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Abstract

Explainable artificial intelligence is a research topic whose relevance has increased
in recent years, especially with the advent of large machine learning models. How-
ever, very few attempts have been proposed to improve interpretability in the case of
quantum artificial intelligence, and many existing quantum machine learning models
in the literature can be considered almost as black boxes. In this article, we argue
that an appropriate semantic interpretation of a given quantum circuit that solves a
problem can be of interest to the user not only to certify the correct behavior of the
learned model, but also to obtain a deeper insight into the problem at hand and its
solution. We focus on decision-making problems that can be formulated as classifi-
cation tasks and propose a method for learning quantum rule-based systems to solve
them using evolutionary optimization algorithms. The approach is tested to learn rules
that solve control and decision-making tasks in reinforcement learning environments,
to provide interpretable agent policies that help to understand the internal dynamics
of an unknown environment. Our results conclude that the learned policies are not
only highly explainable, but can also help detect non-relevant features of problems
and produce a minimal set of rules.
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1 Introduction

Quantum machine learning (QML) [1] lies at the intersection of classical machine
learning (ML) and quantum computing. It attempts to migrate classical ML to a quan-
tum computing paradigm and develop new techniques that take advantage of quantum
mechanisms such as superposition, entanglement, parallelism or tunneling to solve
supervised, unsupervised and reinforcement learning (RL) tasks. Successful QML
models inspired by classical ML are quantum Support Vector Machines (qSVM) [2],
quantum Neural Networks [3, 4], or quantum K-Means and other clustering methods
[5], to mention just a few. On the other hand, other QML techniques that are not
inspired by classical ML have also stood out in tasks such as search and optimiza-
tion, such as the variational quantum eigensolver (VQE), the quantum approximate
optimization algorithm (QAOA) or the Grover search method [4]. The advantages of
QML techniques and models range from improved performance over their classical
counterpart [6], to improved efficiency (in either time or space) in solving a particular
task [7].

In this work, our experiments focus on quantum reinforcement learning (QRL)
problems [8]. The most commonly used configuration in QRL encompasses a quan-
tum agent interacting with a classical environment where the agent implements an
action selection policy to return the best possible action to perform in an unknown
environment. Examples of these policies in the literature are the Grover operator [9],
variational quantum circuits (VQC) [10, 11] or the quantum analogue of the clas-
sical policy iteration method [12]. In particular, VQC-based proposals are heavily
influenced by classical deep reinforcement learning (DRL) methods using neural net-
works, and are trained using DRL ideas such as deep Q-learning [ 13] or policy-gradient
algorithms as REINFORCE [10]. Different mechanisms such as data re-uploading or
deep variational layers have been studied in the literature [3, 13] with outstanding
results in performance [14] and space efficiency [15].

Other approaches attempt to use concepts coming from the area of Quantum Com-
puting to develop classical RL methods, although they cannot be considered in the
QRL field since they are not targeted at providing an implementation in quantum com-
puters or simulators. In the past decade, the work [16] Dong and Chen proposed is one
of the first quantum-inspired methods able to perform probabilistic action selection, by
means of using the quantum state formalism to represent a discrete action set together
with the probabilities to choose an action, and then applying amplitude amplification
methods to improve the policy. Other recent work in this category is [17], where a
replay buffer for deep Q-networks is built using the Grover operator to select the
probabilities to sample experiences for training. Recently, [18] proposes a framework
to develop different quantum-inspired models (Q-learning, deep Q-networks, policy
gradient methods, etc.). The proposal is built considering partial observability of states
and probabilistic action selection under the formalism of quantum states and their col-
lapse, and the application in energy efficiency control tasks shows their superiority
with respect to classical approaches. Our approach lies in the QRL category, since the
proposed method attempts to create implementable quantum circuits able to be run in
quantum hardware.
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Despite the important advantages in the field of QML (and QRL in particular), we
have detected a gap between the final VQC that solves a problem and the interpretabil-
ity/explainability of its behavior. Generally, VQCs used in QRL are chosen due to their
high problem generalization ability [10, 13, 14] or efficiency in space [15], but their
final behavior is difficult to interpret or explain. This fact makes it difficult to certify
the correctness of a solution except through the use of extensive data-driven testing. In
classical artificial intelligence, explainable artificial intelligence (XAI) methods [19]
attempt to develop techniques to extract a graphical or natural language interpretation
of the behavior of an ML model. In the particular case of RL, we find approaches to
find interpretable agent policies such as [20], which uses a trained policy to gener-
ate a dataset to extract a decision tree able to explain the policy behavior. Recently,
another approach use evolutionary algorithms to evolve RL policies modeled as CART-
type decision trees [21], therefore creating interpretable policies. A different approach
using human-friendly prototypes has been proposed in [22] using a new neural network
model specially designed to wrap the resulting prototypes. Other previous proposals
are also summarized in the review technical report [23]. However, in the case of QML,
the explainability of VQC models has not been studied as thoroughly as in its classical
counterpart, but we can find some recent progress in [24, 25].

Another different approach to improve the explainability of a quantum model con-
sists of designing the model with an internal structure that is highly interpretable, as
is the case of quantum decision trees [26], quantum decision forests [27] or quantum
rule-based systems [28, 29], all these models aimed at solving classification problems.
These models allow the extraction of rules once the correct behavior is learned, in the
form of "If condition is true, then conclusion”. Our proposal is inspired by the later
works [28, 29], where an original model is proposed to represent a rule-based system
in a quantum rule-based database, along with the mechanisms to deal with uncer-
tainty. In [28], the structure of a quantum rule-based system (QRBS) is proposed as a
quantum circuit containing rules implemented with CNOT and Toffoli gates to derive
intermediate facts and conclusions, applied to a proof-of-concept classification task in
the field of medicine. The later work [29] explored the benefits of quantum computing
as a representation and inference mechanism for a QRBS under data uncertainty. The
authors studied the formulation of a QRBS from the point of view of knowledge-
based systems, so they did not develop a learning process for QRBS in a data-driven
environment.

In this work, we propose a QRBS learning mechanism to solve classification tasks,
with applications in the field of QRL. Unlike classical classification tasks in super-
vised learning, where an existing dataset is known in advance, in RL and QRL there
is no prior data and the models learn online through interaction with an unknown
environment. This setup makes the learning problem more difficult than in the super-
vised learning approach. Our proposal aims to find a QRBS capable of optimally
solving a reinforcement learning problem. To do so, we formulate the task of learning
a QRBS as a binary optimization problem and solve it using evolutionary computation
algorithms [30]. We experimentally demonstrate that the rules in the learned QRBS
help explain the agent’s behavior in solving the action selection task, which is use-
ful not only to certify the correctness of the learned behavior by a human user, but
also to obtain a deeper knowledge about the structure of the problem. The remaining
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of the manuscript is structured as follows: Sect.2 describes the fundamentals of the
methods used in our approach. After that, Sect.3 explains the proposal to represent
and learn a QRBS to solve RL problems. Then, Sect.4 shows the results obtained in
state-of-the-art reference RL scenarios, and Sect. 5 concludes.

