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À minha amada e companheira Lilian, pelo tenro amor e carinho. Por ter aceito

ir comigo aos aos confins do mundo, apoiando-me incondicionalmente. Por ter me

esperado enquanto eu estava no Fermilab. Por ter, tantas vezes, feito a minha vontade

em detrimento da dela. Apenas espero ter retribúıdo seu amor a altura.
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Resumo

Nesta tese, investigamos diversos tópicos atuais e relevantes em f́ısica de neutrinos.

Contribúımos com a análise da determinação do menor ângulo de mistura leptônico,

θ13, e estudamos, de maneira probabiĺıstica, o impacto decorrente na matriz de massa

dos neutrinos. Tendo em vista o último parâmetro de oscilação desconhecido, a fase

de violação de CP, estudamos uma medida apropriada para experimentos como T2K e

NOνA, chamada fração de exclusão de CP. Além disso, analisamos as antigas e recentes

anomalias dos experimentos de oscilação de neutrinos em curtas distâncias, realizando o

mais completo e detalhado ajuste global até o presente momento.

Abstract

In this thesis, we investigate several recent and relevant topics in neutrino physics. We

have contributed to the analysis of the smallest mixing angle, θ13, and we have studied,

in a probabilistic fashion, the consequent impact in the neutrinos mass matrix. In view of

the last unknown oscillation parameter, the CP violation phase, we study an appropriate

measure for experiments like T2K and NOνA, the CP exclusion fraction. Besides, we

analyse the recent and older anomalies of short baseline neutrino oscillation experiments,

performing the most complete and detailed global fit up to date.
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2.4. Parâmetros de oscilação do melhor ajuste e valores de χ2
min e ∆χ2

no-osc ≡

χ2
no-osc − χ2

min no formalismo 3+1 . . . . . . . . . . . . . . . . . . . . . . 61

2.5. Pontos de melhor ajuste para os dados de experimentos de reator de curtas

distâncias e a combinação destes com os experimentos de gálio, no esquema

3+2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6. Contribuições individuais ao χ2 no ponto de melhor ajuste dos dados de

combinados de aparecimento para os esquemas 3+1, 3+2 e 1+3+1 . . . . 76

2.7. Mı́nimos globais de χ2, valores GOF e teste do parâmetro goodness-of-fit
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Introdução

Na ótica cient́ıfica, propriamente em relação à f́ısica de part́ıculas elementares, vivemos

um momento sui generis. O modelo que explica os mais diversos fenômenos que ocorrem

em escala subatômica data de meados da década de 60, fundamentado nos trabalhos de

Glashow [1]; Glashow, Iliopoulos e Maiani [2]; Brout e Englert [3]; Higgs [4]; Guralnik,

Hagen e Kibble [5]; Weinberg [6]; Salam [7]; entre muitos outros (para detalhes, ver e.g.

ref. [8] e referências nela compreendidas).

Tal modelo, conhecido comumente como modelo padrão, foi extenuantemente testado –

e obteve grande êxito – por diversos experimentos, em especial o Large Electron-Positron

Collider, onde não apenas se determinou com exatidão as massas dos bósons vetoriais,

mas também foram feitas diversas medidas de precisão dos parâmetros do modelo padrão,

e o Tevatron, onde foi descoberto o quark top e feita a medida mais precisa da massa do

W . Até recentemente, a única lacuna a ser preenchida do modelo padrão era o bóson de

Higgs, responsável pela quebra de simetria eletrofraca, sendo responsável pelas massas

dos bósons vetoriais, além de possivelmente gerar as massas dos férmions através dos

acoplamento de Yukawa, e essa part́ıcula se assemelha convincentemente à ressonância

descoberta pelo Large Hadron Collider, no dia 4 de julho de 2012.

Desta forma, o modelo padrão poderia ser considerado, talvez, uma das teorias cient́ıfi-

cas mais bem sucedidas de todos os tempos. Não obstante, há tanto problemas de cunho

teórico quanto experimental. Os primeiros são, em certo sentido, extŕınsecos ao modelo.

Eles não constituem problemas per se, mas estão enraizados em conceitos estéticos, por

exemplo, o ajuste fino dos parâmetros para garantir a validade do modelo, muitas vezes

cunhado de naturalidade, ou a ânsia de compreender a origem dos parâmetros, como as

massas e misturas dos léptons, denominado de enigma do sabor.

O bóson de Higgs nos confere um bom exemplo do problema da naturalidade. Sua

massa f́ısica, observável, recebe enormes correções radioativas, especialmente de tops

virtuais e, no modelo padrão, a única forma de mantê-la sob controle é ajustando o

parâmetro de massa no lagrangeano em cerca de 1 unidade em 1030 [9]. Esse ajuste

1
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fino (ou melhor, fińıssimo) está relacionado com a larga separação entre as duas escalas

fundamentais do modelo padrão: a escala de quebra de simetria eletrofraca, em torno de

1 TeV, e a escala da gravidade, caracterizada pela massa de Planck MPl ∼ 1015 TeV. A

separação entre essas duas escalas fundamentais dá origem ao problema da hierarquia.

Igualmente importante é o entendimento dos parâmetros fundamentais do modelo

padrão. Por que as massas dos quarks e léptons carregados são tão hierárquicas? Por

que três famı́lias? Há alguma relação entre as massas das part́ıculas e suas matrizes de

mistura? Por que o modelo padrão não contêm o termo de violação de CP no setor forte?

Essas e outras perguntas demonstram a insatisfação, em ńıvel conceitual, da comunidade

cient́ıfica em relação ao modelo padrão.

Além disso, existem observações experimentais que constituem, de fato, f́ısica além

do modelo padrão pois, embora não o contradigam, não são previstas. Investigações

cosmológicas nos revelam alguns fatos notáveis. Primeiro, a expansão acelerada do

universo, aferida em 1998 através do monitoramento de supernovas tipo Ia. Essa

expansão poderia ser explicada pela existência de uma energia escura, cuja principal

propriedade seria o exerćıcio de uma pressão negativa e homogênea através do espaço.

Segundo, a presença de forças gravitacionais não oriundas de fontes conhecidas, que

poderia ser explicada por uma forma de matéria fracamente interagente, a matéria escura.

A constatação incipiente desse fato data de meados do século passado, na qual observou-se

que a velocidade orbital de galáxias em clusters não decrescia com a distância, como

esperado por um sistema cuja matéria está predominantemente aglomerada no centro,

mas permanecia relativamente constante [10].

Terceiro, a assimetria bariônica medida no universo, para ser produzida, requer as

famigeradas condições de Sakharov [11], a saber, violação de número bariônico, violação

de C e CP, e o desvio do equiĺıbrio térmico. Apesar do modelo padrão satisfazer as

duas primeiras condições, o desvio do equiĺıbrio térmico não é uma transição de fase de

primeira ordem, necessária para gerar a assimetria. A presença de férmions vetoriais

poderia, em prinćıpio, proporcionar tal transição. A presença desses férmions poderia

estar relacionada com o desvio, em relação ao modelo padrão, observado na razão de

ramificação do higgs em dois fótons [12]. Essa razão, como mostramos nas refs. [13, 14],

pode ser elevada com a inclusão no modelo de férmions vetoriais que se misturam e se

acoplam com o higgs. Além disso, a violação de CP presente no modelo padrão não é

grande o suficiente para produzir a assimetria.

Finalmente, há ainda mais uma observação experimental, de suma importância para

a presente tese, que devemos abordar em mais detalhes: a oscilação dos neutrinos. A

2
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presença desse fenômeno é corroborada por diversos experimentos, mas em especial a

primeira evidência convincente de oscilação foi apresentada por Kamiokande [15], que

observou o fenômeno no espectro de energia de neutrinos atmosféricos. Como veremos

no caṕıtulo 1, a presença de oscilações indica, pelo menos, dois neutrinos massivos.

Uma vez que no modelo padrão essas part́ıculas não têm massa, a oscilação consiste em

evidência de f́ısica nova. Embora nosso objetivo não seja apresentar uma revisão acurada

e exaustiva da história da f́ısica de neutrinos, cabe aqui alguns comentários acerca do

contexto histórico, bem como uma discussão sobre os conhecimento que temos até agora

sobre os neutrinos.

A primeira aparição do neutrino no universo de nossos conceitos é devida a Pauli [16],

que postulou a existência de uma part́ıcula leve, sem carga e indetectável para explicar o

espectro de energia do decaimento beta n → p+e−+ν. Já a primeira detecção do neutrino

do elétron foi realizada pelo experimento radioqúımico de Cowan–Reines [17], em 1956,

seguida da detecção do neutrino do múon por Lederman, Schwartz e Steinberger [18],

em 1962.1 O que segue depois disso, é uma longa trajetória de experimentos que

estudaram neutrinos do Sol [20–37], de reatores nucleares [38–53], de aceleradores [54–60]

e atmosféricos [15, 61–69].

Mais adiante, no caṕıtulo 1, veremos que a f́ısica de oscilação de neutrinos é senśıvel às

diferenças quadradas de massa dos auto-estados do hamiltoniano livre, ∆m2
ij
≡ m2

i
−m2

j
,

e à matriz de mistura dos neutrinos que, em três gerações, pode ser parametrizada

por três ângulos de mistura, θ12, θ13, θ23, e uma fase de violação de CP, δCP. Isso

constitui o paradigma de três neutrinos. Para a medição de todos esses parâmetros,

dispomos de um abrangente leque de experimentos. Utilizando o desaparecimento de

neutrinos, experimentos solares e de reator, especialmente Super-Kamiokande [35–37]

e KamLAND [52], são senśıveis a θ12 e ∆m2
21, enquanto que experimentos de neutrinos

atmosféricos e de feixe em longas distâncias, O(100–1000 km), principalmente Super-

Kamiokande [69], MINOS [59] e T2K [60], nos revelam θ23 e ∆m2
31.

Finalmente, a recente determinação de θ13 por T2K, MINOS, Double Chooz, Daya Bay

e RENO [70], nos revelou um ângulo de mistura muito próximo ao limite experimental

anterior, de CHOOZ [48], grande o suficiente para abrir a possibilidade de uma medida

prematura da fase de violação de CP. De fato, a combinação de experimentos de reator e

acelerador [71] é uma estratégia eficiente para a determinação de δCP e exploraremos tal

fato na seção 1.3.

1O neutrino do tau foi detectado apenas em 2000 pelo experimento DONUT [19]
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Figura 0.1.: Hierarquias das massas dos neutrinos.

O conhecimento atual dos parâmetros de oscilação pode ser resumido como [72]

∆m2
21 = (7,50± 0,185)× 10−5 eV2

sen2θ12 = 0,30± 0,013

∆m2
31 = (+2,47± 0,07)× 10−3 eV2 (hierarquia normal)

∆m2
32 = (−2,43± 0,07)× 10−3 eV2 (hierarquia invertida)

sen2θ13 = 0,023± 0,0023

sen2θ23 = 0,413+0,037
−0,025 ⊕ 0,594+0,021

−0,022.

É importante perceber o que ainda não sabemos: a hierarquia de massa dos neutrinos

(ver figura 0.1), o octante de θ23 e, mais importante, a fase de violação de CP, δCP.

Assim, para testarmos o paradigma de três neutrinos, a determinação de δCP é de

extrema importância. Tal medição é desafiadora: o efeito de δCP é suprimido pela

razão ∆m2
21/|∆m2

31| e pelo produto dos ângulos de mistura, incluindo o pequeno sen2θ13.

Torna-se então imprescind́ıvel a elaboração de estratégias eficazes que auxiliem a medida

da fase de violação de CP, um dos objetivos dessa tese, abordado na seção 1.3.

Também significativo é o enigma das massas dos neutrinos, ausentes no modelo padrão

e extremamente pequenas se comparadas às massas dos outros férmions, o que nos

remete à questão se a origem de massa dos neutrinos é a mesmo dos demais férmions.

Como veremos na seção 1.1, uma posśıvel maneira de gerar massas tão pequenas é pelo

mecanismo de seesaw, onde a escala de energia de uma certa f́ısica nova suprime a massa

dos neutrinos. Geralmente, o mecanismo de seesaw traz consigo o fato que o neutrino e o

antineutrino são a mesma part́ıcula, ou seja, a natureza de Majorana dos neutrinos, cujo

ind́ıcio experimental seriam processos que violam o número leptônico em duas unidades,

sendo o mais promissor deles o decaimento beta duplo sem neutrinos. Do ponto de vista

da compreensão dos parâmetros do modelo padrão, como citamos o enigma do sabor, é

importante entender a matriz de massa dos neutrinos, assim como as correlações entre

suas entradas. Isso será discutido na seção 1.2.2, onde analisaremos também o impacto
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de posśıveis progressos na caracterização dos parâmetros de oscilação.

Além de tudo isso, há resultados experimentais que não podem ser explicados pelo

paradigma de três neutrinos, consistindo, talvez, de ind́ıcios de f́ısica exótica. Essas

anomalias compreendem:

1. Os resultados de aparecimento de neutrinos e antineutrinos do elétron em LSND [73]

e MiniBooNE [74–78], onde foi observado um inesperado excesso de eventos em

relação ao rúıdo;

2. Os experimentos de fonte radioativa GALLEX [79, 80] e SAGE [81, 82], que obser-

varam um número de neutrinos do elétron abaixo do que era esperado teoricamente;

3. Experimentos de neutrinos de reatores que detectaram taxas de eventos de anti-

neutrinos do elétron advindos da queima de isótopos radioativos abaixo, de acordo

com cáculos recentes [83, 84], das taxas teóricas.

Se tomados individualmente, esses sinais não são estatisticamente categóricos, tampouco

são considerados resultados ineqúıvocos. Ao combiná-los, por um lado, aumentamos

consideravelmente a significância dessas anomalias, mas, por outro, revelamos uma forte

incompatibilidade entre os dados experimentais. Esse conflito vêm da interpretação desses

resultados como provenientes da oscilação dos neutrinos usuais para neutrinos estéreis (que

não se acoplam, ou o fazem de maneira irrisória, com o Z), caracterizada por∆m2 � 1 eV2.

No caṕıtulo 2, faremos uma análise global detalhada das anomalias e comentaremos,

brevemente, sobre a possibilidade de explicar as anomalias de desaparecimento em um

modelo de dimensões extras, que por sua vez concede uma explicação para a pequeneza

das massas dos neutrinos [85, 86].

Neutrinos também são importantes em diversos fenômenos que não abordaremos nessa

tese. Por exemplo, eles são ingredientes essenciais na nucleosśıntese de big bang, na śıntese

de elementos leves e na formação de estruturas cósmicas em largas escalas. São também

elementos chave no mecanismo de explosão de supernovas e no modelo de combustão

solar. Emitidos por decaimentos de elementos radioativos presentes na crosta terrestre,

os geoneutrinos têm papel crucial no arrefecimento interno da Terra.

Além disso, o setor de neutrinos, por ser conhecido com precisão menor em relação

aos setores dos léptons carregados e dos quarks, pode ainda encerrar f́ısica exótica e

observável, como os neutrinos estéreis que mencionamos, ou até novas interações, advindas

de mediadores leves de massas e acoplamentos muito menores que os do W , ou posśıveis

momentos magnéticos não padrões. Estudamos tal cenário na ref. [87], onde analisamos
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os v́ınculos cosmológicos sobre esses mediadores leves, bem como calculamos v́ınculos

novos de experimentos terrestres como Borexino [34] e Xenon-100 [88].

No contexto poĺıtico, acreditamos que o estudo detalhado dos neutrinos e uma melhor

compreensão de sua f́ısica é essencial não apenas para a ciência como um todo, mas

também no desenvolvimento cient́ıfico regional da américa latina. A possibilidade da

construção de um laboratório subterrâneo na cordilheira dos Andes, no futuro túnel Água

Negra [89], é uma oportunidade única para a comunidade cient́ıfica latino-americana.

Caso o laboratório venha a se realizar, de acordo com nossa análise [90], um detector

de neutrinos nele localizado seria de grande valia para o estudo neutrinos oriundos da

explosão de uma supernova tipo II não muito distante (� 20 kpc), pois seria o único

detector com resolução espectral do hemisfério sul. Tal detector também poderia ser

útil para medir geoneutrinos, por causa da espessura local da crosta terrestre, além de

neutrinos solares.

Por fim, esperamos que essa tese constitua um progresso no entendimento fenomenoló-

gico da f́ısica de neutrinos, padrão e não-padrão, de forma acesśıvel não só a pesquisadores

da área mas também aos estudantes.
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1
O paradigma de três neutrinos

1.1. Introdução teórica

Antes de iniciarmos a discussão sobre o paradigma de três neutrinos, é adequado prover

uma breve introdução teórica cujos objetivos são sobretudo didáticos, mas que também

nos servirá para definir a notação e as convenções que serão usadas ao longo desta tese.

A partir o grupo de simetria do modelo padrão e as representações dos campos das

part́ıculas nele compreendidas, obteremos as interações de calibre e os termos de massa

dos léptons carregados. Em seguida, discutiremos como implementar esses termos no

setor de neutrinos e de onde vem a oscilação. Mencionaremos o setor de quarks, mas não

entraremos em detalhe. Finalmente, comentaremos o potencial induzido pela matéria

e como isso altera a oscilação dos neutrinos. Nessa tese, utilizaremos a convenção de

unidades naturais, onde c = � = 1

1.1.1. O setor leptônico do modelo padrão

Para construirmos o setor leptônico do modelo padrão, partiremos das representações

dos campos leptônicos sob o grupo de simetria SU(3)c×SU(2)L×U(1)Y e, em seguida,
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escreveremos todos os termos renormalizáveis1 que respeitem estas simetrias de calibre.

Os léptons de mão esquerda são dubletos de SU(2)L e tem hipercarga −1/2, ao passo

que aqueles de mão direita são singletos de SU(2)L e tem hipercarga −1. Note que esta

definição é compat́ıvel com a relação de Gell-Mann–Nishijima

Q = I3 + Y, (1.1)

onde Q é a carga elétrica, I3 é a terceira componente do isospin e Y é a hipercarga.

Assim, identificamos as componentes superior e inferior do dubleto leptônico com as

componentes esquerdas do neutrino e do elétron, múon ou tau, respectivamente. Já o

singleto é identificado com a componente direita do lépton carregado. Uma teoria na

qual as componentes de mão direita e esquerda dos campos fermiônicos acham-se em

representações diferentes da simetria de calibre é chamada quiral. Assim, a invariância

de calibre nos diz que os termos de massa são proibidos nessas teorias. É de se observar

aqui que o modelo padrão não contempla neutrinos de mão direita. Como veremos a

seguir, no modelo padrão isso implica em neutrinos desprovidos de massa e tal fato

é robusta e sistematicamente refutado pelos resultados experimentais, especificamente

pelas experiências de oscilação de neutrinos. Veremos mais adiante que para o fenômeno

de oscilação de neutrinos se realizar, é necessário pelo menos dois neutrinos massivos.

Regressando aos campos leptônicos do modelo padrão, em uma notação óbvia temos

L ≡ PL

�
ν

l

�
≡

�
νL

lL

�
, lR ≡ PRl, (1.2)

onde PL = (1 − γ5)/2 e PR = (1 + γ5)/2 são os projetores de mão esquerda e direita

e, no que segue, denotaremos as part́ıculas de mão direita e esquerda por part́ıculas

R e L, respectivamente. Como último ingrediente, o campo do bóson de Higgs, H, é

um dubleto de SU(2)L de hipercarga +1/2. Dispondo destas informações, podemos

escrever todos os termos renormalizáveis que conservam o lagrangeano invariante sob

SU(3)c×SU(2)L×U(1)Y e, então, obtemos o setor leptônico do modelo padrão:

Llep = iL̄ /DL+ il̄R /DlR + L̄YlHlR + h.c., (1.3)

onde /D = Dµγµ, sendo γµ as matrizes de Dirac, Dµ a derivada covariante e Yl, em geral,

1Os termos renormalizáveis são todos aqueles de dimensão de energia igual ou menor que 4. Os campos
bosónicos e as derivadas têm dimensão 1, enquanto que os fermiônicos têm dimensão 3/2.
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uma matriz de acoplamentos de Yukawa.2

De forma similar, o setor do Higgs é definido por

Lhig = (DµH)†DµH −m2H†H + λ2(H†H)2. (1.4)

Uma vez que o termo quadrático do potencial do Higgs é negativo, o campo do Higgs

adquirirá um valor esperado do vácuo (vev). Ao substituirmos, no calibre unitário,

H =
1
√
2

�
0

h+ v

�
, (1.5)

a derivada covariante dá origem aos termos de massa dos bósons vetoriais de calibre. Para

que tais termos sejam diagonais na massa, faz-se necessária a redefinição dos campos

Zµ = cos θwW
3
µ
− senθwBµ (1.6)

Aµ = senθwW
3
µ
+ cos θwBµ, (1.7)

onde θw é o ângulo de mistura fraco (sen2θw ≡ g�/
�

g2 + g�2 = 0.23 [91]), sendo g e g� as

constantes de acoplamento de SU(2)L e U(1)Y . Consequentemente, as massas dos bósons

serão dadas por [92]
M2

W

2
=

g2v2

8
, M2

Z
=

M2
W

cos2 θw
, (1.8)

Focando no setor leptônico, pois este nos é de interesse, segue que a derivada covariante,

junto com a redefinição dos campos de calibre (1.6), nos revela a interação dos léptons

com os bósons de calibre. Uma vez que os campos de R e L residem em representações

distintas de SU(2)L, a interação destes campos são diferentes. A saber, os termos de

interação do lagrangeano leptônico são [92]

Lint,lep = e l̄γµlAµ −
g

2cw
ν̄Lγ

µνLZµ −
g

2cw
l̄γµ

�
2s2

w
PR + (2s2

w
− 1)PL

�
lZµ

−
g
√
2

�
ν̄γµPLlW

+
µ
+ l̄γµPLνW

−
µ

�
(1.9)

onde abreviamos cw = cos θw e sw = senθw.

2Em outras palavras, ao escrevermos, por exemplo, l̄ Yl l, queremos dizer

�

α,β=e,µ,τ

l̄α(Yl)αβlβ .
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Para seguirmos com o desenvolvimento do setor leptônico, devemos substituir o vev do

Higgs nos termos de Yukawa em (1.3). Ao fazê-lo, obtemos um termo de massa para os

léptons carregados
v
√
2
l̄LYl lR + h.c., (1.10)

mas não obtemos o mesmo para os neutrinos. O motivo disto é a ausência de neutrinos

de mão direita no modelo padrão. Note que Yl, em geral, é uma matriz. Não podemos

entrar em detalhe na diagonalização do termo de massa e na consequente oscilação dos

neutrinos sem resolver o problema de suas massas.

Façamos um breve paralelo com o setor de quarks. O lagrangeano de tal setor é dado

por

Lqua = iQ̄L /DQL + iūR /DuR + id̄R /DdR + Q̄LYdHdR + Q̄LYuH̃uR, (1.11)

onde QL ≡ PLQ é um dubleto de SU(2)L de hipercarga +1/6 enquanto que uR e dR são

singletos de hipercargas +2/3 e −1/3. Mnemonicamente, o quark up é a componente

superior do dubleto, ao passo que o quark down é a inferior. Suas cargas elétricas são

+2/3 e −1/3. No último termo da expressão, temos H̃ ≡ −iσ2H, sendo σi a i-ésima

matriz de Pauli. Este último termo dá origem à massa dos quarks up. No setor de

neutrinos, a ausência de um termo como este traduz-se na ausência de massa para estes

léptons neutros.

Uma sáıda direta seria a simples inclusão de neutrinos de mão direita ao modelo padrão.

Como discutimos no começo do caṕıtulo, no modelo padrão, os termos de massa são

proibidos pelo grupo SU(2)L, surgindo apenas após a quebra de simetria eletrofraca.

Porém, ao adicionarmos um ou mais neutrinos de mão direita NR, como tais férmions

são singletos de SU(3)c×SU(2)L×U(1)Y , podemos escrever o termo de massa

1

2
N̄RMRN

c

R, (1.12)

onde N c

R é o conjugado de carga de NR, que por sua vez é um vetor, e MR é uma

matriz simétrica. Há ainda um fato experimental que distingue os neutrinos das demais

part́ıculas do modelo padrão: a pequeneza de suas massas. Experimentos cosmológicos

como PLANCK [93], mostram que, levando em conta o modelo cosmológico padrão, a

soma das massas de todos os neutrinos não deve ser maior que O(1 eV), pelo menos seis

ordens de magnitude menor que a massa do elétron, a mais leve part́ıcula carregada do

modelo padrão. Devemos então abordar não apenas o problema da ausência das massas

dos neutrinos, como também a sua magnitude.

10



1. O paradigma de três neutrinos

Observamos na natureza apenas duas escalas fundamentais, a escala de quebra de

simetria eletrofraca e a escala gravitacional, mais conhecida como escala de Planck.

Enquanto a primeira caracteriza-se por energias de ordem 103 GeV, a segunda é marcada

pela massa de Planck MPl ∼ 1019 GeV. No modelo padrão, as massas das part́ıculas

carregadas são todas relacionadas à escala de quebra de simetria eletrofraca, ao passo

que as massas dos neutrinos, por serem O(eV), indicam uma nova escala. Uma das

possibilidades para resolver este impasse é imaginarmos que uma f́ısica nova possa originar

as massas dos neutrinos [94]. Essa deve ocorrer em uma escala de energia mais alta e

respeitar a simetria eletrofraca, caso contrário a quebra dessa simetria acontece muito

cedo.

Weinberg mostrou que há apenas um único operador, invariante sob o grupo de simetria

SU(3)c×SU(2)L×U(1)Y e não renormalizável de dimensão 5, constrúıdo com os campos

do modelo padrão [95]
c

Λ
(LH̃)c(LH̃), (1.13)

onde c é uma constante de acoplamento e Λ é a escala da f́ısica nova. Uma forma espećıfica

de realizar esse operador é adicionar ao lagrangeano do modelo padrão neutrinos de mão

direita NR (singletos), termos de Yukawa L̄H̃ YνNR + h.c. e os respectivos termos de

massa 1
2N̄RMRN c

R, permitidos pela simetria eletrofraca.

O termo de massa dos neutrinos do dubleto L é obtido, a partir do diagrama de

Feynman à esquerda da figura 1.1, ao introduzirmos o vev do Higgs e integrarmos fora os

neutrinos singletos. Assim, a matriz de massa dos neutrinos do dubleto L é dada por

M =
v2

2
Yν(MR)

−1Y T

ν
, (1.14)

onde vemos que a escala de massa dos singlets faz o papel de Λ na eq. (1.13), suprimindo

o termo de massa do neutrino padrões. Este é o mecanismo de seesaw tipo I. Existem

diversas formas de gerar o termo efetivo de Weinberg (1.13). As mais comuns na literatura,

além da que mostramos, são os mecanimos de seesaw tipo II e III, os quais envolvem

um tripleto de SU(2)L escalar e fermiônico, respectivamente (ver diagramas ao centro

e à direita da figura 1.1). Todos esses métodos têm como consequência a natureza de

Majorana dos neutrinos, ou seja, o campo ν é seu próprio conjugado de carga νc.

Faremos um breve desvio para elucidar um ponto talvez obscuro na literatura: o

que realmente denominamos por neutrino e antineutrino. Ao longo dessa tese, assim

como é feito usualmente, empregaremos esses dois termos independentemente sendo os

neutrinos férmions de Dirac ou de Majorana. De modo geral, um campo fermiônico

11



1. O paradigma de três neutrinos

envolve operadores de criação e aniquilação de tal modo que sua aplicação sobre um

estado muda alguns de seus números quânticos por quantidades bem definidas. Para

elétrons, por exemplo, e possui tanto o operador de aniquilação de elétrons, mudando a

carga elétrica q do estado por +1 unidade, quanto o de criação de pósitrons, alterando q

da mesma forma. Um racioćınio similar segue para a quiralidade. Assim, dependendo da

natureza do neutrino, definimos neutrino e antineutrino da seguinte forma:

• Dirac: Temos quatro graus de liberdade, part́ıcula e antipart́ıcula, L e R. Note que,

por exemplo, o campo R do elétron, eR ≡ PR e, aniquila um elétron R enquanto

cria um pósitron L. Apesar da quiralidade não ser um bom número quântico,3 em

altas energias (E � m) ela se confunde com a helicidade, que, por estar associada

ao spin, é um bom número quântico. Assim, podemos associar o número quântico

aproximado de quiralidade em altas energias +1 e −1 para part́ıculas R e L, vemos

que o campo eR o altera por −1 unidade, de forma consistente com o que discutimos.

O termo de interação com o W da forma ν̄LγµeLW+
µ

aniquila um elétron L (cria

um pósitron R) e cria um neutrino L (aniquila um antineutrino R), enquanto que

ēLγµνLW−
µ

faz o inverso, cria um elétron L (aniquila um pósitron R) e aniquila

um neutrino L (cria um antineutrino R). Já o termo de corrente neutra ν̄LγµνL

aniquila e cria, nessa ordem, um neutrino L (cria e aniquila um antineutrino R).

Logo, as interações do modelo padrão não envolvem os graus de liberdade referentes

ao neutrino R e ao antineutrino L, e portanto esses não são observáveis. Assim, o

termo neutrino é atribúıdo ao neutrino L, ao passo que antineutrino é atribúıdo ao

antineutrino R.

• Majorana: Como a part́ıcula é sua própria antipart́ıcula, temos apenas dois graus

de liberdade, de quiralidades R e L. Nesse caso, o campo νL aniquila o neutrino L

e cria o neutrino R, e vice-versa para ν̄L, criando o neutrino L e aniquilando o R.

Como acabamos de ver, esses são os únicos campos que aparecem nas interações

com o W e o Z. Assim, entendemos por neutrino e antineutrino as part́ıculas de

Majorana L e R, respectivamente.

