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Resumen

Una comprension profunda de los procesos que gobiernan una dinamica cuéntica, ya
sea en un sistema aislado o en interaccién con un ambiente, es necesaria para el avance
de muchas areas de la ciencia. Esta permitiria la mejora de las propiedades de transporte
en sistemas mesoscopicos y nanoscopicos, el procesamiento y transmision de informacion
cuéantica, el desarrollo de sensores que superen las limitaciones clasicas, e incluso, explicar
e imitar la eficiencia de muchos procesos biologicos.

En esta tesis estudiamos, numérica y analiticamente, la dindmica cuantica de sistemas
complejos: cadenas de espines y excitaciones electronicas, en presencia de potenciales
aleatorios y pseudoaleatorios. Consideramos tanto interacciones de un cuerpo como de
muchos cuerpos. En ambos casos estas pueden ser tanto a primeros vecinos como de largo
alcance, aislados o abiertos a los efectos de un ambiente. Para estos sistemas buscamos
entender como la presencia de interacciones de muchos cuerpos o de un ambiente afecta
la dindmica. Simultdneamente, desarrollamos técnicas basadas en un procedimiento de
reversion temporal (Eco de Loschmidt, LE) que nos permiten extraer informaciéon oculta
en una dindmica compleja, asi como evaluar el impacto de la decoherencia generada por
distintos ambientes.

El Eco de Loschmidt resulta de revertir la dinamica de un sistema cuantico, y se
observa como un retorno, total o parcial, al estado inicial del sistema. Idealmente, si la
reversion es perfecta, la magnitud del eco es la unidad. Si la reversion no es perfecta, el
eco de Loschmidt cuantifica la diferencia entre la dinamica original y la perturbada. Esta
frustracion del sistema en volver a su estado inicial, resulta de perturbaciones que pueden
ser tanto naturales como disenadas a voluntad.

En el primer caso, el LE permite cuantificar los efectos de ruido y perturbaciones en
un sistema cuéntico, las cuales pueden originarse tanto por la falta de suficiente control
sobre el sistema como por la presencia de un ambiente. En el tltimo caso, con una eleccion
astuta de perturbaciones, el LE se convierte en una herramienta potente para estudiar la
evolucion de un Hamiltoniano. Permitiendo acceder a informacion previamente codificada
en la dinamica. Tal serfa el caso del procedimiento denominado Coherencias Cuénticas
Multiples en experimentos de Resonancia Magnética Nuclear.

Particularmente, el LE nos permitira medir el grado de “desparramo” o ‘“revoltijo” que
se genera tanto en el espacio real como en el espacio de Hilbert. Mostramos que este proce-
dimiento permite extraer informacion global del sistema midiendo solo observables locales.
En otras palabras, en experimentos donde solo se tiene acceso a medir algunos observables
locales del sistema, el LE permite sortear esta dificultad para obtener informacién de la
distribucion espacial de la funcién de onda o del nimero de espines correlacionados por
la dindamica. A partir del desarrollo de un LE especifico [i.e. Funciones de Correlacion sin
orden temporal (OTOC)| buscamos esclarecer la relacion de éstos con algunas magnitu-
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des que caracterizan la dinamica de un sistema, como el ancho del paquete de ondas o el
inverso de la razon de participacion (IPR). Esto nos permite evaluar el efecto de anadir
interacciones de muchos cuerpos en la dinamica y determinar cuando ésta es compatible
con el fenémeno de localizacion introducido por P. W. Anderson (many-body localization,
MBL).

Muchos procesos fisicos a nivel molecular necesitan de cierta estabilidad frente a un
ambiente, i.e. frente a la decoherencia. Esto es especialmente cierto en el transporte de
excitaciones de carga o energia en sistemas biologicos. Este problema es abordado en es-
ta tesis al incluir fluctuaciones temporales sobre la dinamica cuantica de una excitacion
elemental, observando el efecto de este ambiente sobre el coeficiente de difusiéon, y con-
secuentemente, en las propiedades de transporte del mismo. Una simultanea evaluacion
numérica de diferentes modelos, junto a un estudio analitico de colapsos cuanticos loca-
les generados por el ambiente, nos permite reconocer en qué condiciones el coeficiente
de difusion es robusto frente los efectos de un ambiente. En este contexto, el LE permite
cuantificar los efectos de ruido y perturbaciones (decoherencia) en la dindmica cuantica de
un sistema. Por tanto, no solo es una herramienta que permite realizar calculos numéricos
eficientemente, sino que también brinda la posibilidad de entender cémo la decoherencia
afecta al sistema y de distinguir el origen de la dinamica (e.g. coherente o inducida por el
ambiente).

Finalmente, estudiamos en qué condiciones los ecos de observables globales pueden
dar informacion sobre magnitudes locales. Esto es algo de particular interés en varios
experimentos de Resonancia Magnética Nuclear, donde los observables accesibles son,
principalmente, globales. Observamos que en sistemas “complejos” con un gran nimero
de espines involucrados en la dinamica, estos ecos globales, y los OTOCs derivados, son
equivalentes a un promedio de magnitudes locales.
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Abstract

A deep understanding of quantum dynamics is crucial for advancing numerous scienti-
fic fields, including improving transport properties in mesoscopic and nanoscopic systems,
enhancing quantum information processing, developing sensors surpassing classical limits,
and mimicking the efficiency of biological processes.

This thesis explores numerically and analytically the quantum dynamics of complex
systems such as spin chains and electronic excitations under random and pseudo-random
potentials. We examine both one-body and many-body interactions, which can be either
nearest-neighbor or long-range, and consider their effects in isolated systems as well as
those influenced by environmental interactions. For these systems, we seek to understand
how many-body interactions and environmental factors impact their dynamics.

We introduce time-reversal techniques, specifically Loschmidt Echo (LE), to extract
hidden information from complex dynamics and assess the impact of decoherence. The
Loschmidt Echo results from reversing the dynamics of a quantum system, and it is
observed as a return, total or partial, to its initial state. Ideally, a perfect reversal results
in an LE of unity; deviations quantify the difference between original and perturbed
dynamics. This frustration of the system in returning to its initial state arises from both
natural and engineered perturbations. In the first case, LE allows us to quantify the
effects of noise and disturbances in a quantum system, which can originate from a lack of
sufficient control over the system or the presence of an environment. In the latter case,
with an astute choice of perturbations, the LE becomes a powerful tool for probing the
Hamiltonian evolution and accessing information previously encoded in the dynamics. A
paradigmatic case would be Multiple Quantum Coherences sequence in Nuclear Magnetic
Resonance experiments.

In this thesis, the LE will allow us to measure the degree of “spreading” or “scram-
bling” generated in both real and Hilbert space. We show that this procedure enables
the extraction of global information by measuring only local observables. In other words,
in experiments where you only have access to measuring some local observables, the LE
circumvents this difficulty and allows you to extract information on the spatial distribu-
tion of the wave function or the number of spins correlated by the dynamics. From the
development of a specific LE [i.e. Out-of-time ordered commutator (OTOC)|, we seek to
clarify the relationship between the OTOCs and some magnitudes that characterize the
dynamics of a system, such as the width of the wave packet or the inverse of the partici-
pation ratio (IPR). This is used to evaluate the effect of adding many-body interactions
in the dynamics and determine when this is compatible with the localization phenomenon
introduced by P. W. Anderson (many-body localization, MBL).

Many physical processes at the molecular level need a certain degree of stability against
environmental effects, i.e. against decoherence. This is especially true in charge or energy
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transport for excitations in biological systems. This problem is addressed by including
temporal fluctuations in the quantum dynamics of an elemental excitation and observing
its effect on the diffusion coefficient and, consequently, on its transport properties. A si-
multaneous numerical evaluation of different models and analytical study of local quantum
collapses generated by the environment, allows us to recognize under which conditions the
diffusion coefficient is robust to environmental effects. In this context, LE quantifies the
effects of noise and disturbances (decoherence) on the quantum dynamics of a system.
Therefore, it is not only a tool for efficient numerical implementation, but it also provides
the possibility of understanding how decoherence affects the system and distinguishing
the origin of the dynamics (e.g. coherent or induced by the environment).

Finally, we study under what conditions echoes from global observables provide infor-
mation about local magnitudes. This is particularly significant in various Nuclear Mag-
netic Resonance experiments, where the primary observable quantities are global. We
observe that in “complex” systems with numerous spins involved in the dynamics, these
global echoes, and the derived OTOCs, are equivalent to an average of local magnitudes.
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Capitulo 1

Introduccion.

En el cuento “La otra muerte”, Borges, mientras narra la historia de un gaucho entre-
rriano escribe: “Modificar el pasado no es modificar un solo hecho; es anular sus conse-
cuencias, que tienden a ser infinitas. Dicho sea con otras palabras; es crear dos historias
universales.”. En estas dos oraciones, a mi parecer, se representan dos conceptos fisicos
que configuran el andamiaje en esta tesis: la hipotesis central de irreversibilidad (CIH) y
el Eco de Loschmidt (LE). El primero, oculto en la aclaracion de que las consecuencias a
anular tienden a ser infinitas, y el segundo como una comparacion (total o parcial) de las
dos historias universales.

Ambos conceptos nacen de preguntarse si las leyes de la fisica son reversibles, i.e. si se
puede anular todas las consecuencias de un hecho. Si bien esta pregunta fue, en mayor o
menor medida discutida por varios cientificos a lo largo de la historia, fueron algunos de
los padres de la termodinamica quienes lidiaron con estas inquietudes. Incluso hasta llegar
a fines tragicos. Particularmente, L. Boltzmann, estaba fascinado con lo que él concebia
como una paradoja: como puede surgir la irreversibilidad, descrita por la segunda ley
de la termodinamica, a partir de leyes microscopicamente reversibles [1,2]. El proceso
de evolucionar hacia el equilibrio, descrito en la termodinamica, parece determinar una
direccion temporal. Una gota de tinta vertida en un vaso, se diluye en él hasta formar una
mezcla homogénea. La taza de café, se enfria hasta estar a temperatura ambiente. Uno
nunca observa que la taza de café espontaneamente se caliente, o que la tinta diluida en un
vaso de agua se reagrupe en una gota. Durante gran parte de su vida, Boltzmann pensé
varias estrategias para explicar el mecanismo detras de esta ineludible irreversibilidad,
introduciendo su famoso teorema H.

Poco tiempo después de la publicaciéon del teorema H, su amigo J. J. Loschmidt plan-
ted objeciones a estos conceptos, dando origen a lo que hoy se conoce como la Paradoja
de Loschmidt [3]. Su argumento se basa en la idea de que si todas las velocidades de
las particulas de un gas (sistema que Boltzmann estaba considerando) fueran invertidas,
el sistema evolucionaria hacia un estado anterior, lo que implicaria una disminucién en
la entropia. En aquel momento, Boltzmann desafi6 a Loschmidt a invertir todas las ve-
locidades de las particulas de un gas, convirtiendo asi esta paradoja en meramente un
experimento mental (Gedankenexperiment).

El tiempo le dio revancha a Loschmidt y los avances tecnologicos hicieron posible rea-
lizar experimentos donde la evolucion de distintos sistemas fisicos es revertida, al menos
parcialmente (siempre existe algo que no vuelve a su estado original). El trabajo pionero
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fue el Eco de Hahn en Resonancia Magnética Nuclear (NMR) [4]. Hahn observé que la
dinamica de espines individuales en presencia de un campo externo puede ser reverti-
da, incluso después de que estos se hayan desfasado debido a diferentes campos locales,
mediante la aplicacion de un pulso de radiofrecuencia, lo que resulta en la inversion de
su sentido de precesion. Este tipo de experimento, el primero de una categoria que hoy
denominamos Ecos de Loschmidt (LEs), no solo probé ser una manera directa de estudiar
algo tan fundamental como la reversibilidad de una dinamica, si no que también logro
establecerse como una técnica crucial para obtener informacion de los sistemas cuanticos y
sus ambientes [5]. Se convirtieron asi, en una herramienta fundamental tanto de la ciencia
bésica como de varias aplicaciones tecnologicas, en un rango que va desde el estudio del
caos cuantico 6] hasta la generacion de iméagenes médicas |7, 8].

En esta tesis, utilizamos los Ecos de Loschmidt tanto como una herramienta genérica
para estudiar la evolucion coherente de un Hamiltoniano como para cuantificar los efectos
de ruido y perturbaciones en un sistema en contacto con un ambiente.

En el primer caso, el LE nos permitira medir el nivel de “desparramo” o ‘“revoltijo” que
genera tanto en el espacio real como en el espacio de Hilbert. Este procedimiento permite
extraer informacion global del sistema midiendo solo observables locales. En otras pala-
bras, en experimentos donde solo se tiene acceso a medir algunos observables locales del
sistema, el LE permite sortear esta dificultad para obtener informacion de la distribucion
espacial total de la funcion de onda que describe las excitaciones o del niimero de espines
correlacionados por la dindmica.

En el segundo, permite cuantificar los efectos de ruido y perturbaciones (decoherencia)
en la dindmica cuéntica de un sistema. Para estos casos, no solo es una herramienta que
permite realizar calculos numéricos eficientemente, si no que también brinda la posibilidad
de entender a un nivel mas profundo céomo la decoherencia afecta al sistema.

Usualmente se piensa que las perturbaciones, que pueden ser ruido, interacciones con
el ambiente o cualquier efecto que no podemos revertir, como algo negativo. Sin embargo,
estas pueden ser utilizadas como una herramienta, por ejemplo, para diferenciar un tejido
de otro en una imagen de NMR |[8]; puede facilitar la formacion 6 ruptura de una molécula
en un proceso catalitico [9]; 6 incluso, puede jugar un papel fundamental en varios procesos
biologicos [10, 11], facilitando la transferencia eficiente de carga y energia [12| que hacen
sustentable la vida. Estos procesos estan ejemplificados en la Fig. 1.1.

En las secciones siguientes de este capitulo introduciré, con mayor detalle, varios con-
ceptos que se utilizan a lo largo de esta tesis, finalizando con una secciéon donde se describe
la organizacion de los capitulos restantes y su relacion con los conceptos discutidos en este
capitulo.

1.1. Sistemas cuanticos.

Un sistema cudntico esté descrito por un vector de onda [¢)) cuya evolucion viene dada
por la Ec. de Schrédinger:

0 ?
iho [9(8)) = H[¥(1), (1.1)



CAPITULO 1. INTRODUCCION.

3 1

se@- \Cb% 0 oe
Eo E. ES ) 0.4

N A, 02
s o

% Ambiente %

Vas

(a)

Figura 1.1: (a) Izquierda: Representacion del sistema, una molécula AB, sobre la cual actiia un
ambiente en B y se realiza un experimento de tunelamiento a través de A. Derecha: Transmitancia
(mapa de color) a través en funcién de la energia y magnitud del ambiente, la magnitud del
ambiente genera una transicién de fase identificada con la disociacién de la molécula. Figura
tomada de: Simulating a catalyst induced quantum dynamical phase transition of a Heyrovsky
reaction with different models for the environment Lozano-Negro et al. [9]. (b) Imagen de NMR
del cerebro del autor obtenida utilizando la secuencia de echo planar imaging, donde la alta
sensibilidad a la pérdida de coherencia por inhomogeneidades en el campo y relajacién espin-
espin permite discriminar distintos tejidos e incluso su respuesta hemodindmica. La imagen fue
tomada como parte de la tesis doctoral de Milena Capiglioni [13]. (¢) Esquema de un complejo
fotosintético de antenas clorofilicas donde los fotones dan lugar a excitaciones cuya dindmica
podria ser optimizada por el ambiente. Figura tomada de Quantum Biology Lambert et al. [14].

consecuentemente, la dinamica de la funcién de onda estara determinada por los autovec-
tores y autovalores (energias) del Hamiltoniano H:

[(6)) = e ™" |3 0) Zau T, (1.2)

donde |gp,) es un autovector del Hamiltoniano con autoenergia €,, y a, = (¢,]¢(0)).

Usualmente, se denota U (t) = e~ /N ] operador evolucion.

De una forma més general, podemos tener inicialmente un ensamble de estados cuan-
ticos |1;) con probabilidades p; (3, p; = 1). La dindmica de este ensamble es descrita por
el operador matriz densidad,

= Zpi |thi) (il - (1.3)
Su evolucion esta determinada por la ecuacion de von Neumann o Liouville,

LN 0) (14)

siendo el operador matriz densidad evolucionado:

A

p(t) = Ut)polT (t) mez (Wi(t)]. (1.5)

Un observable se define mediante un operador Hermitico, representado de manera



1.2. TERMALIZACION, ERGODICIDAD Y CAOS.

genérica como O. Los posibles valores medibles de un observable estdn determinados por
sus autovalores. En consecuencia, el valor medio de un observable, es decir, la suma de

cada posible valor ponderado por su probabilidad en un estado dado, viene dada por
O(t) = (¢(t)| O |1(t)), o bien, utilizando el formalismo de matriz densidad Tr{Op(t)}.

1.2. Termalizacion, Ergodicidad y Caos.

Supongamos un sistema aislado sujeto a algunas restricciones macroscopicas (energia,
volumen, magnetizacion, etc). Para calcular sus propiedades de equilibrio, utilizando la
mecanica estadistica, se toma un ensamble de estados que evolucionan con el mismo
Hamiltoniano sujetos a las mismas restricciones, se asigna alguna probabilidad para cada
uno y se calculan las propiedades tomando promedios sobre este ensamble.

Este procedimiento difiere notoriamente de lo que sucede usualmente en un experimen-
to, donde hay un tnico sistema. Tipicamente, el mismo se encuentra inicialmente fuera de
equilibrio, observando tanto su respuesta, dinamica, y valores de equilibrio (tiempos lar-
gos). La relacion, y eventual equivalencia, entre estos experimentos y los célculos usuales
de la mecanica estadistica esta lejos de ser obvia.

Para unir estas visiones, practicamente todos los libros de mecanica estadistica intro-
ducen la Hipotesis Ergodica [15], la cual establece que durante su evolucion temporal,
un sistema ergodico visita todas las regiones del espacio de fases, y en consecuencia los
promedios temporales de la dinamica son equivalentes a los promedios de ensamble. Si
bien esta hipotesis fue demostrada para unos cuantos sistemas clasicos (Billar de Sinai,
estadio de Bunimovich, etc) [16], son necesarias algunas consideraciones:

Primero, las escalas de tiempo necesarias para explorar todo el espacio de fases crecen
exponencialmente con el nimero de grados de libertad, i.e., inalcanzables en un sistema
macroscopico. Segundo, implica la termalizacion en un sentido débil: los observables al-
canzan los valores térmicos después de promediar temporalmente. En contraposicion, la
termalizacion fuerte implica una convergencia directa del observable al valor térmico [17],
siendo ademas mucho més rapida.

Una linea de pensamiento diferente, nota que los observables macroscoépicos tienen
los mismos valores en casi todas las configuraciones del espacio de fases (compatibles con
las restricciones macroscopicas). Dentro de este esquema, para lograr la termalizacion,
el sistema solamente deberia llegar a estados “tipicos”, lo cual puede suceder mucho mas
rapido que una exploracion extensiva del espacio de fases. Una observacion en la misma
direccion fue hecha por von Neumann en 1929 [18,19], donde argument6 que para estudiar
la termalizacion de un sistema uno debe enfocarse en observables fisicos especificos y no
en la funcién de onda o en la matriz densidad del sistema.

1.2.1. Hipotesis de termalizacion de los autoestados (ETH).

Analicemos en mayor detalle las ideas propuestas por von Neumann. Para que el
sistema termalice es necesario que O(t), después de algtin tiempo de relajacion, coincida
(en media) con el valor medio del observable tomado sobre un ensamble microcanénico,
siendo las fluctuaciones temporales pequenas.

6
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Computando el valor medio O(t) para un estado inicialmente fuera de equilibrio, como
|1)(0)) no es autoestado del Hamiltoniano, tenemos,

O(t) = Z a;ayei(aufau)t/houu _ Z \a,,|2OW 4 Z a;ayei(srs“)t/hOw (1.6)

7 vENR

siendo O,,, = (¢, |O|¢p,).

Suponiendo que no existen degeneraciones en el sistema debido a la presencia de
desorden, falta de simetrias e interacciones de largo alcance, es directo que al tomar
promedio temporal de este observable el segundo término ird4 a cero. Sin embargo, es
posible que necesitemos tiempos extremadamente largos para que esto suceda, ya que
(e, — €,) puede ser exponencialmente chico en el tamano del sistema. Aun suponiendo
que esto no sucede, sigue abierta la pregunta: jcémo es posible que, incluso para diferentes
condiciones iniciales, Y |a,|*0,, coincida con el valor medio tomado sobre el ensamble?

Una posible solucion seria que los valores de O,, fuesen (a menos de alguna fluc-
tuacion pequena), independientes de v. Este es el caso al suponer que # es una matriz
aleatoria [20]. Es més, bajo esta suposicion O,,, (v # ) es exponencialmente chico con el
tamano del sistema, evitando la necesidad de esperar tiempos extremadamente largos. No
obstante, al suponer un Hamiltoniano aleatorio, hay mucha fisica que se pierde, por ejem-
plo, la dependencia del tiempo de relajacion en el observable considerado. Es decir, existe
informacion en los elementos no diagonales del observable que no debe ser despreciada
para una descripcion adecuada de los sistemas experimentales.

La hipotesis de termalizacion de los autoestados (ETH), propuesta por M. Srednic-
ki [21] generaliz6 las propiedades de Hamiltonianos aleatorios a sistemas fisicos especifi-
cos |22]. La misma establece que

Ouu = O(E)Sy + € 5P fo((E),w) Ry, (1.7)

donde E = (g, + £,)/2, w = (g, — €,), S(E) es la entropia termodindmica a energfa
E, O(E) coincide con el valor de expectacion en el ensamble microcanoénico, fo es una
funcioén continua, y R,, elementos aleatorios de media cero y varianza uno.

Esta hipotesis fue confirmada para varios sistemas y observables, aunque no esté total-
mente claro cuéles deben ser las condiciones a satisfacer tanto por el Hamiltoniano como
por el observable. Se espera que sea valida para observables con “significado fisico” en
situaciones tipicas de Hamiltonianos complejos de muchos cuerpos [23|. En cierta forma,
la ergodicidad, el caos, y la termalizaciéon del sistema estan codificados en los autoestados
del Hamiltoniano y se reflejan en la dinamica de las excitaciones.

1.2.2. El caos como un camino a la difusion.

. Qué es lo primero que pensamos al hablar de caos? Personalmente, pienso en el
efecto mariposa o el péndulo doble. Lo primero, una representacion genérica (o mejor
dicho popular) de la “impredictibilidad” o pseudo-aleatoriedad de los sistemas cadticos, lo
segundo, un caso particular donde puede ser observado de manera simple. Sin embargo,
el caos es también un camino al determinismo, a las leyes simples [24].

Este tltimo concepto es incluso previo al desarrollo del caos como una materia de es-
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tudio autonoma. Estaba presente en las ideas originales de los padres de la termodinamica
y es claramente plasmado en “What is life?” por Schrodinger al discutir lo que él llama
“Orden a partir del desorden (order-from-disorder)”. Pero pensemos en un ejemplo simple,
tomemos un pistén con un resorte, y algunas particulas en la cavidad. Si tenemos una
sola particula, la misma ira rebotando contra las paredes y contra el piston (generando un
movimiento en el mismo) y afectando futuros rebotes. Si el nimero de particulas aumenta,
pero sigue siendo relativamente pequeno, la dinamica se vuelve cadtica. Sin embargo, si
el niimero de particulas es extremadamente grande, esta dindmica cadtica conduce a un
movimiento determinista en el piston: una oscilacion amortiguada. Este es el origen de
muchos fenémenos fisicos, friccion, viscosidad, presion, propiedades elasticas y eléctricas
de los materiales, propagacion del sonido, difusion, etc. Todos estos fenémenos predecibles
emergen del caos a escalas menores, a costa de perder predictibilidad microscopica.

Particularmente, considerando un sistema difusivo clésico, se puede conectar directa-
mente el coeficiente de difusion con magnitudes microscopicas del sistema expresandolo
como una suma de los exponentes de Lyapunov positivos y la entropia de Kolmogorov-
Sinai en el limite del tamano del sistema yendo a infinito [25]. En el dominio cuéntico
fue Robert Laughlin quien propuso que la conductividad es medida de la inestabilidad
“cadtica” del movimiento de los electrones, conectando la difusiéon con el caos, y dando
origen a la ley de Ohm [26]. En cierto modo, resolviendo el dilema de que la distribucion
de impurezas en un metal, termina siendo una distribucion tnica y no aleatoria [27].

En lo que concierne a la evolucion y termalizacion de un observable cuéntico, el caos
genera un comportamiento de los autoestados y autoenergias que se asemeja al observado
en matrices aleatorias. Es decir, autoenergias con una distribuciéon de separacion del tipo
Wigner-Dyson y autoestados que asemejan vectores aleatorios |23, 28]. Este fendémeno,
por lo general, resulta ser suficiente para asegurar el cumplimiento de la Hipotesis de
Termalizacion de los Autoestados (ETH).

1.3. Ausencia de termalizacion.

Naturalmente, surge la busqueda de sistemas, generalmente ideales, que no cumplen
con la hipotesis de termalizacion de los autoestados. Es evidente que tales sistemas existen;
por ejemplo, en los sistemas integrables, donde la dinamica esta determinada por un
conjunto de cantidades conservadas. Las cadenas de espines ordenadas, como la cadena de
Ising, exhiben grandes fluctuaciones y recurrencias debido al confinamiento de excitaciones
cuanticas. Ademas, hay sistemas que muestran “cicatrices cuéanticas” (quantum scars),
donde los valores medios de los observables tienen oscilaciones periddicas [29]. Incluso hay
casos en los que ciertos sistemas evolucionan hacia un estado pre-térmico, permaneciendo
en este estado durante largos periodos de tiempo [30,31]. Otro ejemplo son los materiales
aislantes topologicos, inspirados en el efecto Hall cuantico entero. En estos materiales,
a pesar de comportarse como aislantes en su interior, presentan en su superficie estados
conductores protegidos por simetria [32]. Sin embargo, el caso de ausencia de termalizacion
mas destacado sigue siendo la localizacién de Anderson, el cual sera ampliamente discutido
en esta tesis y merece una secciéon en si misma.
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1.3.1. Localizacion.

P. W. Anderson, inspirado por los experimentos de resonancia magnética de G. Feher
[33], exploro la difusion de una excitacion de espin a través de las impurezas de un semicon-
ductor. Especificamente, con el proposito de establecer un modelo que, sin simplificaciones
excesivas, abordara la ausencia de transporte, investigd la dinamica cuantica en una red
en presencia de desorden. Su objetivo era comprender el origen de este fendémeno y sus
implicaciones, entre las cuales destacaba la importancia de encontrar un ejemplo de,

“...a real physical system with an infinite number of degrees of freedom, having
no obvious oversimplification, in which the approach to equilibrium is simply
impossible.”

El modelo desarrollado por Anderson [33| no solo demostré que la presencia de des-
orden aleatorio en las energias de los sitios conduce a la localizacion de las funciones de
onda en redes unidimensionales y bidimensionales [34,35], sino que también evidenci6 que
en tres dimensiones existe un valor critico de desorden que provoca una transiciéon de fase
entre estados extendidos y localizados [36]. Esta transicion, conocida como la transicion
de Anderson (AL, Anderson Localization), se reveld de, en palabras de Nakamura [27],
“una importancia comparable a la transicion solido-liquido en la fisica” [37].

Los resultados de Anderson, validos para sistemas de una sola particula, demostraron
que en presencia de la localizacion, el sistema no puede alcanzar la termalizacion. Ademas,
sugirié que este efecto persistiria incluso con la introduccion de interacciones de muchos
cuerpos [38]. Esto no era obvio en absoluto, ya que el nimero exponencialmente grande de
configuraciones de muchas particulas podria generar nuevos caminos a través de los cuales
la excitacion podria difundirse. La busqueda de una respuesta acerca de si la localizacion

sobrevive a la presencia de interacciones abri6 el (ahora inmenso) campo de Localizacion
de Muchos Cuerpos (MBL, Many-Body Localization) [20,22,39,40,40-44].

MBL: Localizacién de muchos cuerpos.

Después de varios anos desde su proposicion inicial, se establecié (tedricamente) la
existencia de la Many-Body Localization (MBL) en sistemas finitos (puntos cuénticos) [39]
y en sistemas de dimensiones superiores con interacciones locales [45,46]. Desde el punto
de vista experimental, la implementacion de sistemas de muchos cuerpos cuidadosamente
aislados de un ambiente externo posibilité el estudio de la dindmica cuéntica intrinseca de
estos sistemas. Esto incluye la observacion directa de la localizacion de Anderson, tanto en
ausencia como en presencia de interacciones [43]. Tales avances han permitido investigar de
manera directa, en sistemas relativamente pequenos, la apariciéon o ausencia del proceso de
termalizacion. Algunos sistemas tipicos donde se observa MBL para diferentes magnitudes
las de interacciones de muchos cuerpos, son las cadenas de espines desordenadas [47] o en
presencia de un potencial cuasi-periddico [44,48].

Desde el punto de vista fundamental, la localizaciéon de muchos cuerpos se diferen-
cia de otros ejemplos de sistemas que no termalizan debido a su estabilidad intrinseca.
En general, muchos sistemas integrables termalizan al agregar pequenas interacciones o
al cambiar levemente la forma del Hamiltoniano [23]. Esta robustez abre las puertas a
nuevos fenémenos que no pueden ser descritos por la mecénica estadistica. Por ejemplo:
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“localization-protected quantum orders” [49], cristales en el tiempo [50,51] y aislantes de
Floquet [52].

Este cambio de paradigma en los experimentos corri6 el foco del estudio de magnitudes
macroscopicas a magnitudes inherentes a la dindmica cuéntica, a saber, la dispersion del
observable posiciéon de una excitacion local, el inverso de la razén de participacion, la
probabilidad de supervivencia, o diferentes tipos de entropia. Una manera de extraer
esta informacién en sistemas experimentales es mediante la utilizacién de técnicas de Eco
de Loschmidt o Funciones de correlacion sin orden temporal (OTOCsS, out-of-time order
correlator).

1.4. Ecos de Loschmidt y OTOC:Ss.

Los ecos de Loschmidt (LE, Loschmidt Echoes), son observables inherentemente am-
plios, siendo el comin denominador el hecho que surgen de un procedimiento de reversion
temporal. Un eco de Loschmidt resulta de observar si, luego de tal reversion, una exci-
tacion regresa al mismo estado inicial, o a algin estado con caracteristicas compartidas
(por ejemplo, el mismo valor medio sobre un dado observable) [53]. El concepto base
nace, como fue descrito, en una discusion entre Boltzmann y Loschmidt para un gas de
particulas.

El primer experimento numérico fue computado por Tuck [54], tratando de ver la
influencia de errores numéricos en un sistema de Fermi-Pasta-Ulam-Tsingou [55]. Después
de varios ciclos de evolucién, la dindmica es invertida, observandose, una reversion total
del sistema. Si bien esto pas6 desapercibido en aquel momento, era una prueba numérica
de la regularidad de la dindmica en el modelo [56]. Una dindmica cadtica, clasicamente
caracterizada por una sensibilidad exponencial a cambios en las condiciones iniciales,
hubiera generado cambios drésticos en la dindmica revertida (debido a errores numeéricos)
imposibilitando la observacién de un eco.

Hoy en dia, los ecos de Loschmidt son una de las principales herramientas para es-
tudiar el caos cuantico, la termalizacion, la dindmica de excitaciones, la codificacion de
informacion y la localizacion de muchos cuerpos. Los mismos han sido implementados
tanto en experimentos de NMR, como en sistemas experimentales innovadores, usual-
mente con técnicas inspiradas en la NMR [50,57-61]. La implementacion de la inversion
temporal también juega un papel clave para desenmascarar el ruido ambiental, logrando
eventualmente su eliminacién con estrategias ampliamente conocidas como “desacopla-
miento dindmico” (dynamical decoupling) [62-65].

1.4.1. Ecos de Loschmidt en el mundo cuantico.

En un sistema cuantico, la comparacion entre dos funciones de onda viene dada por el
producto interno | (¥)|1o) |*. Es facil notar que al evolucionar cada uno de estos estados el
valor de esta magnitud no cambia | (1§ |e/he= M/ |40) |2 = | (h|abo) |?, este hecho generd
controversias alrededor de la existencia del caos cuantico dindmico, ya que no se observa
una sensibilidad al cambio de condiciones iniciales.

Una nueva perspectiva surgi6 al notar que la perturbaciéon no necesariamente modifica
el estado, sino que puede aparecer una como modificaciéon del Hamiltoniano que gobierna
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la evolucion [53,66,67|. Bajo esta perspectiva, en un problema de un cuerpo, el Eco de
Loschmidt puede escribirse como:

M(t) = | (|2t he=Pat/hyg) 2, (1.8)

donde H; y H, corresponden a los Hamiltonianos de la evolucion hacia adelante y ha-
cia atras respectivamente. Generalmente, se considera que Hy = Hs + E siendo 3 una
perturbacion no controlada.

En muchos casos experimentales, es ttil considerar una perturbacién que actia solo
durante un breve periodo At entre la evolucién hacia delante y hacia atrés, es decir, como
un operador unitario e>*/" de manera que:

M(t) _ | <w0|ei?’:tlt/heiﬁ)At/he—i?:tlt/h|¢0> |2. (19)

Estos conceptos pueden ser generalizados observando, no el retorno a un estado parti-
cular, si no el retorno del valor medio de un observable. En este caso el decaimiento es
generalmente mas lento, ya que el estado puede regresar a un estado diferente compatible
con el valor medio de un observable [68], | (| 1t/ =iHat/hOeiHat/h=THat/h|y ) 12 En el
formalismo de Matriz Densidad, donde el estado inicial no es necesariamente un estado
puro, tendriamos:

Mo(t) = Tr {Oei”ﬁlgt/hefiftlt/hpoeiﬁlt/hefi?-lzt/h} ' (1.10)

La implementacion de ecos de Loschmidt es estandar en Resonancia Magnética Nuclear
desde los anos 50, convirtiéndolo en el marco pionero en el testeo de la controversia
de Loschmidt-Boltzmann [69,70]. El eco de Loschmidt permite extraer informacion de
diferentes caracteristicas del sistema observando su decaimiento a distintas escalas de
tiempo y cuantificando sus valores de equilibracion y fluctuaciones [68,71-75]. Finalmente,
uno podria considerar el Eco de Loschmidt al realizar una evolucién no-Hermitica (en un
sistema abierto), lo que sera discutido en el Capitulo 3.

1.4.2. OTOCSs: Funciones de Correlaciéon sin orden temporal.

El concepto de Funciones de Correlacion sin orden temporal (OTOC, out-of-time order
correlator), fue introducido por Larkin y Ovchinnikov, mientras estudiaban del efecto de
la dispersion de electrones debido a las impurezas en superconductores desordenados [76].
En estas condiciones predijeron el crecimiento dinamico exponencial del médulo cuadrado
del conmutador de un par de operadores de Heisenberg que inicialmente conmutan, por
ej. Ty py. Los OTOC permanecieron mayormente inadvertidos, hasta que se reconocié su
relevancia en el estudio del caos cuantico en problemas de muchos cuerpos, en particular
campos cuanticos en la proximidad de un agujero negro [77,78|.

De manera simplificada, los OTOCs describen una evolucién promedio de operadores
a tiempos diferentes. Siendo definidos genéricamente como:

A A ~

Cor (1) = Tr { [W(t), V]T [W(t),ﬂ } . (1.11)
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Si los operadores son Hermiticos resulta,

. 12
Cor(t) = — Tt { [W(t), v} } , (1.12)
y si ademas la dinamica es unitaria podemos reescribirlo como,

Cloyr () = 2 (1 Ty {W(t)*\?WV(t)f/}) (1.13)

donde el segundo término puede ser interpretado como un Eco de Loschmidt, donde el
estado inicial V evoluciona durante un tiempo ¢, y luego es perturbado por W. Pos-
teriormente, sigue una evoluciéon de inversiéon temporal antes de aplicar una mediciéon

(V1) [79,80]:
Tr{W(t)TVTW(t)V} — Tr{VTU(t)WUT(t)VU(t)WTUT@)}
- Tr{f/@(t)%f(t)}

siendo @3 () = U(t)WU1(t) el operador Eco de Loschmidt.

Usualmente, se asume que el soporte de los operadores 1% y W es local. Por ejemplo,
en un sistema de espines, se suelen asociar a operadores de espin locales Sf.

Como es de esperar, debido a correspondencia entre los OTOCs y los ecos de Losch-
midt, los mismos han sido ampliamente utilizados en Resonancia Magnética Nuclear de
forma independientemente y bajo otros nombres. Entre las aplicaciones pioneras se des-
acata la secuencia de Coherencias Cuéanticas Multiples [81,82] que permite determinar
K¢(t), el ntimero de espines correlacionados en el sistema [57,83], a partir de un OTOC
derivado de multiples experimentos de eco:

Ka(t) = —m Tr { [5 Sz(t)] [5 S*Z(t)} } (1.14)

siendo S* el operador magnetizacion total en la muestra.

1.5. Ruido y Decoherencia: Sistemas abiertos.

La decoherencia entr6 en el mundo del estudio de sistemas cuanticos a través de dos
senderos sinuosos pero entrelazados. Por un lado, desde una perspectiva fundamental,
en el estudio de la emergencia de la mecéanica clésica desde la mecanica cuantica y en
el problema de la medicion; entre los trabajos pioneros se encuentra el de N. Mott en
1929 (84, 85]. Por otro lado, desde un enfoque mas practico, considerando el transporte
electronico por R. Landauer [86] y M. Biittiker [87]. En esencia, la decoherencia surge
como consecuencia de todas las interacciones que, debido a su complejidad, no podemos
integrar al modelo que sabemos resolver, pero que influyen en la dindmica cuantica.

Tipicamente, tanto para electrones como para espines, los efectos del entorno pueden
originarse en interacciones con fotones, fonones, momentos magnéticos, campos eléctricos
y otros electrones/espines. Cada uno de estos procesos genera, ya sea de forma individual
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Figura 1.2: Representacién esquemética de las posibles formas de introducir los efectos de
un ambiente decoherente a un sistema cuantico. Panel izquierdo: Un acercamiento estaciona-
rio al problema permite calcular propiedades a energia constante (e.g. transmitancias, long. de
localizacién, camino libre medio, etc). Generalmente, el sistema cuantico estd conectado a dos
terminales (L y R, representadas en verde y azul) que actiian como fuente y sumidero de excita-
ciones. Los procesos decoherentes son introducidos por reservorios (¢;, representados en naran-
ja). Landauer-Biittiker: Los procesos decoherentes son introducidos por un tnico voltimetro
afectando un sitio particular del sistema. D’Amato-Pastawski: Cada sitio es afectado por un
reservorio independiente. Panel derecho: Un acercamiento dindmico al problema permite observar
los efectos del ambiente en la evolucién de excitaciones. El efecto sobre la dindmica puede verse
mediante: Quantum-Drift: La excitacion evoluciona en presencia de fluctuaciones temporales
en las energias de sitio (representado como incertidumbres Lorentzianas). Quantum-Jumps:
El ambiente genera sucesivos procesos de colapso local intercalados por evoluciones coherentes.
Haken-Strobl (Linbland): Atentia exponencialmente los elementos no-diagonales de la matriz
densidad, permitiendo una evaluacién directa de valores medios de los observables. En media,
todas estas visiones son equivalentes.
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o en un conjunto, una degradaciéon en la dindmica, atenuando las recurrencias e interfe-
rencias caracteristicas de los sistemas cuénticos sencillos. Se denomina decoherencia a esta
degradacion en las fases especificas que permiten interferencias y recurrencias propias de
modelo simplificado. A continuacién, introduciremos brevemente algunos de los modelos
fundamentales de decoherencia en la dindmica y el transporte cuantico esquematizados
en la Figura 1.2.