2 Methods
2.1 Foundations of rule-based systems for classification

A traditional rule-based system (RBS) [31] comprises three components: (a) a knowl-
edge base containing a set of rules; (b) a working memory that contains known and
inferred information; and (c) an inference engine to derive new knowledge from exist-
ing data in the working memory. The early foundations of an RBS come from the field
of logic, where each rule is modeled as an implication A — C (A is a well-formed
formula called antecedent, C the consequent), and an inference mechanism such as
Modus Ponendo Ponens is used to infer the fact C once A is in the working memory.
Some RBS representation models, such as decision trees [32], include additional con-
straints on the antecedent, such as A must be in conjunctive normal form of atoms.
On the other hand, contemporary inference engines must take into account not only
classical inference tools, but also mechanisms to address imperfect knowledge and
conflict resolution, e.g., contradictory derivations.

A classification problem contains two types of data: a set of input features F = {F'}
where each feature F can contain a value of the set {v;'.}, and an output class C that
contains a discrete set of labels {c;}. An RBS for classification contains rules of the
manner shown in Eq. 1. The inference process begins with the input features of an
observation in the working memory and evaluates each rule to distinguish a possible
set of outputs to label observation in one class or another, considering the conflict
resolution mechanisms and the treatment of uncertainty of the inference engine.

Fi =uj.11 Ao AFin =v§f; - C=¢ 1)

The proposal of this work creates a quantum rule-based system that contains rules
inspired by the structure shown in Eq. 1, where the antecedent is in conjunctive normal
form and the consequent contains a single derivation. As in [28], we rely heavily on
controlled-NOT (CX) and Toffoli gates, although we extend the model to multiple
controlled-NOT (MCX) gates to implement each rule. Thus, the mapping from a
classical RBS to a QRBS will be designed as follows: (a) the knowledge base of the
QRBS will be implemented in a quantum circuit that contains a sequence of MCX
gates, one for each rule of the system; (b) the working memory will be the quantum
state of the system; and (c) the inference engine will be implemented as the natural
evolution of an initial quantum state through the circuit. A detailed description of the
proposal is provided in Sect. 3.
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2.2 Reinforcement learning

Reinforcement learning [33] is one of the main types of learning in machine learning.
Unlike supervised and unsupervised machine learning, in RL there is no prior dataset to
learn from. Instead, the learning process takes place dynamically over time, through
the interaction between the learner (agent) and an unknown environment. Figure 1
shows the main cycle of an RL task: At each time instant #, the agent perceives the
state of the environment s, as input. It then selects an action a, from an available action
set and performs the action in the environment. Finally, the environment evolves from
state s; to state s, based on its current state and the agent’s action, and returns
an immediate reward r;41 to inform the agent about the action’s suitability in the
context of s;. This reward may depend on the initial state s;, the final state s; 1, the
agent’s action a, or a combination of the three and is represented as r;(s;, a;, S¢+1)-
Generally, the environment is stochastic and its behavior is assumed to be governed by
an underlying unknown Markov decision process [34] of the environment. Therefore,
it holds the first-order Markov assumption, and the agent’s goal is to find a correct
policy for action selection (a;|s;) that maximizes the cumulative reward R, over
time as it is shown in Eq. 2, where y € [0, 1] is called discount factor to prevent the
cumulative reward from going to infinity while training the agent.

R =7i(se, a1, 8141) + Y Riq1 (2)

In this work, we learn a quantum rule-based system as a suitable agent’s policy capa-
ble of providing optimal performance in a given RL environment. In our experiments,
we assume a quantum reinforcement learning setup where the agent implements a
quantum policy and the environment is classical.

2.3 Evolutionary computation and the CHC algorithm

Evolutionary algorithms [35] are a subset of gradient-free metaheuristic optimiza-
tion methods whose behavior is inspired by natural phenomena; for example, genetic
algorithms (GA) whose principles follow the simulation of Darwinian evolution. In
summary, a GA comprises a set of candidate solutions (called population) uniquely
determined by their genes (free parameters to optimize). In each iteration of a GA
(called generation), some members of the population are selected and grouped gener-
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Fig.2 Flow diagram of the Binary CHC optimization algorithm (Color figure online)

ally in pairs to form the parents set. These parents are usually chosen using a selection
operator that follows the principle of survival of the fittest, i.e., those individuals that
are best adapted to their environment (that is, those that best solve the optimization
problem) are more likely to transmit their genetic information to future generations.
The parents are then combined using a recombination/crossover operator to create
a new population (offspring) containing genetic information from their parents and,
additionally, possible mutations introduced by a mutation operator with certain prob-
ability. After that, the offspring replace the initial population and a new evolutionary
cycle begins. Being inspired by evolutionary principles, the population is expected to
increase its quality every generation to solve the optimization problem and eventually
provide an optimal solution. Evolutionary algorithms, and especially GAs, are con-
sidered a type of global search methods and have been successfully used in a wide
variety of problems over the last two decades [30].

The CHC evolutionary algorithm [36] is a type of GA with special focus on finding
a balance in exploration of the solution space and exploitation to achieve convergence.
It was initially designed to solve binary optimization problems, although it has been
adapted to other types of encoding in [37, 38]. CHC achieves a balance in population
diversity and convergence through the design of four components: a) Elitist selection
to create the population of the next generation using the best individuals from both
the parent and offspring populations; b) the use of the HUX uniform crossover to
generate two children from two parents as different as possible to improve exploration;
¢) an incest prevention mechanism to prevent two genetically similar parents from
recombining; and d) reinitialization to restart the population once it has converged to
a local optimum.

Figure 2 shows the main flow of the CHC algorithm, where N is a positive even
integer hyperparameter containing the population size, L if the length of the solutions
(i.e., the number of free variables to be optimized), d is the recombination threshold for
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the incest prevention mechanism, M is a positive integer hyperparameter to control
the selective pressure in the reinitialization mechanism, and » € (0, 1) is the last
hyperparameter that controls elitism and the recombination threshold after divergence.
The difference(x,y) method implements a distance measurement to evaluate how much
the solutions x, y differ. In the case of binary optimization, the method is usually the
Hamming distance which returns the number of pairwise variables/genes with different
values in x and y. Finally, the procedure HUX(x,y) is the recombination method for
solutions x, y. It creates a copy of each solution c1 = x, ¢2 = y, and swaps exactly
half of the differing genes between both solutions c1, c2 at random.

In this work, we use the classical binary evolutionary algorithm CHC as an opti-
mization method to learn optimal quantum rule-based systems in RL problems, as a
suitable procedure that maintains a balance in the exploration and exploitation of the
solution space. The main idea is to design a binary encoding mechanism capable of
representing a QRBS into a solution and to use the algorithm to evolve a population
of QRBS solutions evaluated in RL environments to assess their performance.

3 Description of the proposal

Our proposal focuses on the automatic learning of a QRBS that solves a given classi-
fication problem. To do so, the structure of a quantum rule and a QRBS used in this
work are first described in Sect. 3.1. After that, Sect. 3.2 explains the representation of
QRBS to be optimized using evolutionary binary optimization algorithms, and finally
Sect. 3.3 particularizes the approach to solve reinforcement learning problems.

