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Abstract

The question of “What is Dark Matter?” has been a focus of cosmological research

since the turn of the 20th century. Though the composition of Dark Matter is

unknown, the existence of Dark Matter is crucial to the modern theory of cosmology.

We focus on a theory of Dark Matter referred to as Scalar Field Wave Dark Matter

(SFψDM), which has received an increasing amount of interest from the research

community since the late 2000s. SFψDM is a peculiar theory in which Dark Matter is

composed of ultralight bosonic particles. As a result, SFψDM has an astronomically

large deBroglie wavelength, generating complicated wave dynamics on the largest

cosmological scales.

This thesis focuses on describing the status of SFψDM theory, SFψDM halos,

and how SFψDM halos are affected by the wave-like features of the scalar field. In

particular, we offer an analysis of galactic rotation curves and how they relate to

SFψDM excited states. This analysis yields a novel model for an observed galactic

trend referred to as the Baryonic Tully-Fisher Relation. Furthering this model, we

formulate an eigenfunction decomposition which can be used to describe superposi-

tions of excited states. Finally, we examine these superposition states and discuss

how they can be used to generate both oscillating and rotating patterns in SFψDM

halos.
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1

Introduction: Wave Dark Matter

This introductory chapter will serve three main purposes: it will familiarize the

reader with the various mathematical notations and requirements for the theoretical

aspects of the thesis, it will introduce the notion of Dark Matter in the context of

modern cosmology, and will offer a brief review of the Scalar Field Wave Dark Matter

theory. Section 1.1 will focus on the mathematical preliminaries. Sections 1.2-1.3

will introduce General Relativity and the modern theory of cosmology as well as

describe the basic context of the problem of Dark Matter. Finally, sections 1.4 and

1.5 will introduce Wave Dark Matter and offer a short review of Wave Dark Matter

phenomenology and constraints.

A reader who is familiar with General Relativity and Differential Geometry may

skip sections 1.1-1.2, but the author highly suggests one familiarize with the content

in these sections before advancing to the theoretical discussions in Chapter 2. Like-

wise, a reader who is familiar with Cosmology and the problem of Dark Matter can

omit reading section 1.3. Nonetheless, sections 1.4-1.5 should be considered essential

for any reading in order to develop the context required for the remainder of the

thesis.
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1.1 Notation, Mathematics, and Conventions

In the bulk of this thesis, we assume a working knowledge of differential geometry

and differential equations. We will devote this section to describing our notation and

conventions. Firstly, we will define our systems of units, as the equations contained

in the remainder of the thesis depend on these. In following, we will develop the

geometric language and notation which is used to describe spacetime in the theory

of General Relativity; these descriptions are inspired by several texts which we highly

recommend (18; 64; 61).

1.1.1 Units and Notation

We choose to use a unit system which is a combination of geometerized and natural

units in order to simplify our equations and computations. This is achieved by taking

fundamental physical constants which appear, the speed of light for instance, to have

magnitude 1. Specifically, we take the scheme of c “ G “ 1. Mainly, this has the

effect of simplifying our equations. We will reintroduce physical units when relevant

- usually for comparison to physical data or when citing equations from other text.

We list some common units and how to convert them to geometerized units in table

1.1. Other basic units can be converted by using a combination of the factors in

the table. We provide the conversion of energy to length values in the table as an

illustration, combining the factor for the mass to length conversion with that for the

velocity conversion. In this unit system, values of mass, length, and time can be

thought of as equivalent and inter-convertible. We choose to represent quantities in

terms of length in table 1.1.

In addition to these conversions, it is sometimes useful to convert particle masses

to their corresponding wavelength values. In terms of our equations, this amounts to

taking the value of ~ “ 1 for the Klein-Gordon and Schrödinger equations. Denoting

the spatial frequency (inverse wavelength) as Υ we have

m “
~Υ

c
(1.1)

2



m

10´22eV
«

Υ

3.45plyq´1
(1.2)

Table 1.1: Basic Unit Conversions: We present some basic unit conversions. To
make the specified conversion, multiply by the given factor. To make the reverse
conversion, divide by the same factor.

Conversion Factor Value Geometerized Value
Mass Ñ Length G

c2
1 kg 7.43 ˚ 10´28m

Mass Ñ Length G
c2

1 Md 1477m
Time Ñ Length c 1 year 1 light year (ly)
Energy Ñ Mass c´2 1eV 1.783 ˚ 10´36kg

Energy Ñ Length G
c4

1eV 1.324 ˚ 10´63m
Velocity Ñ Unitless c´1 3 ˚ 108m

s
1

1.1.2 Spacetime Geometry: Coordinates, Metrics, and Vector Fields

We pose equations in both coordinate-free and coordinate-dependent notation. We

denote a set of coordinates at a point, x, as txαu. The index α, in the context of

a 4-dimensional spacetime is taken to have values α “ 0, 1, 2, 3, where 0 is usually

chosen to represent a timelike index. Each coordinate system has a corresponding set

of basis vectors teα|x “
B

Bxα
|xu. We will assume the Einstein summation convention

where a repeated index implies a summation over the values of that index. A vector

field, Vpxq, is then expressed in several equivalent ways as

Vpxq “ vαpxqeα|x “ vαpxq
B

Bxα
|x “ vαpxqBα|x. (1.3)

The functions vαpxq are referred to as the components of the vector field and

depend on the chosen coordinate system. Importantly, a vector field evaluated at a

point x is a vector defined on the tangent space of that point. Vector fields give a

formal notion of the directional derivative of a function. The derivative of a function,

f , in the direction of a vector field, X, is usually expressed as

Xpfq|x “ vαpxqBαf |x. (1.4)

A spacetime manifold comes equipped with a Lorentzian metric, g. We choose

3



the p´,`,`,`q convention for the metric’s Lorentz signature. At a point, the metric

defines a non-degenerate bilinear product between vectors as

gpv,wq|x “ 〈v,w〉x “ vαwα “ gαβpxqv
αwβ. (1.5)

Here, the components of the metric are defined with respect to a the coordinate basis

vectors gαβpxq “ gpBα|x, Bβ|xq. The metric gives rise to the notion of lowering indices

for vectors and tensors, where vα “ gαβv
β. Likewise, the metric inverse, denoted

with superscripts as gαβ, can raise an index as vα “ gαβvβ.

A vector with a lowered index is sometimes referred to as a co-vector or dual

vector. This is due to the one-to-one correspondence between vectors and co-vectors

that is established by the metric. Given a vector, v, there always exists a co-vector

ṽ defined as ṽ “ gpv,´q. The co-vector defines a mapping taking vectors to scalars,

ṽpwq “ gpv,wq. Analogous to vector fields, one can define co-vector fields otherwise

known as one-forms. Given a vector field, V, its corresponding one-form can be

expressed in the following equivalent ways

Ṽpxq “ gpV,´q “ gαβv
βdxα “ vαdx

α
“ vαpxqẽ

α. (1.6)

Here we have introduced the basis one-forms dxα “ ẽα which are defined in relation

to the basis vectors as dxαpBβq “ δαβ .

Lastly, we can define tensors in spacetime by using the basis one-forms. We

define a rank N tensor as a map which converts N vectors into a scalar. The metric

tensor, for example, is a realization of a rank 2 tensor.

g “ gαβdx
α
b dxβ (1.7)

gpv,wq “ gαβdx
α
pvqdxβpwq (1.8)

Lastly, a generic rank N tensor, S, is expressed as

S “ Sα1,α2,...αNdx
α1 b dxα2 b ...b dxαN (1.9)

4



We note that it is also possible to define rank pN,Mq tensors which have N subscripts

and M superscripts. In this case the tensor receives N vectors and M co-vectors as

inputs and the M superscript components correspond to the basis vectors.

1.1.3 Spacetime Geometry: Levi Civita Connections

In the context of differential geometry a manifold’s connection, denoted ∇, is a

fundamental object which is used to relate the manifold’s many different tangent

spaces. Loosely speaking, the connection allows one to compare vectors which exist

in the tangent space of one point to vectors which exist in the tangent space of

another. Further, this allows one to formalize the notion of the differentiation of

vector fields as well as tensor fields. A Kozsul Connection for vector fields is denoted

as ∇pV,Wq “ ∇VW, and can be thought of as “the covariant derivative of W

in the direction of V.” ∇ must satisfy the following properties to be considered a

connection:

∇fVW “ f∇VW (1.10)

∇VpfWq “ VpfqW` f∇VW (1.11)

∇V`UW “ ∇VW`∇UW. (1.12)

Every connection is associated with a set of connection coefficients, often referred

to as Christoffel Symbols. In our notation, the Christoffel symbols are expressed as

Γijk “ 〈∇BiBj, Bk〉 . (1.13)

For a given manifold, there are many possible connections which satisfy the above

properties. However, there is a particular connection which can be uniquely defined

in terms of the metric which is referred to as the Levi-Civita Connection, ∇LC .

The Levi-Civita connection is the unique connection which satisfies two additional

properties: it is torsion free and metric compatible. These properties are stated

respectively through the following tensoral relations:

TpX,Yq “ ∇LC
X Y´∇LC

Y X´ rX,Ys “ 0 (1.14)

5



MpX,Y,Zq “ Xp〈Y,Z〉q ´
〈
∇LC

X Y,Z
〉
´
〈
Y,∇LC

X Z
〉
“ 0. (1.15)

Here we identify the torsion tensor, T and the metric compatability tensor, M. This

leads to the unique formula for the connection coefficients of ∇LC

ΓLCijk “
1

2
pBkgij ` Bjgik ´ Bigjkq . (1.16)

The study of manifolds equipped with the Levi-Civita connection encompasses a

significant portion of the field of Differential Geometry. As well, the structures of

General Relativity are usually formulated with respect to the Levi-Civita connection.

Later, in Chapter 2, we will discuss the some of the implications of relaxing the

torsion-free condition of eq. 1.14 in the context of General Relativity and show that

this leads to a geometric interpretation of the Einstein-Klein Gordon Equations.

1.1.4 Spacetime Geometry: General Properties of Connections

To each connection, ∇, one can associate several tensoral quantities. In addition to

the torsion and metric compatibility tensors in eqs. 1.15 and 1.14, any two connec-

tions differ by a tensoral relation. In the case of the difference from the Levi-Civita

connection, one defines the difference tensor as:

DpX,Y,Zq “ 〈∇XY,Z〉´
〈
∇LC

X Y,Z
〉

(1.17)

Each connection is associated to a characteristic set of curves referred to as

geodesics. Geodesics are the generalization of the concept of a“straight-line” on an

otherwise curved manifold. Formally, geodesics are auto-parallel curves which can

be found via solving the following differential equation posed in local coordinates:

d2xα

dτ 2
“ ´Γαβγ

dxβ

dτ

dxγ

dτ
. (1.18)

Lastly, the Curvature Tensor provides a description of how adjacent geodesics
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deviate as a result of the manifold’s curvature.

RpX,YqZ “ ∇X∇YZ´∇Y∇XZ´∇rX,YsZ (1.19)

More commonly, one forms the Riemann Curvature Tensor as

RiempX,Y,Z,Wq “ 〈RpX,YqZ,W〉 . (1.20)

One then defines the Ricci Curvature and Scalar Curvature, which are used in General

Relativity, as:

RicpX,Yq “ gijRiempX, Bi,Y, Bjq (1.21)

R “ gijRicpBi, Bjq (1.22)

Importantly, to every connection one may associate such curvature quantities; only

for the Levi-Civita connection will these quantities result in formulae which are solely

determined by the metric.

1.2 General Relativity

In this section we detail the theory of General Relativity using the geometric lan-

guage developed in section 1.1. General Relativity (GR) is a classical and geometric

description of the gravitational interaction which was developed by Albert Einstein,

and first published in 1915 (23). GR describes our universe as a 4-dimensional mani-

fold referred to as a spacetime. Spacetime comes equipped with a Lorentzian metric,

g, and the Levi-Civita connection ∇LC . Our convention for the Lorentzian signature

will be to take the time component as negative in the p´,`,`,`q format. The

equations of GR are referred to as the Einstein Field-Equations (EFEs). Even more

fundamentally, the EFEs can be thought of as the critical point of the Hilbert action

- this discussion is deferred to Chapter 2. In tensoral form, the EFEs appear as

G` Λg “ 8πT (1.23)
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This set of equations relates the Einstein Curvature, G, to the spacetime’s Stress-

Energy (SE) tensor, T. Put simply, the SE tensor encodes the distribution and

dynamics of the matter and energy contents of spacetime. In other words, one can

understand the functionality of the EFEs in the sense that matter generates a SE

which equates to a curvature in spacetime. This curvature is then associated with a

characteristic set of geodesics which are interpreted as the free-falling paths of “test

particles” in spacetime; the curving of these paths as a result of the SE tensor is what

one thinks of as “gravity.” In other words, the essence of GR lies in the statement

“Matter curves spacetime and spacetime curvature results in gravity.”

The assumption that spacetime comes equipped with the Levi-Civita connection

in GR is just that, an assumption. That being said, it is a highly convenient as-

sumption as it allows all of the quantities of the EFEs to be expressed in terms of

the metric and its derivatives, greatly simplifying the theory. Alternative GR-like

theories have been considered in which the spacetime connection is not necessarily

the Levi-Civita one. These theories relax the conditions imposed on the connection,

namely the conditions on the torsion and metric compatibility tensors in eqs. 1.14

and 1.15. For instance, Einstein-Cartan theory removes the Torsion-free condition

of eq. 1.14. Among other motivating features, Einstein-Cartan theory (89) has been

considered as a means of including the intrinsic spin of matter-fields into GR. Later,

in chapter 2 we will consider a similar type of theory which relaxes the same torsion

condition, resulting in a geometric motivation for the theory of Scalar Field Dark

Matter.

1.2.1 Phenomena in GR

In GR, spacetime curvature can result in a plethora of gravitational phenomena.

Importantly, most of these phenomena are unique to GR in comparison to New-

tonian theory and have been confirmed observationally. A few such phenomena

include: gravitational lensing, gravitational redshift, frame-dragging effects, orbital

precession, the formation of black holes, and gravitational waves. All of these effects

result from the spacetime curvature predicted by GR. Einstein first proposed GR
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as an explanation for the anomalous precession of Mercury’s orbit in another 1915

paper (22), noting that the theory agreed closely with the known precession rate. In

addition, he also proposed that the curvature produced by massive celestial bodies

would cause the deflection of passing rays of light. This effect was first observed and

confirmed in 1919 by Eddington (21), who measured the deflection of light around

the sun during a total solar eclipse.

Orbital precession and the deflection of light can be explained by making adjust-

ments to standard Newtonian theory. Arguably, these adjustments usually result in

more issues than the ones they intend to solve. The gravitational redshift, frame-

dragging, and non-linear gravitational wave phenomena are truly unique to GR and

cannot be explained by such ad-hoc adjustments. Einstein argued in 1907 that

light would experience a Doppler-like redshift when moving through strong gravita-

tional fields. This gravitational redshift was first measured in the vicinity of a white

dwarf by Popper in 1954 (67). Frame-dragging effects result from the distortion of

spacetime by rotating massive bodies. Lense-Thirring precession and the Geodetic

effect are the two most prominent such effects. Geodetic precession has been mea-

sured in the vicinity of the Earth by the Gravity Probe B experiment (33) while

Lense-Thirring precession has yet to be accurately measured. Lastly, the motion

of massive bodies through space can generate ripples in spacetime which propagate

at light speed, referred to as gravitational waves. Gravitational waves were directly

detected for the first time in 2016 by LIGO, which detected the waves resulting from

a binary black hole merger (32).

The admittance of black holes is a unique feature of GR. Mathematically, black

holes are described by solutions to the vacuum (G “ 0) Einstein Equations. The

vacuum equations admit two types of black hole solutions, static solutions giving the

Schwarzchild black hole, and stationary solutions giving the rotating Kerr black hole.

Black holes are characterized by their event horizon, a boundary at which gravity

becomes so strong that even light speed particles cannot escape. Importantly, direct

observation of black holes has been achieved recently in 2017 by the Event Horizon

Telescope (EHT), pioneering a new era of observational cosmology and black hole
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physics (16).

1.3 Modern Cosmology: ΛCDM

The most successful theory of cosmology to date is referred to as Λ Cold Dark Matter

cosmology, or ΛCDM. In ΛCDM, the universe is described as a spacetime manifold

which obeys the Einstein Equations as described in section 1.2. In short, the Stress-

Energy content of the universe consists of five main components: Baryonic Matter

(BM), Cold Dark Matter (CDM), Dark Energy (DE), Electromagnetic Radiation,

and Neutrinos. The behavior and interactions of these components with each other

and with the Einstein Equations then determines the evolution of the universe.

The term “Baryonic Matter,” refers to all types of matter which consist of

protons and neutrons. More specifically, a baryon is a composite particle with an

odd number of valence quarks. In the cosmological context, matter consisting of

electrons is also included, though electrons are not baryons in a strict sense. As

such, all types of atoms and molecules are considered part of the universe’s BM

content. This BM content interacts via electromagnetism, and can therefore be

observed via its interactions with light. In other words, BM is visible. The term

“Dark Matter” is used somewhat in compliment to refer to types of matter which

are specifically non-baryonic. Importantly, DM is assumed to lack electromagnetic

interactions. As a result, DM cannot be detected via interactions with light, hence it

is dark. Though DM is not visible, it is observable, specifically via its contributions to

gravity. Whether or not DM shares interactions with the Strong and Weak Nuclear

forces is often considered in ΛCDM, but remains an open question.

The character Λ in ΛCDM is chosen to represent the cosmological constant.

The cosmological constant appears as a constant term in the Einstein Equations,

contributing a constant energy density at all spatial points referred to as Dark Energy.

At the level of the Stress-Energy tensor, Dark Energy contributes an everywhere

negative pressure; this pressure is the source of the accelerating expansion of the

universe. This phenomena was experimentally confirmed in 1998 by two independent

groups (66; 69), solidifying the necessity of the cosmological constant in ΛCDM.
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Moreover, modern studies of ΛCDM estimate Dark Energy to be the dominant energy

component of the present day universe, comprising 68% of its total energy content.

Though Electromagnetic Radiation and Neutrinos comprise a small amount of the

total energy content of the present day universe (ă 1%), their dynamics in the early

universe are crucial to the ΛCDM model. In fact, the early universe contains a period

in which Electromagnetic Radiation comprised the majority of the universal energy

content.

1.3.1 The FLRW Model

The largest scale features of the universe and its energy components can be modelled

under the assumption that they are homogeneous and isotropic. This is observation-

ally valid at the largest observed scales („ 260Mpc) (95). The equations which

govern the expansion of spacetime and the evolution of its energy components are

referred to as the Friedmann equations. For the ΛCDM model, the metric is referred

to as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and appears in

line element form as

ds2
“ ´dt2 ` aptq

ˆ

dr2

1´ kr2
` r2dθ2

` r2 sin2 θdφ2

˙

(1.24)

The function aptq is referred to as the “scale factor” of the universe, describing

the spatial expansion of the universe in time. The value of k is referred to as the

spatial curvature. In the case that k “ 0, the universe is spatially flat at the largest

scales. Positive and negative values of k likewise correspond to cosmologies which are

“closed” or “open” respectively. Qualitatively, if one omits the cosmological constant,

a universe with positive k will expand from a point, eventually reach a maximum

spatial size and then re-contract back to a point. Likewise, an open universe with

k ă 0 is expected to expand indefinitely at an increasing rate. Lastly the spatially

flat case, k “ 0, the universe expands forever at a decreasing rate. Including the

cosmological constant, a flat universe will share the same fate as an open one and

expand forever, while a closed universe will still re-contract if Λ remains sufficiently
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small. Most modern observations, those by the Planck collaboration for instance

(15), suggest that the universe is spatially flat with k “ 0 being consistent with

data. This value now faces tension with recent measurements, which suggest a small

but positive value for k (92).

Assuming that the SE tensor is homogeneous and isotropic and that the metric

is of the FLRW form in eq. 1.24, the Einstein Equation can be evaluated to obtain

the two Friedmann equations

Hptq2 “
8πρ` Λ

3
´
k

a2
(1.25)

9ρ “ ´3Hptqpρ` pq. (1.26)

Here we have introduced the Hubble constant, Hptq “ 9a
a
, which describes the relative

expansion rate of space. The density and pressure components of the SE tensor are

respectively expressed as ρ and p. A component’s “equation of state” relates its

pressure and density as p “ wρ, and is usually just specified by the value of w. Most

cosmological parameters are expressed in terms of the critical density, ρc, which is

defined as the threshold density for a universe with Λ “ 0 such that k “ 0. This can

be found using eq. 1.25 as ρc “
3H2

8π
. The energy density, ρ is decomposed into its

various contributions from baryonic matter, DM, DE, and radiation

ρ

ρc
“ ΩBM ` ΩDM ` ΩΛ ` ΩR. (1.27)

Here, each Ω parameter is defined as the fraction of the corresponding density com-

ponent to the critical value. That is, Ωx “
ρx
ρc

. Substituting this definition into the

first Friedmann equation in eq. 1.25, and defining the “curvature contribution” as

Ωk “ ´
k

H2a2
returns the following

1 “ ΩM ` ΩDM ` ΩΛ ` ΩR ` Ωk. (1.28)

The contributions excluding Ωk are sometimes combined into a single parameter Ω.
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The value of Ω, representing the contributions of all matter and energy content,

directly determines whether or not the universe is spatially closed, flat, or open,

determined by Ω ą 1, Ω “ 1 and Ω ă 1 respectively. Since the Hubble parameter as

the well density components are time dependent, the Ωx parameters in eq. 1.28 are

as well. It is common practice to evaluate these parameters based on their present

day values, denoted by appending a subscript of 0.

Further than the homogeneous and isotropic features of the Friedman equations,

the ΛCDM paradigm has been used to model the largest cosmological substructures

including the galactic filaments and the cosmic microwave background (CMB). These

features have been observed by collaborations such as the Planck collaboration and

WMAP. In the modern day, simulations such as Illustris (26), EAGLE (86), and

CAMB (1) model these features to a high degree of precision. Going further, the

smallest cosmological structures (those of galaxies and galactic substructure), are

intimately related to the problem of Dark Matter, described in the following section.

1.3.2 What is Dark Matter?

The notion of “Dark Matter,” can be historically traced to a lecture series given by

Lord Kelvin in 1884 (87). Kelvin argued that measuring a galaxy’s luminosity distri-

bution alone was an insufficient method for determining that galaxy’s gravitational

mass. Put more formally, Kelvin noticed that the velocities of stars in the Milky

Way were too disperse to be accounted for by only considering the gravity gener-

ated by the galaxy’s luminous mass distribution. Accordingly, Kelvin supposed the

existence of “Dark Bodies” to account for this discrepancy. These “Dark Bodies,”

hypothesized to be some form of non-luminous matter, would then account for the

additional gravity required to generate the orbital velocities observed in the Milky

Way.

The term “Dark Bodies” evolved to be the term we use today (Dark Matter) in

1933 in a work regarding the Coma Cluster, fig. 1.1, by Fritz Zwicky (88). Zwicky

measured the relative velocities of the cluster’s galaxies as well as their inferred lumi-

nous mass. Famously, this led to the conclusion that these velocities were too great
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Figure 1.1: Coma Cluster: The Coma Cluster, imaged above by (2), is a cluster
with over 1000 identified galaxies. Zwicky reported that the mass of the cluster as
computed by the virial theorem was over 400 times of that inferred from luminosity
measurements. It was argued that the additional unmeasured mass of the cluster
must be in the form of non-luminous or “dark” matter.

to be sustained by the luminous mass of the galaxy alone; in order for the cluster to

be virialized or self-bound, additional non-luminous mass would be required. Zwicky

hypothesized the existence of such mass, referring to it as “Dunkle Materie” (Dark

Matter). As such, the search for this Dark Matter and what it could be composed

of continues to the present day.