1.5.1. Landauer— Biittiker —D’Amato-Pastawski.

Landuer considera el transporte estacionario en un sistema cuantico conectado a dos
reservorios de electrones. Cada uno de estos reservorios entrega electrones al sistema
de manera incoherente e independiente uno del otro [86]. Estos son, en este analisis, la
tnica fuente de decoherencia del sistema. Sin embargo, al igual que los dos reservorios,
cualquier elemento de medicién conectado al sistema podria actuar de manera similar. En
particular, Biittiker incorporo la presencia de un voltimetro en la descripcion del sistema,
el cual toma electrones y los devuelve de manera incoherente [87]. En cierto modo, la
medicion implicaria el colapso de la funciéon de onda del electrén, ya que cada electron
es devuelto al sistema (asegurando que el voltimetro no toma corriente) sin memoria de
su estado anterior, generando decoherencia. La inclusion de estos procesos implica que la
transmitancia efectiva entre los reservorios, no solo esté dada por la transmitancia directa
entre ambos reservorios, sino que también esta condicionada por la transmitancia entre
cada reservorio y el voltimetro, lo que se conoce como transporte incoherente.

D’Amato y Pastawski (DP) notaron que los efectos de grados de libertad ambientales
acoplados a cada estado electrénico “local” podrian considerarse como un voltimetro inde-
pendiente. Visualmente, podemos pensar que el ambiente “mide” los electrones, generando
un colapso, o equivalentemente que toma un electréon y lo devuelve de forma totalmente
incoherente [88]. Ambos modelos, Landauer-Biittiker y D’ Amato-Pastawski, permiten cal-
cular la transmitancia efectiva a una dada energia, por lo cual son considerados modelos
estacionarios (Panel izquierdo de la Fig. 1.2).

La extension de este modelo (Generalized Landauer-Bittiker Equations, GLBE) permi-
te incluir una distribucion continua de “voltimetros” [89], aportando también una vision
dindmica del problema, y brindando una interpretacion fisica exquisita en términos de
colapsos cuanticos recurrentes de la funcién de onda que sera explotada en esta tesis.

1.5.2. Quantum-Drift, Quantum-Jumps, y Haken-Strobl.

La principal desventaja del modelo GLBE radica en su elevada demanda de recursos
al ser tratado numéricamente. Esta limitacion fue superada mediante la aplicacion del
modelo de Quantum-Drift [90], esquematizado en el panel derecho de la Fig. 1.2. En este
enfoque dindmico, una excitacion cuantica evoluciona a partir de una dindmica Trotter-
Suzuki (dindmica paso a paso, siguiendo la evolucion coherente de acuerdo al Hamiltoniano
del sistema). A esta se le superpone una dindmica estocéastica que implica fluctuaciones
en las energias de los sitios [90].

Este modelo mostro estar intrinsecamente ligado a modelos (dindmicos) de colapso de
la funcion de onda (quantum jumps). En tales modelos, el sistema evoluciona coherente-
mente durante un intervalo de tiempo aleatorio, para luego colapsar en un sitio con una
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probabilidad determinada por la evolucion coherente. Este tipo de modelos fue utilizado
por Ghirardi-Rimini-Webber [91] para justificar un comportamiento clasico en las escalas
macroscOpicos.

Al considerar un conjunto de realizaciones de los procesos mencionados anteriormente
(Quantum-Drift y Quantum-Jumps), ambos conducen a la misma dinamica del operador
matriz densidad del sistema. Segtun el formalismo de Lindblad para sistemas cuénticos
abiertos [92], esta evolucion esta determinada por la ecuacion:

% = Llol = —% e Z [In) n], In) {nl , 3], (1.15)

donde v4/h representa una tasa de decoherencia relacionada tanto con la varianza de
las fluctuaciones en el modelo Quantum-Drift como con el tiempo medio de colapso en

el Quantum-Jump. Noétese que —% [7:1, [’5} determina la evoluciéon coherente del Hamilto-

niano, mientras que —3% N [In) (n], [|n) (n|, p]] condensa los efectos del ambiente. En
este caso, una atenuacion exponencial de los términos no diagonales de la matriz densidad
(coherencias) en la base de sitio. Este modelo de Lindbladiano, conocido como modelo de
Haken-Strobl [93], es ampliamente utilizado para calcular el transporte de excitones en
sistemas biologicos.

La equivalencia de estos tres modelos, resumidos en el panel derecho de la Fig. 1.2,
radica en varias suposiciones no discutidas en los pérrafos anteriores: tanto las fluctua-
ciones como los colapsos son totalmente independientes de los eventos anteriores (son
Markovianos), y los procesos ocurren en la base de sitios. Por lo tanto, las coherencias
en esta base son efectivamente las que se ven atenuadas exponencialmente. Estas mismas
hipoétesis forman parte del modelo D’Amato-Pastawski, lo que permite considerar al QD

uno como una realizaciéon dinamica del primero o viceversa.

1.6. Sistemas biol6gicos.

Hasta aqui hemos discutido como los avances tecnolégicos nos han capacitado para
estudiar sistemas cuanticos “simples” y observar los efectos generados por una aleatorie-
dad controlada, incluso revirtiendo su dindmica. Sin embargo, estos avances también nos
permiten investigar con mayor detalle los procesos biologicos, lo que implica adentrarnos
en un terreno opuesto: la complejidad de los sistemas y sus entornos se incrementa. Esto
ha abierto la posibilidad de que diversas ramas de la fisica y las matematicas encuentren
su aplicaciéon en la biologia, como la biofisica celular y molecular. Eventualmente, uno
llega a preguntarse si no existen efectos cuanticos que estén involucrados en la biologia.
La respuesta obvia es: S7, existen. Todo proceso quimico depende de la mecdnica cudntica.
Sin embargo, uno puede afinar ligeramente la pregunta, volviéndola no trivial: ; Existen
sistemas biologicos que utilicen los efectos cuanticos para realizar una tarea de forma més
eficiente, robusta o que de alguna manera no pueda realizarse de manera clasica? ;Pudo
la evolucion haberle dado “poderes cuénticos” a ciertos organismos?

El primer lugar donde mirar son los sistemas fotosintéticos, de donde proviene préc-
ticamente toda la energia que permite la vida en la tierra. En estos sistemas los fotones
provenientes del sol son absorbidos por las llamadas light-harvesting antennas, generando
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una excitacion electronica, la cual es transportada hasta un centro de reacciéon donde una
separacion de cargas permite el almacenamiento de su energia en una forma mas estable,
la energia quimica.

Sorprendentemente, se ha observado que practicamente el 100 % de los fotones ab-
sorbidos son transportados al centro de reaccion, incluso cuando la vida media de estas
excitaciones es muy corta. En 2007, Engel et al. [94] observaron evidencia de coherencias
cuanticas en la estructura Fenna-Matthews-Olson (FMO), que permite la transferencia de
excitaciones hacia el centro de reaccion en las bacterias verdes del azufre (green sulfur bac-
teria). Si bien esta observacion fue a baja temperatura (77 K), experimentos posteriores
sugieren que la coherencia sigue sin ser despreciable incluso a temperatura ambiente [14].
Esto nos lleva a plantearnos preguntas significativas: ;Puede esta dindmica coherente
aportar eficiencia a proceso de absorciéon de energia? ;El sistema encuentra la forma de
escapar a la decoherencia o la utiliza a su favor?

Varios modelos fueron propuestos para representar la fisica de este problema, prin-
cipalmente considerando al ambiente como bano térmico descorrelacionado y Marko-
viano [10,12,95]|. En estos estudios, tedricos y experimentales, se observo que un entorno
puede mejorar el transporte. De hecho, se argumenta que un transporte completamente
coherente resulta inconsistente con el nivel de eficiencia observado en estos sistemas bio-
logicos. En tal caso, la naturaleza podria estar explotando al ambiente a través de una
“Ingenieria” de interacciones con el entorno [96].

Siguiendo estas ideas, S. Kauffman [97] propuso la intrigante hipotesis del poised realm,
“reino en equilibrio”; la cual afirma que muchos procesos biologicos ocurren al borde del
chaos [98]. Esta hipotesis llevo a Vattay y colab. [99] a proponer que sistemas unidi-
mensionales cerca de una transicion metal-aislante (metal-insulator transition MIT) son
6ptimos para el transporte. Para ello, argumentaron que en la vecindad del punto critico,
la decoherencia no deberia afectar al sistema con la misma magnitud que en el régimen
extendido, y al mismo tiempo garantizaria la deslocalizacion necesaria para el transporte.

1.7. Hipotesis central de Irreversibilidad.

Supongamos que podemos realizar un experimento de Loschmidt, el cual podemos
ir perfeccionando progresivamente, es decir, nuestro Hamiltoniano de reversion es siste-
méaticamente més cercano al que originé la evolucién en primer lugar. Por simplicidad,
imaginemos un sistema simple, una dindmica de espines en una molécula pequena, total-
mente aislada del resto del universo. Al ir refinando nuestro experimento, nos acercariamos
cada vez méas a un eco perfecto. Si fuéramos capaces de invertir todo en este sistema, des-
de el Hamiltoniano de espin hasta la vibraciéon méas pequena, encontrariamos un retorno
perfecto a la condicion inicial.

Ahora supongamos que esta molécula no esté aislada del resto del universo, sino que
interacttia con algunas moléculas de su entorno (que también interactiian con otras), siente
el efecto de vibraciones térmicas, recibe algo de radiacion, etc. En este caso, no es obvio
que la mejora sucesiva de los experimentos de reversion que incluya todo este colectivo nos
lleve a un eco perfecto. Quizas, “More is different”, quizas existe un cambio la naturaleza
del problema que impediria la reversion perfecta. El limite N — oo nunca es trivial, y el
problema primero deberia ser resuelto para un sistema infinito, y solo entonces modificados
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sus parametros para describir un problema finito, lo que podria traer inconsistencias con
nuestra descripcion inicial del primer parrafo. En palabras de Anderson:

The essential idea is that in the so-called N — oo limit of large systems (on
our own, macroscopic scale) it is not only convenient but essential to realize
that matter will undergo mathematically sharp, singular “phase transitions” to
states in which the microscopic symmetries, and the microscopic equations of
motion, are in a sense violated.

En este contexto, la idea se traduce en que, en el limite de un sistema infinito, de
muchos cuerpos, cualquier perturbacion podria verse extremadamente amplificada. Por
consiguiente, su efecto no tiende a cero al disminuir la perturbacion. Esta es la esencia de
la Hipotesis Central de Irreversibilidad.

Experimentalmente, esta hipotesis encuentra su inspiraciéon en observaciones de di-
namica de espin en cristales organicos estudiados por NMR [100, 101], donde se observo
un tiempo de irreversibilidad T3, que no podia ser mejorado de ninguna manera. Una
conclusion apresurada podria ser que esta irreversibilidad T3 tiene su origen en los ele-
mentos de la dindmica que no se invirtieron, particularmente en NMR, la parte no secular
del Hamiltoniano. Sin embargo, experimentos que corrigen términos de mayor orden en
la perturbaciéon atin muestran un 73 siempre mas grande y proporcional a la escala de
tiempo T que caracteriza al Hamiltoniano revertido [6,60]. Consecuentemente, el origen
de esta irreversibilidad deberia ser intrinseco al sistema (macroscopico), siendo postulado
como una manifestacion de la caoticidad del sistema, asociando T3 , al menos en casos muy
idealizados donde se puede aplicar una aproximacion semiclasica, al inverso del coeficiente
de Lyapunov que domina la dinamica clésica [60,67].

1.8. Organizacién de la Tesis.

Esta tesis estudiamos, principalmente, la dinamica de sistemas cuanticos complejos. En
cierto modo, la progresion de esta tesis se desarrolla de la mano al grado de complejidad
del sistema cuantico. Comenzamos trabajando con sistemas aislados de una particula;
luego sistemas abiertos, al acoplarlos con un ambiente; y finalmente consideramos una
dinamica de muchos cuerpos. Esto nos permite explorar varios de los temas discutidos
en este capitulo: la equilibracion; la localizacion, incluyendo su equivalente de muchos
cuerpos; los efectos de un ambiente; la reversibilidad; la extension de efectos cuanticos a
sistemas biologicos y el limite termodinamico. Si bien los capitulos no son ortogonales,
cada uno de ellos se centra en un problema particular, como se detalla a continuacion.

En el Capitulo 2, introducimos y exploramos la potencialidad analitica del modelo
Harper-Hofstadter-André-Aubry (HHAA), el cual considera una cadena unidimensional
sometida a un potencial cuasi-periédico. Este permite obtener una transiciéon de fase en-
tre estados localizados y extendidos a un valor finito de la amplitud del potencial. Una
propiedad notable y muy ttil es que esta transiciéon ocurre simultaneamente para todos
los autoestados. Nos centramos en la dindmica coherente de una excitaciéon de un cuerpo,
determinando su comportamiento y tiempos caracteristicos tanto analitica como numé-
ricamente. Esta caracterizacion sienta las bases para el estudio de este mismo potencial
en sistemas con mayor complejidad en capitulos posteriores. Asimismo, se desarrolla un
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OTOC que permite investigar la localizacion del sistema cuando solo se tiene acceso a la
observacion de un tnico sitio de la red. Evaluando este OTOC en el sistema arquetipico de
HHAA, obtenemos una interpretacion directa del OTOC y de sus magnitudes derivadas
en términos fisicos.

En el Capitulo 3, profundizamos en el estudio de la dinamica cuantica en sistemas de
una particula al incluir la presencia de un ambiente. Comenzamos analizado la cadena
de HHAA en presencia de un ambiente de Haken-Strobl, lo que nos permite explorar
la hipotesis de que los sistemas unidimensionales cerca de una transicién metal-aislante
son 6ptimos para el transporte. Observaciones en este modelo nos llevan a introducir un
modelo de colapsos cuanticos que nos permite una resolucion analitica en varios regimenes
extremos. La busqueda de generalidad nos lleva a estudiar numéricamente otros modelos
que también tienen regimenes extendidos y localizados: la cadena de Fibonacci, y el modelo
de matriz aleatoria PBRM (power banded random matriz). Ademas, para el modelo HHAA
discutimos como la decoherencia introducida por el ambiente afecta, no solo la dinamica,
sino también la reversibilidad de la misma (Eco de Loschmidt).

En el Capitulo 4, extendemos el OTOC desarrollado en el Capitulo 2 para sistemas de
espines interactuantes. Investigamos cémo este OTOC puede ser utilizado para estudiar
el nivel de localizacion en la dindmica de espines (many-body), qué magnitudes aproxima,
y cuénto difieren estos observables de los que resultan en el problema de una particula.
Utilizando el observable suma de magnetizaciones locales al cuadrado, cuyo computo es
mas eficiente, estudiamos el nivel de localizacién cuando interacciones many-body son
incluidas en el Hamiltoniano de HHAA, observando la dindmica de equilibracién, y sus
valores de equilibrio como testigos de la localizacion.

En el Capitulo 5, exploramos la hipotesis, necesaria para interpretar adecuadamente
los experimentos de NMR [79], de que es posible extraer informacion sobre la OTOCs
locales a partir de observables globales. Esta “equivalencia” se pone a prueba numérica-
mente evaluando la secuencia de reversion denominada coherencias cuanticas multiples,
de relevancia experimental. Para ello se consideran anillos de espines con interacciones
de largo alcance que estan dentro de los limites computables. La dinamica y valores de
saturacion de los OTOCs locales y globales derivados de esta secuencia se estudian en
funciéon del tamano del sistema y el rango de las interacciones entre los espines, observan-
do en qué condiciones los OTOCs locales y globales son equivalentes. Una separacion de
las contribuciones al OTOC en términos de ecos locales y términos cruzados nos permite
rastrear esta equivalencia a la interferencia destructiva de los procesos multiespin.

Cada capitulo contiene una introducciéon y conclusion especifica, siendo las conclu-
siones generales de esta tesis discutidas en el Capitulo 6, donde se exploran posibles
generalizaciones y extensiones de los desarrollos presentados a lo largo de este trabajo.
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Capitulo 2

Dinamica y OTOCs en la cadena de
Harper-Hofstadter-André-Aubry.

Este capitulo explora la cadena de Harper-Hofstadter-Andre-Aubry, centrdn-
dose en la dindmica de una excitacion en este sistema. Se examinan diversas
condiciones iniciales y magnitudes para caracterizar la naturaleza de la di-
ndmica. Utilizando este Hamiltoniano de una particula como un sistema de
prueba ideal, se desarrolla un OTOC que permite investigar la localizacion del
sistema cuando solo se tiene acceso a un unico Sitio.

La primera discusion sobre localizacion o transicion metal-aislante (MIT) aparecio
en el contexto de sistemas de muchos espines [33,35]. Sin embargo, la complejidad de
la situacion oblig6 a P. W. Anderson a considerar una tnica particula que se propaga
en una red tight-binding en presencia de desorden en las energias de sitio. Anderson
demostré que el desorden por encima de un valor critico conduce a la ausencia de difusion
de la excitacion, es decir, una MIT. Dos décadas méas tarde, quedd claro que en los
sistemas 1D y 2D, incluso el desorden mas pequeno localiza todos los autoestados de
una sola particula [36]. Por lo tanto, para tener toda la riqueza de la transicion de fase
de localizaciéon con un desorden critico finito, se necesitaria un sistema 3D. Incluso con
estas fuertes simplificaciones, manejar la criticidad del fenémeno requiere amplios recursos
computacionales [102,103]. No obstante, es posible encontrar este comportamiento critico,
con toda su riqueza, en sistemas 1D utilizando desorden correlacionado. Un paradigma
de esta situacion es un potencial periddico inconmensurado con la red subyacente.

Harper y Hofstadter [104-106] introdujeron el primer modelo fisicamente relevante
para describir electrones bajo el efecto de un campo magnético en una red cuadrada dos
dimensional. Este modelo, de ahora en adelante HHAA, fue generalizado por Aubry y
Andre [107, 108] quienes encontraron que los autoestados son extendidos si el potencial
es débil y se localizan después de un cierto valor critico en la amplitud potencial. Esta
transicion puede observarse a través de la convergencia de una expansion perturbati-
va [108,109], a través de la caida exponencial de la conductancia de Landauer [110,111],
o evaluando el inverso del ratio de participacion (inverse participation ratio, IPR) de los
autoestados [112-117]. En consecuencia, se han estudiado con frecuencia modelos 1D in-
conmensurados para imitar la transicion de Anderson de sistemas desordenados de alta
dimension [107], no solo el modelo HHAA, sino generalizaciones que anaden diferentes
caracteristicas y matices, por ejemplo, bordes de movilidad [118,119].
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Actualmente, la implementacion experimental de estos modelos en arreglos (arrays)
de atomos ultrafrios [48,120] abre un atajo natural para estudiar experimentalmente la
transicion entre estados extendidos y localizados, no solo como es planteado en el modelo
original, sino también incluyendo interacciones de muchos cuerpos y decoherencia.

Este capitulo gira en torno al modelo HHAA, especificamente su dinamica. En la
primera seccion, derivamos el modelo siguiendo los desarrollos originales de Harper y
Hofstadter, mostrando sus propiedades autoduales en el punto critico, y finalmente co-
mentamos sobre las notaciones utilizadas en la actualidad en diferentes campos de la fisica.
En las siguientes secciones se estudian dos magnitudes de la dinamica de una excitacion,
el inverse participation ratio y el segundo momento de la excitacion. Adicionalmente, se
computa la densidad local de estados (LDoS, local density of states), ya que nos permite
racionalizar por qué algunas condiciones iniciales resultan patologicas.

2.1.  El modelo.

“The problem of Bloch electrons in magnetic fields is a very peculiar problem,
because it is one of the very few places in physics where the difference bet-
ween rational numbers and irrational numbers makes itself felt.” - Douglas R.
Hofstadter

Tomemos en consideraciéon una red cuadrada 2D con un espaciado entre sitios a y una
energia de salto/acoplamiento J (hopping), cuya relacion de dispersion en ausencia del
campo magnético viene dada por W (k) = J(cos (kya) + cos (kya)). El efecto de un campo
magnético B perpendicular es introducido mediante la sustitucion de Peierls [121,122],
donde Ak es reemplazado por p+ eff, siendo p el operador momento, e la carga elemental,
vy A= (0, Bz, 0) el potencial vector. Dado que e®P=® /1 representa el operador de traslacion,
eP=a/Mpy(x,y) = (x+a,y), podemos expresar el Hamiltoniano efectivo de nuestro sistema

CcOomao:

Bi(a,y) = 2 [b(a + a.y) + ¥l — a,9) + Ve, y + e F* +v(zy —a)e?

2

_ ieBza ieBza ]

En este punto basta considerar que en nuestra modelizacion las particulas pueden
saltar entre distintos puntos de la red (x = na e y = ma, siendo n y m enteros) y que
Y(r = na,y = ma) = g(n)e*»™@ (el comportamiento de la funcién en la coordenada y no
cambio). Reescribiendo la ecuacion anterior y definiendo el flujo de campo magnético por
“plaqueta” ® = Ba? , y el cuanto de flujo magnético, ®y = 2whc/e tenemos:

gn+1)+ g(n—1)+ 2cos(2mng + 0)g(n) = 2E/Jg(n) (2.1)

siendo # = —k,a y ¢ = ®/®Py la relacion entre el flujo de campo por plaqueta y el cuanto
de flujo magnético. La Ec. (2.1) se conoce como ecuacion de Harper. El espectro que se
obtiene de esta ecuacion 2F/J tiene la particularidad que depende de la racionalidad de
g. Al imponer periodicidad sobre n, es decir ¢ = P/Q (racional, P y () nimeros coprimos
distintos), existen exactamente () bandas en el espectro de energia. Si ) > P, las bandas
de energia convergen a bandas de energia delgadas que corresponden a los niveles de

Landau [106].
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Figura 2.1: Mariposa de Hofstadter: Patrén fractal al observar los niveles de energia en funcién
del flujo del campo magnético. Esta estructura muestra la riqueza y la complejidad de los estados
cuéanticos en sistemas de redes bidimensionales sujetos a un campo magnético. Esta figura es
computada utilizando valores racionales de q con 0 < P < @ < 30.

Si, en cambio, g es irracional, el espectro tiene una forma fractal autosimilar. El es-
pectro de energias como funcion de 27 (basicamente, el flujo de campo por plaqueta) se
conoce célebremente como la mariposa de Hofstadter (Ver Fig. 2.1).

2.1.1. Generalizacién, auto-dualidad y transicién de fase.

Utilizando operadores de sitio |n), podemos expresar el Hamiltoniano unidimensional
correspondiente a la direccion x en la forma tipica de los Hamiltonianos tight-binding:

H=> —J(n) (n+1l+[n+1)(n))+ Y enln) (n], (2.2)

donde &, = W cos(2mgna + ). En este contexto, hemos generalizado el modelo, per-
mitiendo que la amplitud del potencial sea un parametro libre (W = 2J en el modelo
original). Usualmente, en esta forma se lo conoce como modelo de Aubry-Andre, nosotros
lo referimos como Harper-Hofstadter-Aubry-Andrée (HHAA), en reconocimiento a todos
los involucrados.

Aunque este modelo tuvo un origen especifico, actualmente se aplica en diversos cam-
pos [48,123-126]. Esto lleva a que ciertos parametros queden desconectados de las mag-
nitudes fisicas originales; comunmente, # representa una fase aleatoria sobre la cual se
promedia en simulaciones o experimentos. Por otro lado, el valor de ¢ suele ser la fraccion
durea en simulaciones numéricas, es decir, ¢ = ¢, = (v/5 — 1)/(2a), ya que este niimero
es el mas irracional posible [127], lo que facilita la obtencion de resultados mas claros y
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definidos. En realizaciones experimentales, los valores de ¢ estan restringidos por el setup
particular. Por ejemplo, en sistemas de atomos frios, por la disponibilidad de longitu-
des de ondas en los laseres, siendo ¢ = 1032/862 = 170/862 = 85/431 en Ref. [123] y
q = 532/738 en Ref. [418|, en ambos casos podemos considerar el sistema como incon-
mensurado (o “irracional”) para redes cortas (con un nimero de sitios menor a 431 y 369
respectivamente).

La ecuacion (2.2) tiene varias propiedades interesantes. En primer lugar, es autodual,
lo cual se observa al realizar la transformacion |n) = >__ e2™%" |k} obteniendo:

Ho= =W/2(lke) kol + ko) (Bl + D e k) (Kl (2.3)

con €5 = 2.J cos(2mgs + ). Podemos ver que es un Hamiltoniano de la misma forma que
(2.2) pero reemplazando J — W/2 y W — 2J. Para W = 2J se recupera el modelo de
Harper y el Hamiltoniano es el mismo en ambas bases. Para W # 2.J podemos pensar,
utilizando el principio de incertidumbre, que si el sistema esta localizado en la base de
sitio estard deslocalizado en el espacio de momento y viceversa.

2.1.2. Notaciones actuales y realizacién experimental.

Es importante destacar que el Hamiltoniano de HHAA puede presentarse en varias
notaciones dependiendo del area de la fisica en la que se esté trabajando, no solamente
utilizando la notacion de enlace fuerte (tight binding).

Por ejemplo, en el contexto de Resonancia Magnética Nuclear, es necesario (y conve-
niente) expresar el Hamiltoniano en término de operadores de espin:

Ho= Iy (Sﬁgﬁﬂ + SgSgH) +3 6.8 (2.4)
= % > <5‘; S+ S;S;H) +) eSES, (2.5)

donde para la ultima equivalencia hemos utilizado que SZ = S S —Z/2, notando que la
identidad solo genera un cambio en la referencia de energias y no afecta la dinamica gene-
rada por el Hamiltoniano. Por otro lado, en el estudio de excitaciones en el estado soélido,
el Hamiltoniano suele expresarse en término de operadores de creacion de destruccion,

H=J (hénss +nth )+ enéhin. (2.6)

Cada una de estas notaciones ofrece perspectivas tutiles para comprender diversos as-
pectos del sistema y su eleccion puede depender del enfoque de investigacion o de las
propiedades especificas que se deseen estudiar. En capitulos posteriores, por ejemplo, las

notaciones aqui introducidas seran tutiles para anadir interacciones de muchos cuerpos en
el Hamiltoniano de HHAA.
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2.2. La dindmica de un cuerpo.

Las implementaciones experimentales recientes de sistemas cuénticos han cambiado
significativamente el paradigma tradicional de estudio de estos sistemas. Anteriormente,
la observacion de efectos cuanticos se centraba principalmente en fenémenos macros-
copicos como la conductividad y la magneto-resistencia. Sin embargo, ahora es posible
observar directamente la dinamica de las excitaciones cuénticas, algo previamente solo
reservado para algunos experimentos de RMN [100, 128-130]. Este enfoque experimental
abre nuevas vias para explorar y comprender fenémenos fundamentales en la mecénica
cuéntica, estableciendo conexiones mas solidas entre los resultados teéricos/numeéricos y
los experimentales. Ademas, esta capacidad para estudiar la dinamica de las excitaciones
cuénticas proporciona una perspectiva tnica sobre la naturaleza intrinseca de los siste-
mas cuanticos, su interaccion con diferentes ambientes (decoherencia), y el eventual paso
a sistemas macroscopicos.

Para comprender y analizar estas dinamicas, se emplean diversas magnitudes, como el
desequilibrio (imbalance), la probabilidad de supervivencia, las funciones de correlacion, la
entropia e incluso la densidad de probabilidad de medir un operador especifico, tipicamente
la posicion. El enfoque de este capitulo se centra en dos magnitudes particulares: el inverso
del ratio de participacion (IPR, por sus siglas en inglés) y la varianza de la distribucion de
probabilidad espacial. Finalmente, vemos, como esta misma informacién puede obtenerse
utilizando Ecos de Loschmidt.

2.2.1. El IPR dinadmico.

El inverso del ratio de participacion (IPR) es una magnitud usual en la fisica de la ma-
teria condensada. La misma proporciona informaciéon sobre la localizacion de los estados
en un sistema, siendo fundamental para comprender fenémenos como la localizacion de
Anderson y la transicién metal-aislante (MIT). La definicién usual del mismo es a partir
de los autoestados v del Hamiltoniano de sistema:

IPR = (3 o () )., (2.7)

donde (...), indica el promedio sobre todos los autoestados. Consiguientemente, un IPR
cercano a 1 indica una mayor localizacion de los autoestados (IPR = 1 indica una loca-
lizacion total), mientras que un IPR pequenio sugiere una distribuciéon mas uniforme de
estos estados en el sistema (IPR = 1/N indica una distribuciéon equiprobable entre N
sitios).

Nuestro enfoque propone trabajar con un IPR dinamico, es decir, calculado sobre un
solo estado, el cual evoluciona temporalmente. En este caso, partiendo de un estado inicial
o(x), tenemos,

IPR; = Y [tho(wn, ). (2.8)

Tn
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2.2.2. El segundo momento de la excitacion.

El segundo momento o la varianza de la distribuciéon de probabilidad espacial es una
magnitud esencial en el estudio de la dindmica de sistemas cuénticos. Esta medida propor-
ciona informacién sobre la dispersion o extension espacial de la funciéon de onda asociada
a un estado cuantico. La varianza es el segundo momento centrado de la distribucion de

probabilidad *:
a3(t) = (x — (2))* = (%) — ()%, (2.9)

con lo que para una distribucién discreta es simplemente:

op(t) = a® | Y pa(t)n® = (Y pa(tn)?| (2.10)

siendo a la distancia entre sitios y p,, la probabilidad de encontrar a la particula en el sitio
n (usualmente p, = |¥,|> 0 pr = pun, siendo p la matriz densidad del sistema). Si bien
desde el punto de vista numérico es una magnitud simple, experimentalmente requiere un
gran nimero de realizaciones para obtener o2(t) con un error relativamente chico. Hacia

el final del capitulo presentaremos una estrategia diferente para la obtencién de la misma.

2.2.3. Densidad Local de estados.

La densidad local de estados (LDoS, Local Density of States) nos da una medida de
la densidad de estados accesibles localmente en una region del espacio [131]. Es decir, a
diferencia de la densidad de estados usual, D(E) = > §(E —¢,), la densidad local de

estados considera el peso que cada uno de los autoestados v tienen en una posiciéon dada

Tt
N(e,zn) =D [u(a)*6(e — ). (2.11)
Esta magnitud puede ser evaluada utilizando el formalismo de funciéon de Green,
1
N(e,z,) = —= lim ImG (e + in), (2.12)
T n—0t

siendo su implementaciéon muy eficiente para sistemas unidimensionales con acoples a
primeros vecinos. Una discusion més profunda y la descripcion de los algoritmos puede
ser encontrada en la tesis de Elena Rufeil-Fiori [132].

Desde el punto de vista dindmico nos una medida de los posibles sitios a los que puede
decaer una excitacion inicial local, pudiendo utilizarse de forma directa para calcular la
probabilidad de supervivencia:

2

Pgo(t) = ’9(t> /_oo N(E, 0)6_16t/hd6 s (213)

donde, sin perdida de generalidad, se consider6 x,, = 0. Alternativamente, se puede ex-

'El uso del subindice 0 en ¢2(t) refiere a que es la varianza tomada sobre la dindmica coherente de
0

un cuerpo. Esta notacién se mantendra en capitulos posteriores, donde los efectos de un ambiente e

interacciones de muchos cuerpos son introducidos.
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Figura 2.2: (a) Valor de medio del IPR dindmico a tiempos largos (equilibrio) en funcién de W
para diferentes realizaciones de desorden () en una cadena de 500 sitios. Distintos tonos de verde
y azul representan diferentes realizaciones del potencial. Arriba: la excitacion inicial se coloca en
el medio de la cadena. En naranja se muestra el promedio de realizaciones. Abajo: La excitacién
se coloca en un extremo de la cadena. En negro se muestra la realizacién correspondiente a 6 = 0.
(b) Principal: Densidad local de estados del Hamiltoniano H con W =1 < W, (Rojo). IPR,, de
los autovectores de H con W = 1J < W, vy N = 500 para dos realizaciones de desorden. Los
estados no localizados se muestran en verde (bulk states), mientras que los estados localizados
de cada realizacion se muestran en celeste (§ = 0) y naranja (§ = 7r/20). Recuadro: Relacion de
participacion de los estados del sitio sobre los estados propios IPR,, (mismo esquema de color).

presar esta integral como la transformada de Fourier de la funciéon de autocorrelacion

), .
Poo(t) = 6(1) / Tolw)e !/, (2.14)

siendo,

Jo(w) = h/oo N (€&, 0)N (€ + hw, 0)e ¥/ de. (2.15)

Estas magnitudes permiten, bajo ciertas condiciones, factorizar el decaimiento de
Pyo(t) en componentes provenientes de la regla de oro de Fermi y retornos propios de
la dindmica cuantica [133,134]. Ademaés, con pequenas generalizaciones como considerar
bases particulares en lugar de la base local (i.e. strenght function), estos conceptos son de
utilidad en el estudio de sistemas de muchos cuerpos y caos [113,135,136].

2.3. Resultados Numéricos.

2.3.1. Condicion inicial.

Al estudiar la dinamica de una excitacién en un sistema cuantico, podemos comenzar
de diversos estados iniciales (o combinacién incoherente de ellos). En esta seccién nos
enfocaremos en estados iniciales puros, en particular, totalmente localizados en la base
de sitio, esto es [1hg) = |ng). Queda libre, por consiguiente, la posicién particular donde
colocamos esta condicion inicial. Lo natural es pensar en el extremo o en el centro de
la cadena, esta eleccion dependera del tipo de informacién al que uno quiera acceder.
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Colocar la excitacion en un extremo sera conveniente para simular algunos problemas de
transporte [137], mientras que colocarla en el centro puede ayudar a evitar problemas de
borde/tamano finito caracterizando mejor las propiedades generales del Hamiltoniano.

En esta seccion estudiamos el efecto de colocar la excitacion inicial en un extremo
|tho) = |0) 0 en el centro |hg) = |N/2) de la cadena sobre el IPR dinamico. La figura 2.2a
muestra el valor de equilibrio del IPR dindmico (promediado en el tiempo) en funciéon
de la amplitud de modulacion (W) para diferentes realizaciones (6). Observamos que
cuando la condicién inicial estd en el medio de la cadena, para W < W, la excitacion
siempre puede extenderse por toda la cadena, mientras que para W > W, la excitacion
permanece cerca del sitio inicial. Esto es consistente con la transiciéon encontrada por
Aubry-André en una cadena infinita. Sin embargo, si la excitacion se sittia en un extremo
de la cadena, observamos que incluso para modulaciones por debajo de la critica, existen
realizaciones donde la magnetizacion local no puede extenderse a toda la cadena. Este
efecto se muestra en la Fig. 2.2a donde se observa que solo una realizacién (negro, 6 = 0)
refleja el comportamiento critico esperado en W, = 2J. En el resto de realizaciones, la
excitacion queda parcialmente localizada para W < W..

Para comprender este efecto hemos estudiado las auto-energias y los autovectores del
Hamiltoniano en una cadena de 500 espines. La figura 2.2b muestra la densidad local
de estados de una cadena larga (N > 10000, calculada usando el método de decimacion
[109,138]) y el grado de deslocalizacion de los vectores propios en funcion de la energia para
una cadena de N = 500. Este tltimo se evalta a través de las cantidades: IPRy = > |ag,|*
y IPR,, = Zk |akm|4‘

Cuando la cadena es finita (500 espines), algunos autoestados tienen un IPR; maés alto,
lo que significa que hay autoestados localizados. Estos estados aparecen en los extremos
(bordes) de la cadena y son un efecto de tamano finito. Esto puede observarse al calcular la
razon de participacion de los estados del sitio sobre los estados propios, donde observamos
que estos estados localizados estan en los extremos de la cadena (inset Fig. 2.2b). Estos
estados no deben confundirse con estados solitonicos altamente improbables cuyo peso
principal reside en sitios donde el potencial in-situ es antisimétrico [109], estos solitones
de baja movilidad pueden aparecer en el interior de la cadena, pero no se espera que
contribuyan con un efecto apreciable en la dindmica de excitacion. Es interesante notar
que la fase 8 = 0 tiene propiedades especiales. En ese caso, no hay un estado localizado en
dicho borde, sino que hay estados localizados en el extremo opuesto. Alternativamente,
para fases arbitrarias, digamos 6 = 77/20, ambos extremos admiten estados de borde. La
ausencia de efectos de tamano finito para § = 0 garantiza que este IPR dinamico muestre
la localizacion solo para W > W.. Sin embargo, otras fases iniciales, como 6§ = 77/20,
producen estados de borde para W < W.. Esta variabilidad incontrolada nos motivo a
utilizar las condiciones iniciales en el medio de la cadena como un representante confiable
de la transicion de fase en el limite termodinamico.

2.3.2. Dinamica del desparramo de la excitacion.

El anélisis previo se centr6 en valores de equilibrio del IPR, en esta seccion estudiamos
la dindmica coherente de un paquete de ondas inicialmente localizado en el centro de
la cadena HHAA. En particular, nos centramos en la evolucion temporal del segundo
momento o2 de la distribucién de probabilidad de encontrar la particula a lo largo de
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Figura 2.3: Evolucién de la varianza de excitacién inicialmente localizada en el centro de la
cadena para el modelo HHAA con N = 10000 para diferentes W (colores). La flecha vertical
muestra el tiempo medio de dispersion eldstica Ty, Ec. (2.22). Las lineas negras con diferentes
trazos representan los resultados analiticos: la linea a trazos el comportamiento cuadratico a
tiempos cortos, la linea punteada sobre la curva roja (W = 2.J ) representa la estimacién analitica
para el comportamiento de la varianza en el punto critico, mientras que las lineas a trazos y
puntos (simple y doble) representan el comportamiento a tiempos largos para la fase extendida
y localizada respectivamente.
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la cadena. En ausencia de decoherencia y para tiempos suficientemente largos, se sabe
que el segundo momento crece balisticamente para W < 2J, difusivamente para W = 2.J
y satura para W > 2J [139]. A continuacion se detalla, numérica y analiticamente, el
comportamiento en cada régimen.

Fase extendida.

En la fase extendida, la dindmica de la varianza a tiempos muy largos se vuelve
balistica, o3 (t) = u?t*. En los casos donde el Hamiltoniano, Ec. (2.2), corresponde a ¢ = 0
(cadena ordenada) y ¢ = 1/2 (cadena dimerizada) hemos demostrado analiticamente (no
se muestra) que la Velocidad u estd directamente relacionada con el soporte B de las
bandas espectrales: u? = 8h2 Para ¢ = 0 hay una sola banda, B = 4J y para ¢ = 1/2

tenemos dos bandas, con B = 2v/W?2 + 4.2 — 2//W2.

Aqui conjeturamos que la misma expresion es valida para cualquier valor de ¢ en el
modelo HHAA. Para ¢ dado por la media aurea, en Ref. [140] se mostr6é qué B = 2|2J—W|.
Tenemos entonces que u? = 4a%|2J — W|?, siendo el comportamiento de la varianza en
tiempos largos viene dado por:

2 2
2 a |2J— W | 2

=11y
70(t) 2h2

La Figura 2.3 presenta el comportamiento analitico para W/J = {1,1.8} como lineas
negras a trazos y puntos, junto con la evolucién Hamiltoniana obtenida numéricamente
(curvas verdes), corroborando los resultados. La saturacion a tiempos largos corresponde
a un efecto de tamario finito (la funciéon de onda alcanza los bordes de la cadena).

Punto Critico.

La dispersion de una excitacion local en la cadena de HHAA en el punto critico
eventualmente se vuelve difusiva [141]. Ademaés, se observa que W = 2J es el tnico
valor de amplitud del potencial donde este crecimiento es difusivo indefinidamente. En
esta seccion, calculamos de forma analitica el coeficiente de difusion de esta dinamica,
algo que, hasta donde sabemos, no ha sido abordado en la literatura.

Al calcular la evolucion del paquete de ondas 1(t) perturbativamente a tiempos cortos
(antes de que los efectos de las energias de sitio entren en la dindmica), la probabilidad
de estar en el sitio n en el momento ¢ es: P, (t) = | (n|o(t)) |2 ~ | (n| (1 — iHt/h) |no) |2,
donde 7y es el sitio donde la excitacion esta inicialmente. Definiendo H,, ., = (n| H |no),
y considerando, sin perdida de generalidad, ny = 0, podemos escribir:

oo(t) = a2ZP tn2—aQZP (t)n)? (2.16)
~ t/h2 227—[207@ — a?(t/h) Z’H (2.17)

(t/h)a QZHMn = o2t (2.18)

Q
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siendo,
vg = 2a*(J/h)?, (2.19)
ya que el modelo de HHAA solo presenta acoples a primeros vecinos.