3.1 Rule design

The article [28] proposed a model to represent a general quantum rule-based system
in a quantum circuit based on the extensive use of CNOT and Toffoli gates, along with
intermediate variables implemented as additional qubits for the inference process. In
our proposal, we simplify the process to define the set of rules that provides the final
result, since our goal is to solve data-driven classification tasks with no intermediate
facts to derive. We also constrain the QRBS rules to have the form described in
Eq. 1, to reduce the search space to find a QRBS that solves a problem. Taking these
considerations into account, our approach defines a quantum rule as a single multiple
controlled NOT gate (MCX) with variable control states with values O or 1. To use an
MCX gate as a quantum rule, we distinguish two types of qubits:

e Input qubits encoding classical input data, that can be used as control qubits. The
number of input qubits depends on the nature of the encoded classical data: for
continuous values or binary information, a single qubit will be used. On the other
hand, discrete values will be enumerated and transformed into a binary number.
In this case, the number of qubits will be equal to the number of bits needed to
encode the discrete value.
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Fig.3 Example of classical data encoding and two quantum rules (Color figure online)

e Output qubits, whose number is equal to the number of class labels in the classifi-
cation task. Therefore, an MCX targets to a specific output qubit (class label) that
is controlled by several input qubits.

The quantum embedding mechanisms considered in this work to transfer classical
data to quantum states are basis encoding for discrete/binarized data or angle encod-
ing for continuous values, although other embedding techniques such as amplitude
encoding or Q-Sample [39] could also have been selected. We implement both encod-
ing techniques as rotation gates Ry (0m), where 6 € [0, 1]. An arbitrary example
of quantum encoding and two possible rules is shown in Fig. 3, considering a dis-
crete input characteristic Size with four possible values Small — |00), Medium
|01), Large — [10), Extra-Large +— |11)}, a continuous input value Intensitye [0, 1],
and two possible outcomes DangereLow,High. The first MCX gate implements the
rule If |Sizeg) = |1) and |Intensity) = |0) then [Low) = |1), and the second MCX can
be read as If | SizegSize;) = |10) and |Intensity) = |1) then |High) = [1). We can see
that both rules fit into the structure of Eq. 1. However, if translated into natural lan-
guage by interpreting the quantum embedding mechanism, we get If (Size=Large or
Size =Extra-Large) and Intensity =0 Then Danger=Low for Rule 1, and If Size =Large
and Intensity = 1 Then Danger=High for Rule 2. Therefore, even with the restrictions
introduced by Eq. 1, the natural interpretation of the rules in the QRBS could contain
a richer set of operators in the antecedents to form more complex rules.

According to the example, the complete quantum rule-based system will be com-
posed of an initial subcircuit containing the quantum embedding mechanism and the
ansatz as a sequence of MCX operations where each MCX implements a rule. The
inference of the possible outcomes is governed by the effect of each MCX on the
corresponding output qubits of the quantum state, which will be measured as a final
step.
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3.2 QRBS optimization using evolutionary algorithms

We propose to use gradient-free binary optimization algorithms to learn a suitable
QRBS that solves a given classification problem. In particular, we use the CHC binary
evolutionary algorithm in this work because it is a global search procedure that main-
tains a balance in solution space exploration and convergence. The CHC algorithm is
intended to evolve a population where each solution is a binary-encoded QRBS that
is evaluated according to its performance in solving the classification task.

The key problem to solve here is to find a compact and necessarily injective mapping
from a sequence of binary digits (solution in the population) to a quantum circuit that
implements the ansatz of the encoded QRBS: Compact to reduce the search space as
much as possible, and injective so that each solution can be translated into a unique
QRBS. However, we are constrained by the limitation that the length of the solutions
in a typical population-based optimization algorithm is fixed (parameter L of the CHC
algorithm), so that all candidate solutions contain the same number of parameters to
optimize. Since we do not know in advance the optimal number of rules of the target
QRBS, we are forced to set a value Ny for the maximum number of rules allowed for a
QRBS as a hyperparameter, and to introduce a mechanism to activate/deactivate rules
in the binary representation. A similar procedure must be established to select which
input qubits will be used for the antecedent of each rule and its control value. With
these considerations, our proposal covers the following design to encode a QRBS in
a solution in the population, assuming N; input qubits and N possible class labels:

e A QRBS is implemented as a concatenated sequence of Ng rules. It contains a
fixed structure with Ng * (2 % Ny + [logy N, ] + 1) bits.

e Each rule 7 in a QRBS is encoded as a concatenated sequence of binary digits
[A;C;], where A; encodes the antecedent and C; the consequent. The length of a
sequence that implements a rule is set to 2 « Ny + [loga N, | + 1 binary values.

e The antecedent A; of the i-th rule contains 2 % N; bits with the structure
([a‘i, c"l], [aé, cé], [ajvl, cﬁvl]), where aj. has the value 1 if the j-th input qubit
is active in the rule and the value O otherwise, and ci. is the control value in case
the qubit is used.

e The consequent C; of the i-thrule is encoded as a bit sequence [a’, tf , té, e tflogz Nl

where a’ contains the value 1 if the i-th rule is active and therefore a member of the
QRBS, and the value 0 otherwise. The remaining bits from t{ to t’h ozyNo1 contain
the binary representation of the position of the output qubit that is used as a target
in the MCX gate in case the rule is active, in the range {0, ..., N, — 1}.

This design is compact considering the limitations regarding the fixed length of
all solutions in the population, and it is also injective. Furthermore, it allows the
representation of any possible QRBS containing a maximum number of rules Ng.
However, if the number of class labels is not a power of two, encoding the target qubit
in a solution could result in invalid targets. In these cases, we solve this situation by
considering the rule as not active. As an example, the following sequence is a possible
representation of Rule 1 in the QRBS in Fig.3: [[1, 1], [0, 1], [1, O], [1, O]]. The first
pair [1, 1] means that the first input qubit Sizeq is active with the control value 1.
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The second pair [0, 1] translates to the fact that the qubit Size; is not used in the rule
(the control value is unused in this case), and the third pair [1, O] activates the qubit
Intensity with control value 0. The consequent is encoded with the last pair [1, 0],
which means that the rule is active and targets to the qubit Low. This sequence could
be concatenated with [[1, 1], [1, O], [1, 1], [1, 1]] as the representation of Rule 2 to
define the full QRBS with Ng = 2 rules in the figure.

3.3 Evaluation of a quantum rule-based system for reinforcement learning

In our experiments, the CHC evolutionary algorithm is used to evolve a population of
QRBS containing the structure defined in the previous section as a sequence of binary
digits. Evaluating each QRBS in a reinforcement learning environment is similar to
a classification task. In RL, the QRBS implements the agent policy and must return
a selected action a; to be executed if state s; is perceived at time ¢. In this work,
we assume a deterministic policy where the action whose output qubit contains the
maximum expected probability of returning | 1) is selected. We achieve this by using the
o observable in the range [—1, 1] over the output qubits. We name |y;) = |g{g5...qy, )
to the partial quantum state corresponding to the output qubits in a 7-th arbitrary time
instant. We measure the output qubits and calculate the expectation of each action as
shown in Eq. 3. After that, the action chosen by the agent is obtained using Eq. 4, that
is, the action with the closest value to -1 is selected and, if two or more actions have
the same expectation, the first action with such value is selected.