Throughout the 20th century, advances in observational astronomy have enabled

more precise measurements of stellar velocities, luminous mass, and gravitational

mass. Ultimately, this has led to further data and evidence for Dark Matter. For

instance, the advent of 21cm spectroscopy allowed increasingly precise measurements

of stellar velocities (31). This advance was utilized in 1978 by Rubin and Ford who

measured the flatness of galactic rotation curves, a remarkable evidence for dark
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Figure 1.2: Rotation Curves: An example rotation curve from the circular or-
bits of galaxy NGC 6503 (34). Observed data given with error bars; the inferred
contributions from the Dark Matter halo, stellar disk, and gaseous mass are shown.
Dark Matter is the primary contribution. Contributions from the disk and gas dis-
play decreasing velocity at large distances; the presence of Dark Matter flattens the
curve.

matter (71). By measuring the orbital velocities of stars within the spiral galaxies,

it was inferred that Dark Matter was about 6 times more abundant than luminous

matter. Shown in fig. 1.2, the flattening of galactic rotational velocity curves is a

strong indicator of the presence of Dark Matter in galaxies. Still, the composition of

Dark Matter and what types of objects it consists of, remains unknown.

Theoretical progress such as the founding of General Relativity has also increased

the capability to test the Dark Matter hypothesis. As an example, the FLRW model

of cosmology has been used in conjunction with measurements of the Cosmic Mi-
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Figure 1.3: Bullet Cluster: The Bullet Cluster, imaged by Chandra (55), is made
of two colliding clusters of galaxies. The inferred distributions of Dark Matter and
Baryonic Matter are shown in blue and red respectively. The collision has resulted
in a large offset between the two types of matter. The baryonic matter is slowed via
frictional forces while the Dark Matter is not, resulting in the separation.

crowave Background (CMB) to place constraints on the abundance of Dark Matter.

For instance, the 2012 WMAP results imply that Dark Matter composes 24% of the

energy content of the universe (25). Further, analyses of relativistic phenomena like

gravitational lensing and redshifting provide a means to investigate more localized

features of Dark Matter.

A possible alternative to the existence of Dark Matter lies in theories of Mod-

ified Gravity. These theories suppose our understanding of the gravitational force

to be insufficient to explain the orbital dynamics observed in galaxies. In this view,

one supposes a different form for the gravitational force law to account for the dis-

crepancies usually attributed to Dark Matter. Some such theories include “Modified

Newtonian Dynamics” and “fpRq gravity” (74; 82). These types of theories now face

strong tension with modern observations like Chandra’s observation of the Bullet

Cluster. Shown in fig. 1.3, Chandra infers a significant offset between the lumi-

nous center, and gravitational center of the Bullet Cluster merger, casting doubt on
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Modified Gravity theories and further suggesting the existence of some form of Dark

Matter (56; 14).

1.3.3 Dark Matter Candidates

Figure 1.4: DM Candidates: The problem of DM arises as an effort to explain
anomalously large velocities of stars and galaxies. DM arises as a way to explain this
motion without changing the gravitational force laws of General Relativity. Cold
DM has become the dominant candidate; Hot DM and Warm DM are usually ruled
out as they inhibit the formation of galactic scale structure. We make a further
dichotomy between Point-like particles and wave-like particles. Candidates for Wave
DM include ultralight particles such as ultralight scalars. Point-like DM comprises
the majority of traditional DM models, treated with N-body gravity.

In the modern context, “Dark Matter” (DM), refers to a hypothetical form

of matter which does not interact via the electromagnetic force but still has grav-

itational mass. As described, one cannot “see” DM, though one can observe its

interactions with other astronomical masses via gravity. Theories of what types of

matter or what particles could constitute DM vary, resulting in a myriad of possi-

bilities. Fig. 1.4 presents major categories of DM candidates tailored towards the

discussions of this thesis.
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The Hot, Warm, and Cold distinction refers to the velocities of DM particles.

Hot DM candidates are usually light, weakly interacting particles like neutrinos with

relativistic velocities. Theories in which hot DM comprises the majority of DM mass

face issues in regards to forming galactic scale structure. This is due to the hot

particles having a large free streaming length, resulting in a reduction of structures

at the observed galactic scale. In other words, hot DM reduces small scale structure

as desired but has the cost of preventing galaxy formation; this often receives the

title of the “Catch-22” problem of hot DM. Warm DM, usually thought to consist

of weakly interacting particles of a slightly greater mass range than hot DM, faces

a similar Catch-22 problem. Cold DM refers to DM particles with low velocity

and therefore insignificant free-streaming lengths. Cold DM theories are generally

consistent with the observed growth of cosmological structure and are therefore the

most strongly favored descriptions of DM in the field of cosmology. We note that

more complex DM theories involving mixtures of mostly cold DM and small amounts

of warm or hot DM could also be compatible with observation. This is an appealing

choice in scope of the large variety of hypothetical DM candidates, but introduces

additional difficulties in terms of modelling DM physics (finding the correct mixture

proportions for instance). For a more comprehensive review of the Hot, Cold, Warm

distinction we refer the reader to (68).

For this thesis, we suggest a further distinction between point-like and wave-

like cold DM. Point-like CDM candidates include objects which can be treated as

collisionless point particles on galactic and cosmological scales. Point-like CDM can-

didates include Weakly Interacting Massive Particles (WIMPs), hypothetical parti-

cles in the „ 100 GeV mass range, and Massive Compact Halo Objects (MaCHOs),

large and dim objects like black holes or non-luminous stars. MaCHOs are usually

ruled out as a DM candidate as they are expected to generate an abundance of

gravitational lensing events which have not been observed (4). WIMPs remain the

most promising candidates for point-like CDM. Standard values for interaction cross

section and particle mass at the scale of the weak interaction are able to produce

particles with the same modern abundance as expected for DM. This is often referred
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to as the “WIMP Miracle.” For a review on WIMPs we suggest (54). Importantly,

direct detection efforts for WIMPs have, to date, provided no significant evidence for

their existence (77). Therefore, despite the success of the WIMP theory, alternative

DM candidates must be considered given the lack of WIMP detection events.

Wavelike particles refer to a class of CDM candidates with cosmologically rel-

evant wavelengths. As such, their wave dynamics must be resolved in cosmological

simulations. Candidates for wavelike particles are usually ultralight particles, around

the 10´22eV range for ultralight scalars. Wavelike DM particles display unique co-

herence effects at galactic scales which are relevant in regards to structure formation.

This thesis specifically considers the case of ultralight scalar fields. We defer a more

detailed description of wavelike DM to section 1.4.

1.3.4 Small-Scale Crises of ΛCDM

ΛCDM faces several issues in regards to modelling structure at galactic length

scales. These issues are often grouped and referred to as the “small-scale crisis” of

ΛCDM. Specifically, simulations of point-like CDM are associated with the Cusp-

Core problem, the Too-big-to-fail problem, and the Missing Satellites problem. The

Cusp-Core problem is the direct result of N-body simulations of DM halos. These

types of simulations display DM halos which tend towards singular density, cuspy

cores. This halo profile was first demonstrated in N-body simulations by Nevarro,

Frenk, and White in 1996 and is thus referred to as the NFW profile (63). Writing

the functional form of the NFW profile, it is clear that it is cuspy and singular at

the origin.

ρNFW prq “
ρ0

r
rs
p1` r

rs
q2

(1.29)

The Too-big-to-fail (TBTF) problem and missing satellites problem (MSP) are

similar in that they regard the expected distribution of satellite galaxies for larger

galaxies like the Milky Way. The MSP gets its name from a discrepancy between the

observed number of galaxies satellite to the Milky Way and the number of these satel-

lite predicted by traditional ΛCDM. In other words, ΛCDM predicts more satellites
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than are observed, hence the satellites are “missing.” A commonly proposed resolu-

tion to the MSP is that the missing satellites do exist, but that they do not host

luminous matter components and are therefore not visible. The MSP can then, hypo-

thetically, be resolved by a careful consideration of detection efficiency and counting

statistics. In other words, if one provides a model for the connection of luminous

matter to DM halos, then that model can be used to make inferences about how

many satellites should actually be observable with a given detector. It was shown

in (46) that this method can resolve the MSP, and in some cases push the problem

towards the case of “too many satellites.” Importantly, a detailed understanding of

DM dynamics and how they affect the connection to luminous matter will help de-

termine the viability of such resolutions. The TBTF problem, somewhat similar but

still distinct from the MSP, also regards a lack of Milky Way satellites but at higher

masses than those of the MSP. Specifically, these massive satellites are so large that

they are expected to host luminous matter with high probability. The name “TBTF”

then comes from the notion that such large satellites would be “too big to fail to be

luminous.” Again, it has been suggested that the TBTF problem results from a lack

in understanding of how the dynamics of baryons or DM could affect the observed

distribution of galaxies. It can be argued that baryonic effects are insufficient to fully

resolve this problem. However, a recent suggestion in (65) argues that the TBTF

problem is the result of a naive misinterpretation of satellite statistics, and that the

observed satellite counts are consistent with the simulations Illustris and EAGLE.

1.4 Scalar Field Wave Dark Matter

1.4.1 What is Scalar Field Wave Dark Matter?

In this thesis we will focus on a theory of DM in which DM is represented by a

scalar field with an ultralight mass parameter (around m “ 10´22eV). Importantly,

the small mass of the scalar results in an extremely large wavelength (around 1kpc

for most cases). As a result, the DM exhibits unique wave-like features which can

be relevant on galactic and cosmological scales. Theories regarding such ultralight
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Figure 1.5: ψDM Galactic Filaments: An example of the galactic filaments
as modelled by SFψDM and particle CDM taken from Schive (75). ψDM results
in coherent wavelike features which result in a reduction of the smallest scales of
structure formation, seen as the lack of granularity in the left picture. SFψDM
forms a condensate structure on the largest scales that is otherwise similar to usual
ΛCDM.

scalars have been given many names: Fuzzy Dark Matter (FDM), Axion Dark Matter

(ADM), Bose-Einstein Condensate Dark Matter (BECDM), and Scalar Field Dark

Matter (SFDM) being a few of them. FDM, one of the most popular labels, was

coined by Hu to highlight the ultra-dispersed nature of the scalar field as a result of

its large wavelength, hence “Fuzzy” (41). ADM respects motivations from particle

physics in which the ultralight scalar corresponds to the QCD Axion, a particle which

has been investigated outside of DM contexts in interest of solving the strong CP

problem (93). The name BECDM comes from the tendency of the scalar field to

form a cosmic scale Bose-Einstein condensate with superfluid properties (85; 51).

Lastly, SFDM directly respects the representation of DM as a scalar field.

In these cases, DM is usually described by either the Einstein-Klein-Gordon

equations (below) or their non-relativistic analogs, the Poisson-Schrödinger equa-

tions.

G` Λg “ 8πTφ (1.30)
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lφ “ m2φ (1.31)

It is their galactic scale, wavelike features that gives these theories their unique

character in comparison to other DM theories. We choose to use the name Wave

Dark Matter (ψDM) in homage to these wave features. Further, we note that the

name ψDM does not strictly require DM be represented by a scalar field; one could

consider some other type of ultralight matter field such as a vector or tensor. In the

most specific sense, this thesis describes a theory of ψDM which contains a single

ultralight scalar field, Scalar Field Wave Dark Matter (SFψDM). Interestingly,

apart from its wavelike features, SFψDM resembles usual ΛCDM at large scales,

shown in fig. 1.5.

1.4.2 Cosmological Axions

One way to motivate the theory of SFψDM lies in the interpretation of DM particles

as axion-like particles. (57) provides a comprehensive review of Axion Cosmology; we

follow this review to provide a basic introduction to the topic. Axion-like particles

have been studied at a vast range of particle masses from the ultralight 10´33eV

regime all the way to the regime of the QCD axion at 10´6eV. Axion-like particles

are so named for their similarity to the QCD axion, a particle which could solve

the strong CP problem of QCD. The axion is introduced as a Goldstone boson for

a massless complex scalar, χ. Via some form of spontaneous symmetry breaking,

the Peccei-Quinn mechanism being a popular choice, the complex scalar takes on

its vacuum expectation value (vev), xχy, and can be decomposed into this vev and

an angular argument as χ “ xχyeiφ{f . The angular field, φ, is the real-valued axion

field and f is referred to as the “axion decay constant.” To all orders of perturbation

theory, the axion as a goldstone boson is massless. However, at some energy scale,

non-perturbative effects can induce a potential and therefore a mass for the axion.

Importantly, since the axion is an angular variable, this potential must be periodic. A

basic, but certainly not unique representation of the axion potential can be expressed
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as

V pφq “ µ4

ˆ

1´ cosp
φ

f
q

˙

. (1.32)

Here, the value of µ is determined by some form of non-perturbative physics and will

depend on the given axion model. To lowest order in φ, the axion potential becomes

the usual potential of a massive real scalar, V pφq « 1
2
m2φ2. Here we have the defined

the axion mass as m2 “
µ4

f2
. Terms which are order φ4 and higher describe axion

self-interactions. Importantly, higher order interactions of φ are further suppressed

by the decay constant f , resulting in increasingly small coupling constants. At many

scales these couplings can be neglected, though at large cosmological scales they may

become relevant towards DM structure formation (noted by (83)). Assuming that

matter-radiation inequality occurs at a temperature of order „ 1eV (as expected

from observation), the decay constant can be estimated as f „ 1017 GeV, which is

close to the energy scale of Grand Unified Theories of particle physics. At this scale

of decay constant, mass values of m „ 10´22eV result in DM relic abundances near

the observed value. This is a rather convenient coincidence and has been likened to

the WIMP miracle. Citing (42), this abundance can be expressed as

ΩDM,0 „ 0.1p
f

1017GeV
q
2
p

m

10´22eV
q
1{2. (1.33)

In a Friedmann universe with a Hubble constant H, the equation of motion for

the scalar field can be written as

:φ` 3H 9φ`m2φ “ 0. (1.34)

For early times such that m2 ăă H, the field oscillations are damped by the Hubble

expansion of the universe. The equation of state at these early times is w “ ´1,

allowing DM to contribute to the Hubble expansion. As the universe cools and

H continues to decrease, the axion field will begin to oscillate and behave as a

condensate, obeying the field’s classical equations of motion. In this cooling period
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the equation of state transitions from w “ ´1 to values which oscillate around w “ 0.

If the universe becomes DM dominated early enough when w is negative, the scalar

field can contribute significantly to the expansion of the universe. Later, when w “ 0

and the scalar field is oscillating, the field behaves as cold cosmological dark matter

with a time averaged pressure of 0. When the mass value is very small, m „ 10´22eV,

the large deBroglie wavelength becomes significant in regards to the formation of DM

structure. In the following sections we describe such wave effects.

1.4.3 Soliton Condensation

The large scale wave nature of SFψDM gives rise to many interesting phenomena.

Cosmological simulations of SFψDM display the formation of a large condensed DM

structure referred to as a superfluid or Bose-Einstein Condensate (75; 29; 85). This

structure evolves under the influence of gravity but also experiences an outwards

scalar pressure which increases with density. Large fluctuations in the DM density

can trigger gravitational collapse and lead to a condensation-like process within the

Bose-Einstein Condensate. As the field collapses, its increasing outwards pressure

eventually reaches an equilibrium with the inwards force of gravity, resulting in a sta-

ble droplet-like structure referred to as a SFψDM soliton (described in mathematical

depth in chapter 2).

On scales much greater than the scalar field wavelength, these solitons evolve

due to gravity in a particle like fashion, similar to other DM theories like the WIMP

theory. However, on scales which are comparable to the wavelength, solitons begin to

interact with each other as a result of their wavelike nature. Therefore, in adopting

the theory of SFψDM, one can retain many of the large scale features of ΛCDM

while also gaining a complicated set of wave dynamics that must be resolved at the

galactic scale.

Soliton condensation can occur even starting from an almost homogeneous initial

condition (50). This has been demonstrated in both the context of an expanding

cosmology as well as in the context of virialized clusters of SFψDM. Whether or

not this type of condensation occurs depends on the relative sizes of the cluster
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and deBroglie wavelength, as well as the timescale of the DM fluctuations. It is

an interesting question to ask whether or not soliton condensation can occur within

galactic halos which have already formed a central soliton core. If the DM deBroglie

wavelength is sufficiently small in comparison to the overall extent of the galactic

halo, this may be a possibility. For larger galaxies, this begins to be the case once

m ě 10´22eV, with the deBroglie wavelength decreasing for higher masses. Whether

or not this could occur at physically viable values of m is an open question. This

is mainly due to the difficulty which arises when computing galactic scale structure

for larger values of m; larger values require greater spatial resolution in order to

resolve the relevant wavelengths involved at such scales, greatly increasing required

computation time. Notably, the presence of DM self interactions can have significant

effects on the condensation process. (28) demonstrates the formation of sub-solitons

in a larger DM halo by considering such self-interactions. This case suggests that it

is at least plausible for smaller solitons to form in galactic halos in the context of

SFψDM.

1.4.4 Galactic Dynamics and SFψDM

Our main contributions in chapters 3 and 4 concern the behavior of SFψDM on the

scale of galactic halos. Evaluated for typical galactic velocities (around 100km{s),

the physical deBroglie wavelength scale for SFψDM is

λdB “
~
mv

« 0.2kpc
´ m

10´22eV

¯´1
ˆ

v

100km{s

˙´1

. (1.35)

At sufficiently small values of m, the dynamics of SFψDM are dominated by this

wavelength scale. As such, SFψDM paints a rich picture of the shape and dynamics of

DM halos. Bottom up style simulations of halos show the formation of a finite density

soliton core surrounded by a complicated and turbulent wave structure. The outer

halo is characterised by a structure of semi-persistent granules sometimes deemed

“quasiparticles,” resulting from the interference of its many constituent waves. De-

scribing how to model these halos with the Einstein-Klein-Gordon equations will be
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Figure 1.6: Halo Formation: This demonstrates the merging of 3 equal mass
solitons. Density is projected along the line of sight and placed on a logarithmic color
scale. As the solitons approach each other, their wave functions begin to overlap and
display interference patterns. When the cores finally merge, they release a burst of
scalar radiation due to the wave pressure. After a long time, the halo settles to a
turbulent and quasistable state with a soliton core at its center. Rectangular features
are merely artifacts of the simulation being on a discrete grid.

the primary focus of chapters 3 and 4. We show a basic example of a three-soliton

merger in fig. 1.6. Eventually, a quasi-stable system is formed with a soliton at the

core.

We depict a quasi-stable SFψDM halo in fig. 1.7. SFψDM halos have many

appealing properties in the context of galactic physics. To name a few: the central

soliton has a finite density, the outer halo converges to an NFW-like distribution,

and their rotation curves are approximately flat. Furthermore, the wave features

of the DM can generate some rather unique effects that are potentially observable.

For instance, the fluctuations of the halo quasiparticles can generate unique heating

effects. Such heating can result in thickening of the galactic disk as well as streams
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Figure 1.7: Virialized ψDM Halos: (Left) Visualization of a galactic scale
SFψDM halo. (Right) Density profiles for generic halos. Image and graph cred-
ited to (62). Halos form stable soliton cores with a finite central density. The core
is surrounded by a complicated and turbulent structure resulting from the interfer-
ence of the halo’s many constituent wave modes. In the outer regions, the halo is
populated by “quasiparticles,” finite density fluctuations which evolve in an N-body
fashion.

of stars. The central soliton can exhibit significant density fluctuations. These

fluctuations could potentially generate orbital resonances that are observable at the

scales of dwarf galaxies.

In chapters 2-4 we explore the properties of galactic SFψDM halos via an anal-

ysis of the Einstein-Klein-Gordon equations. In particular, in chapter 3 we discuss

the properties of SFψDM rotation curves and their viability for modelling galactic

rotation curves. We use this analysis in combination with data from the observed

Baryonic Tully-Fisher relation to constrain the possible values of the scalar field

mass. In chapter 4, we further the discussions of chapter 3 to include a model for

halo oscillations. We detail a possible way to characterize oscillation frequencies of

SFψDM halos and then demonstrate the method to produce a halo with a pseudo-

stable density oscillation.
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1.5 Constraints and SFψDM Phenomenology

This section focuses on SFψDM phenomena and how they can be analyzed to place

constraints on the theory. Specifically, we consider constraints on mass parameters

in the “Fuzzy Dark Matter Regime” of m „ 10´22eV. This is by no means an

exhaustive list of SFψ phenomenology and constraints. Importantly, SFψDM and the

investigation of axion-like particles is a growing and active field of modern cosmology.

We merely intend to provide an overview and discuss the status of some of the

constraints on m.

1.5.1 Heating of the Galactic Disk and Stellar Streams

The outer regions of SFψDM halos are populated with fluctuating quasiparticles.

One can naively think of these quasiparticles as semi persistent clumps of DM with

a mass scale of

Mfluctuation “
4π

3

ˆ

λdBprq

2

˙3

ρhaloprq. (1.36)

As they pass, these fluctuations can transfer energy into the orbits of stars and gener-

ate heating effects. This effect was used to estimate the extent to which quasiparticle

fluctuations are able to thicken cold stellar streams (streams of stars stretched out

along their orbits, usually due to tidal stripping of star clusters) in (3). By compar-

ing to observations from GAIA regarding six Milky Way stellar streams this returns

a constraint of m ě 1.5 ˚ 10´22eV. Importantly, since it does not account for heating

from subhalos and only considers quasiparticle heating, the model estimates a min-

imum thickness of the streams to achieve this lower bound. Future observations of

thinner stellar streams have the capability of increasing this lower bound. Similar

to the thickening of stellar streams, quasiparticle fluctuations can heat and thicken

a galaxy’s disk. (13) considers the effects of both subhalo heating and quasiparti-

cle heating on galactic disks. By comparing simulated disk thickness to that of the

Milky Way one can estimate constraints on m. For sufficiently small values of m,

the heating effects are found to be primarily dominated by the quasiparticle fluctu-
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ations and can exceed observational bounds. As m becomes large, heating due to

subhalos becomes the dominant effect. (13) determines that, in order to not exceed

the observed disk thickness, the lower bound on m must be m ě 0.6 ˚ 10´22eV .

1.5.2 Black Hole Superradiance

Scalar fields can interact with spinning black holes via a mechanism referred to

as superradiance (9). Loosely speaking, superradiance occurs when the scalar field

reflects at the black hole event horizon and emerges with an increased amplitude

via the Penrose process. This can lead to runaway growth of the scalar field which

in the process extracts angular momentum from the black hole. Oscillations in the

growing scalar field act as a source for gravitational radiation which then disperses

the black hole’s rotational energy. In summary, the superradiance mechanism allows

for the presence of a scalar field to deplete the angular momentum of a spinning

black hole. As a result of the superradiance mechanism, only certain combinations

of black hole angular momentum and black hole mass are possible in the presence

of the massive scalar field. For instance, if the black hole’s spin is too high given its

mass, the superradiance mechanism is expected to reduce the spin of the black hole

by exciting the scalar field.

Through analysis of superradiance, observations of a particular black hole’s mass

and spin can be used to place constraints on the scalar field’s mass parameter, m.

