, Ĥ]

]
(D.5)

≈ (−i t
ℏ
)
[
Ŝz, [Ŝz, Ĥ]

]
. (D.6)

En este punto, llevando a cabo el conmutador para el Hamiltoniano cuantos dobles.
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(5.12) tenemos: [
Ŝz, [Ŝz, ĤDQ]

]
= 4ℏ2ĤDQ. (D.7)

Finalmente, sustituyendo estas expresiones en la Ec. (5.9) y simplificando, se llega a:

KG ≈ 2
16t2ℏ2

Tr
{
(Ŝz)2

} Tr
{
Ĥ2

DQ

}
(D.8)

=
16t2ℏ2

Tr
{
(Ŝz)2

} ∑
i,j,k,l,i ̸=j,k ̸=l

Di,jDk,l Tr
{
ĤDQi,j

ĤDQk,l

}
= 2

16t2ℏ2

Tr
{
(Ŝz)2

} ∑
i,j,k,l,i ̸=j,k ̸=l

2Di,jDk,l Tr
{
Ŝx
i Ŝ

x
j Ŝ

x
k Ŝ

x
l

}
= 2

16t2ℏ2

Tr
{
(Ŝz)2

}∑
i ̸=j

4D2
i,j Tr

{
Ŝx
i Ŝ

x
j Ŝ

x
i Ŝ

x
j

}
= 2

16t2ℏ2

N2N−2

∑
i ̸=j

4D2
i,j2

N−4

=
32t2ℏ2

N

∑
i,j,i̸=j

D2
i,j. (D.9)

Siguiendo el mismo procedimiento para una OTOC local, encontramos que el creci-
miento inicial sólo difiere en un factor de dos:

KL(t) = − 2

N2N−2

∑
i

Tr

{[
Ŝz, Ŝz

i (t)
]2}

(D.10)

≈ 2

N2N−2
16t2ℏ2

∑
i,j

2D2
i,j2

N−4 (D.11)

≈ 16

N
t2ℏ2

∑
i,j

D2
i,j. (D.12)

D.4. Comportamiento de magnitudes individualesK i
∗(t)

y covarianza.

En el texto principal y en las secciones anteriores del apéndice, hemos demostrado
que K∗(t) se puede expresar como un promedio de las contribuciones del sitio, denotado
como Ki

∗(t). Cada una de estas contribuciones exhibe una desviación mínima del valor
promedio K∗(t), un hecho respaldado al observar la varianza de este promedio o comparar
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Figura D.1: Promedio temporal de la contribución cruzada al número de espines correlacio-
nados, ⟨KCT ⟩. La desviación estándar del valor promedio SD(KCT ) (Ec. (5.16), barras azules),

y la raíz cuadrada del promedio de varianza del sitio sobre N (
√
σ2CT /N , barras verdes) que

están ligeramente desplazadas para mayor claridad. (a) Dij ∝ 1/|rij |3 (b) Dij ∝ 1/|rij |2, (c)
Dij ∝ 1/|rij |, (d) Dij ∝ ±/|rij | con signos aleatorios.

directamente diferentes curvas, como se muestra en la Fig. 5.4. Las curvas correspondientes
a diferentes sitios iniciales difieren principalmente en las fluctuaciones.

Sin embargo, dispersión entre estas curvas se puede extraer información de la correla-
ción entre espines:

⟨KCT ⟩ =
1

N

∑
i

⟨Ki
CT ⟩ (D.13)

⟨K2
CT ⟩ =

1

N2

∑
i,j

⟨Ki
CTK

j
CT ⟩ (D.14)

=
1

N2

∑
i

⟨Ki
CT

2⟩+
∑
i,j
i ̸=j

⟨Ki
CTK

j
CT ⟩

 (D.15)

Expandiendo Ec. (5.16) en contribuciones individuales se tiene:

SD2(KCT ) =

1
τN2

∑
i,j

∫ tmax

ts

[
Ki

CT (t)K
j
CT (t)dt− ⟨Ki

CT⟩⟨K
j
CT⟩
]
,

lo que puede ser reacomodado en la siguiente forma,

SD2(KCT ) =
1

N2

∑
i

SD2(Ki
CT )

+
1

τN2

∑
i,j
i ̸=j

∫ tmax

ts

(
Ki

CT (t)K
j
CT (t)− ⟨Ki

CT ⟩⟨K
j
CT ⟩
)
dt

=
σ2
CT

N
+

1

N2

∑
i ̸=j

Cov(Ki
CT , K

j
CT ).
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Figura D.2: (a) Desviación estándar SD(KCT ) en función de N . (b) Covarianza total (Ec.
(D.17)) en función de N .