ActionSet = (Y} log In,~11¥}), (WollozIn,2|¥)), ... (WolIN,—10:1%5)  (3)
action = min{argmin{ActionSet}} (4)

Since an RL environment is stochastic, multiple QRBS runs and tests are required
to evaluate the true performance of a given policy. A series of predefined 7 episodes
are executed between the agent’s QRBS and the environment to calculate the suitabil-
ity of a solution. The performance of the final agent is calculated as the average of
the cumulative reward obtained for each episode as shown in Eq.5, where s; is the
perceived environment state at time ¢ of the j-th episode and wgg Bs(a,] |s,J ) is the
action selected by the QRBS under evaluation in each state perception.

T
1 o S
fitness(QRBS) = T Z Z r] (s], morBs (@] Is]), stJH) (5)
j=11t=0

Each QRBS in the population is evaluated based on its fitness value. In a RL
problem, it is desirable to obtain policies that provide the maximum return, so the
objective of the proposed CHC method is to maximize the fitness of the solutions.
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4 Experiments

We test the proposal in simulated RL and quantum environments. The goal of the
simulations is to experimentally show the capabilities of our approach to learn inter-
pretable optimal policies in quantum reinforcement learning scenarios, provided as a
quantum rule-based system. To that end, the binary CHC evolutionary optimization
algorithm was implemented in Python as an agent policy learning mechanism using
the representation model shown in Sect. 3.2, and the policy evaluation was performed
in a quantum simulation software using Tensorflow Quantum v0.7.2. The experiments
were run on a desktop computer with Intel(R) Core(TM) 15-9600K CPU at 3.70 GHz
with 32 GB of RAM equipped with an NVIDIA GeForce RTX 2060 GPU to acceler-
ate the quantum circuit simulation. The RL environments selected for experimentation
are described in Sect. 4.1. Then, Sect. 4.2 shows the experimental setup. Section 4.3
analyzes and discusses the results, and finally Sect. 4.4 provides a comparison with
classical (non-quantum) RL interpretability models.

4.1 Description of reinforcement learning environments and preprocessing

We tested the proposal in RL simulation environments of the software Gymnasium
from the Farama Foundation (formerly Gym from OpenAl), since it is an extended
testbed widely used for research and training in RL. The software is freely available
online at https://gymnasium.farama.org for the Python programming language. The
data reported in the OpenAl’s Gym Leaderboard at https://github.com/openai/gym/
wiki/Leaderboard to solve the environments is used as the main baseline to assess
the suitability of our approach. We selected five environments with discrete action
sets to test our approach as an action classification task, although the structure of the
environment states varies from discrete to continuous features:

e The FrozenLake environment (Fig.4a) simulates a discrete 4x4 grid world con-
taining traversable cells and holes where the agent could fall (16 possible states).
The agent starts at the top left cell (0,0), and the goal is to reach the bottom right
cell (3,3) without falling into the holes. A simulation ends if the agent reaches the
goal or falls into a hole. The agent receives a reward of +1 if it succeeds in its
task and 0 otherwise. The perception at each time step is the cell where the agent
is located, and it can decide between four actions to move up, down, left or right.
There are two versions of the environment: Slippery, where the agent could end up
in a different cell than the desired one if it slips, and non-slippery, where the next
cell is completely determined from the current cell and the agent’s action. In our
simulations, we use the non-slippery version for illustrative purposes. Therefore,
the environment is considered solved if the agent can reach the target cell with the
policy learned in one simulation of a given policy.

e The BlackJack environment (Fig. 4b) simulates a simplified version of the classic
casino game Black Jack. The value of face cards (Jacks, Queens, Kings) is 10,
numerical cards from 2 to 9 have a value equal to their number and Aces can count
as 11 or 1. A game begins with the dealer’s card visible. The agent can hit a new
card until the sum exceeds 21 or stop (2 actions). The dealer then draws cards until
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reaching a total value of 17 or more. The winner is the one whose sum is closest
to 21 without exceeding this value and, if both exceed, there is a tie. During the
game, the agent perceives the state as a tuple (player’s sum, dealer’s value, ace)
where ace contains 1 if the player has a usable ace and 0 otherwise (704 possible
states). The reward is provided to the agent at the end of a game and contains a
value of +1 for a win, —1 for a loss, and O for a tie. We consider the environment is
solved if the agent obtains an average cumulative reward of —0.05 or higher over
1000 simulated games with the same policy.

e The CartPole environment (Fig. 4c) is a classic control problem in which the end
of a pole is connected to a 2-D cart. The agent controls the cart by pushing left
or right at each time instant with a constant force (2 actions). At each time step,
the agent’s perception contains the position of the cart on the screen in the range
[—4.8, 4.8], the pole angle in the range [—0.418, 0.418] rads, and the speed of the
cart and the angular velocity of the pole in the range (—o0o, co). Therefore, the
state space contains four features with continuous values. The goal is to keep the
pole on top without falling (absolute value of the pole angle less than 0.21 rads)
for as long as possible. The agent receives a reward +1 every time instant the pole
is up, and O if the pole falls or the cart leaves the screen. The simulation ends
when the pole falls, the cart leaves the screen, or 500 time steps are simulated. The
environment is considered solved if the agent can maintain the pole for an average
of 500 time steps over 100 simulations using the same policy.

e The MountainCar environment (Fig.4d) is another classic control problem. A
2-D car is stochastically located in a valley between two hills. It can take one of
three actions to move left with constant acceleration, move right with constant
acceleration, and do not accelerate. The car’s goal is to plan accelerations to reach
the top of the right hill in the minimum time, taking into account the car’s position
along the x-axis in the range [—1.2, 0.6] and the speed of the car in the range
[—0.07, 0.07]. Therefore, the state space contains two continuous features. The
reward obtained by the agent is —1 for each time step that the car is not in the
target state, and the simulation ends either if the target state is reached, or after 200
time steps. The environment is considered solved if the agent obtains an average
cumulative reward of —110 in 100 simulations with the same policy.

e The Acrobot environment (Fig.4e) is another control problem. Here, two links
are connected by a joint. One end of one of the links is in a fixed position but
can rotate. The joint between both links can be controlled by an agent applying
a torque of —1 Nm, +1 N m or 0 N m (3 actions), making the links to swing.
The objective of the environment is to plan a sequence of torques to be applied so
that the links reach a certain height. If 61, 6, are the relative angles of the links,
the agent perceives cos(61), sin(6), cos(62), sin(6), wg, , wy, at each time instant,
where wyg, € [—4m,4n] and wp, € [—97, 9] are the angular velocities of both
joints. Thus, the agent’s perception contains 6 features with continuous values. For
each instant in which the system does not reach a target state, the agent receives a
reward of —1. The simulation terminates if a target state is not reached after 500
time steps, or if a target height is achieved, defined as —cos(6;) — cos(6> +61) >
1.0. Unlike previous environments, there is no specific criteria to indicate when
the environment is considered resolved for Acrobot. However, in this work we
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(a) FrozenLake (b) BlackJack (c) CartPole  (d) MountainCar (e) Acrobot

Fig.4 Snapshots of environment’s rendering using Farama Foundation’s Gymnasium software (Color figure
online)

established the criterion to obtain a minimum average cumulative reward of —80
in 10 simulations with the same policy, as a balance between the computational
time required to run our experiments and the best solutions reported in the Open
Al Gym’s online leaderboard.