By assuming that the superradiance process is insufficient to deplete the observed

black hole spin, one can place both upper and lower bounds on m. It was determined

in (9) that by observing black holes covering the range of 1Md ´ 1010Md, one could

potentially place constraints on the particle mass range of m “ 10´21´10´10eV with

the heaviest values of m being probed by the smallest black hole masses of order

1Md and the lightest values of m being probed by the heaviest black holes. The

observations of the M87 black hole have been used to provide such constraints in

(17). It is found that the M87 observations exclude the following mass range:

2.9 ˚ 10´21eV ă m ă 4.6 ˚ 10´21eV. (1.37)
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Importantly, observational black hole physics is an emerging field. Future develop-

ments in black hole observation could provide a means to exclude many regimes of

m.

1.5.3 The Subhalo Mass Function

The subhalo mass function (SHMF) describes the expected distribution of subhalos

for larger halos like that of the Milky Way. The SHMF of SFψDM was determined by

semi-analytical methods in (20). In short, (20) combines a modified Press-Schecter

model for halo merger trees with the semi-analytical code Galacticus in order to

produce a model for the SHMF. The form of the SFψDM SHMF can be expressed

in relation to the SHMF of WIMP-like CDM as

ˆ

dN

d lnM

˙

SFDM

“ f1pMq ` f2pMq

ˆ

dN

d lnM

˙

WIMP

. (1.38)

Determining the form of the functions f1pMq and f2pMq was a primary goal of

the doctoral thesis (19). These functions are described in (78) and have the effect of

suppressing the low mass end of the SHMF. This effect is more prominent for smaller

values of m. (78) used this feature to place a lower bound on m by comparing the

low mass suppression to that of Warm Dark Matter models. In short, m values

which result in greater suppression than WDM models were considered excluded.

This results in a conservative lower bound of m ě 21 ˚ 10´22eV .

1.5.4 Dwarf Galaxies

There have been a number of efforts to place constraints on SFψDM by comparing

theoretical halo profiles to the observed profiles of dwarf galaxies. (73) computes con-

straints by assuming that SFψDM halos follow a profile modelled by a soliton profile

which transitions to an NFW profile at a characteristic distance. This profile gives

an inconsistent fit when comparing the profiles of ultrafaint dwarf (UFD) galaxies to

those of the Milky Way satellites Sculptor and Fornax. Though Sculptor and Fornax

can be fitted by masses of m ą 10´22eV, the halo mass this would imply for similar
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fits to the UFDs is larger than observation by multiple orders of magnitude.

We note that (8) considered modelling dwarf galaxies by using SFψDM excited

states to fit dwarf mass profiles as opposed to using soliton cores. Similar values

of m ě 10´22eV are found for Sculptor and Fornax when assuming a soliton pro-

file. Assuming the profiles are matched by excited states increases the bound. For

instance, assuming third and twentieth excited states for Fornax returns bounds of

m ě 4 ˚ 10´21eV and m ě 2 ˚ 10´20eV respectively. Generally, modelling a halo with

an excited state allows one to increase the bounds on m. This raises an interest-

ing question in whether or not excited states occur physically. We will discuss the

possibility of using excited states as halo models further in the following chapters.

(10) computes a relation between the core density and core radius of SFψDM

halos as modelled by a similar soliton-NFW model. They find that the derived

relation is inconsistent with the observed relation for dwarf galaxy cores. Lastly,

(10) notes that a more detailed description of the transition region between the

soliton core and the NFW region might be necessary for resolving this discrepancy.

Data regarding the UFD galaxy Eridanus II has been used to place multiple

constraints on the value of m. Eridanus II was first investigated in (58), which

combined an analysis of the Milky Way SHMF with a heating model for star clusters

in Eridanus II. It was noted that SFψDM could generate core density oscillations

in Eridanus II that could result in star cluster heating. Combining this inference

with data from Eridanus II’s star clusters, (58) claimed a strong bound of m ě

0.6 ˚ 10´19eV. This lower bound is significantly higher than most others we discuss,

which usually lie in the 10´21eV range. Recently, the stringency of this result has been

questioned in (12) which revisits the notion of heating due to density oscillations. The

paper concludes via 3D SFψDM simulations that such oscillations produce negligible

heating effects in the 10´21eV range. Moreover, it also concludes that the SHMF as

used in (58) does not place a strong constraint on m. In final conclusions, (12)

suggests that simulations of Milky Way sized SFψDM halos will be important to the

understanding of this issue.
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1.5.5 Matter Power Spectrum and the Jean Scale

The Matter Power spectrum is an important feature of any particular theory of

ΛCDM. In short, the Power Spectrum describes the length scales at which DM

structure and substructures form and cluster in the universe. Formally, the Power

Spectrum is related to the fluctuation, δpxq, of the matter density field, ρpxq.

δpxq “
ρpxq ´ ρ̄

ρ̄
(1.39)

The two-point correlation function of the fluctuation, ζ, is then related to the Matter

Power Spectrum, P pkq, via Fourier transform.

ζpx´ x1q “

ż

d3k

p2πq3
ei
~k¨p~x´~x1qP pkq (1.40)

Issues like the Missing Satellites Problem are intimately related to the matter

power spectrum. Particle simulations of ΛCDM generally display an excess of small-

scale structures in comparison to observation. On the level of the power spectrum,

this is manifested as an excess in power at small length scales or high wavenumbers

when comparing to observed data. In 2008, Wayne Hu, (41) ,proposed that this

small scale power could be suppressed by assuming a FDM version of ΛCDM. The

scalar field of SFψDM exhibits an outwards pressure which inhibits the formation

of dense small scale structures. As described by Hu, the scale at which SFψDM

displays structure formation is described by the Jeans length and wavenumber:

LJ “
2π

kJ
“ π

3
4 pGρq´

1
4m´ 1

2 . (1.41)

Perturbations smaller than LJ are stable by the Jean analysis and have sufficient pres-

sure support to prevent collapse, while those greater than LJ are unstable, resulting

in gravitational collapse of the scalar field. In other words, structure formation and

gravitational collapse experience a cutoff at scales corresponding to the Jeans Length,

LJ , with structure formation at scales smaller than LJ being suppressed. Using a
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simplified 1D model, Hu concluded that masses similar to m „ 10´22eV would result

in the suppression of kpc sized cusps and also introduce a cutoff to the low-mass end

of the matter power spectrum. Specifically, Hu finds that the cutoff resulting from

the Jean scale occurs around k „
`

m
10´22eV

˘1{2
Mpc´1. Hu then suggests that detailed

3D simulations are necessary for fully testing this hypothesis.

1.5.6 Dynamical Friction

Due to its lack of Electromagnetic interaction, DM does not experience friction in

the same sense as gases and baryonic matter; a striking demonstration of this feature

is the observation of the Bullet Cluster from fig. 1.3. However, via its gravitational

interactions, DM can still cause and experience friction-like effects referred to as

dynamical friction. Dynamical friction plays an important role in many aspects of

galactic dynamics, including galaxy mergers, the motion of galactic bars, and the

orbital in-fall of satellites.

In the context of SFψDM, dynamics arising from the DM’s large wavelength affect

the physics of dynamical friction. (42) considers dynamical friction in the context of

a point mass moving through a DM fluid as a fundamental example. As the point

mass moves through the fluid, its gravity generates an overdensity pattern referred

to as a gravitational wake; this wake is associated with a drag-like effect which

in turn slows the mass down as it travels through the fluid. For SFψDM, outwards

scalar pressure is expected to inhibit the formation of the gravitational wake, thereby

reducing the dynamical friction experienced by the passing mass. This reduction was

estimated by (42) in the context of the orbital decay of globular clusters in the Fornax

dwarf galaxy. Computing the dynamical friction force exerted on an object involves

integration of the Energy-Momentum tensor of the DM halo, Π, over the surface of

the object.

Fi “ ´

ż

ΠijdSj (1.42)

After computing the dynamical friction force exerted by the galaxy’s DM halo on

the globular clusters, (42) estimates the orbital decay time for each of the Fornax
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clusters with a simple formula. Denoting the cluster’s angular momentum as L, this

is:

τinfall “ |
L

rF
|. (1.43)

In the case of a cored SFψDM halo with m „ 10´22eV, the infall time for the Fornax

clusters are always increased when compared to the case of particle CDM with a

cuspy NFW-like profile. In the case of the shortest infall time, SFψDM results in

a time of 2.2Gyr as opposed to 0.37Gyr when assuming particle CDM, raising the

possibility of solving the Fornax timing problem with a SFψDM model.

A more detailed treatment of dynamical friction in the context of SFψDM can

be found in (47), which uses fully non-linear simulations to resolve the effect. This

leads to two primary conclusions. Firstly, particle masses of m ě 10´21eV do not

solve the Fornax timing problem. Secondly, in-falling intermediate massed satellites

(around 109Md) lie outside of valid range for any available analytical theory and

warrant further numerical investigations. Ultimately, this regime could be relevant

to galactic mergers or in-falling black holes.

1.5.7 Lyman-α Forest

The Lyman-α Forest provides a means to measure the properties of the Matter Power

Spectrum along an observational line of sight and can be used to place constraints on

DM models. This is possible due to the Lyman-α transition in the neutral hydrogen

atom, the transition of the valence electron from the ground state to the first excited

state. The transition wavelength, being 121.6nm, can be used to detect clouds of

neutral hydrogen. As light from a distant source passes through such a cloud, the

121.6nm wavelengths stimulate the Lyman-α transition, resulting in a “forest” of

lines in the absorption signature.

The Lyman-α Forest provides a direct probe to the small scale features of the

matter power spectrum. The first constraints on SFψDM resulting from an analysis

of the Lyman-α Forest were published in (43), which reports a lower bound of m ě

2˚1021eV. Both (27) and (30) were reported shortly thereafter, and show more or less
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similar results. Importantly, this constraint strongly depends on the assumed model

for the intergalactic medium (IGM), with (43) noting that assuming a smoother

thermal history can increase this bound by at least a factor of 2.

It has been argued that the observable affects SFψDM on the IGM could be

mimicked by other IGM physics such as non-trivial gas pressure or large temperature

inhomogeneities (42); this highlights the complexity and nuance of using the Lyman-

α Forest as a means to constrain SFψDM. The most recent development in regards

to the Lyman-α constraint can be found in (70), which improves upon the IGM

model used in (43; 27; 30). In short, (70) uses an emulation method as opposed to a

brute force method in order to sample the parameter space relevant for producing the

matter power spectrum. Combining this method with AxionCAMB and Gadget-MP

hydrodynamics resulted in an updated bound of m ě 2 ˚ 10´20eV. Importantly, (70)

notes that the exact impact of choosing more flexible IGM models on the bound for

m is non-trivial. Further, it is suggested that these bounds could be strengthened

by probing even smaller scales in the Lyman-α data.

1.5.8 Resolution to Small-Scale Crises?

Whether or not SFψDM solves the many “small-scale crises” of ΛCDM is more or

less inconclusive at this point. There are many reasons one may wish to use SFψDM

to address these problems - SFψDM’s lack of cuspy density profiles for instance. On

the other hand, the non-linear wave features of SFψDM require in depth simulations

in the relevant regime of m „ 10´22eV.

As the value of m increases, the capability of SFψDM to directly affect the small-

scale crisis becomes lessened, but at the same time, the spatial resolution required

to simulate the non-linear dynamics of SFψDM also increases. Herein lies one of

the most challenging aspects of SFψDM theory; small scale wavelike dynamics must

be resolved to make strong conclusions about the 10´22eV regime. This becomes

particularly challenging when simulating the effects of small-scale SFψDM physics

on larger scale structures like that of galaxies and galaxy clusters.

There are several senses by which SFψDM does not solve the small scale crisis.
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Constraints from the Lyman-α forest (43; 27; 30; 70) seem to be most at tension with

the overall notion, preferring higher values of m (m „ 10´20eV) than those originally

proposed as candidates for solving these small scale issues (m „ 10´22eV). However,

uncertainties and modelling difficulties arising from the IGM cause some to question

the Lyman-α constraints. Independently, results from quasar lensing and the SHMF

(78) seem to be more or less consistent with the Lyman-α constraints, bringing the

possibility of resolving small scale issues with SFψDM into question. On the other

hand, simulations of Milky-Way sized SFψDM halos are required to provide a full

picture of what SFψDM implies for the SHMF.

As a final note, we re-emphasize that simulating the effects of SFψDM on struc-

ture formation is very computationally intense if one wishes to resolve all relevant

length scales. In order to understand the effects of SFψDM on structure formation,

one must resolve the scales of galaxies and galaxy clusters as well as the deBroglie

scale of the SFψDM particles which can often be orders of magnitude smaller. At

this point, such a level of resolution has not been achieved by any 3D simulation

of SFψDM. Ultimately, higher resolution simulations of SFψDM may be necessary

to understand the full impacts of SFψDM on small-scale structure. Alternatively,

this opens the door for developing new and creative ways to model SFψDM physics

which might reduce the computational power required for such models.
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2

General Relativity and the Einstein Klein Gordon
Equations

2.1 The Hilbert Action

The Einstein Field Equations as posed in eq. 1.23 are the fundamental equations of

GR. Attributed to Hilbert in 1915, the EFEs are attainable via an action principle

formulation. That is, the EFEs are known to be the critical points of the Einstein-

Hilbert Action

SH “

ż

dV pR ´ 2Λ` 16πLMq “

ż

d4x
a

´ detpgqpR ´ 2Λ` 16πLMq. (2.1)

Here, R refers to the scalar curvature 1 (eq. 1.22) and LM denotes a matter La-

grangian. Computing the critical point of the action, and thereby the EFEs, amounts

to solving the condition of δSH “ 0. Then, a common scheme for this computation

is to consider variations with respect to the metric coefficients, gµν . The variation

of terms involving LM leads to a natural definition for the components of the SE

1 In this chapter, R is assumed to be the Levi-Civita form of the scalar curvature.
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tensor:

Tµν “
´2

a

´ detpgq

δpLM
a

´ detpgqq

δgµν
. (2.2)

The variation of the terms involving the scalar curvature reproduces the common

formula for the Einstein Curvature Tensor

1
a

´ detpgq

δpR
a

´ detpgqq

δgµν
“ Rµν ´

1

2
gµνR “ Gµν . (2.3)

Lastly, we list the variation of the cosmological constant term

1
a

´ detpgq

δ
a

´ detpgqqΛ

δgµν
“

1

2
Λgµν . (2.4)

Combining these variations results in the coordinate version of eq. 1.23.

δSH “
δSH
δgµν

δgµν “ 0 (2.5)

Gµν ` Λgµν “ 8πTµν (2.6)

2.2 The Einstein-Klein-Gordon Action

In GR, one can include the dynamics of matter fields at the action level by choosing a

form for the matter Lagrangian, LM . For this thesis, we are particularly interested in

including the dynamics of a massive scalar field φ, with a mass parameter m. Taking

inspiration from classical field theory, this is achieved by assuming the following

Lagrangian for the scalar

Lφ “ ´
1

2
|Bµφ|

2
´

1

2
m2
|φ|2. (2.7)

We note that this equation is valid for both real and complex scalar fields. The

corresponding SE tensor can be computed as defined in eq. 2.2. We express this
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quantity in coordinate free form as

Tφ “
dφb dφ̄` dφ̄b dφ

2m2
´

ˆ

|dφ|2

2m2
`
|φ|2

2

˙

g. (2.8)

Performing the variation with respect to the metric as in section 2.1 then results in

the EFEs with the above SE tensor. In addition, since φ is included at the action

level, one must consider the variations with respect to φ itself; this variation is well

known to produce the Klein-Gordon (KG) equation. We therefore reach the coupled

Einstein-Klein-Gordon (EKG) equations.

G` Λg “ 8πTφ (2.9)

lφ “ m2φ (2.10)

This set of equations describes a massive scalar field evolving under the influence of

its own self-gravity. Importantly, the coupling of the scalar to the metric can be seen

in the d’Alembert operator lφ “ 1?
´detpgq

Bλp
a

´ detpgqgλµBµφq.

2.3 Geometry and SFψDM

2.3.1 Weyl’s Uniqueness Theorem

The Einstein-Hilbert action of eq. 2.1 can be “derived” by making a few geometric

assumptions. To demonstrate these, let us first consider the part of the action integral

containing the scalar curvature. We can expand this term in coordinate expression

as

R “ pgikgjl ´ gijgklqgij,kl` (2.11)

gij,kgab,c

ˆ

3

4
giagjbgkc ´

1

2
giagjcgkb ´ giagjkgbc ´

1

4
gijgabgkc ` gijgacgkb

˙

Upon inspection, we can make several notes about this expression: (1) It contains

derivatives of the metric up to second order; (2) It is linear in the second derivatives
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of the metric; (3) It is a geometric invariant. It is an interesting fact that, up to

an additive constant, R is the unique invariant that satisfies these properties. This

was originally proven by Weyl in (94), though is sometimes referred to as Lovelock’s

theorem due to Lovelock’s further study of the theorem in (53). Most formally stated,

up to an additive constant, the most unique action which satisfies properties (1)-(3)

is, for a constant, c,

SH “ c

ż

dV pR ´ 2Λq. (2.12)

2.3.2 Actions with Non-Trivial Connections

One could think of the criteria for Weyl’s uniqueness theorem as a set of axioms for

formulating the action of GR. It is an interesting venture to try to modify these crite-

ria. For instance, we could suppose that the action contains other types of geometric

couplings. (7) proved that if one allows the action to contain not only derivatives of

the metric, but also derivatives of the connection, that one can reproduce the EFEs

with a coupling to the KG equation. Following their procedure, we can state this

formally by modifying the assumptions (1)-(3) of Weyl’s theorem. Suppose that we

instead assume that the action functional: (1*) Contains the metric and its deriva-

tives up to second order. (2*) Is of linear order in the second derivatives of the

metric. (3*) Contains the connection coefficients and their first derivatives. (4*) Is

quadratic in the connection and its derivatives. (5*) Is a geometric invariant. These

axioms allow the inclusion of terms involving the Difference and Torsion tensors from

eqs. 1.14 and 1.17. Actions obeying (1*)-(5*) can then be written rather concisely

as

S “

ż

dV pR ´ 2Λ´
c

24
|dγ|2 `QuadpDqq. (2.13)

The expression dγ is the exterior derivative of the three form defined by the fully

antisymmetric part of the difference tensor. As well, this is the only object involving

derivatives of the Torsion tensor which obey (4*). Explicitly, γ can be written in
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coordinate form in terms of the Torsion tensor as

γijk “
1

6
pTijk ` Tjki ` Tkijq. (2.14)

The expression QuadpDq is a function which is at most quadratic with respect to

the difference tensor. This expression can be build out of the irreducible compo-

nents of the difference tensor. Still following the discussion of (7), we will consider a

simplified case where these irreducible components are all zero, other than the fully

antisymmetric component, γ. Importantly, connections with a fully antisymmet-

ric difference tensor have the same geodesics as the Levi-Civita connection. Thus,

the connection which results from this simplification will have geodesics which are

equivalent to those of standard GR. We thereby reach the following action:

S “

ż

dV pR ´ 2Λ´
c

24
|dγ|2 `

c2

6
|γ|2q. (2.15)

2.3.3 Deriving the Einstein Klein Gordon Equations

At this point, we need just evaluate the equations of motion. The three-form γ can

be rewritten in terms of a vector field, v which is related to the Hodge dual of γ.

Explicitly, denoting the Hodge star as *, we have γ “ ˚pṽq where we have denoted

the one-form dual of v as ṽ. This brings the action to the form of

S “

ż

dV pR ´ 2Λ´ cp∇ ¨ vq2 ` c2|v|
2
q. (2.16)

We now compute the variations of the action similarly to section 2.1, but also

including the variations of the newly introduced vector field. Following the exact

computation in (7), the resulting equations of motion are

G` Λg “ cṽb ṽ´
1

2
pc2p∇ ¨ vq2 ` c2|v|

2
qg (2.17)

∇p∇ ¨ vq “ c

c2

v. (2.18)
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This system is equivalent to the EKGEs from eqs. 2.9 and 2.10 with a particular

choice of parameterization. That is, if we make one last redefinition and take φ “

p c
c2
q
1
2∇ ¨ v (equivalent to taking v9∇φ) we finally reach the expected form

G` Λg “ c

ˆ

dφb dφ´
1

2

´

|dφ|2 `
c2

c
φ2
¯

g

˙

(2.19)

lφ “
c2

c
φ. (2.20)

Finally, we need just identify the relevant constants as m “ c2
c

and c “ 16π to

reproduce the EKGEs.

2.3.4 Some Comments Regarding Connections

The fact that the EKGEs can be reproduced from purely geometric arguments as

in the previous section is extremely interesting in the context of the theory of GR.

In short, this computation demonstrates that having a connection which is not Levi-

Civita can have physical consequences. In the case of section 2.3.3, that consequence

is interpreted as a dark matter density. Importantly, the form of eq. 2.16 was reached

by restricting to a small subset of connections for which the difference tensor was

antisymmetric, thereby producing the same geodesics as the standard Levi-Civita

connection. Effectively, this means that the theory derived was physically equivalent

to usual GR in the presence of a scalar field SE tensor.

We emphasize, one could consider a more generic set of connections and arrive at

a different, more complicated result. That is, if one considers the other components

of the difference tensor, the theory will be distinct from GR in that it contains a

connection with geodesics different from those of the Levi-Civita connection. What

this implies and what such theories represent in a physical context is an open ques-

tion. In principal, one could modify the procedure of section 2.3.2 to include actions

which allow for such connections. Going further, interpreting the SFψDM theory as

being inspired by a non-trivial connection is an interesting alternative to the usual

particle physics inspired approach, and has the potential to make physically distinct
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predictions.

2.4 Spherically Symmetric Static Solutions

Complex valued scalar fields admit static solutions to the EKG equations which

are well characterized in the case of spherical symmetry (45; 72). These spherically

symmetric static (SSS) solutions can be described with the following ansatz for the

metric line element and the scalar field (35):

ds2
“ ´e2V prqdt2 ` Φprq´1dr2

` r2dθ2
` r2 sin2

pθqdφ2 (2.21)

φpr, tq “ Ψprqe´iωt. (2.22)

Here, we have written the scalar field φ in terms of its radial component, Ψ, multiplied

by an angular argument. In this ansatz, the function V prq is interpreted as the

gravitational potential and Φprq “ p1 ´ 2Mprq
r
q contains the mass enclosed by a

radius, Mprq. The variable ω is referred to as the static state’s frequency, which we

will see later is related to the total mass of the state. Inserting this above ansatz into

the EKG equations of eqs. 2.9 and 2.10 results in the following system of ordinary

differential equations (ODEs):

Mr “
4πr2

2m2

“

pm2
` ω2e´2V

qΨ2
` ΦΨ2

r

‰

(2.23)

ΦVr “
M

r2
´

4πr

2m2

“

pm2
´ ω2e´2V

qΨ2
´ ΦΨ2

r

‰

(2.24)

Ψrr `
2

r
Ψr ` VrΨr `

Φr

2Φ
Ψr “ Φ´1

pm2
´ ω2e´2V

qΨ. (2.25)

Bounded and physically realizable solutions require that Mp0q “ 0, Ψrp0q “ 0,

limrÑ8Mprq and limrÑ8 V prq to be finite, and limrÑ8 Ψprq “ 0. The central condi-

tions ensure regularity at the origin, while the limits ensure a finite mass, compact so-

lution. We will take the usual convention that V prq is negative and limrÑ8 V prq “ 0,
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Figure 2.1: SSS States: Visualization of SSS State wavefunctions and correspond-
ing density profiles. Top row depicts the ground state, bottom row depicts the 4th
excited state. Density profiles (right) are projected along the line of sight and placed
on a logarithmic color scale for visualization. The excited state is characterised by
the nodes of the wavefunction (left).

so that the potential V prq converges to the usual form of the Newtonian potential.