Donde se denota,

σ2
CT =

1

N

∑
i

SD2(Ki
CT ), (D.16)

y se define la covarianza total como:

Total Cov. =
1

N2

∑
i ̸=j

Cov(Ki
CT , K

j
CT ). (D.17)

este último término da una medida de la correlación total entre las dinámica de diferentes
Ki

∗. Si la dinámica de espín no estuviera correlacionada, tendríamos SD2(KCT ) =
σ2
CT

N
. La

Fig. D.1 compara estas magnitudes para KCT , vemos que las barras de error, que repre-

sentan SD(KCT ) y
√

σ2
CT

N
(barras azules y verdes respectivamente), se acerca a medida

que N aumenta. Para un sistema con α = 1 más signos aleatorios en las interacciones,
esta diferencia es pequeña incluso para un N pequeño.

D.5. Anillo ordenado
Los resultados principales, incluidos dentro del Capítulo 5, fueron realizados conside-

rado la presencia de desorden en los campos Zeeman hi del Hamiltoniano dado por la
Ec. (5.12), debido a dos razones: (1) Es experimentalmente razonable considerar que, si
bien todos los sitos son en media equivalentes, existe un desorden que los hace ligeramente
diferentes uno de otros; (2) la presencia de estos campos rompe la simetría del sistema,
borrando las recurrencias propias de los sistemas pequeños (a costa de un mayor costo
computacional). Sin embargo, las ideas generales discutidas en el capítulo 5 siguen siendo
validas en ausencia de desorden, especialmente al tratar con sistemas grandes. A modo de
ejemplo la Fig. D.3 muestra la evolución de número de espines correlacionados calculados
local y globalmente para interacciones con un rango α = 3 y α = 1 (paneles (a) y (b)
respectivamente); el panel (c) muestra los valores de saturación de la diferencia de estas
magnitudes en función de N para las curvas presentadas en (a) y (b). Se observa un com-
partimiento similar al encontrado incluyendo los campos Zeeman aleatorios, solamente
con un nivel mayor de recurrencias en los términos cruzados.
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Figura D.3: Evolución temporal de la OTOC local KL(t) (curvas continuas) y la OTOC global
KG(t) (curvas discontinuas), para un sistema de anillos con interacciones dadas por la ecuación
(5.12) en ausencia de campos Zeeman, i.e. hi = 0 ∀i. Las interacciones son de la forma, (a)
Dij ∝ J

|rij |3 , (b) Dij ∝ J
|rij | . (c) Valor de saturación ⟨KCT ⟩/N en escala log-lin en función del

tamaño del anillo N para las curvas correspondientes a las paneles (a) y (b).
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Apéndice E

Consideraciones numéricas

Una manera de resolver la ecuación de Schödinger es encontrar los autovectores de Ĥ
(diagonalizarlo) y expandir el estado inicial en términos de dichos autovectores (|φν⟩), y
colocar las fases correspondientes para un dado tiempo:

|ψ(t)⟩ = Û(t) |ψ(0)⟩ = e−iĤt/ℏ |ψ(0)⟩ =
∑
ν

aνe
−iενt/ℏ |φν⟩ .

En ésta tesis, esta estrategia fue utilizada para la simulación de las dinámicas (y ecos)
de sistemas de hasta 7 espines con interacciones MB y para sistemas de hasta 1000 sitios
en sistemas de una partícula. Sin embargo, no es aplicable para sistemas de espines más
grandes debido a que la dimensión del espacio de Hilbert crece exponencialmente con
el número de espines N del sistema, y junto con esto el costo computacional (tanto en
tiempo como en memoria) de esta tarea.