The agent’s state perception requires preprocessing for all environments, so that
it can be fed as input to the QRBS policy under evaluation. To that end, quantum
embedding is designed in our experiments using angle encoding with gates R, (0)
with 6 € [0, 1]. Table 1 shows the preprocessing applied to each state component
for the environments studied, along with the number of qubits needed to represent
the information. We consider three types of preprocessing: (a) binarization, which
transforms a non-negative integer to its binary representation; (b) scaling, which scales
data in arange [/, u] to the interval [0, 1], and (c) arctan, which calculates the arctan of
avalue and performs a rescaling from [—m /2, /2] to [0, 1]. With these considerations
in mind, the number x in parentheses in the cells of the Type column means the number
of different values that the feature in column 2 can contain, from 0..x — 1, and the
number in parentheses in the Preprocessing column represents the number of bits
required to binarize the state characteristic value.

Each preprocessed feature is encoded into a quantum state using the number of
qubits shown in the Required Qubits column. The total number of qubits used in each
policy is equal to the sum of the number of qubits for each environment’s feature plus
the number of possible actions in the environment, since we establish a single qubit
to determine whether each action is executed or not. Therefore, the total number of
qubits required for a policy to solve FrozenLake is 8, for BlackJack is 12, it is 6 for
CartPole, 5 for MountainCar, and 9 for Acrobot.

4.2 Experimental settings

Before running the final experiments, we performed a pre-experimentation to find
suitable hyperparameters capable of solving each problem, using a classic trial-and-
error procedure. The final hyperparameters used to learn each environment are shown
in Table 2, where column 1 describes the environment, column 2 shows the population
size of the CHC algorithm, column 3 sets the number of copies of the best solution
to reinitialize the population after the divergence of the CHC algorithm, column 4
prints the percentage of random changes in the copies of the best solution after the
divergence in CHC, column 5 indicates the maximum number of rules allowed in
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Table 1 Environment’s states preprocessing for quantum embedding

Environment Feature Type Preprocessing Required qubits
FrozenLake Cell Discrete (16) Binarization (4) 4
BlackJack Player sum Discrete (32) Binarization (5) 5
Dealer value Discrete (11) Binarization (4) 4
Ace Discrete(2) Binarization (1) 1
CartPole Position [—4.8,4.8] Scale 1
Velocity (—00, 00) Arctan 1
Angle [—0.418,0.418] Scale 1
Ang. Velocity (=00, 00) Arctan 1
MountainCar Position [—1.2,0.6] Scale 1
Velocity [—0.07, 0.07] Scale 1
Acrobot cos(61) [—1,1] Scale 1
sin(61) [—1,1] Scale 1
cos(6r) [—1,1] Scale 1
sin(6») [—1,1] Scale 1
wg, [—4m, 4] Scale 1
wy, [-97, 9] Scale 1

Table 2 Experimental settings to solve each environment

Environment Population size Elitism (M) Elitism (r) QRBS rules Policy tests
FrozenLake 50 1 0.5 4 1
BlackJack 100 5 0.5 10 1000
CartPole 50 5 0.5 6 100
MountainCar 20 10 0.35 8 100
Acrobot 50 5 0.5 6 10

a QRBS, and column 6 remarks the number of policy evaluations to calculate the
average performance of the solutions. We performed 30 runs of the CHC algorithm
to learn each environment and to be able to analyze the results statistically. Each run
was stopped if a QRBS in the population solved the environment, or if a maximum
of 1000 iterations of the CHC algorithm was reached (except for the MountainCar
environment, which was set to 500 iterations to reduce execution time).

4.3 Results

Table 3 shows a summary of the results obtained to learn a QRBS implementing a
quantum agent policy to solve each environment. We analyze the average cumulative
reward obtained in the 30 runs and its standard deviation (rows 2-3) considering
a discount factor y = 1.0, the best and worst cumulative rewards obtained in each
problem (rows 4-5), the average, standard deviation and the minimum number of rules
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Table 3 Summary of results to solve each environment

FrozenLake BlackJack CartPole MountainCar Acrobot

Mean R; 0.70021 —0.0363¢ 500.003¢ —111.8385¢ —77.90339
S.d. R; 0.458 0.014 0.00 4.226 1.680
Best R; 121 0.008 500.003¢ —107.510¢ —73.5001
Worst R; () —0.0504 500.003¢0 —118.230; —80.000,
Mean #rules 3.333 4.333 3.467 4.818 3.700
S.d. #rules 0.471 1.600 0.921 0.716 1.130
Minimum #rules 3 2 2 4 2
Mean #iterations 504.000 16.967 3.867 274.250 48.367
S.d. #iterations 359.975 9.628 3.658 166.142 39.265
Mean time (s.) 5155.947 340.486 75.616 10044.265 4038.083
S.d. time (s.) 3674.817 169.372 62.100 6196.867 1892.480
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Fig. 5 QRBS obtained for the FrozenLake environment with best performance and minimum number of
rules (Color figure online)

Algorithm 1 Interpretation of rules of the FrozenLake QRBS in Figure 5

1: if Row = 2 and Column > 2 then (Rule 2)

2: Go Down
: end if

Go Down
. end if

: By default, Go to the Right (Rule 1)

1 if Row < 2 and Column = 2 then (Rule 3)
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Fig.6 QRBS obtained for the BlackJack environment with best performance and minimum number of rules
(Color figure online)

Algorithm 2 Interpretation of rules of the BlackJack QRBS in Figure 6
1: if Ace = 0 and Player Sum < 16 then (Rule 2)

2 Do Hit

3: end if

4: if DealerValue =9 and Player Sum = 10 then (Rule 3)

5

6

7

: Do Hit
: end if
: By default, Do Stop (Rule 1)

Algorithm 3 Interpretation of rules of the CartPole QRBS in Figure 7

1: if AngleVelocity = 0 then (Rule 1)
2:  Push to the Left

3: end if

4: if Angle = 1 then (Rule 2)
5:  Push to the Right

6: end if
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Fig.7 QRBS obtained for the CartPole environment with best performance and minimum number of rules
(Color figure online)
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Fig.8 QRBS obtained for the MountainCar environment with best performance and minimum number of
rules (Color figure online)

Algorithm 4 Interpretation of rules of the MountainCar QRBS in Figure 8

1: if Velocity = 1 then (Rule 1)
2:  Accelerate to Right

3: end if

1 if Velocity = 0 then (Rule 2)
Do not accelerate

. end if

. if Position = 1 then (Rule 3)
Do not accelerate

9: end if

10: if Velocity = 0 then (Rule 4)
11:  Accelerate to Left

12: end if
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Fig.9 QRBS obtained for the Acrobot environment with best performance and minimum number of rules
(Color figure online)
Algorithm 5 Interpretation of rules of the Acrobot QRBS in Figure 9

1. if wg, = O then (Rule 1)
2:  Apply Negative Torque

3: end if

4: if sin(01) = 0 and sin(62) = O then (Rule 2)
5: Apply Positive Torque

6: end if

7: if wg, = 1 then (Rule 3)

8:  Apply Positive Torque

9: end if

of the QRBS learned in all experiments (rows 6—8), the average number of iterations
required by the CHC algorithm to obtain the optimal solution and its standard deviation
(rows 9—10), and the average and s.d. calculation time in seconds required for a single
execution on rows 11-12. The subscripts in rows 2, 4, 5 indicate the number of runs
that provided a QRBS that solves the environment, and the number of times the best
and worst performance were obtained, respectively.