Voltando à obtenção da matriz de mistura do setor leptônico, para todos os efeitos, o

mecanismo de seesaw tipo I, o mais simples, nos bastará. A partir das eqs. (1.3), (1.13)

3Um bom número quântico é um autovalor de um operador que comuta com o hamiltoniano do sistema.
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Figura 1.1.: Diagramas de Feynman responsáveis pelos mecanismos de seesaw tipo I (à
esquerda), II (centro) e III (à direita)

e (1.14), o lagrangeano efetivo desse setor pode ser escrito como

Lleptons = i l̄L /∂lL + i l̄R /∂lR + i ν̄L /∂νL + e l̄γµlAµ

−
g

2cw
l̄γµ[2s2

w
PR + (2s2

w
− 1)PL]lZµ −

g

2cw
ν̄Lγ

µνLZµ

−
g
√
2

�
ν̄Lγ

µlLW
+
µ
+ l̄Lγ

µνLW
−
µ

�

+
v
√
2
l̄L Yl lR +

v2

2
ν̄L Yν(MR)

−1Y T

ν
νL. (1.15)

Note que escolhemos, implicitamente, uma base nesse espaço, onde as interações de

corrente carregada são diagonais, isto é, o campo do neutrino de sabor α acopla-se

univocamente ao lépton lα. Dessa forma, denominamos neutrino do elétron aquele que,

em interações de corrente carregada, é associado ao elétron, e similar para os neutrinos

do múon e tau. O único pormenor é que os termos de massa na última linha da eq. (1.15)

não são, em geral, diagonais, pois Yl, Yν e MR são matrizes no espaço de sabor.

Para propagarmos os campos, precisamos de massas bem definidas, ou seja, devemos

transformar os campos leptônicos de forma a diagonalizar os termos de massa. Uma vez

que campos de quiralidades diferentes representam graus de liberdade distintos, podemos

redefińı-los de forma independente, multiplicando os vetores de campos no espaço de

sabor por matrizes. Observando a equação (1.15), se essas matrizes forem unitárias, então

os termos cinéticos e de interação com o Z não se alteram. Sabemos que qualquer matriz

complexa arbitrária pode ser diagonalizada por uma transformação biunitária. Segue

então que existem matrizes unitárias V e

R e V e

L , tal que as redefinições concomitantes

lR → V l

RlR lL → V l

LlL, (1.16)

diagonalizam Yl. Ao redefinirmos os campos dos léptons carregados, o único impacto no

lagrangeano (1.15), além da diagonalização do termo de massa dos léptons carregado, é

13



1. O paradigma de três neutrinos

na interação com o W ,

ν̄Lγ
µlLW

+
µ
+ l̄Lγ

µνLW
−
µ

→ ν̄Lγ
µ V l

L lLW
+
µ
+ l̄L(V

l

L)
†γµνLW

−
µ

(1.17)

Para os neutrinos, como a matriz Yν(MR)−1Y T

ν
é simétrica, existe uma transformação

unitária V ν

L , que apenas a diagonaliza e modifica novamente a interação de corrente

carregada

ν̄Lγ
µ V l

L lLW
+
µ
+ l̄L(V

l

L)
†γµνLW

−
µ

→ ν̄Lγ
µ(V ν

L )
†V l

L lLW
+
µ
+ l̄L(V

l

L)
†V ν

L γ
µνLW

−
µ
. (1.18)

Nessa base, que denominaremos base de massa, as interações de corrente carregada

associam uma combinação linear de neutrinos de massa aos lépton carregados. Mais

precisamente, a combinação linear de campos de neutrinos de massa νi associada ao

campo do lépton carregado α é dada por
�

i
Uαiνi, com a matriz de mistura definida por

U = (V l

L)
†V ν

L . (1.19)

Em termos das componentes, as transformações dos campos são lβ = (V l

L)βαlα e νi =

(V ν

L )iανα, permitindo-nos escrever

Uαi =
�
(V l

L)
†V ν

L

�
αi

=
�

β=e,µ,τ

�
(V l∗

L )
�
αβ

(V ν

L )βi. (1.20)

Logo, na base de massa, o termo de interação de corrente carregada mais geral é escrito

como

l̄Lγ
µUνLW

−
µ
+ h.c., (1.21)

onde a matriz de mistura U é unitária.

1.1.2. Oscilações no vácuo e na matéria

Se as massas dos neutrinos não forem completamente degeneradas, a presença da

matriz de mistura no termos de interação com o W implica no fenômeno de oscilação,

como vamos descrever agora. Em termos gerais, um operador no setor de neutrinos na

base de vácuo Ov pode ser escrito na base de sabor Of como

O
v = U †

O
fU ⇒ O

v
ij
= U∗

αi
O

f
αβ
Uβj. (1.22)
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1. O paradigma de três neutrinos

Adotaremos a notação de ı́ndices romanos para a base de vácuo e ı́ndices gregos para a

base de sabor e, então, não tornaremos a escrever o sobrescrito f e v. Segue que

Oαβ = �να| O |νβ� =
�

i,j

�να|νi� �νi| O |νj� �νj|νβ� =
�

i,j

�να|νi�Oij �νj|νβ� , (1.23)

o que nos mostra claramente a relação entre os estados que formam as bases supracitadas,

|να� = U∗
αi
|νi� . (1.24)

No setor de neutrinos, podemos parametrizar a matriz de mistura U, ou matriz de

Pontecorvo-Maki-Sakata-Nakagawa [96–98] usando três rotações complexas Vij , cada uma

caracterizada por um ângulo de rotação real θij e uma fase complexa φij, além de uma

matriz de fases diagonal, representadas pela matriz Φ = diag(eiϕ1 ,eiϕ2 ,eiϕ3),

U = V23V13V12Φ. (1.25)

No apêndice A, apresentamos um algoritmo para a remoção consistente de algumas

fases da matriz de mistura. Utilizando-o, podemos reescrever U como

U = Φ�O23V13O12Φ
��, (1.26)

onde Oij é uma matriz de rotação real no plano ij, caracterizada pelo ângulo de mistura

θij. É importante observar que nem todas as fases são f́ısicas. Podemos redefinir os

campos dos léptons carregados L de modo a eliminar Φ�, pois eles aparecem à esquerda

de U no termo de interação ēLγµUνLW−
µ
+ h.c., e compensar a fase que surge no termo

de massa por uma redefinição idêntica dos campos R. Já para os neutrinos, se forem

férmions de Dirac podemos fazer o mesmo, eliminando Φ��, mas se forem part́ıculas de

Majorana, o termo de massa impede tal redefinição. Não obstante, como aprendemos na

mecânica quântica, a f́ısica dos neutrinos não pode ser senśıvel a uma redefinição global

da fase do estado, e portanto uma (e apenas uma) fase de Φ�� pode ser eliminada sem

perda de generalidade. Dessa forma, obtemos a matriz de mistura em três gerações mais

geral, em função dos ângulos de mistura θ12, θ13 e θ23, da fase de violação de CP δCP e

15



1. O paradigma de três neutrinos

das fases de Majorana λ1 e λ3:

Umaj = U Φ

=




c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13








eiλ1/2 0 0

0 1 0

0 0 eiλ3/2



 ,

(1.27)

onde cij ≡ cos θij e sij ≡ senθij.

Imaginemos agora que um neutrino de um determinado sabor να de energia E é

produzido e desloca-se, com velocidade próxima a c, por uma distância L até ser detectado.

A probabilidade de detectarmos um neutrino de sabor arbitrário νβ é dada por

P (να → νβ, L) = |�νβ|να(L)�|
2 =

�����

3�

i=1

3�

j=1

UβiU
∗
jα
�νi|νj(L)�

�����

2

. (1.28)

Note que as fases de Majorana não afetam a f́ısica de oscilação. Os auto-estados do

hamiltoniano de vácuo livre evolvem trivialmente |νi(L)� = e−iHL |νi(0)� e portanto

P (να → νβ, L) =
n�

i=1

n�

j=1

UβiU
∗
iα
U∗
βj
Ujαe

i∆ijL, (1.29)

onde ∆ij = ∆m2
ij
/2E e ∆m2

ij
= m2

i
−m2

j
. Para antineutrinos, devemos usar o termo

conjugado da eq. (1.21), basicamente trocando os sinais das fases de CP na eq. (1.29).

Vamos analisar essa probabilidade em mais detalhes. Para que haja oscilações de fato,

a fase ∆m2
ij
L/2E deve ser O(1). Em vários experimentos, a distância percorrida pelos

neutrinos é fixa (experimentos atmosféricos são um bom contraexemplo), e as oscilações

são observadas no espectro de energia. Temos duas diferenças quadradas de massa bem

distintas, evidenciadas pelos dados experimentais, a solar, ∆m2
21 ≈ 7,6× 10−5 eV2, e a

atmosférica, |∆m2
31| ≈ 2,4× 10−3 eV2. A razão

|∆m2
31|/∆m2

21 ∼ 30

nos revela dois regimes de oscilação, o solar, relativo a distâncias L[km] ∼ 15E[MeV], e o

atmosférico, com L[km] ∼ 500E[GeV] = 0,5E[MeV]. Assim, em primeira aproximação,

podemos desacoplar os dois regimes para melhor entender como medir determinados

elementos da matriz de mistura.
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1. O paradigma de três neutrinos

No regime solar, temos o experimento KamLAND [99], por exemplo, que mede a

sobrevivência de antineutrinos do elétron, ν̄e → ν̄e, emitidos por vários reatores nucleares,

com energias em torno de E ∼ 3,5 MeV e distâncias L ∼ O(100) km. Das eqs. (1.27)

e (1.29) e sabendo que as medidas de θ13 mostram que esse ângulo é pequeno, se

aproximarmos ∆m2
31 → ∞, vemos que o efeito de Ue3 é apenas uma pequena redução

global no número de evento, dif́ıcil de distinguir dos erros sistemáticos, o que faz com que

esse experimento seja senśıvel às duas primeiras entradas da primeira linha da matriz de

mistura, Ue1 e Ue2, ou melhor, senśıvel ao ângulo de mistura θ12.4

No regime atmosférico, Daya Bay [53], por exemplo, também mede antineutrinos de

reator, mas com L ∼ O(1,3) km. Considerando ∆m2
21 → 0, ou seja, oscilações solares

subdominantes, entendemos porque esse experimento é capaz de medir Ue3, ou melhor,

θ13. Temos ainda experimentos atmosféricos que medem νµ → νµ e νµ → νe, como T2K

por exemplo, onde E ∼ 0,6 GeV e L = 295 km. O primeiro canal envolve apenas a

segunda linha de U e, por causa da configuração em L e E, é afetado apenas por Uµ3,

medindo portanto θ23. No segundo canal participam as linhas e e µ da matriz U , e a

configuração torna relevante apenas a terceira coluna. Assim, esse canal mede o produto

Ue3Uµ3 e, logo, uma combinação de θ13 e δCP. Quantitativamente,

sen22θ13 ∼ 0,089 (Daya Bay [53]),

sen22θ23 ∼ 0,95 (MINOS [101]),

sen22θ12 ∼ 0,84 (Super-Kamiokande [37]).

Por uma questão de completeza, comentaremos brevemente os efeitos de matéria.

Quando os neutrinos propagam-se num meio material, há a indução de um potencial

externo V que pode alterar a oscilação. Este potencial é induzido pelas interações fracas,

sendo portanto diagonal na base de sabor. De forma geral, na presença de matéria, o

hamiltoniano efetivo do sistema na base de sabor torna-se

H =
1

2E
UM2U † + V, (1.30)

e, ao diagonalizarmos esse hamiltoniano, obtemos uma matriz de mistura na matéria Um,

em geral, diferente de U . O cálculo detalhado desse potencial pode ser encontrado, por

exemplo, na ref. [102]. Para nós, basta saber que o potencial de corrente carregada para

4Experimentos que medem neutrinos solares como Homestake [20], Borexino [33], SNO [30] e Super-
Kamiokande [26], por exemplo, também são senśıveis à θ12 e ∆m2

21 através de efeitos de matéria no
Sol. Para mais detalhes, ver, por exemplo, ref. [100].
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1. O paradigma de três neutrinos

neutrinos num meio material, não polarizado, homogêneo e isotrópico, é dado por

VCC = diag(
√
2GFNe, 0, 0), (1.31)

onde GF é a constante de Fermi e Ne é a densidade de número de elétrons, enquanto que

o potencial de corrente neutra é dado por

VCN = −
GF
√
2
[Nn + (1− 4 sen2θw)Ne − (1− 4 sen2θw)Np] diag(1, 1, 1), (1.32)

onde Nn e Np são as densidades de número de neutrons e prótons, respectivamente. Note

que, se o meio for neutro, Np = Ne, simplificando o potencial. Além disso, no paradigma

de três neutrinos, como o potencial de corrente neutra é proporcional à identidade na base

de sabor, ele não altera a diagonalização do hamiltoniano (1.30) e, consequentemente,

não afeta a oscilação. No caso de antineutrinos, o potencial troca de sinal

V → −V.

O efeito do potencial de matéria é cumulativo com a distância percorrida pelo neutrino,

sendo portanto mais importante em experimentos de longas distâncias, como T2K, NOνA

e MINOS.

O potencial de matéria foi estudado, inicialmente, por Mikheyev, Smirnov e Wolfens-

tein [103, 104], para solucionar o problema dos neutrinos solares (ver, e.g. ref. [105]).

Ao longo dessa tese, quando livre de ambiguidades, utilizaremos indiscriminadamente

o termo “neutrino” para designar coletivamente neutrinos e antineutrinos.

1.2. Corroborando o paradigma de três neutrinos

O momento cient́ıfico para a f́ısica de neutrinos experimental é excepcional. A presença

de mistura no setor de neutrinos têm sido paulatinamente testada e confirmada por

uma copiosa gama de experimentos que favorecem o esquema padrão de três sabores.

Experimentos solares [20–34, 36] e atmosféricos [15, 61–68] validaram dois grandes ângulos

de mistura, sendo um deles responsável por mistura máxima ou quase máxima, e duas

diferenças quadradas de massa distintas. Tais diferenças são mais precisamente medidas

por experimentos de reator [52] e de acelerador [54–58].

Em junho de 2011, o experimento Tokai to Kamioka (T2K) [106] anunciou a detecção

de 6 eventos no canal de aparecimento νµ → νe dos quais apenas ∼ 1,5 seria supostamente
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devido ao rúıdo, indicando um valor não-nulo e até razoavelmente grande de θ13. Valor

este que abriria a possibilidade de explorar a violação de CP no setor leptônico com

experimentos desta, como T2K e NOνA, ou da próxima geração. A factibilidade de uma

descoberta prematura da fase de violação de CP singularizou essa medida, à qual se

seguiram as indicações de θ13 por MINOS [107] e Double Chooz [108] no mesmo ano, e

finalmente as medidas definitivas por Daya Bay [53] e Reno [51], no ińıcio do ano seguinte.

Antes de iniciarmos a discorrer sobre a descoberta de θ13, para uma compreensão mais

completa dos fatos, discutiremos qualitativamente as probabilidades de oscilação em três

gerações para os canais de interesse, νe → νe, νµ → νµ e νµ → νe, no regime atmosférico.

Esperamos que, ao término dessa discussão, fique evidente a complementariedade dos

experimentos de reator e acelerador em relação às medidas de θ13 e δCP. De fato, ao

levarmos em consideração os efeitos de matéria, não há expressões anaĺıticas exatas

para essas probabilidades, o que nos impele a trabalhar com expressões aproximadas. A

aproximação que faremos vale no limite [109]

√
2GFneL,

∆m2
21L

2E
∼ � � 1,

onde expadiremo-la em termos de �.

Começaremos com os experimentos de reator, que aproveitam o decaimento beta

inverso

ν̄e + p → e+ + n (1.33)

para medir antineutrinos do elétron provenientes de cadeias de decaimentos de elementos

radioativos presentes em reatores nucleares, como por exemplo urânio e plutônio. Para

que ∆m2
31L/4E ∼ O(1), devemos ter L ∼ 1 km, pois o espectro de energia desses

neutrinos é de ordem MeV. Por causa da curta distância percorrida pelos neutrinos,

os efeitos de matéria são irrelevantes e a probabilidade de desaparecimento ν̄e → ν̄e é

aproximada por

P (ν̄e → ν̄e) ≈ 1− 4c213s
2
13

�
c212sen

2

�
∆m2

31L

4E

�
+ s212sen

2

�
∆m2

32L

4E

��

− 4s212c
2
12c

4
13sen

2

�
∆m2

21L

4E

�

P (ν̄e → ν̄e) ≈ 1− sen22θ13 sen
2

�
∆m2

ee
L

4E

�
, (1.34)

onde, ao passarmos da primeira para a segunda equação, negligenciamos o termo solar e
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definimos ∆m2
ee
= c212∆m2

31+s212∆m2
32 [110]. Vemos que há dependência única e exclusiva

em um parâmetro de oscilação, e esse é o trunfo desses experimentos: a medida simples e

descorrelacionada de θ13.

Experimentos de acelerador, por sua vez, utilizando um feixe predominado por neutrinos

do múon, podem medir tanto o desaparecimento desses, νµ → νµ ou ν̄µ → ν̄µ, quanto

o aparecimento de neutrinos do elétron, νµ → νe ou ν̄µ → ν̄e. Em linhas gerais,

para produzir tal feixe, choca-se prótons com um alvo, produzindo ṕıons e káons que

decaem em neutrinos. Logo, em relação aos neutrinos de reator, a energia desses é bem

mais alta, em torno de GeV, o que implica um comprimento de oscilação de ordem

de centenas de kilômetros. Assim, é mandatória a inclusão de efeitos de matéria no

cálculo das probabilidades de oscilação. As probabilidades de desaparecimento podem

ser aproximadas por

P (
(–)

ν µ →
(–)

ν µ) ≈ 1 + 4c213s
2
23(c

2
13s

2
23 − 1) sen2

�
∆m2

31L

4E

�

+ (sen22θ13s
4
23s

2
12 + sen22θ23c

2
12c

2
13)

�
∆m2

21L

4E

�
sen

�
∆m2

31L

2E

�

− 2Jr cos δCPs
2
23

�
∆m2

21L

E

�
sen

�
∆m2

31L

2E

�

∓ s223(1− 2c213s
2
23) sen

22θ13

�
aL

2

�
sen

�
∆m2

31L

2E

�

± 4s223(1− 2c213s
2
23) sen

22θ13

�
aE

∆m2
31

�
sen2

�
∆m2

31L

4E

�
, (1.35)

onde Jr = c12s12c213s13c23s23 é o invariante de Jarlskog reduzido e o potencial de matéria

está codificado em a =
√
2GFNe. Nessa notação, o sinal superior é referente à neutrinos,

ao passo que o inferior à antineutrinos. Para o canal de antineutrinos, tomamos o

conjugado CP, ou seja

δCP → −δCP, a → −a. (1.36)

Podemos ainda tornar essa equação mais simples se aproximarmos c213 ≈ 0,97 ∼ 1 e
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omitirmos os termos solares, obtendo

P (
(–)

ν µ →
(–)

ν µ) ≈ 1− sen22θ23 sen
2

�
∆m2

31L

4E

�
− 2Jr cos δCPs

2
23

�
∆m2

21L

E

�
sen

�
∆m2

31L

2E

�

∓ s223 cos 2θ23 sen
22θ13

�
aL

2

�
sen

�
∆m2

31L

2E

�

± 4s223 cos 2θ23 sen
22θ13

�
aE

∆m2
31

�
sen2

�
∆m2

31L

4E

�
. (1.37)

Essa transição é amplamente dominada pelo segundo termo do lado direito da primeira

linha, cujo coeficiente é sen22θ23 ∼ 1, correspondendo à θ23 em torno de π/4. Desse

coeficiente, nasce a degenerescência de octante, a quase invariância da probabilidade

sob a transformação θ23 → π/2 − θ23. O último termo dessa linha nos mostra que

não há violação de CP nesse canal, apropriadamente. O efeito de matéria se apresenta

nas segunda e terceira linhas. Apesar de não tão simples quanto a medida de θ13 por

experimentos de reator, esse canal é capaz de fornecer uma medida bastante evidente de

sen22θ23.

Até agora, as duas transições discutidas nos dão boas perspectivas de medir θ13 e θ23,

mas não há sensibilidade à hierarquia ∆m2
31 → −∆m2

31, tampouco à fase δCP, e não há

como resolver a degenerescência de octante. Os canais que vêm a ser afetados por tudo

isso são os de aparecimento, cujas probabilidade são aproximadas por

P (
(–)

ν µ →
(–)

ν e) ≈ sen22θ13s
2
23 sen

2

�
∆m2

31L

4E

�
−

1

2
s212sen

22θ13s
2
23

�
∆m2

21L

2E

�
sen

�
∆m2

31L

2E

�

+ 2Jr cos δCP

�
∆m2

21L

2E

�
sen

�
∆m2

31L

2E

�
∓ 4JrsenδCP

�
∆m2

21L

2E

�
sen2

�
∆m2

31L

4E

�

± cos 2θ13sen
22θ13s

2
23

�
4Ea

∆m2
31

�
sen2

�
∆m2

31L

4E

�

∓
aL

2
sen22θ13 cos 2θ13s

2
23sen

�
∆m2

31L

2E

�
+ c223sen

22θ12

�
∆m2

21L

4E

�
, (1.38)

Em contrapartida às probabilidades (1.34) e (1.37), esta é mais elaborada. O primeiro

termo do lado direito da equação é o dominante. Os segundos termos da primeira e

última linhas são os termos solares, responsáveis por oscilações em distâncias mais longas,

e contribuem pouco para os experimentos que estamos interessados. A segunda linha

apresenta uma dependência em δCP, e portanto chamamos estes termos de termos de

conservação e violação intŕınseca de CP. Como era de se esperar, a violação intŕınseca de

CP é proporcional ao invariante de Jarlskog. Finalmente, a terceira linha e o primeiro
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termo da última linha são devidos ao potencial de matéria. Como a violação de CP

presente neles é fruto do meio no qual os neutrinos se propagam, chamamos tal violação

de CP de extŕınseca.

Vemos nesse canal uma complexidade maior quando comparado com ν̄e → ν̄e e νµ → νµ.

Primeiro, o termo dominante depende de s223, e portanto a degenerescência de octante

em (1.37) é quebrada. Além disso, como foi mencionado, a conservação e violação

intŕınsecas de CP dependem do invariante de Jarlskog. Uma vez que θ12 e θ23 são

grandes, uma variação em θ13 promove a maior mudança no tamanho desses termos e,

como consequência, uma correlação entre δCP e θ13. Por fim, o segundo termo devido

ao potencial de matéria troca de sinal se ∆m2
31 → −∆m2

31, o que fomenta o impacto da

hierarquia na probabilidade de oscilação.

Claro que, como detectamos a soma de todos esses termos, toda esta complexidade

pode vir a ser uma adversária à determinação dos parâmetros. Por outro lado, munido-nos

de estratégias eficazes, com ambos modos de oscilação de neutrino e antineutrino, nos

canais de aparecimento e desaparecimento, podemos conceber que a combinação de

experimentos de neutrinos de reator e de acelerador, ou seja, a combinação dos canais

ν̄e → ν̄e, νµ → νµ, νµ → νe e ν̄µ → ν̄e, poder-nos-ia revelar ∆m2
31 e a hierarquia dos

neutrinos, θ13, a fase de CP, bem como θ23 e seu octante!

1.2.1. Em busca de θ13

Regressemos aos resultados experimentais que discut́ıamos no ińıcio desta seção.

Quando foram anunciadas as medidas de T2K [106], MINOS [107] e Double Chooz [108],

acreditávamos que um ajuste combinado dos experimentos dedicados à medir θ13 fosse,

em certo ponto de vista, de mais valia que uma combinação global envolvendo todos

os experimentos. Primeiro, sem incluir os resultados dos experimentos supracitados, os

ajustes globais [111, 112] não tinham sensibilidade comparável ao resultado de T2K,

por exemplo. Segundo, as simulações de experimentos de neutrinos, da forma com que

são feitas, são bastante próximas dos resultados oficiais, mas não idênticas. Assim,

discrepâncias em efeitos de segunda ordem (e.g. o impacto de θ13 em neutrinos solares)

não são raras, tornando a sensibilidade do ajuste global à tais efeitos questionável. Logo,

procedemos com o ajuste de θ13, levando em conta apenas os experimentos de maior

sensibilidade a esse parâmetro. Os detalhes sobre as simulações dos experimentos podem

ser encontrados no Apêndice B.

Na figura 1.2 apresentamos a região permitida no plano sen22θ13 – δCP obtida a partir

do ajuste combinado de T2K, MINOS e Double Chooz. Para tal, usamos apenas a
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Figura 1.2.: Região permitida no plano sen22θ13 − δCP para T2K, MINOS e Double
Chooz (DC) combinados em 68%, 95 % e 99% CL para 2 graus de liberdade, assumindo
hierarquias de massa normal (painel esquerdo) ou invertida (painel direito). Apresentamos
também o comportamento de ∆χ2 em função de sen22θ13 (acima) e de δCP (à direita)
para cada caso. Como referência, exibimos o limite de exclusão de Chooz em 90%CL [48].

informação de eventos totais em T2K e MINOS, sem nos preocupar com o espectro.

Verificamos que, como era de se esperar, a inclusão do espectro tem impacto marginal

no resultado. Já para a simulação de Double Chooz, utilizamos 18 bins de energia. Ao

realizarmos o ajuste, assumimos explicitamente uma hierarquia de massa como dado

de entrada, ao passo que variamos sen2θ23 e |∆m2
32| utilizando priors gaussianos nesses

parâmetros para que fosse levado em conta o conhecimento prévio dos experimentos

atmosféricos [68, 69]. Como teste, verificamos formidável concordância do χ2 individual

de cada experimento, assim como a região permitida para a combinação de apenas T2K

e Double Chooz com o resultado oficial, apresentado na ref. [113], para os mesmo valores

de entrada de sen2θ23 e |∆m2
32|.

Conclúımos que, para hierarquia normal (invertida) em 95% CL (ńıvel de confiança,

do inglês confidence level), a região permitida de θ13 era 0,023 (0,027) < sen22θ13 <

0,16 (0,17), enquanto que o ponto de melhor ajuste era sen22θ13 = 0,081 (sen22θ13 =

0,087) e δCP = −0,86π (δCP = −0,24π). O ponto de melhor ajuste correspondia à

χ2/(20 − 2) = 1,88 (1,87). A dependência do χ2 em δCP era fraca. Analisando a

contribuição de cada experimento individualmente, pod́ıamos ver que T2K era o mais

expressivo para estabelecer sen22θ13 não nulo, embora perdesse sua força ao permitir

o ajuste de valores grandes para este ângulo. Era nessa região onde MINOS e Double

Chooz tinham maior importância. Finalmente, a combinação destes três experimentos
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Figura 1.3.: Região permitida no plano sen22θ13− δCP para T2K, MINOS, Double Chooz
(DC), Daya Bay (DB) and RENO combinados em 68%, 95 % e 99% CL para 2 graus de
liberdade, assumindo hierarquias de massa normal (painel esquerdo) ou invertida (painel
direito). Apresentamos também o comportamento de ∆χ2 em função de sen22θ13 (acima)
e de δCP (à direita) para cada caso. Como referência, exibimos o limite de exclusão de
Chooz em 90%CL [48].

exclúıa sen22θ13 = 0 em 3,36 σ CL para ambas hierarquias de massa.

Alguns meses depois, o resultado de Daya Bay [53] foi inesperadamente divulgado,

seguido logo após do resultado de RENO [51]. Os dados do experimento chinês refutavam

o valor nulo de θ13 em 5 sigmas, sendo portanto o resultado mais expressivo de desapare-

cimento de antineutrinos de reator da época. Naturalmente, inclúımos a simulação de

ambos experimentos no nosso ajuste. Apresentamos o resultado na figura 1.3 de forma

parelha ao que foi feito anteriormente. Neste novo ajuste, inclúımos a informação de

espectro de MINOS (7 bins) e Double Chooz (18 bins) e a taxa total de eventos dos

outros três experimentos.

Conclúımos que, em 95% CL, a região permitida de θ13 diminuiu para 0,070 <

sen22θ13 < 0,122, a despeito da hierarquia, enquanto que o ponto de melhor ajuste

moveu-se para sen22θ13 = 0,096 (sen22θ13 = 0,096) and δCP = 0,97π (δCP = −0,14π),

correspondendo à χ2
min/(24 − 2) = 1,57 (1,55), para hierarquia normal (invertida). A

dependência do χ2 em δCP ainda era fraca. Neste caso, Daya Bay era absolutamente o

experimento mais eficaz em medir θ13, seguido por RENO. A combinação destes cinco

experimentos passava à excluir sen22θ13 = 0 em 7,7 σ CL para ambas hierarquias de

massa, estabelecendo indubitavelmente θ13 não nulo [70].
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1.2.2. Impacto de θ13 na matriz de massa

Estamos entrando numa era de precisão em f́ısica de neutrinos. A determinação dos

parâmetros de oscilação chega ao ńıvel de alguns porcentos [72], e o último a ser medido

é a fase de violação de CP, δCP. É conveniente aqui fazer uma rápida digressão para

discutirmos o impacto dos dados atuais na matriz de massa dos neutrinos [114]. De fato,

o conhecimento da matriz de massa dos neutrinos é crucial para a construção de modelos

que expliquem a estrutura das massas e mistura no setor leptônico.