Ahora debemos encontrar una escala de tiempo donde la propagacion balistica inicial
termina debido a la presencia de un potencial cuasi-periédico de amplitud W, generando
el desparramo difusivo. Para ver esto, la expansion perturbativa debe llevarse a cabo
hasta el cuarto orden: P,(t) = | (n|e:(t)) [> = | (n] (1 — iHt/h — SH?? [l — iLH3 [k +
iﬁ4t4 /R) |ng) |?. A este nivel de aproximacioén se obtiene:

o5 (t)/a®

o3(t)/a?

Q

272 (4/)? — <5 ((Hoo — Ha)? + (Moo — Hoo 1)) T2 (4/R)',

2P (/) — (Mo~ Hoa )T/ )

Q

Donde las diferencias de energia al cuadrado fueron reemplazadas por su valor promedio:

=2

-1

1 (Hn7n - Hn+l,n+l)2
N -1 2 '

n=1

(AE)” = (Hnm — Hns1ni1)?) = (2.20)

Notese que esta definicion tiene en cuenta la “correlaciéon” entre vecinos y que, para el
modelo HHAA, el promedio puede tomarse equivalentemente sobre los sitios n o las rea-
lizaciones del potencial (fase 6 en la Ec. 2.2). Si se considera el desorden de Anderson,
donde las energias de sitio son independientes, se obtiene directamente la varianza del
desorden ((AE)2 = ﬁ Zf;:ll 7-[,2W>, que es la magnitud estdndar para caracterizar el
desorden.

El primer efecto de esta correccién cuértica es cambiar la concavidad de o2(t). Esto
sucedera cuando la segunda derivada de o3(t)/a® se anule a un tiempo 7y

o \/ = ;H) _ (221)

al cual nos referiremos como tiempo medio de dispersion eldstica. Reemplazando con las
energias del sitio HHAA, usando identidades trigonométricas y sumando sobre los sitios,
se puede demostrar que AFE = W /(1 — cos (27q))/2, resultando:

V2h

P . 9.22
W\/(l — cos (2mq)) ( )

Consecuentemente, el coeficiente de difusion, Dy, se calcula como:

D _ verw  a*J? V2
’ 2 h W/(1— cos (2mq))

(2.23)

Esta estimacion se muestra en la Fig. 2.3 para ¢ = ¢, como una linea negra punteada
sobre la curva roja. Es interesante notar como las correlaciones del modelo (dadas por el
vector de onda de modulacion ¢) influyen en los tiempos de dispersion y, por tanto, en la
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difusion o2(t) = 2Dyt = vimyt. Esta caracteristica serd explotada en el siguiente capitulo.

Obsérvese que la magnitud del potencial entra con una ley de potencia diferente que
en el tiempo libre medio (mean-free time) entre colisiones que resulta de la aplicacion
de la regla de oro de Fermi a un estado de energia de Bloch ¢ para el desorden no
correlacionado del modelo de Anderson [142] 1/7rgr = (2m/h)(W?/12)Ny(e) con Ni(e) o
1/4wJy\/1 — (¢/2J)? la densidad de estados directamente conectados.

Fase localizada.

Se sabe que, en el régimen localizado, la longitud de localizaciéon de todas los au-
toestados es 2§ = a/In[W/2J] [107,139, 141]. De ello se deduce que la distribucion de
probabilidad del paquete de ondas en el estado estacionario se localiza cerca del sitio
inicial ng, P(n) = | (n|y(t)) |* = 2%(6_“1_"0‘/5). Por lo tanto, el valor de saturacion de la
varianza serd limy ., 02(t) = [* = 262 = 2a*(2In(W/2J)) 2.

Numéricamente, observamos que cuando W > 2.J, los valores de saturacion obtenidos
son ligeramente menores que los valores analiticos, como se muestra en la Figura 2.3, don-
de las curvas azules corresponden a simulaciones numéricas y las lineas a trazos y doble
punteado representan las expresiones analiticas. Una posible explicaciéon de esta discre-
pancia podria ser la necesidad de incluir correcciones debido a la naturaleza discreta de las
distribuciones de probabilidad. Sin embargo, en términos practicos, aunque estas discre-
pancias existan, no impactan significativamente en nuestra capacidad para comprender,
aplicar y generalizar el modelo.

2.4. La secuencia GEA.

En esta seccion proponemos un nuevo método para cuantificar la transicion de Aubry-
André que permite calcular al IPR y la varianza de la excitacion sin necesidad de conocer
la probabilidad en cada sitio del sistema. Solo es necesario poder medir en el sitio inicial,
aplicar un gradiente de potencial (podemos pensarlo como un campo eléctrico, o en siste-
mas de espines, un gradiente de campo magnético), e invertir la dindmica Hamiltoniana,
algo totalmente razonable en muchos sistemas experimentales.

La metodologia se basa en el concepto de Funciones de Correlacion sin orden temporal
(OTOC), y esté inspirado en la secuencia de coherencias cuénticas multiples de RMN [143].
Sin embargo, dado la naturaleza one-body de estos sistemas, su interpretacion es mas
directa. La idea, representada en la figura 2.4a, es mediante la aplicaciéon de un gradiente
de potencial, etiquetar diferentes partes una excitacion ya desparramada en la cadena,
y luego imponer un procedimiento de inversion temporal (LE) que nos permita extraer
la informaciéon del etiquetado condensada en el retorno al sitio inicial. Notese, que el
uso del LE en esta secuencia, se diferencia de trabajos recientes en el modelo HHAA
[118,144,145], ya que el mismo no se aplica sobre la evolucion perturbada de un autoestado,
sino que compara la dindmica perturbada y sin perturbar de la excitaciéon. En cierto modo,
volvemos al la idea original del LE.

30



CAPITULO 2. DINAMICA Y OTOCS EN LA CADENA DE HHAA.

Evolucién  Perturb. Reversion 015F TT T T T T Tt
-iHt || iy L a3
e’ |_|€ $Th |_|e”H |_ < Localizado
0 P ! W~4J>We
o © © © 0 ]
g o © 0 © o QE)
9 O o
2 ©- T o [
& O .= 0.05F . 1
= o T I Extendido
o, ® g W~0.1J<Wc
g ©- : A g
QA e ‘e-’t 8 000- r i 1 i i 1 i i 1 i i
r o ©1 o © RO 20 40
(a) (b)  GEA orden j

Figura 2.4: (a) Representaciéon esquematica del estado del sistema en diferentes momentos.
Describe la secuencia de Hamiltonianos que operan con una excitacion inicialmente localizada
en el espin central. Las fases ¢ resultan de pulsos de gradiente de potencial (evolucién con 7:19).
Finalmente, se observa cudnto regresé al sitio inicial. Una transformada de Fourier de estos
observables proporciona el espectro de amplitudes de entrelazamiento de gradiente (GEA). (b)
Valores medios a tiempos largos obtenidos para el espectro GEA en la cadena HHA en la fase
localizada (azul) y extendida (verde). Cualitativamente se observa como el espectro representa
el nivel de desparramo de la excitaciéon. Cuantitativamente, el término central del espectro,
denominado entrelazamiento de gradiente de orden cero Qo (ZOGE), que es el inverso del ratio
de participacién (IPR), mientras que la varianza de esta distribucién equivale a la varianza de la
funcién de onda.

2.4.1. Definicion.

El procedimiento GEA, Fig. 2.4a, parte de un estado inicialmente localizado ¥ (t =
0) = |ng). Esta excitacion local es, en principio, desparramada a lo largo de la cadena al
aplicar el operador de evolucién temporal:

(1)) = e~ ™/ |n Zb (2.24)

con b,(t) =Y e ¥ a, . siendo ¢, la energia del autoestado v.

En este punto, se aplica un gradiente de potencial sobre la cadena, de modo que el
mismo evoluciona con el Hamiltoniano H, = Y. n|n) (n| (pulso de gradiente). El efecto
de esta evolucion dependera de la magnitud del producto entre la intensidad del gradiente
@y el tiempo aplicado. Por simplicidad, consideraremos que 7:19 como un gradiente unidad,
siendo el efecto total directamente contemplado en la magnitud ¢. Al ser 7-29 un gradiente
de energias de sitio, los cambios sobre el estado |1(t)) pueden observarse directamente:

e u(e) = e ) = 3 bu(t)e 7 o) (2.25)

en sintesis, la perturbacion asigna a cada componente local de la funcién de onda con una
fase ny. Después de esto, el sistema evoluciona hacia atras en el tiempo (evoluciona bajo
—7# durante un tiempo adicional t). Esta evolucion condensa la informacion, marcada con
la perturbacion, sobre del nivel de desparramo del estado evolucionado en el sitio inicial.
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En consecuencia, el eco de Loschmidt:
- - - 2
M(t, o) = |(nol e Ino)| (2.26)

tiene codificada esta informaciéon como una dependencia en ¢. Esta informacion puede ser
decodificada e interpretada mediante una transformada de Fourier en .

Al identificar el operador <i>¢(t) = eit/he—ipHy o—iHt/h y empleando la notacién de
matriz densidad, donde el estado inicial es py = |ng) (ng|, podemos expresar el eco como:

M(t,¢) = Tr { podl (), ()]}, (2.27)

relacionandolo con la OTOC,

T { (& (0), o] [B,(8), o] } = 2(1 = M(t,0)). (2.28)

lo que permitird una posterior generalizaciéon de la secuencia. Es necesario notar que el
efecto de aplicar el gradiente de campo entra en la dindmica como una evolucién inde-
pendiente de la evolucion natural (con 7:[) del sistema, experimentalmente esto puede
concebirse de varias maneras: por ejemplo, mediante un pulso intenso de gradiente de una
duracién menor a las escalas naturales del Hamiltoniano o mediante la supresion (cuando
es posible) de la evolucion natural.

2.4.2. Resultados numéricos/analiticos.

La simplicidad del espacio de Hilbert de una particula nos permite, no solo una in-
terpretacion clara de esta secuencia y OTOC sino también de las magnitudes que se
desprenden del mismo. Utilizando Ec. (2.24) y (2.25) podemos expandir Ec. (2.26)

M(t,p) =

‘2 —ipn

Z\b ) [bm (1) P07 (2.29)

- Saese o0

donde se puede ver directamente que, transformando Fourier en ¢, se obtiene un espectro
Q(t, j) que contiene informacion de la funciéon de onda en todo el espacio. El valor medio
del espectro a tiempos largos se muestra en Fig. 2.4)b para la cadena HHAA con W = 1J
y W = 4J (verde y azul respectivamente), donde se observa que el mismo muestra la
localizacion (o no) de la excitacion.

En particular, es evidente que el elemento central de la distribucion de Fourier Q(¢, j =
0) corresponde al IPR dinadmico, ya que simplemente se relaciona con los términos en la
Ecuacion (2.29) donde n = m:

= |ba(t)]". (2.31)

Con un poco maés de algebra (Ver Apéndice A), se puede demostrar que la varianza de la
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distribucion es igual a la varianza de la funcién de onda,

a5 (t) = 1/2Zj262(t,j) = > w¥ba(t)]: (2.32)

Ambas igualdades han sido corroboradas numéricamente. Para j # 0, Q(t, j) muestra la
correlacion media entre la probabilidad de ocupacion de sitios a una distancia j, conse-
cuentemente, en el régimen localizado, este valor se vuelve exponencialmente pequeno con
]l

Esta secuencia puede ser generalizada utilizando distintas dependencias en el potencial,
no necesariamente un gradiente (lineal), permitiendo extraer informacién complementaria,
por ejemplo, momentos superiores de la distribucién de probabilidad espacial.

2.5. Conclusiones.

En este capitulo, hemos presentamos el modelo de Harper-Hofstadter-André-Aubry,
el cual seré extensamente utilizado en los capitulos posteriores de esta tesis. Este modelo
se destaca por la claridad y limpieza de la fisica que proporciona: una transiciéon entre
estados deslocalizados a localizados en todo el espectro a un valor finito del potencial. Al
mismo tiempo, la dindmica se distingue claramente en cada régimen: balistica, difusiva y
localizada.

En el punto critico, donde la dinamica se vuelve difusiva, el Hamiltoniano es autodual,
y las auto-energias y autoestados del Hamiltoniano exhiben un caracter fractal. Estos dos
fenomenos, estrechamente relacionados entre si [146], podrian conferir cierta estabilidad
al sistema, especialmente frente a influencias externas, i.e. la decoherencia generada por
un ambiente.

Centrandonos en la dindmica de excitaciones en este modelo, concluimos que es con-
veniente utilizar excitaciones inicialmente en el centro de la cadena, a modo de minimizar
(practicamente evitar) los efectos de estados de borde.

Entre las contribuciones originales de este capitulo se incluyen la caracterizacion del
tiempo medio de dispersion elastica 7y y su relacion con el coeficiente de difusion en el
punto critico, la velocidad de crecimiento del segundo momento a tiempos largos u para
el régimen extendido y la introduccion del IPR dindmico.

Por tltimo, desarrollamos un procedimiento que nos permite extraer de manera exac-
ta el IPR dinamico y la varianza de la excitaciéon, midiendo solamente la probabilidad
de que la excitaciéon se encuentre en el sitio inicial y manipulando globalmente el sis-
tema. Este procedimiento, basado en la perturbaciéon de la excitacion y la inversion de
su evolucion (Eco de Losdchmidt/OTOC), fue testeado exitosamente en el modelo de
Harper-Hofstadter-Andre-Aubry.

Las contribuciones originales de este capitulo fueron publicadas en:

e Lozano-Negro, F. S., Zangara, P. R., & Pastawski, H. M. (2021). Ergodicity breaking
i an imcommensurate system observed by OTOCs and Loschmidt echoes: From
quantum diffusion to sub-diffusion. Chaos, Solitons & Fractals, 150, 111175.

e Lozano-Negro, F. S., Navarro, E. A., Chavez, N. C., Mattiotti, F., Borgonovi, F.,
Pastawski, H. M., & Celardo, G. L. (2023). Universal stability towards decoherence
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in quantum diffusive 1D chains. Physical Review A 109 (4), 042213.
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Capitulo 3

Dinamica cuantica en un ambiente
decoherente.

En este Capitulo estudiamos la dindmica cudntica en sistemas de una parti-
cula en presencia de un ambiente. En particular, nos enfocamos en estudiar
bajo qué condiciones la dindmica no se ve afectada por decoherencia genera-
da por el ambiente. Consideraremos tres modelos paradigmdticos, a saber, las
cadenas de Harper-Hofstadter-Aubry-André y Fibonacci, junto con el modelo
de matriz aleatoria PBRM (power banded random matriz). Se discutird como
la decoherencia afecta el coeficiente de difusion, la corriente estacionaria, y
el eco de Loschmidt (pureza). Un modelo de colapso cudntico nos permitird
obtener expresiones analiticas universales para los tres modelos, aclarando en
qué condiciones la dindmica es estable frente a un ambiente.

La comprension y el control del transporte cuéntico en presencia de ruido ambiental
es crucial en muchas areas de la fisica como los atomos frios [147], los sistemas mesoscopi-
cos [148] y la biologia cuantica [149,150]. Una comprensién méas profunda nos permitiria
disenar sistemas de captacion de luz solar méas eficientes [95, 151, 152], dispositivos que
transfieran carga o energia con una minima disipacion [137, 153] y sensores de fotones
biomiméticos [154], asi como para explicar la funcionalidad de muchos agregados biologi-
cos [155-158].

Como fue mencionado en los capitulos anteriores, fue P. W. Anderson [36]| quien en-
tendié que la dispersion elastica de un desorden aleatorio descorrelacionado que excede
un valor critico induce la localizacion de excitaciones cuanticas y una transicion metal-
aislante (MIT). Mientras que en 3D este desorden critico es finito, en 1D cualquier can-
tidad de desorden es suficiente para generar esta localizacion. Dos décadas mas tarde se
descubri6 que el desorden correlacionado y los acoplamientos (hopping) de largo alcance
podrian permitir un MIT incluso en 1D [107,159-161].

Los diferentes efectos del ambiente fueron considerados por R. Landauer [86], N.
Mott [162] y H. Haken [163]. Especificamente, Landauer noté que un sistema finito real
intercambia particulas con reservorios externos a través de sondas de corriente y voltaje,
una nociéon que M. Biittiker utilizé para describir la decoherencia ambiental y la termali-
zacion [87,88]. Tanto Haken como Mott intentaron abordar el papel de un bano térmico.
Un modelo muy simple, pero ampliamente utilizado, para el bafio ambiental es el modelo
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de Haken-Strobl, que describe fluctuaciones dinamicas no correlacionadas en las energias
del sitio.

Mas tarde, Mott predijo un régimen de acoplamiento variable (variable range hopping)
en el que el intercambio de energia entre fonones y los estados localizados de Anderson
favoreceria la conductividad antes de que la decoherencia congele la dinamica [164]. Asi,
en el régimen localizado, la conductividad 1D alcanza un méaximo [88,95,142,165| cuando
la incertidumbre energética asociada con la dispersion elastica y la resultante del acopla-
miento con el medio ambiente (es decir, procesos de decoherencia) [166,167| se vuelven
comparables. Por el contrario, la dinamica balistica de un cristal perfecto siempre se de-
grada por los procesos de dispersion decoherentes inducidos térmicamente [168]. Un topico
mucho menos estudiado es como el ruido decoherente afecta al transporte alrededor del
MIT y, mds generalmente, en presencia de una dindmica de difusion cudntica (coherente).

Trabajos recientes sobre el transporte excitonico en biomoléculas grandes, como los
complejos de antenas fotosintéticas, buscan explicar la desconcertante gran eficiencia de
muchos sistemas naturales y biomiméticos [95, 165,169, 170]. En este contexto, S. Kauff-
man [97] propuso la intrigante hipotesis del “reino en equilibrio” (“poised realm”) de que,
en los sistemas biologicos, el transporte de excitonico ocurre al “borde del caos”. Esto llevo
a Vattay y col. [99] a proponer que los sistemas 1D cerca del MIT son 6ptimos para el
transporte porque la decoherencia no afecta al sistema tan fuertemente como lo hace en el
régimen extendido, al tiempo que garantiza la deslocalizacion necesaria para el transporte.

Esta hipotesis parece estar en desacuerdo con un analisis tedrico previo [89] que indica
que es la dindmica intrinsecamente difusiva de algunos sistemas 1D lo que produce una
estabilidad particular del transporte hacia la decoherencia.

Este capitulo apunta a resolver este conflicto. Para ello, estudiamos algunos modelos
paradigmaticos que permitan una difusion coherente. Comenzando con el modelo Harper-
Hofstadter-Aubry-André (HHAA) [107], ya que, la presencia de un punto critico y una
dindmica difusiva (Capitulo 2), lo vuelven un sistema ideal para poner a prueba estos
principios.

En la cadena HHAA encontramos que mientras la magnitud de la decoherencia perma-
nezca por debajo de un valor caracteristico g, ver Fig. 3.3b, el coeficiente de difusion D
depende muy débilmente del ruido decoherente. Por otro lado, las propiedades del trans-
porte tanto en el régimen extendido como en el localizado se ven fuertemente afectadas por
la decoherencia. También vemos que, en tiempos prolongados, D determina la corriente
y la reversibilidad del sistema evaluada por la desintegracion del eco de Loschmidt (LE).
Por lo tanto, en la MIT, ambas magnitudes son casi independientes de la intensidad del
ruido decoherente. Para entender el origen de esta estabilidad consideramos un modelo
de colapso cuéntico para la decoherencia que nos permite un acercamiento analitico al
coeficiente de difusion en presencia de decoherencia.

Sin embargo, estos hallazgos no son suficientes para responder a la pregunta de si
la estabilidad frente a la decoherencia proviene especificamente de la dinamica cuéntica
difusiva o si, en cambio, esta estabilidad es intrinseca al punto critico. Por esta razon
también estudiamos la cadena de Fibonacci [171] y las matrices aleatorias (PBRM, power
banded random matrices) [161], donde existe un régimen del tipo difusivo para un rango
de pardmetros independientemente de su criticidad. Nuestros resultados muestran que,
siempre que un sistema se encuentra en un régimen difusivo coherente, el transporte es
extremadamente estable frente a la decoherencia, incluso fuera del punto critico. Por
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altimo, pero no menos importante, pudimos encontrar una expresion universal para D,
véalida en el régimen difusivo coherente, que depende tinicamente de un tnico parametro
fisico: la relacion entre el tiempo medio de dispersion elastica y el tiempo de decoherencia.

3.1. EIl ambiente.

El ambiente considerado en este capitulo sera representado por la presencia de un
potencial estocéstico (ruido blanco) local V(t) = > &,(t)|n) (n|. El mismo se descri-
be mediante el modelo Haken-Strobl (HS) [93], ampliamente utilizado para el transporte
excitonico e introducido en el Capitulo 1. Consecuentemente, las fluctuaciones estocés-
ticas y no correlacionadas de las energias de sitio cumplen (£;(¢)) = 0y (£,(t)én (1)) =
h’y¢6nm5(t — t,).

La dindmica puede obtenerse mediante la ecuacion maestra (ME) de Lindblad:

azﬁmzﬁﬂvﬂ—%gj {n) nl 1), (3.1)

donde 7,/h es una tasa de decoherencia relacionada con la temperatura. Esta aproxima-
cion es razonable cuando la energia térmica es del mismo orden que el ancho espectral del
sistema, como ocurre en muchos sistemas biologicos [95,172|. La ecuacion maestra de HS
conduce, en tiempos infinitos, a una poblacién estacionaria igualmente probable en todos
los sitios [151]. La dindmica de la excitacion hacia los valores equilibrios es, en el limi-
te de tamano infinito y para tiempos mayores al tiempo de decoherencia, difusiva [166].
El coeficiente de difusion puede ser obtenido directamente de la dinamica, 6 de forma
alternativa, utilizando la formula de Green-Kubo [167]:

N

D) = 3 il 3:2)

w,r=1 '7¢ +

donde % es un vector unitario que indica la direccion del transporte, v, es la magnitud de
la decoherencia, w,,, = ¢, — €, es la diferencia de energia entre los autoestados p y v, y
j'W, es el operador de flujo en la base de autoestados del Hamiltoniano. Una descripcion
més detallada puede encontrarse en el Apéndice B.2.

Obtener el coeficiente de difusién a partir de la dindmica, a partir de la resoluciéon
numérica de la ecuacién maestra, requiere manejar matrices N? x N?2. Para superar este
limite utilizamos el modelo Quantum-Drift (QD) [90], un enfoque estocéstico que vuelve
mucho més eficiente el cdlculo numérico, permitiéndonos manejar cadenas de mas de 10*
sitios.

3.1.1. El Quantum-Drift.

El Quantum-Drift fue concebido como una realizacion de las sondas de tension locales
de Biittiker [89] en un contexto dindamico. Aqui, la funciéon de onda del sistema sigue una
dindmica de Trotter-Suzuki con procesos de colapso locales representados como energias
de sitio que fluctiian segiin un proceso de Poisson. Esto reduce el coste computacional
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3.2. LA CADENA HHAA CON DECOHERENCIA 1.

Figura 3.1: Modelo HHA A decoherente: las lineas horizontales son energias del sitio dadas por el
potencial sinusoidal de amplitud W, J es la amplitud de hopping, las incertidumbres Lorentzianas
indican las fluctuaciones en las energias de sitio generando decoherencia.

del calculo de la dindamica en presencia de decoherencia, ya que s6lo implica la evolucion
de Trotter-Suzuki del vector de onda (tamano N) [90,173]. La implementacion eficiente
(relacion precision/costo computacional) del algoritmo de Trotter-Suzuki es discutida en
detalle en las tesis doctorales de Fernando Cucchietti, Pablo Zangara, y Lucas Fernan-
dez [174-176], y es brevemente discutida en el apéndice E.

La dinamica se obtiene mediante la aplicaciéon secuencial de operadores de evolucion
unitarios a la funcion de onda en pequenos pasos de tiempo (dt). El ruido/decoherencia
(interaccion con el medio ambiente), se introduce agregando fluctuaciones de energias
estocésticas en cada sitio a cada paso, I'y = 3, B, |n) (n], no correlacionadas temporal o
espacialmente. La distribucion de probabilidad de estas fluctuaciones es una funcién de

Lorentz,

L%
—— 3.3
B+ (%) 33

Consiguientemente, la evolucién unitaria dada en un pequeno paso temporal dt es:

P(ﬁn) =

U(dt) ~ 6if¢dt/hefi?:ldt/h7 (3.4)

donde H es el Hamiltoniano del sistema. Finalmente, la funciéon de onda evolucionada a
tiempo t = N,dt viene dada por:

Ny
[t)) = [ o0/ e Mgy 0). (3.5)

j=1

3.2. La cadena HHAA con decoherencia 1.

El modelo de HHHA (Fig. 3.1), discutido en el capitulo anterior, consiste en un Ha-
miltoniano de enlace fuerte con un potencial de sitio sinusoidal:

H=> —J(n)(n+1l+|n+1)(n])+> Wecos2rgna+0)n) (n|,  (3.6)

donde ¢ es un vector de onda incomensurado con la red, a la distancia entre sitios y 0 <
0 < 27 una fase aleatoria. En principio consideramos ¢ = g, = (v/5 — 1)/2a, sin embargo,
otros valores de ¢ seréan discutidos en la seccion 3.4.2. En esta secciéon analizaremos los
efectos de incorporar un ambiente decoherente descrito por el modelo de Haken-Strobl
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Figura 3.2: Evolucién del segundo momento de la excitacién para el modelo HHAA. El estado
inicial es localizado sobre un sitio en el medio de la cadena. Curvas sélidas: Haken-Strobl calculado
a partir de una evolucién Lindlandiana (ME). Curvas discontinuas: simulacién utilizando el
Quantum-Drift (QD). Los pardmetros utilizados son N = 100, (a) W =0, (b) W = 2J and (c)
W =20J.

(Ec. (3.1)).

Los efectos de un ambiente HS en el Hamiltoniano de HHAA han sido estudiados
previamente [177-179]. En particular, nuestros colaboradores E. Alvarez Navarro y G. L.
Celardo encontraron cierta estabilidad de la corriente estacionaria observada al conectar
una fuente y un sumidero a la cadena HHAA en el punto critico [179]. Estos resultados son
detallados en el Apéndice B.1. Sintetizando, la corriente estacionaria siempre decrece al
aumentar la magnitud de la decoherencia cuando el sistema esté en la fase extendida (W <
2.J); aumenta hasta llegar a una corriente maxima para luego decrecer en la fase localizada
(W > 2J) y es estable hasta un dado valor de la decoherencia en el punto critico (W = 2.J).
Sin embargo, estos célculos se limitan a un tamano del sistema relativamente pequeno
(N < 100). Esta dificultad puede ser sorteada al extender la dindmica del Quantum-
Drift incluyendo la presencia de una fuente y un sumidero, o notando que la corriente
estacionaria esta determinada por el coeficiente de difusion de una excitaciéon en la cadena
(Apéndice B.1.1) y utilizando la evolucion QD para encontrar el mismo.

Consecuentemente, en esta seccidon nos centramos en el estudio de la evolucién de la
varianza o2(t) = a? [ pun(t)n* — (32, pun(t)n)?]. Como estado inicial se utiliza una
excitacion local en el medio de la cadena, evitando efectos de borde. De la evolucion de
esta excitacion extraemos el coeficiente de difusion D = o?(t)/(2t) a tiempos largos. De
manera independiente, el coeficiente de difusion también puede ser computado basandonos
en los autoestados y autoenergias del Hamiltoniano siguiendo el enfoque de Green-Kubo
(Apéndice B.2).

La evolucion es generada utilizando el algoritmo de Quantum-Drift para valores de
N > 100. Para N < 100, el calculo fue realizado tanto utilizando el QD como mediante
diagonalizacion exacta del Lindblandiano de Haken-Strobl (Ec. (3.1)). La Fig. 3.2 muestra
la varianza en funcién del tiempo en los tres regimenes y para diferentes valores del
ambiente 7, computada con ambos métodos. Como se puede ver, existe una muy buena
concordancia entre la evoluciéon Lindbladiana y del QD para el segundo momento de una
excitacion tanto para diferentes intensidades de desfase y pardmetros del sistema (en este
caso, la amplitud del potencial W).
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Cuando el sistema esta en contacto con un entorno, las fluctuaciones de las energias de
sitio afectan la dindmica, induciendo un comportamiento difusivo. En la Fig. 3.3a mostra-
mos (simbolos), para W < 2J y W > 2J, cémo la dindmica se vuelve difusiva después de
un tiempo 7, = h/v, (ver linea de puntos vertical). En general, el coeficiente de difusion de
esta dinamica, originada en la interaccion entre la dindmica coherente y el ruido, depende
de la magnitud de la decoherencia. Excepto en el MIT, donde, curiosamente, la dinamica
sigue siendo difusiva con un coeficiente de difusion muy cercano a Dy, el coeficiente de
difusion en ausencia de ruido.

A medida que aumenta la magnitud de la decoherencia, D disminuye en el régimen
extendido, ya que las interferencias especificas que permiten la dinamica balistica son
destruidas por el ruido. En el régimen localizado D alcanza un méaximo, es decir, para
valores pequenos de 74 la decoherencia contribuye a romper la localizacion de la exci-
tacion y, por lo tanto, a la difusion. Sin embargo, si 7, es demasiado grande, el propio
ruido comienza a entorpecer la dinamica y consiguientemente D disminuye a medida que
Vs aumenta. Ambos comportamientos se muestran claramente en la Fig. 3.3b (simbolos
verdes y azules respectivamente). Sorprendentemente, en el MIT, D es casi independiente
de la decoherencia hasta v5 = 2/, ver los cuadrados rojos y la linea de puntos vertical
en la Fig. 3.3b. En este caso, la decoherencia parece no afectar al sistema hasta entrado
en el régimen de decoherencia alta o Quantum-Zeno observado en todos los regimenes
del Hamiltoniano para 74 > 4. En funcién de la magnitud del potencial en el sitio W,
las curvas del coeficiente de difusion para diferentes valores de decoherencia se cruzan en
W = 2J, lo que sugiere la independencia de la decoherencia precisamente en el punto
critico (Ver Fig. 3.3c.).

Para comprender la dependencia exacta de D de v, aplicamos un modelo de colapso
cuantico para los efectos del ambiente. Esto tultimo puede asimilarse a una secuencia de
mediciones de la posicion de la excitacion [90], que induce un colapso local que conduce a
una caminata aleatoria [89]. Entonces D se puede determinar facilmente a partir de o3 (t)
como:

D~ / " dtp (1) 02 (1) /(27), (3.7)

donde p(t;) es la densidad de probabilidad de la medicion en el momento ¢; y 7 =
fooo dtit;p (t;). Dado que el modelo HS corresponde a un proceso de Poisson para los
colapsos de medicién [90], p(t;) = e%/™ /74, A partir de 02(t), obtenido en ausencia de
decoherencia, y luego integrando numéricamente la Ec. (3.7) obtenemos resultados que
concuerdan excelentemente con los datos numéricos, curvas negras en la Fig. 3.3b.

A partir de la Ec. (3.7) se obtiene un primer indicio sobre el origen de la estabilidad
observada. Suponiendo una dinémica coherente difusiva, o3(t) = 2Dgt, inmediatamente

se obtiene que D = Dy, es decir, independiente de 7.

En la siguiente seccién se desarrolla el modelo de colapso cuantico de donde se deriva
(3.7). El mismo nos permitira un estudio analitico del coeficiente de difusion en los limites
de decoherencia débil y fuerte. Los resultados son comparados con la dindmica simulada
mediante el QD y con el coeficiente de difusion obtenido a partir de la expresion de
Green-Kubo.
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Figura 3.3: (a) Difusion de excitaciéon para el modelo HHAA con N = 10000 para diferentes
W. Las dinamicas coherentes se muestran con curvas sélidas, mientras que los simbolos mues-
tran curvas decoherentes con un valor fijo de v4 = 0.01J. Tanto los simbolos como las curvas
comparten el mismo color para indicar una W determinada. La flecha vertical muestra el tiempo
medio de dispersion eldstica Ty, Ec. (2.22). Las lineas discontinuas negras son las estimaciones
analiticas de 74 = 0, ver texto. La linea de puntos vertical muestra el tiempo de decoherencia
76 = h/ve. (b) Coeficiente de difusion escalado D /a* frente a la magnitud de decoherencia v4/.J
para diferentes W. Las curvas negras sélidas resultan de la Ec. (3.7). Los diferentes regimenes son
extendidos (circulos verdes), criticos (cuadrados rojos) y localizados (tridngulos azules). La linea
punteada negra horizontal es la estimacion teérica coherente Dy/a?; la linea discontinua negra
es la asintética D /a® ~ 2J%/hvy,, v la linea punteada vertical es la decoherencia caracteristica
Vo = 2h/Tw . Datos numeéricos obtenidos por el método QD (simbolos) para N = 1000. En todos
los paneles: ¢ = (v/5 —1)/2, J =1y h= 1. (c) Coeficiente de difusién D/a® frente a W/.J para
diferentes ~,. Las curvas coloreadas se calculan a partir de la ecuacion (3.2). Los simbolos se
obtienen de Quantum Drift. N = 1000.
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3.3. Un modelo de mediciones cuanticas.

Cuando un sistema cuantico es afectado por ruido, considerado a partir del modelo
de Haken-Strobl, puede pensarse que el mismo es sistematicamente medido por el en-
torno [90,180]. Estas mediciones ocurren en momentos aleatorios, donde los tiempos entre
mediciones se distribuyen como p(t) = e~ /74, con 74 = h/vs. En esta seccion, em-
pleamos esta interpretacion de la decoherencia para obtener expresiones analiticas para
el coeficiente de difusion.

Cuando se produce la medicién, el sistema tiene una distribuciéon de probabilidad de
estar en la posicion r, Py(r, t, ro, to), determinada por la dindmica Hamiltoniana coherente.
La posicién inicial, 7y en ty, solo definird el centro de la densidad de probabilidad, ya
que el sistema es isotropico. Esta suposicion es valida en los tres modelos discutidos
en este trabajo, a menos que la excitacion esté cerca de los bordes. En consecuencia,
Py (r,t,10,t0) = Py (r — 19,1 — to,0,0). Por simplicidad consideraremos rq = 0, ¢ty = 0.

La densidad de probabilidad de medir el sistema en el sitio r en el tiempo ¢ una vez
incluido el proceso de medicion (P(r,t,0,0)) esta determinada por la ecuacion integral:

ﬁ(r,t,O, 0) = Py(r,t,0,0) < / dt) /drl/ dt;p (t (ryt,ri, t;) Py (r4,1:,0,0),

Sin med1c10n MedlClOH en (t;,r;)

(3.8)
que consideraba la probabilidad de no ser medido y, recurrentemente, de ser medido varias
veces.

Para analizar directamente el segundo momento de la distribuciéon multiplicamos por
r? e integramos sobre r en ambos lados:

o2(t) = o2(1) (1—/ ) /dn/ dtp (t /drP(rtn, )12 Py (11, 5,0,0),

r: +:72(t t;)

o (t) = o2 (t) (1 — /Otp(ti)dti) + /Ot dtip (t;) o2 (t;) + /Ot dtip (t;)o® (t —t;),  (3.9)

donde hemos utilizado la independencia de las probabilidades del sitio y tiempo inicial.

Puede demostrarse mediante la transformada de Laplace en la ecuacion (3.9) (Apén-
dice C), que para p(t) y o2(t) “bien comportadas” (cumplido trivialmente en los sistemas
que consideramos), la dinamica de la varianza o(t) se vuelve difusiva a tiempos suficien-
temente largos. Por lo tanto, en el limite de tiempo largo (f — o0) tenemos:

o(t) ~ 2Dt,

o\ﬁ
IS
St
s
12
m
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y, reemplazando en Ec. (3.9) se obtiene Ec. (3.7):

fooo dtip (t;) of (;)
o ’

D=

Entonces, si 03(t) = 2Dgt Vt el proceso de medicion no afecta el coeficiente de difusion:

> (L) tdt;
:2D0f0 p(ti)tidti

2T

D Dy, (3.10)

Una dinédmica fisicamente mas realista puede ser modelada como inicialmente balistica
hasta algtn tiempo 7y, seguida de una dindmica difusiva:

242 : 2
2 ) vt st < Tw _ UyTw
o5(t) = { oDt sit >y O Dy = 5 (3.11)

de donde sigue,

p-L ( /0 " 2—D0t2p(t)dt + / ) 2D0tp(t)dt> : (3.12)

2T T™wW W

esta expresion permite observar que la dependencia de D con el ambiente dependeré de
en que régimen dinamico ocurren la mayoria de las mediciones. Si las mediciones suceden
siempre en el régimen difusivo, D es en consecuencia igual a su valor coherente. En caso
contrario, si las mediciones caen en el régimen balistico, D decrecera proporcionalmente
a (t%) 1)/ (t)p(r), usualmente o< 1/7,. /
—t/T

¢
£ , tenemos:

Utilizando un proceso de Poisson para las mediciones: p(t) =

D(14) = Dy (?ﬂ — (1 + @) e_TW/T¢> : (3.13)

T™w T™w

esta expresion captura la dependencia de D para valores grandes y pequenos de 74 frente
a 7y, de modo que D ~ Dy(1 — %(1—2’)2) y D =~ vi7, respectivamente. En una primera
aproximacion, se podria considerar un proceso ps(t) = (¢t — 274), que producirfa un
comportamiento totalmente independiente de la decoherencia para 7, < 7//2 entrando
luego en el régimen de Zenén cuéntico: D= vaTw = Do para 7, > Tw /2y D= V3274 =
D02T¢/7'W para 7y < Tw/2

3.3.1. Generalizacién para condiciones iniciales no locales.

Las ecuaciones (3.8) y (3.9) son aplicables cuando el estado inicial esté localizado en la
base de sitios, es decir, un estado similar a una funciéon delta. En esta seccion, exploraremos
el efecto de comenzar con un paquete de ondas coherente que no sea una delta. En este
caso, la evolucion de la probabilidad tras las mediciones no es necesariamente la misma
que inicialmente, dado que ahora no partimos de un estado local.

A continuacion, la siguiente notacion sera utilizada: P(r,t) seré la densidad de pro-
babilidad final, ﬁo(r,t,0,0) la densidad probabilidad en presencia del entorno cuando
la condicion inicial es una delta, Py(r,t,0,0) la evolucién coherente de un estado delta,
y Pcr(r,t) la evolucion coherente con una condicion inicial particular. La probabilidad
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P(r,t) sera consecuencia de una evolucién coherente del estado inicial Po(r,t) y de una
evolucion que tiene en cuenta el colapso del estado. Este ultimo término describe una
evolucién coherente hasta un tiempo dado t;, donde el ambiente colapsa la funciéon de
onda a un estado local, este estado evoluciona en presencia del ambiente (B (r,t,7;,1;)):

t t
P(r,t) = Pcr(r,t) (1 —/ p(ti>dti) + /dh’/ dtip (t;) Po (r,t,74,t:) Por (i, ) ,
0 0
donde Py (r,t,7;,t;) queda determinado a partir de

PO(Tvt’()?O) = PO(’I",t,0,0) (1 - / p(tl)dtl> +/dT1/ dtzp (tl) PO (T7t7riati) PO (Tivti70’0) y
0 0

siendo equivalente a la ecuacion (3.8) y resolviéndose de manera independiente de la
primera.
Suponiendo simetria de translacion en el tiempo y el espacio, podemos escribir:

52, (t) = 02, (1) (1 — /Otp(ti)dti) + /Ot dtip (t;) o&; () +/Ot dtip (t;) o (t — t;), (3.14)

donde G¢r es la dispersion en presencia de ruido de una excitacion particular (no local)
con una dispersion coherente o (t), o2(t) es la varianza de un estado inicial local (tipo
delta) dado por la ecuacion (3.9). Puede notarse que el efecto de la condicion inicial es
transitorio, siendo los valores a tiempos largos gobernados por la dindmica decoherente de
excitaciones locales. Esto es consistente con la perdida de memoria durante la evolucion
debido a la presencia del ambiente.

Estado inicial Gaussiano.