Existen diferentes alternativas que pueden utilizarse para obtener una evolución apro-
ximada de la solución sin recurrir a la diagonalización exacta. En esta tesis se utilizó para
dicha tarea el algoritmo de Trotter-Suzuki (TS), el cual preserva la unitariedad de la evo-
lución (conserva probabilidades), y se basa en aproximar el operador evolución mediante
una secuencia de operadores de evolución adecuadamente elegidos. Asimismo, el algoritmo
de Trotter-Suzuki es naturalmente extensible al Quantum-Drift, donde la presencia de un
ambiente es incluida como un término estocástico en el Hamiltoniano.

Para realizar las simulaciones con más de 7 espines MB en esta tesis se utilizó el
algoritmo TS a 4to orden implementado por Axel Dente, Pablo Zangara y Carlos Be-
derián [230], tanto en su versión secuencial como paralelizada (GPU), ambos algoritmos
están implementados en Fortran 90. Para sistemas de una partícula, aislada o en interac-
ción con un ambiente (Quantum-Drift), la implementación se realizó en C++, haciendo
uso de la biblioteca Armadillo [280] para una computación eficiente. A continuación se
resumen los puntos principales del algoritmo tal como se presenta en las tesis de Axel
Dente, Pablo Zangara y Fernando Cucchietti.
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E.1. Algoritmo de Trotter-Suzuki

La idea del algoritmo es encontrar una descomposición de Ĥ que provea un conjunto
de evoluciones simples que aproximen la evolución exacta Û(t). Si, Ĥ =

∑K
i=1 Ĥi, entonces

Û(t) = e−itĤ = e−it
∑K

i=1 Ĥi = ĺım
m→∞

(
K∏
i=1

e−itĤi/m

)m

, (E.1)

lo cual a primer orden es,

Û(t) ≃ Û1(t) = e−itĤ1 ...e−itĤK , (E.2)

y a segundo y cuarto orden (utilizado en la tesis):

Û2(t) = Û †
1(−t/2)Û1(t/2), (E.3)

Û4(t) = Û2(pt)Û2(pt)Û2((1− 4p)t)Û2(pt)Û2(pt), (E.4)

donde p = 1/(4 − 41/3). A fines prácticos, la evolución de la función de onda hasta un
tiempo t se realiza con sucesivas evoluciones de Û4(δt), bajo la condición de que δt sea
suficientemente pequeño en comparación con la escala de tiempo más rápida dada por Ĥ.

E.1.1. Una partícula

Para sistemas de una partícula, cuyo Hamiltoniano puede escribirse como un Hamilto-
niano tight-binding, la descomposición del mismo suele aparecer naturalmente al observar
la estructura “geométrica” del mismo. A modo de ejemplo, en una cadena unidimensional,
con hoppings a primeros vecinos y energías de sitio dadas, la siguiente separación para el
Hamiltoniano resulta natural:

Ĥ =
∑
n

εn |n⟩ ⟨n|+
∑
n

−J(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|)

=
∑
n

εn |n⟩ ⟨n|

+
∑
n

−J(|2n⟩ ⟨2n+ 1|+ |2n+ 1⟩ ⟨2n|)

+
∑
n

−J(|2n⟩ ⟨2n− 1|+ |2n− 1⟩ ⟨2n|)

= Ĥ0 + Ĥpar + Ĥimpar

en este caso, la evolución de cada término puede obtenerse analíticamente. Utilizando
la función de onda escrita en la base de sitios, el término Ĥ0 coloca fases en cada sitio,
mientras que Ĥpar y Ĥimpar generan una evolución entre dos sitios contiguos:(

ψn(t+ δt)
ψn+1(t+ δt)

)
=

(
cos(Jδt/hbar) i sin(Jδt/hbar)
i sin(Jδt/hbar) cos(Jδt/hbar)

)(
ψn(t)
ψn+1(t)

)
, (E.5)
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Energías
(fases)

Evolución 
Pares

Evolución 
Impares

Evolución 
Total

Figura E.1: Esquema de la “Trotterización” de un Hamiltoniano tight-binding a primeros vecinos:
la evolución se descompone en un Hamiltoniano de energías de sitios Ĥ0 y de evoluciones entre
2 sitios, entre sitios pares y el siguiente Ĥpar, y entre sitios pares y el anterior Ĥimpar.

la evolución total se logra intercalando la evolución de los sitios pares, impares, y fases
mediante la prescripción de la sección anterior, como se esquematiza en la Fig. E.1.

