

Heavy particle radioactivity of superheavy nuclei $^{306}126$

A. M. Nagaraja¹, N. Sowmya²,** H. S. Anushree², and H.C. Manjunatha^{2*}

¹Department of physics, Government First Grade College, Kolar, Karnataka - 563101, INDIA

²Department of Physics, Government College for Women, Kolar, Karnataka - 563101, INDIA

* email: manjunathhc@rediffmail.com, sowmyaprakash8@gmail.com

Introduction

The definition of heavy-particle radioactivity (HPR) has been modified to include particles released by parents with $Z>110$ and a daughter around ^{208}Pb that have a $Z_e>28$. In comparison to heavier SHs, calculations for superheavy (SH) nuclei with $Z=104-124$ reveals a tendency toward shorter half-lives and a higher branching ratio [1]. The competition between HPR and α decay have been investigated in the region of superheavy region $Z = 104-124$ [2]. Using modified generalized liquid drop model, earlier researchers investigated HPR in superheavy element $Z=126$ [3]. The role of deformations and shell corrections were studied in prediction of HPR [4]. Many theoretical investigations shows prediction of cluster and alpha decay process in the superheavy nuclei [5-7].

Hence, we have motivated to study HPR in the superheavy nuclei $^{306}126$. We have also made an attempt to study HPR such as ^{58}Ni to ^{126}I using Coulomb and proximity potential model (CPPM). The role of deformations are included in the evaluation of potentials. The decay chain of superheavy nuclei $^{299}119$ is also investigated.

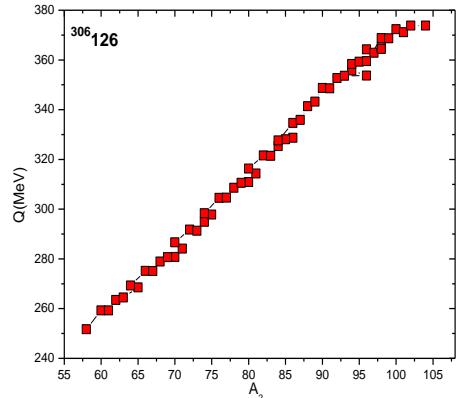
Theoretical Frame work

The HPR half-lives are evaluated using CPPM by including deformation effects. The total potential is the sum of Coulomb V_C and Proximity potential V_P and it is expressed as;

$$V = V_C + V_P \quad (1)$$

The Coulomb interaction potential is given by,

$$V_c = \frac{Z_1 Z_2 e^2}{r} \left[I + \frac{3R^2}{5r^2} \beta_2 Y_{20}(\theta) + \frac{3R^4}{9r^4} \beta_4 Y_{40} \right] \quad (2)$$


here Z_1 and Z_2 are the atomic numbers of daughter and HPR nuclei respectively. The term 'r', R, β and $Y_{20}(\theta)$ are the separation distance,

radius of the nuclei, quadrupole deformation parameter and spherical harmonics function respectively. Proximity potential is evaluated as follows;

$$V_P = 4\pi b \left[\frac{C_1 C_2}{C_1 + C_2} \right] \phi \quad (3)$$

The penetration probability is evaluated using wkb approximation. The half-lives are evaluated as explained in detail in literature [3].

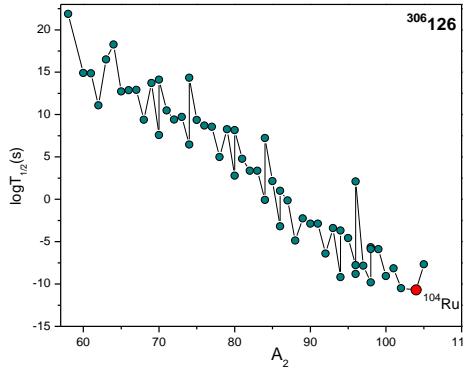
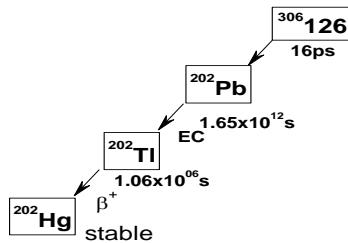

Results and Discussions

Fig 1: Variation of Q-values during HPR with mass number of heavy particle emitted from the parent nuclei $^{306}126$.