We note that this is not strictly required to compute bounded and compact solutions,

but can easily be achieved once such a solution is found. The equations are preserved

under the transformation of tV, ωu Ñ tV ` Ṽ , ωeṼ u. At the level of the metric line

element, this is equivalent to rescaling the time coordinate by a factor of e2Ṽ ; adding

a constant to the potential V prq amounts to a change of coordinates.

The behavior of the SSS wavefunctions, Ψprq, can be understood by considering

the right hand side of eq. 2.25. The term k2prq “ pm2´ω2e´2V q determines whether

or not Ψ displays oscillatory or exponential behavior. Since the potential V prq is

negative, solutions with ω ą m are always oscillatory, having an always negative
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k2prq; such solutions constitute an infinite mass, and are nonphysical. Likewise, only

solutions with ω ă m can display exponential behaviors, allowing exponential decay

to zero value. These solutions, given sufficiently negative V prq, can have an initially

negative value of k2prq and thus an oscillatory central region. Eventually, the solution

reaches a decay radius, Rd, at which kpRdq “ 0 and the oscillatory behavior converts

into an exponential decay. Each wavefunction, Ψprq, will therefore have a finite

number of nodes before eventually exhibiting an exponential decay. Counting the

number of nodes as n, the n “ 0 solution is referred to as the ground state solution,

while the n ą 0 states are referred to as excited states. Generically, we will refer to

a state of order n as an “nth-excited state.”

As described, bounded static solutions form a three-parameter family specified by

2 continuous parameters and 1 discrete parameter. A particularly intuitive parame-

terisation is fix the total mass and excitation number, n, of the solution by choosing

tm,Mtot, nu. In other words, for a fixed value of the particle mass, m ,and a fixed

value of total dark matter mass, Mtot, there exists a countable number of solutions

which are nth-excited states. There exists other ways to parameterize the states,

tm,Ψp0q, ωu for instance; fixing m and the central density amplitude Ψp0q, there is

a discrete set of ω which determine the nth-excited states.

Finding a family of nth-excited states is a computationally intensive process, but

can be achieved through basic numerical integration techniques. In the case of eqs.

2.23 - 2.25, finding an nth-excited state requires one solve a shooting problem for the

initial conditions Ψp0q and V p0q, as well as the frequency ω. We detail this procedure

in the Appendix for those who wish to compute the SSS excited states.

2.5 The Poisson Schrödinger Equations

The Poisson-Schrödinger Equations (PSEs), or sometimes dubbed the Schrödinger-

Newton Equations, are the non-relativistic and low-field analogs of the EKGEs. The

PSEs can be thought of as a modification of the usual Schrödinger equation in which

the relevant potential energy is taken to be the gravitational potential energy of
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the Schrödinger wave’s density as computed by the Poisson equation. This rather

intuitive construction can be immediately written down for a complex scalar field ψ

as

i
Bψ

Bt
“ ´

1

2m
∇2ψ `mV ψ (2.26)

∇2V “ 4π|ψ|2. (2.27)

Here, we identify the gravitational potential energy mV as being sourced from the

wave’s corresponding density |ψ|2. This system of equations was studied long before

the theory of Wave Dark Matter was founded in the context of boson stars (45; 72).

Boson stars are hypothetical objects formed by bosonic particles bound by their own

self gravity, usually motivated by studies of axion-like particles.

It is important to understand how the PSEs can be derived as the low-field and

non-relativistic limit of the EKGEs. We will describe two simple constructions which

are equivalent in this limit, one in which the scalar field is taken to be complex at

the level of the EKGEs and one in which the scalar field is taken to be strictly real.

Both of these cases can be effectively described by the PSEs for a complex scalar field

as in eqs. 2.26 and 2.27.

2.5.1 PSEs from a Real Klein-Gordon Field

The case of assuming a real scalar field at the level of the EKGEs comes with the

possibility of interpreting the scalar as an axion-like particle. We start from eqs.

2.9 and 2.10, taking φ to be a real scalar field and taking Λ ăă 1. The Λ ăă 1

approximation simply allows us to restrict to small scales at which the expansion

of spacetime is negligible, similar to galactic length scales. To apply the low-field

non-relativistic limit, we take the gravitational potential to be small, V ăă 1. This

can be achieved by assuming the following weak-field metric line element (detailed

in (40)).

ds2
“ ´p1` 2V qdt2 ` p1´ 2V qpdx2

` dy2
` dz2

q (2.28)

To obtain the PSEs we must also ensure that the boson is non-relativistic (i.e.
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low energy). This is usually done by parameterizing the real field, φ, as the real part

of a complex field, ψ, and then assuming that the energy of ψ is small. That is, we

write φ as

φ “
1
?

2
pψeimt ` ψ˚e´imtq. (2.29)

The small energy condition can then be expressed as

Eψ “ i
Bψ

Bt
ăă 1. (2.30)

This energy condition is equivalent to assuming that the energy of the real field, φ,

is close to its rest mass energy. In other words, this condition ensures the velocity of

the wave to be small. By taking the assumptions expressed in eqs. 2.28 thru 2.30 at

the level of the EKGEs in eqs. 2.9 thru 2.10 and lastly, retaining only leading order

terms of the potential, V , and its derivatives, one arrives at the PSEs of eqs. 2.26

and 2.27.

2.5.2 PSEs from a Complex Klein-Gordon Field

Assuming a complex scalar field at the level of the EKGEs is highly convenient in the

sense that it simplifies many computations. Moreover, complex scalar fields admit

solutions to the EKGEs which are long-time stable, something which real scalars

can only achieve in the low-field limit. Of course, irrespective of these benefits, the

low-field and non-relativistic limit is equivalent to the real case and is expressed by

the PSEs. This limit is taken similarly to the real case in that we can assume the

weak-field metric from eq. 2.28. The small energy condition can still be applied,

but must be slightly modified to account for the fact that Φ is already taken to be

complex. This results in expressing Φ in terms of a low energy complex scalar, ψ.

φ “ ψe´imt (2.31)

Eψ “ i
Bψ

Bt
ăă 1 (2.32)
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Combining these assumptions with the EKGEs of eqs. 2.9 and 2.10, again results

in the PSEs from eqs. 2.26 and 2.27, this time expressed in terms of a complex scalar

field ψ.

2.5.3 PSEs in Fluid Form: Madelung Transformation

The PSEs describe the density amplitude of the Schrödinger wave as ψ. By applying

the well known Madelung Transformation, one can convert eqs. 2.26 and 2.27 to a

form describing the density and velocity of a fluid (84). This transformation appears

as

ψ “
?
ρeiS (2.33)

~v “
1

m
∇S. (2.34)

Here, we interpret ρ “ |ψ|2 as the density of the fluid and ~v as the corresponding

fluid velocity. Inserting these parameterizations into eqs. 2.26 and 2.27 results in

the fluid form of the PSES:

Bρ

Bt
`∇ ¨ pρ~vq “ 0 (2.35)

B~v

Bt
` p~v ¨∇q~v “ 1

m
∇pQ` V q. (2.36)

Here, we have expressed the “quantum potential” asQ, which represents the following

formula:

Q “ ´
1

2m

∇2?ρ
?
ρ
. (2.37)

Further, the pressure of the scalar field can be written as a tensoral object:

P “
1

4m2
ρ∇b∇plnpρqq. (2.38)
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Lastly, we can express the energies and angular momenta of the wave. The kinetic

energy, potential energy, and angular momentum densities are respectively

k “
1

2m
|∇ψ|2 (2.39)

u “
1

2
mV |ψ|2 (2.40)

~l “ ~r ˆ pρ~vq. (2.41)

The total mass, M “
ş

pd3xρq, total energy, E “
ş

pd3xpk ` uqq, and total angular

momentum ~L “
ş

pd3x~lq are conserved quantities of the PS system and thus constant

in time.

2.5.4 Scaling Relations of the PS Equations

A well known and useful property of the PSEs is that they admit a set of exact scaling

relations (81). That is, once a solution to the system is found, another solution can

be generated by appropriately re-scaling the values of the original. There are two

scalings of interest: spatial dilation of the form xÑ αx, and scalings of the boson

mass of the form m Ñ βm. Under a spatial dilation, we can express the scaling as

follows for a positive scaling constant α:

tm,x, t, V, ψu Ñ tm,αx, α2t, α´2V, α´2ψu. (2.42)

Likewise, for scalings of the boson mass we take β to be positive, stating the relation

as:

tm,x, t, V, ψu Ñ tβm, x, βt, β´2V, β´1ψu. (2.43)

These two sets of scaling relations can of course be combined into a single line to

display the full scaling properties of the PSEs. For completeness this gives

tm,x, t, V, ψu Ñ tβm, αx, α2βt, α´2β´2V, α´2β´1ψu. (2.44)
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One could choose to express this relation for different types of re-scalings. For in-

stance, instead of considering spatial dilation like xÑ αx one could consider a scaling

of the wavefunction amplitude as ψ Ñ γψ. In this case we need only identify the

relationship between these scalings by taking α´2 “ γ.

All relevant physical quantities can be rescaled by an appropriate application of

eq. 2.44. For instance, to rescale the density, ρ, we make use of the relationship

of ρ “ |ψ|2, resulting in a scaling of ρ Ñ α´4β´2ρ. Likewise, the DM mass values,

energies, angular momentum scales transform respectively as

tM,E,Lu Ñ tα´1β´2M,α´3β´4E,α´1β´3Lu. (2.45)

An interesting and useful result of the scaling relationships just described is that each

solution is associated with many scale-invariant quantities. The most illustrative

example is the following product of half of the solution total mass, Mh, and the

radius containing half that mass, Rh:

I “ m2MhRh. (2.46)

One can see that no matter what values of α and β are chosen from eq. 2.44, the

value of I is unchanged. Another way to read eq. 2.46 is that for any given solution

the value of MtotRh lies on a hyperbola defined by the boson mass, MhRh “
I
m2 (see

fig. 2.2). Finally, this means that for any particular value of m, the product MhRh

is constant. Larger values of Mh necessarily correspond to smaller values of Rh and

vice-versa. For the case of a ground state soliton, the mass-radius relation can be

evaluated as in (42) to yield the following relation

Rh “ .335kpc

ˆ

109Md

Mtot

˙ˆ

10´22ev

m

˙2

. (2.47)

Any particular product of DM mass and radius corresponding to the PSEs will

form a similar invariant as in eq. 2.47. For instance, one can replace Mh with the

total mass, Mtot, instead and compute a similar relation. Going further, one can
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Figure 2.2: Hyperbolas of Constant m: Plot rendered with computational
units of m “ 100. Various re-scalings of the ground state mass profile are shown.
The half-mass radius is denoted on each curve by a black point. A hyperbola is
superimposed, demonstrating that MhRh “ constant for a fixed value of m.

construct characteristic functions which are invariant under rescaling. To illustrate,

we define the following function

Cprq “ m2Mprqr. (2.48)

Here, we denote the DM mass contained within a radius r as Mprq. We can see that

under a scaling as in eq. 2.44, that Cprq transforms as Cprq Ñ Cpαrq. Hence, if

we re-parameterize the function in terms of some characteristic radius, x “ r
Rh

for

instance, we will have a function, Cpxq, which is unchanged by the scaling of eq.

2.44.

Cpxq “ m2MpxqRhx (2.49)

For an illustrative example of the scaling relations, we refer the reader to fig. 2.4.

2.5.5 Poisson-Schrödinger Equations in SSS Case

It will be instructive as well as useful to describe the SSS states in the non-relativistic

and low-field limit. We will describe two ways of attaining the SSS equations for
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this limit. Firstly, we will directly apply the limit to the SSS EKG system in eqs.

2.23-2.25. Secondly we will attain the same set of equations by applying a similar

harmonic ansatz to eq. 2.22 to the already low-field and non-relativistic form of the

PSEs in eq. 2.26 and 2.27.

First, we consider the SSS EKGEs in eqs. 2.23-2.25. To apply the low-field and

non-relativistic limit, we apply two sets of approximations. To ensure the low-field

criteria we take the approximations that V ăă 1, Φ « 1, Vr ăă 1, and Φr ăă 1.

These are equivalent to assuming the metric to be close to the Minkowski metric.

The non-relativistic limit corresponds to taking the approximations of ω
m
« 1 and

Ψr ăă 1. This is equivalent to taking the group velocity of the DM to be small in

comparison to the speed of light. Applying these approximations then results in the

SSS version of the PSEs

Mr “ 4πr2
|Ψ|2 (2.50)

Vr “
M

r2
(2.51)

Ψrr `
2

r
Ψr “ 2mpm´ ω `mV qΨ. (2.52)

Eqs. 2.50 and 2.51 are the analog to the Poisson Equation. This can be seen by

computing the Laplacian of V prq in spherical coordinates and inserting the eqs. 2.50

and 2.51.

∇2V “ Vrr `
2

r
Vr “

Mr

r2
´ 2

M

r3
`

2

r
4πr2

|Ψ|2 “ 4πr2Ψ2
“ 4πr2

|ψ|2 (2.53)

Taking the low-field and non-relativistic limit therefore recovers the effective DM

density again as |Ψ|2.

Equation 2.52 plays the role of the Schrödinger equation of eq. 2.26. This equa-

tion can be computed directly by assuming the harmonic ansatz of ψ “ Ψeipm´ωqt

and applying it to eq. 2.26. We note that this is effectively the same as taking the

slightly different harmonic ansatz of eq. 2.22 at the level of the EKGEs and then
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applying the low-field and non-relativistic limit as described in section 2.5.2. The

additional factor of eimt cancels with the factor of e´imt from the approximation in

eq. 2.31, ensuring that the Klein-Gordon field matches the appropriate ansatz from

eq. 2.22. Further, we can identify the quantity of pm ´ ωq as an energy eigenvalue

for the static state. The low energy condition can be thought of as equivalent to the

low group velocity condition stated earlier, ω
m
« 1.

Solutions to the SSS PSEs are analogous to the ones described for the SSS EKGEs

described in section 2.4. Namely, they can be specified by their total mass and

number of wavefunction nodes, forming a family of excited states. We identify the

relevant wavenumber in this case as k2prq “ ´2mpm´ ω `mV prqq.

2.6 Properties of Solitons and Excited States

The SSS states have been studied in many contexts. The first instance of considering

the EKG system can be traced to (45) in which they were used to model systems of

self gravitating scalar particles commonly referred to as “Boson Stars.” Importantly,

complex scalars admit boson star solutions with the harmonic form of eq. 2.22. These

solutions form quasibound states, with only the ground state being long time stable

upon perturbations. The ground state boson star, otherwise known as the SFψDM

soliton has a critical mass value, Mc, above which the state will either collapse into

a black hole or reduce its mass by emission of scalar radiation. This mass value was

first computed by (44), and can be expressed in standard units as

Mc «
0.633~c3

Gm
« 8.5 ˚ 1011Md

ˆ

10´22eV

m

˙

. (2.54)

For comparison, in the 10´22eV regime, this mass value is comparable to that

expected for large supermassive black holes (with M87 having a mass of „ 109Md).

Soliton masses that are small in comparison to Mc can be considered in the low-field

regime, and are well approximated by the Poisson Schrödinger system. The soliton

itself will have a density distribution which is well approximated by the “core-halo”
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Figure 2.3: Core Halo Relation: The Core Halo relation plotted for the ground
state (left) as well as a 25th excited state (right). Plots rendered using units of m “

100 and value of ω “ 0.999m. The core-halo relation describes the density behavior
well, at least to leading order. Excited states generically have more compacted central
cores but greater total spatial extent.

relation from (76) (see fig. 2.3).

ρcprq “ ρ0

˜

1` .091

ˆ

r

rc

˙2
¸´8

(2.55)

Here, ρ0 is the central density and rc is the “core-radius” at which the density

has fallen to half of its central value. We note that while this relation is a good fit to

the ground state soliton, it also describes the leading order behavior of the excited

states fairly well, this can be seen in fig. 2.3. Importantly, the effective radius of any

particular state can be determined by its total mass. This is a result of the scaling

relations in eq. 2.44 for a constant value of m. The mass and radius of a ground

state soliton are given by eq. 2.47. Similar relations can be computed for the excited

states.

In a dark matter only context, the fact that excited state boson stars are unstable

is well established. In fact, it can be proven analytically that the ground state is the
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only SSS state with long time stability, at least in the low-field case (59). Generically,

the excited states will decay via emission of scalar radiation until a stable soliton

is formed. However, the presence of external gravitational potentials sourced from

other matter can have non-trivial effects on the stability of the states. In principle, a

sufficient amount of external gravity may allow some excited states to be stabilized.

This has been demonstrated for the first excited state in (59).

How excited states may manifest themselves in a physical context is an interesting

question. As seen in fig. 2.5, excited states have rotation curves which are naturally

flat at large distance. This is quite appealing in regards to reproducing galactic

rotation curves. The transient properties of excited states, such as their oscillation

frequencies and interference patterns, may carry over into the dynamics of more

complicated halos. Moreover, how superpositions of excited states might be seen in

galactic halos is actively researched (6; 37). The modelling of rotation curves will be

the primary focus of chapter 3, while a basic description of superposition states is

discussed in chapter 4.

2.7 Real Scalar Field Oscillatons

The case of the SSS states in section 2.4 are strictly for a complex field. Real scalar

fields do not admit time stationary solutions in the same sense. It is worth noting

that real scalar fields do admit “quasi-breather” solutions which are approximately

time periodic and approximately local in space; such solutions are referred to as

“oscillatons.” This was first demonstrated in (80). While the form of oscillatons from

(80) was not analytically verified as a solution to the EKGEs, numerical solutions

rapidly converge to the expected behavior. It is noted that the solutions may be

only “quasi-periodic” in that non-linear effects may be able to alter the oscillation

frequency. Nonetheless, (80) demonstrates the stability of oscillations on time scales

which are orders of magnitude greater than the oscillation period. Moreover, such

solutions were demonstrated to form under generic initial conditions, resulting from

Jean instability. Oscillatons were further pursued in (91), which computed their
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critical mass value as 0.607~c3
Gm

, which is quite similar to the critical mass in the case of

complex scalars. (91) further pursued the study of oscillations and investigated the

low-field version of oscillations, which can be described as a semi-analytic solution to

the PSEs. As a final note, this thesis is primarily concerned with the case of complex

scalars. Though the low-field limit of the real and complex cases coincide, real scalar

oscillations could display distinct properties at the level of the EKGEs which might

be relevant towards the growth of structure.
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Figure 2.4: Excited State Scalings: Here we show excited state solutions of
the SSS PSEs for n P r2, 6s. Each panel applies a different scaling condition. (Top
Left) States scaled to have the same central density. Higher excitation numbers in
this case correspond to greater spatial extent. (Top Right) States scaled to have
the same frequency value. The resulting solutions have central density decreasing
with n. (Bottom Left) States scaled to have the same total mass. Generically, higher
excitation numbers correspond to lower densities but greater spatial extent. (Bottom
Right) States scaled to have the same value of decay radius Rd. In this case, higher
excitation numbers correspond to halos with greater density and total mass.
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Figure 2.5: SSS Excited State Rotation Curve: Plot rendered with units of
m “ 100 and frequency ω “ 0.999m. The rotation curve of the N “ 10 excited state
and its wave function are shown. Left: The wave function along with its effective
amplitude (see section 3.3.1). Right: The corresponding rotation curve. The rotation
curve displays a step rise due to the high density soliton-like core. The rotation curve
is then approximately flat, with a gradual rise. Once the decay radius (indicated by
the vertical line) is reached, the rotation curve increases briefly, but then begins to
fall once the majority of the mass is enclosed.
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3

Wave Dark Matter and the Baryonic Tully-Fisher
Relation

This chapter is a documentation of my own work,(39), regarding the Baryonic Tully-

Fisher Relation (BTFR) and its relation to the Wave DM theory. In fact, we will

see that Wave DM provides a unique motivation for the existence of this empirically

measured relationship. This is a rather surprising result, and provides a novel model

for the BTFR unique to Wave DM theory. We follow with a discussion of how this

relation can be used to constrain the theory, placing a bound on the mass parameter

m.

3.1 The Baryonic Tully-Fisher Relation

3.1.1 The Tully-Fisher Relation

The TFR (distinct from the BTFR) is an empirical relationship first reported in 1977

by Brent Tully and Richard Fisher, originally suggested as a measure for the distance

to spiral-type galaxies (90). This relation states that the width of a spiral galaxy’s

21cm spectral line, a distance independent observable, can be related to its absolute

magnitude. This is particularly useful in that the derived absolute magnitude of the

galaxy can then be compared to its apparent magnitude, providing a tool to measure
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the distance to that galaxy.

The TFR, stated more formally, relates a spiral galaxy’s absolute magnitude, L,

to its 21cm spectral width, δ, through the following proportion, for some positive

exponent, x:

L 9 δx. (3.1)

The galaxy’s absolute magnitude can be converted to its total stellar mass, Ms

through the stellar-mass-to-light ratio, Υ˚.

Ms “ Υ˚L (3.2)

The galaxy’s 21cm spectral width relates directly to its maximal rotational velocity,

vm. This can be understood as a result of the relativistic Doppler effect; one side

of the galaxy will experience a redshift as it rotates “away from us” while the other

side will experience a blueshift as it rotates “towards us,” resulting in a spreading

of the 21cm hydrogen emission line. For galaxies with an “edge-on” inclination, one

expects the line width and rotational velocities to relate as

δ 9 vm. (3.3)

Combining eqs. 3.1, 3.2 and 3.3, the TFR can be restated as a proportionality

between a spiral galaxy’s stellar mass and its rotational velocity. Put simply, it

states that more massive spiral galaxies rotate faster.

Ms 9 vxm (3.4)

3.1.2 The Baryonic Tully-Fisher Relation

The Baryonic TFR (BTFR) was suggested in 2000 by Stacy McGaugh (60) as a

modified version of the original TFR. McGaugh noticed that the TFR, as stated in eq.

3.4, failed to describe low surface brightness (LSB) galaxies. This was explained by

noting that LSB galaxies have a higher fraction of their mass contained in gas than do

higher brightness spirals. Due to this higher gas fraction, LSB galaxies have greater

rotational velocities than one would infer by only considering their measured stellar
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Figure 3.1: Observed BTFR: The BTFR as reported by the SPARC Survey
(omitting error bars). On a logarithmic scale the relation appears as linear. This
visualization assumes a stellar-light-to-mass ratio of Υ˚ “ 0.5Md

Ld
. Qualitatively,

higher values of Υ˚ correspond to steeper slopes.

mass; the TFR therefore underestimates the velocities of LSB galaxies. McGaugh

proposed that this issue could be resolved if one modified the relation of eq. 3.4 to

include the total baryonic mass, Mb, of the galaxy instead of only its stellar mass.

This results in the BTFR,

Mb 9 vxm. (3.5)

The value of the BTFR exponent, x, is a topic worthy of discussion and an actively

researched topic. Various systematic choices affect the inferred value of x. For

instance, it is shown in (48) that the treatment of the stellar-mass-to-light ratio,

Υ˚, directly impacts the measured value of x. More so, one would expect different

galaxy samples to have different values of Υ˚, depending on their stellar content.