Vamos considerar neutrinos de Majorana. A matriz de massa dos neutrinos na eq. (1.15)

é escrita na base de sabor como

mαβ =
�

i

mi e
−iλi U∗

αi
U∗
βi

(1.39)

onde α,β = e,µ,τ , Uαi representam as entradas da matriz de mistura na eq. (1.27), mi

é a massa do i-ésimo neutrino e λi são as fases de violação de CP de Majorana. Sem

perda de generalidade, como discutimos na subseção 1.1.2, podemos definir λ2 = 0 em

nossa parametrização. Construiremos, de maneira probabiĺıstica, a matriz de massa

dos neutrinos e analisaremos as correlações entre diversos elementos desta usando os

resultados do ajuste global mais recente até o presente momento [72]. Com excessão de

sen2θ23, assumiremos que os parâmetros de oscilação seguem distribuições gaussianas,

cujos valores médios e desvios padrão são dados pelos pontos de melhor ajuste e incertezas

(em 1σ) abaixo

∆m2
21 = (7,50± 0,185)× 10−5 eV2

sen2θ12 = 0,30± 0,013

∆m2
31 = (+2,47± 0,07)× 10−3 eV2 (hierarquia normal)

∆m2
32 = (−2,43± 0,07)× 10−3 eV2 (hierarquia invertida)

sen2θ13 = 0,023± 0,0023.

Como nenhuma fase de violação de CP foi medida até o presente momento, assumimos

distribuições planas entre 0 e 2π para todas elas. Quanto a sen2θ23, uma vez que sua

distribuição é claramente não-gaussiana, utilizaremos a distribuição exata extráıda da

referência [72]. Para cada mαβ, compomos a função de distribuição de probabilidade

(PDF, do inglês probability distribution function) com o método de Monte Carlo (para

cada parâmetro, geramos números aleatórios de acordo com sua PDF e calculamos todos
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os elementos de mαβ), obtendo naturalmente as correlações entre os diversos elementos de

m. Visto que não sabemos qual é a hierarquia dos neutrinos, tampouco a escala absoluta

de massa, analisaremos cada caso separadamente.

Estamos interessados no impacto da determinação dos parâmetros de oscilação na

matriz de massa para os três casos seguintes: hierarquia normal com m1 → 0; hierarquia

invertida com m3 → 0; e esquema semi-degenerado com m1 ∼ m2 ∼ m3 ∼ 0,1 eV.

Embora o esquema semi-degenerado possa abranger ambas hierarquias, verificamos que

a hierarquia tem pouca influência sobre a matriz de massa, pois as massas dos três

neutrinos são muito próximas. Apresentaremos nossos resultados para a distribuição

exata de s223, bem como separadamente para o primeiro e segundo octantes, realizando

um corte súbito em s223 = 0,5.

Para mostrar a relevância da determinação recente de θ13 na matriz de massa, ilustramos,

na figura 1.4, as PDFs de |mee| para hierarquia normal assumindo uma distribuição

plana para sen2θ13 entre 0 e 0,04 (limite de Chooz [48]) e a situação atual, representadas

pelas distribuições “before” (magenta) e “after” (azul). Os dois picos na distribuição

“after” são devidos à interferência entre as partes real de U2
e2m2 e a complexa de U2

e3m3

(expressões detalhadas encontram-se na ref. [114]), a qual depende do cosseno das fases

de CP uniformemente distribuidas. Este termo de interferência depende de θ13, cuja

grandeza aumenta a importância relativa deste termo e cuja determinação diminui a

largura dos picos. A distância entre picos é proporcional à m3.

No caso de sen2θ23, mostramos o impacto da precisão atual, com mistura máxima

desfavorecida, na figura 1.5 em contraste com a medida de 2011 de MINOS (sen2θ23 =

0,5± 0,1 [59]), para hierarquias normal (à esquerda) e invertida (à direita). A estrutura

assimétrica dos picos se deve ao fato que θ12 é grande mas não máximo. Um valor

maior para m3 deslocaria a cauda direita da distribuição para valores maiores de |mµµ|,

enquanto que a distância entre picos cresce com m2.

Veremos en passant as correlações entre os elementos da matriz de massa para os

três casos, bem como o impacto de uma posśıvel medição de δCP nessas correlações, que

servir-nos-á como est́ımulo à busca por δCP.

No caso de hierarquia normal com m1 → 0, temos m3 ≈ 0,05 eV � m2 ≈ 0,009 eV

e apenas duas fases de violação de CP, δCP e λ3, são relevantes. Devido à simetria

µ → τ , s23 → c23 e c23 → −s23, as PDFs para as soluções no primeiro octante de θ23

são basicamente idênticas àquelas no segundo octante, se substitúımos |meτ | ↔ |meµ| e

|mττ | ↔ |mµµ|.

Na figura 1.6, apresentamos as correlações entre os valores absolutos de alguns elementos
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ções intituladas “before” e “after” correspondem à situação antes e depois da determinação
de sen2θ13 pelos experimentos de reator.
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Figura 1.5.: Função de distribuição de probabilidade de |mµµ| para hierarquias normal
(à esquerda) e invertida (à direita). As distribuições foram obtidas usando a função χ2

da referência [72], onde o rótulo “1st+2nd” designa a inclusão dos dois octantes de θ23 na
PDF. Para efeitos de comparação, mostramos tembém a distribuição correspondente à
medida de MINOS de 2011 [59].

de mαβ. Nessa figura e nas que seguem para os casos invertido, figura 1.7, e degenerado,

figura 1.8, em relação ao sen2θ23, utilizamos a distribuição χ2 exata de [72] nas regiões

coloridas (sendo azul, verde e vermelho referentes às regiões permitidas em 68,27%,

95,45% e 99,73% CL, respectivamente), enquanto que indicamos pelas linhas tracejadas

(pontilhadas) as regiões permitidas em 99,73% para o primeiro (segundo) octante forçando

sen2θ23 < 0,5 (sen2θ23 > 0,5).

Para hierarquia invertida, m3 → 0, temos m1 ≈ m2 ≈ 0,05 eV e novamente apenas duas

fases de violação de CP são importantes, δ e λ1. Mostramos as PDFs bidimiensionais para

alguns pares de elementos mαβ na figura 1.7. Em geral, os termos predominantes incluem

m1 e/ou m2, os quais possuem tamanhos similares, e suas contribuições envolvem θ12 e θ23
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Figura 1.6.: Funções de distribuição de probabilidade para diversos pares de elementos
da matriz de massa para hierarquia normal e m1 → 0. Painéis superiores: |mee|× |mµτ | (à
esquerda), |meµ|×|meτ | (centro) e |mµµ|×|meτ | (à direita). Painéis inferiores: |mee|×|meµ|

(à esquerda), |mµµ| × |mττ | (centro) e |mµτ | × |mττ | (à direita). Acima e à direita de
cada painel, mostramos a PDF unidimensional do valor absoluto do elemento de matriz
correspondente. Usamos azul, verde e vermelho para as regiões permitidas em 68,27%,
95,45% e 99,73% CL, respectivamente, e apresentamos o ajuste restringindo-nos ao primeiro
e segundo octante de θ23 com linhas tracejadas e pontilhadas, repectivamente.

(que não são máximos), e não são suprimidas por θ13. Há pelo menos três consequências

diretas destes fatos. Primeiro, a determinação de sen2θ13 pelos experimentos de reator,

basicamente não afetou os intervalos permitidos dos elementos da matriz de massa, mas

alterou levemente as PDFs. Segundo, a determinação de sen2θ23 com uma incerteza de

9% muda os intervalos de |meµ|, |meτ |, |mµµ| e |mττ |, enquanto que as formas das PDFs

permanecem basicamente as mesmas, exceto para os casos |mµµ| e |mττ |. Finalmente,

comparado ao caso anterior, os elementos da matriz de massa possuem correlações

razoavelmente mais fortes.

Três massas da mesma ordem configuram o caso semi-degenerado. Para sermos

concretos, tomemos m1 ∼ m2 ∼ m3 ∼ 0,1 eV. Como mencionamos antes, o impacto

da hierarquia é pequeno e, portanto, adotaremos m1 < m2 < m3. Uma vez que as

três massas são comparáveis, todas elas são importantes, e consequentemente todas

as fases de CP também o são. Na figura 1.8 mostramos as corelações entre diversos
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Figura 1.7.: Similar à figura 1.6 mas para m3 → 0.

valores absolutos dos elementos de mαβ. Vemos que as correlações, nesse caso, são ora

parecidas com aquelas do caso hierárquico normal, ora com aquelas do caso invertido. Por

exemplo, as PDFs para |mee|× |meµ|, |mµµ|× |mττ |, |mµµ|× |meτ | e |meµ|× |meτ |, são

correlacionadas como na hierarquia invertida, enquanto que |mµτ |× |mττ | e |mee|× |mµτ |

são mais similares à hierarquia normal.

Um conjunto completo das correlações entre todos os elementos da matriz de massa

para os dois casos hierárquicos e o caso semi-degenerado encontra-se na ref. [114]. As

regiões permitidas em 95,45% CL para cada elemento da matriz de massa encontram-se

na tabela 1.1.

em meV
Elemento m1 → 0 m3 → 0 m1 = 0,1 eV
|mee| 1,3 – 4,1 19 – 52 39 – 108
|meµ| 1,9 – 8,4 4,4 – 37 11 – 88
|meτ | 3,0 – 8,9 4,7 – 37 11 – 78
|mµµ| 15 – 29 6,2 – 31 17 – 113
|mµτ | 21 – 28 9,9 – 26 21 – 111
|mττ | 22 – 34 7,1 – 32 31 – 113

Tabela 1.1.: Regiões permitidas de |mαβ | em 95,45 % CL para os casos hierárquicos e
semi-degenerado com m0 = 0,1 eV.
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Figura 1.8.: Similar à figura 1.6 mas para m1 = 0,1 eV.

Para estimarmos o impacto de medições futuras dos parâmetros de mistura no nosso

conhecimento da matriz de massa, analisamos o efeito de reduzir a incerteza em cada

parâmetro individualmente enquanto mantemos os outros parâmetros com suas incertezas

presentes. Assumimos que as seguintes precisões poderão ser alcançadas por experimentos

desta ou da próxima geração, em 68% CL. O ângulo atmosférico poderá ser medido

por experimentos de acelerador como T2K (ou NOνA), utilizando o desaparecimento

de νµ, com precisão de δ(sen22θ23) ≈ 0,01 [115]. Os parâmetros solares e a diferença

quadrada de massa atmosférica poderiam ser medidos por experimentos de reator de

média distância (∼ 50 km), caso venham a existir, com incertezas δ(∆m2
31) ≈ 7×10−6 eV2,

δ(∆m2
21) ≈ 3× 10−7 eV2 e δ(sen2θ12) ≈ 0,004. O atual erro sistemático de Daya Bay [53]

nos diz que, em prinćıpio, podeŕıamos medir θ13 com precisão δ(sen2θ13) ≈ 0,0013.

As modificações de tais medições aprimoradas são exibidas na figura 1.9, a menos do

melhoramento em ∆m2
21 que não apresenta nenhum impacto sobre as PDFs. Em geral,

observamos que uma melhora nesses parâmetros não altera, de forma significativa, as

PDFs dos elementos de m (a não ser a determinação do octante de θ23). Por outro lado,

poderiamos almejar uma medida de δCP por experimentos da próxima geração, como

estudado na ref. [116], precisa o suficiente para que a incerteza nesse parâmetro fosse de

∼ 10◦. Tal medição, como podemos ver nas figuras 1.10 e 1.11 para diversos valores de
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Figura 1.9.: Funções de distribuição de probabilidade dos elementos da matriz de massa
para incertezas reduzidas nos parâmetros de oscilação. Painéis superiores: |mee|× |meτ |,
hierarquia normal, δ(sen2θ13) reduzida (à esquerda); e |mµµ|× |mττ |, hierarquia normal,
δ(∆m2

31) reduzida (à direita). Painéis inferiores: |mee| × |mµµ|, caso semi-degenerado,
δ(sen2θ12) reduzida (à esquerda); e |meµ|× |mµµ|, hierarquia invertida, δ(sen2θ23) reduzida
(à direita). As regiões coloridas correspondem às incertezas vigente, enquanto que as linhas
escuras são obtidas ao reduzir a incerteza de um dos parâmetros de oscilação (ver texto
para detalhes).

entrada de δCP e esquemas de massa, teria um papel fundamental na determinação das

correlações dos elementos da matriz de massa, principalmente nos casos hierárquicos.

Para hierarquia normal, por exemplo, as correlações entre |mee| e todos os outros

elementos seriam mais precisas. O motivo é que, nesse caso, o termo de fase de maior

peso vem acompanhado por cos [2(δ + λ3)]. Tão importante quanto seria a medida de

δCP para as correlações no caso invertido, especialmente para as PDFs envolvendo |mττ | e

|mµµ|, uma vez que os coeficientes dominantes são proporcionais ao cos(2λ1), cos(δ± 2λ1)

e cos δ. No caso semi-degenerado, diferentemente dos anteriores, ambas fases de Majorana

são importantes, pois as massas são todas da mesma ordem. Isso dilui a importância
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Figura 1.10.: Funções de distribuição de probabilidade de |mee|×|meµ| (painéis superiores)
e |mµµ|× |meτ | (painéis inferiores) para hierarquia normal com incerteza em δCP reduzida
à 10◦, assumindo δ = 0◦, 180◦ e 270◦ da esquerda para a direita.

relativa da fase de Dirac e, consequentemente, diminui o impacto da determinação de

δCP nas PDFs dos elementos de m.

Conclúımos que, do ponto de vista da construção de modelos de massas e mistura

do setor leptônico, a determinação da fase de violação de CP de Dirac é um elemento

fundamental. Prosseguiremos então com o estabelecimento do paradigma de três neutrinos

com a busca por δCP.

1.3. Estratégias futuras: em busca de δCP

Sob a ótica da f́ısica de oscilação, há apenas um parâmetro relevante que ainda nos

é desconhecido: a fase de violação de CP de Dirac. Este é o último parâmetro a ser

descoberto da matriz de Pontecorvo-Maki-Nakagawa-Sakata. Além do impacto sobre

a matriz de massa dos neutrinos, se associado à natureza de Majorana dos neutrinos,

esta fase pode nos revelar o mistério da assimetria bariônica do universo através da

leptogênesis [117], tornando forçosa sua medição.

Apesar de todo o progresso obtido até o momento na f́ısica de oscilação de neutrinos,
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1. O paradigma de três neutrinos

Figura 1.11.: Funções de distribuição de probabilidade de |mµτ |×|mττ | (painéis superiores)
e |mµµ|× |meτ | (painéis inferiores) para hierarquia invertida com incerteza em δCP reduzida
à 10◦, assumindo δ = 0◦, 90◦ e 180◦ da esquerda para a direita.

uma medição significativa de δCP não carece de dificuldades. Convém lembrarmos que a

violação de CP é posśıvel apenas para mistura entre três ou mais neutrinos. Assim, no

paradigma padrão, a exiguidade de θ13 reduz o impacto de δCP. Comparando o primeiro

com o terceiro e quarto termos da probabilidade de oscilação de aparecimento, eq. (1.38),

que não é grande, vemos que a violação de CP não passa de um efeito secundário.

Com efeito, os experimentos de acelerador desta geração, T2K e NOνA, não foram

concebidos para descobrir δCP [60, 118]. Os supostos experimentos responsáveis por esta

tarefa, seriam, por exemplo, T2HK [119] ou LBNE [120]. A questão é que a construção

desses experimentos levaria, talvez, cerca de uma década. Em vista do longo tempo de

espera, questionamo-nos qual o papel de T2K e NOνA na determinação dessa fase. Em

resumo, perguntamo-nos: “O que pode ser feito, nos próximos 10 anos, para a fase de

violação de CP?” Ou melhor, podemos aspirar a responder a questão mais geral: “Como

um experimento que não é capaz de medir definitivamente δCP pode contribuir com a

busca desta fase?”

As formas comumente usadas para quantificar a sensibilidade de um experimento à

fase de CP introduzidas na literatura são as seguintes:
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1. Apresentar a região permitida no plano δCP × sen2θ13 ou δCP × sen2θ23 para um

determinado conjunto de parâmetros de entrada;

2. Calcular, em função de sen2θ13, quais valores de δCP podem ser distinguidos de

δCP = 0,π, ou seja, para qual fração de δCP é posśıvel estabelecer violação de CP.

Em geral, essa forma é referida como fração de violação de CP ;

3. Aferir com qual precisão se pode determinar δCP, apresentando, por exemplo, a

incerteza em 1σ em função do δCP de entrada, ou até mostrar a fração dos valores

de δCP para a qual é posśıvel determinar a incerteza com uma certa precisão.

Apesar de cada um destes métodos possuir vantagens e desvantagens, nenhum deles é

adequado para nosso propósito. O primeiro é, sem dúvida, o de mais simples interpretação,

pois dados os parâmetros de entrada, vemos claramente o potencial do experimento. Por

outro lado, também é o método mais “local”, contemplando apenas um ponto espećıfico

no espaço de parâmetros. O segundo, em contrapartida, possui caráter global ao analisar

para qual região do espaço de parâmetros é posśıvel firmar violação de CP. O inconveniente

é que, ao estabelecer o viés dessa violação de CP, ou melhor, a comparação com δCP = 0

ou π, embora o tal método informe-nos da sensibilidade para violação de CP, ele não

esclarece qual o potencial geral da medida de δCP, se é posśıvel excluir, por exemplo,

δCP = ±π/2. Particularmente, nos experimentos que estamos interessados, dependendo

da hierarquia, o efeito da fase na probabilidade de oscilação é maior para esses valores.

O último método sana esse problema, mas ao se focar na incerteza da medida, torna-se

adequado apenas se o χ2 for localmente gaussiano. Para T2K e NOνA, a medida de

δCP é afligida pela baixa estat́ıstica, além das várias degenerescências envolvendo a

hierarquia, o octante e a fase de CP, promovendo portanto o caráter não-gaussiano do χ2,

e assim inviabilizando também o uso do último método para estimarmos o papel desses

experimentos na era da violação de CP no setor leptônico.

Tendo em vista a impropriedade do emprego em T2K e NOνA das formas usuais dis-

cutidas, utilizaremos aqui uma maneira simples e adequada de quantificar a sensibilidade

à fase de CP desses experimentos, a fração de exclusão de CP [121, 122]. O método

fundamenta-se em calcular, para cada valor de entrada de sen2θin23 e δinCP, a fração dos

valores de δCP que podem ser exclúıdos num dado ńıvel de confiança, assumindo um

hierarquia fixa ou as marginalizando. Apesar dos experimentos em questão não serem

capazes de medir definitivamente a fase de CP, dependendo da estratégia adotada, seria

posśıvel desfavorecer regiões no espaço de parâmetros, guiando portanto os planos dos

experimentos futuros. Como ainda não temos nenhuma informação robusta sobre δCP,
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devemos analisar qual a melhor estratégia posśıvel nesse âmbito. Num certo sentido, a

fração de exclusão de CP é complementar à fração de violação de CP.

Para realizarmos o estudo sobre a fase de CP num futuro próximo, precisamos pri-

meiro definir qual procedimento devemos escolher para a combinação dos experimentos.

Uma possibilidade seria um ajuste global de todos os dados dispońıveis, de modo que

combinaŕıamos todas as pequenas contribuições à medida, aumentando a precisão desta.

Ora, devido às limitações computacionais e à falta de informação, nenhuma simulação,

especialmente se feita por alguém de fora das colaborações experimentais, é completamente

fiel ao resultado oficial na qual se baseia, e por isso devemos esperar a manifestação de

pequenos efeitos artificiais. Por outro lado, em experimentos não dedicados à medir δCP,

pelo menos de forma primitiva, o impacto dessa fase é muito pequeno. Consequentemente,

a combinação de diversas simulações cujas contribuições à determinação de δCP são

subdominantes é posta, no mı́nimo, em xeque. Concretamente, como exemplo, vemos

que o resultado de Super-Kamiokande em neutrinos atmosféricos prefere θ23 no segundo

octante [69], mas os ajustes globais não seguem essa preferência [111, 112]. Baseado

nisso, escolhemos a abordagem mais conservadora de combinar apenas os experimentos

de maior sensibilidade à fase de CP: T2K e NOνA. Utilizaremos a nossa nova medida de

fração de exclusão de CP para estudar diversas questões:

• O impacto do modo de antineutrinos em T2K;

• A melhor estratégia experimental, ou seja, a melhor forma de dividir o tempo de

funcionamento em cada modo;

• A comparação das sensibilidades de T2K e NOνA; e

• A sinergia entre os dois experimentos.

1.3.1. Discussão qualitativa

Para melhor entendermos os resultados a seguir, apresentaremos primeiramente uma

discussão qualitativa sobre a determinação de δCP utilizando os gráficos paramétricos

de bi-probabilidade, nos quais mostramos simultaneamente P (νµ → νe) e P (ν̄µ → ν̄e)

para −π ≤ δCP ≤ π, com todos os outros parâmetros de oscilação fixos. Mostramos tais

gráficos na figura 1.12 para T2K com L = 295 km e E = 0,6 GeV (à esquerda) e NOνA

com L = 810 km e E = 2,0 GeV (à direita), para ambas hierarquias e sen2θ23 = 0,4, 0,5

e 0,6. Para dar uma ideia rudimentar do potencial dos experimentos, fazemos um

esboço das incertezas utilizando apenas o erro estat́ıstico para uma exposição de 3 + 3
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Figura 1.12.: Gráficos de bi-probabilidades para T2K (L = 295 km e E = 0,6 GeV, à
esquerda) e NOνA (L = 810 km e E = 2,0 GeV, à direita), para ambas hierarquias e
sen2θ23 = 0,4, 0,5 e 0,6. Esboçamos as incertezas de T2K e NOνA pelas linhas pretas
sólidas (1σ) e tracejadas (2σ), onde levamos em conta apenas os erros estat́ısticos para uma
exposição de 3 + 3 anos (neutrinos + antineutrinos) para hierarquia normal, δCP = −π/2
e sen2θ23 = 0,5.

anos (neutrinos + antineutrinos) para hierarquia normal, δCP = −π/2 e sen2θ23 = 0,5.

Naturalmente, a análise dos erros é mais complexa, envolvendo o espectro de energia,

os rúıdos e os erros sistemáticos, mas esse tratamento simplificado servirá para nossa

discussão qualitativa.

Analisando a figura 1.12, vemos duas diferenças importantes entre os dois experimentos,

a forma das elipses e a separação das mesmas para hierarquias diferentes. A diferença

entre os tamanhos dos eixos principal e secundário é mais proeminente em T2K, pois

o pico do espectro de energia está mais próximo do máximo de oscilação. Por outro

lado, em NOνA o efeito de matéria é mais importante, pois a distância percorrida pelo

neutrino é maior, o que aumenta a separação entre as elipses de hierarquias diferentes.

Logo, para estat́ısticas similares, podemos esperar uma maior sensibilidade de T2K à

fase δCP, enquanto NOνA deve ter uma participação mais decisiva na determinação da

hierarquia. Nesse sentido, esses dois experimentos são complementares.

Podemos entender a importância da inclusão do modo de antineutrino na estratégia

para medir δCP analisando os gráficos de bi-probabilidade e idealizando uma situação

hipotética. Suponha que sen22θ23 = 0.96, ou seja, sen2θ23 = 0,4 ou 0,6, e que T2K (painel
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Figura 1.13.: Gráficos de bi-probabilidade de T2K para sen2θ23 = 0,4 e hierarquia de
entrada normal. As elipses de erro centradas em δCP = 0 e −π/2 explicam o impacto do
aumento da estat́ıstica na fração de exclusão de CP.

à esquerda da figura 1.12), por exemplo, observe apenas a probabilidade de aparecimento

P (νµ → νe) = 5 % no modo de neutrinos. Dessa forma, não seria posśıvel distinguir

entre sen2θ23 = 0,4 com −3π/4 � δCP � −π/4 e sen2θ23 = 0,6 com π/4 � δCP � 3π/4.

Podeŕıamos quebrar a degenerescência ao medirmos a probabilidade de aparecimento

no modo de antineutrino, pois no primeiro caso P (ν̄µ → ν̄e) ∼ 2 % em contraposição

a 6% no segundo caso. Essa quebra seria traduzida num melhor v́ınculo sobre a fase,

demonstrando o importante papel da medida no modo de antineutrinos. O mesmo

racioćınio é válido para NOνA, uma vez que o as elipses são qualitativamente similares.

Ainda de acordo com a figura 1.12, podemos ver que, mesmo conhecendo a hierarquia de

massas e combinando os dois experimentos, não há possibilidade de estabelecer violação

de CP em 3σ em 3 + 3 (modos neutrino + antineutrino) anos. Entretanto, dependendo

do valor de δCP, é posśıvel excluir certos valores dessa fase num certo ńıvel de confiança.

Assim, nossa proposta fração de exclusão de CP será usada para estimar a sensibilidade

desses experimentos à δCP.

A inferência de quais valores de δCP permitem uma maior ou menor fração de exclusão

de CP é algo sutil. Mostramos na figura 1.13 o gráfico de bi-probabilidade para hierarquia

normal e sen2θ23 = 0,4. Se o valor real de δCP for zero e o erro estat́ıstico suficientemente
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grande, a elipse de erro cobre todo o intervalo de δCP, como a curva vermelha da

figura 1.13, e nenhuma exclusão é posśıvel. Em contraste, como mostra a elipse azul

sólida, se δCP = ±π/2, seria posśıvel excluir, grosso modo, metade dos valores da fase.

Logo, para baixa estat́ıstica, δCP = ±π/2 seriam os valores mais favoráveis para a

sensibilidade à fase, ao contrário da pior situação com δCP = 0.

A situação mudaria apreciavelmente se a estat́ıstica fosse maior. Comparando os

casos δCP = 0 e δCP = ±π/2 com maior estat́ıstica (curvas vermelha tracejada e azul

tracejada, respectivamente), vemos que as frações de exclusão se tornam similares ∼ 2/3.

Ao encolhermos ainda mais os erros, o caso δCP = 0 passa a ser até mais promissor,

nos termos aqui discutidos, que δCP = ±π/2. Concluindo, os valores mais ou menos

favoráveis de δCP dependem da estat́ıstica acumulada pelos experimentos.

1.3.2. Sensibilidade à fase de CP

Discutiremos aqui os resultados quantitativos para a fração de exclusão de CP decor-

rentes das nossas simulação de T2K e NOνA. Em relação à T2K, simulamos os canais de

aparecimento νµ → νe e ν̄µ → ν̄e e inclúımos o impacto das medidas de desaparecimento

adicionando ao χ2 um prior em θ23, onde assumimos uma conservadora sensibilidade

final de δ(sen2θ23) = 0,02 em 68% CL [115]. Os detalhes encontram-se no apêndice B.1.

Para NOνA, usamos a simulação dispońıvel do GLoBES [123, 124], considerando tanto

os canais de aparecimento como desaparecimento dos modos de neutrino e antineutrino

de acordo com a mais recente configuração experimental almejada [118]. Os fluxos e

seções de choque das refs. [125–127]. Consideramos o impacto dos experimentos de

reator utilizando um prior em θ13, supondo que a sensibilidade final neste parâmetro

será dada pelo erro sistemático atual de Daya Bay, δ(sen2θ13) = 0,005 [53]. Finalmente,

consideramos as luminosidades nominais de T2K e NOνA, 1021 e 6 × 1020 prótons no

alvo (POT, do inglês protons on target) por ano, respectivamente. Usaremos a notação

de Tν + Tν̄ anos para designar um funcionamento de Tν anos no modo de neutrinos e Tν̄

anos no modo de antineutrinos.

Enfocaremos principalmente o cenário de um total de 10 anos de coleta de dados

por experimentos. Como veremos a seguir, um total de 5 anos para T2K, por exemplo,

não é suficiente para a obtenção de um resultado expressivo, mesmo assumindo que a

hierarquia é conhecida. Desejamos estudar a viabilidade de aumentar a capacidade desses

experimentos de vincular a fase de CP. Para tal, utilizaremos sempre a fração de exclusão

de CP em 90% CL. Na literatura, quando é forçosa a escolha entre as hierarquias para

alguma exposição, prefere-se, muitas vezes, a hierarquia normal à invertida, embora
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Figura 1.14.: Fração de exclusão de CP em T2K, no plano δCP × sen2θ23, em 90% CL.
Da esquerda para a direita, mostramos os funcionamentos de 5 + 0, 3 + 2 e 2 + 3 anos
(ν + ν̄). Assumimos hierarquia de entrada invertida e normal para os painéis superiores e
inferiores, respectivamente. Ao realizar o ajuste, marginalizamos na hierarquia.

não haja nenhuma razão convincente para fazê-lo. Talvez, com o tempo, isso tenho

nos impelido um viés injustificável. Por causa disso, ao deparar-nos com tal escolha,

fá-la-emos pelo caso invertido. Nosso tratamento não será igual para T2K e NOνA, uma

vez que a análise de NOνA pode não ser tão verosśımil quanto a de T2K, para a qual

podemos usufruir de informações do experimento em operação.

T2K: 5 anos

Na figura 1.14, mostramos as curvas de ńıvel de fração de exclusão de CP, no plano de

parâmetros de entrada δCP × sen2θ23, para um tempo total de funcionamento de 5 anos

de T2K, ou seja, 5× 1021 POT. Da esquerda para a direta, expomos as configurações

5+ 0, 3+ 2 e 2+ 3 anos. Estratégias intermediárias, como 4+ 1 ou 2,5+ 2,5 anos, podem

ser interpoladas mentalmente. Mostramos as hierarquias de entrada invertida e normal

nos painéis superiores e inferiores da figura 1.14, respectivamente. É razoável que, ao

término da aquisição de 5× 1021 POT por T2K, a sensibilidade à hierarquia ainda será

pobre e, portanto, mostramos apenas o resultado marginalizado nas hierarquias.
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Na figura 1.14, quanto mais escura for a região, maior é a fração de valores de δCP

exclúıda em 90% CL, ou seja, maior à sensibilidade à fase. Logo, ao compararmos

as estratégias, fica evidente o impacto da inclusão do modo de antineutrinos. As

caracteŕısticas mais notáveis dos diversos funcionamentos são:

• Os desempenhos dos funcionamentos de 3 + 2 e 2 + 3 anos são similares;

• Em geral, as regiões de maior sensibilidade à fase de CP encontram-se em torno de

δCP � ±π/2;

• Na estratégia de 5+0 anos, a sensibilidade restringe-se a, basicamente, duas regiões,

uma centrada em δCP � π/2 e baixos valores de sen2θ23, outra em δCP � −π/2 e

alto valores de sen2θ23. Ao dividirmos mais equilibradamente o tempo entre os

modos, a dependência em sen2θ23 é enfraquecida, particularmente em torno de

δCP � π/2 para hierarquia normal e δCP � −π/2 para hierarquia invertida.