Ahora consideramos un paquete de ondas Gaussianas estacionarias como estado inicial:

V2 cos(kon)
VAL + et

donde o, es el ancho del paquete, y ky el médulo medio del momento. La propagacion
coherente de esta funcién de onda seré:

n2
2
20z

Ut =0) = exp|——], (3.15)

oa(t) = 2J°t* (1 — f(ko,0.)) + oa(t = 0). (3.16)

_ 1 k:202
0%x 2k, 1 . . .
con f(ko,0,) = e oF 750" kéc:;( 0+l Usando las ecuaciones descritas anteriormente, se de-
e 0T 1

riva:

. 4.J? _ _

G24(t) = - (Tt —1)+ e = f(ko,0.)(1 = (T + 1)e )] + 05 (t = 0)?, (3.17)
lo cual coincide con el resultado obtenido mediante el formalismo de Lindblad [181]. Si
bien el comportamiento a tiempos largos queda determinado totalmente por la dina-
mica de excitaciones locales, el anéalisis del transitorio generado por paquetes coherentes
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Figura 3.4: (a,b) Coeficiente de difusién versus decoherencia para el modelo HHAA. Los sim-
bolos se han obtenido de la evolucién temporal, las curvas punteadas de la Ec. (3.2) [Expresién
Green-Kubo|, curvas coloreadas con guiones y puntos (en tonos grises) de la ecuacién (3.18)
[Proceso Delta| y curvas negras sélidas de la ecuacién (3.7) [Proceso de Poisson|. También se
muestra: el coeficiente de difusién en el régimen de decoherencia fuerte (linea discontinua ne-
gra) y el coeficiente de difusién intrinseco en la MIT (Dgy) como una linea de puntos horizontal,
Ec. (2.23). La curva amarilla corresponde a la ec. (3.13). EI panel (b) es el mismo que (a) pero
en escala logaritmica lineal y excluyendo los datos del régimen extendido.

determinados es relevante en experimentos en materiales como en varias tecnologias cuan-
ticas [181].

3.4. La cadena HHAA con decoherencia II.

En esta seccion, se lleva a cabo un analisis numérico y analitico de la cadena de
HHAA con decoherencia, detallando el comportamiento del coeficiente de difusiéon en
cada régimen. Se comparan (y combinan) resultados de simulaciones QD, el método de
colapso cuantico y el método de Green-Kubo. Se examina céomo varia el coeficiente de
difusion D en los limites de decoherencia débil y fuerte, asi como su dependencia con el
vector de onda ¢ asociado al potencial de HHAA.

3.4.1. Los regimenes limite.

Combinando los resultados analiticos para la dinamica de oZ(t) en el modelo HHAA
(Seccion 2.3.2) con la Ec. (3.7), es posible obtener el comportamiento de D en el limite
de decoherencia fuerte y débil.

La ecuacién (3.7) puede interpretarse como el coeficiente de difusion generado por una
caminata aleatoria de pasos temporales dt camino libre medio [. El mismo se calcula a
partir del valor esperado de la dispersion coherente I = [ 05(t)p(t)dt. En esta seccion
consideramos una caminata aleatoria correspondiente a un proceso delta [182] donde el
sistema es medido por el entorno en tiempos iguales 6t = 2h/7, (proceso delta) y un

proceso de Poisson, p(t) = e/ /To. En el primer caso, el coeficiente de difusion esta
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Figura 3.5: Coeficiente de difusién versus decoherencia para el modelo HHAA. Los simbolos
se han obtenido de la evolucién temporal de QD, las curvas punteadas de la férmula de Green-
Kubo y las lineas discontinuas representan las estimaciones analiticas. (a) Fase extendida, los
resultados analiticos corresponden a la Ec. (3.20) (lineas discontinuas de color negro). (b) Fase
localizada, los resultados analiticos corresponden a la Ec. (3.23) (lineas discontinuas de color

negro). Los pardmetros son N = 1000, Q = (v5—1)/2, J =1y h=1.

directamente determinado por la dispersion coherente en el momento de la medicion:
2 ogt=2)
Yo
esta expresion, por inexacta que sea, puede considerarse una primera aproximaciéon al
coeficiente de difusion.

Las figuras 3.4 muestran el coeficiente de difusiéon obtenido de la evolucién temporal
(simbolos), utilizando la formula de Green-Kubo Ec. (3.2) (curvas punteadas), el proceso
delta Ec. (3.18) (curvas coloreadas con puntos y guiones) y de la integracién numeérica
de Ec. (3.7) con un proceso de Poisson (curvas negras solidas). La curva amarilla corres-
ponde a la Ec. (3.13) donde o3(t) es aproximado por una funcién a trazos. Observamos
que usando un proceso de Poisson (Ec. (3.7)) obtenemos resultados més suaves que con
un proceso Delta (Ec. (3.18)), ya que las fluctuaciones producidas por interferencias par-
ticulares se borronean debido a “mediciones” a distintos tiempos. Ambas curvas pueden
obtenerse con un costo computacional casi idéntico, lo que indica que el proceso delta es
util principalmente como una primera aproximaciéon o para obtener una intuicién sobre
el comportamiento esperado.

Decoherencia Fuerte.

Para una decoherencia lo suficientemente grande, 7, > h/my, el ruido interrumpe la
dindmica antes de que la excitacion note la naturaleza del sistema, por ejemplo, una fase
extendida, critica o localizada. Esto se conoce como el régimen de Zeno6n fuerte o Zenon
cuéntico directamente. En este caso, la medicion (o la mayoria de las mediciones) ocurre
durante la dinamica balistica inicial, donde la varianza crece como o3 (t) = 2a2‘£—jt2. Por
lo tanto, la dinamica corresponde a una caminata aleatoria con un camino libre medio
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2 = 2a2‘£—§(5t2 y un tiempo libre medio dt = %. Sigue que el coeficiente de difusion es:

1 2a2J* 7, B 2a2.J?
2(v6/2)?2h  hyy

(3.19)

El mismo resultado se obtiene con el proceso de Poisson p(t) = e~*/" /7,. Este resultado
es valido para todo valor de 7, en una cadena ordenada infinita (W = 0) [183], ya que
en ese caso Ty — 00. Observe que la Ec. (3.19) también es vélida en presencia de ruido
correlacionado (por ejemplo, procesos binarios y gaussianos), donde se ha demostrado
que solo implica una renormalizacion de la intensidad de la decoherencia para tiempos de
correlacion cortos [90, 184].

Fase extendida (W < 2J).

Para una magnitud de decoherencia suficientemente pequena (mientras més cerca
estemos de la MIT, més pequena), el sistema evoluciona coherentemente hasta alcanzar
el régimen balistico de tiempos largos discutido en el capitulo anterior. En este caso,

2 2
2 _ a?|2J-W|? 2
Og (t) on2 13

de donde tenemos:

a?|2J — W2
D=———. 3.20
2h’7¢ ( )

Como fue percatado en el parrafo anterior, es necesario notar que a medida que nos
acercamos al MIT, nuestra estimacion es valida para un valor de decoherencia cada vez
menor, ya que el sistema ingresa al régimen balistico a tiempos mas largos. Usando el
proceso de Poisson p(t) y la Ec. (3.7) obtenemos los mismos resultados. En la Fig. 3.5a
comparamos el coeficiente de difusion obtenido de las simulaciones numéricas (simbolos)
con la aproximacion analitica Ec. (3.20).

MIT (W = 2.J).

En el punto critico, para t > 7y la dinamica es difusiva y la varianza depende lineal-
mente del tiempo de medicion 02(6t) = 2Dydt. Dado que tenemos [? = 2D,dt, siempre
que v, < 2h/Tw, y D = [?/(26t) obtenemos:

2Dyst
25t

(3.21)

es decir, un coeficiente de difusion independiente de la decoherencia.

Este resultado se demostré con anterioridad en la Secciéon 3.3, siendo vélido para
una dinamica difusiva a todo tiempo. Por otro lado, cuando consideramos una dinamica
balistica para tiempos cortos y un proceso de mediciéon de Poisson aparecen algunas
correcciones.

Fase localizada (W > 2J).

Al igual que en la fase deslocalizada, para una decoherencia suficientemente pequena
(dependiendo de qué tan cerca estemos del MIT), el sistema se localiza con una longitud
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de localizacion & =1/ V/2 antes de que el ambiente produzca un efecto notable. Entonces,
considerando o2 = [? en la ecuacién (3.7):

l2
o2(t) = ot 127—7;% - 2527—515. (3.22)

Este limite también se encuentra en la Ref. [167| partiendo de la ecuacion 3.2. Dado que
en el modelo HHAA 2£2 = 24*(21n(W/2J)) 2, el coeficiente de difusion es:

e a*7g
D=3 = Gwvenym (3:23)

El resultado analitico se muestra en la Fig. 3.5b en comparaciéon con los resultados numé-
ricos. Observamos una pequena discrepancia con la formula anterior, basada en el hecho
de que el [ encontrado numéricamente es ligeramente mas pequeno que el teérico. Obser-
ve que, a diferencia de los otros regimenes, el proceso delta y el de Poisson no producen
la misma expresion (el uso de un proceso delta subestimaria el coeficiente de difusion en
un factor de dos).

3.4.2. Variando la inconmensurabilidad del potencial.

El tiempo medio de dispersion elastica 7y y, consecuentemente, el coeficiente de di-
fusion derivado para el punto critico en ausencia de decoherencia en el Capitulo 2 (Ec.
(2.23)) muestra una dependencia de g. Esto vuelve al vector de onda del potencial ¢ un
parametro ideal para testear la validez de nuestra prediccion analitica y la generalidad del
régimen independiente de decoherencia. En esta seccion analizamos la dindmica, coherente
y en presencia del ambiente, con otros valores irracionales de ¢ en el punto critico.

Particularmente estudiamos la dinamica del sistema usando fracciones de la proporcion
durea como numeros irracionales ¢ = g,/m, donde m es una potencia entera de dos. Las
fracciones continuas de los irracionales utilizados se presentan en la Tabla I. Las pruebas
con numeros irracionales de la forma [0, {m}] arrojan resultados similares.

El desparramo en funcién del tiempo del paquete de ondas en ausencia y presencia de
decoherencia, junto con la estimacion analitica para el coeficiente (Ec. (2.23)) de difusion,
se muestra en la Fig. 3.6a,b. Como se puede ver, el crecimiento balistico inicial (Ec. (2.18))
dura hasta un tiempo 1y (Ec. (2.22)), indicado como lineas verticales. A partir de 1y
la dindmica es difusiva con un coeficiente de difusion dado por la Ec. (2.23). Notamos,
ver panel (a), la presencia de oscilaciones en el segundo momento cuya amplitud aumenta
a medida que ¢ disminuye. Estas oscilaciones se borran parcialmente en presencia de
decoherencia a tiempos prolongados, como se muestra en la Fig. 3.6b para 4 = 0.02.

La Figura 3.6c muestra los valores ajustados de D (simbolos) junto con los valores
obtenidos de la ecuacion (3.2) (curvas discontinuas) como funciéon de v, para diferentes ¢
en la MIT. Como lineas discontinuas verticales trazamos g = %, que coinciden con el
inicio del régimen de decoherencia fuerte, donde el coeficiente de difusién disminuye con la
decoherencia. Observe que para valores grandes de m, el coeficiente de difusion D exhibe
oscilaciones significativas con respecto a v4. Este fenémeno surge de las oscilaciones obser-
vadas en la dinamica coherente (Ec. (3.7)), probablemente debido a la irracionalidad mas
débil de ¢ en comparaciéon con g, lo que conduciria a periodos de crecimiento “balistico” y
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Figura 3.6: Paneles superiores: Evolucién temporal de la propagaciéon de una excitacién en
una cadena HHAA con q = q4/m en criticidad. Las lineas discontinuas verticales muestran
w (Ec. (2.22)), las Iineas discontinuas transversales corresponden a o2(t) = 2Dyt (Ec. (2.23)),
mientras que la linea de puntos muestra la evolucion balistica inicial (Ec. (2.18)). (a) v4 = 0,
(b) 74 = 0.02. Paneles inferiores: (c): Coeficiente de difusion en funcién de la decoherencia 7.
D se calcula a partir de la dindmica QD (simbolos) y de la ecuacién. (3.2) (lineas discontinuas).
Las lineas de puntos horizontales muestran Dy (Ec. (2.23)) y las lineas de puntos verticales
'yqi = % (d): EI coeficiente de difusion y la magnitud de desfase se vuelven a escalar en Dy y
7 respectivamente. En los cuatro paneles, los colores (tonos de grises) indican diferentes valores
de m. Los parametros son N = 10000, W = 2J.
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Tabla 3.1: Fraccién continua de los irracionales utilizados ¢ = q4/m. Los niimeros entre llaves
se repiten infinitamente en la fraccién.

Fraccién continua

1
R ——
1+
14+ -
1
%\/52_1 =10,3,{4}] = 1
A
%\/5271 - [0767 {278}] - 1 1
24+ 1
84 50—
VBl [0,12,{1,16}] = -
12 + 1
1+ i
16 +
14+

periodos de estancamiento. Una investigacion mas detallada es necesaria para comprender
en detalle el origen de estas interesantes oscilaciones. En la Fig. 3.6d se muestra el coefi-
ciente de difusion reescalado por el valor tedrico en ausencia de decoherencia (Ec. (2.23))
¥ 7 reescalado por la tasa de dispersion elastica g = % La superposiciéon observada
Fig. 3.6d confirma la validez de nuestras expresiones analiticas de D y 7y en funciéon de

q.

3.5. Criticidad o difusion?

En este punto, parece estar claro que es la dindmica coherente del sistema lo que induce
la estabilidad (o no) del coeficiente de difusién. Sin embargo, debido a que el modelo de
HHAA es difusivo solo en el punto critico, la separacion de ambos casos resulta imposible.
Es necesario, por consiguiente, encontrar modelos donde exista una dinamica difusiva
independientemente de la presencia o no de un punto critico.

Por este motivo en las siguientes secciones se estudiaran otros dos modelos: A) la cade-
na de Fibonacci [141,171,185] donde no hay MIT, pero el transporte cambia suavemente
de superdifusivo a subdifusivo a medida que varia la amplitud del potencial en el sitio;
B) El modelo PBRM [161] que presenta una MIT y un segundo momento difusivo en un
rango finito de pardmetros alrededor del MIT.
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Figura 3.7: (a) Evolucién temporal de la varianza de la excitacién en ausencia de decoherencia
para W/J = {1,3.15,5} en la cadena de Fibonacci. Las lineas de puntos negros muestran la
dispersion balistica inicial (Ec. (2.18)), las flechas verticales Ty (Ec. (2.21)), y las lineas a trazos
negras muestran el comportamiento de la ley de potencia después de 1y . (b) Coeficiente de
difusion en funcién de la magnitud de la decoherencia. Los simbolos se ajustan directamente de
la dindmica QD, las curvas negras muestran la Ec. (3.7) integrada numéricamente usando un
proceso de Poisson, y las curvas en amarillo la expresién analitica (3.26). Las flechas verticales
corresponden a 2h/Ty, donde comienza el régimen de decoherencia fuerte indicado por una linea
de puntos negros. Las lineas discontinuas de color negro indican el comportamiento tipo ley de
potencias a valores pequenos de v,. Las simulaciones se realizaron en una cadena de longitud
N =10%

3.5.1. La cadena de Fibonacci.

El modelo de Fibonacci es un primo hermano del modelo HHAA, también es un modelo
del tipo tight-binding a primeros vecinos, descrito por el Hamiltoniano:

H=> J(n) (n+1]+ n+1)(n|) +e,n) (n], (3.24)

con la diferencia que las energfas de sitio vienen dadas por e, = W([(n + 1)¢2] — [nq}]),
siendo |z | la parte enterade z y ¢, = ‘/52’1 la razon durea. En este potencial, €,, correspon-
de al enésimo elemento de la “Palabra de Fibonacci”, que puede ser obtenida concatenando

repetidamente las dos palabras anteriores de la secuencia: 0, 0WW, 0W0, 0W00W, 0OWO00WO0WO, ....

La dinamica en la cadena de Fibonacci ha sido estudiada en tanto coherentemente
como en presencia de decoherencia [186-188]. En ausencia de decoherencia se sabe que
el segundo momento crece, después de la dispersion cuadratica inicial, como una ley de
potencias o3 (t) oc t* con un exponente que depende de la amplitud del potencial en el
sitio. Crece subdifusivamente (o < 1) para W > 3.15J, difusivamente (a = 1) para
W = 3.15J y superdifusivamente (o > 1) para W < 3.15J, como puede ser observado
en la Fig. 3.7a. Las flechas verticales en la Fig. 3.7a, representan 1y, calculadas a partir
de las ecuaciones Ec. (2.20) y (2.21) dando 1/my = ¢,W/h. Después de este tiempo, la
dindmica balistica se transforma en una dinamica algebraica.

Este crecimiento del desparramo se puede escribir analiticamente, en forma aproxima-
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da y simplificada, de la siguiente manera:

242 : 2, 2—«
2 ) vt st < Tw Ty
o5(t) = { QA sit >y OO A= — (3.25)

En particular, para W = 3.15J, cuando la dindmica posterior es difusiva, obtenemos

Dy = Uggw. Esta predicciéon se muestra como una linea discontinua negra encima de la
curva roja.

Una vez que se introduce decoherencia, la dindmica se vuelve difusiva para todos los
valores de W. El coeficiente de difusion en funcion de la intensidad de la decoheren-
cia se calcul6 numéricamente mediante una dinamica utilizando el Quantum-Drift para
diferentes valores de W. Estos resultados se muestran como simbolos en la Fig. 3.7b.

A partir de la dinamica aproximada por la Ec. (3.25) y utilizando la Ec. (3.7) con un
proceso de Poisson obtenemos una expresion analitica para el coeficiente de difusion en

presencia de decoherencia:

—a _TwW
U% (TSVEQ (%) +O£T¢T‘%VF(O£) <T$T‘;/a— (:_—‘Z) ) +2T:;’—T¢6 T (2T£+2T¢Tw+’7"%v)>

_Tw
donde I'(@v) es la funcion Gamma de Euler, y E_, (M) =[Te ™ "tadt.
76

En la Fig. 3.7b se compara el coeficiente de difusion obtenido de la dindmica (sim-
bolos) con la integracion numérica de la Ec. (3.7) usando un proceso de Poisson (curvas
negras) y la expresion analitica (Ec. (3.7), curvas amarillas). De la superposicion de las
curvas con los simbolos concluimos que el coeficiente de difusion depende tinicamente de
la dindmica coherente y de la intensidad (y forma) del ruido. Note que la integracion
numérica (curva negra) tiene una discrepancia con el coeficiente de difusién para valores
de W < 3.15J cuando 74 =~ J. Esto se debe a que no existe un promedio sobre “fase”
y, como el comportamiento de excitaciones en posiciones distintas a un tiempo del orden
de uno sobre la amplitud del acoplamiento depende de las energias particulares de sus
vecinos, se observa esta interferencia particular.

De las ecuaciones (3.26) y (3.7), es claro que la dependencia de o2(t) determina el
comportamiento de D(7y). Particularmente, si o (t) o< t* entonces D(7,) o Wél_a) para
Yo < 2h/Ty . Este comportamiento es muestra en la Fig. 3.7b con lineas discontinuas
negras superpuestas a los datos numéricos. Estos resultados son consistentes con hallazgos
recientes reportados en Ref. [187].

3.5.2. Power-law banded random matrix (PBRM).

El modelo PBRM power-law banded random matriz describe cadenas tight-binding
unidimensionales (1D) de longitud N con acoples (hoppings) de largo alcance y energias
de sitio aleatorias. Este modelo esta representado por matrices simétricas y reales de
tamano N x N, cuyos elementos son variables aleatorias estadisticamente independientes
caracterizadas por una distribucién normal con media cero y varianza dada por,

1 1 ) .
([Hal®) = Ty (Hi)?) = J2§1 T (FRYAET con i # J. (3.27)

52



CAPITULO 3. DINAMICA CUANTICA EN UN AMBIENTE DECOHERENTE.

El modelo PBRM, Ec. (3.27), depende de dos parametros de control: 1y b representan-
do el rango y longitud caracteristica de los hoppings respectivamente, mientras que J es
una escala de energia que puede considerarse 1 para todo fin practico. Para u > 1 (u < 1)
el modelo esta en una fase aislante (metalica), es decir, sus autoestados son localizados
(deslocalizados). La transicion entre la fase localizada y extendida (MIT), ocurre inde-
pendiente del valor de b para p = 1 (punto critico), donde es sabido que las autofunciones
son fractales.

Las propiedades estadisticas de las autofunciones y autovalores de este modelo han
sido ampliamente estudiadas [161,189-192]. Aqui estudiamos la dindmica de propagacion
de una excitacion inicialmente localizada en el medio de la cadena en ausencia y presencia
de un entorno decoherente.

Como en los sistemas anteriores, la propagacion inicial de la excitacion local es balisti-
ca, donde el segundo momento viene dado por o3 = vjt*. Generalizando la ecuaciéon (2.18)
para tener en cuenta la aleatoriedad del Hamiltoniano, encontramos que la velocidad v

es:
N/2 N/2

J2
2 _ 2\, 2 _ 2
vy = 2;<Hn,o>n = ; T (n/b)Qﬂn : (3.28)
donde hemos sumado los sitios a la derecha e izquierda (factor 2) del sitio inicial (denotado
como 0). Esta velocidad inicial (Ec. (3.28)) diverge para p < 3/2 al incrementar N como
N372 Para N grandes, b < 1y p < 3/2, la suma se puede aproximar mediante una

integral, lo que lleva a v3 ~ JZbZN%.

Este desparramo inicial balistico dura hasta t = 1y, el cual debe ser calculado numé-
ricamente, ya que la ecuacion (2.20) solo es valida para cadenas con hopping a primeros
vecinos y un analisis similar con este modelo no produce una expresion simple. Sin em-
bargo, en una primera aproximacion, si usamos la ecuacion (2.20), con energias de sitio
no correlacionadas y distribuidas Gaussianas con (|H;|?) = J?, obtenemos 7y ~ 1.

Para t > 1y, encontramos numéricamente que si 0.5 < pu < 1.5 el segundo momento
de la excitacion crece difusivamente (ver Fig. 3.8a para p = 1). Notar que el pardmetro b
modifica la velocidad inicial y el coeficiente de difusién. En consecuencia, elegir un pequeno
b (b = 0.01, por ejemplo) permite reducir tanto la magnitud de la dispersion inicial como
el coeficiente de difusion, generando una dindmica mas lenta y teniendo una ventana
méas grande para la dinamica difusiva antes de que el sistema alcance la saturacion (a N
finito). En el régimen difusivo, encontramos o2 ~ vZ(v/2mw)t. El factor v/2 se introduce
en funcion de los resultados numéricos para corregir la discrepancia en 7y debido a los
hoppings de largo alcance.

Es importante senalar que, aunque el sistema esta localizado para 1.0 < pu < 1.5, sus
autofunciones tienen colas que decrecen como una ley de potencias con exponente 24, por
lo tanto, su segundo momento diverge N — oco. La presencia de estas colas gruesas permite
un crecimiento ilimitado en el tiempo del segundo momento en el limite de N — oo. Para
pt < 1.5 el valor de saturacion del segundo momento o2 gy es 03 g, = 2 f(b, ), donde
f(b,n) < 1. Por consiguiente, para p < 1.5 y asumiendo un crecimiento del segundo
momento de la forma o2(t > 7y) = V37, + V2021 (t — Tw), podemos calcular el tiempo
necesario para alcanzar el valor de saturaciéon ¢, imponiendo 0(2]7 g = 02(ts) de donde se
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Figura 3.8: (a) Evolucién temporal del ancho de una excitacioén inicialmente localizada en au-
sencia de decoherencia en el modelo PBRM para =1, b = 0.01 y N = {100, 1000, 5000, 10000}.
Las lineas verticales denotan Ty (negro) y ts (color), mientras que la linea discontinua transver-
sal representa la dispersién difusiva tedrica o3(t) /v ~ \/(2)t. (b) De arriba a abajo, las figuras
muestran el coeficiente de difusién obtenido mediante la Ec. (3.2) para y = {0.80,1.00,1.30}. La
linea vertical discontinua de color negro marca la decoherencia caracteristica donde la dindmica
comienza a estar dominada por el ruido y la dindmica balistica inicial (fuerte régimen de Zenén).
Las lineas verticales discontinuas de colores muestran los valores de vy = 2h/ts por debajo de los
cuales el efecto de tamano finito comienza a ser relevante; la dependencia con N de los valores
se indica en cada gréfico.

obtiene:

o Ug,sv g (vV2-1)
’ \/511871/(/ v \/§
Nuestra estimacion de ts concuerda con el hallazgo numérico (ver Fig. 3.8a para u = 1).
La ecuacion (3.29) implica que a medida que N aumenta, para g < 1/2 el valor de
saturacion se alcanzara en tiempos méas cortos y eventualmente la dindmica sera siempre
balistica (ts se vuelve mas pequena que 7). En el caso contrario, para 1/2 < p < 3/2, t,
aumenta con N y tenemos un crecimiento difusivo hasta la saturacion.

t oc N2t (3.29)

Como en los modelos anteriores, la presencia de difusién cuéntica coherente (para
1/2 < u < 3/2), genera un régimen difusivo casi independiente de la decoherencia. La
Fig. 3.8b muestra el coeficiente de difusién como funcién de 7, para p = {0.80,1.00,1.30}
y diferentes valores de N obtenido mediante la Ec. (3.2) junto con los valores de 2h/t;
y 2h/7w, (lineas verticales). Se puede observar que para 2h/ts < vy S 2h/Tw, D es casi
constante, ya que la mayoria de las “mediciones” generadas por el ambiente caen en el
régimen difusivo (después de 7y y antes del tiempo de saturacion ¢,). Cuando 7, < 2h/t;
el ruido entra en la dinamica después de la saturacion, generando efectos de tamano finito.
De la ecuacion (3.29) podemos ver que para 1/2 < p < 3/2, t; aumenta con N, y los
efectos de tamanos finitos comienzan en valores mas pequenos de la decoherencia, ver
Fig. 3.8b. Para v, > 2h/7mw, la decoherencia afecta la dindmica principalmente durante
la dispersion balistica inicial, lo que lleva a una disminucién del coeficiente de difusion
proporcional a vg.

Para p1 < 1/2,1a velocidad de la propagacion inicial balistica, ecuacion (3.28), aumenta
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con N més rapido que el valor de saturacion correspondiente. Por lo tanto, ¢, disminuye
con N, volviéndose més pequeno que 7y y no dejando lugar a una dindmica difusiva.
Es decir, no se puede encontrar ninguna regiéon independiente de la decoherencia para el
coeficiente de difusion.

Para p > 3/2, t; converge a un valor constante a medida que N aumenta. Por lo tanto,
para 74 < 2h/ts el coeficiente de difusién dependera linealmente de 74 y no podemos
tener un régimen independiente de desfase. Esta situacion es similar al caso localizado de
Harper-Hofstadter-Aubry-André.

Al igual que en las cadenas de HHAA y Fibonacci, a pesar de las amplias diferencias
entre los modelos, el mismo comportamiento es observado cuando se introduce decoheren-
cia: El coeficiente de difusion esta practicamente determinado por la dinadmica coherente,
y si la misma es difusiva (aunque sea en una ventana temporal), D heredara de este la
estabilidad frente a la decoherencia para un rango de valores de v,.

La evolucién cuantica de una excitacion local comienza con una expansion cuadratica
del segundo momento de la funciéon de onda. Esto implica que el coeficiente de difusion
en presencia de decoherencia, en el limite de decoherencia fuerte, decrecera como 1/7,.
Por otro lado, si el comportamiento a tiempos largos es difusivo, la influencia de 4 de
D sera insignificante si la amplitud de decoherencia pequena. La relaciéon observada entre
D y vy, T, sugiere que para muchos sistemas la transiciéon entre estas dos dinédmicas
sera relativamente réapida, sin un régimen intermedio evidente. Esto nos lleva a plantear
la hipotesis de que, después de reescalar las magnitudes caracteristicas del problema, la
relacion entre D y 7, exhibird un comportamiento universal cuando el sistema presente
difusion coherente. Esta suposicion serda examinada en la secciéon 3.6.

3.5.3. Discusiéon: Caos, fractalidad y difusion.

Hasta este punto, queda claro que la difusién coherente contribuye a la estabilidad del
coeficiente de difusion al incorporar la decoherencia. Este fenémeno se observa de manera
consistente, independientemente de que el sistema esté en el estado critico, es decir, pronto
a tener una transicion de fase. Ahora surge la pregunta sobre el origen de esta difusion
coherente. En esta seccion, se especula sobre la posible relacion entre la difusion y el caos,
y de estos con la fractalidad del espectro y de las autofunciones.

Una caracteristica compartida por los tres modelos es la presencia de fractalidad tanto
en el espectro como en las autofunciones. Para el modelo HHAA la fractalidad emerge
solo en el punto critico, en la cadena de Fibonacci, sin embargo, esta presente para cual-
quier amplitud del potencial de sitio. En el modelo PBRM las autofunciones son fractales
hasta una longitud caracteristica que diverge (asimétricamente) en el punto critico. Este
sistema se puede considerar como multifractal débil o fuerte dependiendo de la longitud
caracteristica, especificamente, si b < 1 6 b > 1. Como hemos descrito en la seccion
anterior, solamente podemos observar un comportamiento difusivo para b < 1, es decir,
en la region fuertemente multifractal.

La relaciéon entre la fractalidad del espectro, la presencia de caos cuantico, y la forma
de dinamica, si bien es discutida (aunque con bastante precaucion) en la literatura, esta
lejos de ser un topico cerrado. Heuristicamente, uno puede imaginar que una evolucion
desde un estado local va resolviendo el espectro hasta una escala dc ~ h/t. Por otro lado,
el nimero de modos que contribuyen efectivamente a la dindmica podria identificarse con
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el nimero de sitios, que crece como t*/2 (raiz de la varianza). En consecuencia, tenemos
una resolucion de ~ h/t a partir de de~*/2 sitios, lo que sugiere un espectro fractal de una
dimension menor a «/2 [146]. La relacion entre autoestados fractales y el caos cuantico
no es clara, en algunos sistemas de muchos cuerpos se ha observado un comportamiento
multifractal en regiones de parametros proximas a las asociadas al caos [193].

Por otro lado, conexién entre un comportamiento difusivo y el caos fue propuesta por
Robert Laughlin. Las mismas colisiones que producen el camino libre medio, facilitando
los procesos de relajacion y determinan la resistividad de los metales y la ley de Ohm [26],
son las que originan el exponente de Lyapunov. En este caso, es el caos cuantico quien
proporciona un mecanismo posible para el movimiento aleatorio de los electrones. Es decir,
la conductividad es una medida de la aleatoriedad del potencial, en este caso se vuelve
una medida de la inestabilidad “cadtica” del movimiento de los electrones. Los detalles
de esta vision son corregidos por la teoria de localizacion débil de Abrahams et al. [36]
que establecen los sutiles limites de esta vision. Es decir, la dinamica difusiva cuantica
conserva la fase cuantica, lo que puede ser evidenciado en el efecto Aharonov-Bohm y la
retrodispersion anoémala [194, 195].

Durante el desarrollo de este trabajo, buscando modelos donde sea posible observar una
dinamica difusiva, examinamos algunos modelos cuasi-1D. Variando en nivel de desorden
en cada sitio, la longitud en cada dimensiéon (ntimero de sitios N y canales M), y el rango
de las interacciones en la dimensién ortogonal a la principal, notamos que es posible
generar una dindmica difusiva en una ventana temporal. Esto es una consecuencia directa
de la separacion entre la longitud de localizacion y el camino libre medio. Un anélisis
de las caracteristicas espectrales de estos modelos podrian revelar alguna caracteristica
pseudo-fractal, anadiendo soporte a la discusion previa.

3.6. Estabilidad universal contra la decoherencia.

Como analizamos a continuacion de la Ec. (3.7), si la dindmica coherente es difusiva
en todo momento, entonces D = D, para todas las intensidades de decoherencia. Por
otro lado, en el caso mas realista, donde una dindmica balistica inicial, o3 (¢) = v3t? para
t < T, es seguida por una dispersion difusiva oZ(t) = 2Dyt, encontramos (Seccion 3.3)
que la Ec. (3.7) desprende:

D(z)/Dy = [2/z — (1+2/z)e "], (3.30)

donde = = Ty /74, que captura la dependencia de D con valores grandes y pequenos de
1

Tw /Ty. Para Ty /7, < 1, el coeficiente de difusion D ~ Dy(1— 5(%)2), mientras que para
Tw /Ty > 1, ingresamos al régimen cuéantico fuerte de Zenén y D/Dy ~ 274/ Ty

Como se puede ver, depende solo de un tnico parametro, la relacion entre el tiempo
medio de dispersion elédstica y el tiempo de decoherencia. Asi, describe universalmente
cualquier modelo cuantico 1D caracterizado por una dindmica difusiva coherente, inde-
pendientemente de los detalles de su dindmica microscopica. Nuestros resultados analiticos
han sido confirmados numéricamente en la Figura 3.9, donde se muestra el coeficiente de
difusion normalizado D/Dy para los modelos HHAA, Fibonacci y PBRM, enfocédndose

solo en el régimen de dindmica coherente de tipo difusivo, donde Dy es bien definido. El
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Figura 3.9: Coeficiente de difusién normalizado D/Dy frente a intensidad de decoherencia
renormalizada Ty /T4 (Do = D(v4 = 0)). Simbolos obtenidos de la dindmica QD: i) la cadena
HHAA en el punto critico (cuadrados rojos), ii) la cadena de Fibonacci (triangulos rojo oscuro)
y iii) el modelo PBRM en el modo extendido fase (rombos huecos verdes), en el punto critico
(cuadrados huecos rojos) y en la fase localizada (circulos huecos azules). La curva sélida es la
ecuacién universal (3.30) mientras que la linea negra discontinua es el Iimite de Ty /T4 > 2.
La linea de puntos horizontal es D = Dy. Para las cadenas HHAA y Fibonacci, Twy y Do se
calcularon analiticamente, Ec. (2.21). Para el modelo PBRM b = 0.01 y Dy resultan de un
ajustado.

comportamiento universal predicho por la Ec. (3.30) concuerda excelentemente con los
resultados numéricos de todos los modelos.

El hecho de que una dindmica cuantica difusiva coherente sea extremadamente robusta
al ruido ambiental contrasta notablemente con lo que uno esperaria considerando la dis-
persion (con una escala de tiempo 7)) y el ruido ambiental (con una escala de tiempo 7,)
como dos procesos de Poisson independientes. En este caso, los dos procesos pueden con-
siderarse como un tnico proceso de Poisson con una escala de tiempo 1/7 = 1/ + 1/74.
Asi, para valores pequenos de Ty /7, < 1, tenemos D ~ Dy(1 — 7y /7,), en contraste con
la correccion cuadratica presente en la Ec. (3.30). Nuestros hallazgos también contrastan
con los resultados estandar en sistemas clasicos, donde el coeficiente de difusion para la
dindmica en presencia de ruido externo es la suma de los coeficientes de difusion dados
por los dos procesos [196].

3.7. Loschmidt echo (pureza).

La robustez de la dindmica difusiva ante decoherencia lleva a preguntarse como podria
diferenciarse una difusiéon coherente de una inducida por algiin proceso, quizés oculto, de-
coherente. La respuesta aparece naturalmente al estudiar como la decoherencia afecta la
reversibilidad. Una dindmica difusiva coherente puede revertirse cambiando el signo del
Hamiltoniano. Sin embargo, la presencia de un ambiente destruye (valga la redundancia)
la coherencia que permite una reversibilidad perfecta. Esto se puede estudiar experimen-
talmente mediante el decaimiento de la pureza o eco de Loschmidt [67,71]. La pureza,
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Figura 3.10: (a) Probabilidad de encontrar la excitacién en el sitio inicial Py(t) para una
cadena HHAA para un sistema que evoluciona con L hasta Tr = 25 (primera linea discontinua
vertical) cuando el signo del Hamiltoniano se invierte (es decir, contintia evolucionando con L)
El eco de Loschmidt ocurre en Pyo(t = 27r) = M (t = TRr) (segunda linea discontinua vertical) y
su magnitud corresponde a la pureza. Los diferentes colores distinguen la tasa de la decoherencia.
Para los valores de decoherencia mayores, el eco no es evidente y Pyo(t) se acerca a una dinamica
difusiva (curva negra). (b) Decaimiento del eco de Loschmidt M (t) para diferentes 4 en el
punto critico calculado con el QD. La linea discontinua es una prediccién basada en el coeficiente

de difusién coherente resultante de la dindmica Hamiltoniana. Las lineas de puntos verticales
muestran t = %. Todos los datos con q = (vV5—1)/2, J =1, h=1, W =2J y N = 1000.

M(t) = Tr{p(t)?}, se ha utilizado ampliamente para medir como afecta la decoherencia a
un sistema, ya que M (t) = 1 para un estado puro, mientras que M (¢) < 1 para un estado
mixto. El eco de Loschmidt (LE), en presencia de un ambiente, resulta de revertir la parte
Hamiltoniana de una dindamica en un tiempo ¢z mediante el cambio en el signo general
del Hamiltoniano mientras el ruido ambiental se mantiene activo. La probabilidad de re-
torno al estado inicial Pyo(t) tiende a mostrar un resurgimiento en 2tg. Si bien el eco de
Loschmidt abarca un gran ntimero efectos, siempre involucrando una reversion temporal,
para este sistema resulta ser equivalente a la pureza.

Matematicamente, esto puede ser mostrado a partir del superoperador L,
. Ul s A .
Ll = — (Hp = ] + £410] = Lo+ L4, (3.31)

donde H es el Hamiltoniano y L4 el operador de decoherencia de HS. Podemos ver que
Lh = /:Z] + Ll = —Lo+ Ly, y dado que la matriz de densidad es un operador Hermitico,

tenemos, p(t) = pi(t) = epy = poe’'t. Usando estas propiedades reescribimos la
definicion de pureza de la siguiente forma,

M(t) = Te{p(t)p(t)} = Te{e" poe" po} (3.32)
= Tr{poe’ e po} = Tr{poprr(2t)}, (3.33)

donde queda claro que la pureza es una comparacion entre la matriz de densidad inicial y
la matriz de densidad ppg(2t) que es el resultado de dos evoluciones. En detalle, hay una
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evolucién inicial hacia adelante p(t) = e(“o+44) 5 v una segunda evolucién con el signo
del Hamiltoniano invertido (evolucién hacia atras) prp(2t) = e(=£0+£6)t5(¢), es decir, la
pureza corresponde al eco observado en py después de revertir el tiempo. Si el estado
inicial es un estado puro py = |0) (0], podemos obtener directamente la pureza numérica-
mente mediante una simulacion estocéstica de la evolucion hacia adelante y hacia atras,
observando la probabilidad de regresar al estado inicial (en nuestro caso, el sitio inicial),
lo que permite un céalculo eficiente utilizando el método Quantum-Drift.

3.7.1. Ecos en la cadena de HHAA.

La Figura 3.10a muestra la probabilidad de encontrar la excitaciéon en el sitio inicial
Poo(t) en funcion del tiempo total de la evolucion para diferentes valores de v,, la excita-
cion evoluciona con £, ver Ec. (3.1), hasta 7z (primera linea discontinua vertical) cuando
se invierte el signo del Hamiltoniano (es decir, para t > tg contintia evolucionando con
L7). El eco de Loschmidt ocurre en Py(t = 27z) = M (t = 7r) (segunda linea discontinua
vertical). Sin embargo, en caso de una decoherencia cuyo tiempo caracteristico es mucho
menor que tg, el eco se pasa por alto entre las fluctuaciones estadisticas. En este caso,
el valor en t = 27z estd determinado principalmente por una “dindmica hacia delante”
Poo(t) ~ 1/v/4nDt. Esto significa que la memoria del estado inicial se ha perdido casi
por completo. Asi, la matriz de densidad tiende a la superposicion incoherente de todos
los estados posibles. En este sentido, para t > 4h/7, la difusion observada en el MIT
se diferencia de la difusion cuéntica coherente en el hecho de que la dindmica ya no es
reversible.