Para dimensiones mayores, e interacciones entre más vecinos la generalización es di-
recta. Sin embargo, existen situaciones donde es conveniente realizar diagonalizaciones
exactas de algunas partes del Hamiltoniano, por ejemplo cuando el mismo esta compues-
to de cúmulos/grupos de sitios con energías y hoppings (internos) de magnitud aleatoria,
pero los hoppings entre cúmulos presentan una estructura dada. En este caso, resulta apro-
piado Trotterizar las evoluciones entre grupos, intercalándolas con evoluciones “exactas”
de la dinámica dentro de cada grupo. Otra situación del mismo índole, es en el Hamilto-
niano PBRM, donde las interacciones son todos con todos y aleatorias. En este caso, para
la aplicación del Quantum-Drift, fue necesario diagonalizar el Hamiltoniano y obtener los
operadores de evolución a un paso de tiempo δt, cuyas evoluciones fueron intercaladas
con la fases aleatorias producto de la parte estocástica del Hamiltoniano.

E.1.2. Sistemas de espines

Consideremos el Hamiltoniano de espín:

Ĥ =
N∑
j=1

∑
α=x,y,z

hαj Ŝ
α
j +

N∑
j,k=1

∑
α=x,y,z

Jα
j,kŜ

α
j Ŝ

α
k , (E.6)

donde Ŝα
j es el operador de espín en el sitio j y proyección α = x, y, z. Los parámetros hαj

describen campos locales y Jα
j,k son las constantes de acoplamiento entre espines.

Asumamos que el sistema de N espines esta descripto por un estado,

|Φ0⟩ =
2N∑
i=1

ci |βi⟩ , (E.7)
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expandido en la base de Ising (|βi⟩, productos tensoriales de los autovectores de cada
Ŝz
j ) y ci coeficientes complejos. El estado del sistema a tiempo t será |Φt⟩ = Û(t) |Φ0⟩ =
e−itĤ/ℏ |Φ0⟩.

La descomposición utilizada para el Hamiltoniano (E.6) viene dada por los térmi-
nos de un espín y los términos de interacciones espín-espín. Cada uno de ellos se rota
adecuadamente para obtener su representación diagonal. Por esta razón, consideremos
los operadores Ry

π/2,j y Rx
−π/2,j, los cuales rotan respectivamente a Ŝx

j e Ŝy
j a Ŝz

j . Las
rotaciones globales se definen mediante los productos, Y = ⊗jR

y
π/2,j y X = ⊗jR

x
π/2,j .

El objetivo es aplicar solo correcciones de fase “diagonales” a la base de Ising. La
evolución parcial e−ithα

j Ŝ
α
j produce una fase trivial (para la implementación) para α = z

debido a la base elegida, mientras que para α = x, y se requiere la aplicación de rotaciones.
Tenemos entonces, para las operaciones de un espín,

exp

(
−i
t

ℏ

N∑
j=1

∑
α=x,y,z

hαj Ŝ
α
j

)
≃

∏
α=x,y,z

exp

(
−i
t

ℏ

N∑
j=1

hαj Ŝ
α
j

)
, (E.8)

donde las operaciones las exponenciales que no involucran operadores en z deben rotarse.
De la misma manera,

exp

(
−i
t

ℏ

N∑
j,k=1

∑
α=x,y,z

Jα
j,kŜ

α
j Ŝ

α
k

)
≃

∏
α=x,y,z

exp

(
−i
t

ℏ

N∑
j,k=1

Jα
j,kŜ

α
j Ŝ

α
k

)
, (E.9)

donde nuevamente los términos en z involucran operadores diagonales y los restantes
deben rotarse.