Para compreendermos melhor essas caracteŕısticas, vamos, mais uma vez, aos gráficos

de bi-probabilidade de T2K na figura 1.12. Vemos que, ao variarmos θ23 continuamente,

as elipses preenchem, aproximadamente, a forma de um losângo. Consideraremos,

primeiramente, apenas a medição no modo de neutrino. O vértice à direita do losângo,

onde sen2θ23 é alto e δCP � −π/2, é dificilmente confundido com outras regiões de

parâmetros. O mesmo acontece para o vértice à esquerda, com sen2θ23 baixo e δCP �

+π/2. Em contraste, se os vértices superior e inferior, projetam-se na região central das

probabilidades de oscilação de interesse de neutrino, sendo portanto facilmente imitados

por outros parâmetros de entrada ao variarmos θ23.

Isso é mais forte na estratégia de 5 + 0 anos, onde efetivamente o losângo fict́ıcio

é projetado na abscissa da figura 1.12. Ao incluirmos o funcionamento no modo de

antineutrinos, penetramos a bidimensionalidade do losângo, quebrando, em parte, a

degenerescência. Assumindo a hierarquia invertida como entrada, podemos ver que, nesse

caso, toda a lateral superior esquerda, correspondente à δCP = +π/2, é de mais fácil

distinção, bem como o vértice inferior, ou seja, sen2θ23 baixo e δCP = −π/2. No vértice

direito, sen2θ23 alto e δCP = −π/2, esperamos dificuldade para vincular δCP. Todo esse

comportamento é corroborado pelo painel superior à direita da figura 1.12.

T2K: 10 anos

Apresentamos agora, na figura 1.15, as curvas de ńıvel de fração de exclusão de CP

para um funcionamento total de 10 anos de T2K, ou seja, 1022 POT. Da esquerda para
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a direita, expomos as configurações 10 + 0, 7 + 3 e 5 + 5 anos. O resultado para 3 + 7

anos é similar aos dois últimos casos, os quais representam as melhores estratégias nesse

contexto. De cima para baixo, mostramos tanto os ajustes marginalizando nas hierarquias

(em marrom), quanto separadamente para hierarquia normal (em azul) ou invertida (em

magenta), assumindo sempre hierarquia invertida como entrada.

Para hierarquia normal como entrada, as caracteŕısticas mais marcantes nos gráficos

de fração de exclusão de CP podem ser obtidas, grosseiramente, reparametrizando

δCP → π − δCP na figura 1.15. A validade dessa aproximação reside no pequeno efeito

de matéria em T2K. O caso particular de funcionamento de 5 + 5 anos com hierarquia

normal como entrada é mostrado na figura 1.16.

Novamente, a inclusão de tempo de funcionamento no modo antineutrino melhora

significativamente a sensibilidade à fase de CP. Comparado ao funcionamento total de 5

anos (figura 1.14), destacamos as seguintes caracteŕısticas no caso de 10 anos (figura 1.15):

• Marginalizando nas hierarquias (painéis superiores), a regiões brancas, sem sen-

sibilidade, encolhem apreciavelmente, em particular nos casos de 7 + 3 e 5 + 5

anos;

• Nesses dois casos, se nos restringirmos a ajustar apenas a hierarquia correta, ou

seja, invertida, é posśıvel excluir 50–70% dos valores de δCP em praticamente toda

a região de interesse (ver painéis inferiores);

• Ainda nesses casos, ao ajustarmos apenas a hierarquia errada, a hierarquia normal,

uma alta fração de exclusão, 60–90%, é alcançada para δCP > 0, em constraste com

valores tão baixos quanto 30% para δCP < 0.

Os últimos dois itens podem ser compreendidos se evocarmos a discussão sobre o

losângo fict́ıcio do gráfico de bi-probabilidade (figura 1.12). Para hierarquia de entrada

invertida, os valores de δCP > 0 proporcionam, naturalmente, uma melhor sensibilidade à

fase e, portanto, não saber a hierarquia basicamente não afeta a fração de exclusão de

CP. Já para δCP < 0, o racioćınio é invertido e o impacto da hierarquia é maior para θ23

no segundo octante.

Qual o significado de fazer o ajuste com a hierarquia incorreta? Obviamente, se a

hierarquia for bem determinada, não há significado algum. Mas estamos interessados no

caso diametralmente oposto, onde o ajuste ainda agrega significado profundo. Com o

ajuste da hierarquia errada, podemos galgar o caminho para a estratégia da determinação

da hierarquia. Aprendemos quais valores de entrada tornam essa tarefa mais simples ou
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Figura 1.15.: Fração de exclusão de CP em T2K, no plano δCP × sen2θ23, em 90% CL.
Da esquerda para a direita, mostramos os funcionamentos de 10 + 0, 7 + 3 e 5 + 5 anos
(ν+ ν̄), assumindo hierarquia de entrada invertida. Marginalizamos nas hierarquias (painéis
superiores), ajustamos apenas hierarquia normal (painéis centrais) ou invertida (painéis
inferiores).

mais árdua. Perceberemos, se lembrarmos dessa discussão ao vermos a figura 1.17, que

T2K ou NOνA sozinhos são extremamente inferiores à combinação dos dois experimentos.

NOνA: 10 anos

Seguindo o padrão, apresentamos, na figura 1.16, as curvas de ńıvel de fração de

exclusão de CP para um funcionamento total de 10 anos de NOνA, ou seja, 6×1021 POT.

Nas duas primeiras colunas, expomos as configurações de 5 + 5 anos para hierarquias

invertida e normal como entrada. Os resultados para 7 + 3 anos, como verificamos, são
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Figura 1.16.: Similar à figura 1.15, mas para os funcionamentos 5 + 5 anos de NOνA
com hierarquia de entrada normal (à esquerda) ou invertida (centro), e 5 + 5 anos de T2K
para hierarquia de entrada normal (à direita).

similares. Por motivos de comparação, mostramos T2K 5 + 5 com hierarquia de entrada

normal na última coluna (o caso T2K 5 + 5 para hierarquia invertida encontra-se na

figura 1.15). Como na figura 1.15, de cima para baixo, mostramos tanto os ajustes

marginalizando nas hierarquias (em marrom), quanto separadamente para hierarquia

normal (em azul) ou invertida (em magenta), assumindo sempre hierarquia invertida

como entrada.

Os aspectos que mais diferenciam NOνA de T2K, nesse contexto, são:

• A sensibilidade de NOνA é pior ao marginalizarmos na hierarquia (painéis superi-

ores), perdendo praticamente toda a sensibilidade para δCP < 0 na hierarquia de
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entrada invertida ou para δCP > 0 na hierarquia de entrada normal;

• Mesmo assumindo a hierarquia correta, T2K ainda é levemente superior a NOνA,

demonstrando frações de exclusão tipicamente entre 50–60%. Por outro lado, ao

ajustarmos a hierarquia errada, observamos uma colossal superioridade de NOνA,

excluindo praticamente todos os valores de δCP em meio plano.

A estat́ıtica mais baixa é parcialmente responsável pela pior sensibilidade de NOνA em

relação à T2K. Apesar do número de eventos depender dos parâmetros de entrada, em

geral, T2K acumula 20–30% mais estat́ıstica que NOνA. Além disso, como discutido na

seção 1.3.1, como o eixo principal das elipses de NOνA são menores que os de T2K (ver

figura 1.12), distinguir diferentes valores de δCP é mais dif́ıcil para NOνA, mesmo se a

estat́ıstica fosse igual à de T2K.

Por outro lado, o poder de exclusão de praticamente metade dos valores de δCP para a

hierarquia errada, ou seja, a alta sensibilidade à hierarquia de massa, é devido à maior

distância percorrida pelos neutrinos. Assim, a sinergia entre os dois experimentos vêm

da maior sensibilidade de T2K à δCP e de NOνA à hierarquia.

A sinergia entre T2K e NOνA: 10 anos

O próximo passo lógico é questionarmos qual a sensibilidade à fase de CP pode ser

alcançada por T2K e NOνA combinados e em que medida podemos esperar uma sinergia.

Em vista disso, apresentamos, na figura 1.17, as curvas de ńıvel de fração de exclusão

de CP, no plano de parâmetros de entrada δCP × sen2θ23, para a combinação de T2K e

NOνA, cada qual funcionando por 5 + 5 anos. Nas duas primeiras colunas, expomos

os casos de hierarquia de entrada normal e invertida. Para que a sinergia entre os dois

experimentos fique clara, mostramos um hipotético funcionamento de T2K por 10 + 10

com hierarquia de entrada normal na última coluna.

O que nos chama a atenção na figura 1.17 são os seguintes fatos:

• A fração de exclusão de CP, nos casos combinados, é de, no mı́nimo, 60% em toda

a região de interesse no plano δCP × sen2θ23. Mais ainda, a hierarquia errada é

exclúıda completamente, em 90% CL, em quase toda a região mostrada;

• Ao compararmos a combinação dos experimentos com T2K funcionando por 20

anos, a sinergia manifesta-se robustamente.
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Figura 1.17.: Similar à figura 1.15. Nos painéis à esquerda e centrais, mostramos a
combinação de 5+5 anos de NOνA e 5+5 anos de T2K com hierarquia de entrada invertida
e normal, respectivamente. Para efeitos comparativos, apresentamos o funcionamento de
10 + 10 anos de T2K com hierarquia de entrada invertida nos painéis à direita.

1.3.3. Confrontando a estratégia para δCP com o octante de θ23

Até agora, abordamos apenas a estratégia para vincular δCP. De fato, T2K e NOνA

podem empenhar-se em esclarescer algo ainda desconhecido: o octante de θ23 (ver, e.g.

ref. [128]). Questionamo-nos então “Como estão relacionadas as estratégias para δCP e

para o octante de θ23?”

Antes de respondê-la, comentaremos concisamente o panorama da caso cient́ıfico de

θ23. Devemos ser capazes de medir sen22θ23 com boa precisão, devido à grande estat́ıstica

dos canais de desaparecimento νµ → νµ e ν̄µ → ν̄µ. Entretanto, esse canais não têm

45



1. O paradigma de três neutrinos

0.2 0.4 0.6 0.8 1.0 1.2
Neutrino Energy [GeV]

0

1

2

3

4

5

6

7

8

9

10
ν e

(ν
e)  

ap
pe

ar
an

ce
 p

ro
ba

bi
lit

y 
 [%

] δCP = −π/2 (1st oct.)
δCP = −π/2 (2nd oct.)
δCP = 0 (1st oct.)
δCP = 0 (2nd. oct.)
δCP = π (1st oct.)
δCP = π (2nd. oct.)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Neutrino Energy [GeV]

ν-mode ν-mode 0.088  < sin22θ
13

  < 0.09

0.39 < sin2
θ

23
 < 0.41 for  1st oct.

inverted mass hierarchy (L=295 km)

0.59 < sin2
θ

23
 < 0.61 for  2nd oct.

(0.95 < sin22θ
23

 < 0.97)

Figura 1.18.: Probabilidades de aparecimento P (νµ → νe) para neutrinos (à esquerda) e
P (ν̄µ → ν̄e) para antineutrinos (à direita), em função da energia, para δCP = 0,±π/2 e
0,95 < sen22θ23 < 0,97 para hierarquia invertida.

sensibilidade ao octante de θ23. Por outro lado, devido à baixa estat́ıstica, os canais de

aparecimento νµ → νe e ν̄µ → ν̄e têm o potencial de quabra a degenerescência de octante

se as determinações de sen22θ13 e sen22θ23 forem suficientemente precisas. Para sermos

concretos, vamos nos concentrar em T2K. Após 10 anos de funcionamente, esperamos

que a incerteza em sen22θ23 seja dominada por erros sistemáticos e, consequentemente,

aproximadamente independente da configuração de funcionamento.

Precisamos, portanto, compreender a importância do papel dos canais de aparecimento

na estratégia. Se T2K funcionar apenas no modo de neutrinos, a degenerescência de

octante torna-se virtualmente insolúvel, pois é confrontada, primordialmente, pela débil

informação espectral. Com a incorporação do funcionamento no modo antineutrino, a

comparação entre taxas desafia a degerescência de forma mais robusta [129]. Isso está

relacionado com a discussão que apresentamos sobre os gráficos de bi-probabilidade.

Para vermos a falta de impacto da informação espectral, mostramos na figura 1.18 as

probabilidades de aparecimento P (νµ → νe) para neutrinos (à esquerda) e P (ν̄µ → ν̄e)

para antineutrinos (à direita), em função da energia. Consideramos 0,95 < sen22θ23 <

0,97 e diversos valores de δCP. Focando apenas no modo de neutrinos, vemos que

a degenerescência manifesta-se no ńıvel de espectro (compare, por exemplo, a banda

vermelha com as linhas azuis tracejadas), mas é claramente quebrada ao incluirmos o

modo de antineutrinos.
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Figura 1.19.: Sensibilidade de T2K ao octante de θ23 no plano δCP × sen2θ23 para os
funcionamentos de 10 + 0, 7 + 3 e 5 + 5 anos, da esquerda para a direita. Nos painéis
superiores e inferiores assumimos hierarquia de entrada invertida e normal, respectivamente.

Responderemos agora a pergunta inicial. Na figura 1.19, mostramos a capacidade

de T2K de discernir o octante de θ23 em função dos parâmetros de entrada, fixando

δ(sen22θ23) = 0,02 em 68% CL. As regiões coloridas de azul, verde e vermelho, representam

os valores verdadeiros de δCP e sen2θ23 para os quais é posśıvel distinguir o octante de

θ23 em pelo menos 1σ, 2σ e 3σ CL, respectivamente. A região branca, em torno de

sen22θ23 = 1, é a de maior dificuldade, na qual a degenerescência não é quebrada nem

em 1σ CL. Da esquerda para à direita, mostramos os funcionamentos de 10 + 0, 7 + 3 e

5 + 5 anos. O caso de 3 + 7 anos é praticamente igual aos dois últimos.

Vemos que, apesar da inclusão de antineutrinos melhorar significativamente a sensi-

bilidade ao octante de θ23, pois quebra a degenerescência, essa melhora é saturada ao

aumentarmos a fração de funcionamento no modo de antineutrinos além de 30% do

tempo total. Nesse ponto, a quebra da degenerescência é dominada pela incerteza em

sen22θ23. Concluimos, que, para os experimentos que nos são de interesse, a determinação

do octante é mais permissiva que a sensibilidade à fase de CP, e portanto a estratégia

experimental deve ser fundamentada na busca por δCP.
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1. O paradigma de três neutrinos

1.4. Conclusão

Estudamos, nesse caṕıtulo, o paradigma padrão de três neutrinos ativos. Partindo do

lagrangeano do modelo padrão e seu grupo de calibre SU(3)c×SU(2)L×U(1)Y , obtivemos

termos de massa para os léptons carregados a partir das interações de Yukawa, após

a quebra da simetria eletrofraca pelo valor esperado do vácuo do campo do Higgs. A

ausência de neutrinos de mão direita impede termos similares para os neutrinos. A

enorme diferença entre as massas dos neutrinos e a massa dos léptons carregados mais

leves, os elétrons, nos provoca a questionar se o mecanismo de massa para essas part́ıculas

é o mesmo. Constatamos que é posśıvel gerar massas pequenas para os neutrinos, de

forma natural, e a partir dáı vimos de onde surge a matriz de mistura.

Com a matriz de mistura, analisamos o fenômeno de oscilação dos neutrinos, que

requer massas não nulas e diferentes de, pelo menos, dois deles. Estudamos a recente e

precisa determinação do menor e até então desconhecido ângulo de mistura, θ13, pelos

experimentos T2K, MINOS, Double Chooz, Reno e Daya Bay. Em seguida, analisamos,

de maneira probabiĺıstica, o impacto dessa determinação nos elementos da matriz de

massa dos neutrinos e nas correlações entre eles. Os únicos progressos na caracterização

dos parâmetros de oscilação que poderiam impactar na matriz de massa, especificamente

nas correlações entre as diversas entradas, seriam a determinação do octante de θ23 e da

fase de CP, sendo esta última de maior importância.

Visto que a determinação precisa de δCP pode levar mais de uma década, questionamo-

nos sobre o que poderia ser feito até lá para pavimentar o caminho dos experimentos

futuros. Estudamos uma forma apropriada de estimar a sensibilidade de um experimento

à δCP, a fração de exclusão de CP, e a aplicamos para T2K e NOνA. Com isso, verificamos

o quão essencial é o funcionamento de T2K e NOνA no modo de antineutrinos. A situação

otimizada nos parece ser dividir igualmente o tempo de funcionamento nos dois modos:

a combinação de 10 anos de T2K e 10 anos de NOνA nos permitiria excluir, em 90% CL,

60–80% dos valores de δCP, fornecendo indicações valiosas que poderiam ser levadas em

conta na elaboração das estratégias dos experimentos futuros. Com a fração de exclusão

de CP, também aprendemos sobre a importante sinergia entre T2K e NOνA, tanto para

a determinação da fase quanto da hierarquia de massas.

Finalmente, examinamos ainda a sensibilidade de T2K ao octante de θ23, mostrando

novamente a indispensabilidade da inclusão do modo de antineutrinos no funcionamento.

Vimos que há maior flexibilidade para determinarmos o octante de θ23 em relação ao

v́ınculo sobre δCP, o que deve aumentar o peso da fase na elaboração de estratégias
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experimentais. Apesar de que, para medirmos δCP, necessitaremos de experimentos

dedicados poderosos, acreditamos que é fundamental adquirir o máximo de informações

posśıveis sobre essa fase antes desse dia chegar e, nesse esṕırito, esperamos ter contribuido

para a árdua tarefa de mensurar a fase de violação de CP dos léptons.
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neutrinos

Como vimos no caṕıtulo anterior, nos últimos anos houve amplo progresso na f́ısica de

oscilação de neutrinos devido a um variado conjunto de experimentos, os quais corroboram

o paradigma de três neutrinos [30, 49, 51, 53, 58, 64, 99, 106–108]. A pluralidade destes

os concede uma riqueza de configurações experimentais sem precedentes. Como objeto

de estudo, temos neutrinos de reator, de acelerador, solares, atmosféricos e geológicos.

Ademais, esta amostra de experimentos abrange diversas distâncias e energias, o que

varia a importância relativa dos efeitos de matéria e de posśıveis contribuições de f́ısica

não padrão, asseverando portanto a complementaridade entre os experimentos.

Apesar de todo o sucesso alcançado pelo paradigma padrão, há resultados experimentais

anômalos que não podem ser explicados pela existência de apenas três neutrinos, sugerindo

talvez a presença de neutrinos adicionais de massa na escala do eletronvolt. Por outro

lado, os resultados experimentais do LEP da largura inviśıvel do Z limitam o número

de neutrinos leves (mν < mZ/2) que se acoplam de maneira usual com o Z em Nν =

2,984±0,008 [130]. Em vista disso, estes neutrinos adicionais seriam“estéreis”, no sentido

que não se acoplariam, ou o fariam de forma irrisória, com o Z, consistindo em estados

predominantemente singletos de SU(2)L.
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2. O paradigma de quatro ou mais neutrinos

Mais concretamente, os experimentos que apresentam resultados anômalos são:

LSND: LSND (Liquid Scintillation Neutrino Detector) foi um experimento de oscilação

de neutrinos de curta distância (L ∼ 30 m) em Los Alamos, EUA, que colheu dados de

1993 à 1998 [73]. O experimento consistia em um feixe intenso de prótons que, ao atingir

um alvo, produzia ṕıons em grandes quantidades, principalmente π+, os quais eram

desacelerados. Assim, a fonte de neutrinos era predominantemente devida ao processo

π+ → µ+ + νµ e o subsequente µ+ → e+ + νe + νµ, sendo a maior parcela do primeiro

decaimento em repouso. O processo de maior interesse, o aparecimento de antineutrinos

do elétron ν̄µ → ν̄e, era estudado pelo decaimento beta inverso νe + p → e+ + n,

onde os eventos eram identificados pela detecção do pósitron, assim como do fóton de

2,2 MeV decorrente da reação de formação de deutério n + p → d + γ, num tanque

locupleto de óleo mineral e recoberto internamente de fotomultiplicadores. O espectro de

energia era tal que a razão entre a distância percorrida pelo neutrino sobre sua energia

L[m]/E[MeV] ∼ 1, sendo E ∼ O (30 MeV). O experimento relatou evidências positivas

de transições ν̄µ → ν̄e, em 3,8σ CL, indicando evidência de oscilação ν̄µ → ν̄e, compat́ıvel

com uma diferença quadrada de massa ∆m2 ∼ O(1 eV2). Isso não pode ser explicado sem

invocar um outro neutrino, além daqueles que explicam oscilações solares e atmosféricas,

indicando indiretamente a posśıvel presença de neutrinos estéreis.

MiniBooNE: MiniBooNE (Mini Booster Neutrino Experiment), em funcionamento no

Fermilab, EUA, desde 2002, também é um experimento de oscilação de neutrinos de

curta distância (L ∼ 450 m) [74–78]. Similarmente a LSND, os neutrinos de MiniBooNe

são obtidos através da colisão de prótons com um alvo, que gera uma grande quantidade

de mésons, especialmente ṕıons e káons, devido à energia dos prótons. Um sistema de

campos magnéticos desfocalizam os mésons de certa carga elétrica e, concomitantemente,

direcionam aqueles de carga oposta que, por sua vez, decaem principalmente em subpro-

dutos que incluem νµ ou ν̄µ. O detector é uma esfera de 12,2 m de diâmetro cheia de óleo

mineral puro. As interações de corrente carregada dos neutrinos no detector produzem

elétrons e múons nos estados finais, os quais produzem cintilações e anéis Cherenkov que

são detectados por fotomultiplicadores. Com o objetivo de testar o resultado de LSND,

MiniBooNE foi constrúıdo de forma a satisfazer L[m]/E[MeV] ∼ 1, embora a energia dos

neutrinos seja mais alta, E ∼ O (400MeV). MiniBooNE foi projetado para confirmar, ou

rejeitar, o excesso de eventos observados de LSND em, pelo menos, 8σ [131]. Em ambos

canais de aparecimento νµ → νe e ν̄µ → ν̄e, o experimento reporta excessos inexplicados
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2. O paradigma de quatro ou mais neutrinos

de eventos sobre o rúıdo em baixas energias, embora a significância estat́ıstica combinada

desses excessos seja muito menor que a projetada, meros 3,8σ CL. Se interpretados sob a

ótica de neutrinos estéreis, estes resultados são compat́ıveis com o de LSND.

GALLEX e SAGE: Os experimentos GALLEX [79, 80] e SAGE [81, 82] com fontes

radioativas de 51Cr e 37Ar tinham como objetivo a calibração dos experimentos solares de

gálio. Para alcançar tal objetivo, os neutrinos emitidos através dos processos e−+ 51Cr →
51V+ νe e e− + 37Ar → 37Cl+ νe, pelas fontes radioativas imersas num tanque repleto de

gálio, eram detectados pela mesma reação usada em experimentos de neutrinos solares,

νe+ 71Ga → 71Ge+e−. Esses experimentos obtiveram taxas de eventos consistentemente

abaixo da taxa esperada pela teoria [132]. A energia ∼ MeV dos neutrinos e o tamanho

de poucos metros do tanque, permite a explicação desse resultado, conhecido como

“Anomalia de gálio”, pela presença de neutrinos estéreis com ∆m2 � 1 eV2, que causariam

o desaparecimento de νe [133, 134].

Experimentos de reator: Em reatores nucleares, isótopos radioativos, principalmente
235U, 238U, 239Pu e 241Pu, emitem ν̄e em suas cadeias de decaimento. O espectro de

energia dos elétrons observado nesses decaimentos é usado para a obtenção do espectro

de energia dos neutrinos. Cálculos recentes desses fluxos de neutrinos [83, 84] resultaram

em fluxos maiores que aqueles advindos de cálculos antigos [135–138]. Com estes novos

resultados, os experimentos de curta distância (L � 100 m) de neutrinos de reatores (E ∼

MeV) que concordavam com as previsões antigas entraram em tensão com as previsões

novas, nos levando à “Anomalia de reator”. Esta anomalia também poderia ser explicada

pela presença de neutrinos estéreis com ∆m2 � 1 eV2 [139].

A existência de singletos fermiônicos de massa pequena seria, indubtavelmente, um

sinal de f́ısica além do modelo padrão. Assim, frente à todos esses experimentos e seus

correspondentes resultados inesperados, faz-se necessária uma análise detalhada, em

termos da interpretação de neutrinos estéreis, da compatibilidade entre eles e os outros

experimentos que não tiveram efeitos anômalos. Estes experimentos e resultados são

(ver tabela 2.1): KARMEN [140, 141], NOMAD [142], MINOS [143, 144], E776 [145],

ICARUS [146], CDHS [147], os dados de carbono-12 de LSND [148], o desaparecimento

de neutrinos do múon em MiniBooNE [149, 150]; e também experimentos solares como

Super-Kamiokande (fases I à IV) [35–37, 151], as três fases de SNO [32, 152, 153],

incluindo as análises de baixo limiar de energia [154], e Borexino [155, 156].1 Dado

1Vários estudos sobre neutrinos estéreis leves já foram realizados na literatura, por exemplo, refs. [157–
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Experimento dof canal comentário
Reatores em curtas distâncias 76 ν̄e → ν̄e CD
Reatores em longas distâncias 39 ν̄e → ν̄e LD
KamLAND 17 ν̄e → ν̄e

Gálio 4 νe → νe CD
Neutrinos solares 261 νe → νe + dados de corrente neutra
LSND/KARMEN 12C 32 νe → νe CD
CDHS 15 νµ → νµ CD
MiniBooNE ν 15 νµ → νµ CD
MiniBooNE ν̄ 42 ν̄µ → ν̄µ CD
MINOS CC 20 νµ → νµ LD
MINOS NC 20 νµ → νs LD

Neutrinos atmosféricos 80
(–)

ν µ →
(–)

ν µ + efeitos de matéria de CN
LSND 11 ν̄µ → ν̄e CD
KARMEN 9 ν̄µ → ν̄e CD
NOMAD 1 νµ → νe CD
MiniBooNE ν 11 νµ → νe CD
MiniBooNE ν̄ 11 ν̄µ → ν̄e CD

E776 24
(–)

ν µ →
(–)

ν e CD
ICARUS 1 νµ → νe LD
total 689

Tabela 2.1.: Resumo dos dados utilizados no ajuste global divididos em dados de desapa-
recimento e aparecimento. Na coluna “dof” encontram-se o número de pontos de dados
utilizados na análise menos o número de parâmetros de livres associados à modelagem do
rúıdo em cada experimento.

o número considerável de experimentos a serem simulados, o autor da tese dividiu o

trabalho com os outros autores da referência [168]. Em vista disso, apresentaremos em

detalhe apenas as simulações do autor da tese, indicando as referências pertinentes para

as demais simulações.

Conceitos estat́ısticos

Antes de mais nada, comentaremos brevemente os conceitos estat́ısticos que serão

utilizados nesse caṕıtulo.

• dof: number of degrees of freedom, ou número de graus de liberdade. No teste GOF,

é o número de pontos de dados menos o número de parâmetros de livres associados

à modelagem do rúıdo na análise (por exemplo, 10 bins menos 1 normalização livre).

Na determinação do ńıvel de confiança e no teste PG, é o números de parâmetros

livres relevantes à análise (por exemplo, 2 para θ23 e ∆m2
31).

164]. Para ajustes globais anteriores, ver refs. [165–167].
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• GOF: O standard goodness of fit test [169] de uma hipótese é o ńıvel de confiança

associado ao χ2 mı́nimo (marginalizando os parâmetros de rúıdo livres) para o

número de graus de liberdade. Nesse caso, o dof é o número de pontos de dados

menos o número de parâmetros de rúıdo livres utilizados na análise.

• PG: O parameter goodness of fit test [170] mede a compatibilidade de um conjunto

de dados independentes. Dada uma hipótese, definimos χ̄2 ≡ χ2
tot −

�
i
χ2
i,min, onde

o primeiro termo é o χ2 global e o segundo é a soma dos χ2 mı́nimos de cada

conjunto de dados (para experimentos descorrelacionados, por exemplo, seria o χ2

de cada um tomado isoladamente). O PG é o ńıvel de confiança associado ao χ̄2

para o número de graus de liberdade. Nesse caso, o dof é o número de parâmetros

livres relevantes à análise.

• valor-p: é, genericamente, o ńıvel de confiança (CL) dos testes GOF ou PG.

Matematicamente, p =
�∞
χ
2
min

χ2(t,ndof)dt, onde χ2(t,ndof) é a função de distribuição

χ2 para ndof graus de liberdade.

2.1. Formalismo de oscilação para mais de três neutrinos

Para uma melhor compreensão da análise global sob a ótica dos neutrinos estéreis,

cabe aqui algumas considerações acerca do formalismo de oscilações para mais de três

neutrinos. Ao incluirmos neutrinos adicionais, surgirão algumas sutilezas relacionadas

às fases de violação de CP ou à convenção de ângulos de mistura. Além disso, para

entendermos os efeitos induzidos por essas novas espécies de neutrinos, é conveniente

aproximar as diversas probabilidades de oscilação de maneira adequada, de forma que

possamos discriminar quais parâmetros de oscilação são importantes em cada caso. O

objetivo desta seção é esclarecer esses aspectos ao leitor.

Por causa da largura inviśıvel do Z [130], assumimos que um número s de combinações

lineares de autoestados de massa, ortogonais aos três autoestados de sabor que acoplam

com o W , são singletos de SU(2)L e não interagem com as part́ıculas do modelo padrão.