Fig. 3.10b muestra LE/Pureza M(t) en funciéon del tiempo. Para t 2 4h/v, la caida
exponencial inicial LE/Pureza, caracterizada por la tasa de decoherencia 2+,, se convierte
en una ley de potencia determinada solo por el coeficiente de difusion: M (t) ~ 1/v/8wDt.
Este régimen es consecuencia de la imposibilidad de revertir la propagacion de la excitacion
mas alld de una escala de tiempo 2%/7,. Por lo tanto, la caida de LE solo detecta la
dinamica de expansion, que para W = 2J, es difusiva y por ende robusta contra la
decoherencia. Para magnitudes de decoherecia mucho mas fuertes (7, > 7;) D esta en el
régimen de Zenoén cuéantico, generando un decaimiento lento en la pureza segtin D o< 1 /7.

Un comportamiento similar se encuentra para los regimenes extendido y localizado
(Figuras 3.11), donde pasado el decaimiento exponencial inicial, el LE decae con una ley
de potencias dependiente solo de D(v4, W). De los resultados de las secciones anteriores
(para 74 < 75) inferimos que la tasa de decaimiento de la pureza en este régimen de ley
de potencia disminuye con 74 en el régimen extendido, aumenta en el régimen localizado,
y permanece constante en el punto critico. Esto puede interpretarse considerando que los
estados localizados estan méas protegidos de la decoherencia, ya que la decoherencia afecta
a menos sitios. En este caso, a medida que aumentamos la fuerza de la decoherencia, la
caida de la pureza es mas fuerte tanto en el régimen de tiempo corto como en el de
largo tiempo como consecuencia de la deslocalizacion de la funcién de onda. En segundo
lugar, en el régimen extendido, mientras que una decoherencia mas fuerte causa una
calda mas rapida de la pureza en tiempos cortos, en tiempos largos, donde la dinamica
directa determina la tasa de caida, se vuelve mas lenta para una decoherencia més fuerte.
Este resultado contraintuitivo se entiende como consecuencia del crecimiento balistico del
paquete de ondas, que con el tiempo lo hace mas sensible a las fluctuaciones.

59



3.7. LOSCHMIDT ECHO (PUREZA).

>’ 0
s s
< 107 < 101
Q O
n n
Q o)
— —
O 10?}  ~,=0.01] — O 102} ~,=0.01] —— ¥y,
= Ne=0.1] —— o ~e=0.1] ——
o Vo=1J —— o No=1J ——
Q Vo=2J Q ~No=2J
m 10_,; (4‘KD t)l/z - Lﬂ 10_.; (41(D2t)1/') .
107! 100 101 102 103 107! 10° 10! 102 103
(a)  Tiempo Jt/h (b)  Tiempo Jt/h

Figura 3.11: Evolucién temporal de la pureza (eco de Loschmidt) M (t) con diferentes valores
de decoherencia en una cadena HHAA con N = 1000. (a) W = J, fase extendida. (b) W = 3J,
fase localizada. Las curvas coloreadas (en tonos grises) representan diferentes 4. Las lineas
discontinuas de color negro son predicciones teéricas (M (t) o \/%) donde D se obtuvo de la

ecuacion (3.2).

La estabilidad del LE en para W = 2J también es reflejada al analizar el valor del eco
a tiempos fijos variando v, (Fig. 3.12a) o el ancho del paquete luego de invertir el signo del
Hamiltoniano. En el primer caso, la informacién obtenida es idéntica a la dada por la Fig.
3.10b, solo simplificando la visualizacion de las escalas de tiempo. Al estudiar la evolucion
de la varianza, vemos que luego del cambio en el signo Hamiltoniano la funciéon de onda
comienza a contraerse, sin embargo, esta reduccion dura hasta el tiempo de eco (275) solo
si 7y > 27R. Si 74 < 27g, el paquete comienza a expandirse nuevamente. Esto se muestra en
la Fig. 3.12b, donde el tiempo en el que el segundo momento alcanza su minimo (contado
a partir del tiempo de reversion 7p), se representa como una funciéon de 745 Cuando
Ty < 27g, €l ancho del paquete de ondas alcanza su minimo en aproximadamente ¢ ~ 7,/2
y comienza a ampliarse nuevamente. Es interesante notar que para 2h/7r < 74 < 4h/Tg, la
funcién de onda comienza a expandirse nuevamente, aunque de todos modos observamos
un eco en la polarizacion.

En sintesis, observamos que la dependencia del coeficiente de difusion con la amplitud
de decoherencia es heredada por la dindmica de pureza (LE), ya que a tiempos largos decae
con una ley de potencia que depende tnicamente de D. Como consecuencia, el decaimien-
to de la pureza en el punto critico entra en un régimen independiente de decoherencia.
Sin embargo, este régimen difiere sustancialmente del decaimiento independiente de la
perturbacion inducido por el caos propuesto por Jalabert & Pastawski [67], como podria-
mos haber insinuado en la Ref. [99]. De hecho, en nuestro caso, la longitud de correlacion
de las fluctuaciones del ruido es menor que el camino libre medio, lo que no satisface las
condiciones necesarias para una caida del LE independiente de las perturbaciones. Para
nuestro ruido local, las colisiones con el ambiente generan una pérdida de memoria en la
funcion de onda, siendo el mismo tipo de irreversibilidad que la generada por un voltime-
tro de Biittiker. En ese sentido, la caida de LE/pureza independiente del entorno no debe
interpretarse en el contexto de decoherencia independiente de la perturbacién, sino mas
bien como una fuerte irreversibilidad.
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Figura 3.12: (a) Pureza (eco de Loschmidt) en un tiempo fijo Tr = {10, 25,100, 500} en funcién
del tiempo de desfase 7, = h/7vs en la cadena HHAA con W = 2J. Las lineas discontinuas
verticales de color (en tonos grises) marcan Tr/4, mientras que las lineas de puntos y guiones
coloreadas (en tonos grises) muestran el comportamiento analitico de 17, < Tr. (b) Tiempo
en el que la varianza del paquete de ondas alcanza su minimo después de una inversiéon del
Hamiltoniano en Tg en una cadena HHAA con W = 2J. Las lineas discontinuas de color vertical
(en tonos grises) representan 27 mientras que las horizontales representan TR.

3.7.2. Paquetes como condicién inicial.

En esta seccién veremos los efectos en el decaimiento de la pureza (LE) cuando el

estado inicial no es un estado local. En particular, consideramos un paquete Gaussiano
. _ 1 15y — 1 —(i—N/2)%/(202) |, : 2

en el centro de la cadena: [v,,) = >, ali) = £ >, e /292)|5), siendo N? la
constante de normalizaciéon. Escrito como una matriz densidad, este estado corresponde

. _ Yy o\ Yy ) .
a po, (0) = >, a?aj|z)(j| — o) =2, a;a;(|i) ®17)). En este caso, el decaimiento .de
la pureza no comienza con una pendiente nula, ya que existen, inicialmente, coherencias
entre distintos sitios, las cuales empiezan a ser atenuadas por el término de HS.

Para ver esto, basta con una simple expansion perturbativa para tiempos pequenos:

M(t) = (p(0)]e!t-“otbaletloteal] 5(0)) (3.34)
(PO)(Z + 2Ly +11(L5 + [Lo, Lo])]A(0)).- (3.35)
Analizando el término lineal de la expansion, (fo,|2tLs|ps,) = —27p D _is; lail?la;? =

—274(1 = >7, la;|*)t, observamos que cuando el IPR de la condicion inicial es 1 (estado
totalmente localizado) el decaimiento de la pureza comienza con pendiente nula. Por el
contrario, mientras mas desparramado esté el estado inicial en la cadena (menor IPR),
mayor sera la pendiente del decaimiento inicial. Siendo el caso limite 27,4 para una cade-
na infinita y un estado inicial totalmente extendido. En situaciones intermedias podemos
aproximar Y, |a;|* ~ &= Este decaimiento inicial es parte de un decaimiento exponencial
de la pureza hasta que las coherencias del estado inicial desaparecen y la pureza se vuelve
> lail*, es decir, el estado se transforma en una superposicion totalmente incoherente de
excitaciones locales con probabilidades determinadas por el estado inicial. Intrigantemen-

te, en este punto la pureza permanece en un plateau hasta que, eventualmente, comienza
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Figura 3.13: Evolucién temporal del eco de Loschmidt (pureza) M (t) para una cadena HHAA
con N = 1000 y una magnitud de decoherencia v4 = J. Cada panel corresponde a una fase
distinta (a) W = J, (b) W =2J, (c) W = 3.J. El estado inicial viene dado por una Gaussiana
en la base de sitios |¢,,). Los colores de las curvas representan diferentes varianzas o,, donde
o, = 0 representa una excitacién local. Las lineas horizontales a trazos muestran el IPR del
estado inicial para algunos valores de o,. La linea negra horizontal representa el valor minimo
de la pureza observable para el tamano del sistema utilizado.

a decaer con ley de potencias. En este punto, el decaimiento de la pureza tiene el mismo
comportamiento tanto para un paquete inicial como para una condicion inicial local. Es
decir, los efectos causados por el estado inicial particular se pierden y el LE decae la mis-
ma manera que una excitacion local (como una dindamica forward). Este comportamiento
se muestra en la Fig. 3.13 para los tres regimenes de la cadena HHAA, una decoherencia
de magnitud v, = J, y estados iniciales Gaussianos de diferente o.

Cual es origen y la interpretacion del plateau observado sigue siendo una pregunta
abierta. Inicialmente, especulamos sobre un régimen donde la dindmica Hamiltoniana
crea coherencias al mismo tiempo que el término de HS las destruye. Sin embargo, esta
vision seria inconsistente con el hecho de que una dindmica Hamiltoniana conserva la
pureza. Otra posibilidad es que corresponda a un régimen del tipo Zenén cuantico donde
el propio ambiente no permite la creaciéon de coherencia y por consiguiente su posterior
destruccion. Un analisis mas profundo de este régimen es necesario, ya en muchos sistemas
la excitacion inicial corresponde a una superposicién coherente de varios estados.

3.8. Conclusiones.

Al estudiar el transporte cuantico en tres modelos 1D paradigmaéticos, todos ellos
capaces de soportar un régimen de difusion cuéntica, encontramos una sorprendente es-
tabilidad del transporte hacia procesos locales decoherentes que también se muestra en
el decaimiento del eco de pureza/Loschmidt. Esta estabilidad se origina en la naturaleza
difusiva de la dindamica cuéntica coherente y se manifiesta en el hecho de que el coeficiente
de difusion es en gran medida independiente de la magnitud de decoherencia (es decir,
aproximadamente igual al coeficiente de difusion en ausencia de decoherencia) siempre
que el tiempo de decoherencia sea mas largo que el tiempo medio de dispersion eléstica.
Ademas, mediante un modelo de colapso cuantico para el ambiente desarrollamos una
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CAPITULO 3. DINAMICA CUANTICA EN UN AMBIENTE DECOHERENTE.

manera de calcular el coeficiente de difusiéon a partir de la dindmica coherente. Para el
régimen de difusién coherente, derivamos analiticamente una ley universal en la que el
coeficiente de difusiéon depende de un tnico parametro: la relaciéon entre estos tiempos
caracteristicos. Destacamos que esta estabilidad no se presenta cuando una muestra estéa
en un régimen balistico o localizado, donde el coeficiente de difusion es altamente sensible
a la decoherencia.

Estos resultados pueden ser validos en muchas situaciones realistas, incluso mas alla de
los sistemas 1D. En muchos sistemas cuasi-1D, como ocurre en el modelo PBRM, el camino
libre medio elastico puede llegar a ser mucho mayor que la longitud de localizacion [148] y,
por lo tanto, el régimen similar a la difusion ocurriria en un amplio rango de parametros.
Por lo tanto, incluso cuando la difusién coherente solo se produce dentro de una escala de
longitud (y tiempo) limitada, podria ser suficiente para garantizar un transporte eficiente
y estable bajo ruido ambiental.

Particularmente, nuestros resultados podrian probarse experimentalmente en dtomos
frios de Yb en una red 6ptica 1D donde el modelo HHAA ya esta implementado [123,197].
La decoherencia local podria ser impuesta por fluctuaciones de ruido blanco dependientes
del tiempo que explotan patrones de interferencia no correlacionados en el tiempo y el
espacio. Otra situacion que se ajusta a la condiciéon anterior es la propagacion de excitacio-
nes de espin nuclear en cristales cuasi 1D [198]. Alli, las interacciones dipolares naturales
son de largo alcance y el desorden se pueden activar y desactivar mediante pulsos de radio-
frecuencia apropiados, lo que permite un cambio entre regimenes balisticos y de difusion
cuantica. En particular, los términos de muchos cuerpos se manifiestan como una escala
de tiempo de decoherencia [126,199]. Otros experimentos podrian probar la estabilidad
de la difusion del espin hacia la decoherencia. Ademés, algunos compuestos poliméricos
conductores reales, dispuestos en haces con canales activos degenerados, pueden estar en
el régimen de estabilidad que se analiza aqui [200-204].

Nuestras predicciones también pueden inspirar estudios de sistemas biolégicos cuasi-
1D donde un transporte de carga o excitones robusto es funcionalmente relevante. Entre
ellas se encuentran la transferencia de energia y la autorreparacion de las estructuras
helicoidales del ADN [205,206]. Alli, uno podria insinuar un papel crucial en la propaga-
cion de las excitaciones [207] en el desconcertante mecanismo a través del cual el ADN
transmite senales alostéricas a largas distancias [208]. En los sistemas fotosintéticos es
esencial un transporte eficiente de energia desde el complejo de antenas al centro de reac-
cion, seguido de una transferencia de electrones independiente de la temperatura desde
una clorofila a una quinona distante. Esto suscité la pregunta de si la transferencia de
electrones ocurre como un proceso coherente a través de bandas de conduccion, o a través
de multiples saltos de tuneles decoherentes entre estados localizados [209,210]. La difu-
sion decoherente descrita en este capitulo es un mecanismo alternativo que merece mas
estudio. En el propio complejo de antenas, hay una convergencia de escalas de energia (es
decir, los acoplamientos, el desorden y las fluctuaciones térmicas son aproximadamente
del mismo orden), que podria garantizar el régimen universalmente robusto que analiza-
mos. Ademas, el anélisis de las estadisticas espectrales de varias moléculas biol6gicamente
relevantes sugiere que normalmente se encuentran en el limite entre un régimen balistico y
uno localizado [149]. De hecho, algunas proteinas, microtubulos y ARN [155,158,211,212],
muestran un transporte sorprendentemente robusto contra la decoherencia inducida por
la temperatura [213,214].
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3.8. CONCLUSIONES.

En resumen, damos una nueva perspectiva a la hipotesis, promovida para los sistemas
biologicos [97,99], de que estar al borde del caos es favorable al transporte de carga o
excitonico. De hecho, el caos puede conducir a la difusion [26] y, por tanto, a una dinamica
cuantica extremadamente robusta con respecto al ruido ambiental. En perspectiva, seria
interesante analizar la presencia de difusiéon cuantica intrinseca en sistemas bioldgicos
realistas para establecer la relevancia funcional de nuestros hallazgos. Conjeturamos que
la difusion cuéntica es una caracteristica relevante del reino equilibrado de la Naturaleza.

Las contribuciones originales de este capitulo fueron publicadas en:

e Lozano-Negro, F. S., Navarro, E. A., Chavez, N. C., Mattiotti, F., Borgonovi, F.,
Pastawski, H. M., & Celardo, G. L. (2023). Universal stability towards decoherence
in quantum diffusive 1D chains. Physical Review A 109 (4), 042213
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Capitulo 4

Dinamica y OTOCs en sistemas de
espines interactuantes.

En este capitulo extendemos la secuencia GEA presentada en el Capitulo 2
a sistemas de muchos cuerpos, particularmente sistemas de espines interac-
tuantes. Se estudia como la misma puede ser utilizada para evaluar el nivel
de localizacion en la dindmica. Utilizado un aproximante de la ZOGE, de-
bido a su implementacion mdas eficiente, se estudia el nivel de localizacion
cuando interacciones many-body son incluidas en el Hamiltoniano de Harper-
Hofstadter-Andre- Aubry.

En la dltima década, se han hecho muchos esfuerzos para estudiar los efectos de las
excitaciones cuanticas de muchos cuerpos en redes con miras a comprender y controlar
su dindmica en sistemas cuanticos aislados [28]. En particular, si bien el desorden puede
producir la ausencia de difusion de excitaciones, i.e. localizacion de Anderson [33,35], las
interacciones débiles entre muchos cuerpos generalmente tienden a favorecer su propaga-
cion. Por lo tanto, estas interacciones deberian contribuir al equilibrio y la termalizacion.
Sin embargo, interacciones mas fuertes conducirian a la localizaciéon de muchos cuerpos
(MBL) [40,41|. En una situacion limite clara, los Fermiones que interactian fuertemente
en una red producen un aislante de Mott [162]. En estas fases localizadas, la ergodicidad
se rompe y los observables locales no se relajan a los valores térmicos [43]. Por lo tanto,
se ha invocado a la MBL como un mecanismo que podria evitar el desparramo de una
excitacion [20, 22,40, 44].

La caracterizacion experimental y numérica de la transicion MBL en 3D ha sido ex-
tremadamente dificil de lograr. Un atajo natural es utilizar sistemas 1D cuyo potencial
externo es inconmensurado con la red subyacente, donde ya existe evidencia numérica
y tedrica de que esta transicion sobrevive a la presencia de interacciones [44]. Se reali-
zaron experimentos particularmente importantes en arreglos de atomos ultrafrios donde
se implementaron potenciales periddicos inconmensurados con la red [48,120]. Dichos
sistemas se caracterizaron, experimental y teéricamente, calculando la entropia de entre-
lazamiento [48,125], los desequilibrios de probabilidad [48,125] y la dindmica de estados
perturbados [118, 144, 145]. Mas recientemente, el desorden aleatorio natural en ciertos
sistemas de espin 1D se estudi6 mediante RMN [215]. En este caso, se pueden utilizar
implementaciones de las técnicas de Eco de Loschmidt (LE) que implican la medicion de
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diferentes observables luego de aplicar una perturbacion al sistema e invertir temporal-
mente su dindmica [216]. En la ref. [215] se utiliz6 una combinacion de procedimientos
LE en cadenas de espin desordenadas para evaluar diferentes Funciones de Correlacion
sin orden temporal (OTOC). A partir de estos, estudiaron el desparramo de excitaciones
colectivas de espin bajo diferentes Hamiltonianos y obtuvieron una estimaciéon de la en-
tropia de entrelazamiento, que a su vez proporciona una evaluaciéon de la transicion de

fase MBL.

Dado que la RMN puede medir funciones de correlacion local luego de una inversion
temporal [100,217|, deberiamos poder desarrollar una nueva estrategia experimental para
monitorear excitaciones locales a medida que se propagan en una cadena de espin. Esto
podria convertirse en una herramienta tnica para caracterizar la transicion MBL en un
sistema 1D. La idea es generalizar la secuencia GEA, discutida en el Capitulo 2, a sistemas
de espines, etiquetando el grado de desparramo después de que la excitacion, en este caso
una magnetizacion, haya evolucionado bajo una dindmica Hamiltoniana. Este etiquetado
se logra mediante un pulso de gradiente de campo Zeeman, que da una fase diferente a
cada componente local de la polarizacion. Por tanto, la efectividad de la inversién temporal
que sigue a esta perturbacion depende de cada una de estas fases locales. Este concepto
tiene una analogia con la secuencia utilizada para obtener las Coherencias Cuénticas
Multiples (MQC) [82,143,218] de RMN, donde la fase Zeeman etiqueta el componente de
la excitacion a lo largo de cada uno de los subespacios de proyeccion total de espin. Al igual
que en un experimento MQC, se puede medir un conjunto de OTOCs aplicando diferentes
gradientes de campo antes de la inversion del tiempo. Es posible aplicar la transformada
de Fourier sobre esta familia de LE en funciéon de la perturbacion, siendo su modo de
Fourier fundamental es nuestra magnitud objetivo: el entrelazamiento de gradiente de
orden cero (ZOGE). En ausencia de interacciones hemos visto que el ZOGE coincide con
el inverso de la razon de participacion de la excitacién evolucionada. En presencia de
interacciones, el ZOGE aproxima a la suma de los cuadrados de las componentes locales
de la magnetizacion.

En este capitulo, desarrollamos la base conceptual del procedimiento ZOGE y lo pro-
bamos numéricamente mediante el estudio de la dindmica de excitaciéon en una cadena
de espin con un “desorden” dado por un potencial de Harper-Hofstadter-Aubry-André
(HHAA). La dinamica de espin es inducida por el Hamiltoniano XY, cuyos procesos de
flip-flop son equivalentes a un hopping para sistemas de un cuerpo. Este Hamiltoniano ha
sido utilizado para revelar la naturaleza cuantica de la dindmica de excitaciéon en experi-
mentos de RMN [128,129]. En consecuencia, la evolucion de una excitacion de polarizacion
a partir de este Hamiltoniano, posee una correspondencia uno a uno con los resultados ob-
tenidos en el Capitulo 2. Sobre esta dindmica incluiremos interacciones de muchos cuerpos
considerando los Hamiltonianos XXZ, es decir, las interacciones anisotropicas espin-espin,
rompiendo la correspondencia anterior y generando una dindmica completamente many-
body (MB). Estudiaremos la diferencias que surgen al introducir interacciones MB en la
secuencia disenada y caracterizaremos la dinamica al incluir estas interacciones en los tres
regimenes (extendido, critico y localizado) existentes en el Hamiltoniano HHAA.

66



CAPITULO 4. DINAMICA Y OTOCS EN SISTEMAS MANY-BODY.

4.1. Un sistema modelo.

El modelo especifico evaluado en este capitulo consiste en una cadena de N espines
1/2 a una distancia a. Las interacciones estan determinadas por el Hamiltoniano de espin,

H = oy + Hw + Hi, (4.1)
donde:
N-1 gl
Hay = T (SiSua+5050) = 5 D (S50 + 8,800), (42)
n=1 n=1
N
Hy = W Z cos (2mgna + ¢)Sz, (4.3)
n=1
N-1 N—-1 ~ A
. A AL A AL A SE+ Sz 1
Hy = U " 721+1 =U ( : n ;FHS;H - nTnH +Z) (4-4)
n=1 n=1

El Hamiltoniano 7:[;@ contiene solo interacciones xy (o in-plane) entre los espines, lo cual
produce procesos de flip-flop (inversion de dos espines contiguos), y por consiguiente es
responsable de mover las excitaciones a lo largo de la cadena. Para entender mejor el
modelo es 1til realizar una transformacion a una representacion Fermionica utilizando la
prescripcion de Jordan y Wigner [219]. En resumen, ’}:tmy + Hw solo involucra amplitudes
de salto entre diferentes sitios de la red (single electron hopping amplitudes) y energias
de sitio para una densidad local de Fermiones. En ambos casos, el Hamiltoniano es solo
un producto entre un operador de creacion y destruccion, directamente mapeable al Ha-
miltoniano de una particula (Ec. (2.2)). Consecuentemente, en ausencia de #;, nuestra
cadena de espines es totalmente anédloga al sistema HHAA discutido en los Capitulos 2 y
3. La tunica salvedad necesaria es que esta equivalencia introduce un factor 1/2 en la mag-
nitud del hopping, por lo tanto, el valor critico de la magnitud del potencial que induce
la transicion de fases entre estados localizados y extendidos serd W, = J.

El Hamiltoniano de Ising H; considera la interaccion de muchos cuerpos, ya que en la
representacion Fermionica requiere cuatro operadores Fermionicos. Es evidente que este
término, por si solo, no es capaz de inducir dindmica en la polarizacién. Asi, cuando
esta interaccion domina, cualquier excitacion permanece esencialmente congelada en una
especie de fase de vitrosa (spin-glass). Sin embargo, cuando las interacciones se suman a
las excitaciones localizadas, el término H; proporciona multiples vias a través del espacio
de Hilbert, lo que le permite continuar su proceso de difusion cuéntica [74,75].

Si solo consideraramos el término xy y el término de Ising, 7:lxy +H 1, €l Hamiltoniano
es conocido como modelo XXZ y puede ser resuelto mediante el Bethe ansatz [220]. En
presencia de campos Zeeman locales, como puede ser 7:[W, se observd que el modelo
presenta una distribucion de niveles del tipo Wigner-Dyson [221], usualmente asociada al
caos cuantico.
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4.1. UN SISTEMA MODELO.

4.1.1. Condicidén inicial.

Para fijar ideas, consideramos los ingredientes idealizados de una configuracion expe-
rimental de RMN [73], ya que otras configuraciones experimentales son a menudo adap-
taciones de estos conceptos. Se supone una energia térmica kgT = 1/ que es muy alta
en comparacion con la frecuencia de Zeeman, w,, y los parametros relevantes en el Hamil-
toniano (kT > w, > J,U). Al igual que en el experimento del eco de polarizacion [100],
se utiliza una sonda local, por ejemplo un nucleo diferente, que esta conectado a un espin
individual, digamos el sitio 0, para generar y medir la excitacion inicial. Independiente-
mente, puede asegurarse que la polarizacion de cada uno de los demas espines se anule.
Por tanto, el estado inicial esta representado por la matriz de densidad:

T+ Bw,S;
Po = A N
Tr {I + Bwosg}

(4.5)

Ya que 7 no contribuye a la dindmica, py 5*5 describe un estado pseudo-puro [222].
Cabe destacar que el subindice 0 solamente alude a un sitio inicial, sin implicar la posiciéon
del mismo dentro del sistema. En un experimento de RMN real, se utiliza una muestra
macroscopica en la que se abordan simultaneamente varios sitios distantes. Sin embargo,
esto s6lo produce un observable mas robusto que promedia las fluctuaciones cuanticas no
deseadas que caracterizan las mediciones individuales.

La naturaleza de la excitacion se comprende mejor en términos de los operadores de
subida y bajada de espin, cuya correspondencia con los operadores Fermionicos de creacion
y aniquilacion es directa. Estos operan en el estado de equilibrio térmico de N-espines
descrito por |U,,) |73]. Consiguientemente,

Wo) = L 7 (4.6)
<\Ijeq| SESSF \I,eq>
2L g
- Z 9(N—1)/2 o) @ [6r) (4.7)
r=1

donde el denominador asegura la correcta normalizacion del estado, ¢, es una fase aleatoria
y |B,) describe un estado de la forma:

1Br) = |s1) ®[s2) ®[s3) @ ... ® [sn-1)

con |sg) € {|Te), [4x)} -

Esta descripcion supone que en el equilibrio térmico todas las correlaciones ya han
decaido y, por tanto, las fases pueden considerarse ntimeros aleatorios. Por supuesto, los
valores observados estaran sujetos a fluctuaciones cuénticas, como ocurre en un experi-
mento individual real. Sin embargo, este ruido no sobrevive al promedio del ensamble.

Es particularmente til pensar en el subespacio de excitaciones con proyeccion de espin
negativa maxima, es decir, una excitacion (espin up) y el resto down. Siendo estos estados
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Figura 4.1: (a) Esquematizacion del espacio de Hilbert en un sistema de espines dividido en
subespacios de magnétizacién total M,. (b) Autovalores de O = S* + Y°,(i — 4)pS? para un
sistema de N = 7 espines para @ = 0.05. Los rectdngulos encierran estados que tendrian la
misma magnetizacién en ausencia del gradiente (subespacios M, ). (c-d) Zoom de la figura (b)
en los subespacios de M, = 5/2 y M, = 1/2 respectivamente.

descritos en la base computacional en la forma

Br) = 4 @ o) ® [ ta) . @ [In), (4.8)
N
7:[|O‘l/> = &) =¢ Z ) B, (4.9)

ya que es el tnico subespacio donde la dindmica de una particula (denotado con el supra-
indice 1), controlada por las energias ¢,, persiste incluso para U # 0. De este modo, la
dindmica de la excitacion esta descrita por la funcién de correlacion

Capo(t) = <61|exp —i%t] | 65) (4.10)

= Zexp —ig,tla),a,, (4.11)

en términos de las auto-energias de una particula ¢, y equivalente a un sistema tight-
binding.

Contrariamente, en los subespacios de excitaciones con proyeccion de espin minima,
donde la cantidad de espines up y down es la misma o difiere en uno dependiendo de
la paridad de N, el sistema es andlogo a un sistema de N sitios con N/2 particulas y
consiguientemente es el subespacio donde los efectos de interacciones de muchos cuerpos
son mas notables. Al crecer el nimero de espines del sistema, este subespacio se vuelve

. . . . . N N
dominante, ya que la dimensiéon del mismo crece exponencialmente como ((N71) /2) R

4N/2 | /aN/2, a diferencia del crecimiento lineal del subespacio de una particula.

4.2. Generalizacion de la GEA.

A pesar de las diferencias que aparecen al considerar muchos espines en lugar de excita-
ciones de un cuerpo, podemos extender de manera natural la secuencia GEA desarrollada
en el Capitulo 2 a este sistema. Para ello, el gradiente de potencial debe transformarse
en un gradiente de campo magnético, la excitacion inicial en un exceso de magnetizacion
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4.2. GENERALIZACION DE LA GEA.

media en un sitio de la cadena y el eco sobre el sitio original en un eco en la magnetizaciéon
que vuelve al sitio inicial.

Considerando estas equivalencias, el exceso de polarizacion producto del estado inicial
o S‘g evoluciona durante un tiempo t. Entonces, cada componente local del estado es
perturbada por la accién de un pulso de gradiente de campo 7:19 =>. ngi Nuevamente,
la intensidad de esta perturbacion y la duracion del pulso se ven reflejados conjuntamente
en una fase . El efecto se entiende facilmente al considerar el espacio de proyecciéon de
espin maximo negativo de la dimension (]Y ) discutido anteriormente, y el subespacio de
proyeccion de espin minimo 1/2 de dimension ( v ivl) /2) . En el primero de estos subespacios,
el exceso de polarizacion local se identifica con una probabilidad local de una sola particula
[70]. Esto implica que esta perturbacion etiqueta cada componente local de la polarizacion
total con una fase ny, tal como se vio en el Capitulo 1. Después de esto, el sistema
evoluciona hacia atras en el tiempo (es decir, evoluciona bajo —H durante un tiempo
adicional t). Luego se registra la cantidad de magnetizacion que regresa al espin inicial.
Identificando el operador de Heisenberg

D, (t) = it/ o =ieHg it T /N (4.12)

Podemos escribir todo el proceso como,

M(tp) — ()5 AJAgo(t)ng‘I’eJ (4.13)
(Weq| Sy S5 So S5 [Peq)
_ <&>L(t):5ifw(t)g§>6 (4.14)
(555508

donde es claro que el eco de Loschmidt (LE) bajo una perturbacion (pulso) subita tiene
la forma de un OTOC (Out of Time Order Correlator). En sistemas isotropicos, por
ejemplo cuando la interaccion viene dada por el Hamiltoniano de Heisenberg, es posible
expresar este eco en termino de una creaciéon al tiempo inicial y una destrucciéon a tiempo

t: M(t,0) = (Veg | 0L (£) S5 ()55 | Weq) /| (Weq| Sy S5 [Weq) -

El uso de dos notaciones alternativas permite enfatizar el significado fisico de estos
objetos matemaéticos, algo oscuro en la literatura. La primera linea tiene una interpretacion
clara en términos de la dinamica de polarizacion iniciada por un operador que eleva el
espin en un estado térmico dado, |W.,) sin polarizaciéon neta que se convierte en un
estado excitado |Wo) = S| ¥.,) en el momento inicial. Luego, evoluciona hacia adelante
en el tiempo bajo una dindmica Hamiltoniana e **/" que desparrama la excitacion. El
sistema es perturbado por un pulso de gradiente de campo e¥™s y luego, después de un
cambio repentino en el signo Hamiltoniano, evoluciona hacia atrds en el tiempo con e**/".
Como la perturbacion impide un retorno perfecto, su efecto es detectado como el fracaso
en alcanzar la polarizacion original. La segunda linea sigue la notacion mas estandar en
dindmica de espin donde (-) 4 significa promedio sobre todos los estados de la base Zeeman

(Tr[-]) con su correcta normalizacion. La equivalencia entre estas dos vistas fue analizada
en [223].

La representacion en términos de la matriz de densidad nos permite especificar la
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CAPITULO 4. DINAMICA Y OTOCS EN SISTEMAS MANY-BODY.

relacion de este LE con un OTOC,

N

([@,(t), S(0)]'[@,(2), S5(0)])5 = 2(55(0)°)5 — 2M (¢, ). (4.15)

Notese que el grado de desparramo de 5’5 (t) = eitit/ hgge*im/ " dentro de cada subespacio
de proyeccion de espin total, es etiquetado por una rotacién instanténea & = eieHy
alrededor de un gradiente de campo Zeeman. Lo que marca una diferencia crucial con
la secuencia MQC donde una rotaciéon uniforme no tendria ningtn efecto observable al
aplicarse después de una dinamica que conserva la proyecciéon de espin total.

Al igual que en el Capitulo 2, usamos la transformada de Fourier de M(t, ) con
respecto a la variable ¢, obteniendo, para cada tiempo de evolucion, las amplitudes Qn,

que llamamos amplitudes de entrelazamiento de gradiente (GEA),

~ 2m ..
Q) = 5= | Mtpeedp, (1.16)

donde el tilde @, lo distingue de su contraparte de un cuerpo @, (Ec. (2.30)).

4.2.1. Diferencias entre las amplitudes GEA de un cuerpo y MB.

Al igual que en el caso de un cuerpo, estos coeficientes positivos codifican informacion
sobre el grado de desparramo de la excitacion. Sin embargo, una vez que se pierde la
equivalencia con el sistema de un solo cuerpo, los posibles valores que pueden tomar los
autovalores de 'H aumentan, lo que resulta en un espectro de @, con un soporte mas am-
plio. Esta amphaClon del espectro puede entenderse facilmente al analizar los autovalores
de 7:19, los cuales pueden evaluarse directamente al observar que la base computacional
es una base de autoestados. En este contexto, podemos visualizar facilmente el despla-
zamiento inducido por el gradiente de campo con respecto a la magnetizacion total del
estado M.

Para ilustrar este punto, consideremos el caso con N = 7. Sin perdida de generalidad
podemos pensar en los valores que puede tomar O =5+ Zzzl(n — 4)g05’fb en la base
computacional (espines up y down). Agregar estos dos términos facilita el analisis de la
siguiente manera, (n —4) centra el gradiente en el centro de la cadena donde inicialmente
estd la excitacion, mientras que S% nos permite (siempre que ¢ sea pequeno) diferenciar el
subespacio de origen de los autoestados. Esto no afecta el espectro obtenido siempre que la
magnetizacion total se conserve ([H, 7] = 0), en caso contrario es conveniente utilizar el
gradiente centrado, ya que de no hacerlo el espectro estaria superpuesto (y mezclado) con
el espectro de coherencias cuanticas multiples. En la figura 4.1b se muestra un histograma
de los autovalores de O para ¢ = 0.05. Se puede observar claramente como es para los
subespacios de M, = +5/2 (one-body) el gradiente de campo nos desdobla todos los
estados, lo que no sucede que para M, = +1/2 (figuras 4.1c y d respectivamente).

Es claro que en el subespacio de una particula tenemos el mismo resultado que en el ca-
pitulo 2, ya que la posicion de la excitacion es lo tinico que determina el valor del observable
444448 o 4,4 T4, 4, 4, 1) generan una fase diferente. En cambio, al considerar
el subespacio M, = 1/2 es imposible discernir entre [T, 1,1, 1,J, T, 1), [T, 44T, T, 1,4) o
T4, T4, 1,4, T) por ejemplo. En estos tres casos, junto con dos mas, el valor del obser-
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vable O sera 0.5, correspondiendo a la barra central del histograma mostrando en la fig.
4.1d.

En este subespacio, a diferencia del subespacio de una particula donde el nimero de
fases posibles era 7 (N) en este es de 13 [1 + (N + 1)(N — 1)/4 = (N? + 3)/4, para
N impar|. Una forma simple de calcular este namero consiste en tomar los dos valores
extremos (todos los espines up a la izquierda y/o a la derecha), y considerar que al mover
un espin el cambio en el observable es de una unidad. Note que la dimensién de este
subespacio crece exponencialmente, mientras que el nimero de fases posibles de forma
cuadratica. Estos valores extra se generan como consecuencia del entrelazamiento de los
diferentes componentes locales de la excitacion a una distancia na. Por lo tanto, se espera
que en un régimen localizado sélo los indices bajos Qj sean importantes en contraposicion
a lo esperado para un régimen extendido.

En presencia de interacciones, U # 0, el valor en el centro de la distribucion, QO, no
seré igual a una relacion de participacion inversa (IPR) del estado dindmico en el sentido
usual de una participacion en el espacio de Hilbert, sino que aproximaré a la suma de las
magnetizaciones locales al cuadrado. Es decir,

Qo — Qo) = IS} =352 =Y lewol®)l' =IPR..  (417)

n

Qo ~ Y (Sit)3 (4.18)

n

Q

Donde ¢,)o(t) son las amplitudes de correlacion dependientes del tiempo de la funcién de
onda de una particula en la base local (computacional). Al igual que en el capitulo 2, no
estamos calculando la relaciéon de participacion inversa habitual de los estados propios,
sino de la excitacion de polarizaciéon a medida que evoluciona. Mientras que para U = 0,
Qo coincide con el IPR, esto no es cierto en presencia de interacciones (U #0). En este
caso, Qo refleja el grado de dispersion de la excitacion a lo largo de la cadena, pero no en
el espacio de Hilbert. Sin embargo, la aparicion de términos més altos en el espectro Qj
es indicativo del crecimiento del espacio de Hilbert que no corresponde a una dinamica
de un cuerpo.

En el capitulo 2, observamos que la varianza de la distribucion @); es idéntica a la
varianza de la excitacion. Esta correspondencia sigue siendo valida para U = 0,

> Q07 =23 Si(tmt =23 Si(tm)* (4.19)

donde SZ(t) = <§Z(t)>% — Tr{S5252(t)}/ Tr{SzSz} representa la magnetizacion media en
el sitio n a tiempo ¢ normalizada por la magnetizacion inicial. Sin embargo, para el sistema
de espines many-body podemos observar una mayor riqueza en este segundo momento, ya
que el mismo es equivalente (ver Apéndice A) al OTOC:

> Q15 = 2T { [Hy, S5 (0)F, S50} = 2 nm T {185, S50]185, S5(0] |
i n,m
(4.20)
En este caso, que Tr {[S;,Sg(t)][é;,ég(t)]} sea no nulo, implica el estado SZ(t) debe
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Figura 4.2: (a) Magnetizacién media por espin. (b) Eco observado en funcién de la magnitud
del gradiente de campo . (c-d) Distribuciones GEA. Todas las figuras corresponden a una
cadena de N = 7 espines interactuando mediante los Hamiltonianos H; (rojo, Ec. (4.21) ), Hoy
(verde, Ec. (4.22)), Hs (azul, Ec. (4.23)). (¢) y (d) solo difieren en la escalada. Los resultados
son a tiempo t = 60J/h siendo la condicién inicial pg o< S} .

estar compuesto de estados producto con peso en los sitios n y m. Al estar cada uno de
estos términos pesado tanto por m y n, la suma total nos da una referencia del nivel de
desparramo de los operadores en el espacio real, mas alla de la varianza en la excitacion
de magnetizacion. Como se mencion6 en la introduccion, a tiempos cortos el crecimiento
de los OTOCs se ha propuesto y utilizado como medida del revoltijo (scrambling) y del
inicio del caos cuantico. Sin embargo, han sido los detalles del comportamiento a largo
plazo de diferentes OTOCs los que captaron gran atencién como herramientas para estu-
diar el caos, la termalizacion y la localizacion [224-227]. Estos pueden mostrar la variedad
de fenémenos de interferencia notables que caracterizan las funciones de correlacion, ta-
les como latidos cuénticos [228], colapso de supervivencia [133| (tiempos intermedios),
agujeros de correlacion [115] (tiempos largos), y ecos mesoscopicos en el tiempo de Hei-
senberg [70,229].