The HPR (^{58}Ni to ^{126}I) half-lives are studied in the superheavy nuclei $^{306}120$ using CPPM. The Q-value of the reaction is evaluated using mass excess values available in literature [8,9]. The possibility of heavy particle emissions were considered using the condition that $Z_e^{\min} = 28$ and $Z_e^{\max} = Z - 82$. The figure 1 shows a plot of amount of energy released during HPR with mass number of heavy particle emitted in case of superheavy nuclei $^{306}126$. This graph shows that

the Q-values increase along with the mass number of heavy particles. This demonstrates how the heavy particle emission directly affects the Q-values.

Fig 2: A variation of $\log T_{1/2}$ of HPR (^{58}Ni to ^{126}I) from the parent nuclei $^{306}\text{126}$ with that of mass number of heavy particle emission.

The half-lives evaluated during HPR are plotted as a function of mass number of A_2 and it is shown in figure 2. From this figure it is observed that the nuclei ^{104}Ru shows shorter half-lives when compared to their neighboring ones. This might be owing to shell closure effects caused by both daughter and heavy particle emission, i.e. $^{202}\text{Pb}+^{104}\text{Ru}$ nuclei. Further, we have investigated decay chain of superheavy nuclei $^{306}\text{126}$. The different decay modes such as alpha-decay [10], beta-decay and spontaneous fission [11] were investigated and identified decay chain for the superheavy nuclei $^{306}\text{126}$.

Fig 3: Decay chain of superheavy nuclei $^{306}\text{126}$.

The figure 3 shows decay chain of superheavy nuclei $^{306}\text{126}$. The nuclei $^{306}\text{126}$ undergoes ^{104}Ru HPR and it converts to ^{202}Pb within 16ps. Again ^{202}Pb becomes unstable

against electron capture and with the half-life of 1.65×10^{-12} s the nuclei convert to ^{202}Tl . Further, ^{202}Tl cannot survive β^+ -decay, within a half-life of 1.06×10^{-6} s it becomes stable nuclei with ^{202}Hg . Hence, if $^{306}\text{126}$ undergoes HPR, then finally it attains stable nuclei with ^{202}Hg .

Conclusions:

The HPR of superheavy element $^{306}\text{126}$ is studied using CPPM. The logarithmic half-lives of HPR shows shorter values for the combination of $^{202}\text{Pb}+^{104}\text{Ru}$. Hence, it is clear that the combination of $^{202}\text{Pb}+^{104}\text{Ru}$ posses shorter half-lives due to shell closure effects. Hence, the most possible HPR from the superheavy nuclei $^{306}\text{126}$ consists of fragment configuration ^{202}Pb and ^{104}Ru . Further, decay chain of superheavy nuclei $^{306}\text{126}$ is also investigated. The nuclei $^{306}\text{126}$ if it undergoes HPR, then finally it attains stable nuclei with ^{202}Hg . This study finds an important role in future experiments on HPR.

References

- [1] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. Lett. 107, 062503, (2011).
- [2] D. N. Poenaru et al., J. Phys.: Conf. Ser. 436, 012056(2013).
- [3] A.M.Nagaraja et al., Nucl. Phys. A 1015, 122306(2021).
- [4] Gudveen Sawhney et al., Eur. Phys. J. A 50, 175 (2014).
- [5] A. M. Nagaraja, et al., Braz. J. Phys. 52:97 (2022).
- [6] A.M.Nagaraja et al., Pramana -J. Phys. 95:194 (2021).
- [7] A. M. Nagaraja, et al., Eur. Phys. J. Plus 135:814 (2020).
- [8] <https://www-nds.iaea.org/RIP-3/>
- [9] H.C. Manjunatha et al., Indian J Phys. 96, 1237–1246 (2022).
- [10] H.C. Manjunatha, N. Sowmya, Nucl. Phys. A 969 (2018) 68–82.
- [11] M.G.Srinivas et al., Nucl. Phys. A 995: 1216 (2020).