Desta forma, a f́ısica de oscilação é descrita por uma matriz retangular Uαi com α = e,µ,τ ,

i = 1,...,3 + s, e
�

i
U∗

αi
Uβi = δαβ. Embora, em modelos espećıficos, os parâmetros de

mistura e as diferenças quadradas de massa podem originar-se de um mecanismo em

comum, estando portanto relacionados,2 por uma questão de simplicidade e generalidade

2Em modelos “mı́nimos” de neutrinos estéreis, e.g. [171–173], o mecanismo de seesaw é a única fonte das
massas e misturas dos neutrinos, sendo assim os parâmetros não são completamente independentes.
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Caso 3+1

M
as

sa

Caso 3+2 Caso 1+3+1

Figura 2.1.: Casos 3+1, 3+2 e 1+3+1.

tratá-los-emos de forma completamente independente.

É suficiente para nossos propósitos considerar a presença de s = 1 ou 2 neutrinos

adicionais, cujas massas se encontram na ordem de eV. O motivo é que, ao passarmos de 1

para 2 neutrinos adicionais, vemos uma diferença qualitativa, a possibilidade de violação

de CP exclusivamente no setor estéril, em distâncias curtas [163, 174]. O acréscimo de

mais neutrinos além do segundo não agrega nenhuma f́ısica qualitativamente distinta [163]

e consequentemente o ajuste dos dados não melhora de forma significativa. Com o sucesso

do paradigma de três neutrinos, o efeito de neutrinos estéreis deve ser subdominante.

Em vista disso, adotaremos a seguinte notação. Os autoestados de massa que compõem

o conjunto de estados predominantemente ativos são denotados ν1, ν2 e ν3. Estes são

responsáveis pelas diferenças quadradas de massa do esquema padrão de três neutrinos,

a saber, ∆m2
21 = 7,5× 10−5 eV2 e |∆m2

31| ≈ 2,45× 10−3 eV2, onde ∆m2
ij
≡ m2

i
−m2

j
. Os

autoestados de massa restantes, ν4 e ν5, são primariamente estéreis e vêm com o intuito

de explicar os resultados anômalos de oscilações em curtas distâncias e, portanto, os

caracterizamos por 0,1 eV2 � |∆m2
41|, |∆m2

51| � 10 eV2. No caso de apenas um neutrino

estéril, o esquema “3+1”, suporemos sempre que ∆m2
41 > 0. Embora a fenomenologia de

oscilação para ∆m2
41 < 0 seja a mesma, a soma das massas dos neutrinos pode tornar-se

alta o suficiente para que haja tensão com experimentos cosmológicos como PLANCK [93].

Já para dois neutrinos estéreis, há diferença considerável entre os espectros de massa com

∆m2
41 e ∆m2

51 ambas positivas (“3+2”) e com uma delas negativa (“1+3+1”) [175]. Os

três casos estão pitorescamente representados na figura 2.1.

Agora, vamos trabalhar em expressões simplificadas para a probabilidade de oscilação

no vácuo no caso 3 + 2, visto que para obtermos as expressões no caso 3+1 basta

omitirmos os termos envolvendo o ı́ndice “5”. Formulas para o cenário 1+3+1 são obtidas

simplesmente fazendo ∆m2
51 ou ∆m2

41 negativo. Probabilidades de oscilação relevantes

para neutrinos solares e atmosféricos encontram-se na ref. [168].

Em “curtas distâncias” (CD), podemos considerar ∆m2
21,∆m2

31 → 0, negligenciando
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seus efeitos de oscilação. Logo, as probabilidades de oscilação aproximadas dependem

apenas de ∆m2
i1 e Uαi com i ≥ 4. A probabilidade de aparecimento de neutrinos é

aproximada por

PCD,3+2
να→νβ

≈ 4 |Uα4|
2
|Uβ4|

2 sen2φ41 + 4 |Uα5|
2
|Uβ5|

2 sen2φ51

+ 8 |Uα4Uβ4Uα5Uβ5| senφ41senφ51 cos(φ54 − γαβ) , (2.1)

com as definições

φij ≡
∆m2

ij
L

4E
, γαβ ≡ arg (Iαβ54) , Iαβij ≡ U∗

αi
UβiUαjU

∗
βj
, (2.2)

enquanto que para antineutrinos substitúımos γαβ → −γαβ. A f́ısica observada deve ser

independente da escolha de qual neutrino estéril é mais pesado, o que pode ser visto

pela invariância da eq. (2.1) sob as transformações concomitantes 4 → 5 e γαβ → −γαβ.

Definimos então ∆m2
54 ≥ 0, ou equivalentemente ∆m2

51 ≥ ∆m2
41. Vemos também que a

probabilidade (2.1) depende apenas das combinações |Uα4Uβ4| e |Uα5Uβ5|. Os experimentos

de aparecimento que consideraremos aqui envolvem apenas o aparecimento de neutrinos

do elétron e, considerando apenas
(–)

ν α →
(–)

ν β em curtas distâncias, confrontamo-nos com

5 parâmetros independentes: ∆m2
41, ∆m2

51, |Uα4Uβ4|, |Uα5Uβ5| e γαβ.

O outro caso que devemos considerar é o desaparecimento de neutrinos em curtas

distâncias, cuja probabilidade é aproximada por

PCD,3+2
να→να

≈ 1− 4

�
1−

�

i=4,5

|Uαi|
2

�
�

i=4,5

|Uαi|
2 sen2φi1 − 4 |Uα4|

2
|Uα5|

2 sen2φ54 . (2.3)

Tratamos também de experimentos para os quais o limite de curtas distâncias não é

uma boa aproximação, em particular, MINOS e ICARUS. Para esses experimentos,

φ31 = ∆m2
31L/4E ∼ 1. Em contraposição ao limite CD, podemos definir o limite de

“longas distâncias” (LD) tomando φ41,φ51,φ54 → ∞ e φ21 → 0. Neste caso, a probabilidade

de aparecimento de neutrinos é, para α �= β,

P LD,3+2
να→νβ

≈ 4|Uα3|
2
|Uβ3|

2sen2φ31 +
5�

i=4

|Uαi|
2
|Uβi|

2 + 2�(Iαβ45)

+ 4�(Iαβ43 + Iαβ53)sen
2φ31 − 2�(Iαβ43 + Iαβ53)sen(2φ31) , (2.4)

enquanto que para antineutrinos fazemos Iαβij → I∗
αβij

. Já a probabilidade de sobrevi-
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vência nesse caso é aproximada por

P LD,3+2
να→να

=

�
1−

5�

i=3

|Uαi|
2

�2

+
5�

i=3

|Uαi|
4 + 2

�
1−

5�

i=3

|Uαi|
2

�
|Uα3|

2 cos(2φ31) . (2.5)

Em MINOS, como há um detector próximo e um distante, φ31, φ41 e φ51 podem tornar-se

de ordem 1 ora neste, ora naquele, e portanto nenhuma das aproximações feitas aqui são

válidas para esse experimento [176]. Ademais, por causa da longa distância percorrida

pelos neutrinos, os efeitos de matéria não podem ser tratados com incúria. Em vista

disso, realizamos a simulação de MINOS com toda a complexidade exigida.

Vamos definir agora nossa parametrização da matriz de mistura. Como ela é retangular

(3× (3 + s)), é conveniente completá-la com s linhas de modo a ter uma matriz unitária

n× n com n = 3 + s. Para n = 5 usamos a seguinte parametrização para U :

U = V35O34V25V24O23O15O14V13V12 (2.6)

onde, como no caṕıtulo anterior, Oij é uma matriz real de rotação por um ângulo θij no

plano ij, e Vij é uma matriz complexa de rotação por um ângulo θij e fase ϕij. Como

as matrizes de rotação em planos desconexos comutam, vemos que essa parametrização

é equivalente à U = V35V25O15O34V24O14O23V13V12, onde a convenção usual de três

neutrinos aparece à direita (a menos de uma fase adicional), ao passo que as misturas

envolvendo ν4 e ν5 aparecem sucessivamente à esquerda. Omitimos a matriz de rotação

V45, que mistura apenas estados estéreis, pois não é f́ısica devido ao fato de que transições

nesse setor, e.g. νs1 → νs2, não são observáveis.

Uma vez que, redefinições dos campos dos neutrinos podem eliminar redundâncias

nas fases de violação de CP, a escolha das fases f́ısicas goza de certa liberdade, embora

não possamos fazê-la de forma arbitrária. No Apêndice B provemos um algoritmo

para a remoção consistente das fases não f́ısicas. Efetivamente, consideraremos apenas

aquelas fases que são relevantes à fenomenologia das oscilações de neutrinos. Sob certas

aproximações, mais fases de CP podem se tornar irrelevantes. Se um ângulo de mistura

correspondente a uma rotação complexa for nulo, por exemplo, então a fase correspondente

desaparece. De modo similar, em situações concretas, como mostramos nas aproximações

CD e LD, uma ou mais diferenças quadradas de massas podem ser consideradas nulas,

fazendo alguns ângulos de mistura impotentes, e portanto, certas fases irrelevantes. Na

tabela 2.2 indicamos explicitamente a contagem de ângulos e fases para as aproximações

de curtas e longas distâncias nos casos 3+2 e 3+1.
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A/F aproximação LD (A/F) aproximação CD (A/F)
3+2 9/5 V35V34V25O24O23O15O14V13 (8/4) V35O34V25O24O15O14 (6/2)
3+1 6/3 V34O24O23O14V13 (5/2) O34O24O14 (3/0)

Tabela 2.2.: Contagem de ângulos de mistura e fases para os esquemas de neutrinos
estéreis s = 2 (3+2) e s = 1 (3+1). A coluna “A/F” denota o número de ângulos e fases
f́ısicas, respectivamente. A coluna “aproximação LD” (“aproximação CD”) corresponde
à aproximação ∆m2

21 → 0 (∆m2
21 → 0, ∆m2

31 → 0). Apresentamos também exemplos
concretos de quais rotações podem ou não ser consideradas reais, denotando rotações
complexas (reais) por Vij (Oij).

Na notação adotada nas equações (2.1), (2.3), (2.4) e (2.5), fica expĺıcito que apenas

os experimentos de aparecimento dependem das fases complexas independente da para-

metrização usada. Todavia, numa parametrização particular como (2.6), os módulos de

|Uαi| também podem depender dos cossenos das fases ϕij. Nossa parametrização (2.6)

garante que os experimentos de desaparecimento de
(–)

ν e são independentes de ϕij. Para

explicações gerais e detalhes sobre o cálculo do χ2 dos experimentos, ver apêndice B.

2.2. Experimentos de desaparecimento de νe e ν̄e

Devido ao elevado número de experimentos de desaparecimento de νe e ν̄e, vamos

discut́ı-los separadamente. Antes de mais nada, precisamos entender quais parâmetros são

relevantes para a descrição dessas transições. Em geral, experimentos de desaparecimento

são senśıveis a uma linha da matriz de mistura, envolvendo, por exemplo, |Uei| e todas as

diferenças quadradas de massa. Entretanto, efetivamente, na maioria dos casos o número

de parâmetros é menor. Em curtas distâncias no esquema 3+1, no limite

∆m2
21L

E
,
∆m2

31L

E
→ 0 (Limite de curtas distâncias),

vemos na eq. (2.3) que apenas dois parâmetros entram na probabilidade de oscilação
(–)

ν e →
(–)

ν e, a saber |Ue4| e ∆m2
41. Como discutimos anteriormente, a principal diferença

entre os esquemas de um e dois neutrinos estéreis é a violação de CP em curtas distâncias.

Como não há violação de CP em canais de desaparecimento, estudaremos em detalhe o

esquema 3+1 e comentaremos, no final, sobre o 3+2. A probabilidade de sobrevivência

de
(–)

ν e no limite CD para 3+1 pode ser aproximada por

PCD,3+1
ee

= 1− 4|Ue4|
2(1− |Ue4|

2)sen2

�
∆m2

41L

4E

�
= 1− sen22θee sen

2

�
∆m2

41L

4E

�
, (2.7)
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onde definimos, de forma independente da parametrização, o ângulo de mistura efetivo

de desaparecimento de
(–)

ν e,

sen22θee ≡ 4|Ue4|
2(1− |Ue4|

2) . (2.8)

Na nossa parametrização espećıfica (2.6), identificamos θee = θ14.

2.2.1. A anomalia de reator

Como explicamos anteriormente, os experimentos de reator medem antineutrinos

provenientes da cadeia de decaimentos dos isótopos radioativos presentes em reatores

nucleares. Os isótopos mais abundantes são 235U, 238U, 239Pu e 241Pu. O erro sistemático

na taxa teórica de eventos é predominado pela incerteza na determinação do fluxo de

ν̄e, que é obtida a partir do espectro de energia dos elétrons desses decaimentos. Os

neutrinos são detectados pela reação de decaimento beta inversa ν̄e +p → e+ +n. A taxa

de eventos esperada teoricamente é obtida ao calcularmos a convolução do fluxo, da seção

de choque de detecção, da eficiência e da função de reconstrução da energia dos eventos.

Foi conduzida uma série de experimentos de reator, na qual o caminho percorrido

pelos neutrinos era menor que 100 m. Efetivamente, experimentos dessa classe trabalham

no regime de curtas distâncias, pois não são afetados pelos efeitos dos três neutrinos

padrões, mas podem sim ser afetados por oscilações procedentes de ∆m2
41, ∆m2

51 ∼ 1 eV2.

Neles, verificou-se, de acordo com os mais recentes cálculos de fluxos de neutrinos de

reator [83, 84], que as razões entre o número observado de eventos sobre a previsão

teórica encontram-se consistentemente abaixo da unidade. Para números concretos, ver

a terceira coluna da parte superior da tabela 2.3, onde listamos os dados utilizados na

análise de experimentos de reator de CD.

Com o objetivo de estimarmos a significância estat́ıstica da anomalia de reator,

equipamo-nos da simulação atualizada das refs. [177, 178], utilizando as previsões teóricas

mais recentes [83, 84, 179], listadas na tabela 2.3. Na mesma tabela, também listamos,

em sua quarta coluna, os erros descorrelacionados das razões, os quais incluem tanto erros

estat́ısticos quanto sistemáticos descorrelacionados. Na coluna seguinte, apresentamos

os erros sistemáticos correlacionados entre vários experimentos, e na última, a incerteza

experimental total (ver ref. [168] para detalhes).

Por completeza, inclúımos nessa análise os outros experimentos de reator, KamLAND

e os de longas distâncias, presentes na tabela 2.3, embora suas contribuições à anomalia

de reator sejam pequenas. Os de longas distâncias, concebidos de forma a tanger o
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experimento L [m] obs/prev erro descorr. [%] erro tot. [%]
Bugey4 [38] 15 0,926 1,09 1,37
Rovno91 [39] 18 0,924 2,10 2,76
Bugey3 [40] 15 0,930 2,05 4,40
Bugey3 [40] 40 0,936 2,06 4,41
Bugey3 [40] 95 0,861 14,6 15,1
Gosgen [41] 38 0,949 2,38 5,35
Gosgen [41] 45 0,975 2,31 5,32
Gosgen [41] 65 0,909 4,81 6,79
ILL [42] 9 0,788 8,52 11,6
Krasnoyarsk [43] 33 0,920 3,55 6,00
Krasnoyarsk [43] 92 0,937 19,8 20,3
Krasnoyarsk [44] 57 0,931 2,67 4,32
SRP [45] 18 0,936 1,95 2,79
SRP [45] 24 1,001 2,11 2,90
Rovno88 [46] 18 0,901 4,24 6,38
Rovno88 [46] 18 0,932 4,24 6,38
Rovno88 [46] 18 0,955 4,95 7,33
Rovno88 [46] 25 0,943 4,95 7,33
Rovno88 [46] 18 0,922 4,53 6,77
Palo Verde [47] 820 1 taxa
Chooz [48] 1050 14 bins
Double Chooz [49] 1050 18 bins
DayaBay [50] 6 taxas – 1 norm
RENO [51] 2 taxas – 1 norm
KamLAND [52] 17 bins

Tabela 2.3.: Dados usados na nossa análise de experimentos de reator. Os experimentos
na parte superior da tabela possuem distâncias L < 100 m e são denominados experimentos
de reator de curtas distâncias (CD). Para estes, listamos as distâncias, a razão entre as
taxas observadas e previstas (baseada nos cálculos de fluxos das refs. [83, 84]), os erros
descorrelacionados e o erro experimental total (i.e., a raiz da entrada diagonal da matriz
de correlação). Incertezas advindas dos fluxos de neutrinos não estão inclúıdas aqui,
mas são levadas em conta na simulação. Para detalhes sobre as correlações e os fluxos,
ver ref. [168]. Na parte inferior da tabela, listamos os experimentos de reator de longas
distâncias, L ∼1 km, e o experimento KamLAND cuja distância média entre os reatores e
o detector é 180 km. Para DayaBay, RENO e KamLAND, não damos um número para
as distâncias pois estas são múltiplas. O número de pontos de dados CD é 19 ou 76 e o
número total de pontos de dados de reatores é 75 ou 132, dependendo se a análise é de
taxas totais (3 pontos) ou espectral (25+25+10 pontos) é usada para Bugey3.

espaço de parâmetros das oscilações padrões, com 0,1 < L/km < 2, são adequados

aos efeitos de ∆m2
31 e θ13. As oscilações de curtas distâncias são dilúıdas, ocasionando

apenas uma redução global no fluxo de neutrinos (o impacto delas na determinação de θ13

será discutido na seção 2.2.3). Em KamLAND, o curso médio de 180 km dos neutrinos

o confere um status especial, possibilitando-o explorar os parâmetros solares ∆m2
21 e

θ12, uma vez que tanto as oscilações devidas ao setor estéril quanto ao setor 1–3 são
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dilúıdas. O v́ınculo em θ14 obtido da combinação de KamLAND e experimentos solares

será discutido na seção 2.2.3.

Para termos uma estimativa da importância da anomalia, independentemente do

modelo empregado para explicá-la, realizamos o ajuste de uma normalização global, f ,

aos dados. Obtivemos χ2/dof = 23,0/19 para f = 1, correspondendo ao valor-p de 2,4%,

em contraste com o ponto de melhor ajuste

f = 0,935± 0,024 , χ2
min/dof = 15,7/18 (p = 61%) , ∆χ2

f=1 = 7,25 (2,7σ) , (2.9)

onde ∆χ2
f=1 denota a melhora no χ2 comparado com f = 1. Claramente, o valor-p cresce

em demasia ao marginalizarmos f , correspondendo a uma preferência por f �= 1 em

2,7σ CL, e isso caracteriza a anomalia de reator.

Para termos um ideia quantitativa da depêndencia do resultado com os erros sistemáti-

cos, adicionamos uma incerteza adhoc de 2% (3%) na normalização global e observamos

a significância estat́ıstica reduzir-se à 2,1σ (1,7σ).

sen22θ14 ∆m2
41 [eV

2] χ2
min/dof (GOF) ∆χ2

no-osc/dof (CL)
CD apenas taxas 0,13 0,44 11,5/17 (83%) 11,4/2 (99,7%)
CD c/ spec. Bugey3 0,10 1,75 58,3/74 (91%) 9,0/2 (98,9%)
CD + Gálio 0,11 1,80 64,0/78 (87%) 14,0/2 (99,9%)
CD + LD 0,09 1,78 93,0/113 (92%) 9,2/2 (99,0%)
desap. global νe 0,09 1,78 403,3/427 (79%) 12,6/2 (99,8%)

Tabela 2.4.: Parâmetros de oscilação do melhor ajuste e valores de χ2
min e ∆χ2

no-osc ≡

χ2
no-osc − χ2

min no formalismo 3+1. Exceto na linha “CD apenas taxas”, a informação
espectral de Bugey3 é inclúıda. A linha “desap. global νe” inclui os dados de experimentos
de reator (ver tabela 2.3) e de Gálio, neutrinos solares e os dados de desaparecimento de
νe de LSND/KARMEN do espalhamento νe – 12C. A significância da exclusão da hipótese
de não oscilação é calculada assumindo 2 graus de liberdade (dof) (|Ue4| e ∆m2

41).

Interpretaremos, agora, a anomalia de reator como oriunda de oscilações de neutrinos

do elétron para neutrinos estéreis. Ao ajustar os parâmetros do esquema 3+1 aos dados,

obtemos os valores de χ2 presentes na tabela 2.4, bem como as regiões permitidas no

plano ∆m2
41 × sen22θ14 mostradas no painel à esquerda da figura 2.2, considerando num

caso apenas as taxas de eventos, e noutro as taxas e a informação espectral de Bugey3 [40].

As duas análises fornecem resultados coerentes, cuja diferença principal é que a análise

espectral desfavorece certos valores de ∆m2
41 em torno de 0,6− 0,7 eV2 e 1,3 eV2.

Para melhor entendermos os resultados, mostramos, no painel à direita da figura 2.2,

as razões entre as taxas de eventos observadas e previstas em função da distância para
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Figura 2.2.: À esquerda: Regiões permitidas no espaço de parâmetros de oscilação
conforme os dados de reator CD no esquema 3+1 para a análise apenas de taxas (contornos)
e incluindo o espectro de Bugey3 (regiões coloridas). À direita: Taxa de eventos em
experimentos de reator CD comparada à previsão teórica para três conjuntos representativos
de parâmetros de oscilação. As barras de erro grossas (finas) correspondem à erros
experimentais descorrelacionados (totais). A incerteza no fluxo de neutrinos não está
inclúıda nas barras de erro. Os pontos de Rovno e SRP (18 m) foram deslocados para
melhor visibilidade.

alguns pontos de interesse no espaço de parâmetros do esquema 3+1. Vemos claramente a

influência dos dados dos experimentos de maior precisão, Bugey4, Rovno91 e SRP, como

pode ser visto na tabela 2.3, sobre o melhor ajuste da análise de taxas, ∆m2
41 = 0,44 eV2

e sen22θ14 = 0,13. Essa influência é confrontada pelos dados espectrais de Bugey3 na

análise combinada, cujo ponto de melhor ajuste é ∆m2
41 = 1,75 eV2 e sen22θ14 = 0,10.

De fato, a partir do valor de GOF na tabela 2.4, conclúımos que ambas soluções fornecem

bons ajustes aos dados. Mostramos também o ponto ∆m2
41 � 0,9 eV2 e sen22θ14 = 0,057,

que será relevante no ajuste global, na seção 2.5.

2.2.2. A anomalia de gálio

Com o objetivo de calibrar a resposta dos experimentos de neutrinos solares, foram

colocadas fontes radioativas de 51Cr e 37Ar dentro dos detectores GALLEX [79, 80] e

SAGE [81, 82]. Nesses experimentos, neutrinos do elétron são emitidos pelas reações

e− +51 Cr →51 V+ νe e e− +37 Ar →37 Cl + νe.

em quatro linhas de energia na reação do Cr e duas na do Ar, e então detectados pela

transição νe +71 Ga → 71Ge + e−.
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A produção dos neutrinos é bem determinada experimentalmente. Os valores das seções

de choque ponderadas desses decaimentos são σB(Cr) = 58,1 × 10−46 cm2, σB(Ar) =

70,0× 10−46 cm2 [132]. Por outro lado, apesar da seção de choque de detecção envolvendo

o estado fundamental do 71Ga ser bem medida pela reação inversa, há consideráveis

incertezas nas transições para seus estados excitados de 175 e 500 keV.

De acordo com Bahcall [132], a seção de choque de detecção total, ponderadas as linhas

de energia de produção, é dada por

σ(X) = σg.s.(X)

�
1 + aX

BGT175

BGTg.s.
+ bX

BGT500

BGTg.s.

�
(2.10)

com X = Cr, Ar. Os coeficientes aCr = 0,669, bCr = 0,220, aAr = 0,695, bAr = 0,263

são fatores do espaço de fase. As seções de choque para o estado fundamental são

σg.s.(Cr) = 55,2 × 10−46 cm2 e σg.s.(Ar) = 66,2 × 10−46 cm2 [132]. BGT denota as

intensidades de Gamow-Teller das transições e, apesar de corresponderem apenas a uma

pequena parcela das seções de choque, são as maiores fontes de incertezas. Suas medidas

mais recentes encontram-se na ref. [180], a saber,

BGT175

BGTg.s.
= 0,0399± 0,0305 ,

BGT500

BGTg.s.
= 0,207± 0,016 . (2.11)

Os resultados de GALLEX e SAGE foram relatados de forma similar àqueles dos

experimentos de reator, razões entre as taxas de eventos observadas e esperadas, sendo as

últimas calculadas usando as seções de choque antigas do melhor ajuste de Bahcall [132]

(ver por exemplo ref. [134]). Como utilizamos as seções de choque teóricas mais recentes,

eq. (2.10), precisamos rescalar as razões das refs. [79–82] por fatores 0,982 para Cr e

0,977 para Ar, obtendo os números atualizados

GALLEX:

�
R1(Cr) = 0,94± 0,11 [80]

R2(Cr) = 0,80± 0,10 [80]
, SAGE:

�
R3(Cr) = 0,93± 0,12 [81]

R4(Ar) = 0,77± 0,08 [82]
. (2.12)

Note que simetrizamos os erros e inclúımos apenas os erros sistemáticos, mas não a

incerteza na seção de choque, que será inclúıda como um prior no χ2.

Constrúımos o χ2 a partir dos quatro pontos de dados de GALLEX e SAGE e

introduzimos dois parâmetros de rúıdo, os quais correspondem aos erros sistemáticos

das duas transições para estados excitados de acordo com a eq. (2.11). A precisão

na determinação do BGT175 é relativamente pobre, com zero permitido em 2σ. Para

evitar contribuições negativas não f́ısicas do estado excitado de 175 keV, restringimos
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apropriadamente o domı́nio do parâmetro de modelagem do rúıdo correspondente.

Para estimarmos a significância estat́ıstica da nossa análise da anomalia de gálio,

ajustamos aos quatro pontos de dados uma normalização de fluxo constante r, obtendo

χ2
min = 2,26/3 dof , rmin = 0,84+0,054

−0,051 , ∆χ2
r=1 = 8,72 (2,95σ). (2.13)

Uma vez que usamos seções de choque diferentes, nossos resultados divergem dos resultados

de Giunti e Laveder [134], cujo melhor ajuste é r = 0,76 e a significância é comparável,

em torno de 3σ.3

O défice de eventos nos experimentos de fonte radioativa pode ser explicado assumindo

mistura de νe com um estado estéril na escala do eletronvolt, tal que o desaparecimento

de νe se dá dentro do volume do detector [133]. Realizamos o ajuste aos dados de gálio

no esquema 3+1 fazendo a média da probabilidade de oscilação no volume do detector

usando os aspectos geométricos descritos em [133]. Obtivemos a região permitida de

parâmetros em 95% CL e a mostramos em laranja na figura 2.3. De acordo com o que

discutimos anteriormente, encontramos ângulos de mistura menores que aqueles obtidos

na ref. [134]. Os pontos de melhor ajuste dos dados combinados de gálio e reatores CD

estão na tabela 2.4, e a hipótese de não oscilação é desfavorecida em 99,9% CL (2 dof)

ou 3,3σ, se comparada com o melhor ajuste no esquema 3+1.

∆m2
41 ∆m2

51 θ14 θ15 χ2
min (GOF) ∆χ2

3+1 (CL) ∆χ2
no-osc (CL)

RCD 0,46 0,87 0,12 0,13 53,0/(76-4) (95%) 5,3 (93%) 14,3 (99,3%)
RCD+gal 0,46 0,87 0,12 0,14 60,2/(80-4) (90%) 3,8 (85%) 17,8 (99,9%)

Tabela 2.5.: Pontos de melhor ajuste para os dados de experimentos de reator de curtas
distâncias (RCD), assim como a combinação destes com os experimentos de gálio, no
esquema 3+2. Fornecemos as diferenças quadradas de massa em eV2 e os ângulos de
mistura em radianos. A relação com os elementos da matriz de mistura é dada por
|Ue4| = cos θ15senθ14 e |Ue5| = senθ15. O ∆χ2 relativo ao esquema 3+1 é calculado para 2
graus de liberdade, correspondendo aos dois parâmetros adicionais, enquanto que para o
∆χ2 relativo ao caso sem oscilação usamos 4 dof.

Consideremos agora os dados de reator CD e gálio no paradigma de dois neutrinos

estéreis, particularmente no esquema 3+2. Nesse caso, os dados de desaparecimento em

curtas distâncias de νe e ν̄e são afetados por 4 parâmetros, a saber as diferenças quadradas

de massa ∆m2
41, ∆m2

51 e os dois ângulos de mistura θ14 e θ15 (ou, de forma equivalente,

|Ue4| e |Ue5|). Listamos na tabela 2.5 os pontos de melhor ajuste para os dados de

3Uma análise atualizada, incluindo uma discussão das implicações da medida da ref. [180] pode ser
encontrada na ref. [181].
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Figura 2.3.: Regiões permitidas em 95% CL (2 dof) no esquema 3+1. Mostramos o
ajuste aos dados de experimentos de reatores CD (região azul), experimentos de gálio
(região laranja), bem como v́ınculos de desaparecimento de νe de espalhamento νe – 12C
em LSND e KARMEN (linha pontilhada vinho), reatores LD (Chooz, Palo Verde, Double
Chooz, Daya Bay e RENO, linha tracejada azul) e experimentos solares+KamLAND (linha
tracejada preta). A região vermelha é referente ao ajuste combinado de todos os dados de
desaparecimento de νe e ν̄e.

reatores CD, bem como a combinação destes com os dados de gálio. Constatamos uma

diminuição de 5,3 e 3,8 unidades no χ2 ao passarmos do cenário 3+1 para o 3+2. Como

o esquema 3+2 envolve dois parâmetros a mais que o esquema 3+1, consideramos que

não há melhora significativa no ajuste além daquela esperada pelo aumento do número

de parâmetros relevantes e, portanto, os dados de CD de
(–)

ν e não apresentam preferência

significativa entre os dois esquemas de neutrinos estéreis. Essa conclusão é corroborada

pelo fato de que a significância da exclusão da hipótese de não oscilação nos esquemas

3+2 e 3+1 é basicamente a mesma. Veja as últimas colunas das tabelas 2.4 e 2.5, onde

o ∆χ2 é traduzido em grau de confiança (CL) levando em consideração o número de

parâmetros relevantes em cada modelo, ou seja, 2 para 3+1 e 4 para 3+2.