The first thing we may notice in Table 3 is that all the runs were able to solve
the environments, except for the cases of FrozenLake and MountainCar. This might
be expected as they are the least informed environments about the performance of
a given policy, and an extensive exploration is required to find a solution. However,
all environments were solved in at least 20 separate experiments of 30. We remark
that CartPole was solved optimally in all runs with very few CHC iterations. We can
also verify an increase in the average number of CHC iterations and the execution
time required to solve each environment, according to its complexity and the number
of times the environment was solved. For this reason, FrozenLake and MountainCar
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Fig. 10 Evolution of the average Return (R;) and its standard deviation in all experiments (blue: average
return for the whole CHC’s populations; orange: average return for the best solution in the populations)
(Color figure online)

hold the maximum number of average iterations and computational time required for
a single CHC execution. It is also striking that the average and minimum number of
rules used by the best QRBS found in each run is usually low, which means that the
strategy designed to activate/deactivate rules in a QRBS during the learning process is
effective and can provide simple solutions with minimum size. It is especially notable
in the cases of BlackJack, CartPole and Acrobot, where only two rules can be used to
solve the environments. However, the solution with two rules in the latter environment
is not the one that provides the best R;.
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Figure 10 provides the evolution of R; in all problems studied to give support to
the previous analysis. The X axis contains the number of the current CHC iteration,
and the Y axis the R; value. We remark in blue the average of the mean return of solu-
tions in the CHC population at each iteration, considering the unfinished experiments
only. Also, we highlight in orange the average return of the best solutions found in
all executions at each iteration. Figure 10b and c corresponds to the BlackJack and
CartPole environments, which were solved in fewer iterations with our approach. As
it is expected, the populations increase their quality over time, and so it does the better
solution returned. The case of FrozenLake in Fig. 10a should also be mentioned due to
the high variability in the value of the best return and the almost constant population
R, value. This problem was unsolved in 9 of 30 executions, which justifies the high
variability in the best return. Also, since the return is binary (R, = 0 or R, = 1),
the population return remains constant until a solution that solves the environment is
found. The most interesting behavior to us is provided by the problems MountainCar
and Acrobot in Fig. 10d and e. Although the R, values of the best solution have a reg-
ular behavior and increase with the number of iterations, we observe a high variability
in the average R, with regards to the population. This behavior is a direct consequence
of the CHC algorithm components and, in particular, the reinitialization step after
divergence in Fig.2. When the CHC algorithm converges to a local optimum, the
elements in the population are reinitialized to random solutions. This fact decreases
substantially the quality of the solutions in the population until a few iterations are
executed.

To deepen into the analysis of the best solutions found, Figs.5-9 plot the QRBS
obtained for each problem with best R; and minimum number of rules (if two or more
QRBS obtained the same performance). A possible interpretation for these QRBS is
provided in the rule sets in Algorithms 1-5. These rules must be interpreted after apply-
ing preprocessing. Additionally, the supplementary material for this article includes
five videos containing five rendered runs for each environment using these QRBS as
agent policies, to evaluate each QRBS visually in practice.

The first thing that catches our attention in Fig.5 corresponding to the QRBS of
FrozenLake is Rule 1, which activates the action Right without antecedent. This was
an unexpected behavior for us, because we designed the QRBS model with Equation 1
in mind for the structure of rules. However, the type of rules like Rule 1 have a place in
classical RBS and are called default rules. Default rules fire when no other rules do, to
provide an output decision by default. The representation proposed in Sect. 3.2 allows
the emergence of default rules during evolutionary learning of the optimal QRBS if all
input qubits are deactivated for a rule, and this fact enabled the QRBS in Fig. 5 to have
a minimum number of possible rules to learn the FrozenLake environment. As can be
seen in the supplementary material, this policy implements the Right action by default,
except when the agent is in the third column and first, second or third rows (Rules 2-3
in the diagram in Fig.5), which activate the action Down. In this case, even if both
actions Right and Down are activated with the same probability, Down is selected due
to the deterministic action selection mechanism imposed in Eq.4. Finally, it can also
be verified that the output qubits for the actions Left and Up are not used, which means
that the agent can dispense with these actions to implement its behavior and therefore
reduce the size of the quantum circuit implementing the policy.
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A similar situation arose in the best solution found for the BlackJack environment
in Fig. 6, where the action Stop is selected by default except when Rules 2 or 3 are
activated, which cause the agent to select the action Hit. Furthermore, the QRBS
obtained for BlackJack is a clear example that the rules obtained in the QRBS should
not be interpreted alone, but in the context of the complete QRBS due to the inference
process performed by the evolution of the quantum state. In fact, the action Hit is
selected only when either Rule 2 or Rule 3 is activated, but not both, since the input
values are discrete and both rules can be activated with probability O or 1. Thus, the
interpretation provided in the Algorithm 2 would be more readable from the point of
view of human reasoning if Rules 2 and 3 are replaced by "If the antecedent of Rule 2
is True and the antecedent of Rule 3 is False, or the antecedent of Rule 2 is False and
the antecedent of Rule 3 is True, then Hit”. As it was the case in the example shown in
Sect. 3.1, designing a quantum rule structure as indicated in Eq. 1 could lead to more
complex rule structures after interpretation. In this case, the proposed rule to replace
Rules 2 and 3 in the BlackJack environment contains logical NOT, AND, and XOR
operations in the antecedent.

The circuit in Fig.7 corresponds to the QRBS obtained to solve the CartPole
environment. In this case, the learned QRBS is capable of solving the environment
optimally according to the criteria existing in the literature, disregarding the two input
features Cart Position and Cart Velocity. It uses a minimum set of 2 rules that depend
on the Pole Angular Velocity and Pole Angle features separately. Since both features
can have continuous values, activating Rules 1 and 2 could produce a probability of
selecting Left or Right actions in the range [0, 1]. If both actions can be selected with
equal probability, then Left is chosen due to the criteria implemented in Eq.4. The
degree of activation of each rule varies depending on the values of the Pole angular
velocity for Rule 2, and the Pole angle for Rule 3. Thus, the inference process plays a
very important role in this problem to control the cart by switching between degrees of
rule activation. This behavior is clearly visualized in the video of the QRBS CartPole
included in the supplementary material.