Even further, the value of Υ˚ may vary within individual galaxies (5), adding to the

difficulty of determining a sample’s mass distribution. It is suggested in (48) that this

issue can be avoided, or at least remedied, by considering luminosity measurements

in the near-infrared wavelength bands. Systematics aside, x usually takes some value

between x “ 3 and x “ 4.
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3.1.3 The SPARC Survey

In the later parts of this chapter, we will use a SFψDM model to compute a fit

to the actual BTFR. This section is dedicated towards describing the observational

data sample that we use for the fitting procedure, known as the Spitzer Photom-

etry and Accurate Rotation Curves (SPARC) survey (49). SPARC consists of 175

extended rotation curves collected from the 21cm Hydrogen (H1) emission observa-

tions of several large surveys: the Westerbork Synthesis Ratio Telescope (WRST),

the Very Large Array (VLA), the Australia Telescope Compact Array (ATCA), and

the Giant Metrewave Radio Telescope (GMRT). The rotation curves are paired with

infrared images from the Spitzer archive which detail the stellar distributions of the

corresponding galaxies. The total sample contains both spiral and irregular galaxies,

spanning 3 degrees of magnitude (dex) of surface brightness, 5 dex of stellar mass,

and a variety of gas fractions.

Each galaxy in the SPARC survey is decomposed into its various mass compo-

nents. The galaxy total mass is computed from the rotation curve by inverting the

Newtonian rotational velocity, eq. 3.9. To infer the dark matter mass, one must then

decompose this total into the DM and baryonic mass contributions.

Mtot “MDM `MB (3.6)

SPARC reports the baryonic mass as decomposed into several components: gaseous

mass, Mg, the mass of the stellar disk, Ms, and the stellar bulge, Mb. Described in

detail in (49), this decomposition is computed as follows:

MB “Mg `Υ˚Ls `ΥbLb. (3.7)

Here, we have introduced the notation of the stellar-light-to-mass ratios represented

by Υ˚ and Υb. These ratios are used to convert observed luminosity data into data

regarding total stellar mass. For instance, the stellar disk mass is computed as

Ms “ Υ˚Ls. For most cases, it is a reasonable approximation to take Υb “ Υ˚.

However, some adjustments should be made for cases in which the stellar bulge is
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particularly prominent. In those cases, SPARC uses the value of Υb “ 1.4Υ˚.

Figure 3.2: SPARC Data Sample: (Top left) All 175 SPARC Rotation Curves
plotted in physical units. (Top right) A single rotation curve isolated from the survey
and the corresponding contribution from baryons. (Bottom left) The same curve as in
the top right, but parameterized in terms of the maximum circular velocity and core
radius. (Bottom right) An equal weighting average of all SPARC curves. Average is
computed by taking a spline of each rotation curve, and then averaging all splines
for each value of r

rc
. If an individual curve lacks data at a radius, it is not included in

the average for that radius. This is similar to the averaging procedure used in (24).

The stellar luminosities of each galaxy, Ls and Lb, are computed by perform-

ing a disk-bulge decomposition of its 3.6µm surface brightness distribution. The

wavelength of 3.6µm is chosen for SPARC since it is expected that the value of

Υ˚ is approximately constant between galaxy samples at this value. The particular
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decomposition used for SPARC assumes a stellar disk with an exponential vertical

distribution and a stellar bulge with a strictly spherical distribution. It is noted that

the uncertainties in this procedure are dominated by the value of Υ˚ as opposed

to the particular choice of geometry. Finally, the gaseous mass is inferred from H1

surface density profiles. To adjust for the presence of Helium, the total gaseous mass

is taken to be a multiple of the total H1 mass Mg “ 1.33MH1.

We use a specific set of 118 samples from the SPARC survey that were prepared

in (48) to generate the observed BTFR. These samples were selected based on having

flat rotation curves as well as small angles of inclination with respect to the line of

sight. For the sake of preparing this sample, the total baryonic mass of each galaxy

is estimated with the total luminosity in the 3.6µm band, Lr3.6s.

Mb “Mg `Υ˚Lr3.6s (3.8)

We note that this is equivalent to taking the assumption that Υb “ Υ˚ in eq. 3.7. The

corresponding circular velocity for the BTFR is extracted from that galaxy’s SPARC

rotation curve. (48) takes this velocity to be that of the “flat” part of the rotation

curve and details an averaging procedure to compute this velocity. This procedure

first computes the average of the two outermost points of the rotation curve; then, the

average is recomputed by including the next outermost point, stopping the procedure

once the next point differs by more than 5% of the previous average.

3.2 Wave Dark Matter and the BTFR

3.2.1 A Wave Dark Matter Tully-Fisher Relation

Though the BTFR describes a galaxy’s baryonic mass content, the galaxy’s rota-

tional velocity is a function of its total mass content. This can be understood through

the Newtonian formula for a galaxy’s circular orbits, and therefore rotational velocity.

vprq “

c

Mprq

r
(3.9)
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Figure 3.3: Tully-Fisher Boundary Conditions: A depiction of the boundary
conditions applied by Goetz (35). Each excited state is scaled to have the same
amplitude at its decay radius. (Top Left) A single excited state, vertical line denot-
ing the decay radius, horizontal line denoting the boundary amplitude. (Top Right)
Three consecutive excited states under the same boundary condition. (Bottom Left)
Zoom of the red boxed region showing the boundary condition applied at each de-
cay radius. (Bottom Right) The decay radii for this boundary problem increase
empirically as Rd9

?
n.

The function Mprq describes the total mass contained within a galactocentric radius

of r. The maximal velocity from the BTFR, vm “ maxpvprqq, therefore depends

both on the distribution of baryonic matter, as well as the distribution of dark

matter. In fact, most galaxies have rotation curves which are highly dominated by

the distribution of dark matter, with upwards of 90% of their mass being contained

in the form of dark matter. In this regard, the BTFR, though observed through the

dynamics of baryons, can be considered a result of the behavior of dark matter.

A possible connection between the BTFR and the Wave Dark Matter theory was

observed in the thesis of Andrew Goetz (35). Goetz observed that a relationship
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similar to the BTFR could be recovered from Wave-Dark Matter excited states.

This relationship was recovered by imposing a particular type of boundary condition

to the excited states at their decay radius (as defined in section 2.4). Formally, given

an nth excited state radial wave function, Ψn, with decay radius Rn, the boundary

condition is stated as

ΨnpRnq “ Ψ̄. (3.10)

In other words, fixing the same amplitude of the radial wave function at the decay

radius for each excited state recovers a family of solutions which obey a Tully-Fisher-

Like relationship for dark matter halos. That is, extracting the rotation curves from

these states results in the following relational form for the excited states,

Mn,tot 9 vxn,max. (3.11)

Even further, analytical arguments in (35) suggest that the boundary condition of

eq. 3.10 produces a Tully-Fisher slope of x « 3.4 in the low field regime. Importantly,

this boundary condition is always applied at the decay radius, marking the transition

of the halo’s oscillatory behavior to an exponential decay. In a qualitative sense, this

boundary condition can be thought of as setting a density scale in the outer regions

of the halo (seen in fig. 3.3), with the decay radius being the scaling point. In other

words, at the decay radius, each excited state will have the same density given this

condition. The relation corresponding to eq. 3.11 can be seen in fig. 3.4.

3.3 A Toy Model for a Wave Dark Matter Galaxies

The primary goal of this chapter is to simulate the BTFR using SFψDM theory in

order to place a constraint on the SFψDM mass, m. We will compare and fit the

simulation to the observed BTFR as reported by the SPARC survey. Since the BTFR

relates a galaxy’s baryonic mass to its rotational velocity, a quantity depending on

both its baryonic and dark matter content, making this comparison will require us to

provide a good model for both the baryonic and dark matter contributions of Tully-

Fisher galaxies. We will organize this section into four primary parts: The first
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Figure 3.4: SFψDM TF-like Relation: Result of the boundary problem shown
in fig. 3.3. (Left) Observed BTFR from SPARC. (Right)Dark matter only (DMO)
analog of the BTFR generated from the first 200 solutions of the boundary problem.
This illustrative case chooses Ψ̄ “ 1. Slope of relation converges to 3.4 for large
values of n.

part will describe how to model SFΨDM halos as generic solutions to the EKGEs;

the second section will describe various quantities and properties of Spherically SSS

SFψDM halos in a purely DM-only context; thirdly, we will discuss how to include a

baryonic contribution at the level of the PSEs; finally, we will describe a SSS model

for both components which will be used in the following to model the BTFR.

3.3.1 Generic SFψDM Halos

In section 1.4.4, we described SFψDM halos as complicated and turbulent wave

structures. Simulations of halos formed in a bottom up fashion display finite density

soliton cores surrounded by a region of fluctuating “quasiparticles” which eventually

converges to an NFW-like profile. Our ultimate goal will be to model these halos

with generic solutions to the EKGEs represented by a wavefunction ψp~r, tq. The

main difficulty in computing these solutions stems from the coupling of the Klein-

Gordon equation to the spacetime metric determined by the Einstein equations.

This results in non-linearity which is difficult to approach in a general context. We

can attempt to circumvent this issue by fixing the spacetime metric and effectively

decoupling the Klein-Gordon equation from the Einstein equations. In the case of
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a fixed metric, the Klein-Gordon equation itself becomes linear. One could then

expand the wavefunction ψp~r, tq as a linear combination of functions involving the

spherical harmonics, Y m
l pθ, φq. For the case of a complex scalar field these terms

appear as

ψmnlp~r, tq “ rlY m
l pθ, φqΨlnprqe

iωnlt. (3.12)

We note that a similar model has been used in (7) for the case of a real scalar field

with a flat background metric. Hypothetically, if a halo resides in a fixed gravita-

tional potential, one could compute the best linear combination of these functions

to represent the halo. In reverse, understanding such solutions could give insight to

the dynamics of halos.

As a first step towards understanding more general solutions to the EKGEs we

consider the case of l “ 0 for a single frequency. This results in the ansatz for the

SSS states discussed in section 2.4.

ψp~r, tq “ Ψprqe´iωt (3.13)

Even reintroducing the coupling to the spacetime metric, the case of the SSS states

can be categorized as in Chapter 2. Importantly, this provides a justification for

modelling SFψDM halos as SSS excited states, at least to the leading order. We

will explore the viability of using this leading order approximation in the context

of producing the BTFR. Specifically, we will generate each halo with a single SSS

excited state. In chapter 4, we will extend this discussion to include basic super-

positions of such states.

3.3.2 Dark Matter Only SSS Halos

The SSS solutions described thus far are DMO states. Though ultimately we want

to describe states which include baryonic matter, itemizing and understanding the

properties in the DMO case is instructive and useful. We show an example of a DMO

halo in fig. 3.5. Firstly, for the sake of simplicity, we will take SSS form of the PSEs

in eqs. 2.50 - 2.52. We identify the following quantities:
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• m: The SFψDM particle mass.

• ψpr, tq: The halo total wavefunction.

• Ψprq: The radial wavefunction component.

• V prq: The halo gravitational potential.

• Mprq: The DM mass contained within a sphere of radius r.

• n: The SSS state excitation number.

• vcircprq “
b

Mprq
r

: The velocity of a circular orbit at radius r.

• ω: The static state frequency.

• ρprq “ Ψprq2: The DM density.

• k2prq “ ´2mpm´ ω `mV prqq: The halo spatial frequency.

• λprq “ 2π
kprq

: The halo local wavelength.

• A2prq “ Ψ2prq ` Ψ2
r

k2prq
: The wavefunction amplitude (described below).

• Rd: The decay radius specified by kpRdq “ 0.

• limrÑ8Mprq “Mtot: The total DM mass.

• limrÑ8 V prq “ V8: Potential at infinity set by convention.

The set tΨprq, V prq,Mprq, ωu describes a physically reasonable solution if V8,

Mtot, and Ψprq are finite. Moreover, to avoid singular behavior at the origin, Ψrp0q “

Mp0q “ 0 must be enforced. The only such solutions are the SSS states as described

in section 2.4. The value of V8 is a convention; we will take the usual value of V8 “ 0.

It should be noted that the ability to shift V8 by a constant remains a useful feature

of this set of ODEs.
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The wavelength and amplitude functions, λprq and Aprq, are constructed specif-

ically for the purpose of modelling the BTFR. The main reason for this is that the

quantity λ2A forms a scale invariant which will be useful for applying halo bound-

ary conditions. Discussion of this quantity is contained later in section 3.4.2. The

amplitude function is constructed by assuming the radial wavefunction to have local

behavior similar to the following

Ψpr `Rq “ ApRq sinpkpRqr ` δpRqq (3.14)

This essentially decomposes the oscillating behavior from its amplitude, at least in an

approximate sense. The wavelength quantity is a direct result of the form of the ODE

in eq. 2.52. Importantly, the wavelength and amplitude quantities diverge and begin

to lose their physical interpretations at the decay radius, Rd since kpRdq “ 0. This

is merely a result of the transition of the wavefunction from its oscillating behavior

to its exponentially decaying behavior. The value of ω can be related to the total

mass of the halo. For the case of a fixed excitation number, n, and assuming V8 “ 0,

smaller values of ω will correspond to halos with a greater total mass. This can be

understood by considering the energy eigenvalue of the wavefunction ψ at the level

of the Schrödinger equation. The energy relates to ω as E9pm ´ ωq. Smaller ω

then correspond to greater energy and therefore larger total mass. Interestingly, for

a fixed value of ω, the mass of halos scales in an approximately linear fashion with

excitation number (36).

Mωpnq « pn` 1qMωp0q (3.15)

3.4 On Halo Boundary Conditions

3.4.1 Physical Motivation

As described in section 3.2 and (35), the global properties of SFψDM excited states

can vary greatly depending on the imposed boundary conditions. Importantly, choos-

ing the boundary condition of eq. 3.10 which is imposed at the halo decay radius

reproduces a trend very similar to the BTFR. We wish to specify a set of physically
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Figure 3.5: Example DM-Only Halo: Example of the n “ 50 SSS Excited state.
State prepared with units of m “ 100 and ω “ 0.999m for ease of computation. All
vertical lines correspond to the decay radius Rd. (Top left) Radial wavefunction
and corresponding amplitude function as defined in section 3.3.1. (Top right) Cor-
responding gravitational potential using the convention V8 “ 0. (Bottom left) The
mass function. (Bottom Right) The rotation curve.

motivated boundary conditions that will reproduce this property that can be applied

to our model of the BTFR.

In fig. 3.6, we depict a SFψDM halo as an N-body system of DM particles (or

quasiparticle fluctuations). This image will serve as the motivation for our boundary

conditions. We compare this to an N-body system of stars forming a globular cluster.

Though these two systems would occur at vastly different physical scales, we only

wish to compare the qualitative properties resulting from the N-body dynamics.

In the central region of the halo, the individual DM particles overlap significantly

due to their number density. In comparison, the particles in the outer region are

further separated and can be seen as individual points. We suggest that SFψDM
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Figure 3.6: Background Boundary Conditions: A motivation for SFψDM
boundary conditions. Top left: A system of DM particles placed to emulate an N-
body system; particles are uniformly distributed by radius, and randomly distributed
by angle. Saturation effects are applied for visualization. Top right: A globular
cluster demonstrating a real N-body system. Bottom left: The same as the top left
image, but distributed uniformly in angle to compare to a spherically symmetric
setting. Bottom right: A possible description of SFψDM halos. As seen in the
top left image, the particles become densely packed in the central regions of the
halo resulting in a large amount of interference and overlap. In the bottom left
image, we can identify the radius at which the particles begin to display substantial
overlap, this is shown with a red circle. Outside of this boundary the particles can be
individually resolved while inside the boundary they cannot. The bottom right image
suggests describing the central region as a fully nonlinear solution to the EKGEs,
characterized by the overlap of the halo’s many DM particles. The outer region of
the halo can then be thought of as an N-body problem of DM particles evolving in
the gravitational well of the halo.
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halos display a boundary between two such regions, indicated by the red circle in the

figure.

We depict the same image in a spherically symmetrized setting in the bottom left

panel. Importantly, the number density of the DM particles becomes great enough

in comparison to the particle size that the particles begin to overlap. We suggest

that the particle size and density are related to the wavelength and density of the

aggregate DM halo. Denoting the amplitude and wavelength scales as ρDM and λDM

this gives us our first notion of a galactic boundary condition. That is, at some

generic radius depending on the halo, R, the halo has a preferred scale

pρpRq, λpRqq “ pρDM , λDMq. (3.16)

We then account for the fact that the halo itself will display density oscillations

of the order ρDM by considering the amplitude function, Aprq, as opposed to the

wavefunction. We therefore define a boundary value ADM , and propose the boundary

problem to be

pApRq, λpRqq “ pADM , λDMq. (3.17)

Finally, we present a more generic depiction of our boundary condition in the

bottom right panel of fig. 3.6. Conceptually this can be thought of as follows: DM

particles are sufficiently dispersed in the outer regions of the halo, and thus form an

approximate N-body system. Eventually, as one moves towards the center region, the

particles begin to significantly overlap and can no longer be individually resolved.

This overlap causes a non-linear interference between the particles and should be

thought of as being governed by the EKGEs.

As a last point regarding fig. 3.6, we note that there are various interpretations

of the DM particles. It is a tempting analogy to think of each DM particle as a

SFψDM soliton since the soliton state is the only truly stable SFψDM configuration.

On the other hand, such an interpretation has never been realized in simulation.

Simulations of halos formed in a bottom-up fashion from solitons generally display

an outer region populated with quasiparticle fluctuations. In regards to our boundary
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condition, the values of λDM and ADM should reflect the relative size and amplitude

of these quasiparticles. It is a separate question to ask whether or not sufficient

quasiparticle fluctuations can result in the condensation of solitons within galactic

halos. This has never been demonstrated, though one would expect this process to

occur if the quasiparticle region reaches the “kinetic regime” as in (50). This becomes

more and more likely at higher values of the m where the quasiparticle wavelength

becomes smaller in comparison to the overall halo. Further, in the case that SFψDM

has a self interaction term, it has been shown that multiple solitons can form within

a halo (11). This then begs the question “Does soliton condensation occur within

galactic halos, and if so does it have a preferred length scale?”

3.4.2 Amplitude-Wavelength Boundary Conditions

We now detail the boundary problem which we will solve in order to generate the

BTFR. We wish to fix the amplitude and wavelength scales of the SSS states following

the discussion of the prior section. This requirement can be stated as

AnpRnq “ ADM (3.18)

λnpRnq “ λDM . (3.19)

In other words, we wish to choose some characteristic scales denoted by ADM and

λDM , and fix them at some generic value of radius Rn for each excited state. This

boundary problem can be straightforwardly solved using shooting problem methods.

However, it is faster and more revealing to make use of the PS scaling relationships

described in section 2.5.4. Firstly, we will consider scalings for the case of a fixed

boson mass, m. This is equivalent to taking the rescaling parameter β “ 1 in eq.

2.44. As a result of the scaling relationships in eq. 2.44, we can define a function

based on the amplitude and wavelength functions which is invariant upon rescalings

for constant values m.

Inpxq “ λ2
npxqAnpxq (3.20)
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Here, for convenience, we define the dimensionless radius, x, as the fraction of the

decay radius, x “ r
Rd,n

. The boundary problem posed in eq. 3.17 can then be

solved by locating the characteristic radii, Xn, for each excited state which allows

the following product condition be satisfied.

InpXnq “ IDM “ λ2
DMADM “ λ2

pXnqApXnq (3.21)

Once each radius, Xn, is found, we identify this point as the scaling boundary. While

this radius ensures λ and A have the correct product, it does not necessarily ensure

the individually desired values of λDM and ADM . To completely solve the boundary

problem and produce the correct amplitude and wavelength for the excited state

boundary, one then applies the scaling relations in eq. 2.44 so that the correct values

are attained.

To summarize, we can use the following procedure to solve the boundary problem

for a particular excited state: (1) Choose a value of m and boundary values for ADM ,

λDM ; (2) Compute a SSS excited state of order n; (3) Compute the function Inpxq

for that state; (4) Find the intersection of Ipxq with IDM and denote this intersection

point as Xn; (5) Choose a value of the scaling parameter α which gives the excited

state the appropriate value of ADM .

We depict a family of Amplitude-Wavelength functions, eq. 3.20, and the cor-

responding boundary value in fig. 3.7. In the left panel we depict the boundary

problem with a single excited state. On the right panel we show the corresponding

functions for the first 25 excited states. The functions InpXnq display several features

which have important implications for the boundary problem in eq. 3.17: Each In

has a minimum value and also diverges at the decay radius Xn “ 1. The divergence

at Xn “ 1 can be easily understood as due to the divergence of λDM and ADM at the

decay radius. Further, for any given n “ N , INpXNq bounds all the InpXnq of greater

excitation number from above. That is, INpXq ą InpXq for all n ą N . This property

is an observed trend from on our computational results. In combination with each

In having a global minimum, this feature allows one to determine whether or not a
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Figure 3.7: Amplitude-Wavelength Functions: (Left) The Amplitude-
Wavelength boundary problem plotted for a single excited state. The excited state
density as well as the invariant corresponding to eq. 3.20. (Right) The family of
excited state invariants for a fixed m. Each excited state is bounded by above by
the prior state. All states display a divergence at the decay radius. Some states can
be excluded from the boundary problem by the choice of IDM , as they will display
no real intersection.

particular In is capable of achieving the prescribed boundary value. If IDM ă IN,min,

then the state will never intersect the boundary value and can therefore never achieve

the prescribed values. Further, all other states with n ă N will have the same issue.

One could, in principle, use this to exclude low excitation states from the family of

solutions by appropriately decreasing IDM .

Given a state IN and a value of IDM ą IN,min, there will be two values of XN

which are candidates for the boundary radius defined by the two intersections of IDM

with IN . We note that applying the boundary condition at the leftmost intersection

point, closest to the origin, does not reproduce a BTFR-like relation. This is due to

the fact that the intersection points for successive values of N will be at smaller and

smaller values of Xn, making the boundary radius a smaller fraction of the overall

halo size. This directly conflicts with the expectation of more massive galaxies to

have higher excitation and therefore greater spatial extent. For these reasons, we do
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not consider the leftmost intersection. The rightmost intersection point generically

occurs in the outer regions of the DM halo. In fact, as one takes the limit of nÑ 8,

the intersection point limits to the decay radius Xn “ 1. This will generate the same

boundary problem as investigated by Goetz in eq. 3.10, scaling the DM halos at

their decay radius. Further, this implies that the prescribed value of IDM will not

affect the limiting behavior of the boundary problem as long as IDM ą 0 is strictly

enforced.

3.5 Including Baryonic Contributions in SSS States

Though the gravity which generates a galaxy’s rotation curve is mostly sourced

from DM, the BTFR directly relates the rotation curve to the galaxy’s baryonic

content. Simulating the BTFR for SFψDM will therefore require us provide a working

description of that baryonic content as well as how it alters the shape of the DM halo.

At the level of the PS system, this can be thought of as including additional sources

of gravity via the gravitational potential, V . Thus, we will consider the inclusion of

spherical external densities, ρext. The corresponding gravitational potential, Vext, is

taken to be a solution to the Poisson Equation

∇2Vext “ 4πρext. (3.22)

We then reach a slightly modified version of the PSEs which include this gravitational

potential.

i
Bψ

Bt
“ ´

1

2m
∇2ψ `mpV ` Vextqψ (3.23)

∇2
pV ` Vextq “ 4πp|ψ|2 ` ρextq (3.24)

Given that the SSS SFψDM states described in the prior sections reproduce such

a promising trend in their rotation curves, we would like to preserve the SSS ansatz

as much as possible. To achieve this, we still assume the DM wavefunction ψ to have

the SSS form from eq. 2.22. In addition, we consider external densities which are as

well spherical and static, ρextprq. We therefore reach the analogous versions of eqs.
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2.26 and 2.27 but with an external baryonic contribution.