2.2.3. Análise global dos dados de desaparecimento de νe e ν̄e

Discutimos, até agora, as duas anomalias no setor de desaparecimento de neutrinos

do elétron. Vimos que elas são não só estatisticamente significantes, como também
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2. O paradigma de quatro ou mais neutrinos

consistentes entre si. Ambas poderiam ser explicadas por transições de νe para neutrino

estéreis de massa � 1 eV. Logicamente, o próximo passo é analisar a interpretação dessas

anomalias, em termos de neutrino estéreis, num contexto global. Para tal, simulamos

vários experimentos no canal de desaparecimento de
(–)

ν e que, em prinćıpio, também

poderiam ser senśıveis aos neutrinos estéreis que explicam as anomalias. Os dados que

adicionamos ao nosso ajuste global são os seguintes.

Experimentos de reator de longas distâncias: Inclúımos Palo Verde, Chooz, Double

Chooz, RENO e Daya Bay. Um experimento de reator de LD, em sua concepção, é

senśıvel a θ13. Os três primeiros, Palo Verde, Chooz e Double Chooz, possuem apenas um

detector (∼ 1 km), cujo espectro de neutrinos é comparado ao espectro teórico, de maneira

similar aos experimentos de reator de CD. Com isso, há uma posśıvel degenerescência

entre a determinação de θ13 e o posśıvel efeito de θ14. De qualquer forma, uma medida

precisa de θ13 libera a sensibilidade desses experimentos a θ14. 4

Em contrapartida, os experimentos de maior estat́ıstica, RENO e Daya Bay, gozam da

presença de um detector próximo (∼ 400 m) além de outro distante (∼ 1,5 km). A razão

entre as taxas de eventos dos dois detectores elimina certos erros sistemáticos como, por

exemplo, a normalização do fluxo. Como veremos mais adiante, isso também elimina

um posśıvel impacto de neutrinos estéreis na medida de θ13. Em relação a θ14, embora

esses experimentos sejam os mais significativos estat́ısticamente, as colaborações não

disponibilizaram informações sobre o fluxo absoluto, o que torna imposśıvel a comparação

dos espectros observado e teórico. Não obstante, a determinação precisa de θ13 combinada

aos dados de neutrinos solares e KamLAND nos fornece um v́ınculo não trivial em θ14,

como explicaremos a seguir.

KamLAND e neutrinos solares: O efeito de θ13 e da mistura de νe com neutrinos

estéreis, tanto em KamLAND quanto em neutrinos solares, é uma diminuição global no

fluxo (ver, por exemplo, refs. [186–188]). A degenerescência entre θ13 e θ14 é quebrada ao

combinarmos esses experimentos com a medida precisa de θ13 graças a RENO e Daya

Bay. Efeitos de matéria no sol e os dados de corrente neutra de SNO proporcionam traços

adicionais de neutrinos estéreis além da normalização global. Em geral, os dados solares

também dependeriam de θ24, θ34 e uma fase complexa (para detalhes, ver ref. [168]).

4Em suas análises oficiais, Chooz e Double Chooz, normalizam seus fluxos à medição de Bugey4.
Entretanto, como o fluxo teórico de Bugey4 está dispońıvel (ver tabela 2.3), podemos usar esse
número para obter o fluxo teórico absoluto em Chooz e Double Chooz. Assim, suas sensibilidades à
neutrinos estéreis tornam-se comparáveis a de Palo Verde. Para análises anteriores de experimentos
de reatores de LD ver refs. [182–185].
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Entretando, uma vez que outros v́ınculos são considerados, os efeitos desses parâmetros

são muito pequenos e podem ser negligenciados na simulação.

Espalhamento em 12C: Os experimentos KARMEN e LSND mediram o espalhamento

νe +12 C → e− +12 N [141, 148], obtendo seções de choque em concordância com as

esperadas [189] e, desse modo, seus resultados vinculam o desaparecimento de νe em

curtas distâncias [190, 191]. Detalhes da nossa análise dos dados do espalhamento 12C

encontram-se no apêndice B.6.

Expomos na tabela 2.4 a análise combinada de experimentos de reator de CD e LD

(linha “CD+LD”), onde marginalizamos em θ13. Verificamos que a significância da

anomalia de reator não é afetada pela inclusão dos experimentos de LD e θ13 �= 0. De

fato, o ∆χ2
no-osc (“no-osc” se refere à θ14 = 0, ou seja, à hipótese de não oscilação) até

aumenta levemente de 9,0 para 9,2 ao adicionarmos os dados de longas distâncias.5

Os resultados do nosso ajuste global de desaparecimento de
(–)

ν e são mostrados na

figura 2.3 e o ponto de melhor ajuste é dado na tabela 2.4. Fixamos ∆m2
21 e ∆m2

31 e

marginalizamos nos ângulos de mistura θ12 e θ13. Vemos na figura 2.3 que a região de

parâmetros favorecida pelas anomalias de reator e gálio não é exclúıda pelos v́ınculos

advindos dos experimentos de reator de LD, KamLAND, dados solares e espalhamento

em 12C de KARMEN e LSND. Conclúımos, portanto, que essas anomalias integram-se

de forma coerente ao cenário global dos experimentos de desaparecimento de neutrinos

do elétron.

Trataremos agora do impacto de neutrinos estéreis na determinação de θ13 (ver também

refs. [185, 192]). Na figura 2.4, mostramos a determinação combinada de θ13 e θ14 para

dois valores de ∆m2
41, fixando ∆m2

21 e ∆m2
31 e minimizando em θ12. O painel à esquerda

corresponde a um valor de ∆m2
41 relativamente grande, 10 eV2, ao passo que no painel à

direita escolhemos o valor favorecido pelo ajuste global dos dados de desaparecimento

de
(–)

ν e, 1,78 eV2. Nessa figura podemos observar a complementaridade dos diversos

experimentos. Aqueles responsáveis pelas anomalias determinam unicamente |Ue4|, pois

as distâncias são muito curtas para haver oscilações padrão. Os experimentos de reatores

de LD encontram-se no regime atmosférico, no qual ∆m2
41 pode ser tomado como infinito

e ∆m2
21 nulo, culminando em uma medida ineqúıvoca de θ13 ao compararmos os dados

entre os detectores próximos e distantes. O limite superior em |Ue4| vem dos dados de

fluxo absoluto de Chooz, Palo Verde e Double Chooz. Por último, para neutrinos solares

5Não concordamos com Zhang, Qian e Vogel [192], que concluem que a significância da anomalia de
reator é reduzida para 1,4σ quando os dados LD e θ13 �= 0 são considerados.
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Figura 2.4.: Vı́nculos no desparecimento de νe e ν̄e no esquema 3 + 1 para dois valores
diferentes de ∆m2

41. As regiões permitidas em 95% CL (2 dof) são definidas em relação ao
χ2 mı́nimo para ∆m2

41 fixo. Apresentamos os v́ınculos devidos aos experimentos de gálio
(região laranja), aos experimentos de reator CD (região azul), às medidas de KARMEN e
LSND da seção de choque νe – 12C (linha pontilhada vinho), aos experimentos de reator
LD (linha tracejada azul), à combinação KamLAND+solar (linha preta tracejada), e
finalmente devido à combinação de todos os experimentos supracitados (região vermelha).

e KamLAND, tanto ∆m2
41 quanto ∆m2

31 são infinitos, e a sensibilidade à normalização

global limita θ13 e θ14 de forma degenerada.

Assim sendo, conclúımos que, no presente cenário, a determinação de θ13 é independente

da presença de neutrinos estéreis. Não obstante, perdemos a relação uńıvoca no paradigma

de três neutrinos entre sen2θ13 e |Ue3|. Por exemplo, na parametrização da tabela 2.2,

temos |Ue3| = cos θ14senθ13 e |Ue4| = senθ14.

Para finalizar essa seção, vamos comentar o impacto dos experimentos de decaimento

beta de tŕıtio, Mainz [193] e Troitsk [194] sobre neutrinos estéreis. A análise deles sob

a ótica de neutrinos estéreis limita a mistura de νe com estados de massa � eV. Os

limites de Troitsk derivados na ref. [194] excluiriam a região de altas massas, em torno

de 100 eV2 [195], além do eixo da figura 2.3. Já os v́ınculos obtidos na ref. [193] são

mais brandos. Como as diferenças entre esses dois limites dependem das considerações

acerca dos erros sistemáticos, preferimos não inclúı-los explicitamente na nossa análise.

A sensibilidade do experimento futuro de decaimento de tŕıtio KATRIN foi estimada nas

refs. [196, 197]. Implicações nos parâmetros de neutrinos estéreis de experimentos de

decaimento beta duplo sem neutrinos foram discutidas recentemente nas refs. [198–200].
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2. O paradigma de quatro ou mais neutrinos

2.3. Experimentos de desaparecimento de νµ, ν̄µ, e

corrente neutra

Antes de falarmos das anomalias de aparecimento, por serem mais complexas, estudare-

mos primeiro os v́ınculos na mistura de
(–)

ν µ e
(–)

ν τ com neutrinos estéreis. No esquema 3+1,

essas misturas dependem de |Uµ4| e |Uτ4|, respectivamente, que em termos dos ângulos

de mistura, segundo nossa parametrização (2.6), são dados por |Uµ4| = cos θ14senθ24 e

|Uτ4| = cos θ14 cos θ24senθ34. Incluiremos os dados dos seguintes experimentos no nosso

ajuste:

• CDHS [147]: desaparecimento de νµ em CD (para detalhes ver ref. [177]).

• Super-Kamiokande (SK): como mostrado na ref. [201], os dados de neutrinos

atmosféricos de SK são senśıveis à mistura de νµ com neutrinos estéreis, vinculando

os elementos |Uµ4| e |Uµ5|. Além disso, efeitos de matéria de corrente neutra podem

vincular |Uτ4| e |Uτ5|. Uma discussão destes efeitos pode ser encontrada no apêndice

da ref. [163] (para detalhes ver ref. [168]).

• MiniBooNE [149, 150]: além do aparecimento de
(–)

ν e, MiniBooNE também busca

o desaparecimento de
(–)

ν µ em curtas distâncias. Detalhes da análise podem ser

encontrados no Apêndice B.9.

• MINOS [143, 144]: os dados de desaparecimento de
(–)

ν µ de corrente carregada (CC) e

corrente neutra (CN) são ambos baseados na comparação entre o espectro observado

nos detectores próximo e distante. Os primeiros fornecem uma determinação precisa

de ∆m2
31. De qualquer forma, os dados de CC e CN podem ser usados para a busca

de neutrinos estéreis, vinculando |Uµ4,5| e |Uτ4,5|, respectivamente (para detalhes,

ver ref. [168]).6

Os experimentos de desaparecimento de
(–)

ν µ são afetados pela linha |Uµi| da matriz de

mistura. No esquema 3+1, a probabilidade correspondente em CD é dada por

PCD,3+1
µµ

= 1− 4|Uµ4|
2(1− |Uµ4|

2)sen2∆m2
41L

4E
= 1− sen22θµµsen

2∆m2
41L

4E
, (2.14)

6Embora não utilizados aqui, é sabido também que os dados do experimento IceCube também podem
vincular a mistura de νµ com neutrinos estéreis [202–207].
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Figura 2.5.: À esquerda: V́ınculos no plano |Uµ4|
2 e ∆m2

41 em 99% CL (2 dof) de CDHS,
neutrinos atmosféricos, desaparecimento em MiniBooNE, dados de CC e CN de MINOS,
e a combinação de todos eles. Marginalizamos em relação à |Uτ4| e à fase complexa ϕ24.
Em vermelho, mostramos a região permitida pelos dados de aparecimento em LSND e
MiniBooNE, combinados com os dados de ν̄e e νe de reatores CD e gálio, obtidos fixando
|Uµ4|

2 e marginalizando em |Ue4|
2. À direita: V́ınculos no plano |Uτ4|

2 e ∆m2
41 em 99% CL

(2 dof) dos dados CC+CN de MINOS (verde) e dos dados globais de νµ e ν̄µ e CN
combinados (região azul, curvas pretas). Marginalizamos em |Uµ4| e mostramos os limites
mais fracos (“best phase”) e fortes (“worst phase”), dependendo da escolha da fase complexa
ϕ24. Em ambos painéis, marginalizamos em ∆m2

31 e θ23, e fixamos sen22θ13 = 0,092 e
θ14 = 0 (exceto na região vermelha do painel esquerdo).

onde definimos o ângulo de desaparecimento de
(–)

ν µ efetivo

sen22θµµ ≡ 4|Uµ4|
2(1− |Uµ4|

2) , (2.15)

ou seja, em nossa parametrização (2.6) o ângulo de mistura efetivo θµµ depende de θ24 e

θ14. Ao contrário das buscas pelo desaparecimento de
(–)

ν e, discutidas na seção anterior,

os resultados dos experimentos de desaparecimento de
(–)

ν µ encontram-se em ótimo acordo

com o cenário padrão.

Mostramos, no plano |Uµ4|×∆m2
41, o limite obtido do ajuste dos dados supracitados

no painel esquerdo da figura 2.5. A análise de MINOS é baseada na comparação entre os

detectores próximo e distante. Logo, o comportamento do limite em torno de ∆m2
41 ∼ 0,1

e 10 eV2 é explicado pelo fato das oscilações devidas à esses valores serem relevantes no

detector distante e próximo, respectivamente. O v́ınculo razoavelmente constante no

intervalo intermediário 0,5 eV2 � ∆m2
41 � 3 eV2 corresponde ao limite ∆m2

41 ≈ 0 (∞)

no detector próximo (distante) [143, 144]. Nesse intervalo, os dados de MINOS têm
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sensibilidade à |Uµ4| comparável aos dados atmosféricos de SK. Na região ∆m2
41 � 1 eV2,

o desaparecimento em CDHS e MiniBooNE provem o limite dominante. Apresentamos

ainda a região preferida pelos resultados de aparecimento de LSND e MiniBooNE, que

discutiremos na seção 2.4, combinados às anomalias de reator e gálio, minimizando o χ2

em relação à |Ue4|
2. A tensão entre os resultados anômalos e os limites provenientes dos

dados de
(–)

ν µ →
(–)

ν µ é evidente nessa figura. Discutiremos esse conflito em detalhes na

seção 2.5.

Restrições na mistura de ντ com neutrino estéreis são obtidos a partir das interações

CN, em MINOS, neutrinos atmosféricos e solares, as quais permitem distinguir entre

as transições
(–)

ν µ →
(–)

ν τ e
(–)

ν µ →
(–)

ν s.7 Além disso, o parâmetro |Uτ4| controla a fração

relativa das transições νµ → ντ e νµ → νs em escala atmosférica: um valor maior de

|Uτ4| implica numa maior fração de oscilação νµ → νs na escala ∆m2
31. O limite no plano

|Uτ4|
2 ×∆m2

41 é mostrado no painel à direita da figura 2.5.

Vemos da eq. (2.4) (ver também o Apêndice A) que na aproximação LD relevante

para os dados de CN de MINOS, há uma fase complexa que corresponde à combinação

arg(U∗
µ4Uτ4Uµ3U∗

τ3). Em nossos cálculos, tomamos a matriz de rotação V24 complexa e

usamos ϕ24 para parametrizar esta fase. Na figura 2.5 ilustramos o impacto significativo

dessa fase sobre o limite de MINOS ao mostrarmos os limites mais forte e mais fraco

obtidos ao variarmos ϕ24. As formas diferentes dos limites têm origem nas propriedades

dos dados CC e CN. Para o limite mais fraco (“best phases”) o ajuste usufrui da liberdade

no termo que contempla a fase complexa, tornando-se senśıvel ao valor de θ24 (ou |Uµ4|),

que, por sua vez, está sujeito aos v́ınculos dos dados CC. Logo, a mesma estrutura vista

no painel esquerdo da figura 2.5 se manifesta no limite sobre |Uτ4|. Se forçarmos a fase a

tomar um valor não favorecido no ajuste, o menor valor de χ2 é obtido para θ24 próximo

a zero, tornando a fase não f́ısica. Nesse caso, os dados CC deixam de ser importantes

no limite sobre |Uτ4|, que passa a ser dominado pelos dados de CN. Como a reconstrução

de energia nos eventos CN é muito pior que no caso de CC, a deformação do espectro

induzida por valores de ∆m2
41 é pequena, tanto no detector próximo quanto no distante,

e o v́ınculo perde o caráter oscilatório.

O limite global em |Uτ4|, dominado pelos dados atmosféricos, mostra uma branda

dependência na fase complexa. Em nossa análise de neutrino atmosféricos, o impacto de

|Uτ4| se dá pelos efeitos de matéria de CN induzidos pela presença de neutrinos estéreis.

Um valor grande de |Uτ4| induziria um efeito de matéria maior no desaparecimento de

7As buscas de aparecimento de ντ em NOMAD [208] e CHORUS [209] em curtas distâncias são senśıveis
à combinações como |Uµ4Uτ4| ou |Ue4Uτ4| e não geram v́ınculos em |Uτ4| se tomadas sozinhas.
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Figura 2.6.: Limites no plano |Uµ4|
2 e |Uτ4|

2 para três valores fixos de ∆m2
41 a partir dos

dados de MINOS CC + CN (verde), neutrinos atmosféricos (laranja), desaparecimento
de νµ e ν̄µ em CDHS e MiniBooNE + reatores LD (vermelho), e a combinação de todos
esses dados (azul). O v́ınculo de neutrinos solares é apresentado em magenta. As regiões
são mostradas em 90% e 99% CL (2 dof) em relacão ao χ2 mı́nimo para ∆m2

41 fixo.
Marginalizamos nas fases complexas e inclúımos os efeitos de θ13 e θ14 quando importantes.
A região cinza é exclúıda pela unitariedade da matriz de mistura, |Uµ4|

2 + |Uτ4|
2 ≤ 1.

Chamamos a atenção do leitor para as escalas diferentes entre as abcissas e as ordenadas.

(–)

ν µ em escala ∆m2
31, o qual não seria consistente com a distribuição no ângulo zenital

observada em SK. Obtemos o limite

|Uτ4|
2 � 0,2 em 2σ (1 dof) (2.16)

dos dados globais, praticamente independente de ∆m2
41 e das fases complexas.

Apresentamos, na figura 2.6, os v́ınculos no plano |Uµ4|
2 × |Uτ4|

2 para três valores fixos

de∆m2
41. Em relação a |Uµ4|

2, observamos limites comparáveis de MINOS (principalmente

CC) e atmosféricos, os quais são superados por CDHS e MiniBooNE para ∆m2
41 � 1 eV2

(painéis central e à esquerda). Os últimos dados, por sua vez, não vinculam |Uτ4|
2, cujo

limite global é largamente dominado por neutrinos atmosféricos. Graças ao efeito de

matéria de CN e aos dados de CN de SNO, os neutrinos solares têm sensibilidade à |Uτ4|
2

similar a MINOS, não vinculam |Uµ4|
2 apreciavelmente.

2.4. Buscas por aparecimento νµ → νe e ν̄µ → ν̄e

Seguiremos agora com a discussão sobre as buscas de aparecimento. Diferentemente

dos experimentos de desaparecimento, que são senśıveis apenas a uma linha da matriz de

mistura, um experimento de aparecimento
(–)

ν α →
(–)

ν β é senśıvel a produtos de duas linhas,

|UαiUβi| para α e β fixos. Logo, as fases complexas são relevantes e devem ser levadas
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2. O paradigma de quatro ou mais neutrinos

em consideração. Na aproximação de curtas distâncias, a probabilidade de aparecimento

3+1 no canal
(–)

ν µ →
(–)

ν e é

PCD,3+1
(–)
ν µ→

(–)
ν e

= 4|Uµ4Ue4|
2sen2∆m2

41L

4E
= sen22θµesen

2∆m2
41L

4E
, (2.17)

onde definimos o ângulo de mistura efetivo

sen22θµe ≡ 4|Uµ4Ue4|
2 . (2.18)

Na parametrização (2.6) vale sen2θµe = senθ24 sen2θ14. A probabilidade de oscilação no

esquema 3+2 é dada na eq. (2.1). Apesar de não haver dependência nas fases complexas

no caso 3+1, o mesmo não é verdade no caso 3+2, no qual violação de CP é posśıvel em

distâncias curtas no setor estéril [163, 174].

Nossa análise dos dados de aparecimento
(–)

ν µ →
(–)

ν e de LSND [73], KARMEN [140] e

NOMAD [142] é baseada nas refs. [163, 177, 210]. Já as simulações de E776 [145] e ICA-

RUS [146], usadas pela primeira vez por nós, estão descritas no Apêndice B.8 Em LSND,

consideramos apenas os dados de decaimento em repouso, por serem estatisticamente

bem mais significativos que os dados de decaimento em voo. Uma análise combinada de

ambos conjuntos de dados num esquema simplificado de dois neutrinos apenas deslocaria

a região permitida para valores um pouco menores do ângulo de mistura. Um discussão

mais detalhada no contexto 3+1 pode ser encontrada na ref. [165].

Seguindo as instruções da colaboração, realizamos a simulação dos canais de apareci-

mento de νe e ν̄e em MiniBooNE, contemplando os dados mais recentes até o presente

momento, 6,46× 1020 prótons no alvo no modo neutrino e 11,27× 1020 prótons no alvo

para antineutrinos [77, 78]. Analisamos o espectro de energia completo para os modos

de neutrino e antineutrino. Diferentemente da colaboração MiniBooNE, levamos em

consideração oscilações no rúıdo de fundo de maneira consistente. Detalhes podem ser

encontrados no Apêndice B.9.

Na figura 2.7, exibimos o ajuste dos dados de
(–)

ν µ →
(–)

ν e no esquema 3+1. Os excesso

de eventos de antineutrinos abaixo de 800 MeV em MiniBooNE prefere uma região do

espaço de parâmetros, com θµe não nulo, que apresenta uma intersecção notável com

a região preferida pelo excesso em LSND. Já os dados de neutrino de MiniBooNE, em

99% CL, apenas fornecem um limite superior, embora hajam regiões fechadas em ńıveis

de confiança mais baixos. Nosso resultado concorda qualitativamente com o oficial da

8Recentemente, o experimento OPERA publicou resultados no canal νµ → νe [211]. O limite obtido é
comparável àquele obtido por ICARUS [146].
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Figura 2.7.: Regiões permitidas e limites superiores em 99% CL (2 dof) para experimentos
de aparecimento de νµ → νe e ν̄µ → ν̄e no esquema 3+1. Mostramos as regiões dos dados
de antineutrino de LSND e MiniBooNE, bem como os v́ınculos dos dados de neutrinos
de MiniBooNE, KARMEN, NOMAD, ICARUS e E776. Combinamos E776 com os
experimentos de reator LD para vincular as oscilações do rúıdo de νe e ν̄e, caso contrário o
v́ınculo de E776 sobre sen22θµe para ∆m2

41 pequeno seria negligenciável. A região vermelha
corresponde à combinação de todos os dados, cuja estrela indica o ponto de melhor ajuste.

colaboração MiniBooNE (veja as figuras 4 da ref. [77] ou 3 da ref. [78]). O comportamento

ligeiramente diferente das regiões permitidas é consequência das oscilações do rúıdo, que

podem ser apreciáveis num ajuste contendo apenas dados de aparecimento, pois para

sen22θµe fixo, variamos livremente |Uµ4| e |Ue4|, com o v́ınculo da eq. (2.18).9

Em ICARUS, o canal νµ → νe [146], cujo rúıdo mais importante é o aparecimento

de νe devido a ∆m2
31 e θ13, vincula sen22θµe de forma essencialmente independente de

∆m2
41 no intervalo que nos é de interesse. Esse é o único resultado de aparecimento que

exclui diretamente a região de grande ângulo de mistura e ∆m2
41 pequeno. Note que essa

região também é exclúıda pelas buscas de desaparecimento de νe e νµ, uma vez que a

eq. (2.18) é usada para relacionar sen22θµe aos ângulos de mistura efetivos relevantes

aos experimentos de desaparecimento. Como discutido na seção 2.1 e no Apêndice A, a

probabilidade de aparecimento no esquema 3+1 em longas distâncias depende de uma fase

complexa. Para a obtenção do limite de ICARUS na figura 2.7, fixamos sen22θ13 = 0,092

e ∆m2
31 = 2,4× 10−3 eV2 enquanto marginalizamos na fase relevante.

A intersecção significativa entre todas as regiões permitidas pelos experimentos de

9Verificamos que, ao usar os mesmos pressupostos da colaboração MiniBooNE, obtemos seus resultados
com boa precisão.
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Figura 2.8.: Dados de MiniBooNe nos modos de neutrino (à esquerda) e antineutrino (à
direita) comparados ao espectro previsto pelos pontos de melhor ajuste do conjunto de
dados de aparecimento (igual à fig. 2.7) combinados nos esquemas 3+1, 3+2, e 1+3+1,
e ao ponto de melhor ajuste global, incluindo os experimentos de desaparecimento. Os
histogramas cheios mostram os rúıdos sem oscilação. Os espectros previstos incluem o
efeito de oscilação no rúıdo. Os valores correspondentes de χ2 (para a combinação dos
modos de neutrino e antineutrino) também estão presentes na figura.

(–)

ν µ →
(–)

ν e isolados, na figura 2.7, nos impeliu a realizar uma análise global que resultou na

região vermelha O ponto de melhor ajuste global é sen22θµe = 0,013 e ∆m2
41 = 0,42 eV2

com χ2
min/dof = 87,9/(68− 2) dof (GOF = 3,7%), refutando a hipótese de não oscilação

com ∆χ2 = 47,7, sendo LSND o experimento que mais contribui para este valor. O

parâmetro GOF é relativamente baixo devido aos dados de neutrino de MiniBooNE.

Podemos ver isso tanto na tabela 2.6, onde listamos as contribuições individuais de cada

experimento ao χ2 de aparecimento, quanto na figura 2.8, onde mostramos que o ponto

de melhor ajuste no esquema 3+1 (histograma preto pontilhado) não explica bem o

espectro de neutrinos, prevendo eventos em demasia na região 0,6− 1 GeV e em escassez

abaixo de 0,4 GeV. Note que todos os experimentos têm valores de χ2/dof razoáveis,

exceto talvez E776, cujo valor é um pouco maior.

Realizando a mesma análise no esquema 3+2, obtemos o ponto de melhor ajuste

∆m2
41 = 0,57 eV2, ∆m2

51 = 1,24 eV2, com χ2
min/dof = 72,7/(68 − 5) (GOF = 19%),

melhorando o parâmetro GOF consideravelmente em relação ao caso anterior:

χ2
3+1,app − χ2

3+2,app = 15,2 . (2.19)
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Experimento χ2
3+1/dof χ2

3+2/dof χ2
1+3+1/dof

LSND 11,0/11 8,6/11 7,5/11
MiniB ν 19,3/11 10,6/11 9,1/11
MiniB ν̄ 10,7/11 9,6/11 12,7/11
E776 32,4/24 29,2/24 31,3/24
KARMEN 9,8/9 8,6/9 9,0/9
NOMAD 0,0/1 0,0/1 0,0/1
ICARUS 2,0/1 2,3/1 1,5/1
Combinado 87,9/(68− 2) 72,7/(68− 5) 74,6/(68− 5)

Tabela 2.6.: Contribuições individuais ao χ2 no ponto de melhor ajuste dos dados de
combinados de aparecimento para os esquemas 3+1, 3+2 e 1+3+1. Como as correlações
entre os modos de neutrino e antineutrino de MiniBooNE não são levadas em conta na
contribuição individual, os valores de χ2 individuais não somam o χ2 combinado.

Para 3 graus de liberdade, correspondendo aos 3 parâmetros adicionais de aparecimento

em CD no esquema 3+2, essa diminuição do χ2 implica que os dados de aparecimento

favorecem o esquema 3+2 em relação ao 3+1 em 99,8% CL. Tal fato é devido, em

grande parte, aos dados de neutrino de MiniBooNE, cujo χ2 melhora em 8,7 unidades

quando passamos do esquema 3+1 para o 3+2. Isso pode ser entendido qualitativamente

na figura 2.8. O melhor ajuste de aparecimento 3+1 (histograma preto pontilhado)

apresenta uma concordância pobre com os dados, constatado pelo χ2 = 32,8 para 22 dof,

visivelmente pior que no caso 3+2 (histograma vermelho pontilhado), cuja qualidade

do ajuste é codificada pelo χ2 = 24 para 22 dof. O ajuste no esquema 1+3+1 é similar

ao caso 3+2, sendo um pouco melhor para LSND e o modo neutrino de MiniBooNE, e

um pouco pior para o modo antineutrino de MiniBooNE (ver tabela 2.6). Os espectros

correspondentes para MiniBooNE são mostrados na figura 2.8 como o histograma azul

pontilhado. Finalmente, para o caso 1+3+1 obtivemos χ2
min/dof = 74,6/(68− 5) (GOF

= 15%) e

χ2
3+1,app − χ2

1+3+1,app = 13,3 (99,6%CL, 3 dof). (2.20)

2.5. Análise global combinada

Vamos ao aspecto mais importante deste caṕıtulo: a inserção, de caráter estat́ıstico,

dos resultados anômalos no contexto global dos experimentos senśıveis à f́ısica de neutrino

estéreis leves. Discutiremos o cenário 3+1 na seção 2.5.1 e os cenários 3+2 e 1+3+1 na

seção 2.5.2.
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2.5.1. Análise global: esquema 3+1

Para começarmos, observamos que o elo entre os canais desaparecimento de
(–)

ν e e
(–)

ν µ, que dependem das linhas |Uei| e |Uµi| da matriz de mistura, respectivamente, é o

aparecimento
(–)

ν µ →
(–)

ν e, pois envolve |UeiUµi|. No esquema 3+1, as oscilações em curtas

distâncias podem ser descritas de maneira elementar, num esquema simplificado de dois

neutrinos, pelos ângulos efetivos θee, θµµ e θµe. As definições desses ângulos eqs. (2.8),

(2.15) e (2.18), em função de apenas dois parâmetros fundamentais, |Ue4| e |Uµ4|, nos

demonstram a relação entre os canais descrita acima: ao desconsiderarmos termos de

ordem |Uα4|
4 (α = e,µ) temos

sen22θµe ≈ 4 sen22θee sen
22θµµ . (2.21)

Logo, a amplitude de aparecimento que governa a f́ısica de oscilação de LSND e

MiniBooNE é suprimida quadraticamente pelas pequenas amplitudes de desaparecimento.