The circuit in Fig. 8 for MountainCar solves the environment with four rules, and
it is another example to show that the rules should not be analyzed separately, but in
the context of the entire QRBS. The main rules that produce acceleration are Rule 1
and Rule 4, both depending on the input feature Velocity. They are complementary:
Rule 1 accelerates to the right when the car goes up the slope on the right and rule 4
accelerates to the left when it goes up the slope on the left. In this QRBS we can also
find contradictory rules such as Rules 2 and 4, which activate actions No acceleration
and Accelerate to the left with equal probabilities. In this case, Rule 3 resolves the
conflict as it changes the probability of not accelerating when the car is on the hill on
the right. The effect of rules 2 and 3 cancel each other when the velocity is negative
on the right side of the environment (i.e., the car moves toward the valley from the
right), where it accelerates to the left. Combining the outputs of these rules produces
appropriate behavior as shown in the video in the supplementary material.

Finally, Fig.9 plots the circuit that obtained the best performance in the Acrobot
environment. It contains a set of 3 rules and shows that the input features
cos(01), cos(6h), wg, are not necessary to solve the environment with a minimum
average performance of R; = —80 in 10 tests, as well as the action Do not apply
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torque. The first thing we notice is that Rules 1 and 3 are complementary, since they
apply a negative torque when wy, has a negative value (before preprocessing), and a
positive torque when wy, is positive. Rule 2 forces the agent to also apply a positive
torque, when the sin of both joints is negative. As it can be seen in the video for Acrobot
supplementary material, these 3 rules are enough to solve the environment correctly.

To conclude the discussion of the results, we can summarize the outcomes of the
proposed procedure for learning QRBS in QRL environments as successful, since it
has been experimentally shown that the approach is capable of providing adequate
solutions in all tested RL environments, including the learning of default rules to
reduce the set of rules. Furthermore, it has been proven that a reduced set of rules
can be achieved to solve most of the problems thanks to the designed mechanism
to activate/deactivate rules. All inferred quantum rule-based systems contain a set of
highly interpretable rules, which helped to not only explain optimal behavior, but also
determine which input features and actions could be discarded in some of the problems
studied. For this reason, we believe that the QRBS design developed in this work, and
also the use of gradient-free binary optimization methods to learn QRBS, could be
powerful tools to obtain explainable quantum circuits that solve classification tasks,
and especially in reinforcement learning setups.

4.4 Comparison with classic approaches

In this section, we compare the quality of the QRBS obtained in our work with state-
of-the-art methods. We perform the comparison with classical (non-quantum) models,
since there are no similar interpretable approaches in the QML research area, and QRL
in particular. We selected decision trees as the target classical model for comparison
for two reasons: first, decision trees are one of the classical machine learning models
with the highest interpretability and inference efficiency; and secondly, the rules that
can be extracted from a decision tree follow the same structure of Eq. 1 as our proposal.
Although the comparison between such different classical and quantum methods is
difficult, this choice could make the comparison fairer.

In terms of theoretical efficiency, the proposed QRBS evaluates a rule in O(1) oper-
ations, since these are implemented as a single MCX gate where all antecedent inputs
and consequent are evaluated simultaneously. In a classical decision tree, evaluating a
single rule is O(d) where d stands for the tree depth, i.e., the number of nodes that must
be evaluated in the path from the root to the target leaf node. However, if we focus in
the number of rules Ng, the QRBS needs to evaluate all rules to provide an output, so
that QRBSs can be executed in O(Ng). On the contrary, a classical non-probabilistic
inference engine for decision trees provides an output in O(log(NR)), since a single
path from the root to a target leaf node is evaluated. This improvement in the classical
decision tree could be worse in we consider inference with a probabilistic inference
engine. In probabilistic inference, all nodes in the tree are evaluated in the worst case,
so that the efficiency falls to O(Ng). In such probabilistic case, an upper bound of the
number of operations required to provide an output can be calculated with the number
of nodes in the tree as Z?:o w', where w stands for the maximum number of children
a node could have. However, the quantum approach considering QRBS performs a
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Table 4 Experimental settings to solve each environment

Environment Hidden layers Replay buffer Batch size €-Greedy Episodes

FrozenLake 50, ReLU 50000 128 eg = 0.8 50000
50, ReLU €= 0.05

BlackJack 50, ReLU 50000 128 € =0.8 50000
50, ReLU e =0.05

CartPole 100, ReLU 5000 128 € =05 5000
100, ReLU e =0.05

MountainCar 100, ReLU 10000 128 eg =0.5 5000
100, ReLU € = 0.05

Acrobot 50, ReLU 5000 128 € =0.8 50000
50, ReLU e =0.05

maximum of Nz = w? operations only because each path from the root to a leaf is
evaluated in O(1). Therefore, the QRBS outperforms classical probabilistic inference
in decision trees in terms of theoretical efficiency, although it is less competitive when
it is compared with the crisp (non-probabilistic) case.

Regarding the experimental comparison, we followed the proposed methodology
in [20] for classical RL to extract interpretable policies as decision trees from learned
black-box models. The procedure is straightforward: First, a neural network model
implementing a policy is trained with a classical RL algorithm to solve an environment.
After that, the learned model is used in the environment to generate a large enough
dataset containing environment states as input, and the action selection decision of
the learned policy as output. As a final step, a decision tree is used to learn the policy
from the dataset.

In our experiments, we created different network policies for the environments
described in Sect. 4.1 with a classic multi-layer perceptron (MLP) feedforward neural
network. Each MLP is fed with the same preprocessed data used to train the QRBS,
in order to establish an experimental setting as similar as possible to the one used in
our approach. The MLPs provide a Q-value as output for each possible action in the
corresponding environment. They were trained with the classic double deep Q-network
(DDQN) algorithm [40] using the hyperparameters described in Table 4. In addition,
the DDQN target policy was modified at every iteration of the DDQN method using a
soft update strategy with o = 0.1 [41]. Finally, the discount factor was setto y = 0.99
for the training stage in all experiments.

In all cases, the policies were tested every 10 trained episodes. An additional stop-
ping criterion was set for early stopping if the trained policy solved each environment
in test under the same conditions than in the QRBS. Both MLPs and DDQN were
implemented in Tensorflow and Python and were executed for 30 times in the same
hardware than the QRBS under simulation. After these experiments were finished, we
selected the learned policies with the best R, in test to generate a supervised learning
classification dataset containing 100.000 patterns (policy network-environment inter-
actions) for each problem. The decision tree model selected to learn these datasets
was CART, since CART can handle input features with continuous data and there
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Table 5 Summary of results to solve each environment with classical MLPs

FrozenLake BlackJack CartPole MountainCar Acrobot
Mean R; 1.0003¢ —0.0393¢ 500.003¢ —105.5923¢ —79.07739
S.d. R; 0.000 0.011 0.00 2.851 0.674
Best R; 130 —-0.0114 500.003¢ —99.300, —78.100¢
Worst R; 130 —0.0503 500.0030 —109.530, —79.9801
Mean #iterations 887.433 212.633 9470.033 160080.533 330181.467
S.d. #iterations 925.536 200.130 5057.169 72874.023 159756.810
Mean time (s.) 21.952 13.927 199.651 2931.885 7169.618
S.d. time (s.) 22.809 12.673 105.323 1334.821 3552.639

is a standard implementation of this type of decision tree in the Scikit-Learn library
for Python. During decision tree learning, we limited the maximum tree depth to the
number of input features/qubits for QRBS, so that the maximum number of atoms in
the antecedent of each generated rule equals the maximum number of atoms in the
antecedent of the learned QRBSs in the previous section. This choice helps to miti-
gate the differences between the experimental settings in both quantum and classical
approaches, so that all models possess rules with the same input structure.