Figure 3.8: SFψDM Halo with Baryonic Contribution: Figures rendered
using units of c = G = ~ = 1, m = 100, and frequency of ω “ 99.9. The effects
of including additional matter contributions. An external density of ρprq “ Ke´Cr

(described later in section 3.6.1) is used. Total dark matter fraction is set to 90%.
The DM fraction at the baryon half mass radius is set to 50%. Top: The overall DM
wavefunction displays minimal change from the inclusion of the external component.
Bottom left: Including external components can greatly affect the overall shape of
the rotation curve. Sizeable contributions near the central region tend to flatten the
overall rotation curve. An analogous DMO halo is included for comparison. Bottom
right: Mass functions corresponding to the top two plots, again including a DMO
analog. A contraction of the overall galaxy as a result of including the external
matter is evident, and can be seen by comparing the two DM halos.

This ansatz now describes a SSS distribution of DM, represented by the wavefunc-

tion ψ, under the influence of SSS external potential sourced by ρext. The solutions

to these equations should be thought of as similar to those of the DM-only setting

but with alterations in shape which depend on the relative size and distribution of
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the external density in comparison to the DM density. An example of such an al-

teration is shown in fig. 3.8. In most galactic contexts, the relatively small ratio of

baryonic mass to DM mass will result in small changes to the overall solution for

ψ in comparison to the DM-only setting. However, the resulting appearance of the

rotation curve can change significantly, even from small external contributions.

Computing the analog of SSS excited states in the presence of a background

baryon density can be achieved with similar methods to the DM-only case. Using

a method similar to (59), we compute these states by the use of a continuation

parameter, γ. That is, we solve the system in eqs. 2.50-2.52 with the substitutions

of

M ÑM ` γMext (3.25)

V Ñ V ` γVext (3.26)

The parameter γ is initially set to 0, resulting in a DM-only state. Then, the value

of γ is increased in small increments and the system is resolved until γ “ 1, including

the full external contribution. Otherwise, the solving routines are analogous the the

DMO case in the Appendix.

Later, once we compute solutions with appropriate baryonic contributions, we

will want to rescale the solutions to match the observed BTFR. In this case, we need

to make use of the scaling relations of the PSEs in section 2.5.4. This can be achieved

as long as the same relations are applied to the external components Vext and ρext.

That is, as long as the external density and potential are rescaled in the same way

as their DM analogs, then the scaling relations can be applied.

3.6 Modelling the BTFR with SSS Excited States

In this section we detail a particular method for using the BTFR to constrain the

mass parameter of the SFψDM theory, m. This method will combine the various

aspects of the SSS excited states discussed so far. Described briefly, we solve for

the SSS excited states in the presence of a static baryon density. We will choose
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the baryonic component to have mass fractions comparable with observation and

well known galactic simulations. Finally, we will apply a version of the Amplitude-

Wavelength boundary condition detailed in section 3.4.2 to each excited state in order

to fix the density scale of the halo’s outer regions. We then extract the relevant

velocity and mass data and vary this boundary condition until a best fit to the

observed BTFR is reached.

3.6.1 Spherical Baryonic Contributions

First, we choose the baryonic component to be spherically symmetric and static

so that the methods from the prior section can be applied to the excited states.

Specifically, we choose the external baryonic density to be of the following exponential

form

ρextprq “ Ke´Cr. (3.27)

Assuming that this distribution solves the Poisson equation, it corresponds to a

gravitational potential of

Vextprq “
´4πK

C3

ˆ

2

r
p1´ e´Crq ´ Ce´Cr

˙

. (3.28)

Conveniently, the values of K and C relate to the total mass and the effective radius

of the external baryonic component. Solving for the total mass and half mass radius

of this distribution yields

Mext,tot “
8πK

C3
(3.29)

Rext,h “
2.67

C
. (3.30)

In order to choose values for C and K, we will fix the values of the total dark matter

fraction, ftot “
MDM

Mtot
and the dark matter fraction at the baryon half mass radius

from eq. 3.30, fh. This can be achieved through standard shooting problem methods.

We will sample fractions which are consistent with the IllustrisTNG simulations in

(52), using fractions in the ranges of ftot P r0.7, 0.9s and fh P r0.5, 0.9s.
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To summarize, we compute SSS excited states, paired with an appropriately

proportioned baryonic density with the following procedure: (1) Choose target values

for ftot and fh and compute the excited state without an external contribution. (2)

Choose the constant C for the external contribution to be some reasonable value in

comparison to the length scale of the excited state. (3) Compute a value of K which

gives the correct total external mass such that the desired fraction ftot is satisfied. (4)

Using the chosen values of K and C, include the external density via the continuation

parameter method described in section 3.5. (5) Extract the attained values for ftot

and fh. The value of ftot should be close to the target but fh may or may not. (6)

Adjust the values of C and iterate starting at step (2) so that the attained fh is

closer to the target. Usually, a larger value of C will correspond to a larger value of

fh. (7) Repeat this procedure until the desired fractions are reached.

3.6.2 Applying Boundary Conditions

The SSS states with their external baryonic components can be computed as in

the prior section at any convenient scale. For instance, we choose to first compute

the states for a constant value of the frequency parameter ω in order to simplify

the computational routine. We will wish to apply scalings so that the family of

excited states reproduces a BTFR, similar to the relation described in section 3.2.

Specifically, for each value of the mass parameter, we will apply the Amplitude-

Wavelength boundary condition to fix the amplitudes of the excited states at some

large radii.

Once the SSS states and their corresponding baryon distribution are found,

the process for solving this boundary problem is rather straightforward. We first

choose a value for m´1IDM “ λ2
DMADM . Specifically, we choose a value which is

sufficiently large so that no SSS states are excluded from the boundary problem as

described in section 3.5. Using computational units of m “ 100, we find that a value

of m´1IDM “ 0.4 suffices for this purpose. We then compute the function Ipxq as

defined in section 3.4.2 for each excited state, find its outermost intersection with

IDM , and use this intersection point as a scaling point. We then specify the value of
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ADM and scale each state to have that amplitude at the scaling point. The result is

a family of excited states with similar amplitude and wavelength scales in the outer

regions that also reproduces a BTFR-like relation.

3.6.3 Fitting the BTFR and Constraining m

For each value of m, the prescribed value of ADM will determine the physical scale

of the corresponding DM halos and baryonic distributions. This will directly cor-

respond to a scaling of the baryonic mass and rotational velocity corresponding

to the BTFR. Solving by using the scaling relations of eq. 2.44, the scaling of

ADM Ñ αADM corresponds to taking tMext, vrotu Ñ tα1{2Mext, α
1{2vrotu. Since the

baryonic mass and rotational velocity are both scaled by the same factor, the result

on the BTFR is a simple translation in logarithmic space. In other words, it takes

tlogpMextq, logpvrotqu Ñ tlogpMextq `
1
2

logpαq, logpvextq `
1
2

logpαqu, effectively trans-

posing each point of the relation by the same vector in log space. As a result, for

each value of m there will be a best fit value of ADM which will overlap with the

observed BTFR. This procedure is demonstrated in fig. 3.9.

The most striking and useful feature of the prescribed boundary condition is that

one can exclude certain values of m based on its best fit to the BTFR. This is due

to the fact that as m decreases, the excited states corresponding to a best fit tend

to have larger masses for any given excitation number. As a result, if m is chosen to

be too small, then all of the excited states will have masses larger than the smallest

observed members of the SPARC data set. We use this to place a lower bound on m.

As seen in fig. 3.10, masses of the order m “ 10´24eV are not capable of describing

the lower mass end of the BTFR. Depending on how one defines the criteria for

modelling the BTFR one may derive different lower bounds. For instance, if one

supposes that Tully-Fisher galaxies be modelled by excited states with n ě 2 then

one can push the bound up to 10´22eV . In general, BTFRs produced by more highly

excited states are consistent with greater values for m.
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Figure 3.9: Fitting the BTFR via Boundary Conditions: An example of the
fitting routine for the BTFR using m “ 10´23eV. First, the boundary problem is
imposed on sequence of excited states, resulting in a BTFR-like relation. Next, the
boundary values are adjusted until the simulated relation overlaps the data (shown
as the progression of the 3 simulations in blue). Scaling the boundary values shifts
the entire relation, maintaining its slope. The relation extends indefinitely towards
higher masses, but the minimum mass is bounded from below by the ground state
profile.

3.7 Results and Discussion

The following subsections discuss various results and features of our BTFR model.

In addition to the constraints on the particle mass, our main results are included in

figs. 3.13, 3.12, 3.10 and 3.11. In fig. 3.11, we consider the affects of changing the

total DM fraction of each simulated galaxy. We conclude that this results in rather

negligible change to our computed fits to the BTFR. In fig. 3.13 we compare our

simulated rotation curves to those of the SPARC survey. Specifically, we normalize

and average our results in the same manner as described in figure 3.2. Lastly, in fig.

3.12, we show the dependence of BTFR properties on the state excitation number.

Namely, we extract the dependence of the baryonic mass content and circular velocity

corresponding to the BTFR. In addition, we extract a relation between the excitation

number and the scale of the DM fluctuations corresponding to the red boundary in
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fig. 3.6.

3.7.1 Bounds on m

Figure 3.10: BTFR Fits: Example fittings of the BTFR for multiple values of
the SFψDM mass, m. Generically, higher values of m correspond to smaller overall
masses, shifting the simulated fit towards the lower mass region. For sufficiently
small mass values, the simulated fit does not overlap the observed data points (see
the bottom right panel). This allows one to constrain the possible values of m.
For instance, assuming states n ě 0 results in a constraint of m ě 10´23 whereas
assuming n ě 3 results in m ě 10´22. The first 200 excited states are used for
generating the plot. Using more states will extend the linear trend further into the
high mass regimes.
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Returning to fig. 3.10, we observe that each value of m has a corresponding best

fit to the BTFR. Qualitatively, larger values of excitation number correspond to

larger galaxies in our simulations. The lowest excitation numbers therefore provide

a lower bound on the rotational velocities and mass values which are consistent with

modelling the BTFR using SSS states. Decreasing the value of m results in halos

which are more and more massive for a fixed value of n. Eventually, for sufficiently

small m values, there will be no SSS excited states which are small enough to overlap

with the lower mass end of the observed BTFR.

We conservatively determine a bound of m ě 10´23eV. This is achieved by taking

the criteria that the BTFR must be modelled by states with n ě 1. In other words,

we observed that the n ě 1 state overlaps the smallest mass data point of the SPARC

survey at m “ 10´23eV, and becomes too massive once m is further decreased. By

strengthening the criterion for n, one can push this lower bound to higher values. For

instance, if we take n ě 3, the bound becomes m ě 10´22eV. In addition to placing a

lower bound of m by choosing a lower bound on n, one could hypothetically place an

upper bound on m by enforcing some upper bound on n for Tully-Fisher galaxies. To

summarize, restricting the range of allowed n restricts the range of allowed values for

m. Conversely, stating a range of possible values for m could allow one to estimate

the excitation numbers of Tully-Fisher galaxies.

This constraint on m remains true even when varying the relevant DM fractions

of the simulated galaxies. The value of the half-fraction, fh, does not affect the

overall fit. This is due to the fact that the baryon half mass radius almost always

occurs at a radius much smaller than the radius at which the flat rotational velocity

is measured, and therefore does not change the measured value. This is consistent

with the rotation curves in the SPARC survey. Changing the total DM fraction,

ftot, can change the overall fit to the BTFR, though the range of potential values

for ftot is too small to make a qualitative difference. This is depicted in fig. 3.11.

Adjusting ftot will adjust the value of the rotational velocity and therefore shift the

fit. In principle, this can change the bound on m. However, observed values of ftot

lie in a narrow range, making this effect rather negligible for the purposes of fitting
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the BTFR.

Figure 3.11: Varying DM Fractions: Example of varying the total DM fraction.
Increasing the total fraction has the effect of shifting the entire BTFR towards lower
masses. However, the range of reasonable value of the total fraction is too small to
make a qualitative difference to the overall fit.

We did not consider the effects of varying the stellar-light-to-mass ratio, Υ˚. Im-

portantly, changing the assumed value of Υ˚ can change both the slope and intercept

of the observed BTFR. Taking the value of Υ˚ to be constant for Tully-Fisher type

galaxies is a large simplification. We used a value of Υ˚ “ 0.5Md
Ld

, which provided an

excellent fit for the purposes of our analysis. Moreover, Υ˚ “ 0.5Md
Ld

minimizes the

scatter in the observed BTFR. We expect that a careful treatment of Υ˚ would pro-

duce the same overall trend in the simulated BTFR but with increased scatter. One

possibility would be to vary Υ˚ from galaxy to galaxy by sampling a distribution of

values of Υ˚ centered around the preferred value of 0.5Md
Ld

. This would likely result

in an increased scatter in the simulation.

Our lower bound of m ě 10´22eV is consistent with most other independent

constraints (those presented in Chapter 1 for instance). We note that our analysis

does not provide a clear preference for m so long as it is above this bound. However,
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when comparing to other constraints and values, this analysis of the BTFR provides

a unique interpretation in regards to the energetic aspects of galactic halos. In other

words, the BTFR provides a means to estimate the excitation numbers of galactic

halos for a given value of m; we discuss this feature in the coming subsections.

Considering the lower end of constraint values for m, near 10´22eV, comes with

the interpretation that galactic halos have relatively low excitation numbers (n ă

100). In contrast, higher values of m like those preferred by the Lyman-α Forest

(m „ 10´20eV) come with the interpretation that galactic halos have much higher

excitation levels (n „ 1000). This is particularly important when one considers

modelling individualized galactic halos, as the spatial extent of equally massed halos

varies strongly with excitation number (see fig. 2.4).

3.7.2 BTFR Excitation Numbers

The halo excitation number is an important feature of our simulated BTFR galaxies.

The value of the excitation number will determine where the galaxy lies on the BTFR,

and is directly related to its expected baryonic mass content. Shown in fig. 3.12, we

see that the baryonic mass is related to n by an approximate power law

Mpnq9n1.3 (3.31)

Mpnq « Cn1.3. (3.32)

We can use this relation to place an estimate on the excitation numbers for the

BTFR. For instance, if we identify Mp1q “ C, then we can relate the mass of the

Nth excited state as

Mpnq

Mp1q
« n1.3 (3.33)

Suppose then, for instance, we want to cover 4 orders of magnitude in M, similar

to the BTFR, starting with the first excited state. With the above relation this

would require Mpnq
Mp1q

“ 1000, implying that n « 200. Thus, if we want to cover the

BTFR, starting with the first excited state, we require around 200 states. We verify
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Figure 3.12: Halo Properties vs. n: Several trends for the m “ 10´22eV fit.
Approximate power laws are extracted for the: Total baryonic mass (top left), “flat”
circular velocity (top right), density at 3.5Rc (bottom left), and wavelength at 3.5Rc

(bottom right). The bottom two relations imply a mass value at 3.5Rc which is held
constant versus excitation number, namely M “ 4π

3
λ3ρ.

this result by referring to fig. 3.10 where we use 200 states and effectively cover the

relation.

3.7.3 Individual Rotation Curves

The fact that SFψDM excited states can produce such a striking fit to the BTFR

suggests that they can also be used to model the rotation curves of individual galaxies.

We display our resulting rotation curves and a comparison to the SPARC survey for

the m “ 10´22eV case in fig. 3.13. The rise of the rotation curve takes about 1kpc
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while the flat portion can extend to the order of 10kpc or larger depending on the

excitation number. We compute an averaged rotation curve similar to the averaging

procedure from fig. 3.2, and compare it to that of the SPARC survey. While the

baryonic contribution does not display a perfect fit, we suggest that this could be

improved by a more rigorous treatment of the fraction fh and the light-to-mass ratio

Υ˚. We note that the case of fh « 0.5 most closely resembles the case of real rotation

curves. Nonetheless, the average rotation curve gives a good qualitative fit to the

SPARC sample.

We used a spherically symmetric model of the baryonic contribution to the

galactic rotation curve. This is a theoretically convenient choice, but nonetheless

will affect the shape of the rotation curve. In reality, most Tully-Fisher galaxies have

exponentially thin, disk-shaped, baryonic distributions. Our spherically symmetric

profile of eq. 3.27 is merely meant as an approximation. This is likely one source

of the discrepancy between our simulated rotation curves and the observed samples

from SPARC. Given an improved model of the baryonic component, the methods in

this paper remain valid as long as the model is spherically symmetric. A profile that

resembles an exponential disk would require a more sophisticated treatment of the

SFψDM excited states with such external contributions.

In regards to the BTFR fit, we do not expect the spherically symmetric approx-

imation of the baryonic component to significantly affect our results. This is, again,

due to the fact that the majority of the baryonic component is already enclosed by

the time the flat rotational velocity is achieved. As a result, the flat rotational veloc-

ity will be affected only marginally by the shape of the baryon distribution. In other

words, two different baryon distributions with the same total mass will contribute

similarly to the flat rotational velocity in the outer parts of the halo, reproducing

the same data point on the BTFR. Changing the model for the baryonic component

will have a significant affect on the inner part of the rotation curve, but the outer

part corresponding to the BTFR velocity will remain similar.
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Figure 3.13: Resulting Rotation Curves: Rotation curves corresponding to the
BTFR fit at m “ 1022eV , ftot = 0.9, and fb = 0.5. Units converted to kpc and km/s
for realistic values. Top left: A selection of rotation curves with excitation numbers
ranging from 25-50. Top Right: A single rotation curve. Vertical lines denote the
values of Rh and 0.5Rd respectively. Horizontal line denotes the “flat rotational
velocity.” Bottom left: The averaged SFψDM rotation curve following the averaging
procedure as in fig. 3.2. Bottom right: The same as the bottom left, but with the
SPARC data superimposed for comparison.

3.7.4 Interpretation of Boundary Conditions

In simulating the BTFR, we solved a boundary value problem defined by eq. 3.17

to fix the amplitude and wavelength scales of the family of DM halos. Namely, we

found that fixing a value of λ2A for fixed values of m produces a BTFR-like trend

which can then be scaled to overlap the observed BTFR. Each state was scaled to

90



have a similar density amplitude at the point where the product condition In “ IDM

is satisfied. In a sense, the “boundary radii” of Rn which achieve the product of

IDM are a computational convenience; they pick out the locations in the halos which

are capable of being scaled to the same amplitude and wavelength. The physical

interpretation is less clear, as this location almost always occurs in the outer regions

of the halo. We wish to instead consider a boundary closer to the inner regions of

the halo which reflects the discussion regarding fig. 3.6. In this section we provide a

possible interpretation for this inner boundary.

If one interprets the DM halo as a central region surrounded by a region of

quasiparticle fluctuations, a natural question would be “what is the fluctuation size

at the inner boundary from fig. 3.6?” This boundary should hypothetically separate

the inner core region from the outer quasiparticle region. A reasonable choice for

this boundary is the radius of r “ 3.5rc, where rc is the core radius defined as in

eq. 2.55. It was shown in (62) that generic halos display a transition at this radius,

corresponding from a transition from the inner soliton core to the outer N-body like

region. We choose to extract the mass fluctuation size at this radius of 3.5rc so

as to make a comparison with the 3D simulation of (62). To do so, we consider

the density amplitude as the approximate fluctuation density and the wavelength as

its corresponding length scale. Returning to fig. 3.12, we display the dependence of

λp3.5rcq and ρp3.5rcq on the excitation number, n. Interestingly, we find the following

approximately rational power laws

λp3.5rcq9n
´0.5 (3.34)

ρp3.5rcq9n
1.5. (3.35)

Combining these results in a relation between the density and wavelength of the DM

halo at this transitional radius.

ρp3.5rcq9λ
´3
p3.5rcq (3.36)

This relation provides a possible interpretation of the inner boundary in figure 3.6.
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Notably, this boundary corresponds to a fluctuation mass which is approximately the

same for all values of n, Mfluctuation «
4π
3
p
λp3.5rcq

4
q3ρp3.5rcq. We use the factor of 4π

3

somewhat arbitrarily as an assumption that the fluctuations condense in a spherical

manner; this factor may vary depending on the nature or shape of the fluctuation

and should be further investigated. For the case of m “ 10´22eV, we extract this

mass as on the order of 107Md ´ 108Md. If such a mass fluctuation condensed into

a stable soliton, it would correspond via eq. 2.47 to a radius of R1{2 « 1kpc, putting

it on similar length and mass scales to that of globular clusters and galaxy cores.

We suggest that this mass scale could be related to the galaxy formation process

or to its parent subhalos. In practice, one may wish to identify the radii at which

the proportions in eqs. 3.34 and 3.35 are exactly satisfied. This could give a more

rigorous definition for the inner boundary between the soliton core and quasiparticle

region.
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4

Wave Dark Matter Superpositions and Oscillations

So far we have focused on describing SFψDM halos with generic solutions to the

EKGEs and PSEs. In particular, we have explored the SSS solutions and used them

to develop a first description of DM halos. The strength of this method lies in the

fact that it allows one to explore the properties of halos in purely theoretical and

mathematical context. Outside of the case of spherical symmetry, the equations

which describe generic halos become increasingly and overwhelmingly complicated.

This difficulty stems mostly from the non-linearity and complexity of the Einstein

Equations. On the other hand, these difficulties can be addressed with computational

methods like the ones used in (62; 75; 79) to simulate images like figs. 1.7 and 1.6.

Such techniques are vital towards understanding how SFψDM halos form, behave,

and evolve in a general context.

A purely numerical approach lacks the same descriptive power as a theoretical

approach in which solutions can be decomposed and characterized in a mathemati-

cally precise fashion. Moreover, three dimensional numerical simulations of SFψDM

can be slow and extremely expensive if one wishes to appropriately resolve the smaller

scale wavelike nature of halos. In this section we focus on making a bridge between
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these two methods. In particular, we will consider superpositions of states like the

ones suggested in eq. 3.12 to create precise models of halos and their time evolution.

We will then construct and demonstrate these solutions with numerical integration

techniques to show correspondence between the methods. Finally, we will discuss

the implications for physical SFψDM halos.

4.1 Halo Decomposition in Static Potentials

Returning to the discussion from section 3.3.1, we would like to describe SFψDM

halos as solutions to the EKGEs. Ultimately, an expansion of the wave function in

terms of spherical harmonics as in eq. 3.12 should provide a complete description of

a halo. In practice, solving such an ansatz is difficult due to the non-linearity that

arises from the couplings to the Einstein equations. This issue can be avoided if one

assumes that the metric, and therefore the gravitational potential which influences

the halo, is fixed in time. Effectively, this decouples the Klein-Gordon and Einstein

equations. In this case, SFψDM can be described by the KG equation with a fixed

potential, drastically simpler than the case of the coupled EKGEs.