Essa é a causa da tensão entre os sinais de aparecimento e os dados de desaparecimento

no esquema 3+1 [159, 160].

Visualizamos essa tensão no painel esquerdo da figura 2.9, onde mostramos as regiões

permitidas por todos os experimentos de aparecimento (idêntica à região vermelha da

figura 2.7) comparada com o limite dos experimentos de desaparecimento no plano

sen22θµe ×∆m2
41. Os valores favorecidos de ∆m2

41 pelos dados de desaparecimento vêm

das anomalias de gálio e reator (compare com a figura 2.3). Essas regiões não são fechadas

pois, como sen22θµe = 4|Ue4Uµ4|
2, podemos obter θµe → 0 fazendo Uµ4 → 0, o que não

tem impacto nos dados de desaparecimento de
(–)

ν e, tampouco entram em tensão com

os dados de desaparecimento de
(–)

ν µ, já que nenhuma anomalia foi observada. O limite

superior em sen22θµe dos dados de desaparecimento decorre, essencialmente, do produto

dos limites superiores em |Ue4| e |Uµ4|, de acordo com a eq. (2.21). A tensão entre os

dados de aparecimento e desaparecimento é viśıvel: há apenas pequenas interseções das

respectivas regiões favorecidas em 99% CL em torno de ∆m2
41 ≈ 0,9 eV2 e em 3σ em

torno de ∆m2
41 ≈ 6 eV2.

A tensão entre os experimentos de aparecimento e desaparecimento pode ser quantifi-

cada usando o teste parameter goodness of fit (PG) [165, 170], que é baseado na definição

de χ2:

χ2
PG ≡ χ2

min,glob − χ2
min,app − χ2

min,dis = ∆χ2
app +∆χ2

dis ,

∆χ2
x
= χ2

x,glob − χ2
min,x com x = app, dis,

(2.22)
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Figura 2.9.: Resultados do ajuste global no esquema 3+1, apresentados como limites de
exclusão e regiões permitidas dos ângulos de mistura efetivos sen22θµe = 4|Ue4|

2|Uµ4|
2 e

da diferença quadrada de massa ∆m2
41. À esquerda: comparação do espaço de parâmetros

favorecido pelos dados de aparecimento (LSND, aparecimento em MiniBooNE, NOMAD,
KARMEN, ICARUS e E776) com os limites de exclusão dos dados de desaparecimento
(atmosféricos, solares, reatores, gálio, CDHS, MINOS, desaparecimento em MiniBooNE
e espalhamendo νe – 12C em KARMEN e LSND). À direita: Regiões permitidas pelos
experimentos anômalos (LSND, MiniBooNE, reatores CD, gálio) contra os v́ınculos de todos
os outros experimentos, mostrados separadamente para aparecimento e desaparecimento,
bem como para a combinação.

onde χ2
min,glob, χ

2
min,app e χ2

min,dis são os valores mı́nimos de χ2 encontrados ao realizarmos

os ajustes global, apenas de aparecimento e apenas de desaparecimento, respectivamente.

Na segunda linha, temos as contribuições dos dados de aparecimento ou desaparecimento

(x = app, dis) ao χ2 para os pontos de melhor ajuste global, χ2
x,glob, ou dos respectivos

dados isoladamente, χ2
min,x.

O χ2
PG deve ser calculado com o número de graus de liberdade correspondente ao número

de parâmetros relevantes aos ajustes dos dados de aparecimento e desaparecimento (2 no

esquema 3+1). Como pode ser visto na tabela 2.7, no ajuste global 3+1 temos χ2
min/dof

= 712/680, o que corresponde ao GOF de 19%, ao passo que o teste PG tem valor-p em

torno de 10−4. Note que o teste PG indica uma inconsistência entre os experimentos,

mesmo com o valor-p do GOF relativamente alto, o que pode ser explicado de forma

simples. O GOF é uma medida da adequação de uma hipótese aos dados experimentais.

Em geral, uma anomalia não se manifesta em todos os pontos do conjunto de dados (em

todo o espectro de energia, por exemplo) e, portanto, um alto número de pontos dilui o

valor-p do GOF e esconde a tensão entre os dados. Já o teste PG é concebido de forma
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a contornar esse efeito: ao tomarmos a diferença χ2
x,glob − χ2

min,x, estimamos quanto o

ajuste “local” piora ao incluirmos os dados globais, o que nos revela a concordância entre

os experimentos.10

χ2
min/dof GOF χ2

PG/dof PG χ2
app,glob ∆χ2

app χ2
dis,glob ∆χ2

dis

3+1 712/(689− 9) 19% 18,0/2 1,2× 10−4 95,8/68 7,9 616/621 10,1
3+2 701/(689− 14) 23% 25,8/4 3,4× 10−5 92,4/68 19,7 609/621 6,1

1+3+1 694/(689− 14) 30% 16,8/4 2,1× 10−3 82,4/68 7,8 611/621 9,0

Tabela 2.7.: Mı́nimos globais de χ2, valores GOF e teste do parâmetro goodness-of-fit
(PG) [170] para a consistência entre experimentos de aparecimento e desaparecimento nos
esquemas 3+1, 3+2 e 1+3+1. Os parâmetros dos melhores ajustes correspondentes podem
ser encontrados na tabela 2.8. Nas últimas quatro colunas temos as contribuições dos
dados de aparecimento e desaparecimento ao χ2

PG, veja eq. (2.22).

Visualmente, apresentamos o conflito entre os resultados anômalos e os outros no

painel à direita da figura 2.9. Em vermelho, mostramos a região de parâmetros favorecida

pelo ajuste combinado dos dados de reatores de CD, gálio, e aparecimento em LSND e

MiniBooNE, enquanto que as linhas verde, preta e azul são os limites de aparecimento,

de desaparecimento e global, respectivamente, dos experimentos não-anômalos. Vemos

que não há interseção alguma, em 99% CL, entre a área vermelha e a região permitida à

esquerda da linha azul.

2.5.2. Análise global: esquemas 3+2 e 1+3+1

Com a compatibilidade geral em xeque, no esquema 3+1, nos questionamos se a adição

de mais um neutrino estéril poderia melhorar o presente panorama. Mostramos os valores

de χ2, e testes GOF e PG para os esquemas 3+2 e 1+3+1 na tabela 2.7, bem como os

parâmetros de oscilação dos melhores ajustes correspondentes na tabela 2.8. Os valores

do teste PG nos revelam que a tensão entre os dados de aparecimento e desaparecimento

permanece severa, especialmente no caso 3+2, cujo valor-p é menor que 10−4, ainda pior

que no caso 3+1. No esquema 1+3+1, uma compatibilidade de 0,2% pode ser alcançada.

Para compreendermos os resultados do teste PG, discutiremos cada caso separadamente.

Ao compararmos o caso 3+2 ao 3+1, observamos uma pequena melhora no χ2 global,

χ2
3+1,glob − χ2

3+2,glob = 10,7 , (2.23)

10Não faz sentido estudar a compatibilidade entre os experimentos anômalos e os que não observaram
efeitos inesperados, pois ao escolhermos tais amostras, já estaŕıamos introduzindo um viés estat́ıstico
na análise.
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∆m2
41 [eV2] |Ue4| |Uµ4| ∆m2

51 [eV2] |Ue5| |Uµ5| γµe
3+1 0,93 0,15 0,17
3+2 0,47 0,13 0,15 0,87 0,14 0,13 −0,15π

1+3+1 −0,87 0,15 0,13 0,47 0,13 0,17 0,06π

Tabela 2.8.: Valores dos parâmetros do melhor ajuste global para os esquemas 3+1, 3+2
e 1+3+1. γµe é a fase complexa relevante aos experimentos de aparecimento em curtas
distâncias definida na eq. (2.2).
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Figura 2.10.: Regiões permitidas no plano |∆m2
41| |∆m2

51| no esquema 3+2 (acima) e
1+3+1 (abaixo). Marginalizamos em todos os ângulos de mistura e fases. Mostramos as
regiões para os dados de aparecimento (azul claro) e desaparecimento (verde claro) em
95% CL (2 dof), assim como a região global (vermelho claro e escuro) em 95% e 99% CL
(2 dof).

o que corresponde numa preferência do esquema 3+2 sobre o 3+1 em 96,9% CL para

os 4 parâmetros relevantes adicionais. Entretanto, vemos na tabela 2.7 que o χ2
app,glob

diminui em ∼ 3 unidades, ao passo que o χ2
min,x melhora em 15 unidades, como podemos

ver na eq. (2.19). Isso significa que apesar da contribuição dos dados de aparecimento ao

χ2 global ser similar, o ajuste desses dados isolados é muito melhor no caso 3+2. Essa

diferença de ajustes, χ2
app,glob = 92,4/68 e valor-p de 2,6% no caso global comparado a

χ2
min,app/dof = 72,7/63 e valor-p de 19%, eclode no grande valor de χ2

PG = 25,8, cuja

contribuição dominante, de 19,7, vêm desses dados. Essa interpretação é corroborada pela

figura 2.8 que mostra um ajuste igualmente pobre dos dados de neutrino de MiniBooNE
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Figura 2.11.: Regiões permitidas no esquema 3+2 no plano |Ue4Uµ4| e |Ue5Uµ5| para
valores fixos de ∆m2

41 e ∆m2
51 em 90% e 99% CL (2 dof). Marginalizamos todos os

outros parâmetros. Mostramos as regiões permitidas para os dados de aparecimento (azul),
desaparecimento (verde) e global (vermelha).

nos pontos de melhor ajuste global 3+1 e 3+2 (histogramas preto sólido e vermelho

sólido, respectivamente).

Investigamos essa tensão do ajuste 3+2 nas figuras 2.10 e 2.11. Na primeira, mostramos

as regiões permitidas do espaço de parâmetros projetado no plano das duas diferenças

quadradas de massa para os dados de aparecimento e desaparecimento separadamente,

bem como a região combinada. O ponto de melhor ajuste se dá próximo a uma região

de interseção das regiões de aparecimento e desaparecimento em 95% CL. Entretanto,

uma interseção na projeção não implica que as regiões multidimensionais possuem tal

interseção. Para entedermos isso, no painel esquerdo da figura 2.11, fixamos os valores das

diferenças quadradas de massa em valores próximos ao melhor ajuste 3+2 e mostramos

as regiões permitidas no plano |Ue4Uµ4| e |Ue5Uµ5| (esses elementos são análogos a sen2θµe

nas amplitudes em CD no caso 3+1). Como no caso 3+1, em 99% CL, não há qualquer

intersecção. O painel à direita da figura 2.11 corresponde a um mı́nimo local do ajuste

combinado que pode ser visto na figura 2.10 próximo de ∆m2
41 = 0,9 eV2 e ∆m2

51 = 6 eV2.

Nesse caso, embora não seja posśıvel ver o conflito na figura 2.11, pois ela é constrúıda

com o ∆χ2, a figura 2.10 nos revela que esse ponto não é favorecido pelos dados de

aparecimento, fornecendo portanto um ajuste pobre e diminuindo o GOF. Com isso, é

posśıvel entender porque a tensão entre os dados de aparecimento e desaparecimento não

é resolvida no esquema 3+2.
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Figura 2.12.: Similar à figura 2.11 para o esquema 1+3+1.

Para o esquema 1+3+1, um ajuste um pouco melhor pode ser obtido,

χ2
3+1,glob − χ2

1+3+1,glob = 17,8 , (2.24)

o que desfavorece o esquema 3+1 em 99,9% CL (4 dof) em relação ao 1+3+1. Observamos,

na tabela 2.7, que o esquema 1+3+1, em relação ao 3+2, provê uma explicação mais

adequada aos dados de aparecimento (χ2
app,glob = 82,4 comparado com 92,4). Percebemos,

no histograma azul sólido da figura 2.8, que, embora o excesso em baixas energias ainda

não seja suficiente, o ponto de melhor ajuste global 1+3+1 reproduz satisfatoriamente o

baixo número de eventos no espectro de neutrinos de MiniBooNE além de 0,5 GeV. O

χ2
PG de aparecimento contra desaparecimento é até um pouco menor que no esquema

3+1 (16,8 contra 18,0) e, levando em conta o número de parâmetros relevantes adicionais,

um valor-p de 0,2% é obtido, uma ordem de magnitude melhor que o caso 3+1.

As projeções das regiões permitidas no plano das diferenças quadradas de massa são

mostradas na parte inferior da figura 2.10. As regiões de desaparecimento são, em boa

aproximação, simétricas para 3+2 e 1+3+1. Isso pode ser compreendido observando que,

na eq. (2.3), a diferença entre 3+2 e 1+3+1 aparece apenas no último termo, o qual é

proporcional à quarta potência de pequenos elementos da matriz de mistura, enquanto

os termos dominantes são de segunda ordem. Ainda na figura 2.10, vemos que ambas

regiões favorecidas de aparecimento e desaparecimento incluem o ponto de melhor ajuste

global. Na figura 2.12 mostramos novamente uma projeção no espaço das combinações

de elementos da matriz de mistura para valores fixos de diferenças quadradas de massa
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próximas ao ponto de melhor ajuste. Embora a tensão entre os dados ainda seja viśıvel

(não há interseção das regiões em 90% CL) a discordância é menos severa que no caso

3+2.

2.6. Conclusão

Realizamos um análise estat́ıstica completa e detalhada do panorama atual de oscilação

de neutrinos estéreis na escala eV2. Investigamos os ind́ıcios de desaparecimento de

neutrinos e antineutrinos do elétron, denominados anomalias de reator e gálio, além dos

excessos de eventos inexplicados nos canais νµ → νe e ν̄µ → ν̄e em LSND e MiniBooNE.

Abrangemos, em nossa análise, dezenas de experimentos: experimentos de reator e

acelerador em curtas e longas distâncias; e dados de neutrinos solares e atmosféricos.

Nossas conclusões são as seguintes.

1. Em todos os ajustes globais, o GOF é relativamente bom, pois χ2
min/dof ≈ 1, o que

não significa que os ajustes descrevem todos os dados adequadamente, uma vez que

o alto número de pontos de dados dilui o GOF, como explicamos na seção 2.5 (ver

tabela 2.7).

2. De fato, o teste PG revela uma tensão entre os dados de aparecimento e desapare-

cimento, em todos os casos, particularmente devida ao limite severo imposto pelos

dados de desaparecimento de
(–)

ν µ.

3. A tensão é oriunda dos dados de aparecimento de LSND e MiniBooNE. As transições
(–)

ν µ →
(–)

ν e implicam, necessariamente, desaparecimento de
(–)

ν e e
(–)

ν µ, mas os últimos

não foram observados no regime de L/E em questão.

4. Por outro lado, as anomalias de reator e gálio são consistentes com todos os outros

experimento que não observaram anomalias.

5. No esquema 3+1, a compatibilidade entre dados de aparecimento e desapareci-

mento é de ordem 10−4, sendo que as respectivas regiões favorecidas têm pequenas

intersecções em 99% CL.

6. Ao passarmos para o esquema 3+2, não constatamos uma melhora expressiva no

ajuste. O χ2
min diminui pouco, e a compatibilidade fica ainda pior, pois o ajuste

“local”dos dados de aparecimento melhora significativamente, enquanto que o ajuste

global praticamente não muda.
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7. A compatibilidade só melhora ao passarmos para o esquema 1+3+1, no qual

obtivemos um valor-p marginal de 0,2%. Nesse caso, o esquema 3+1 é rejeitado em

99,9% CL.

Se, por um lado, o caso 1+3+1 apresenta a melhor compatibilidade entre os dados de

aparecimento e desaparecimento, por outro é o caso de maior tensão com os experimentos

cosmológicos. Recentemente, o satélite PLANCK coletou dados cosmológicos que, ao

serem interpretados com o modelo cosmológico padrão, limita a soma total das massas

dos neutrinos (em equiĺıbrio térmico) em
�

mν � 0,5 eV [93]. No ponto de melhor

ajuste global do caso 1+3+1, a soma das massas é, na melhor hipótese,
�

mν ≈

3
�
|∆m2

51| +
�
|∆m2

41|+ |∆m2
51| ≈ 3,2 eV (ver tabela 2.8), o que coloca a questão

de como esse valor elevado pode ser consistente com a cosmologia (ver, por exemplo,

refs. [212–216]).

Independentemente, a partir das informações de eventos de corrente neutra, derivamos

também limites na mistura de ντ com neutrinos estéreis utilizando os dados de MINOS,

neutrinos solares e atmosféricos, sendo a contribuição dos últimos a mais relevante para

o limite.

Embora, por uma lado, existam indicações de anomalias nos dados de reator, gálio,

LSND e MiniBooNE, não há uma interpretação satisfatória, até o presente momento, de

todos os dados experimentais no contexto de oscilações envolvendo neutrinos estéreis. De

qualquer forma, se não almejarmos explicar todos os dados, em especial os de LSND e

MiniBooNE, deparamo-nos com uma situação clara, pois as anomalias de gálio e reator

não contradizem os experimentos que não observaram anomalias.

Nesse caso, podemos explicar os dados experimentais com modelos espećıficos. Por

exemplo, estudamos nas refs. [85, 86] um modelo de dimensões extras planas grandes, no

qual as part́ıculas do modelo padrão localizam-se na brana quadridimensional e neutrinos

de mão direita no bulk, que poderia justificar as pequenas massas dos neutrinos. Os

neutrinos de mão direita, ao projetarmos a f́ısica observável na brana, originam uma

torre de Kaluza-Klein de neutrinos estéreis, que misturam-se com os neutrinos usuais e,

como consequência disso, podeŕıamos explicar as anomalias de reator e gálio.

Embora não seja simples, uma solução convincente desse problema é mandatória. Uma

posśıvel descoberta de neutrinos estéreis de massa na ordem eV seria, indubtavelmente,

um sinal de f́ısica além do modelo padrão e representaria um marco na história da f́ısica

de part́ıculas. Estudamos, na ref. [217], a capacidade de um posśıvel experimento de

neutrinos Mössbauer de vincular, por exemplo, o modelo de dimenções extras citado

(para mais detalhes sobre experimentos futuros no âmbito de neutrinos estéreis, ver e.g.
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a revisão [179] e suas referências).
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Considerações finais

Nessa tese, investigamos a fenomenologia do panorama da f́ısica de neutrinos, tanto

padrão, compreendendo apenas os três neutrinos ativos, quanto não padrão, contemplando

a presença de neutrinos estéreis.

No primeiro caso, para testarmos o paradigma, é fundamental a determinação da fase

de violação de CP, o último parâmetro de oscilação ainda completamente desconhecido,

além do octante de θ23 e da hierarquia de massa dos neutrinos. Estudamos a recente

determinação de θ13 pelos experimentos de feixe, T2K e MINOS, e de reator, Daya

Bay, RENO e Double Chooz, além do impacto resultante sobre a matriz de massa dos

neutrinos e as correlações entre suas entradas. As perspectivas futuras da determinação

das correlações em questão são mais uma razão a se medir a fase δCP.

Estudamos uma forma de apropriada estimar a sensibilidade de um experimento à

fase de violação de CP, a fração de exclusão de CP, e estudamos detalhadamente T2K e

NOνA com esse guia. Evidenciou-se a capacidade desses experimentos em vincular δCP,

além da sinergia entre eles. Nosso objetivo é contribuir para a elaboração de estratégias

experimentais futuras com essa nova medida.

No segundo caso, em relação aos neutrinos estéreis, analisamos, em grande detalhe

e num contexto global, as recentes e subsistentes anomalias de oscilações de neutrinos

em curtas distâncias. Esses resultados inusitados indicam, possivelmente, a presença de

neutrinos estéreis de massa na escala do eletronvolt.

Combinamos uma ampla gama de experimentos para vermos que, apesar das anomalias

de gálio e reator não apresentarem tensão alguma com os outros dados de oscilação, os

resultados de MiniBooNE e LSND são conflitantes com os experimentos de desapareci-

mento de
(–)

ν µ. Não surge, portanto, um cenário global coerente de oscilação de neutrinos

ativos para neutrinos estéreis.

Esperamos que essa tese possa ter contribuido com o avanço da compreensão da f́ısica de

neutrinos, tanto no âmbito experimental quanto fenomenológico. Ansiamos também que
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esse trabalho tenha sido suficientemente didático para, quem sabe, ter alguma serventia

para estudantes nessa área.
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A
Tratamento das fases complexas

O objetivo desse apêndice é prover um método coerente de parametrizar a matriz de

mistura dos neutrinos, demonstrando como eliminar consistentemente as fases de CP

não f́ısicas [168]. De maneira concreta, consideraremos o caso de 3 neutrinos ativos e

dois neutrinos estéreis. Como fizemos no caṕıtulo 2, ordenamos a base de sabor como

(νe, νµ, ντ , νs1 , νs2), onde os três primeiros são os neutrinos predominantemente ativos e

os últimos, predominantemente estéreis. Podemos começar parametrizando a matriz de

mistura assumindo todas as rotações complexas como, por exemplo,

U = V35V34V25V24V23V15V14V13V12 (A.1)

onde Vij é uma matriz de rotação complexa, no plano ij, caracterizada pelo ângulo de

rotação θij e fase ϕij. A mistura no setor estéril não é observável e, portanto, omitimos

as rotações V��� com �, �� ≥ 4. Embora discutiremos o caso espećıfico de 3 neutrinos ativos

e 2 estéreis, alguns resultados aqui são gerais. Por exemplo, para n neutrinos ativos e s

neutrinos estéreis, a matriz U contêm um total de n(n− 1)/2− s(s− 1)/2 ângulos de

mistura (mas nem todos são f́ısicos).

Apresentaremos agora um método que nos permite remover consistentemente fases

não f́ısicas da matriz de mistura. Primeiramente, é importante observar que uma rotação
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complexa pode ser escrita como

Vij = DkOijD
∗
k
, k = i ou k = j , (A.2)

onde Oij é a matriz de rotação real e Dk é uma matriz diagonal com (Dk)ij = δij eiϕδjk

(por exemplo, D4 = diag(1 1 1 eiϕ 1)). Se k = i, a fase em Dk é +ϕij, enquanto que

se k = j, a fase é −ϕij. O ponto chave é que as matrizes de fase Dk que se encontram

na extrema esquerda ou direita da matriz U , na eq. (A.1), não afetam a oscilação dos

neutrinos e, consequentemente, não são f́ısicas. Claro que, em se tratando de processos

de violação de número leptônico, essas fases são, de fato, relevantes, necessitando maior

diligência na contagem de fases f́ısicas.

Dessa forma, partindo de uma parametrização da matriz de mistura cujas matrizes de

rotação são todas complexas, podemos eliminar fases desimportantes à f́ısica de oscilação

de neutrinos comutando as matrizes Dk para a extrema esquerda e direita da eq. (A.2).

Obviamente,

[Vij,Dk] = [Oij,Dk] = 0, k �= i e k �= j.

Além disso, se k = i ou k = j, então podemos comutar Dk com Vij redefinindo a fase ϕij

(por exemplo, Vij(θij,ϕij)Di = DiVij(θij,ϕ�
ij
)), embora não possamos comutar Di ou Dj

com a rotação real Oij.

Para compreendermos o método na prática, tomemos a parametrização (A.2) e iniciemos

a remoção de fases com V12 → O12 (comutando, por exemplo, D1 para os extremos e

redefinindo as fases necessárias). Ao fazê-lo, não podemos mais utilizar as matrizes D1

e D2 para remover fases das outras rotações complexas, pois D1 e D2 não comutam

com O12. Todavia, podemos usar D3 para remover uma (e apenas uma) das fases ϕi3,

e assim por diante. No caso geral, podemos remover um total de n − 1 fases, ou seja,

considerando inicialmente todas as fases complexas, no caso de n = 3 neutrinos ativos,

chegamos em 3(s+1)− (n− 1) = 2s+1 fases f́ısicas. Por exemplo, 1 fase no caso padrão,

3 fases no esquema 3+1, ou 5 fases para 2 neutrinos estéreis.

Seguindo essa receita, torna-se óbvio que não podemos associar de forma arbitrária as

fases f́ısicas aos ângulos de mistura. Devemos fazê-lo de maneira consistente com esse

algoritmo. Particularmente, é imposśıvel fazer 3 matrizes de ı́ndices comuns entre si ij,

ik e kj reais. Uma possibilidade de escolha de fases é dada na eq. (2.6), usada nessa tese.

Podemos usar esse algoritmo no caso das aproximações de curtas e longas distâncias

de acordo com a tabela 2.2. Na aproximação de CD no esquema 3+2, por exemplo,

temos apenas duas fases f́ısicas cujas expressões independentes da parametrização γµe e
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γµτ podem ser vistas nas eqs. (2.1) e (2.2). Nessa aproximação, a matriz de mistura é,

efetivamente,

UCD = V35V34V25V24V15V14,

que pode ser reduzida a

UCD → V35O34V25O24O15O14.

Consideramos apenas experimentos de aparecimento em CD no canal de oscilação
(–)

ν µ →
(–)

ν e e, consequentemente, apenas a fase γµe é relevante. Esta, por sua vez, não

depende de ϕ35 na parametrização escolhida e, portanto, podemos considerar apenas ϕ25

sem perda de generalidade.

Por outro lado, no limite de LD, mais fases são importantes. Podemos aproximar

ULD = V35V34V25V24V23V15V14V13,

que pode reduzida a

ULD → V35V34V25O24O23O15O14V13, (A.3)

envolvendo 4 fases. Independentemente da parametrização, vemos, na eq. (2.4), que as

probabilidades de oscilação dependem de

arg(Iαβ43 + Iαβ53) , arg(Iαβ54) = γαβ , (A.4)

com Iαβij definido na eq. (2.2). Para os experimentos que nos são relevantes, tratamos da

transição νµ → νe (ICARUS) e da combinação
�

α=e,µ,τ
Pνµ→να (dados NC de MINOS).

Logo, os dois canais de aparecimento (αβ) = (µe) e (µτ) são importantes e, de acordo

com a eq. (A.4), temos quatro fases, em concordância com a eq. (A.3) e com a tabela 2.2.

Na parametrização (A.3), as oscilações νµ → νe envolvem apenas ϕ13 e ϕ25, ao passo que

νµ → ντ também são senśıveis a ϕ35 e ϕ34.

As fases no caso 3+1 são obtidas ao omitirmos todos os termos que contêm o ı́ndice

“5”. Nesse caso, observamos que nenhuma fase é pertinente na aproximação de CD,

enquanto duas fases impactam na aproximação de LD, as combinações arg(U∗
µ4Ue4Uµ3U∗

e3)

e arg(U∗
µ4Uτ4Uµ3U∗

τ3), as quais correspondem, em nossa parametrização, a ϕ34 e ϕ13 (o

canal νµ → νe é senśıvel apenas a ϕ13). Uma discussão sobre a importância das fases

para os neutrinos solares e atmosféricos pode ser encontrada na ref. [168].

90



B
Detalhes das simulações

Fornecemos, nesse apêndice, detalhes técnicos das simulações presentes nos caṕıtulos 1

e 2, desenvolvidas pelo autor da tese. Todas as simulações utilizam o pacote GLoBES [218,

219].

Primeiramente, faremos uma discussão inespećıfica sobre as implementações dos expe-

rimentos. Genericamente, a contagem de uma certa componente dos eventos no i-ésimo

bin se dá através de

Ni = n

�
E

max
i

E
min
i

dE �(E)

� ∞

0

dE � R(E,E �)φ(E �)σ(E �)P (E �), (B.1)

onde φ é o fluxo apropriado, σ é a seção de choque, P é a probabilidade de oscilação

num determinado canal, R é a resolução de energia, � é a eficiência, Emin
i

e Emax
i

são

as energias mı́nima e máxima do i-ésimo bin e n é uma normalização, a qual inclui o

tempo de exposição e a massa fiducial. Na maioria dos casos, para modelar a resolução

de energia, usamos resoluções gaussianas

R(E,E �) =
1

σE

√
2π

exp

�
−
(E − E �)2

2σ2
E

�
, (B.2)
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onde a largura pode ser uma função da energia e será definida para cada experimento.

Vamos denominar coletivamente as funções χ2 ou verossimilhança −2 ln(L) sem qualquer

incerteza ou conhecimento prévio dos parâmetros de oscilação por χ2
0. Em termos gerais,

para poucos eventos (distribuição poissoniana), é adequado usar

χ2
0 =

bins�

i

2(Pi −Di) + 2Di ln(Di/Pi), (B.3)

onde Pi eDi são o número de eventos previsto e observado (ou calculado com os parâmetros

de entrada, para previsões futuras), respectivamente, no i-ésimo bin, incluindo os rúıdos.

Quando o número de eventos é mais alto (distribuição gaussiana), podemos usar

χ2
0 = (D−P)TS−1(D−P) , (B.4)

onde D e P são os vetores de número de eventos observados (ou calculado com os

parâmetros de entrada) e previstos, respectivamente, incluindo o rúıdo, e S é uma matriz

de covariância, que incorpora as incertezas sistemáticas e suas posśıveis correlações, além

dos erros estat́ısticos.