Table 5 shows the results after learning the MLPs for each problem, containing
the mean R, and its standard deviation, the best and worst R, found, and the mean
number of iterations and time required for the learning, together with their standard
deviation. It is noticeable that, despite the QRBSs were learned under simulation, the
training time for CartPole and Acrobot of QRBS was substantially lower than for the
MLPs. However, in the remaining problems the training time of the MLPs is much
better than the time of the quantum approach, which is the behavior one could expect.
Other remarkable result relates to th fact that MLPs solved all environments in all
runs, including MountainCar and FrozenLake where the QRBS was unable to solve
in 10 and 9 executions of 30, respectively. Also, MLPs were able to achieve solutions
with better best R, in BlackJack and MountainCar.

As we mentioned previously, we used the MLPs with best R; to create a supervised
learning dataset containing 100.000 experiences where the input features are the state
perceptions, and the target output is the action selected by the MLP. The input features
were also preprocessed with the settings of Table 1 except for binarization, since
decision trees can handle numerical values. Then, we used these datasets to create
interpretable RL policies as CART decision trees with the information entropy as
node splitting criterion. Results regarding decision tree extraction are shown in Table 6,
where Column Problem describes the environment, Column Maximum Tree Depth sets
the tree depth constraint for each problem, Training Accuracy shows the percentage
of correct classification rate of decision tree prediction for each dataset, and Column
#Rules prints the number of leaf nodes in the generated tree, that equals the number
of rules that model the solution’s behavior.

In Table 6, we may verify that the decision trees were unable to learn the complete
datasets except for the FrozenLake problem. This is a direct consequence of the max-
imum tree depth imposed for each problem, which limits the size of the antecedent in
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Table 6 Results for decision tree extraction

Problem Maximum tree depth Training accuracy (%) #Rules
FrozenLake 4 100.000 3
BlackJack 10 98.447 47
CartPole 4 88.689 16
MountainCar 2 92.812 4
Acrobot 6 97.183 60

the generated rules. Of course, removing this constraint solves this situation but with
the added cost of increasing the number of rules and antecedent complexity. Being
compared with our approach, which is studied in this article as a QML model with
inherent interpretability that learns from data directly, the interpretation of MLP poli-
cies with Decision Trees show relevant limitations regarding accuracy with respect
to the QRBS. Moreover, if we focus in the number of generated rules, the generated
decision trees have provided a significantly higher number of rules in general, except
for the FrozenLake and MountainCar environments where the number of rules equal
the results of our approach with QRBS. Figure 11 plots these generated trees, which
serve as a sample to show their general structure. In general, they are very populated
trees with maximum number of nodes up to their maximum depth, except for the cases
of FrozenLake and BlackJack. Due to the large size of some of these trees and the page
size limitation, it is difficult to assess the true behavior of each tree except for Fig. 11a,
which inferred an equivalent set of rules to the QRBS in the FrozenLake problem.

To end up the comparison with classical interpretable methods, we can summa-
rize the findings of this section in two main outcomes: First, theoretical efficiency
improvements of a quantum model such as QRBS could be achieved against classical
decision trees with probabilistic inference mechanisms, while this is not the case for
the crisp classical model. Secondly, the proposed method was able to learn policies
from data, while the interpretability of a policy neural network with decision trees
could lead to incomplete modeling of the network policy if the size of the antecedent
is constrained. In any case, the QRBS model could be useful to reduce the number of
rules extracted. This could be a desirable property of an interpretable model in many
cases, which makes the QRBS competitive in the QML research area, but also being
compared with classical models.

5 Conclusion

In this article, we have proposed quantum rule-based systems as interpretable meth-
ods for quantum machine learning classification in reinforcement learning tasks. The
proposal includes a simple definition of rules whose antecedent is in conjunctive nor-
mal form and the consequent provides a target class label. The QRBS model is based
on a sequence of multiple controlled NOT gates to facilitate the construction and
explainability of the rules.

The contribution of the manuscript also addresses the learning of a QRBS suitable
for classification, formalized as a binary optimization problem. The CHC evolution-

@ Springer



179  Page 26 of 29 M. P. Cuéllar et al.

Cell<=1.5
gini = 0.5
samples = 100000

value = [50000, 50000]

class = Down ﬂ ‘ﬁ
ﬁ ﬁ Dﬁmﬁ
P Cell <=12.0
sam%llgls;0§g334 gini = 0.375 B i
value = [0, 33334] | | SAMPIeS < 66666
class = Right value = [ g ! &es Sooe e
class = Down ﬁ ﬂ ﬁ R ﬁ

\

gini = 0.0 gini = 0.0 =] =]
samples = 50000 samples = 16666
value = [50000, 0] value = [0, 16666]
class = Down class = Right [T e
) FrozenLake (b) BlackJack

A

HEEEEEE EEEEEEEEE

¢) CartPole (d) MountainCar

MAAAATA )
ALV
(AAERA

(e) Acrobot

Fig. 11 Decision trees generated from the MLP policies for each problem

@ Springer



Automatic evolutionary design of quantum... Page270f29 179

ary method was proposed to perform the learning task. The proposal was tested in
reinforcement learning scenarios and the results suggest that our approach is capable
of not only optimally solving the studied environments, but also returning QRBS with
minimal sets of rules, including default rules, that can help to identify relevant and
irrelevant input features and actions to solve an RL problem. We also found that the
inference engine, considered as the evolution of an initial quantum state in the QRBS
quantum circuit, could affect the interpretability of the rules separately and therefore
a contextual analysis that considers the entire QRBS is required to unravel the correct
behavior of the extracted rules. We believe that our approach could be an important
step forward in achieving explainable and interpretable quantum machine learning
models, but also that it can serve as a tool to gain deeper knowledge about the problem
to be solved and its solution. Although this manuscript has focused on classification
tasks for RL, future works will be conducted to extend the approach to other problem
statements such as regression or clustering.

Supplementary information

This article contains five videos in MP4 format as supplementary material, containing
visual rendered tests of the learned QRBSs to solve the studied environments in the
experimentation: FrozenLake(.mp4), BlackJack(.mp4), CartPole(.mp4), Mountain-
Car(.mp4), and Acrobot(.mp4). Each file includes five different tests in its respective
environment.
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org/10.1007/s11128-024-04391-0.
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