As an illustration, we will consider the case that the halo resides in an approxi-

mately spherical and static gravitational potential. This should closely resemble the

behavior of an isolated halo long after it has formed. We denote this potential and

its corresponding mass distribution as tVgalprq,Mgalprqu. At the level of the metric

line element, this is written as

ds2
“ ´e2Vgalprqdt2 `

ˆ

1´ 2
Mgalprq

r

˙´1

dr2
` r2dθ2

` r2 sin2
pθqdφ2. (4.1)

We can then suppose that the SFψDM wave function can be decomposed in terms
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of spherical harmonics as in eq. 3.12. That is, we define eigenfunctions ψnlm as

ψnlmp~r, tq “ rlΨnlprqY
m
l pθ, φqe

´iωnlt. (4.2)

Then, we write the wavefunction as

ψp~r, tq “
ÿ

nlm

Anlmψnlmp~r, tq. (4.3)

The dynamics of the wavefunction are then determined by the KG equation with the

metric of equation 4.1. Referring to the Appendix for details of the computation,

the resulting equation for Ψnl is

ω2e´2V rlΨnl`ΦprlΨnlqrr`Vrpr
lΨnlqr´

1

2
ΦrpΨnlr

l
qr`

2

r
pΨnlr

l
qr`

lpl ` 1q

r2
Ψnlr

l
“ m2Ψnlr

l.

(4.4)

The low field analog of this equation is rather simple, and can be found by taking

Φ “ 1, and V ăă 1 in the above equation, or by simply applying the ansatz of eqs.

4.2-4.3 to the PS equation as opposed to the KG equation. Either way, the result is

prlΨnlqrr `
2

r
pΨnlr

l
qr “ p2mpm´ ω `mV q ´

lpl ` 1q

r2
qrlΨnl. (4.5)

Simplifying further by applying the derivatives of rl we reach

Ψnl,rr `
2pl ` 1q

r
Ψnl,r “ 2mpm´ ω `mV qΨnl. (4.6)

One can notice that this is almost identical to the SSS version of the PS equation

in eq. 2.52, except for the newly introduced pl` 1q term and a now static potential,

V . The solutions for each value of l are analogous to the SSS excited states, and can

be indexed by their number of nodes, n. Moreover, the eigenfunctions Ψnl and their

corresponding frequencies, ω, can be well characterized with the Sturm-Liouville
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theory for second order ODEs. This will be the focus of the following sections.

4.2 Sturm-Liouville Theory of the KG Equation

The equation describing the halo, eq. 4.4, is a linear, second order, ordinary differ-

ential equation. If one assumes the background potential is dominated by some static

DM distribution, this equation can be thought of as describing the perturbations on

that distribution. Solutions to such ODEs can be well categorized and decomposed

in terms of orthogonal functions described by Sturm-Liouville (SL) theory. For those

who are not familiar with, or would like a refresher on SL theory and its results, we

include a discussion in the Appendix. We also defer the bulk of the computations

regarding the SL form of eq. 4.4 to the Appendix.

4.2.1 Spherical Modes

As an illustration of the SL theory, we will first consider the spherically symmetric,

l “ 0 case of eq. 4.4. Importantly the properties of the non-spherical modes with

l ą 0 are quite analogous. Taking l “ 0 only for the wave-function expansion we

have

ψ “
ÿ

Cn0Ψn0prqe
´iωn0t. (4.7)

Taking l “ 0 in eq. 4.4, each spherical mode is described by the following ODE:

Ψn0,rr `

ˆ

2

r
` Vgal,r `

Φgal,r

2Φgal

˙

Ψn0,r “ Φ´1
galpm

2
´ ω2

ne
´2VgalqΨn0. (4.8)

Again, we define Φgal “ p1´
2Mgal

r
q. We then enforce the separable boundary condi-

tions that Ψn0p0q “ 1 and that limrÑ8 Ψn0prq “ 0. We note that in a computational

sense, the condition at infinity must be artificially enforced at some large finite value

of R; in such a case, the problem is a regular SL problem. SL theory then enforces

that there is a lowest value of the frequency eigenvalue ωn which generates a solution
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with zero nodes. In general, the value of ω0 is found via computational methods

similar to those used to compute the SSS excited states. Further, there exists a

countable number of frequencies of increasing value which denote solutions with in-

teger numbers of nodes. Naturally, we can identify the integer n with this number.

In the physical case of RÑ 8, the results are somewhat more complicated since the

problem becomes a singular SL problem. We will see in the following discussion that

this results in having two sets of orthogonal functions, a countable set representing

finite and bounded modes, and a continuum set representing unbounded modes.

Case I. Discrete Bounded Modes, ω0 ă ωn ă m: In the case that ωn ă m,

solutions to eq. 4.4 are analogous to those of the SSS states. The behavior of Ψn

will be oscillatory but eventually converge to exponential decay as Vgal tends towards

zero at large distance. In principle, there exists an infinite and countable number

of these modes in this finite frequency domain. In practice, computing these modes

is limited by both the prescribed value of the computational boundary, R, and the

precision with which one can estimate the eigenvalues. The frequencies become more

and more closely spaced as n gets large. This is akin to the behavior of hydrogenic

wave functions with energy eigenvalues becoming more closely spaced at higher exci-

tation. In fact, in the low field equivalent, one can identify the energy eigenvalue as

proportional to pωn´mq, giving a direct analogy to energy eigenvalues. Importantly,

these energy eigenvalues are negative. This is because the eigenfunctions constitute

a finite total mass and have wavefunctions which decay at infinity. In other words,

the energy is negative because the state is gravitationally bounded by the background

potential. Sometimes, such states are referred to as gravitational atoms.

Case II. Unbounded Continuum Modes, ω ą m: For frequencies which

exceed m, all solutions to eq. 4.4 are infinitely oscillatory. Moreover, such solutions

correspond to an infinite amount of mass and have positive energy eigenvalues. We

interpret these modes as unbounded or radiative modes. For a given choice of compu-
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Figure 4.1: Bounded and Unbounded Eigenfunctions: We show the two
distinct types of SL-Eigenfunctions which correspond to KG equation with a fixed
spherical potential. Plots correspond to the functions Ψnl of eq. 4.4. Left: Bound
eigenfunctions with ω ă m are similar to the SSS states from chapter 3. These
eigenfunctions display a countable number of zeros and then converge to zero via
exponential decay. Right: Unbound eigenfunctions with ω ą m oscillate indefinitely
with an amplitude that converges to zero.

tational boundary, R, such modes can be used to describe matter which escapes the

gravitational well of the simulation. In the case of R Ñ 8, this would correspond

to scalar radiation which is not gravitationally bounded to the DM halo and has

velocity sufficient to escape the halo. We depict both the bounded and unbounded

modes in fig. 4.1.

4.2.2 Non-Spherical Modes and Generation of Angular Momentum

The l ‰ 0 cases of eq. 4.3 correspond to describing the non-spherical features of the

halo. For the most part, the radial wavefunctions of Ψnl are similar to those of the

l “ 0 case in that there exist a countable number of bounded modes and a continuum

of unbounded modes for each value of l. We note that only the l ą 0 states have

a non-zero angular momentum eigenvalue. This is directly resulting from the fact

that the spherical harmonics, Y m
l , are the eigenfunctions of the angular Laplacian.

In other words, each mode has an angular momentum eigenvalue of lpl ` 1q. At the
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level of the wavefunction, the rotational behavior can be explicitly seen when writing

the spherical harmonics in terms of the associated Legendre polynomials Pl.

ψnlmp~r, tq “ rlΨnlPlpcospθqqeipmφ´ωnltq (4.9)

We see that each ψnlm is associated with a time dependent angular phase of mφ´ωnlt.

If superimposed with another mode, an l “ 0 mode for instance, this will result

in a rotating density interference pattern. As an example, we could encode some

rotational motion into a soliton by having a wave function of the form

ψp~r, tq “ A000Ψ00prqe
iω00t ` A111rΨ11prqP1pcospθqqeipφ´ω11tq. (4.10)

4.3 Pseudospectral Simulations

We choose to verify our SL analysis by comparing its conclusions to a full 3-

dimensional simulation of the PSEs. Specifically, we will use the pseudospectral

solving method from (62). This method utilizes unitary operations in combination

with the Fourier transform to solve for the time evolution of the PSEs. Firstly, the

values for ψp~rq are placed onto a cubical grid with a resolution of N units per side.

Denoting the Fourier transform and its inverse as F and F´1, the Poisson Equation

can be solved as

V “ F´1

ˆ

F p4π|ψ|2q

k2

˙

. (4.11)

This can be easily achieved in a computational sense by use of fast discrete Fourier

transform (DFFT) algorithms. The time evolution of the wave function is then

separated into three parts. First, denoting the time-step as ∆t, the wave function

evolves due to the potential for half of a time step through the operation of

ψ Ñ exp

ˆ

i
∆t

2
mV

˙

ψ. (4.12)
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This is referred to as a “kick” by the potential. Next, the wave function must evolve

due to the kinetic term ∇2

2m
of the Schrödinger equation. This is most easily achieved

by applying a similar operation but in Fourier space. That is, the wave function’s

“kinetic drift” is computed as

ψ Ñ F´1

ˆ

exp

ˆ

i∆t
k2

2m

˙

F pψq

˙

. (4.13)

Lastly, the time evolution is completed by applying another potential kick for a half

time step, repeating the transformation of eq. 4.12. This numerical method can

then be iterated for the desired number of time steps. For accuracy and to maintain

the stability of the solving routine, ∆t must be chosen to be appropriately small.

Criterion for a suitable ∆t were determined in (79) as

∆t ď max

"

m

6
p∆xq2,

1

m|V |max

*

. (4.14)

4.3.1 Boundary Conditions for Spectral Methods

The spectral methods described in the previous section naturally give rise to a

solution with periodic boundary conditions and conserved total mass. Due to this

feature, matter escaping one side of the simulation boundary will necessarily re-enter

on another side. As such, halos simulated with spectral methods will be constantly

disturbed by the presence of incoming and outgoing waves. This feature may be

relevant for halos which are formed in a cosmological context, being disturbed from

the formation of other nearby halos (62).

For simulations of more isolated halos, one may wish to reduce the level of

interference which results from the periodic boundary. Conceptually, this can be

achieved by removing matter which traverses the boundary. A “sponge” method for

achieving this effect was proposed in (38) and utilized for simulations of isolated halos
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Figure 4.2: Sponge Boundary Conditions: Example of including sponge
boundary conditions as in section 4.3.1. Each panel displays the result of a 3 soliton
merger, each with equivalent initial conditions. Density is projected along the line of
sight, normalized to the maximum value, and placed on a logarithmic color scale. V
corresponds to the “height” of the sponge. A spherical sponge is placed at approx-
imately half of the frame radius. (Top Left) With no sponge, boundary conditions
are effectively periodic, allowing disturbances from waves entering and exiting at the
boundary. This results in a turbulent region caused by the attenuation of such waves.
The sponge acts as a “sink” for matter, causing densities to drop off at the sponge.
(Bottom Left) For larger values of V , boundary conditions more closely represent
those for undisturbed and isolated halos. Disturbances from travelling waves are
greatly reduced, resulting in a less turbulent halo. (Bottom Right) As the sponge
height is further increased, the halo disperses at an increasing rate, losing matter to
the sponge and expanding due to scalar pressure.
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in (79). One can include a “sponge” which removes matter by adding an imaginary

potential to a boundary region. In other words one adjusts the potential as

V Ñ V ` iVsponge. (4.15)

In the regions which contain the sponge, matter density is constantly lost. This can

be understood by evaluating the corresponding continuity equation analogous to eq.

2.35. The imaginary part of V appears as a density source or sink, depending on its

sign. Explicitly we have

Bρ

Bt
“
B

Bt
pψ˚ψq `∇ ¨ pρ~vq “ 2Vspongeρ. (4.16)

Regions with negative values of Vsponge will display density loss at a rate proportional

to the magnitude of ρVsponge. This can be used to impose an artificial boundary

at which matter is removed from the simulation. Explicitly, we will use a sponge

boundary of the form

Vsponge “ ´VsΘpr ´Rsq. (4.17)

We therefore define the sponge boundary with two parameters: the sponge height,

Vs, and the radius at which the sponge is “turned on,” Rs. For an example of the

results of imposing a sponge boundary, see fig. 4.2.

4.4 Consistent SFψDM Superpositions States

It is a natural question to ask whether or not SFψDM halos can exist in a multi-state

or superposition state configuration. In fact, multi-state boson star configurations

have been considered in regards to modelling DM halos in multiple contexts (6; 37).

In this chapter, we have defined how to attain superposition solutions to the KGE in

terms of sets of orthogonal eigenfunctions. Computing these functions requires one

approximate the galactic gravitational potential as spherically symmetric and static.

102



Once this potential is specified, the halo can be decomposed in terms of well defined

eigenfunctions as in section 4.1. In this section, we will use these results to consider

the notion of basic superposition halos.

Firstly, we need a working model of the gravitational potential in which the

DM halo resides. Ultimately, this potential should be chosen to be consistent with

the mass distribution of the halo itself, and for our purposes be SSS. One option

to achieve this would be to start with a known solution to the EKGEs like a SSS

excited state or a ground state soliton. For example, suppose we assume that the

majority of the potential is determined by a soliton. We can compute a soliton

solution ψpr, tq “ ΨΩprqe
´iΩt similar to that of eq. 2.22. Then, solving the SSS

EKGEs, we can compute the wavefunction, potential, and mass distribution of the

soliton and denote them as tΨΩ, VΩ,MΩu.

Next, we use the soliton solution to pose the Sturm-Liouville problem, resulting

in eq. 4.4, but with Vgal “ VΩ and Mgal “ MΩ. There are a few features we can

note for the eigenfunctions for fixed values of l. There will exist a countable set

of solutions with ωn ă m that will be gravitationally bound to the galaxy. These

solutions are finite in mass and are similar to the SSS states. There will also be a

continuum of solutions with ω ą m that are unbounded, akin to scalar radiation.

Finally, for l “ 0, one bounded state will necessarily have ωn “ Ω, and be a scalar

multiple of the background soliton or excited state. This is merely the zero mode,

an artifact of choosing to model the background with a SSS ground state.

Once the SL problem is solved and the bounded states are computed, we can

explore the possibilities of halo superposition states. We can suppose the halo wave

function to be of the form

ψpr, tq “ ΨΩprqe
´iΩt

`
ÿ

nlm

Anlmψnlmprqe
´iωt. (4.18)
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As long as the coefficients Anlm are sufficiently small (that is |AnlmΨnl|
2 ăă |ΨΩ|

2),

then this wavefunction will be consistent with the background potential, VΩ, to lead-

ing order. For the discussion in this section, we will consider only the gravitationally

bound modes with ω ă m. The density of the halo can be computed by taking

|ψ|2. For the sake of simplicity, we show the resulting density for the case that only

l “ m “ 0 contribute to the sum.

ρpr, tq “ Ψ2
Ωprq `

ÿ

n

|AnΨn|
2
` (4.19)

ΨΩprq
ÿ

n

`

A˚nΨnprqe
iΩnt ` AnΨnprqe

´iΩnt
˘

`
ÿ

nm

A˚nAmΨnprqΨmprqe
iωnmt (4.20)

Here we identify halo oscillation frequencies of Ωn “ Ω ´ ω and ωnm “ ωn ´ ωm.

Mathematically, all values of n and m contribute to the sum, but in a practical appli-

cation one will take finitely many terms. We see that each bound state contributes

a small but constant density offset, represented by the second term in the sum. The

third term, with the frequencies Ωn, result in the largest density fluctuations. Impor-

tantly, these fluctuations are of order |AnΨnΨΩ| as opposed to order |AnΨn|
2. One

could interpret this set of oscillations as resulting from the interference of the bound

states with the dominant soliton mode of the DM halo. The last set of oscillations,

with the frequencies ωnm, result from the interference of the bound states with each

other, and are significantly smaller than the first set. Importantly, the halo oscilla-

tion frequencies are formed by differences of frequencies which are of order m. In the

low field limit and non relativistic limit, the values of pm´ ωnq ăă 1, thus the halo

frequencies will satisfy Ωn ăă 1 and ωnm ăă 1 in that regime.

In this section, we have seen that a SFψDM halo in a static gravitational potential

can host a variety of gravitationally bound modes that can cause density interference

patterns throughout the halo. In full generality, the non-spherical modes with l,m ‰

104



0 as well as the gravitationally unbound modes with ω ą m should be included. We

will demonstrate these cases via numerical simulation in the following sections.

4.5 Simulations and Results

In this section we verify and demonstrate the results of the SL decomposition by

comparing its predictions to the results of the pseudospectral simulations detailed in

section 4.3. Specifically, we compute eigenfunctions which are bound by the gravi-

tational potential of a soliton and assume the soliton to be the dominant source of

the gravitational potential. Next, we use superposition states like eq. 4.18 to gen-

erate initial conditions for 3D pseudo-spectral simulations. Finally, we compare the

time evolution of these simulations to the evolution predicted by the eigenfunction

decomposition.

4.5.1 Spherical Modes and Core Oscillations

Oscillations of the core density are a common feature of SFψDM halos and can result

from generic halo mergers. The magnitude of the core oscillations can be significant,

up to 30% of the average central density depending on the simulation (62). The

spherically symmetric density modes of section 4.2.1 provide a basic mechanism for

these oscillations. When the coefficients, An, are taken to be real, the equation

describing superpositions of spherical modes (eq. 4.19) can be reduced further to

ρpr, tq “ Ψ2
Ωprq `

ÿ

n

|AnΨn|
2
`
ÿ

n

ΨΩAn cospΩntq `
1

2

ÿ

nm

AnAmΨnΨm cospωnmtq.

(4.21)

Since all of the l “ 0 wave functions have a finite and non zero central density, this

will result in core oscillations characterized by the frequencies of Ωn and ωnm. The

size of the oscillations will depend on the relative size of the soliton central amplitude,

ΨΩp0q, and the central amplitudes of the trapped modes, AnΨnp0q. In fig. 4.5, we
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show the superposition of the first excited spherical mode with a soliton background.

We see that the spectral simulation demonstrates the same relative oscillation

frequencies as those that we can theoretically predict with the SL analysis. We can

characterize the time periods of these oscillations in terms of the total halo mass

as well as the mass parameter of the scalar field. We describe the leading order

frequencies in the following discussion. Importantly, gravitationally bounded core

oscillations can only result from the interference of the l “ 0 modes, as all possible

modes with l ą 0 result in zero contribution to the central density due to being

multiplied by rl.

Core oscillations occur generically as the result of halo mergers. Even after long

relaxation times, merged halos can still demonstrate significant core oscillations (62).

We suggest that this is a result of DM being trapped in spherical modes. During the

merging, halos can emit bursts of scalar radiation resulting from the excitation of

highly energetic modes. Once initially relaxed, one can usually identify the presence

of multiple spherical modes by investigating the core oscillations. We observe a

gradual decay in these oscillations, with the highest frequencies decaying faster.

4.5.2 Angular Momentum and Spiral Patterns

We test the impact of imparting angular momentum by inlcuding non-spherical, l ą

0 modes into the halo wavefunction. We consider the l “ 1 case for our simulations,

using wavefunctions of the form

ψp~r, tq “ ΨΩprqe
ipΩqt

`
ÿ

n

AnΨn0prqe
iωn0t `

ÿ

nm

BnmrΨn1prqY
m

1 pθ, φqe
iωn1t. (4.22)

Here we have included the spherically symmetric modes with l “ 0 in the first sum-

mation, and the rotating non spherical modes with l “ 1 in the second summation.

We demonstrate cases including only the rotational modes as well as cases including
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Figure 4.3: Core Oscillations: An example of a spherical oscillation mode. Den-
sity is projected along the line of sight, normalized to the maximum value, and placed
on a logarithmic color scale. A soliton and an excited spherical mode (corresponding
to eigenfunction with frequency ω100) are initialized in a superposition. The configu-
ration is evolved via the spectral method of section 4.3. We show a single oscillation
period. Amplitudes are set such that the excited mode has a central density am-
plitude equal to 1% of the soliton’s central amplitude. The oscillation generates a
recurring density fringe corresponding to the overlap of the excited state. Video
demonstration is available at https://www.youtube.com/watch?v=cbnGY e´ A68.

only the l “ 0 spherical modes in figs. 4.4 and 4.5.

In fig. 4.4, we demonstrate the time evolution of an l “ 1 mode. We observe that

the rotation of the mode creates short lived spiral pattern in the DM density itself.

We observe that the rotation lasts hundreds of rotation periods without decay and

that it remains bound to the soliton. This is rather interesting and could perhaps

provide a mechanism for generating long lived spiral patterns within a galactic disk,

similar to (7). However, so far this is just a conjecture and would require an detailed
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Figure 4.4: Rotational Modes & Spiral Patterns: An example of bound
rotational modes and Dark Matter spiral patterns. The central cross section of the
density is shown, normalized to the maximum value and placed on a logarithmic
color scale. A soliton and a l “ 1 mode (corresponding to ω111) are initialized in a
superposition. The configuration then evolves via the spectral method. The density
amplitudes are chosen such that the excited state wavefunction amplitude is 1% of
that of the soliton’s at the center. We show the evolution of the rotational pattern;
this does not necessarily correspond to one oscillation period. A counterclockwise
rotational pattern is seen which persists for at least hundreds of oscillation periods.
Video demonstration is available at https://youtu.be/YFVq4V5EvG4.

simulation which includes the evolution of baryonic matter. As a final note, even

when the l “ 0 modes are not included in the initial conditions, they are easily excited

by computational defects. In other words, the error resulting from the discrete nature

of the simulations can contribute to these oscillations; this results in an oscillating

core density in effectively every simulated case.
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Figure 4.5: Core Oscillations Result: Results from superimposing a soliton with
the first two excited state spherical modes. At the center, modes are give a density
of .01 of that of the soliton. (Top) Comparison of the density profile predicted from
the SL decomposition versus the results of the 3D Pseudospectral method. Vertical
line corresponds to the value of r “ 3.5rc, denoting the “break” in the soliton profile.
We superimpose the best fit soliton core. Qualitatively, the profiles experience the
same profile break. The profile break occurs due to the outer maxima of the excited
state. (Bottom) The core density extracted from each method and scaled to have a
maximum density of 1. Each halo displays similar frequency patterns and oscillation
amplitude.
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4.5.3 Discussion

The eigenfunction analysis from this chapter provides a means to estimate the

dominant frequencies at which SFψDM halos rotate and oscillate. In particular,

we identified the difference frequencies ωnm and Ωn in section 4.4. As discussed in

the prior sections, these frequencies can generate behaviors which are approximately

long time stable. Since this analysis occurs in the low-field non-relativistic regime,

the scaling relations of eq. 2.44 can be used to place values on the periods of these

oscillations. Denoting the mass of the central soliton as Msol, the oscillation periods

obey the following generic proportion

T9M´2
solm

´3 (4.23)

Importantly, the oscillation periods have steep inverse scalings with Msol and m.

In other words, both larger halo mass and larger boson mass imply shorter oscillation

periods. We will discuss a few simple cases of spherical modes and rotational modes.

The interference of each mode with its host soliton has a characteristic frequency

which we denote as Ωnlm “ Ω ´ ωnlm. We directly compute these frequencies using

the SL eigenfunction analysis outlined in this chapter, and convert to their relative

period Tnlm “
2π

Ωnlm
1.