En las siguientes secciones presentamos el estudio numérico de los efectos de los tér-
minos MB en el espectro GEA, y de la dinamica de excitaciones en el modelo de espines
interactuantes de Harper-Hofstadter-Aubry-André utilizando como cuantificadores prin-
cipales los observables que resultan de la secuencia ZOGE. Para evaluar la dinamica para
cadenas de mas de 7 espines, empleamos una dindmica Trotter-Suzuki [173,230] con el
método de paralelismo cuéntico [223], reduciendo drésticamente el tiempo de calculo con
respecto a los enfoques tradicionales de matrices de densidad y diagonalizacion del Ha-
miltoniano (Ver apéndice E).

4.3. Resultados numeéricos.

4.3.1. Espectro GEA de una particula vs. MB.

En esta seccién veremos la diferencia entre los espectros GEA bajo la evolucion de
Hamiltonianos de una particula y many-body. A modo ilustrativo se considera un sistema
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de 7 espines resuelto mediante diagonalizacion exacta considerando tres Hamiltonianos:

7:[2 = ﬁxy—l—?‘zw—l—?:[] (4.22)
Hy = Y Jum(S5S5 — 5Y5%) + UnmSiS5 + Hu (4.23)
n<m
donde para todos los casos se consider6 el valor critico W = J. Para ?:Lz U= Jy,

para Hs, Jnm = J Rand(1,—1) y U, es elegido aleatoriamente entre 0.9J y 1.1J. La
progresion en la eleccion de estos Hamiltonianos es directa: H, es equivalente a un sistema
de una particula mediante la transformacién de Wigner-Jordan, con lo cual es equivalente
al Hamiltoniano HHAA discutido en el Capitulo 2; sy incorpora interacciones de Ising,
volviéndolo un Hamiltoniano MB, pero mantiene las interacciones a primeros vecinos y
conserva la magnetizacion total; finalmente, L5 es una combinacién de acoples dados por
el Hamiltoniano de Cuantos Dobles (DQ, primer término), interacciones de Ising, y el
potencial de sitio de HHAA. Estos acoples son de largo alcance, MB, con un grado de
aleatoriedad, y, debido el término D@, no conserva la magnetizacion total.

La figura 4.2 muestra la distribuciéon de magnetizacion, los ecos en funcion de la
magnitud del gradiente ¢ y el espectro GEA para los tres Hamiltonianos a un tiempo fijo
(arbitrario) ¢t = 60.J/h. Se puede observar (Fig. 4.2a), como para los Hamiltonianos 1 y 2,
la magnetizacion se mantiene cercana al sitio inicial, consecuencia de la conservacion de la
magnetizacion total y el tamano reducido del sistema. En contraposicion, la magnetizacion
inicial sufre un mayor desparramo al evolucionar con el Hamiltoniano 3, observandose
valores medios positivos y negativos con una magnitud menor en cada sitio. En funciéon
de la perturbacion, Fig. 4.2b, es clara la progresion al incrementar la complejidad del
Hamiltoniano: la introducciéon de términos MB borra las oscilaciones presentes en M ()
calculado a partir de una dinédmica one-body; sin embargo, la curva se mantiene mas o
menos en los mismos érdenes que la correspondiente a H;. Al romper la conservacion de
magnetizacion total, incluir interacciones a largo alcance y aleatoriedad, el efecto es més
pronunciado, siendo los ecos M () relativamente chicos para casi todo valor del gradiente
de campo.

Esto es reflejado en los espectros, Figuras 4.2c y d, donde se observa que el espectro
en los casos MB es mucho més rico, extendiéndose hasta valores de j = 12, a diferen-
cia del caso one-body, donde el valor no nulo méximo corresponde a j = 7. A pesar de
esta diferencia, los espectros obtenidos evolucionando con H, y H, son similares, siendo
el dltimo suavizado por las interacciones de muchos espines. El Hamiltonaniano Hs, en
cambio, produce un espectro GEA mucho mas ancho, con mayor peso a valores de n
mayores. Esto es razonable, ya que el mismo mezcla estados dentro y fuera de los subes-
pacios de magnetizacion total. Las interacciones aleatorias y de largo alcance contribuyen
a suavizar el espectro, evitando los picos observados en los espectros de H, y H, (para
j =4y j =10, por ejemplo). En este caso, al tener [’Hg, S.] # 0 es conveniente utilizar el
gradiente centrado (con valor medio 0), ya que de lo contrario se observaria un espectro
superpuesto (y mezclado) entre los términos GEA y las coherencias cuénticas multiples.

Al computar como funciéon del tiempo el segundo momento de la distribuciéon de mag-
netizacion, el segundo momento del espectro GEA y el OTOC asociado, confirmamos que
el segundo momento de la GEA y el OTOC coinciden en los tres casos, mientras que este
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Figura 4.3: Simulacién numérica del entrelazamiento de gradiente de orden cero (Qo, curvas a
trazos) y la suma de las magnetizaciones al cuadrado (S?, curvas continuas) para dos amplitudes
de interaccion U = 0.02J (arriba) y U = 0.08.J (abajo). El color de las curvas describe la
amplitud del desorden, W = 0.90J (verde) y W = 1.20J (azul), es decir extendido y localizado
respectivamente. Las simulaciones corresponden a una cadena de 13 espines con una excitacion
inicial en el séptimo espin.

valor equivale al segundo momento de la magnetizaciéon solo para la evolucion de una
particula.

En la siguiente seccién estudiamos, con mayor detalle, la dindmica y secuencia GEA
en una cadena de espines interactuando mediante el Hamiltoniano dado en la Ec. (4.1).
Notese, que el Hamiltoniano Hs, es un caso particular del mismo con N =7, W = J, y

U=J.

4.3.2. Camino al estudio de la localizacion.

Cuando se “prende” la interaccion, en la aproximacion de Trotter la excitacion inicial
Sz(0) comienza a propagarse a través del espacio de Liouville como SZ(5t) = S2(0) cos(0t/Ty)—
i[H, S2(0)] sin(6t/Ty). Aunque [H, S7] = 0, es decir, los subespacios con diferente magne-
tizacion total M no se mezclan entre si, a tiempos mayores los conmutadores de orden
mayor [?:[, S’Z(t)] producen términos milti-espin dentro de cada subespacio. Estos térmi-
nos contribuyen positivamente a Qp, lo que conduce a una diferencia con el IPR y su
equivalente de muchos cuerpos, la suma de las magnetizaciones al cuadrado,

S2(t) = (i) (4.24)

A través de simulaciones numeéricas para varios tamanos de cadena, observamos que esta
pequena diferencia entre Qq(t) y S?(t) no afecta el analisis de localizacion /deslocalizacion.
Aunque aparecen algunas diferencias monétonas, )y sigue el comportamiento dindmico
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del S2. La Fig. 4.3 muestra la amplitud del ZOGE (Qo, curvas a trazos) y la suma de
las magnetizaciones al cuadrado (S?, curvas continuas) para dos intensidades de modula-
cion, W =0.90J y W = 1.20J, que corresponden a los regimenes extendido y localizado
respectivamente, y fuerzas de interaccion suficientes para causar cierta deslocalizacion
U =0.02J y U = 0.08J. Hemos observado que, en los casos mas localizados, estas canti-
dades necesitan tiempo para hacer mas evidente su diferencia. Esta escala larga de tiempo
permite que la interaccion difumine tanto los breathing modes de la fase localizada (oscila-
ciones en las curvas azules) como los ecos mesoscopicos de la fase extendida (interferencias
constructivas en las curvas verdes) |70, 128]. En particular, cuando el sistema esta en la
fase localizada S2(t) y Qo (t) coinciden por tiempos mas largos.

Estos resultados (Fig. 4.3) se obtuvieron con un estado inicial que pertenece al subes-
pacio de magnetizacion total M = 1/2. Esto es equivalente a un sistema con (N + 1)/2
Fermiones, en una cadena con un nimero impar de sitios N. Por lo tanto, se optimi-
zan los recursos computacionales mientras se trabaja en el subespacio que més interac-
tua. Este subespacio es representativo de un experimento de RMN [100] y también se
usa tipicamente en experimentos con &dtomos frios, asi como en otros estudios numéri-
cos [48,125,231-233]. También confirmamos que QO y S? siguen una dinamica idéntica
para el subespacio con proyeccion de espin total M =1 — N/2, donde la dindmica de ex-
citacion se vuelve de un solo cuerpo. Utilizando estados iniciales en distintos subespacios
confirmamos que la diferencia entre ambas magnitudes es mayor a medida que la magne-
tizacion total del subespacio disminuye. Esto significa que la discrepancia observada en la
Fig. 4.3 es la mayor que se podria observar en este sistema.

La principal utilidad experimental de nuestra secuencia es que nos permite obtener
informacion sobre la codificacion de todo el sistema simplemente midiendo algunos espines
individuales del conjunto. Esta es una posibilidad casi tinica, dada por el uso de un nicleo
raro como sonda local, junto con el procedimiento Eco de Loschmidt/OTOC. El ntcleo
raro primero inyecta y, mas tarde, detecta la magnetizacion en un ntucleo directamente
conectado [100]. A partir de este nucleo inicial, la secuencia LE/OTOC permite la explo-
racion dindmica del resto del sistema. Esta caracteristica evita la necesidad de realizar
multiples mediciones individuales de los componentes locales de la magnetizacion, un lo-
gro bastante excepcional de unos pocos experimentos de RMN [129,234]. Sin embargo, las
simulaciones numéricas se pueden realizar a un costo menor sin implementar la inversion
del tiempo, evaluando solo la suma de la magnetizacion al cuadrado bajo una dinamica
directa.

La evolucion de S? se simul6 en una cadena de 19 espines variando los parametros U y
W, con una excitacion inicial colocada en el centro de la cadena que, como observamos, nos
permite evitar los efectos de borde. Como se senala en la Ref. [125], el modelo HHAA con
interaccion podria no mantener la propiedad de que la transicion localizada/extendida
ocurre simultaneamente para todas las energias propias de una sola particula. Esto se
debe a que, en un sentido de campo medio, un potencial renormalizado de una sola
particula no mantendria la autodualidad [108,235]. Esto significa que para ciertos rangos
de parametros, los estados de particulas individuales localizados y deslocalizados podrian
coexistir a diferentes energias. Aun asi, nuestros resultados numéricos muestran que la
ventaja del modelo HHAA de excluir la necesidad de realizar promedios de conjunto
extensos para observar la transicion de fase se mantiene. La tnica excepcion encontrada
es cuando la excitaciéon comienza en un extremo de la cadena, donde los efectos de los
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Figura 4.4: Evolucién temporal de la suma de las magnetizaciones al cuadrado (S2) en las fases
extendida y localizada para cinco realizaciones de desorden (curvas de colores) y el promedio del
conjunto (curva negra). Panel izquierdo: Fuerza de interaccién U = 0.1.J. Panel derecho: Fuerza
de interaccion U = 1.0J.

estados de borde se pueden malinterpretar como una localizacion de los autoestados. En
la fase localizada, sin embargo, incluso con condiciones iniciales en el medio de la cadena,
el promedio en realizaciones permite la eliminacion de fluctuaciones locales a tiempos
prolongados producto de dinamica particular de S? en cada realizacion.

La figura 4.4 muestra la evolucion temporal de la suma de las magnetizaciones al
cuadrado S? en las fases extendida y localizada para dos amplitudes de interaccién y
varias realizaciones de desorden. Observamos que en la fase extendida (W = 0.8J) las
diferencias entre las dinamicas individuales y el valor de equilibrio obtenido de diferentes
realizaciones del desorden se vuelven insignificantes. En la fase localizada esta diferencia
puede ser marcada. En particular, cuando la fuerza de interaccion U es pequena, las
recurrencias en S?(t) hacen necesario obtener el valor de equilibrio realizando promedios
de en realizaciones del desorden (curvas negras). Una vez que se han promediado estas
oscilaciones, los valores asintoticos y la ley de decaimiento se manifiestan de forma més
clara.

La polarizaciéon asintética.

En la Fig. 4.5 mostramos los valores asint6ticos (promediados en desorden) S? en
funcion de W para varias intensidades de interaccion. Para U = 0 observamos que esta
cantidad aumenta rapidamente cuando W supera W, = J indicando la transicion de fase
entre estados extendidos y localizados.

A medida que aumenta la amplitud de las interacciones, aparecen dos efectos. Pri-
mero, tanto para el régimen extendido como para el localizado, el valor de S? disminuye
abruptamente con la interacciéon. Esto indica que incluso las interacciones pequenas son
muy efectivas para ayudar a la redistribucién de la polarizacion, evitando interferencias
y recurrencias en la polarizacion. Algo similar se observa cuando la propagacion balistica
precisa de paquetes de ondas queda destruida por pequenos valores de W. En segundo
lugar, el crecimiento de S?, que se identifica como una marca distintiva de localizacién, se
produce cuando la intensidad del potencial es mayor a medida que aumenta la interaccion.
Esto es indicativo del efecto deslocalizador de las interacciones de muchos cuerpos.
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Figura 4.5: Valor de equilibrio de la suma de las magnetizaciones cuadradas promediada del
desorden (5% = (ZJ(SJZ>%)¢) en funcién de la intensidad del desorden (W) para varias interac-
ciones con fuerza desde U = 0J hasta U = 0.2J en una cadena N = 19.

Para tener una primera vision de la influencia de U en el valor critico de W analiza-
mos la derivada primera y segunda de S? en funcion de W (d(S?%)/dW y d?(S?)/dW?),
observando para que valor de W las mismas son maximas. Un anélisis para el caso no in-
teractuante nos indica que el maximo de la primera derivada puede interpretarse, incluso
para un valor pequeno N, como un limite superior para W,.. Por el contrario, el maximo
de la segunda derivada proporciona un limite inferior para W,.. En particular, a medida
que se activan las interacciones U, el valor critico de W aumenta muy poco; sin embargo,
cuando U > 0.04J el valor critico tiende a crecer mas rapidamente. Esto esta de acuerdo
con la observacion experimental [48]|. Existen resultados numéricos previos que incluyen
interacciones a segundos vecinos que deberian representar mejor el sistema experimental.
Sin embargo, no tienen la misma precision al evaluar el rango de interaccion débil [231].
Ademas, en este régimen la diferencia entre modelos se considera menos importante.

Los efectos y limites descritos anteriormente se pueden entender mejor en el mapa de
color de S? en el espacio de pardmetros, (W, U), alrededor de la transicion de Aubry-
Andre (Fig. 4.6a). Aqui, las partes azules del diagrama representan valores pequenos de
S?. que es una fase deslocalizada/ergodica, mientras que las partes amarillas y rojas del
grafico corresponden al régimen localizado/no ergodico. Los limites superior e inferior se
muestran como lineas discontinuas negras, mientras que la linea discontinua gris es una
linea de contorno que comienza en el valor critico que no interacttia (W = 1,U = 0). Por
lo tanto, esté claro como las interacciones pequenas mueven la fase localizada a valores
més altos de W.

La Fig. 4.6b expande el mapa de color discutido anteriormente a un espacio de pa-
rametros mas amplio. A partir de U ~ 0.1J las curvas S? vs W se vuelven demasiado
suaves analizar la derivada primera y segunda, consecuentemente se muestra solo la curva
de nivel (partiendo del valor critico, (W = 1,U = 0)) como una medida de la magnitud
critica del potencial en presencia de interacciones. Es interesante notar como este valor
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Figura 4.6: Mapa de densidad de S? = Zn<<5’§>%>¢ versus U y W, esquematizando el diagrama
de fase del sistema. En la fase ergédica-deslocalizada (azul), el S? inicial decae rapidamente,
mientras que persiste durante largos periodos en la fase localizada no ergédica (amarillo/rojo).
(a) Cercanias del punto critico. Las lineas discontinuas negras muestran los limites encontrados
para el valor critico analizando la primera y segunda derivada de S?. La linea gris corresponde
a la linea de contorno que comienza en el valor critico para U = 0. (b) Diagrama extendido. La
linea a trazos negra corresponde a una curva de nivel comenzando en el valor critico para U = 0.

se desplaza rapidamente a W mayores para U < 0.5.J. Este rapido crecimiento puede ser
interpretado como una consecuencia directa del crecimiento del espacio de Hilbert explo-
rable por la excitacion al incluir interacciones. Para valores de 0.5J S U < 2J, la curva
de nivel continua desplazédndose hacia valores mayores del “desorden”, alcanzando su valor
maximo aproximadamente en U ~ 2J. A partir de este punto, si las interacciones conti-
ntan creciendo, las mismas comienzan a contribuir a la localizacion del sistema, incluso
llevando el valor critico por debajo del valor en ausencia de interacciones para U 2 3.5.J.
Este limite puede ser entendido una tendencia hacia la fase aislante de Mott, donde las
interacciones de Ising generan un comportamiento vitreo [162].

Estos resultados son consistentes con lo encontrado experimentalmente en Ref. [48]
en una red de atomos frios. Si bien el sistema considerado en Ref. [48] es ligeramente
diferente, las interacciones MB actuan sobre particulas de distinto espin en un mismo
sitio, los resultados representan los mismos comportamientos fisicos. El estado inicial
corresponde a N/2 particulas colocadas en los sitios impares, la magnitud estudiada es el
desbalance (imbalance) entre sitios pares e impares, cuyos valores asintoticos en funcion
de los parametros del Hamiltoniano es reproducida en la Fig. 4.7a. Consiguientemente,
una desbalance cercano a cero implica una dinamica ergodica/deslocalizada, mientras que
valores cercanos a la unidad una dinamica no-ergodica/localizada, como es reflejado en el
diagrama de fases esquematico de la Fig. 4.7b (Blanco y amarillo respectivamente). Entre
estos dos regimenes limite se encuentra una region de decaimiento lento.
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Figura 4.7: (a) Valor estacionario del desbalance (I) en funcién de las interacciones U y la
intensidad del potencial W. Interacciones moderadas reducen el grado de localizacién en com-
paraciéon con los casos que no interactiian o que interactiian fuertemente. Las lineas de puntos
blancos corresponden a curvas de nivel de I, la linea blanca sélida es la curva de nivel de I que
coincide con la transicion de Aubry-André (U = 0 y W/J = 2) extendida al caso de interac-
cién. (b) Esquema del diagrama de fases del sistema. En la region ergédica, fase deslocalizada
(blanca), la condicién inicial se descompone rapidamente, mientras que en la fase localizada,/no-
ergodica (amarilla) persiste durante mucho tiempo. La linea negra de puntos y trazos representa
la transicién observada experimentalmente, extraido de los datos del panel a. Las flechas gri-
ses representan el patron esperado de los flujos del grupo de renormalizacién que controlan la
transicion de localizacion. Para U = 0, como asi como en el limite de U infinito en ausencia de
doblones, la transicién esta controlada por el punto critico de Aubry-André sin interacciones.
Figuras tomadas de Ref. [18].
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Figura 4.8: (a) Evolucién temporal de S*(t) y Pyo(t) (curvas continuas y a trazos) para U =
1.4J y varias realizaciones de desorden. La log-log captura la caida de potencia para el régimen
de tiempo intermedio, pero omite (debido a falta de precisiéon) la caida de tiempo muy corto,
o 1 — 1(Jt)?, que caracteriza tiempos cortos. (b) Exponente o la ley de potencia (1/t*/2) del
decaimiento de la probabilidad de supervivencia de una excitacion local Pyy(t) y de la suma de las
magnetizaciones al cuadrado S?(t). Los o se muestran en funcién del desorden W para diferentes
fuerzas de interaccion U. Para la dindmica cudntica balistica ideal, el exponente es a = 2, los
procesos de dispersion alrededor del desorden critico conducen a un régimen de difusion o = 1
que es bastante robusto ante interacciones de muchos cuerpos. En nuestro sistema finito, la
localizacién de muchos cuerpos se considera subdifusién, un exponente que tiende a cero para
desorden fuerte.

La probabilidad de supervivencia y la dinamica del desparramo de la OTOC.

El comportamiento dindmico de diferentes condiciones iniciales ante la presencia de in-
teracciones y desorden ha sido ampliamente estudiado, mostrando variedad de resultados
dependiendo de los parametros. En particular, se ha observado una dinadmica lenta (sub-
difusiva) antes de la aparicion de la fase de localizacion de muchos cuerpos [232,233,236],
cuya explicacion sigue siendo un tema de debate. En un sistema de una particula, un
decaimiento de ley de potencias en la probabilidad de supervivencia puede ser una con-
secuencia de procesos de retorno no-markovianos como se describe cuidadosamente en la
Ref. [133]. Para el desorden aleatorio en un sistema de muchos cuerpos, estudios teoricos
han predicho un régimen de Griffiths en el lado térmico de la transicion [237], donde la di-
namica estd dominada por regiones espaciales “raras” con tiempos de escape anormalmente
grandes. Sin embargo, esta imagen no puede ser aplicada cuando existen correlaciones de
largo alcance en el potencial del sitio (desorden) subyacente [238,239], como puede ser el
caso del desorden de HHAA.

El régimen de dinamica lenta (subdifusiva) también se observa en nuestras simulacio-
nes de S?(t). En la Fig. 4.8a, mostramos este decaimiento subdifusivo para una interac-
cion U = 1.4J y varias amplitudes de desorden. Las curvas continuas representan S?(t),
mientras que las curvas punteadas muestran la probabilidad de supervivencia Py(t). Ob-
servamos que si bien el decaimiento inicial de S?(t) es méas rapido que el correspondiente
a Py(t), una vez que se alcanza el régimen subdifusivo, ambas desintegraciones pueden
describirse aproximadamente con el mismo exponente. Esto se puede entender dentro del
modelo simplificado: Supongamos una evolucion idealizada de la distribucién de magneti-
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zacion dada por Py(t) = 1/(2m02)"/2e~#/V2)’ "donde o o [v/2Dt]*/2. Un caso de o = 2
describiria una difusiéon cuéntica cuasi-balistica. Una vez que los procesos de dispersion
se vuelven relevantes, el exponente deberia estabilizarse alrededor de a@ = 1, lo que es
indicativo de difusion en 1D. En nuestro caso la ley de desparramo Gaussiana representa
la magnetizaciéon conservada, y a = d* podria representar una difusiéon en un espacio
fractal restringido de dimension d* < 1 [240]. En este modelo simple, la probabilidad de
supervivencia estd dada por Py (t) = 1/v2m02 o< t~%/2. La magnitud S?(t) en este mode-

1
x 72, A
24/ mo?

medida que la localizacién conspira contra la difusion, a se vuelve mas pequena que 1 lo
que explica una dinamica progresivamente subdifusiva.

La validez de la imagen anterior se ve reforzada por la concordancia de los exponentes
que caracterizan nuestros observables dindmicos: la probabilidad de supervivencia local y
el grado de desparramo cuantificado por la integral de la magnetizacion al cuadrado. El
comportamiento observado concuerda plenamente con los procesos fisicos que esperamos
en los diversos regimenes del sistema a medida que cambiamos la amplitud del “desor-
den”. Para una amplitud de potencial finita, pero débil, en presencia de interacciones, la
propagacion de la excitacion se ralentiza desde la dindmica balistica cuantica a la difusion
clasica (Fig. 4.8b), donde se observa una region estable para un pequenio rango de am-
plitudes del potencial en la vecindad del punto critico. Un mayor aumento del potencial
ralentiza continuamente el desparramo hasta que entra en la fase MBL.

En cierto modo, tal como vimos en el Capitulo 3 que la difusiéon coherente generada por
el modelo de HHAA es estable ante decoherencia, aqui observamos que también se vuelve
estable ante la presencia de interacciones many-body. Esto no es del todo sorprendente,
ya que se ha propuesto a la presencia de interacciones many-body no controladas como
una fuente de decoherencia [241,242].

Otra informacion interesante que se puede extraer de los datos asintéticos de los re-
gimenes difusivos y subdifusivos es que los mismo decrecen con una ley de potencias
S? ~ L% siendo d* la dimension efectiva 6 dimension fractal. De hecho, esto resulta
ser consistente con el exponente de decaimiento de la probabilidad de supervivencia y la
integral de magnetizacion al cuadrado. Considerando tiempos entre t ~ 10/.J y ¢t ~ 500/J,
ajustamos la ley de potencia del decaimiento de la probabilidad de retorno y de la suma
de la magnetizacion al cuadrado. Obtuvimos el mismo exponente o de ambos casos, refor-
zando la observacion anterior. Su disminucién a medida que aumenta el desorden indica
una equilibracién progresivamente maés lenta (Fig. 4.8b).

lo seria la integral de la magnetizacion al cuadrado ffooo[Pxo(t)]Qdm =

4.4. Conclusiones.

En este capitulo generalizamos la secuencia GEA a un sistema de espines interactuan-
tes. Mostramos que puede ser utilizada para medir la deslocalizacién en el tiempo de
una excitacion local en sistemas de espines. Esto es posible a través de la evaluacion del
término central del espectro obtenido mediante la secuencia Qg, un OTOC que denomi-
namos entrelazamiento de gradiente de orden cero (ZOGE), o de la varianza del espectro.
La secuencia proporciona un método practico para analizar la transicion de localizacion /-
deslocalizacion y, de manera mas general, una herramienta para cuantificar la dinamica
de excitacion a medida que se vuelve no ergddica. Los tnicos requisitos son el acceso
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a un observable local, la posibilidad de aplicar un gradiente de campo magnético (o un
gradiente de potencial eléctrico en sistemas de electrones), y que la dinamica global pueda
invertirse en el tiempo, algo bastante estandar en RMN y, por extension, en otras técnicas
experimentales.

Las propiedades més atractivas del espectro observado mediante esta técnica son, como
se observd en el Capitulo 2, que en el limite de interaccion insignificante, Qo se convierte
precisamente en el inverso de la razon de participacion, IPR, de la polarizacion y aproxima
a su definiciéon generalizada S? para el caso interactuante. Si bien este observable no
satisface una ley de conservacion precisa, de alguna manera es equivalente a la integral
de una densidad de carga cuadrada en un gas fermionico. Esta correspondencia también
proporciona una interpretacion fisica soélida para este OTOC en particular. Asimismo, el
segundo momento del espectro es equivalente al segundo momento de la excitacion en el
limite de U — 0, siendo generalizado al OTOC Tr{[H,, p(t)]*} para U # 0.

Numéricamente, la similitud entre Qy y S? nos permite estimar el valor a tiempos largos
de Qo mediante el calculo de S? con mucho menos costo computacional. Realizamos un
analisis de S? en los alrededores del punto critico W, = J para una magnitud de interaccion
pequena (U < J), lo que nos permite seguir el desorden critico a medida que U aumenta.
Observamos como el desorden critico aumenta con U, lo que indica que las interacciones
de muchos cuerpos, actuando como fuente de “decoherencia’, disminuyen las interferencias
subyacentes al fenémeno de localizacion. Las interacciones, entonces, ayudan a mezclar la
magnetizacion dentro de la fraccion méas amplia de espacio. En el limite de interacciones
fuertes (U > J) las propias interacciones fragmentan el espacio de Hilbert y congelan
la dindmica. Se ha observado que muchos de estos comportamientos contintian siendo
validos en generalizaciones del modelo [243, 244|, particularmente, cuando se incluyen
interacciones de largo alcance donde la fisica del sistema es cualitativamente distinta en
el limite U > J.

En nuestra estrategia numérica, estudiamos el comportamiento asintotico de las ex-
citaciones y nuestros resultados son capaces de discriminar entre estados localizados y
extendidos, independientemente de la existencia de decaimientos lentos, aunque observa-
mos regiones con decaimientos lentos consistentemente con la existencia de una fase S
reportada en [125] para este modelo y asociada a una fase “extendida no-ergodica” [245].
Si bien este decaimiento lento es observado en diferentes OTOCs [246], en estados esta-
cionarios [247|, o en el decaimiento de excitaciones, como encontramos en este capitulo,
en nuestros sistemas pequenos no nos vimos obligados a asignar una fase diferente.

Es claro que hay mucho espacio para una mayor exploraciéon de la informaciéon que
se puede extraer de todo el espectro de entrelazamiento de gradientes, en particular de
los términos de orden alto, como fue visto en la seccién 4.3.1. Al enfocarnos, debido a
las exigencias numéricas de la cadena de N = 19, en la dindmica de S?(¢) y sus valores
asintoticos, esta informacion no fue extraida. No obstante, en un experimento real, uno
puede aprovechar no solo Qp sino todos los Qj para diferentes j, siendo de particular
interés el segundo momento del espectro.

En un sistema MB, las diferencias crecientes en el espectro, como la aparicién de valores
mas altos de Qj con respecto al caso sin interaccién, podrian encontrar un uso adicional
para decodificar informacién particular sobre la ocupacion real del espacio de Hilbert. En
este sentido, una propiedad importante de S? y, a través de su correspondencia, de Q
es que mide cémo se propaga un observable en el espacio real. Por tanto, no depende
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directamente del tamano del espacio de Hilbert.

Dado que la polarizaciéon es una magnitud conservada en varios sistemas de espines
de muchos cuerpos, una secuencia similar a la propuesta, se puede usar para definir una
entropia de Renyi [248|. La conexion de este ultimo con la razén de participacion inversa
(IPR), obtenido como la suma del cuadrado de las polarizaciones locales, lo convierte en
una magnitud natural para cuantificar la localizaciéon de muchos cuerpos en una cadena de
espines interactuantes o modelos relacionados. Sin embargo, hasta ahora las implementa-
ciones experimentales se han limitado a sistemas moleculares pequenos [249] u observables
indirectos que son sélo un indicador de las propiedades de localizacion de cadenas de espin
desordenadas [215]. Nuestro trabajo supera estas limitaciones al proponer una estrategia
que se centra en la obtencion de un IPR espacial, exacto en sistemas sin interacciones, a
partir de procedimiento que conserva su potencial en el régimen MBL.

Finalmente, encontramos que el comportamiento dinamico a largo plazo de S? y Py
estd impulsado por los mismos exponentes de decaimiento. Esta relacion, que también
derivamos de una modelizacion simple de la dindmica de la probabilidad espacial, permi-
te caracterizar la dindmica con ambas magnitudes. En este caso, ambas muestran como
la dinamica cambia de balistica, a difusiva y subdifusiva, para luego entrar en una fa-
se de localizacion de muchos cuerpos a medida que aumenta el desorden. La region de
decaimiento lento es consistente con resultados anteriores [125,232,233,236|. Ademas, el
exponente de la ley de potencia « en el régimen subdifusivo se puede conectar directa-
mente con una dinamica no ergodica restringida a una porciéon del sistema con dimension
fractal d* < 1 [240].

Las contribuciones originales de este capitulo fueron publicadas en:

e Lozano-Negro, F. S, Zangara, P. R., & Pastawski, H. M. (2021). Ergodicity breaking
in an incommensurate system observed by OTOCs and Loschmidt echoes: From
quantum diffusion to sub-diffusion. Chaos, Solitons & Fractals, 150, 111175.
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Capitulo 5

OTOCs Globales como una
caracterizacion del desparramo en la

dinamica de observables Locales.

En este capitulo se explora la hipotesis, originada en experimentos de RMN
[79], de que es posible extraer informacion sobre la OTOCs locales a partir
de observables globales. Especificamente, investigamos la evolucion de los ecos
generados por la secuencia de coherencias cudnticas mailtiples y el nimero
de espines correlacionados derivados de la misma. En un anillo de espines
evaluamos numéricamente la discrepancia entre magnitudes globales y locales
variando el rango de interaccion entre espines y el tamano del sistema.

En los ultimos anos, el concepto de Funciones de Correlacién sin orden temporal
(OTOC) ha captado la atencion tanto de fisicos tedricos como experimentales como una
herramienta para detectar caos cuéantico [53,58,250,251]. Los OTOCs se han convertido
en una herramienta analitica para identificar manifestaciones del caos en el desparramo o
revoltijo (scrambling) de la informacion cuantica. Es decir, el proceso en el que la infor-
macion local se propaga entre muchos grados de libertad, creando correlaciones complejas
que impiden extraer la informacion a partir de mediciones locales. La motivacion inicial
surgié de reconocer que un comportamiento cadtico es un requisito crucial para que una
teoria cuantica de campos describa adecuadamente las inestabilidades clasicas extremas
inducidas por la gravedad en la proximidad de un agujero negro [78|. Sin embargo, los
OTOC son objetos inherentemente amplios, lo que deja algo oscuro su significado fisico
detallado y sus potenciales observaciones experimentales. Alexei Kitaev [252] recono-
ci6 que el concepto de OTOC estaba contenido en un trabajo de Larkin y Ovchinnikov,
donde estudiaban del efecto de las colisiones con las impurezas en los electrones de su-
perconductores desordenados |76]. En este articulo (Ref. [76]) se observo que los procesos
de dispersion responsables del camino libre medio también dan lugar a un crecimiento
dinamico en el moédulo cuadrado de un par de operadores de Heisenberg “locales” que
inicialmente conmutan.

Buscando un modelo cuéntico adecuado a las propiedades extremas en las cercanias
de un agujero negro, Kitaev descarté el Hamiltoniano estandar de Heisenberg en favor de
un sistema de Fermiones de Majorana con desorden e interacciones de muchos cuerpos
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con un rango infinito, ahora conocido como Sachdev-Ye-Kitaev (SYK), con el que predijo
un crecimiento exponencial del conmutador OTO. Sin embargo, un enfoque experimental
del problema parecia imposible, ya que implicaria evoluciones tanto hacia adelante como
hacia atras de diferentes operadores.

En una linea de desarrollo independiente, la comunidad de resonancia magnética nu-
clear (RMN) descubri6 y utilizé varios OTOCs especificos en forma de ecos y observables
derivados de estos. Esto se debe a que en RMN, la implementacion de una reversion de
la evolucién de espines individuales es fundamental para muchos experimentos, siendo
pionero el eco de Hahn, donde la imposibilidad de recuperar el estado inicial cuantifica en
la escala de tiempo de la relajacion T, [4]. Décadas mas tarde, la posibilidad de invertir
la dindmica de un Hamiltoniano de multiples espines dio lugar a la observacion de ecos
méagicos y ecos generalizados de estados evolucionados y perturbados [253, 254|. Entre
ellos destaca la secuencia de coherencias cuanticas multiples y el ntimero de espines corre-
lacionados derivados de la misma, siendo ambas magnitudes un OTOC diferente [81,82].

Sin embargo, una de las principales limitaciones de las mediciones de la RMN reside en
la dificultad para excitar y detectar espines individuales. Aunque esta deteccién se puede
realizar en algunos casos [129,255], no es lo estandar. En la mayoria de los experimentos,
los observables son operadores globales que involucran todos los espines del conjunto. Este
hecho dificulta la comparacién con el analisis tedrico de las OTOC, usualmente basado
en operadores locales.

Este capitulo se propone explorar la hipotesis, hecha explicita en la reciente publi-
cacion [79], de que un observable evaluado sobre toda la muestra podria representar el
promedio de observables “locales” no correlacionados. Para ello, en la seccion 5.1 examina-
mos analiticamente la relacion entre ecos generalizados de coherencias cuénticas multiples
y el niimero de espines correlacionados usando un OTOC particular derivado de distintos
LE. Para ambas magnitudes identificamos las distintas contribuciones de OTOCs y ecos
locales a los observables globales. En la seccion 5.2 evaluamos numéricamente estas mag-
nitudes en un modelo de prueba: un anillo de espines con interacciones de largo alcance.
Comparamos tanto en la evolucion temporal como en los valores de equilibrio de OTOCs
locales y globales para diferentes tamanos de sistemas, encontrando evidencia de que la
hipotesis se cumple cuando el tamano del sistema aumenta junto con su complejidad.

5.1. Ecos y OTOC:s.

La forma general del conmutador sin orden temporal (OTO) se define como,
N AT 7oA N
Cow(t) = Te 3 (W), V]| W), V| . (5.1)

En el caso de los operadores de W y V Hermiticos y evolucién unitaria, la expresion se
puede reescribir en la forma:

Cloyr () = 2 (1 T {W@)WW(W}) , (5.2)
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donde en la literatura teérica y numérica, W y V son generalmente operadores locales
como, por ejemplo, las matrices de Pauli [250] Considerando que los operadores 1% y W
inicialmente conmutan, el correlador F(t) definido como,

F(t) =Tt {W@)WTW@)V} , (5.3)

comienza desde 1 y decae con el tiempo. En algunas condiciones, se observa una caida
exponencial con el mismo exponente de Lyapunov que controla su contraparte clésica [226,
228,257], lo que sirve como diagnoéstico del desparramo informacion y el caos cuantico.

El correlador F(t) implica necesariamente un procedimiento de inversiéon temporal
y su célculo puede pensarse como un experimento en el que V establece una excita-
cion cuéntica que evoluciona durante un tiempo ¢, y luego es perturbado por W. Pos-
teriormente, sigue una evoluciéon de inversiéon temporal antes de aplicar una mediciéon
(V1) [79,80]. Bajo esta vision F(t) tiene la forma de un eco de Loschmidt con una pertur-
bacion W = exp[—i@At /h], que acttia por un breve periodo At después de una evolucion
hacia adelante [79]. En la mayoria de los experimentos en sistemas de muchos cuerpos,
hay una perturbacion incontrolable )y que persiste durante todo el periodo de inversion de
tiempo y, por lo tanto, no es posible una factorizacion en la forma anterior. En este tltimo
caso, la senal recuperada es el eco de Loschmidt que muestra una caida dentro de la escala
de tiempo independiente de la perturbacion T3 de unas pocas veces Ts. En los modelos
semiclésicos de una sola particula, el decaimiento es exponencial y una vez que 3 excede
un pequeno valor critico, la tasa de decoherencia 1/T3 se identifica con el exponente clé-
sico de Lyapunov [67,69]. También es una medicion experimental ampliamente utilizada
en configuraciones experimentales con implicancias practicas para la normalizacion y el
comportamiento de la dinamica [6,258|. En nuestro sistema de prueba, asumimos la capa-
cidad de revertir completamente la dinamica hacia adelante, lo que implica la ausencia de
decoherencia o de cualquier componente no controlado en la evolucién. En caso contrario,
seria necesario normalizar las curvas obtenidas debido al decaimiento total provocado por
la presencia de factores no controlados.

La dindmica de los OTOC como medida del crecimiento del “tamafno” y complejidad del
operador inicialmente local ha sido estudiada en sistemas cerrados y abiertos [259], donde
se la ha vinculado con la sensibilidad del sistema a la decoherencia, y con la emergencia de
caos cuantico [260]. Los regimenes dinamicos de los OTOC se pueden separar en tiempos
cortos, intermedios y largos. Los tiempos cortos e intermedios dependen en gran medida
del Hamiltoniano y de los operadores iniciales particulares, y de su naturaleza (es decir,
local o global). En tiempos prolongados, los OTOC de un sistema finito oscilan o, para
sistemas altamente caoticos, fluctian alrededor de un valor medio [228].

En la ref. [79] propuso que la informacion extraida de los OTOC globales es indicativa
del comportamiento de los observables locales. Expresamente, se infiere el comportamiento
a largo plazo de los OTOC locales a partir de los observables globales, ya que estos
ultimos estan compuestos principalmente por un conjunto de magnitudes locales casi
idénticas. Posteriormente, Zhou y Swingle [61] estudiaron la contribucion de los OTOC
locales a los globales en una cadena de espines, demostrando que en una expansion, los
términos “diagonales” (OTOCs locales) son los que mas contribuyen. Aqui, adoptamos una
perspectiva algo diferente, tomando como punto de partida los observables experimentales:
las magnetizaciones asociadas con los diferentes ecos.
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Figura 5.1: (a) Arriba: secuencia de evolucién de un experimento MQC. Abajo: representacion
esquematica del experimento del eco de Loschmidt (MQC). A tiempos largos, el eco de magneti-
zacion global S7 es una consecuencia de todos los ecos locales, ya que la polarizacién proveniente
de otros sitios interfiere destructivamente (superposicién de verde y granate). (b) Esquema del
sistema de anillos de espines donde testeamos nuestra hipétesis. El rango de los acoplamientos
entre espines se elige en términos de la “distancia de enlace” entre espines, x Tia paraa =1,2,3.