E.2. Paralelismo cuántiantico

El algoritmo anterior, nos proporciona una manera rápida de evolucionar funciones de
onda, lo cual en principio nos permitiría realizar la evolución de ensamble evolucionando
cada elemento de la base del ensamble y promediando adecuadamente con una necesidad
de memoria mucho menor a la necesaria al utilizar la matriz densidad. Sin embargo,
evolucionar las 2N funciones de onda del ensamble tiene un coste temporal algo. Por esta
razón, solo se recurrió a este método para sistemas de hasta 8 espines. Para espines de
tamaños mayores, de 10 a 19 en esta tesis se utilizó el paralelismo cuántico [223], el cual
permite simular la dinámica de un ensable, bajo ciertas condiciones mediante la evolución
de un número pequeño de funciones de onda adecuadamente construidas. A continuación
se resume el método tal como se describe en [223].

Las idea principal es que, si la condición inicial y el observable son “locales”, cuando se
evalúa un estado el cual es una superposición con fases aleatorias de todos los elementos
del ensamble estos observables se vuelven autopromediantes (self-averaging). Tomemos
un ensable de todos los estados |Ψm

i ⟩ = |ϕm⟩ ⊗ |Ψi⟩, donde hay m espines en el estado
|ϕm⟩ y el resto (N −m) están en |Ψi⟩. La probabilidad de encontrar a tiempo t m′ espines
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en el estado |ϕm′⟩ si a tiempo t = 0 había m espines en |ϕm⟩ viene dada por:

W ens
m′,m(t) =

2M−m′∑
f=1

2M−m∑
i=1

pi| ⟨Ψm′

f | e−iĤ/ℏt |Ψm
i ⟩ |2, (E.10)

donde se suma sobre todos los posibles estados iniciales y finales.
Como caso particular y ejemplo podemos tomar m = m′ = 1, |ϕm⟩ = |↑⟩n el estado

correspondiente a n-esimo espín up y |ϕm′⟩ = |↑⟩n′ correspondiente al n′-esimo espín. La
polarización del espín n′ a tiempo t, estando el espín n up a tiempo cero esta dada por
P ens
n,n′ = 2[W ens

1,1 − 1/2], la cual fue en fue utilizada en este trabajo para n = n′ como
condición localizada.

La expresión (E.10) implica la evolución de D = 2M−m estados, el paralelismo cuántico
sugiere que la función de correlación deseada esta contenida en la dinámica de un estado
puro, este estado se construye mediante un superposición de todas las componentes del
ensamble,

Ψα
m,m′ =

α∑
i=1

αi |Ψm
i ⟩ , (E.11)

donde αi =
√
pie

iφ, con φ aleatorio. La función de correlación viene dada entonces por,

W
{α}
m′,m(t) =

D′∑
f=1

D∑
i=1

pi| ⟨Ψm′

f | e−iĤ/ℏt |Ψm
i ⟩ |2 (E.12)

+
D′∑
f=1

D∑
i′ ̸=i=1

αiαi′ ∗ ⟨Ψ′m
i | eitĤ/ℏt |Ψm′

f ⟩ ⟨Ψm′

f | e−itĤ/ℏ |Ψm
i ⟩ , (E.13)

donde {α} denota el set de todos los αi utilizados en la construcción del estado y D′ =
2M−m′ .

Se puede observar que el término cruzado es la diferencia entre W ens
m′,m(t) y Wα

m′,m(t), y,
promediando sobre Nα realizaciones de posibles estados iniciales, tenemos que W ens

m′,m(t) =
ĺımNα−>∞⟨Wα

m′,m(t)⟩Nα .
Sin embargo, puede demostrarse que, para una distribución homogénea pi = 2M−m, y

condición inicial localizada (M ≫ m), y M medianamente grande (M > 9) uno obtiene
W ens

m′,m(t) ≈ Wα
m′,m(t) en una única realización.
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