Para levar em conta o conhecimento prévio de um conjunto de parâmetros de oscilação,

usaremos a prioris gaussianos. Se certos parâmetros pi possúırem valores médios p̂i e

desvios padrões σpi, então os a prioris gaussianos são adicionados na função χ2
0 como

χ2 = χ2
0 +

�

i

(pi − p̂i)
2

σ2
pi

. (B.5)

Para lidar com incertezas experimentais (no fluxo, massa fiducial, rúıdos, etc.), fazemos a

modificação χ2
0 → χ̂2

0 adicionando um novo parâmetro livre x e um termo de penalidade

x2/σ2
x
. Para exemplificar, vamos assumir uma incerteza σNC na normalização dos eventos

de corrente neutra de um certo experimento. Se NNC
i

é o número simulado da compo-

nente de eventos de corrente neutra no i-ésimo bin, então na função χ2
0 substituimos

NNC
i

→ (1 + xNC)NNC
i

e adicionamos o termo de penalidade x2
NC/σ

2
NC ao χ2 resultante.

Resumindo, levando em conta o conhecimento prévio dos parâmetros de oscilação e

incertezas experimentais, o χ2 resultante toma a seguinte forma

χ2 = χ̂2
0 +

�

i

(pi − p̂i)2

σ2
pi

+
�

j

x2
j

σ2
xj

. (B.6)
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B.1. Tokai-to-Kamioka: νµ → νe e ν̄µ → ν̄e

O experimento japonês T2K consiste num feixe de νµ partindo do J-PARC em Tokai,

2,5◦ fora do eixo, em direção ao detector Super-Kamiokande, de massa fiducial de 22,5 kt,

localizado em Kamioka, à 295 km do J-PARC. Nossa implementação de T2K consiste,

na verdade, em duas simulações.

A primeira, utilizada na seção 1.2, visa reproduzir o primeiro resultado de aparecimento

de νe [106]. Para isso, utilizamos o fluxo de neutrinos da carta de intenção do projeto de

Hyper-Kamiokande (HK) [119] (normalizando-o à configuração experimental de T2K), o

qual é dado em termos de nν/GeV/cm2/1021POT à 1 km, onde nν é o número de neutrinos.

Para HK, é assumido que 1 MW ano=2,1× 1021 POT (acrônimo do inglês protons on

target, ou seja, prótons no alvo). Logo, a fator de normalização para 1 Mt MW ano é

0,1256. Frisamos que, com esse fator, não foi necessário nenhum ajuste na normalização

do espectro de eventos para reproduzir satisfatoriamente os resultados em questão.

Os rúıdo foram digitalizados da figura 5 da ref. [106] e as seções de choque e eficiências

dos eventos quase-elásticos (QE) e não quase-eláticos (nQE) foram tomados da ref. [129].

Assumimos (nas duas simulações) uma densidade de matéria no caminho percorrido pelo

neutrino de 2,6 g/cm3. Adotamos reconstruções de energia gaussianas com largura de 85

e 130 MeV para os eventos QE e nQE, sendo que os eventos nQE são reconstrúıdos em

energia 350 MeV mais baixas que a energia real [129]. Assumimos um erro sistemático

de 23% na normalização absoluta. Com isso, conseguimos reproduzir muito bem a região

permitida no plano sen22θ13 × δCP na figura 6 da ref. [106] para 1,43× 1020 POT.

Na outra simulação, adequada para as previsões futuras da seção 1.3, tomamos não só

os fluxo, mas também os rúıdos (normalizados para T2K) nos canais νµ → νe e ν̄µ → ν̄e

da ref. [119]. As seções de choque são as mesmas. Consideramos quatro erros sistemáticos,

as normalizações de sinal e rúıdo nos canais de neutrino e antineutrino, todos iguais a

10%. A reconstrução de energia nesse caso foi feita de forma um pouco mais laboriosa.

Construimos matrizes de migração para os eventos QE e nQE nos modos neutrino e

antineutrino. Para cada matriz, fixamos a largura da gaussiana de reconstrução de energia

em 0,55 GeV e 0,75 GeV e, então, interpolamos ou extrapolamos para todas as energias

de interesse. Os valores exatos encontram-se na tabela B.1. Assumimos eficiências quase

constantes para eventos QE, em torno de 80%, e levemente decrescentes para eventos

nQE, em torno de 25% e 45% para neutrinos e antineutrino, respectivamente.

Nas previsões futuras, uma vez que simulamos apenas os canais de aparecimento,

levamos em conta as medições de desaparecimento através de priors em θ23. Assumimos,
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0,55 GeV 0,75 GeV
largura (MeV) deslocamento (MeV) largura (MeV) deslocamento (MeV)

ν QE 85 -10 98 -15
ν nQE 70 -325 110 -390
ν QE 57 -20 60 -20
ν nQE 100 -270 120 -310

Tabela B.1.: Parâmetros de reconstrução de energia em T2K.

de forma conservadora, que a sensibilidade final de T2K aos parâmetros atmosféricos

será δ(sen2θ23) = 0,02 em 68% CL [115]. Como o canal de aparecimento não é senśıvel

ao valor espećıfico de |∆m2
31|, o fixamos em 2,47 × 10−3 eV2 ou 2,43 × 10−3 eV2 para

hierarquia normal e invertida [72].

B.2. MINOS: νµ → νe

No laboratório americano Fermilab, em Illinois, os neutrinos do feixe NuMI são medidos

em um detector próximo de 0,98 kt, à 1 km da fonte, e em outro distante de 5,4 kt, à

735 km, no laboratório subterrâneo Soudan, em Minnesota. Com o objetivo de reproduzir

fielmente a região permitida no plano sen22θ13 × δCP na figura 3 da ref. [107], simulamos

o sinal de νe utilizando um procedimento similar ao encontrado na ref. [220].

A descrição geral do experimento pode ser encontrada nas refs. [221–224]. Para

simularmos o canal de aparecimento de neutrinos νµ → νe, utilizamos os fluxos de

neutrinos obtidos a partir de simulações de Monte Carlo do feixe de neutrinos NuMI [225].

Uma vez que o espectro de mais alta energia é pouco senśıvel às oscilações no regime

atmosférico, restringimo-nos às janelas de energia 1–5 GeV, utilizando a mesma binagem

de energia do experimento. A eficiência foi ajustada de forma a melhor reproduzir os

resultados da ref. [107], bem como a resolução de energia, modelada por uma gaussiana

com largura 0,16E + 0,07
�
E/GeV GeV. Utilizamos a seção de choque de espalhamento

de neutrinos em água [126, 127]. Assumimos uma densidade de matéria ao longo da

trajetória do neutrino de 2,8 g/cm3. O rúıdo e os erros sistemáticos foram obtidos da

ref. [107].
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B.3. Double Chooz: ν̄e → ν̄e

Concebido com dois detectores idênticos de 10,3 m3 de volume fiducial, um próximo a

400 m e um distante a 1050 m, Double Chooz [226], o sucessor do experimento Chooz [48],

na França, detecta antineutrinos emitidos pela usina nuclear CHOOZ-B (dois reatores de

4,27 GWth de potência térmica). Até o presente momento, Double-Chooz opera apenas

com o detector distante.

Para reproduzir os resultados de desaparecimento de ν̄e das refs. [108, 113], utilizamos

a composição isotópica da ref. [226], 235U :238 U :239 Pu :241 Pu = 0,488 : 0,087 : 0,359 :

0,067, digitalizamos os rúıdos e eficiências da ref. [108], adotamos os erros sistemáticos,

que incluem incertezas na normalização global (1,2%), na escala de energia (1,7%),

nos fluxos (1,5%) e abundâncias isotópicas (6,5%, 4%, 11%, para 238U, 239Pu e 241Pu,

respectivamente) de cada reator. Os fluxo de antineutrinos de reator foram obtidos

usando a parametrização da ref. [83].

Antes de analisar os dados experimentais, tentamos descrever os espectros de energia

viśıvel obtidos por simulações de Monte Carlo da colaboração, ilustrados na figura 3

da ref. [108] pelos histogramas azul pontilhado (sem oscilações) e vermelho sólido (com

oscilação). Com isso, observamos que o espectro exibe fortes distorções em relação ao

espectro de energia verdadeira (que não pode ser medido diretamente). Para reproduzir

essas distorções, que são devidas a diversos efeitos levados em conta no Monte Carlo

da colaboração, introduzimos uma resolução de energia gaussiana com largura σE =

12%
�
(E/MeV) + 0,15 MeV. O segundo termo da largura, junto com efeitos que vamos

descrever em seguida, nos permitiu reproduzir o espectro de energia de forma satisfatória.

Frisamos que a inclusão ou omissão do segundo termo em σE não altera o intervalo

permitido de sen22θ13, mas muda o valor do χ2
min.

Além da resolução em energia, implementamos duas correções introduzidas pela cola-

boração para um melhor entendimento de seus dados. A primeira é a não linearidade da

calibração de energia, estimada pela inserção de diversas fontes radioativas no detector.

Resumidamente, a energia viśıvel (ou melhor, o número de fotoelétrons) tende a ser

superestimada (subestimada) para energias acima (abaixo) de ∼ 1,5 MeV em alguns

porcento, quando comparada com a previsão de Monte Carlo. Essa correção depende

da energia verdadeira do neutrino (ver ref. [227]). A segunda correção é baseada na

relação entre a reconstrução de energia e a posição do evento. Quando o neutrino interage

longe do centro do detector, a energia observada tende a ser subestimada em alguns

porcento [227]. Como todos esses efeitos levados em conta, conseguimos reproduzir o
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espectro de energiada figura 3 da ref. [108].

B.4. Daya Bay: ν̄e → ν̄e

O experimento chinês Daya Bay mede ν̄e de seis reatores de 2,9 GWth, agrupados aos

pares em três usinas nucleares, utilizando seis detectores dispostos de modo a permitir a

comparação das taxas de eventos em várias distâncias. Dois detectores são localizados à

364 m da usina Daya Bay, um à 480 m (528 m) da usina Ling Ao (Ling Ao-II) e três à

1912 m (1540 m) de Daya Bay (Ling Ao e Ling Ao-II) [53]. Os detectores são idênticos,

repletos de 20 toneladas de cintilador ĺıquido dopado com gadoĺınio (que faz o papel do

alvo).

Contemplamos, em nossa simulação, os erros sistemáticos [53] na normalização global

de cada detector (0,2%), nos fluxos (0,8%), nos rúıdos de 9Li (50%, 50%, 50%, 60%,

70%, 70%) e na soma dos outros rúıdos (3,3%, 3,2%, 5,8%, 6,3%, 6,3%, 6,7%) de cada

reator. Os rúıdos foram tomados de acordo com a ref. [53]. Restringimo-nos a realizar

uma análise de taxas apenas, similar à análise oficial da ref. [228], na qual os efeitos das

incertezas nas composições isotópicas e da resolução em energia podem ser negligenciados.

Os fluxo de antineutrinos de reator foram obtidos usando a parametrização da ref. [83].

B.5. RENO: ν̄e → ν̄e

RENO é um experimento de reator que detecta os antineutrinos emitidos pela usina

nuclear YongGwang, à 400 km de Seul, composta de seis reatores geometricamente

alinhados de 2,73 GWth. O detector distante, localizado à ∼ 1,3 km da linha que une os

reatores, é idêntico ao detector próximo, à 300 m dos reatores, ambos compostos de 16 t de

cintilador ĺıquido. O experimento coleta dados desde agosto de 2011. Simulamos RENO

utilizando uma análise de taxas totais de eventos, com o rúıdo e os erros sistemáticos das

refs. [229, 230].

Concretamente, consideramos incertezas na normalização (0,2%) e no rúıdo total (27%,

18%) de cada detector, nos fluxos (0,9%) de cada reator e ainda um erro correlacionado

na normalização global (2,5%). Novamente, ao realizarmos uma análise de taxas apenas,

podemos negligenciar os efeitos das incertezas nas composições isotópicas e da resolução

em energia. Os fluxo de antineutrinos de reator foram obtidos usando a parametrização

da ref. [83].
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B.6. Espalhamento em 12C de KARMEN e LSND:

νe → νe

Uma forma de medir neutrinos do elétron, usada por LSND e KARMEN, é usar a

reação νe + 12C → e− + 12N, com valor-Q de 17,33 MeV (diferença mı́nima entre as

energias do neutrino e do elétron), e o subsequente decaimento 12N → 12C+ e+ + νe, cuja

meia-vida é de 15,9 ms. O elétron da primeira reação, ao ser detectado, serve para a

determinação da energia do neutrino, enquanto que o pósitron posterior pode ser usado,

junto com a informação da meia-vida, como assinatura de evento de neutrino, reduzindo

a razão sinal-rúıdo. Apresentaremos aqui a nossa implementação destes experimentos

que limitam o desaparecimento de νe em curtas distâncias [190, 191].

Para simular KARMEN, usamos as informações presentes na ref. [190] que apresenta

uma exposição maior que a da publicação oficial [141]. Para calcularmos o número de

eventos de neutrinos esperado, multiplicamos a seção de choque de espalhamento em
12C (Fukugita et al. [189]: 9.2 ± 1.1 × 10−42 cm2), o número de núcleos presentes no

volume fiducial do detector (2.54× 1030), o fluxo absoluto de neutrinos (5.23× 1021), a

eficiência da detecção do sinal (27.2% independente da energia) e a área inversa efetiva

(1/[4π(17,72 m)2]). Um total de 846 eventos de neutrino foram observados, cujo rúıdo

era de 13.9± 0.7, consistindo primariamente de eventos acidentais (dois eventos de rúıdo

aleatórios são ratificados pelo corte na janela temporal relativo à meia-vida do 12N) e

cósmicos (neutrinos provenientes de raios cósmicos espalham no 12C), os quais são rúıdos

irredut́ıveis no canal em questão.

O erro sistemático de 7,5%, dominado pela incerteza no fluxo de neutrinos (6,7%) e

na eficiência da simulação Monte Carlo (3%), deve ser considerado juntamente com o

erro teórico de 12% na seção de choque (correlacionado entre as duas análises de 12C

de KARMEN e LSND). Os dados de KARMEN estão dispońıveis no painel superior

da figura 3.2 da ref. [190] como espectro de energia viśıvel dos elétrons detectados em

26 bins igualmente dispostos no intervalo de energia 10 MeV < Ee < 36 MeV. Esse

espectro de energia de elétrons traduz-se, a parte da reconstrução de energia, no espectro

de energia dos neutrinos através do valor-Q: Eν = Ee +Q. Com o objetivo de obter o

espectro o mais fiel posśıvel àquele achado em [190], assumimos o intervalo de energia

dos neutrinos 30 MeV < Eν < 56 MeV, e uma reconstrução de energia gaussiana cuja

largura é σe = 25%/
�
E (MeV). Com 26 pontos de dados, obtivemos χ2

min/dof = 30/24

para o ponto de melhor ajuste no esquema de dois neutrinos.

Para LSND [148], procedemos de maneira similar, obtendo o número esperado de even-
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tos de neutrinos multiplicando a mesma seção de choque, o número de alvos (3.34× 1030),

o fluxo de neutrinos no detector (10.58× 1013 cm−2) e a eficiência (23.2%, independente

da energia). Em LSND, o rúıdo é muito pequeno, podendo ser desconsiderado, enquanto

que o número de eventos observado é de 733. O erro sistemático de 9,9% é dominado

pelo erro no fluxo de neutrinos (7%) e no volume fiducial (6%). Como dito anteriormente,

a seção de choque possui um erro de 12%, correlacionado entre KARMEN e LSND.

Os dados experimentais estão dispońıveis na figura 6 da ref. [148], como espectro de

energia viśıvel dos elétrons no intervalo 18 MeV < Ee < 42 MeV, disposto em 12 bins

de 2 MeV. Convertendo em espectro de energia de neutrino, o intervalo de energia é

35.3 MeV < Eν < 59.3 MeV. Novamente, para reproduzir o resultado oficial de forma

mais exata posśıvel, combinamos os 12 bins de energia em 6 bins e usamos uma resolução

de energia gaussiana com largura constante σe = 2.7 MeV. Obtivemos χ2
min/dof = 3.81/4

para o ponto de melhor ajuste do esquema de dois neutrinos

Combinando as duas simulações de νe – 12C (correlacionadas pelo erro da seção de

choque), obtivemos χ2
min/dof = 34.17/30 (32 bins de energia) para o melhor ajuste no

esquema de dois neutrinos.

B.7. E776: νµ → νe e ν̄µ → ν̄e

Um feixe de ṕıons, subprodutos da colisão de prótons num alvo seguida de focalização

magnética, decaindo em neutrinos num tubo de 50 metros e atingindo, à aproximadamente

1 km, um caloŕımetro de 230 toneladas consistia o experimento E776, em Brookhaven,

que coletou 1.43 × 1019 (1.55 × 1019) prótons no alvo no modo νµ → νe (ν̄µ → ν̄e) em

1986 [145]. Apesar do experimento ter usado os dados de desaparecimento de
(–)

ν µ para

obter a normalização do fluxo de neutrinos, não implementamos esse canal, usamos

a normalização como dado de entrada. O principal rúıdo do canal de aparecimento

é a contaminação de
(–)

ν e intŕınsica do feixe, bem como part́ıculas π0, produzidas por

eventos de corrente neutra no detector (induzidas em grande quantidade por
(–)

ν µ), as

quais decaem predominantemente em dois fótons que são identificados erroneamente com

elétrons que, por sua vez, são atribúıdos a eventos de
(–)

ν e. As incertezas desses rúıdos

são de 11% para os
(–)

ν e intŕınsicos e 27% (39%) para rúıdo de π0 no modo de neutrino

(anti-neutrino). Os neutrinos detectados, de energias em torno de GeV, são reconstrúıdos

com uma resolução de 20%/
�
E [GeV].

Com rúıdo esperado de 131 (62) eventos, o experimento observou 136 (56) eventos de νe

(ν̄e) no modo de neutrino (antineutrino). Os espectros são apresentados na ref. [145] no
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intervalo de energia de 0 à 7 GeV, divididos igualmente em 14 bins para cada modo. Para

obter uma melhor conformidade entre nossa simulação e o resultado experimental, em

vista da dificuldade de modelar a reconstrução de energia em baixas energias, omitimos o

primeiro bin e combinamos o segundo com o terceiro num único bin de 1 GeV para cada

polaridade, obtendo efetivamente 24 pontos de dados. Com isso, conseguimos reproduzir

com bastante precisão, no esquema de dois neutrinos, a curva de exclusão na figura 4 da

ref. [145], obtendo χ2
min/dof = 31.08/22 no ponto de melhor ajuste. Ao analisarmos o

experimento no esquema de 4 ou 5 neutrinos levamos em consideração as oscilações do

rúıdo intŕınsico do feixe.

B.8. ICARUS: νµ → νe

No Laboratori Nazionali del Gran Sasso, em L’Àquila, na Itália, o detector T600 do

experimento ICARUS, uma câmara de projeção temporal de argônio ĺıquido de 760

toneladas, identifica os neutrinos oriundos do feixe do CNGS no CERN (Genébra, Súıça),

à 732 km de distância. Esse feixe consiste em prótons de 400 GeV que colidem com um

alvo de grafite ou beŕılio produzindo hádrons que, por sua vez, são focalizados por um

sistema magnético e posteriormente decaem em neutrinos. O feixe de neutrinos resultante

é predominado por neutrinos do múon e tem frações de ν̄µ de 2% e de νe menor que 1%,

e portanto o rúıdo intŕınsico na busca de aparecimento νµ → νe é bem pequeno. O feixe

compreende neutrinos de energia até 50 GeV, com um largo pico entre 10 e 30 GeV.

De 2010 à 2012, o experimento observou 839 eventos com energia abaixo de 30 GeV,

enquanto que a expectativa teórica era de 627 eventos de corrente carregada de νµ, 3

de ντ , e 204 de corrente neutra. O rúıdo, modelado por uma simulação Monte Carlo,

é de 3,7 eventos de νe, embora apenas 2 eventos tenham sido observados [146]. Para

estimarmos o limite de ICARUS no canal de aparecimento de νe, usamos o espectro de

νµ da ref. [231] e fizemos a convolução com a probabilidade de oscilação. Verificamos que

o erro sistemático de ∼ 7% referente à eficiência basicamente não tem impacto sobre o

resultado.

B.9. MiniBooNE: νµ → νµ, ν̄µ → ν̄µ, νµ → νe e ν̄µ → ν̄e

Nossas implementações de MiniBooNE são realizadas de forma bem mais elaborada que

as demais, pois a colaboração disponibiliza on-line uma grande quantidade de informações,

sugerindo inclusive metodologias (aqui utilizadas) para as simulações dos diversos modos
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observados pelo experimento.

Primeiramente, vamos explicar a implementação dos canais de aparecimento,
(–)

ν µ →
(–)

ν e [77, 78], cujos dados mais recentes correspondem à 6,46×1020 (11,27×1020) prótons no

alvo no modo neutrino (antineutrino). A colaboração MiniBooNE disponibiliza os eventos

de Monte Carlo não oscilados, onde para cada evento constam a energia do neutrino, a

energia reconstrúıda e a distância percorrida pelo neutrino entre produção e detecção

do mesmo [77]. Assim, para cada conjunto de parâmetros de oscilação, calculamos os

espectros de neutrino e antineutrino prescrevendo pesos nos eventos de Monte Carlo de

acordo com as probabilidades de oscilação em questão. Consideramos oscilações no sinal

e no rúıdo, incluindo a “contaminação de sinal oposto”, ou seja, a contaminação de ν̄µ no

feixe de νµ e vice-versa.

Para obtermos os limites ou regiões permitidas oriundos dos dados experimentais,

definimos a verossimilhança L por

χ2
0 = (D−P)TS−1(D−P) , (B.7)

onde D (P) é o vetor de número de eventos observados (previsto), incluindo o rúıdo, e S

é a matriz de covariância, incorporando as incertezas estat́ısticas e sistemáticas, fornecida

pela colaboração (ver ref. [77] para detalhes). Essa matriz de covariância é uma matriz

simétrica 38×38, consistindo de 11 linhas para os eventos tipo νe e 8 linhas para νµ para

cada modo, revelando correlações entre todas as entradas (entre
(–)

ν e e
(–)

ν µ, modo neutrino

e modo antineutrino, etc.).

A normalização do fluxo é determinada a partir dos dados de
(–)

ν µ. Assim, em prinćıpio,

deveŕıamos considerar nesse setor a probabilidade de sobrevivência, cujo impacto seria

transportado para o ajuste de
(–)

ν e pela matriz de covariância. Contudo, ao fazê-lo, não

podeŕıamos combinar a implementação do modo de aparecimento com a do modo de

desaparecimento em MiniBooNE (que descreveremos abaixo), pois estaŕıamos contando o

efeito da probabilidade de desaparecimento duas vezes. Ademais, os dados de
(–)

ν µ presentes

na análise de aparecimento [77] não são apropriados para o ajuste de desaparecimento,

pois a previsão teórica de
(–)

ν µ foi obtida através de uma simulação de Monte Carlo cujos

parâmetros foram ajustados aos dados assumindo nenhum desaparecimento de
(–)

ν µ. Em

vista disso, decidimos seguir a receita da colaboração e não incluir oscilações no setor
(–)

ν µ na análise de aparecimento. De qualquer forma, verificamos que, ao considerarmos

os limites em |Uµ4| e |Uµ5| oriundos de outros experimentos, o impacto de oscilações no

setor
(–)

ν µ é ı́nfimo.
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Outra sutileza aparece na análise de rúıdos provenientes de káons, cuja previsão em

MiniBooNE é feita com os dados do detector SciBooNE, na mesma linha de feixe, porém

mais próximo da fonte (∼100 m) [232]. Levamos isso em conta multiplicando esses rúıdos

em MiniBooNE pela razão das probabilidades de oscilação de MiniBooNE e SciBooNE.

Contudo, como esse rúıdo não predomina o erro experimental total, o resultado desse

reescalonamento é pequeno.

Em vista das correlações entre os eventos de neutrinos de elétrons e múons, o número

de graus de liberdade na análise de aparecimento não é óbvio, pois apesar dos dados de
(–)

ν µ entrarem nessa análise, há também a análise dedicada de desaparecimento
(–)

ν µ →
(–)

ν µ

e devemos evitar a dupla contagem de pontos de dados. Para solucionar esse impasse,

adotamos o procedimento seguinte. A eq. (B.7) pode ser escrita como

χ2 = −2 ln(L) = dT
e
Meede + 2dT

e
Meµdµ + dT

µ
Mµµdµ

= (de + δ)TMee(de + δ) + C ,
(B.8)

onde de (dµ) são as componentes e (µ) do vetor (D−P), enquanto que M ≡ S−1 e Mαβ

são os sub-blocos correspondentes da matriz M . Na eq. (B.8) definimos

δ ≡ M−1
ee

Meµdµ e C ≡ dT
µ

�
Mµµ −MµeM

−1
ee

Meµ

�
dµ = dT

µ
(Sµµ)

−1dµ , (B.9)

onde (Sµµ)−1 é a inversa do sub-bloco µµ de S. Note que (Sµµ)−1 não é igual a Mµµ, pois

o último é o sub-bloco µµ da inversa de S. Assim, diagonalizamos os blocos da matriz de

covariância. δ corresponde ao impacto dos dados tipo µ na normalização do fluxo dos

dados tipo e. Os dois termos na eq. (B.8) são estatisticamente independentes e seguem

aproximadamente uma distribuição χ2. Logo, na análise de aparecimento de MiniBooNE,

utilizamos χ2
MB,app ≡ χ2 − C, correspondendo a 22 graus de liberdade (para os dados

combinados de neutrino e antineutrino). Constatamos, a partir da última igualdade na

eq. (B.9), que C não depende dos parâmetros de oscilação, pois os efeitos de oscilação,

uma vez considerados os v́ınculos experimentais, são ı́nfimos em dµ. Com esse método,

obtemos valores de GOF em satisfatório acordo com os números oficiais da colaboração: o

χ2
min/dof (GOF) dos dados de neutrino, antineutrino e combinados são, respectivamente,

14,2/9 (11%), 6,5/9 (69%) e 32,9/20 (3.5%), e devem ser comparados aos números oficiais

13,2/6,8 (6,1%), 4,8/6,9 (67,5%), 24,7/15,6 (6,7%) [77]. Vale mencionar que, na ref. [77],

o dof e GOF são determinados por simulação de Monte Carlo usando uma janela de

energia diferente da nossa.
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B. Detalhes das simulações

A análise de desaparecimento de νµ em MiniBooNE foi realizada com os dados da

ref. [149]. Similarmente à análise de aparecimento, calculamos o espectro esperado de

eventos para cada ponto no espaço de parâmetros utilizando os eventos de Monte Carlo

de MiniBooNE. Os rúıdos, nessa análise, são pequenos e, portanto, os negligenciamos.

Para cada conjunto de parâmetros de oscilação, escolhemos a normalização global do

espectro de tal modo que o número de eventos previsto se equiparão o número de eventos

observados em MiniBooNE, ou seja, realizamos um ajuste espectral. A verossimilhança

obtida é análoga àquela na eq. (B.7), levando em conta as incertezas sistemáticas e

correlações.

Para a desaparecimento de ν̄µ, seguimos a análise combinada MiniBooNE/SciBooNE

da ref. [150]. Novamente, utilizamos os dados de Monte Carlo dispońıveis para calcular o

espectro de eventos esperado. Consideramos os efeitos de oscilações tanto no sinal quanto

nos rúıdos e definimos a verossimilhança em analogia à eq. (B.7).
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[152] SNO Collaboration, B. Aharmim et al., Measurement of the νe and total B-8 solar

neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev.

C75 (2007) 045502, [nucl-ex/0610020].

[153] SNO Collaboration, B. Aharmim et al., Electron energy spectra, fluxes, and

day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO

data set, Phys. Rev. C72 (2005) 055502, [nucl-ex/0502021].

[154] SNO Collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of

Solar Neutrino Data from the Sudbury Neutrino Observatory, arXiv:1109.0763.

[155] Borexino Collaboration, G. Bellini et al., Precision measurement of the 7Be solar

neutrino interaction rate in Borexino, Phys.Rev.Lett. 107 (2011) 141302,

[arXiv:1104.1816].

[156] Borexino Collaboration, G. Bellini et al., Measurement of the solar 8B neutrino

rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino

detector, Phys.Rev. D82 (2010) 033006, [arXiv:0808.2868].

[157] J. J. Gomez-Cadenas and M. C. Gonzalez-Garcia, Future tau-neutrino oscillation

experiments and present data, Z. Phys. C71 (1996) 443–454, [hep-ph/9504246].

[158] S. Goswami, Accelerator, reactor, solar and atmospheric neutrino oscillation:

Beyond three generations, Phys. Rev. D55 (1997) 2931–2949, [hep-ph/9507212].

[159] S. M. Bilenky, C. Giunti, and W. Grimus, Neutrino mass spectrum from the results

of neutrino oscillation experiments, Eur.Phys.J. C1 (1998) 247–253,

[hep-ph/9607372].

[160] N. Okada and O. Yasuda, A Sterile neutrino scenario constrained by experiments

and cosmology, Int.J.Mod.Phys. A12 (1997) 3669–3694, [hep-ph/9606411].

[161] O. L. G. Peres and A. Y. Smirnov, (3+1) spectrum of neutrino masses: A chance

for LSND?, Nucl. Phys. B599 (2001) 3, [hep-ph/0011054].

[162] M. Sorel, J. M. Conrad, and M. Shaevitz, A combined analysis of short-baseline

neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation

hypotheses, Phys. Rev. D70 (2004) 073004, [hep-ph/0305255].

[163] M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE

results, Phys. Rev. D76 (2007) 093005, [arXiv:0705.0107].

116



Referências Bibliográficas
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