5.1.1. Ecos generalizados en RMN.

En numerosas situaciones, particularmente conectadas a sistemas de espin de muchos
cuerpos analizados mediante RMN, la senal adquirida esta relacionada con operadores
globales. En RMN, el observable es la magnetizacion total de la muestra, que es propor-
cional al espin total Sz = > Sf , combinando la contribuciéon de cada espin individual,
siendo la direccion z esta determinada por el campo magnético externo. En consecuencia,
la condicién inicial también suele ser un operador global, la magnetizacion de equilibrio
de un conjunto de espines polarizados en presencia del campo magnético, donde la matriz
de densidad es p(t = 0) o< S°.

La interaccion natural entre espines S = 1/2 en una muestra soélida viene dada por el
Hamiltoniano dipolar [261]. Se han desarrollado varias secuencias que utilizan pulsos de
radiofrecuencia basados en el acoplamiento espin-espin, cada una con aplicaciones practi-
cas como el desacoplamiento homonuclear, la condicién de Lee-Goldburg, la irradiacion en
resonancia o el Hamiltoniano de Cuantos dobles (double quantum Hamiltonian) [262,263].
Estos avances han llevado tanto a la formulaciéon de nuevos Hamiltonianos como de in-
teracciones reescaladas, ampliando el alcance de las técnicas de espectroscopia de RMN.
En estos Hamiltonianos, respaldados en la teoria de Hamiltonianos promedio, se basa
tipicamente en la expansion de Magnus y la aproximacion de Floquet [264-266]. Entre
las posibilidades dadas por esta técnica se destaca la capacidad de simular el efecto de
una evolucién inversa a partir de un cambio de signo en el Hamiltoniano. Esto permite
el estudio de fenémenos de eco, como los ecos magicos, los ecos de Hahn y los ecos de
Loschmidt a través de secuencias de pulsos de inversion temporal. Ademas, la evolucion
de la magnetizacion inicial y la transicion a superposiciones coherentes se puede inves-
tigar utilizando ecos modificados obteniendo una distribuciéon de coherencias cuénticas
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multiples.

La secuencia de pulsos de coherencias cuanticas multiple, ampliamente utilizada en
RMN para el conteo de espines, puede considerarse una de las OTOC pioneras. Implica
tres periodos, esquematizados en el panel superior de la Fig. 5.1a. Primero hay una evolu-
cion temporal (hacia adelante) con un Hamiltoniano H: a esto le sigue la codificacion (o
etiquetado de fase) de las coherencias cuanticas y, tltimamente, una inversion temporal o
evolucién hacia atrés con —H. Experimentalmente, el observable final y el estado inicial
son proporcionales a la magnetizacion total del operador S7. Aqui la codificacién de fase
(rotacion alrededor de z) juega el rol de la perturbacion (V) en el procedimiento OTOC
y es una evolucion con un Hamiltoniano proporcional a la magnetizacion total Sz,

Sin embargo, el estado inicial j(t = 0) x S = 357 puede considerarse como una
suma de espines magnetizados individuales. Cada espin individual experimentara una
evolucion y, tras la perturbacion y la evolucion hacia atras, contribuyendo con el retorno
de la magnetizacion no solo en su sitio original sino también en los espines vecinos. Nuestra
hipotesis es que la principal contribucion al eco global (magnetizacion total) surge de la
magnetizacion individual de cada espin que regresa a si mismo. Este concepto se ilustra
esqueméaticamente en la Fig. 5.1a. Conjeturamos que cualquier magnetizaciéon que no
regresa al sitio original de espin se cancela entre si, ya que arriba con fases “aleatorias”.

La secuencia de eco generalizada de la Fig. 5.1 produce una senal global observable
denominada Mg, que se mide después de un pulso de lectura final (no representado en la
figura). Este eco se puede resumir en la siguiente ecuacion,

1

Me(t, ¢) = W

Tr {SZ(t)RTSZ(t)R} (5.4)

donde R = e95° §%(t) = ¢~ M5%M v ]a normalizacion Tr{5757} = N2V~2 asegura
Mg (0,¢) = 1. Aqui se puede observar que R y SZ(O) conmutan, sin embargo, esto no
es valido una vez que el estado ha evolucionado. En los experimentos, la fase ¢ se varia
en 2 > m,,.. pasos entre 0 y 2w, lo que permite la adquisicién de la distribucion de
coherencias cuanticas multiples Mg(t, m) mediante la transformada de Fourier de las
seniales Mg (t, ¢), con m que van desde —Min & Mypay-

En la siguiente seccion aclaramos la conexion entre la Ec. (5.4) con un OTOC global
y lo reescribimos como una combinacién de un conjunto de OTOC locales.
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5.1.2. Observables Locales y Globales.

El eco, ec. (5.4), se puede expresar en términos de ecos locales y términos cruzados
como,

Ma(t,¢) = ﬁTr{S‘Z(t)RTSZ(t)R} (5.5)

_ # ZTr{ “;(t)RTSj(t)R}
_ ﬁ S { SRS (R} + ﬁ ST { SRS ()R}
i G
= X (M 0) + Mi(1,0) (5:6)

= My(t,¢) + Mcr(t, ¢). (5.7)

Mediante la transformacion de Fourier del conjunto Mg(t, ¢) con respecto a ¢, se ob-
tiene la distribucion de coherencias cuanticas multiples (MQC) Mg (t,m). Desde los anos
80, siguiendo el modelo de Baum y Pines [81], la investigacion en RMN ha ampliamente
establecido que el segundo momento de esta distribucion se relaciona directamente con el
niumero de espines correlacionados (también llamado tamano de cluster), designado como
K¢. Luego, como la distribucion global de MQC se escribe en términos de contribuciones
locales y cruzadas, Mg (t,m) = Mp(t,m) + Mcr(t,m), podemos reformular el ntumero
global de espines correlacionados Kg:

Ka(t) = 2) m*Mg(t,m) (5.8)
= 2 Z mQ(ML(t, m) -+ MCT(t, m))

= Ki(t) + Ker(t),

donde explicitamente se discrimina la contribucién al nimero de espines correlacionados
proveniente de los ecos locales y los términos cruzados.

El tamano de cluster global se puede expresar como OTOC (Apéndice D.1) [267],

2 Gz Qz Gz Qz
y de manera similar, se puede expresar la contribucion local y cruzada (ver apéndice D.1
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y D.2) de la siguiente forma:

Ko() = N;32 (k Tr{[g,j,gf(t)r}

—f—ZTr{[SZ S2(t )} [S,j,é’f(t)]} (5.10)

7Q7

a#k
Kor(t) = #]3_2; Tr{[ég,éf(t)} [S’,j,é‘j(t)]}. (5.11)
,0,R,q
i#]

Una caracteristica interesante a tener en cuenta es que, asi como el eco global se puede

pensar como la suma de diferentes condiciones iniciales Sf , también se puede hacer con

K (t) y Kor(t). Luego, se puede separar la suma de sitios ¢ en las expresiones anteriores,
definiendo los promedios en sitio:

Kolt) = S KAV,
Ko) = STELO/N,
Ker(t) = ZKéT(t)/N'

Observe que si bien los OTOC locales correspondientes a un sitio ¢, K (t) estan compues-

A 2
tos de tanto los llamados [61] términos diagonales Tr {[ z, Sf(t)} } como también de

términos no diagonales Tr { [3; : gf(t)} [Az |57 (t)} }, la contribuciéon cruzada correspon-

diente al sitio i, K}(t), solo tienen términos no diagonales. En consecuencia, lo mismo
es valido para sus promedios en sitio K (t) y Kor(t).

Numéricamente, podemos calcular la contribucion ¢ de estas magnitudes K (t), K5 (t),
Kip(t) usando la secuencia de eco que se muestra en la Fig. 5.1 para un estado inicial
Sf . Partiendo de una excitacién localizada en el sitio 7, y observando la evoluciéon de la
magnetizacion y el posterior retorno (eco) a cada sitio j, podemos reconstruir por separado
M (t,¢) y Mir(t, @), lo que nos permite calcular los términos cruzados, locales y la suma
de ambos, el OTOC global.

5.2. Resultados Numeéricos.

Las magnitudes globales, locales y los términos cruzados descritos en la secciéon anterior
se calcularon considerando un sistema de prueba como se muestra en la Fig. 5.1b. Este es
un anillo de NV espines 1/2 interactiian a través de un Hamiltoniano de Cuantos Dobles
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de largo alcance,

H=3 mSi+y Dy |55 - 58] (5.12)
i i
1<J

El Hamiltoniano de cuantos dobles se puede obtener experimentalmente utilizando las
secuencias de 8 a 16 pulsos [263,266], modificaciones a estas secuencias originales permiten
generar interacciones escaladas [258|.

Ampliando atin mas las cualidades del modelado, vamos a asumir la interaccion entre
espines D;; con diferentes dependencias de las “distancias de enlace” D;; = J/|r;;|* pa-
ra « = 1,2,3, donde o = 3 es el caso dipolar habitual. Es importante senalar que esta
“distancia de enlace” 7;; se define como el nimero minimo de sitios entre los dos espi-
nes en lugar de una distancia geométrica. Esta definicion es fundamental para preservar
la homogeneidad del sistema entre diferentes valores de N. Dado que utilizamos D;; no
aleatorios, es crucial introducir campos aleatorios h; para romper la alta simetria del ani-
llo y evitar recurrencias. Los mismos son muestreados uniformemente entre [—J/2, .J/2],
los resultados en ausencia de campos Zeeman se muestran en el apéndice D.5. Las in-
teracciones en los Hamiltonianos moleculares tipicos tienen un signo que depende de la
orientacion del enlace con respecto al campo externo. Sin embargo, para los fines de este
estudio, adoptamos una convenciéon de signos uniforme, como seria el caso en un anillo de
ferroceno [65,100]. Ademas, exploramos la incorporacion de asignaciones aleatorias a los
signos en el acoplamiento, considerando o = 1 como un caso paradigmatico.

La excitacion local inicial tiene la forma pg o< S'f, y evoluciona, como en una secuencia
MQC tipica (Fig. 5.1a) con el Hamiltoniano definido en la ecuacion (5.12). Dado que una
forma de autopromedio estd naturalmente presente en un observable global, se considera
solo una realizacion del desorden. La evolucion se realizé siguiendo el algoritmo de Trotter-
Susuki [173, 268, 269] y de paralelismo cuantico [223,230] (Ver apéndice E). Como se
senal6d anteriormente, al repetir las simulaciones para todos los posibles sitios iniciales ¢,
se pueden calcular los ecos de Loschmidt tanto globales como locales y, consecuentemente,
los OTOCs asociados.

5.2.1. Ecos y coherencias.

Las Figuras 5.2 (a) y (b) muestran los ecos Mg(t, ¢) (curvas a trazos) obtenidos para
un sistema de N = 16 espines con a = 3, partiendo de la condicién inicial (es decir, la
excitacion) en los diferentes sitios, i, y sumando todas las seniales independientemente de
en qué sitio se detecte. Esta magnitud global representa el observable experimental dado
por la Ec. (5.4). Junto con el eco global, las Fig. 5.2 (a) y (b), también muestran el eco
local My (t,®) (curvas solidas), tinicamente accesible mediante simulaciéon numeérica, para
diferentes perturbaciones (fases), en funcién del tiempo. A tiempos cortos, las diferencias
entre los ecos locales y globales son perceptibles, pero estas se vuelven mas pequenas a
medida que el sistema evoluciona, llegando a ser indistinguibles en a tiempos largos.

Al analizar la senal recuperada a un tiempo dado en funcion de fases, (Figs. 5.2(c-e)),
queda claro que en tiempos cortos, (c), las diferencias entre lo global y lo local siguen
siendo apreciables, pero disminuyen a medida que el sistema evoluciona. Esto se eviden-
cia en los términos cruzados, que son practicamente cero en (e). Este comportamiento
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Figura 5.2: (a-b) Ecos globales Mg(t,¢) (curvas discontinuas) y locales My (t, )
(curvas continuas), en funcién del tiempo para cinco valores representativos de ¢ =
{m/16,27/16,37/16,57/16,87/16} (colores). El panel (a) muestra el comportamiento de los
ecos en tiempos cortos e intermedios, mientras que el panel (b) muestra el decaimiento completo.
(c-e) Mq(t, ¢) (verde), Mr(t,¢) (rojo) y Mcr(t, ¢) (azul) como funcién ¢ para tiempos fijos. (f-
h) Distribucién M¢(t, m) (rojo), Mp(t,m) (verde) y Mcr(t,m) (azul) obtenidas al transformar
Fourier las curvas (c-e). Los tiempos son (c¢/f) t = 0.5J/h, (d/g) t = 7.5J/h, (e/h) t = 100J/h.
Todos los paneles se calculan utilizando un anillo de espines con N =16 y o« = 3.

PuS—
+ 0.4 (1) — 2Jt3/h4 5
20 § o
20.2 ;
5
or~»
026550 30 40 50 8010 30 30 40 ¢

(a) Tiempo Jt/7 (b) Tiempo Jt/7

Figura 5.3: Eco promedio observado a una distancia n (colores) del sitio inicial en funcién del
tiempo. El recuadro muestra los tiempos cortos. El panel (a) corresponde al valor de perturbacion
¢ = 7/8, mientras que en el panel (b) a ¢ = 7/2. Los datos numéricos corresponden a un anillo
de N =16 con o = 3.
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temporal también se refleja en los aportes de los distintos términos, Global, G; Locales,
L; y Cross-Terms, CT, a la distribucion de coherencias, (f-h). Los segundos momentos de
estas distribuciones nos permiten definir Kq(t), K (t) y Kor(t).

La figura 5.2 muestra resultados tipicos que, aparte de la discriminaciéon entre contri-
buciones locales y globales, son similares a los encontrados habitualmente en implemen-
taciones experimentales. Sin embargo, al ser un estudio numeérico, la disponibilidad de
datos nos permite computar las contribuciones a los ecos globales M¢(t, ¢) de los ecos
observados a una distancia n del sitio inicial:

M(t,6) = oy 30 T { (82,0 + S VRS ORY (1= 600/2). (513)

Notese que la contribucion de los sitios —n y n proviene de la geometria del anillo del
sistema y significa una traslacién de n sitios a la derecha e izquierda del sitio 7. En la
implementacion numeérica, la periodicidad de la indexacién debe realizarse cuidadosamen-
te. Por ejemplo, para un anillo de N espines ME&(t, ¢) = w3 2, Te{S?(t)RTS?(t)R} y
ME(t, ) = 73— 2, Te{(S7,,(t) + S7 ,(t)) RIS (t)R}, donde S7,, y S7_, representan el
espin a la derecha e izquierda de ¢ respectivamente.

Esta discriminaciéon nos permite explorar nuestra hipotesis a un nivel més fundamen-
tal. Evaluando de qué manera la magnetizacion arriba a los sitios vecinos al inicial. El
comportamiento de estos ecos se muestra en la Fig. 5.3 para dos perturbaciones dife-
rentes. Se podria pensar que, como ocurre en el eco de polarizacion, lo que se pierde
en el sitio original puede terminar como polarizacién en los espines vecinos. Sin embar-
go, en el Hamiltoniano DQ puede terminar en correlaciones que no observables. Algunas
perturbaciones, como ¢ = 7/2, permiten convertir estas correlaciones en magnetizacion
observada en los sitios vecinos. Estas correlaciones, sin embargo, desaparecen mucho antes
de los tiempos de saturaciéon. A tiempos cortos, es claro como el sistema esta altamente
correlacionado, observandose una polarizacién negativa que regresa a distancias impares
n y una polarizaciéon positiva que llega a valores pares de n. Este efecto es méas notable
en la Fig. 5.3(b) debido a la magnitud de los ecos. Este méximo en el eco aparece en
tiempos mas prolongados a medida que n aumenta. Después de estos efectos transitorios,
observamos que todos los ecos en n # 0 van a cero, como ya se insinu6 en el andlisis
anterior.

5.2.2. Crecimiento, saturaciéon y fluctuaciones en OTOCs locales
y globales.

Los resultados anteriores muestran que la equivalencia entre OTOCs globales y locales
se observa en nuestro sistema de prueba. A continuacion se estudia sistematicamente y la
diferencia entre ambas magnitudes, variando el tamano del anillo (V) y el rango de las
interacciones («).

Los tamanos de cluster, K, con x = {G, L, CT'}, se obtienen promediando las realiza-
ciones individuales en diferentes sitios, K, que se ejemplifican en la Fig. 5.4 para N = 12
y a = {1,2}. Se observa que los K’ presentan el mismo comportamiento de los valores
totales, pero difieren en las fluctuaciones. Por lo tanto, al promediar sobre los sitios ini-
ciales, el efecto principal es mitigar estas fluctuaciones, lo que da como resultado curvas
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Figura 5.4: Realizaciones individuales por sitio, K!, para un anillo de N = 12 espines, D;; =
J/|r: ;|® para los paneles (a-b) y D;; = J/|r; j| para los paneles (c-d). El supraindice i representa
el sitio, mientras que el asterisco * indica si el OTOC es Global, G, Local, L. o Cross Terms, CT.
Los paneles (b) y (d) son una ampliacién breve de las figuras (a) y (c), respectivamente.

mas suaves.

La Figura 5.5 muestra la evolucion temporal del ntimero de espines correlacionados
calculados a partir de ecos globales o locales, K¢(t) v K1 (t) (curvas a trazos y continuas
respectivamente) para diferentes tamanos del anillo N = 8 — 16. De izquierda a derecha,
la Fig. 5.5 muestra los resultados para todos los valores de o de 3 a 1, mas o = 1 con
signos aleatorios. Observamos como, tras el régimen inicial, ambas curvas representan
el crecimiento en el nimero de espines correlacionados y difieren en menos del 10 %.
Usaremos el valor de saturacion a largo plazo y sus fluctuaciones para cuantificar esta
diferencia a medida que aumenta el nimero de espines en el sistema N. Al disminuir «,
las magnitudes K, alcanzan los valores de saturaciéon en tiempos méas cortos, debido a las
interacciones més fuertes. Normalmente, los tiempos de saturacion tg son Jt,/h =~ 50 para
la interaccion oc 1/r3, Jt,/h ~ 20 para oc 1/r? y Jts/h =~ 10 para o< 1/r, un analisis mas
detallado arrojaria ts dependiendo de N y «. Podemos observar que tanto Kg(t) como
K (t), al saturar, tienden hacia un valor cercano al tamano del sistema N.

En el limite de v grande predomina la interaccién entre vecinos cercanos, lo que lleva
a un comportamiento tipo cadena. En este limite, el Hamiltoniano Doble Cuantico genera
exclusivamente coherencias de segundo orden [216,270-272], y la diferencia entre OTOC
globales y locales deberia ser mas relevante. Por el contrario, en el limite de o muy pe-
queno, la interaccion se extiende infinitamente, y en el caso de acoplamientos con signos
aleatorios, deberia comportarse como el modelo SYK [252]. El hecho de que para un siste-
ma mas grande los términos cruzados se vuelvan relativamente menos importantes significa
que agregar vias a la dindmica aumenta las posibilidades de interferencias destructivas.
Esto sugiere que las interferencias destructivas aumentarian al incorporar aleatoriedad en
los acoples, como se observa al incluir signos aleatorios en D;; (Fig. 5.5(d)). De hecho,
en un cristal real aparecen signos y magnitudes pseudoaleatorias debido a las diferentes
direcciones del acoplamiento.

A tiempos cortos e intermedios, el crecimiento de los OTOC locales y globales es
ligeramente diferente, como se muestra en la Fig. 5.6. Esta diferencia tiene su origen en
los patrones de interferencia particulares en la dinamica de espin del Hamiltoniano DQ
durante la inversion del tiempo. Las componentes que no regresan a sus sitios originales
dentro de este breve periodo de tiempo exhiben una fuerte tendencia a regresar a sus

95



5.2. RESULTADOS NUMERICOS.

18 18

16 : 16
S 14 PR o s P b s Sdytiohbntuiipadisaitiuisen] 1 4
D12 12
10t 110
O 8 .:' SR 8
QO 6}y 6
= 4 a=2 a=1& 9=l
@) 9 RandSign %21 — 2
0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 10(?

(a) Tiempo Jt/A (b) Tiempo Jt/h (c) Tiempo Jt/h (d) Tiempo Jt/h

Figura 5.5: Evolucién temporal de la OTOC local K[,(t) (curvas continuas) y la OTOC global

K¢(t) (curvas discontinuas), para un sistema de anillos con interacciones dadas por la ecuacion

(5.12). Las interacciones son de la forma, (a) D;j ﬁ, (b) D;j x ﬁ, (c) Dj;j IT"]]'I’ (d)
+J

D;; x ] €on signos aleatorios.
ij

sitios adyacentes, con relaciones de fase especificas.

Matemaéaticamente, la diferencia a tiempos muy cortos se puede analizar usando la
expansion de Baker-Campbell-Hausdorff [265]. Después de realizar alguna manipulacion
algebraica, se puede demostrar (como se detalla en el Apéndice D.3) que para el Hamil-
toniano DQ, tanto el OTOC global como el local exhiben un comportamiento cuadratico
en tiempos cortos, con coeficientes que difieren solo por un factor de dos:

32

Ka(t) =~ NtQEQZij, (5.14)
i,J

Ko o~ 020257 2 5.15

() = ) D (5.15)
1]

En consecuencia, K (t) ~ Kcp(t) en tiempos cortos. Estas expresiones han sido vali-
dadas numeéricamente, como se muestra en la Fig. 5.6 (derecha). Ademaés, es evidente que
el crecimiento de los OTOC es més rapido cuando el exponente «a se vuelve mas pequeno,
ya que aumenta el valor de ZZ i D?J Notese que este comportamiento no cambia al incluir
signos aleatorios en los valores de D;.

En tiempos intermedios, después de esta expansion cuadratica inicial, la complejidad
del Hamiltoniano empieza a afectar la dinamica y la ley de crecimiento cambia dependien-
do del exponente a, un comportamiento esperable teoricamente [273-276]. En la Fig. 5.6
observamos que esta ley de crecimiento para OTOC locales y globales muestra el mismo
comportamiento, haciendo que la diferencia relativa Kor(t)/Kqe(t) sea menor a medida
que el sistema evoluciona. Sin embargo, la ventana de crecimiento relativamente pequena
del sistema estudiado hace dificil asignar una ley particular a cada Hamiltoniano, dejando
solo el régimen saturado para estudiar sisteméticamente la dependencia de los términos
cruzados Keop(t)/Kg(t) con N.

Para cuantificar la diferencia entre los OTOC locales y globales en tiempos lar-
gos, calculamos el promedio temporal del término cruzado en la saturacion (Ki;) =
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Figura 5.6: (a) Evolucién de K (t) (curvas continuas) y Kg(t) (curvas discontinuas) para
tiempos previos a la saturacion. Interacciones de la forma Dj; < 1/|ri;|* con a = {1,2,3}, y un
anillo con N = 16. (b) Zoom del comportamiento a tiempo muy pequeno para « = 3 en escala
log-log. En lineas discontinuas negras se muestra la expresion analitica dada por la Ec. (5.14)

v (5.15).

l tmax

. Kip(t)dt, donde t,,4, es el tiempo final en nuestra simulacion y 7 = tpee — ts,
para varios tamanos de sistemas. En la Fig. 5.7, representamos estas magnitudes relativas
al tamano del sistema como una funciéon de N, lo que puede interpretarse como el error
relativo entre K¢ v K, ya que N es aproximadamente su valor de saturacion. Las con-
tribuciones del sitio (K’7)/N se muestran con cruces moradas, mientras que su promedio
(Ker) /N con puntos rojos. En todos los casos observamos que (Kor)/N no solo dismi-
nuye con N sino que también cada (Kip)/N lo hace, esto implica que la equivalencia de
la observacion global o local es valida para cada estado inicial individual, sin necesidad de
sumar todas las condiciones iniciales para tener el efecto. Las barras de error de los pun-
tos rojos en la Fig. 5.7 corresponden a la desviacion estandar normalizada SD(Kecr)/N,

donde

SD(Kor) = \/ % / T Kor(t) — (Kor))2dt, (5.16)

cuantifica las fluctuaciones temporales alrededor del valor de saturacion. Se utiliza una
expresion equivalente para definir la desviacion estandar del valor promedio de cada sitio
SD(K{r)/N, cuyo valor promedio se muestra en barras moradas desplazadas. Observamos
que, asi como (K¢} /N disminuye cuando N aumenta, también lo hacen sus fluctuaciones,
como se puede percibir en la Fig. 5.5. Las fluctuaciones en el comportamiento a tiempos
largos de los OTOC se han asociado directamente con el caos, particularmente, cuanto més
caotico es el sistema, menores son estas fluctuaciones [228]. Dado que las fluctuaciones
de Kj son considerablemente menores que las fluctuaciones de Ky, podemos afirmar
que SD(K¢g) =~ SD(Kecr). En consecuencia, a medida que aumentamos N, los sistemas
se vuelven mas caoticos y los OTOC locales y globales se vuelven casi idénticos. Esto se
evidencia por la disminucion simultéanea del valor promedio de K¢ () v sus fluctuaciones.

Ademés, podemos ampliar el analisis a la magnitud de las fluctuaciones en los OTOC
individuales y totales. Observamos que las fluctuaciones en (Kcr) son considerablemen-

97



5.2. RESULTADOS NUMERICOS.
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Figura 5.7: Promedio temporal de la contribucién cruzada al nimero de espines correlacionados,
(Kcr)/N (circulos sélidos rojos), en comparacién con el promedio temporal de la contribucién
cruzada de un solo sitio, (K¢p) /N (cruces moradas). También se muestra la desviacién estandar
SD(Kcr)/N (ec.(5.16), barras rojas), y la raiz cuadrada del promedio de varianza del sitio \/ o 2.

(ec. (5.18), barras moradas) ligeramente desplazadas para mayor claridad. (a) D;; o« 1/|ri;|*> (b)
Djj o< 1/|rij|%, (c) Dij < 1/|rij|, (d) Dij o< £/|rij| con signos aleatorios.

te mas pequernias que la fluctuacion de (Kip). Es facil ver que la relacion entre ambas
magnitudes se satisface,

1 7
SD*(Ker) = mZSD%KCT)

1 i ]
+ 2 Z Cov(Kgp(t), KLp(1)) (5.17)
i#]
o2 1 i /
= % + e Z Cov(Ker(t), Ké‘T<t)>
i#]
donde se denota 1
T — = ZSD%KZCT)' (5.18)

La linea superior representa un promedio sobre los sitios iniciales (barras moradas en la
figura 5.7). Por lo tanto, si no hubiera correlacién entre diferentes KA,(t), tendriamos
SD?*(K¢or) = 0%,/N. Esta tltima expresion se muestra valida en el limite de N grande,
como se puede ver en el Apéndice D.4. De hecho, vemos que la correlacion total (suma
de las covarianzas) disminuye muy rapidamente con N. Para N = 14 ya son del mismo
orden que nuestra precision estadistica. Particularmente para el Hamiltoniano que incluye
signos aleatorios en D;;, la correlacion entre diferentes K (t) esto sucede para N = 12.
Igualmente, se observa que la dispersion entre los valores de (K&7) /N es menor cuando «
es menor. Esto se puede racionalizar pensando que para « grandes los espines estan menos
interconectados y las fluctuaciones del sitio, observadas en cada (K%,)/N, dependen en
gran medida de los campos locales h; afectando al espin y sus vecinos.

La figura 5.8 muestra el valor promedio (Kcr)/N en escala logaritmica, donde desta-
ca el decaimiento discutido anteriormente. Si bien los tamanos no son lo suficientemente
grandes como para que los ajustes discriminen entre la caida exponencial o una ley de
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CAPITULO 5. OTOCS GLOBALES VS LOCALES.
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Figura 5.8: Valor de saturacion (Kcr)/N en escala log-log para anillos de espin que interactiian
con el Hamiltoniano (5.12), con D;j = 1/rf; por a = 1,2,3.

potencial, en el dltimo caso, el exponente de este decaimiento podria variar entre —4,3 y
—3, 1. Para sistemas completamente aleatorios se espera una caida exponencial resultante
de una distribucion homogénea de los estados en el espacio de Hilbert. Sin embargo, para
un Hamiltoniano DQ se espera que las regiones del espacio de Hilbert correspondientes
a una magnetizacion total tengan una distribucién normal, como es reflejado en la dis-
tribucion de coherencias cuanticas. Bajo este supuesto, es razonable que la caida con N
siga una ley de potencia en lugar de una ley exponencial. Independientemente de la forma
particular del decaimiento, la disminucion en la magnitud de los términos cruzados con
N deja evidencia de que, en sistemas cuya complejidad es lo suficientemente fuerte como
para generar dindmicas cadticas, los ecos globales estan compuestos por una simple suma
de ecos locales. Las contribuciones provenientes de fuera del sitio original seran totalmen-
te descorrelacionadas (pseudoaleatorias) y a tiempos largos se cancelaran entre si. Por lo
tanto, los OTOC locales y globales proporcionaran la misma informacion.

5.3. Conclusiones.

Este capitulo, hemos evaluado la hipoétesis, nacida a partir de resultados obtenidos en
experimentos de RMN [79], de que la evolucion (y magnitud) de OTOCs locales y glo-
bales se vuelve equivalente a medida que la complejidad y el tamano del sistema crecen.
Especificamente, hemos investigado la evoluciéon de los ecos generados por la secuencia de
coherencias cuénticas miltiples y el conteo del nimero de espines correlacionados deriva-
dos de la misma. Analiticamente, hemos demostrado que tanto las magnitudes globales
como las locales estan compuestas por términos locales y cruzados, donde esperamos que
(los ultimos) sean despreciables al aumentar el tamano y la complejidad del sistema.

A través de la evaluacién numérica en un anillo de espines interactuantes con variantes
del Hamiltoniano de cuantos dobles, observamos que la evoluciéon del ntimero de espines co-
rrelacionados obtenido a partir de la secuencia MQC presenta un comportamiento similar
independientemente de si se utilizan observables globales o locales. Tanto las magnitudes
globales K¢ (t) como las locales K, (t) siguen una misma ley de crecimiento después de un
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5.3. CONCLUSIONES.

régimen inicial, lo que nos permite asociar ambas medidas al crecimiento del ntimero de
espines efectivamente acoplados. La discrepancia Kor(t) = Kg(t) — K1(t) se vuelve rapi-
damente menor al 10 %, lo que permite, para todo fin practico, asignar cualquier de estos
valores al niimero preciso de espines correlacionados por la evoluciéon de una excitacion
local.

Después de un breve transitorio inicial, tanto los valores de las correlaciones cruza-
das, K¢r, responsables de la discrepancia en observables locales y globales, como sus
fluctuaciones tienden a cero. Esto respalda la idea de asignar a los observables globa-
les determinados experimentalmente (LE y MQC), el significado local que nos interesa
fisicamente. La interpretacion de las mediciones locales esta, consecuentemente, bien res-
paldada. Por otra parte, esto resulta consistente con los resultados de Zhou y Swingle,
Ref. [61], donde se estudia la contribucion de las correlaciones “diagonales” y “no diagona-
les” en un sistema de espin. De hecho, sus resultados implican, parcialmente, los nuestros.
Esto se debe a que el tamano del sistema local (K (¢)) contiene toda la contribucion de
los OTOC “diagonales” (junto con algunos “no diagonales”), mientras que lo que nosotros
denominamos correlaciones cruzadas (Kcp(t)) estd compuesto tnicamente por términos
“fuera de la diagonal” (Ec. (5.11)).

Nuestro enfoque destaca que la equivalencia de los OTOCs locales y globales se origina
en la cancelacion de las contribuciones a la senal de eco que llegan de sitios distintos al
de la excitacion inicial. En este caso, se observa un doble efecto: por un lado, la dinamica
de muchos cuerpos impide directamente el retorno de parte del estado evolucionado; por
otro lado, las partes de la polarizaciéon que efectivamente pueden revertirse llegan con
fases pseudoaleatorias a los sitios vecinos, anulandose entre si.

Este analisis le da un sustento analitico y numérico a la interpretaciéon de muchos
procedimientos experimentales, donde se asume el mismo comportamiento del OTOC
global y el local.

Las contribuciones originales de este capitulo se encuentran en preparaciéon para su
presentaciéon en una revista académica.
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Capitulo 6

Conclusiones.

A lo largo de esta tesis, mas alla de las conclusiones especificas alcanzadas en cada
capitulo, me parece fundamental resaltar el valor de los modelos “simples”. Estos modelos,
caracterizados por contener los ingredientes minimos para manifestar un efecto particular,
desempenan un papel fundamental en la comprension de fendémenos fisicos. Mucha fisica
se puede entender desde el anélisis de un péndulo o de un sistema de dos niveles (dos
péndulos). Aunque siempre existe la posibilidad de aumentar la complejidad, incorporar
nuevos ingredientes y anadir detalle segiin sea necesario, es crucial reconocer que, en la
mayoria de los casos, una comprension profunda de los sistemas simples constituye la
base para entender fenémenos més complejos e incluso para construir nuevos modelos a
placere.

En esta tesis, esta vision fue una prioridad, comenzamos en el Capitulo 2 con un modelo
de enlaces fuertes (Tight-Binding) de una particula. La eleccion del potencial de HHAA
nos permitio tener una transicion de fase a un valor finito de la amplitud del potencial sin
necesidad de recurrir a un modelo 3D, lo que hubiera sido numéricamente muy costoso.
Para nuestra motivacion esto era suficiente, aunque generalizaciones directas del modelo
permitirian agregar, por ejemplo, bordes de movilidad [108,235]. Las ideas utilizadas
para caracterizar la dindmica son, también, relativamente simples. La caracterizacion de
la dindmica a tiempos largos para la region extendida se basé en una extension directa
de la solucion para una cadena ordenada y una cadena dimerizada. En el punto critico,
aprovechamos desarrollos perturbativos y un juego entre las escalas de tiempo dadas por
las energias de los sitios y la magnitud del acoplamiento intersitio (hopping) nos llevo a
una expresion analitica para el coeficiente de difusion. Esta estrategia, i.e considerar un
sistema simple, nos permiti6é disenar un OTOC para extraer informaciéon del desparramo
espacial de la excitaciéon accediendo a un tnico sitio del sistema, sin la necesidad de
lidiar con la complejidad de cadenas de operadores de Pauli, simplemente implementando
proyecciones sobre cada sitio. Al interpretar al OTOC como un experimento de Loschmidt
eco donde el estado inicial evoluciona, es perturbado y evoluciona hacia atras, es intuitivo
pensar, que si deseamos extraer informacion del desparramo espacial, es necesario que esta
perturbaciéon marque de manera distinta cada parte de la cadena. El uso de un gradiente
de campo es la forma més simple, y nos permite obtener tanto el IPR como el segundo
momento de la funciéon de onda. No obstante, el eventual uso de otras perturbaciones, por
ejemplo otras dependencias en n del campo aplicado, nos permitirian extraer informacion
complementaria.
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En el Capitulo 3, los efectos de un ambiente son incorporados a la cadena de HHAA,
de una forma sencilla: como un ruido totalmente descorrelacionado. Esto genera, para
tiempos mayores al de decoherencia, una dinamica difusiva. Si el menor tiempo caracte-
ristico es el de la decoherencia observamos que el coeficiente de difusion decrece con el
inverso de la magnitud de este tiempo, lo que puede verse como una manifestacion del
efecto Zenon cuantico, donde el ambiente limita cualquier dindmica. Para magnitudes de
decoherencias menores, el coeficiente de difusion siempre decrece con la decoherencia en
el régimen extendido, mientras que en el régimen localizado aumenta, ya que las fluctua-
ciones ambientales impiden la localizacion de las excitaciones sistema. En el punto critico,
donde la dindmica coherente ya es inherentemente difusiva, el coeficiente de difusion se
mantiene aproximadamente constante hasta entrar en el régimen de Zenén cuéntico. La
observacion de esta estabilidad nos llevo a discutir (acaloradamente) sobre si el origen
de la misma era propia del punto critico o heredada de la difusién coherente. Esto nos
llevo a buscar otros Hamiltonianos modelo (con y sin transiciones de fase) que presenten
difusion coherente. Simultaneamente, buscamos entender cémo se relacionan el coeficiente
de difusion, la dindmica y el ambiente.

Nuestra primera estrategia fue pensar que el ambiente realiza mediciones a tiempos
fijos. Si bien esta vision “basica’” del efecto del ambiente es suficiente para explicar el com-
portamiento del coeficiente de difusion en los regimenes extremos, la misma fue refinada
para incluir una distribuciéon de probabilidad més realista en los tiempos de medicion. Este
altimo enfoque resulté muy efectivo para reproducir resultados numéricos del coeficiente
de difusion a partir de la dindmica coherente. Esto sugiere que es la difusiéon coherente lo
que origina la estabilidad observaba.

Para generar otros Hamiltonianos modelo con difusiéon, nuestro primer abordaje fue
construir sistemas cuasi-1D, donde, eligiendo adecuadamente su niimero de canales dispo-
nibles para el transporte y la magnitud del desorden podiamos generar dindmicas apro-
ximadamente difusivas en un rango de tiempo suficiente para su computo. Si bien estos
modelos pueden ser bastante cercanos sistemas realistas, los resultados no fueron inclui-
dos en esta tesis debido a que los modelos de Fibonacci y PBRM presentan una dinamica
difusiva mas limpia y con menor costo computacional. En el caso del PBRM, un anélisis
de la relacion entre los pardmetros del sistema, el tamano del mismo, y la velocidad de la
dindmica, nos permitié aumentar la ventana de tiempo donde la difusion es claramente
observable. Esto es necesario para testear la estabilidad del coeficiente de difusiéon para
distintas magnitudes del ambiente. En estos modelos, no solo corroboramos el comporta-
miento anticipado por el modelo de colapso, sino que también confirmamos la dependencia
universal en régimen difusivo: el coeficiente de difusion como funcién de la magnitud de
la decoherencia sigue una curva universal una vez que estas magnitudes son reescaladas
con las caracteristicas intrinsecas de cada sistema.

Esta difusion estable podria tener implicancias directas en muchos sistemas fisicos
y biologicos, como cadenas de espines interactuantes, &tomos frios, cadenas poliméricas,
microtibulos y cadenas de ADN. Esta robustez frente a la decoherencia, se ve reflejada
en diferentes efectos en el sistema, en particular en el decaimiento del LE a tiempos
largos (Pureza), el cual, a tiempos largos, entra en un decaimiento independiente de
la magnitud de la decoherencia. Sin embargo, este régimen es intrinsecamente distinto
del decaimiento independiente de la perturbacién inducido por el caos propuesto por
Jalabert & Pastawski [67], ya que corresponde a un decaimiento totalmente incoherente.
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CAPITULO 6. CONCLUSIONES.

Esperamos que la inclusion de cierta correlacion espacial en el ruido podria llevarnos
al decaimiento independiente de perturbacion en analogia con el resultado pronosticado
en [67]. No obstante, el estudio del LE se vuelve imprescindible para diferenciar el origen
de la difusion: si la dinamica difusiva es coherente el LE es cercano a 1 mientras que,
cuando es inducida por un ambiente, se inicia como una exponencial antes de convertirse
en ley de potencias que indica la casi total aleatoriedad del retorno.

En el Capitulo 4, se extiende el OTOC (GEA) desarrollado en el Capitulo 2 a sistemas
de espines interactuantes, estudiando sus diferencias con el equivalente de un cuerpo. Si
bien aparecen tanto diferencias cualitativas como cuantitativas, la secuencia GEA sigue
siendo efectiva para estudiar la localizacion espacial de excitaciones en sistemas unidimen-
sionales. En el caso de un sistema de espines, el término central del espectro obtenido deja
de ser el IPR para aproximarse a la suma de las magnetizaciones al cuadrado; el segundo
momento de este espectro ya no tiene una exacta correspondencia con la varianza de la

~

distribucién de magnetizaciones, sino que se corresponde con el OTOC Tr {[Hg, ,6(75)]}

Numéricamente, el crecimiento exponencial del espacio de Hilbert nos limita a trabajar
con cadenas de hasta 19 espines. Por esta razon, la secuencia fue testeada en primera
instancia para una cadena corta (7 espines) con tres Hamiltonianos de interaccion ba-
sados en la cadena de HHAA. Uno de ellos, no-interactuante, tiene una correspondencia
univoca con la cadena HHAA. El segundo incluye interacciones MB que conservan la mag-
netizacion total. El tercero no conserva la magnetizacion total. El segundo Hamiltoniano
representa una cadena de HHAA generada por campos Zeeman locales e acoplamientos
XY, a los que se anaden interacciones tipo Ising (MB). En este caso, realizamos un analisis
exhaustivo sobre el efecto de incluir estas interacciones. Luego de verificar que la suma
de las magnetizaciones (5?) y el término central de la GEA son aproximadamente igua-
les; estudiamos la dindmica y valores de equilibracion de S? variando la magnitud de las
interacciones de Ising. Observamos que las interacciones MB ayudan a la deslocalizacion
del sistema, moviendo el “valor critico” del potencial a amplitudes mayores. Sin embargo,
si las interacciones son fuertes (U > J), las mismas dificultan la dinamica de excitacio-
nes en el sistema, desplazando nuevamente el “valor critico” hacia valores menores de la
magnitud de la modulaciéon local. DindAmicamente, en las cercanias de la transiciéon entre
estados extendidos y localizados observamos un acercamiento muy lento (ley de potencias)
hacia los valores de equilibrio, lo que dificulta determinar el valor critico del potencial.
A futuro seria interesante realizar un estudio similar, pero computando los valores de-
rivados de la secuencia GEA. Esto podria representar una nueva fuente de informacion;
particularmente tomando provecho del segundo momento de esta distribucion.

Finalmente, en el Capitulo 5, buscamos evaluar la equivalencia de OTOCs globales y
locales en experimentos de RMN. En particular, un OTOC global (K¢) derivado de la
secuencia de coherencias cuanticas miltiples, cuantifica el nimero de espines correlacio-
nados de la misma manera que su versiéon local K, en principio solo accesible de manera
numérica. Intuitivamente, uno espera que la equivalencia de estos OTOCs sea una pro-
piedad intrinseca de los propios experimentos de eco de Loschmidt dados por la secuencia
de MQC. En este caso, cada eco observando es consecuencia los términos locales de estos
ecos, resultando despreciables las contribuciones cruzadas. Cuantitativamente, un poco de
algebra nos permite, al ser lineal la relacién entre los ecos globales observados y su corres-
pondiente K, separar las contribuciones de ecos locales y cruzados a K¢, determinando
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la cancelacion de los términos cruzados.

En la préctica, es imposible simular un experimento de RMN, principalmente debido
al ntimero macroscopico de espines y toda la riqueza de su dinamica. En consecuencia,
nuestra evaluacion numérica, debe ser restringida a no mucho mas de una docena de es-
pines, en lo posible conteniendo algunos de los elementos necesarios para representar un
sistema real. Por esto, elegimos testear la equivalencia entre observables locales y globales
considerando anillos de espines con interacciones a largo alcance dadas por el Hamilto-
niano de Cuantos Dobles y desorden Zeeman de sitio. La eleccion de un anillo frente a
una cadena se debe a que buscamos que todos los sitios sean equivalentes, minimizando
los efectos de borde y facilitando el anélisis al incrementar N. Sin embargo, es crucial que
sean equivalente pero no iguales, a modo de evitar las recurrencias propias de sistemas
con alta simetria, lo que se logra introduciendo desorden de sitio. La interaccion de largo
alcance permite la creacion de coherencias de orden mayor a dos, como se observa expe-
rimentalmente. Nuestros resultados numéricos confirman que a medida que se aumenta
el tamano del sistema y la complejidad de las interacciones, el OTOC local y el OTOC
global se vuelven equivalentes; es decir, la diferencia entre los mismos tiende a cero con
N. Este resultado es fundamental para la interpretacion de la dinamica que controla el
desparramo (efecto mariposa) que resulta de los experimentos, especialmente de aquellos
que verifican la Hipotesis Central de Irreversibilidad [6,79].

Sintetizando, a lo largo de esta tesis hemos explorado dinamicas cuénticas generadas en
una variedad de condiciones: sistemas tanto cerrados como abiertos, de una sola particula
y de muchos cuerpos. Asimismo, hemos examinado distintas formas de extraer informa-
cion de estos sistemas, tanto directamente de la dindmica como mediante de diferentes
OTOCs y de ecos de Loschmidt. Cada anélisis nos ha proporcionado una comprensiéon mas
profunda de los procesos involucrados los sistemas estudiados. Mirando hacia adelante, se
abren multiples caminos para futuras investigaciones:

e Introducir correlaciones en el ruido ambiental de manera de que la decoherencia
no impida la reversiéon de la dindmica de las excitaciones, al menos dentro de una
longitud de correlacion. Esto permitiria de explorar el decaimiento independiente de
perturbacion sugerido en [67] ya adentrados en el régimen cuanticamente difusivo.

e Explorar la estabilidad de la dinamica difusiva ante la introduccién de interacciones
MB, de un ambiente correlacionado, o directamente un ambiente con una dinamica
no-Markoviana.

e Introducir ruido Zeeman en la dinamica de un sistema MB y posibilitar la genera-
lizacion del Quantum-Drift para su implementacion numérica.

e Observar el efecto de fluctuaciones en los campos Zeeman (ruido), en la dinamica
de OTOCs en un sistema many-body; en particular, en el crecimiento del nimero
de espines correlacionados y la equivalencia entre los OTOCs globales y locales en
estas condiciones.

e Evaluar la Hipotesis Central de Irreversibilidad en los sistemas anteriores mediante
un crecimiento sistematico de la complejidad del sistema (incluyendo un aumento
del tamafo) y una simultanea reduccion del acoplamiento con el ambiente.
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Apéndice A
Segundo momento del espectro GEA.

En este apéndice se presenta con mayor detalle el célculo del segundo momento del
espectro GEA, tanto para el caso de una particula como para su generalizaciéon a sistemas
de espines.

A.1. Un cuerpo.

De la evaluacion del eco proveniente de la secuencia ZOGE, Ec. 2.29 y 2.30, tenemos:
Z b ()b (8) 7720 =3 = Qe (A.1)
J

se puede observar que el segundo momento del espectro observado (@);) corresponde al
segundo momento de la funciéon de onda. Para esto, vasta evaluar la derivada segunda del
eco respecto a , evaluada en ¢ = 0:

_OMG ) = T = 0 a0 om = (A.2)

0p?
= Z|b )2 () [2(m? — 2nm + n?) (A.3)

»=0

= 2 (0P’ - (ann(wr?) (A1)

n

= 200( ) (A.5)

donde hemos utilizado Y |b,,(t)|* = 1. Este resultado es valido no solo para una condi-
cion inicial localizada, sino para todo estado inicial puro.
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A.2. SISTEMAS DE ESPINES.

A.2. Sistemas de espines.

Generalizando a sistemas de espines tenemos:
B 1
Te{(55)%}

nuevamente, basta derivar dos veces respecto ¢ y evaluar en cero para obtener el segundo
momento de la distribucion de @);.

M(t,¢) T { S0 S (0} = Qe (M)

S el O?M(t, p) _ 2 L1 ey &
D i i {FuSifS0} (A7)
_ 2 n {11,550} (A8)
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Apéndice B

Corriente Estacionaria y Formula de
Green-Kubo.

En la primera seccion de este apéndice definimos la corriente en estado estacionario y
derivamos una expresion aproximada de la corriente en funcion del coeficiente de difusion.
Los resultados aqui descritos han sido realizados por Emilio Alvarez Navarro como parte
de su tesis de maestria [179].

En la segunda seccién mostramos como calcular el coeficiente de difusion a partir

utilizando los autoestados y autoenergias del sistema, a partir de la formula de Green-
Kubo.

B.1. Corriente Estacionaria.

Para generar una corriente, se coloca una fuente y un sumidero de excitaciones (in-
coherentes) en los bordes de la cadena. Esto se modela incluyendo términos adicionales
en la ecuacion maestra de Lindblad (Ec. (3.1)), que se convierte en

dp . 1 [~ . . . .
L Llp) = 5 |Hop] + Lol0] + £,05] + Lald], (B.1)
dt h

donde H es el Hamiltoniano de la cadena, L4 = —% M) (n], [0 (n], p]] es el disi-

pador del texto principal, mientras que los términos adicionales,

051 =2 (1) 019100 (01 = 510) 015~ 510) 1) (B2)

gl =2 (10) (V1 9IN) 0] 3 1) (V15 = 5513 (V1) (B.3)

son dos operadores modelando el bombeo en el primer sitio (|1)) y el drenaje desde el
ultimo sitio (|IV)). Aqui |0) es el estado de vacio, donde no hay excitacion presente en el
sistema [137,277]. Para simplificar, las tasas de bombeo y drenaje se establecen para que
sean iguales en magnitud (v, = 74). Al resolver la ecuacion (B.1) en estado estacionario
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B.1. CORRIENTE ESTACIONARIA.

(L[pss] = 0) se puede calcular la corriente estacionaria,

i R
Iss = #<N|pss|N>7 (B4)

siendo pgs el operador de densidad de estado estacionario [137,277].

B.1.1. Corriente en estado estacionario: método de tiempo de
transferencia promedio.

Dado que el enfoque de la ecuaciéon maestra discutido anteriormente es numéricamente
costoso, para N grandes utilizamos el método de tiempo de transferencia promedio (ATT),
como se describe en [137]. El tiempo promedio de transferencia 7 se define como

= Ooot(N| exp (—Lent) pO)IN) dt = 2 (NILZH(O)|N) - (B.5)

T

donde Leg es Ec. (B.1) sin el termino de bombeo.

En [137] se ha demostrado que la corriente de estado estacionario determinada a partir
de la ecuacion maestra (B.1) en ausencia de desfase depende tnicamente del tiempo
promedio de transferencia, es decir

Y
lyy=—"—. B.6
YT + R (B.6)

Hemos verificado numéricamente que la Ec. (B.6) es valida también en presencia de des-
fase, por lo que a continuaciéon la usamos debido a su menor complejidad numérica junto
con una construcciéon heuristica, que se detalla a continuacién.

Construccion heuristica del tiempo de transferencia medio.

El método ATT nos brinda la posibilidad de construir heuristicamente el tiempo medio
de transferencia considerando los tiempos caracteristicos de difusion y drenaje inducidos
por desfase.

Dado que en equilibrio la probabilidad de estar en el sitio N es 1/N y la tasa de drenaje
es v4/h, podemos estimar el tiempo de drenaje como AN/~,. Luego, para determinar el
tiempo de difusion, sabemos que una excitacién se mueve de un sitio a un vecino con un
tiempo promedio a*/(2D). Adema4s, la excitacién se mueve como un paseo aleatorio y el
namero total de pasos requeridos en 1D es N(N — 1). Por lo tanto, estimamos el tiempo
de difusion como N(N — 1)a?/(2D) [278,279]. Asi, sumando el tiempo de drenaje y el
tiempo de difusion tenemos

N (N—-1)N ,
T = h% + Ta . (B?)

La Figura B.la compara I, en funcion de la decoherencia calculada usando los tres
métodos discutidos arriba: la solucion estacionaria de la ecuaciéon maestra (B.1) (ME), el
método ATT (B.5-B.6), y la formula heuristica (B.7). En este tltimo caso, el coeficiente
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APENDICE B. CORRIENTE ESTACIONARIA Y FORMULA DE GREEN-KUBO.
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Figura B.1: (a) Corriente de estado estacionario vs. v4/J para el modelo HHAA para N = 100
y W = 2J obtenido con tres métodos diferentes: (i) Ecuacién maestra (ME, curva verde (gris
claro)), (ii) método del tiempo de transferencia promedio (ATT, circulos rojos) y (iii) expresion
heuristica (Ec. (B.7), azul (gris oscuro) curva). (b) Corriente de estado estacionario reescalada
IssN? en funcién del desfase (v4/.J) en los regimenes extendido, critico y localizado (colores/gris)
para diferentes tamafios de sistemas N = {20,40,100}. IssN? se calcula utilizando el método
ME y se muestra con diferentes tipos de guiones dependiendo de N. La estimacioén (heuristica)
basada en el coeficiente de difusion de la corriente para N = 1000 se incluye con curvas de puntos
v guiones amarillos (gris claro).

de difusiéon D se ha calculado utilizando el enfoque de Green-Kubo, discutido en la seccion
siguiente.|Ec. (3.2)]. Se observa una buena concordancia general entre los tres enfoques.
Las desviaciones con un desfase pequenio se deben al tamafio finito del sistema (N = 100),
por lo que la excitacion alcanza balisticamente el borde de la cadena en un tiempo menor

que T4 = h/7,.

B.2. Fo6rmula de Green-Kubo.

El coeficiente de difusion D en presencia de decoherencia para el modelo de Haken-
Strobl se puede calcular a partir de la expresion de Green-Kubo, utilizando solo las (g,,)
autoenergias y los autoestados (¢*) del Hamiltoniano,

Ho! = e, 0. (B.8)

Siguiendo la derivacion de Ref. [167]:

. al )
D=5 3 T e@F (B.9)
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B.2. FORMULA DE GREEN-KUBO.

10° . 10° 107!

[ 1
104} o : 1\\1675 0J
Fe =
[a\l A ! N=100 =—— 102}
S 103} 1 ' N=1000 ——
-~ ! ' N=4000 —— 1
Q 102 ! 2(J/p) = = 10 ¢

1031

o
5 10!
_4
. 100 . 10% ¢
Gy -2
SE. 1077 ' W=2J W=20]
Q10 : 1 N=d0 . W=
Yo X Nz N=100 —— 100} =40
102 N=1000 —— N=100 =
: N=4000 —— N=1000 ——

103 L e L s 103 L TR~ el L e ey B e o
10% 10% 102 10t 100 10! 102 10% 10% 102 100 100 100 102 10% 10° 102 10t 100 10! 102

(a) Decoherenciao/J (b) Decoherenciao/J (¢) Decoherenciao/J

Figura B.2: Coeficiente de difusion D/a?, calculado usando Green-Kubo (Ec. (3.2)), vs.
ve/J para el modelo HHAA con decoherencia Haken-Stobl para diferentes valores de N =
{40, 100,1000,4000}. La figura (a) es para W/J = 0 (régimen metélico), la figura (b) es para
W/J = 2.0 (MIT) y la figura (c) es para W/J = 20 (régimen aislante). Las lineas discontinuas
verticales indican los valores de 4 debajo de los cuales los efectos de tamano finito son relevantes.
La dependencia de este valor con N se muestra en la parte superior de la flecha negra.

donde 4 es la magnitud de la decoherencia, w,, = €, — €, es la diferencia de energia
entre los autoestados py v,y j,. es el operador de flujo en la base propia:

~

. — [ - - * v
Juu(W) = % Z(“ T ) Py O o - (B.10)

En la expresion anterior, # es un vector unitario que indica la direccion de transporte, 7, .,
es el vector que conecta los sitios en posiciones n y m, ¢! es la amplitud del autoestado
v en el sitio n ¥ Hypm = (n|H|m) es el acoplamiento entre n y m sitios. Para sistemas 1D
con interacciones a primeros vecinos, @ -7y, =m—n=xay Hupm = J(Omnt1 + Imn-1)-
Por lo tanto,

o Ja * 4 14
Jvp = Zf Zgbﬁ (Prs1 — Pnt)- (B.11)

La ecuacion (3.2) es de utilidad para estudiar simultaneamente la dependencia con v,
y N del coeficiente de difusion en varios modelos. La figura B.2 muestra el coeficiente de
difusion D del modelo HHAA en los tres regimenes en funcion de la fuerza de desfase
para diferentes longitudes de cadena N. Para tasas de decoherencia pequenas observamos
una clara dependencia de D del tamano del sistema. Esto se debe al hecho de que cuando
la tasas de decoherencia es pequena, la excitacién alcanza los limites antes de que pueda
establecerse la difusion. Definiendo la escala de tiempo tipica para que la decoherencia
afecte la dinamica como 7, = %, podemos estimar la magnitud de la decoherencia por
debajo de la cual los efectos de tamano finito son relevantes, comparando 74 con el tiempo
necesario para alcanzar balisticamente los limites para el caso limpio (W = 0). En el
régimen balistico (W < 2J) el valor de la tasa de decoherencia por debajo la cual el efecto
de tamario finito comienza a ser relevante disminuira proporcionalmente a 1/N, mientras
que en el régimen difusivo (W = 2J) con 1/N? (ver lineas discontinuas verticales en
Figuras B.2ab). En el régimen localizado, los efectos de tamarfio finito son insignificantes
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si el tamano del sistema es mayor que la longitud de localizacion.
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Apéndice C

Solucion analitica para la difusion.

En este apéndice mostramos que la Ec. (3.9) para p(t) = e /™ /7, genera una di-
namica difusiva a tiempos largos y encontramos soluciones analiticas en algunos casos
paradigmaéticos. La ecuacion (3.9) se puede reorganizar de la siguiente forma:

o2 (t) = (1) + / dtip () 0 (¢ — ) (1)

notando que <1 - fotp(t)dt> = et = 7,p(t) y definiendo f(t) = 7,9(t) + f(f dt;g(t;)
siendo g(t) = a2(t)p(t).

La estrategia habitual para resolver este tipo de ecuacién es utilizar la transformada
de Laplace en la ecuacion,

oir(s) = F(s) + aip(s)P(s),

donde 0% ,(s), F(s) y P(s) = 57'4,1—1-1 son las transformadas de Laplace de o2(t), f(t) y p(t)

respectivamente.

Si identificamos G(s) como la transformada de Laplace de g(t), obtenemos F(s) =

G(s)(755), v:

F(s)

N _ B (576 +1)2 1 2
orr(s) = 1——73(3) = Q(S)Tqb(b—

= G(s)Ty | —— + — +1|. C.2
O G 2
Dado que la transformada de Laplace de t"u(t), donde wu(t) es la funcion escalon, es
1L, observamos que o2(t) serd difusiva a largo plazo si G(0) es finito y distinto de cero,
una condicién que se cumple trivialmente en los sistemas considerados. En este caso,
D = 90 _ [ os®p)di

= 200 como encontramos en la ecuacion (3.3).
27’¢, 2’7’4) ?

La transformada inversa de o7, (s) se puede realizar analiticamente en varios casos
(por ejemplo oZ(t) = A,t*), sin embargo, aqui solo discuta dos casos paradigmaticos
oa(t) = 2Dgt y o2(t) = vit?. En el primer caso, la difusién difusiva, encontramos o?(t) =

2Dyt, es decir, la dinamica de 02 no se ve afectada.
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En el segundo caso, la propagacion balistica, la solucion es
_t
o (t) = 2740 <T¢ (e 6 — 1) + t) : (C.3)

que para t < T4, 0%(t) ~ vit?, mantiene su comportamiento balistico, pero se vuelve difu-
sivo para t > 74, 0%(t) ~ 20374t = 2Dt. La misma expresion se encuentra en una cadena
tight-binding ordenada y con decoherencia de Haken-Strobl utilizando el formalismo de
Lindblad [166, 183].

Es importante tener en cuenta que si se consideran dos procesos de Poisson, p;(t) =
e~y pa(t) = et/ / tauy, el efecto combinado sera equivalente a considerar solo un
proceso con p(t) = e /7 /7 con T = T?J:;, es decir, la suma de los inversos de los tiempos
caracteristicos. Este resultado es estandar en sistemas clasicos donde se considera una
particula que se mueve con velocidad vy hacia la izquierda o hacia la derecha con la misma
probabilidad después de un evento con cualquiera de los dos procesos. El coeficiente de
difusion, en este caso, es D = v21 = v A2 = Dlm, que para T, > T genera una

T1+T2
correccion lineal al coeficiente de difusion asociado al proceso py.
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Apéndice D
Calculos Auxiliares Capitulo 5.

Este apéndice retine calculos, derivaciones, y resultados auxiliares del Capitulo 5.

D.1. Coherencias Cuanticas Multiples.

El orden de coherencia m corresponde a transiciones entre estados de multi-espin en
bases de Zeeman que difieren en la magnetizacion m. La matriz de densidad se puede
expresar mediante una superposicion de contribuciones de diferentes érdenes como

= Pm (D.1)

m

donde el componente de coherencia cuéntica m se comporta bajo una rotaciéon como,

eigbé‘zﬁmefidxé'z _ ﬁmeim¢~ (D.Q)

Formalmente, la intensidad de coherencia m se puede define como

1 L.
9m = — 7 3 Tr {pmp—m}'
Tr {(S Z)Q}
Experimentalmente, al implementar rotaciones sistematicas alrededor de Z de pasos ¢, la
distribucion de coherencia se puede decodificar mediante la transformacion de Fourier de

las senales recopiladas,
1
Tr {(Sz)2}

donde ¢ = 27/M, y M/2 representa el orden de coherencia maximo a decodificar. Al
expandir p(t) en la forma (D.1), considerando p(0) = S* y usando la ecuacion (D.2)
(propiedad de rotacion), las senales recopiladas satisfacen

1 . ,
Mg(p,t) = ——=Tr by P Om ¢ = e
= OIS WA RS oY

Me(o,t) = Tr {e*iQﬁS’ZpA(t)emﬁzeﬁ:Ltszefﬂlt} 7
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D.1. MAPEO A OTOCS DIAGONALES Y NO-DIAGONALES.

Se puede notar que Mg(¢ = 0,t) = > gm es la intensidad del eco de Loschmidt a tiempo
t [258]. Separadamente, se puede observar que el segundo momento de esta distribucion
MQC es un OTOC global [267]:

Zm29m - 8¢MG ‘¢ 0

1

e {[5[55°0)] 50}

1

_ _W Tr { [s 32@)] [s S*z(t)] } .

D.2. Mapeo de las contribuciones locales y globales al
tamano del grupo K con OTOC diagonales y no-
diagonales.

De las Ecs. (5.5, 5.8) tenemos,

Molt,6) = N;V s THS (RIS (1)R) (D.3)

— WZTr{Sf(t)RTS‘j(t)R}
Mi(t.6) = g 0 THSIORIS ()R)

1 A N
MCT<t7 (b) = N2N_2§ Tr{SzZ<t)RTSjZ(t)R}7
/[:7j
i#j

aplicando la derivada segunda a cada término y analizamos sus contribuciones a los

OTOC,
Y omign = — BMa(e )],
al hacerlo, podemos escribir explicitamente los ecos como una combinaciéon de contribu-

. 2
ciones “diagonales” de la forma »,  Tr { [S,f, Sf(t)] } y “no-diagonales”
> w{[s50) S 80)}
i?j? 7q
J#i o k#q
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tan como son definidos en Ref. [61]. De donde sigue que los términos “diagonales” solo
contribuyen a los ecos locales M (t, ¢):

~ 9 (Z Tr{[é’,‘j,Sf(t)r}
+ZT1~{[S;,55 ] [Sk,SZ( )}} ,
o

mientras que en el término cruzado Meor sbélo aparecen términos “no-diagonales™

O*Mer(t, ¢)

9p?
=23 m{[s= 8] [ %50 }
i#]

-2 3w {[5;.5000] [$6.50] .

1,3,k,q
i#]

N2V 2 Kop(t) = —2

D.3. Crecimiento a tiempos muy cortos.

Para derivar la expresion para el comportamiento a corto plazo de K¢ (t) comenzamos
usando la expansion de Baker-Campbell-Hausdorff en Sz( ), que aproxima la evolucion
temporal de Sz bajo un Hamiltoniano H:

() ~ §Z+(—¢%)[S*Z,7%] (D.4)
[Sz,SZ(t)] ~ [SZ,SZ+(—¢%)[SZ,7%]] (D.5)
~ (i) [5715° )] (D.6)

En este punto, llevando a cabo el conmutador para el Hamiltoniano cuantos dobles.
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D.3. MAGNITUDES INDIVIDUALES Y COVARIANZA.

(5.12) tenemos:
|5, 15, Hel| = 4n*Hpe. (D.7)

Finalmente, sustituyendo estas expresiones en la Ec. (5.9) y simplificando, se llega a:

16t2h? ~
Ko ~ 2—ATI{’H%Q} (D.8)
Tr{(SZ)Q}
16t%h? . .
= —————~ Y DiDyTr {HDQi,jHDQk,Z}
Tr {(52)2} ok L kAl
16t2h> o a
= 2o N 2D DT {5:878157 )
Tr {(52)2} ok i ke
16t2h?

= Tr{ };41)2 T { 5288757}

1 t2h?
— 2 S ADE

i#j
32t2h?
= > D (D.9)

Siguiendo el mismo procedimiento para una OTOC local, encontramos que el creci-
miento inicial solo difiere en un factor de dos:

Kift) = =55 QZTr{[SZ Si(t ]2} (D.10)
2

= S16t°h% ) " 2D7 2N (D.11)
i,j
16 2%2 2
~ th > D} (D.12)
i,

D.4. Comportamiento de magnitudes individuales K'(t)
y covarianza.

En el texto principal y en las secciones anteriores del apéndice, hemos demostrado
que K,(t) se puede expresar como un promedio de las contribuciones del sitio, denotado

como K!(t). Cada una de estas contribuciones exhibe una desviaciéon minima del valor
promedio K, (t), un hecho respaldado al observar la varianza de este promedio o comparar
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Figura D.1: Promedio temporal de la contribucién cruzada al niimero de espines correlacio-
nados, (Kcr). La desviacion estandar del valor promedio SD(Kcr) (Ec. (5.16), barras azules),

y la raiz cuadrada del promedio de varianza del sitio sobre N (\/c%;/N, barras verdes) que

estan ligeramente desplazadas para mayor claridad. (a) D;; < 1/|ri;|* (b) Dij o< 1/|rij|%,

D;j o< 1/|ri5], (d) Dij o< £/|ri;| con signos aleatorios.

(c)

directamente diferentes curvas, como se muestra en la Fig. 5.4. Las curvas correspondientes

a diferentes sitios iniciales difieren principalmente en las fluctuaciones.

Sin embargo, dispersion entre estas curvas se puede extraer informacion de la correla-
cion entre espines:

(Ker) =

<K(2JT> =

1 ;
¥ ;(Kcﬂ

Y]

1

1 i .
e Z(KCTKgJﬂ

= N2 Z(KCT +Z KérKly)

i

’j
1#£]

Expandiendo Ec. (5.16) en contribuciones individuales se tiene:

SD?(K¢
i oy [ [ () K ()t = (Kor) (Ke)]

T) =

lo que puede ser reacomodado en la siguiente forma,

TN2

i)

SD*(Kor) =

e Z SD?(Kb,)

/maft KCT C’T( ) — <KZCT><K6T>) dt

2
_ Ycr
N

1 ; ;
+ Nz Z Cov(Kop, Klp).

i#]

(D.13)

(D.14)

(D.15)
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D.5. ANILLO ORDENADO
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Figura D.2: (a) Desviacion estandar SD(Kcr) en funcién de N. (b) Covarianza total (Ec.
(D.17)) en funcién de N.

Donde se denota,
— 1

T =~ 2 SDH(Kisy), (D.16)
y se define la covarianza total como:
1 ; ,
Total Cov. = Nz Z Cov(Kop, Klp). (D.17)

i#]

este tltimo término da una medida de la correlacion total entre las dindmica de diferentes

; o o« L . , . . . 0'2
K. Sila dindmica de espin no estuviera correlacionada, tendriamos SD?*(Kcr) = “$2. La
Fig. D.1 compara estas magnitudes para Ko, vemos que las barras de error, que repre-

2

ag . .
sentan SD(Kcor) y \/ ~5F (barras azules y verdes respectivamente), se acerca a medida
que N aumenta. Para un sistema con @ = 1 maés signos aleatorios en las interacciones,
esta diferencia es pequena incluso para un N pequeno.

D.5. Anillo ordenado

Los resultados principales, incluidos dentro del Capitulo 5, fueron realizados conside-
rado la presencia de desorden en los campos Zeeman h; del Hamiltoniano dado por la
Ec. (5.12), debido a dos razones: (1) Es experimentalmente razonable considerar que, si
bien todos los sitos son en media equivalentes, existe un desorden que los hace ligeramente
diferentes uno de otros; (2) la presencia de estos campos rompe la simetria del sistema,
borrando las recurrencias propias de los sistemas pequenos (a costa de un mayor costo
computacional). Sin embargo, las ideas generales discutidas en el capitulo 5 siguen siendo
validas en ausencia de desorden, especialmente al tratar con sistemas grandes. A modo de
ejemplo la Fig. D.3 muestra la evoluciéon de ntimero de espines correlacionados calculados
local y globalmente para interacciones con un rango o = 3y a = 1 (paneles (a) y (b)
respectivamente); el panel (c¢) muestra los valores de saturacion de la diferencia de estas
magnitudes en funcion de N para las curvas presentadas en (a) y (b). Se observa un com-
partimiento similar al encontrado incluyendo los campos Zeeman aleatorios, solamente
con un nivel mayor de recurrencias en los términos cruzados.
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Figura D.3: Evolucién temporal de la OTOC local K (t) (curvas continuas) y la OTOC global
K¢(t) (curvas discontinuas), para un sistema de anillos con interacciones dadas por la ecuacion
(5.12) en ausencia de campos Zeeman, i.e. h; = 0 Vi. Las interacciones son de la forma, (a)
D;j ﬁ, (b) Dj; x ﬁ (c) Valor de saturacion (Kcr)/N en escala log-lin en funcién del
tamano del anillo N para las curvas correspondientes a las paneles (a) y (b).
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Apéndice E
Consideraciones numeéricas

Una manera de resolver la ecuaciéon de Schédinger es encontrar los autovectores de H
(diagonalizarlo) y expandir el estado inicial en términos de dichos autovectores (|¢,)), ¥
colocar las fases correspondientes para un dado tiempo:

() = T(#) [ (0) = e ™/ [(0)) = Y~ ape ™/ i)

En ésta tesis, esta estrategia fue utilizada para la simulacion de las dindamicas (y ecos)
de sistemas de hasta 7 espines con interacciones MB y para sistemas de hasta 1000 sitios
en sistemas de una particula. Sin embargo, no es aplicable para sistemas de espines mas
grandes debido a que la dimensién del espacio de Hilbert crece exponencialmente con
el namero de espines N del sistema, y junto con esto el costo computacional (tanto en
tiempo como en memoria) de esta tarea.

Existen diferentes alternativas que pueden utilizarse para obtener una evolucién apro-
ximada de la solucién sin recurrir a la diagonalizacion exacta. En esta tesis se utilizo para
dicha tarea el algoritmo de Trotter-Suzuki (TS), el cual preserva la unitariedad de la evo-
lucion (conserva probabilidades), y se basa en aproximar el operador evolucion mediante
una secuencia de operadores de evolucion adecuadamente elegidos. Asimismo, el algoritmo
de Trotter-Suzuki es naturalmente extensible al Quantum-Drift, donde la presencia de un
ambiente es incluida como un término estocastico en el Hamiltoniano.

Para realizar las simulaciones con mas de 7 espines MB en esta tesis se utilizo el
algoritmo TS a 4to orden implementado por Axel Dente, Pablo Zangara y Carlos Be-
derian [230], tanto en su version secuencial como paralelizada (GPU), ambos algoritmos
estan implementados en Fortran 90. Para sistemas de una particula, aislada o en interac-
cion con un ambiente (Quantum-Drift), la implementacion se realiz6 en C+-+, haciendo
uso de la biblioteca Armadillo [280] para una computacion eficiente. A continuacion se
resumen los puntos principales del algoritmo tal como se presenta en las tesis de Axel
Dente, Pablo Zangara y Fernando Cucchietti.
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E.1. ALGORITMO DE TROTTER-SUZUKI

E.1. Algoritmo de Trotter-Suzuki

La idea del algoritmo es encontrar una descomposicion de H que provea un conjunto
de evoluciones simples que aproximen la evolucion exacta Ut (t). Si, H = ZZ 1 H,;, entonces

K m
U(t) = e = e T = Jim <H e_imi/m) ; (E.1)

m—0o0
i=1
lo cual a primer orden es,

Ut) ~ Uy (t) = et emitHx (E.2)

Us(t) = Ul(=t/2)Uh(t/2), (E.3)
Us(t) = Ua(pt)Us(pt)Uz((1 — 4p)t)Un(pt) Us(pt), (E.4)

donde p = 1/(4 — 4'/3). A fines practicos, la evolucién de la funciéon de onda hasta un
tiempo ¢ se realiza con sucesivas evoluciones de Uy(dt), bajo la condicion de que dt sea
suficientemente pequeno en comparacion con la escala de tiempo mas rapida dada por H.

E.1.1. Una particula

Para sistemas de una particula, cuyo Hamiltoniano puede escribirse como un Hamilto-
niano tight-binding, la descomposiciéon del mismo suele aparecer naturalmente al observar
la estructura “geométrica” del mismo. A modo de ejemplo, en una cadena unidimensional,
con hoppings a primeros vecinos y energias de sitio dadas, la siguiente separacion para el
Hamiltoniano resulta natural:

~

Ho= Y enln) [+ —J(In) (n+ 1] +|n+1) (n])
= ) enln)(n

+ > —J(12n) 2n+ 1] + 2n + 1) (2n])
+ Y =J(12n) (2n — 1] + |20 — 1) (2n])

= 7:[0 + ﬁpar + ﬂimpar

en este caso, la evolucion de cada término puede obtenerse analiticamente. Utilizando
la funcién de onda escrita en la base de sitios, el término H, coloca fases en cada sitio,
mientras que pr y Hlmmr generan una evoluciéon entre dos sitios contiguos:

U (t + 0t) _( cos(Jdt/hbar) isin(Jot/hbar) U (t)
( Ypa1(t + 0t) ) o ( isin(Jot/hbar) cos(Jot/hbar) ) ( Ui (t) ) ) (E.5)
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APENDICE E. CONSIDERACIONES NUMERICAS

Evolucién =~ = = = > ~
Tl B ®®® ® ® ® H

Evolucion 2 & < = < = ~
pres () @ ® ® ® ® ® #y0r

., # X\ # X # N
Evolucién X
Impares Himpar
Figura E.1: Esquema de la “ITrotterizacion” de un Hamiltoniano tight-binding a primeros vecinos:

la evolucién se descompone en un Hamiltoniano de energias de sitios Hy y de evoluciones entre
2 sitios, entre sitios pares y el siguiente H,q,, y entre sitios pares y el anterior Himpar-

.....

la evolucion total se logra intercalando la evolucién de los sitios pares, impares, y fases
mediante la prescripcion de la seccion anterior, como se esquematiza en la Fig. E.1.

Para dimensiones mayores, e interacciones entre mas vecinos la generalizacion es di-
recta. Sin embargo, existen situaciones donde es conveniente realizar diagonalizaciones
exactas de algunas partes del Hamiltoniano, por ejemplo cuando el mismo esta compues-
to de cimulos/grupos de sitios con energias y hoppings (internos) de magnitud aleatoria,
pero los hoppings entre cimulos presentan una estructura dada. En este caso, resulta apro-
piado Trotterizar las evoluciones entre grupos, intercalandolas con evoluciones “exactas”
de la dindmica dentro de cada grupo. Otra situaciéon del mismo indole, es en el Hamilto-
niano PBRM, donde las interacciones son todos con todos y aleatorias. En este caso, para
la aplicacion del Quantum-Drift, fue necesario diagonalizar el Hamiltoniano y obtener los
operadores de evoluciéon a un paso de tiempo dt, cuyas evoluciones fueron intercaladas
con la fases aleatorias producto de la parte estocéastica del Hamiltoniano.

E.1.2. Sistemas de espines

Consideremos el Hamiltoniano de espin:

N N
H=> "> hSr+ > > JnSesy (E.6)

71=1 a=z,y,z 7,k=1a=z,y,2

donde S7' es el operador de espin en el sitio j y proyeccion a = z,y, 2. Los pardmetros hf
describen campos locales y J7 son las constantes de acoplamiento entre espines.
Asumamos que el sistema de N espines esta descripto por un estado,

@) = ZCi 1Bi) (E.7)
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E.2. PARALELISMO CUANTIANTICO

expandido en la base de Ising (|3;), productos tensoriales de los autovectores de cada
S%) y ¢i coeficientes complejos. El estado del sistema a tiempo ¢ serd |®;) = U(t) |®g) =
e itH/h D).

La descomposicion utilizada para el Hamiltoniano (E.6) viene dada por los térmi-
nos de un espin y los términos de interacciones espin-espin. Cada uno de ellos se rota
adecuadamente para obtener su representacion diagonal. Por esta razén, consideremos
los operadores RY a2 Y R /2,47 los cuales rotan respectivamente a ij e gjy a S'JZ Las
rotaciones globales se definen mediante los productos, Y = ®;R? YR X =®;R: /2 -
El objetivo es aplicar solo correcciones de fase “diagonales” a la base de Ising. La
evolucion parcial et h produce una fase trivial (para la implementacion) para o = z
debido a la base elegida, mientras que para o = x, y se requiere la aplicacion de rotaciones.

Tenemos entonces, para las operaciones de un espin,

exp (—1— Z Z ho‘Sa> H exp ( %Zh;“ Af) , (E.8)

j=1 a=zy,z a=z,y,z

donde las operaciones las exponenciales que no involucran operadores en z deben rotarse.

De la misma manera,

N N
exp <_i%z 3 Jgkgggg> ~ I e (—i%ZJﬁij‘Sg‘), (E.9)

7,k=1a=zy,z a=x,y,2 7,k=1

donde nuevamente los términos en z involucran operadores diagonales y los restantes
deben rotarse.

E.2. Paralelismo cuantiantico

El algoritmo anterior, nos proporciona una manera rapida de evolucionar funciones de
onda, lo cual en principio nos permitiria realizar la evoluciéon de ensamble evolucionando
cada elemento de la base del ensamble y promediando adecuadamente con una necesidad
de memoria mucho menor a la necesaria al utilizar la matriz densidad. Sin embargo,
evolucionar las 2V funciones de onda del ensamble tiene un coste temporal algo. Por esta
razon, solo se recurrié a este método para sistemas de hasta 8 espines. Para espines de
tamanos mayores, de 10 a 19 en esta tesis se utilizo el paralelismo cuantico [223], el cual
permite simular la dindmica de un ensable, bajo ciertas condiciones mediante la evolucion
de un nimero pequeno de funciones de onda adecuadamente construidas. A continuacion
se resume el método tal como se describe en [223].

Las idea principal es que, si la condicion inicial y el observable son “locales”, cuando se
evaluia un estado el cual es una superposicién con fases aleatorias de todos los elementos
del ensamble estos observables se vuelven autopromediantes (self-averaging). Tomemos
un ensable de todos los estados |U7") = |¢,,) ® |¥;), donde hay m espines en el estado
|pm) v el resto (N —m) estéan en |¥;). La probabilidad de encontrar a tiempo ¢ m’ espines
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en el estado |¢,) si a tiempo t = 0 habia m espines en |¢,,) viene dada por:

gM—m/ 9gM—m

Wik =D > ol (U e ) 1, (E.10)
f=1 =1

donde se suma sobre todos los posibles estados iniciales y finales.

Como caso particular y ejemplo podemos tomar m = m' = 1, |¢,,) = |1),, el estado
correspondiente a n-esimo espin up y |¢,,/) = [1),, correspondiente al n'-esimo espin. La
polarizaciéon del espin n’ a tiempo t, estando el espin n up a tiempo cero esta dada por
Py = 2[W* — 1/2], la cual fue en fue utilizada en este trabajo para n = n’ como
condicién localizada.

La expresion (E.10) implica la evolucién de D = 2M =™ estados, el paralelismo cuantico
sugiere que la funcion de correlacion deseada esta contenida en la dinamica de un estado
puro, este estado se construye mediante un superposicion de todas las componentes del
ensamble,

o= W), (E.11)
i=1
donde a; = /p;e'¥, con ¢ aleatorio. La funcién de correlacion viene dada entonces por,
D' D A
Wi (@) = D> pil (U e ) P (E12)
f=1 i=1
D' D A )
+ 30N o w (U ) (U e ) (B.13)
F=1i'#i=1

donde {a} denota el set de todos los a; utilizados en la construccion del estado y D' =
pM=m’,

Se puede observar que el término cruzado es la diferencia entre Wi (t) y Wi, (%), v,
promediando sobre N,, realizaciones de posibles estados iniciales, tenemos que W5 () =
11’lfrl]\foz—>oo <W7’?L/,m (t)>No< *

Sin embargo, puede demostrarse que, para una distribucion homogénea p; = 2", y
condicion inicial localizada (M > m), y M medianamente grande (M > 9) uno obtiene
Weis (t) = W, . (t) en una tnica realizacion.
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