T100 « 250ky

ˆ

1010Md

Msol

˙2 ˆ
10´22eV

m

˙3

(4.24)

T200 « 160ky

ˆ

1010Md

Msol

˙2 ˆ
10´22eV

m

˙3

(4.25)

T011 « 340ky

ˆ

1010Md

Msol

˙2 ˆ
10´22eV

m

˙3

(4.26)

1 We use units of 1ky “ 1000years and 1My “ 106years
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T021 « 210ky

ˆ

1010Md

Msol

˙2 ˆ
10´22eV

m

˙3

(4.27)

As a basic trend, we note that the values of Tnlm decrease as the values of n and

l increase. The dependence on n is a result of the Sturm-Liouville analysis; for each

fixed value of l, there exists a set of eigenfrequencies which increase with n. The l

dependence can be explained as a result of the ODE in eq. 4.4; in other words, as a

result of eq. 4.4, larger values of l correspond to a greater value for the fundamental

frequency of the SL analysis.

It is important to ask whether or not these oscillation frequencies can be physically

relevant on galactic scales. Answering this question definitively would require a full

3D simulation of a halo and the baryonic components it contains. However, our

analysis still provides some insight as to what regimes may or may not be relevant

in this regards. Firstly, we consider the period of the spherical mode T100. For

large dwarf galaxies, one can suppose that Msol « 109Md. This results in a period

of T100 « 25My
´

10´22eV
m

¯3

. Interestingly, this is somewhat similar to the orbital

periods that one expects to occur inside dwarfs. As a rough example, a circular

orbit with a diameter of „ 104ly and velocity of „ 100km
s

corresponds to a period of

„ 100My. Given that this is within an order of magnitude of T100, it seems plausible

that spherical oscillations are relevant to the dynamics of orbits in dwarfs for the

m „ 10´22eV regime. However, this window of opportunity swiftly vanishes as m

is increases. For instance, the m „ 10´21eV regime results in oscillations that are

1000 times faster than the relevant orbits, making it unlikely that the oscillations

are relevant in this regime. This issue is somewhat reduced if one considers the halo

to be in an excited configuration; we discuss the effect in the following paragraph.

Given the observation that the l ą 0 modes result in stable rotational modes (as

in fig. 4.4), one may ask whether or not these modes could be related to the patterns
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that appear in spiral galaxies. Given our results, this at first seems very unlikely.

Taking a value of Msol „ 1012Md, we return a value of T011 « 34y
´

10´22eV
m

¯3

. This

is many orders of magnitude smaller than orbits within spirals („ 10´ 100My) and

should therefore be negligible to such orbits. On the other hand, this model considers

the galactic halo to be well approximated by a soliton. We do not expect this to

be true - in fact our results regarding the BTFR in chapter 3 suggest otherwise.

We expect large spiral galaxies to have excitation numbers on the order of n „

200 or greater. As such, we should adjust the oscillation period according to this

expectation. To do so, we utilize a result from (36) which estimates the dependence of

excited state frequency, ωn, with excitation number. For a fixed value of total mass,

we have that ωn9
1
n2 . We can then make an ad-hoc adjustment of T011 by multiplying

it by n2. Given n “ 200, this results in a period of T011 « 1.4My
´

10´22eV
m

¯3

, which

is closer to the relevant regime. Therefore, if one supposes that the halos of spiral

galaxies are in highly excited configurations, the bound SFψDM rotational modes

could potentially be relevant. Whether or not large halos actually form these excited

configurations remains an open question, requiring detailed simulations.

We emphasize that the eigenfunction analysis in this section should be further

investigated with full 3D simulations which also include baryonic matter contribu-

tions. Overall, we expect our analysis to be a good first order description of halo

oscillations. We note that spherical oscillations occur with periods that could be rel-

evant in dwarf galaxies for the m „ 10´22eV regime. This is consistent with results

from (58) which suggests that core oscillations could result in observable orbital res-

onances within dwarf galaxies. Lastly, we note that 3D simulations of SFψDM halos

on the mass and length scales of spirals like the Milky Way have not been achieved

at this point. Whether or not such halos exhibit the properties of excited state con-

figurations therefore remains a conjecture at this point. However, we re-emphasize
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that the BTFR suggests this to be possible. A definitive conclusion as to whether

or not rotational modes could be related to spiral patterns therefore requires further

investigation.
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5

Conclusions: On Excited States and the Future of
SFψDM

This thesis had three main goals: To introduce the theory of SFψDM and its

corresponding phenomenology (Chapter 1), to detail the theoretical basis of the

EKG equations (Chapter 2), and to investigate and model excited state features of

SFψDM halos (Chapters 3 and 4). In doing so, we achieved two main results: we

showed that SFψDM excited states can produce a novel model/explanation of the

BTFR (Chapter 3) and used that model to constrain the value of the SFψDM mass

parameter m, and we showed that superpositions of excited states (Chapter 4) result

in halo oscillations that may be relevant towards galactic length scales and time

scales. This chapter is purposed towards summarizing these results, explaining their

relevance for modelling galactic phenomena, and outlining some future directions for

the study of SFψDM excited states and their features.
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5.1 Excited States and the BTFR

The discussions of Chapter 3 were focused on furthering the work of (35) which

showed that SSS SFψDM excited states, under appropriate boundary conditions,

reproduce a trend similar to the BTFR but in a DMO setting. Following this obser-

vation, we developed a model for SSS halos in the presence of SSS distributions of

baryonic matter. This enabled us to produce a simulation of the BTFR which was

consistent with observational data. Moreover, analysis of this simulation allowed us

to place a constraint on the value of m and relate this constraint to the excitation

numbers of SFψDM halos. Importantly, our constraint on m provides a lower bound

for both the value of m as well as the excitation number of halos corresponding to

Tully-Fisher galaxies. This has an interesting consequence in that one is able to use

this result to estimate halo excitation numbers given a value of m.

Our lower bound of 10´22eV is consistent with most other independently com-

puted constraints (like those discussed in Chapter 1). Using this value, Tully-Fisher

galaxies are inferred to have excitation numbers on the order of n „ 1´ 200. If one

considers larger values of m, like those suggested by Lyman-α Forest observations

(m ě 10´20eV), then the corresponding excitation numbers are increased substan-

tially (n „ 103 ´ 104). While we did not compute the direct relationship between

the value of m and the corresponding excitation numbers, our results resoundingly

suggest that the halos of Tully-Fisher galaxies can be modelled as being in highly

excited states. This is quite interesting, especially given that most studies only con-

sider soliton-like, ground state halos. This is usually justified by the fact that excited

states are inherently unstable and that the soliton ground state is a stable attractor.

Based on our BTFR results, we argue that this view is somewhat oversimplified and

that excited state properties should be considered given the value of m. This could

be particularly relevant for larger galaxies. In particular, when comparing a soliton
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with an excited state of the same total mass, the soliton is much more compact and

has a much greater central density; this can be seen in figure 2.4. Therefore, if one

assumes a large halo to be in the ground state configuration as opposed to an excited

state configuration, they may mistakenly expect an extremely dense central density

which would not be realized by an excited state halo. Further, if one assumes two

halos of different total mass to both be modelled by ground states, then the two

halos could return vastly different constraints on m which would seemingly be incon-

sistent. We suggest that the smallest halos, like those of dwarfs, should be thought

of as having the lowest overall excitation number and that more massive galaxies,

like large spirals, should be thought of as being in highly excited states. Overall, we

believe that the model of the BTFR from Chapter 3 should give good insight as to

what excitation numbers one would expect.

The fact that excited state configurations are known to be unstable could possi-

bly be misleading. In particular, the mathematical sense of stability is not necessarily

what one would expect in a physical context. We argue that galaxies are in highly

dynamical states that are constantly evolving in time. As a result, the transient

features of excited states may still be realized in halos even though those halos

wouldn’t converge to an excited state in the mathematical sense. It is important to

ask whether or not these transient features occur on timescales that are observable

in the galactic context - this is partly the focus of Chapter 4. Going further, ex-

cited states are unstable in a purely DMO context. It is possible that other matter

somewhat alleviates this instability - this principle has been demonstrated in (59).

Lastly, we would like to discuss what is meant by “boundary conditions” in

the context of the BTFR and what relevance this may hold for halos. It is impor-

tant to distinguish the boundary conditions from section 3.4.2 from the boundary

conditions required to solve the EKGEs. All physical halos must obey boundary

conditions at infinity. That is, all halos must respect the boundary conditions that
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density converges to 0 at large distance and that total mass is finite. This is distinct

from applying a scaling condition at a boundary as in Chapter 3. The amplitude-

wavelength boundary conditions from Chapter 3 describe a means to scale excited

state halos so that the family of excited states appropriately reproduces the BTFR.

This result suggests that the BTFR is related to a characteristic mass scale, de-

scribed in the results section of Chapter 3, that is held constant amongst the family

of excited states. Interestingly, we found that this mass scale is directly related to

the “break” in the halo profile at which the halo converts from a soliton-like core to

an NFW-like region. We suggest that this mass scale is in somehow related to the

quasiparticle fluctuations that occur in simulated halos. A further investigation of

this mass scale and how it arises could be be particularly interesting and perhaps

provide insight to SFψDM halo formation and halo substructure.

5.2 Superposition States and Halo Oscillations

Chapter 4 was focused on discussing the transient properties of excited states and

how they might be realized in halos. In particular, we developed a theoretical model

capable of describing superpositions of excited states in the presence of a stable soli-

ton core. This relied on the use of Sturm-Liouville theory applied to the EKGEs. As

a result, we found that superposition states can result in halo oscillations that occur

on the same timescale as orbits within galaxies (around 10My for m „ 10´22eV).

Moreover, in the perturbative regime, we observed that these oscillations persist for

hundreds if not thousands of oscillation periods. Therefore, it is at least feasible for

these oscillations to have an effect on orbital dynamics. Going further, we found

that halo oscillations can generate spiral patterns, even in a DMO context. This is

a peculiar feature of SFψDM that merits further investigation.

We consider the work of Chapter 4 to be a preliminary investigation of the notion

of superposition states and suggest that it can be greatly extended. In particular,
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our model could be extended to consider halos in which the dominant contribution is

an excited state as opposed to a ground state - this could be a meaningful extension

given that the BTFR of Chapter 3 suggest galaxies to be in highly excited states.

For instance, our preliminary results for a soliton-dominated halo suggest rotational

periods that are much too short for the generation of large spirals. However, we also

demonstrated that adjusting this model to instead consider large spirals to be in

highly excited states results in much more reasonable timescales, close to what one

would expect for the generation of large spirals. This is a particularly interesting

feature. Moreover even without such adjustments, the rotational timescales we found

lie in the relevant regime for the generation of dwarf spiral galaxies. An investigation

of dwarf spirals could provide unique insight towards this feature.

The existence of spherically symmetric oscillation modes is particularly relevant

towards the dynamics of dwarf galaxies. This idea has already been investigated in

the context of density oscillations of soliton cores. Core oscillations can be quite

substantial (up to order 30% of the central density), even when the superposition

states are in the perturbative regime. Moreover, core oscillations can be observed

in nearly all generic simulations of SFψDM halos. It has been suggested that such

oscillations can produce resonances with orbits within dwarf galaxies. Our results

confirm that the timescales of core oscillations are within the relevant regime for

this to occur. We suggest that such oscillations could be particularly relevant for

the inner regions of dwarf galaxies, perhaps supplying energy to orbits in these

regions. This may have an observable effect on the phase space distribution of such

orbits or in the galaxy’s velocity dispersion profile. However, this notion should be

investigated further in order to make more quantifiable predictions. Doing so would

involve simulating superposition states in the presence of baryonic matter, a natural

next extension for our model.

Lastly, we note that the timescale at which superposition states oscillate de-
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creases sharply with the value of m with an approximate scaling of m´3, providing

a somewhat narrow regime in which these timescales are relevant for galactic ha-

los. This scaling could be somewhat alleviated by assuming that larger values of

m correspond to halos with greater excitation number. However, the relationship

between halo excitation numbers and the value of m is non trivial and should be

further investigated to reinforce this notion.

5.3 Future Directions and Discussion

Our work in this thesis is unique in that it considers excited state features of SFψDM

and shows that they could be relevant towards galactic scale phenomena. The re-

sults regarding the BTFR in Chapter 3 solidify this notion, showing that excited state

configurations can reproduce the BTFR as well as a constraint on m consistent with

other independent studies of SFψDM. Further studies of excited states could provide

unique insights to the SFψDM theory. There are several avenues that we suggest

could be fruitful in this regard: Modelling excited states outside of the restriction of

spherical symmetry, the axially symmetric case for instance; simulating superposi-

tion states in the presence of excited state halos; modelling the inclusion of baryonic

matter in the context of superposition states; investigating the characteristic mass

scale implied by the BTFR; comparing oscillations which result from superpositions

with the dynamics of dwarf galaxies, particularly dwarf spirals. These avenues rep-

resent a few possible directions for further understanding the physical relevance of

excited states.

Solving the EKGEs and the PSEs can be challenging and mathematically intense.

It is important to approach this issue from a theoretical perspective as well as with

rigorous 3D simulations. Our results show that it is possible to successfully compare

these two perspectives. 3D simulations of the largest halos, like those of Milky Way

sized halos, are incredibly difficult and have not been achieved at the time of this
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thesis, at least to our knowledge. This arises from the difficulty of resolving the

deBroglie wavelength scale as well as the larger scale of the galaxy. These scales can

differ by orders of magnitude, particularly for larger values of m, making it difficult

to resolve both in simultaneity. On even larger scales, those of galaxy clusters for

instance, this is exacerbated. We were able to approach the features of large spirals

from a theoretical perspective in our study of the BTFR. This provides insight which

at this point is not achievable with 3D simulations, highlighting the importance of

this perspective. Further, in our investigation of superposition states, we found

that the results of our theoretical predictions were consistent with the results of 3D

simulations. Ultimately, both perspectives should be reconciled to achieve a complete

understanding of SFψDM.

SFψDM is a rapidly growing field at the time of this thesis and represents

a new frontier of DM physics. Investigating SFψDM phenomena can be somewhat

overwhelming due to the complicated wave phenomena that occur in the theory. This

is not a good reason to rule out the theory, we suggest quite the opposite. Studies

of SFψDM offer a rich opportunity to learn from both a mathematical perspective

as well as a physical perspective, providing a bridge between pure mathematical

theory and physical observation. We suggest that advances in 3D modelling as well

as the mathematical understanding of the EKGEs are equally important and likely

to further our understanding of SFψDM. There are many theoretical avenues that

have yet to be investigated. In particular, SFψDM can be motivated by geometric

arguments unrelated to the common axion-like particle motivation. This is very

interesting when considering the theory of General Relativity as a result of geometric

theory. Further, the study of manifolds with non-trivial torsion is relevant not only

to SFψDM but also to the field of Differential Geometry as a whole. Studying this

class of manifolds and their possible physical manifestations therefore represents an

important frontier for both DM physics and mathematics.
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We would like to end this thesis with the following sentiment: understanding the

full implications of the SFψDM theory will require a significant amount of creativity

and attention to detail. It is important to investigate the basic assumptions that

we make when comparing to observational data. For instance, asking the question

“Is it appropriate to model halos as being in ground state configurations?” One

could quickly dismiss this question due to the known instability of excited states

and stability of the ground state. If we followed this conclusion exactly, our results

regarding the BTFR may have never been achieved. This is not to suggest that

such conclusions are not useful, but that they should always be considered in light

of the assumptions that we make. Truly understanding SFψDM theory may require

the community to challenge many such notions and conclusions; we see this not as

an opportunity to contend with other studies, but as an opportunity to learn and

question our own biases. SFψDM is a peculiar and difficult theory to understand,

both a gift to the puzzling mind and important to our fundamental understanding

of the universe.
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Appendix A

Appendix

A.1 Numerical Solutions of the SSS EKGEs

This section is meant to outline some of the basic numerical and computational

methods that this thesis used to solve the SSS EKGEs. These methods are similar

to and inspired by those documented in the thesis of Andrew Goetz (35).

We start at the SSS EKGEs as listed in eqs. 2.23-2.25. To generate physically

reasonable solutions with the standard convention for the gravitational potential, we

must take the following set of assumptions:

Mp0q “ Ψrp0q “ 0 (A.1)

lim
rÑ8

Mprq “M8 ă 8 (A.2)

lim
rÑ8

V prq “ 0 (A.3)

The first assumption is necessary to ensure regularity at the origin, r “ 0. This

can be concluded from considering the M
r2

and 2Φr
r

terms in eqs. 2.24 and 2.25.

Next, the assumption on Mprq enforces solutions to have finite mass. Lastly, the

assumption on V prq corresponds to taking the convention that the gravitational
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potential approaches 0 at infinite distance from the origin. It should be noted that

an arbitrary constant, V̄ , can be added to V prq without affecting the solution. Thus,

a solution which satisfies the first two assumptions, but not the third can be made

to satisfy the third by an appropriate adjustment of V prq.

Each solution is then specified by a choice of initial conditions, pΨ0, V0q “ pΨp0q, V p0qq,

as well as its frequency ω. We take the convention that the potential function, V prq,

is always negative, and thus consider only V0 ă 0. Moreover, we take Ψp0q ą 0

without loss of generality since solutions are equivalent under the transformation of

Ψ Ñ ´Ψ. The frequency must be in the regime of ω ă m to generate bound states.

Solutions with ω ą m will be infinitely oscillatory, therefore violating the finite mass

condition.

Solutions which satisfy the criteria of A.1-A.3 are specified by a choice of three

parameters, with two continuous and one discreet parameter. For this section we

will use the parameter set of pm,ω, nq to define the solutions. We note that there are

many other was to parameterize the solutions, choosing pm,M8, nq for instance. For

numerical purposes, it is convenient to consider the case in which the frequency ω is

taken to be fixed, allowing one to solve a shooting problem for the central conditions

of the Ψprq and V prq.

Solutions with fixed ω can be uniquely specified by their excitation number n.

Finding a solution of order n requires one find the appropriate initial conditions

at the origin for the chosen values of n and ω, pΨ0pn, ωq, V0pn, ωq. These initial

conditions will then produce solutions pΨpr;n, ωq, V pr;n, ωq,Mpr;n, ωqq which must

obey the criteria of eqs. A.1-A.3.

Taking a näıve guess of pΨ0, V0q will likely result in solutions which are exponen-

tially divergent shortly after the decay radius is reached, violating the criteria of eqs.

A.2 and A.3. In fact, for a fixed value of Ψ0, the set of V0 which result in convergent

solutions is countable; these V0 correspond to bound, finite mass, excited states, but
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do not necessarily satisfy the convention for V8. To make sure the condition for V8

is satisfied, one may consider the asymptotic behavior of V prq. That is, for V to

appropriately approach 0 in the Newtonian fashion, we can check for the following

condition:

V prq ´
1

2
ln

ˆ

1´
2Mprq

r

˙

“ Y prq « 0 (A.4)

This condition is equivalent to the assumption that the spacetime metric is asymp-

totically Schwarszchild, or in other words that the potential V prq « Mprq
r

at large

radii.

Fixing the values of ω and n, computing the correct set of initial conditions for

Ψp0q and V p0q can be achieved through a shooting problem method. This can be

achieved with the following routine:

• Choose a value of ω ă m, and guess a value for Ψ0.

• Given Ψ0, choose a value of V0 which is consistent with the condition of k2p0q ă

0, this ensures the wavefunction is initially oscillatory as are the expected

solutions.

• Solve the ODES of eqs. 2.23-2.25 up to the decay radius Rd where kpRdq “ 0,

and extend the solution to a chosen maximum distance beyond Rd. Count the

number of zeros Ψ displays up to this point, and denote it as N .

• To generate a solution of order n, adjust the value of Ψ0 until N “ n, record

this value of Ψ0 as Ψn.

• Further adjust Ψ0 to attain a solution with N “ n` 1, and record Φn`1

• The pairings pΨn, V0q and pΨn`1, V0q generate solutions with n and n`1 zeros,

though may display exponential divergences.
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• To find the set without exponential divergence, perform a bisection search in

the value of Ψ0. The bound, non-diverging solution with n zeros will lie on

the boundary of solutions with n and n ` 1 zeros. Call the resulting value of

Ψ0 “ Ψ1.

• The pair pΨ1, V0q generates a bound solution of order n, but may not have

V8 “ 0

• To achieve V8 “ 0, perform a shooting problem in the value of V0, repeating

the entirety of the above procedure for each considered value of V0. Note that

the previous value of Ψ1 will provide a good initial guess for the next iteration.

• Vary V0 and repeat procedure until the condition A.3 is satisfied to a determined

distance tolerance.

• Result is pΨ0pn, ωq, V0pn, ωqq. To generate solutions for different values of ω

(and therefore of different mass scale), apply the scaling relations from section

2.5.4 to find appropriate guesses for the parameters then repeat this entire

procedure. In the low field regime, these guesses will approximate the actual

solutions.

This procedure as outlined, will generate SSS solutions to the EKGEs. We will

note that the same method can be applied to the low field PS analogs from eqs.

2.50-2.52. These solutions have been described in a DM only context with no con-

tributions from external baryonic potentials. However, solutions which include ex-

ternal potentials due to other matter are quite analogous. The necessary conditions

of eqs. A.1-A.3 can still be achieved in this setting with the procedure outlined

above, though the use of a continuation parameter greatly simplifies the problem.

To include an external potential then, one may repeat the above procedure first in a

DM-only setting, and then slowly introduce the external potential by increasing the
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continuation parameter. That is, considering Vtot “ V ` αVext, the solution is close

to that of the DM-only setting if α is taken sufficiently small. Therefore, utilizing

small steps in α one may iterate this outlined procedure, incrementally finding new

guesses for Ψ0 and V0 until solutions for α “ 1 are achieved, fully including the

external contribution.

A.2 Sturm-Liouville Theory and the EKGEs

Sturm-Liouville theory is the theory of second order ordinary differential equations

with the following canonical form:

d

dx

"

ppxq
dy

dx

*

` qpxqy “ ´λwpxqy (A.5)

This ODE is said to form a regular Sturm-Liouville problem on a finite interval, ra, bs,

given the following conditions and boundary conditions:

• ppxq, p1pxq, qpxq, wpxq are continuous on ra, bs

• ppxq ą 0, wpxq ą 0, on ra, bs

• α1ypaq ` α2y
1paq “ 0 for α2

1 ` α
2
2 ą 0

• β1ypbq ` β2y
1pbq “ 0 for β2

1 ` β
2
2 ą 0

For each regular Sturm-Liouville problem, there exists a set of values for λ which

result in solutions satisfying the boundary conditions at x “ a and x “ b. These

values of λ are usually referred to as the problem’s eigenvalues. Again, given that

the problem is regular, these eigenvalues are countable and can be labelled as λn,

corresponding to a solution to the ODEs denoted as ynpxq. Moreover, when listed

in increasing order, these eigenvalues correspond to solutions with exactly n zeros.

That is, we can find eigenvalues such that

λ0 ă λ1 ă λ2 ă λ3...
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and such that ynpxq has exactly n zeros on the interval ra, bs.

A powerful feature of the Sturm-Liouville eigenvalue problem, is that the eigen-

functions ynpxq form an orthonormal basis on the interval ra, bs. That is to say, one

can define the following inner product with use of the weight function, wpxq.

〈ynpxq, ympxq〉 “
ż b

a

ynpxqympxqwpxqdx “ δnm (A.6)

This inner product then allows one write any function, fpxq, which is defined on the

interval ra, bs to be written as an series of the eigenfunctions.

fpxq “ lim
NÑ8

N
ÿ

n“0

pAnynpxqq (A.7)

An “

ż b

a

fpxqynpxqwpxqdx (A.8)

This feature, akin to the Fourier series, is often utilized to solve complicated

partial differential equations, such as the wave equation. For instance, consider the

1-dimensional wave equation, subject to the boundary condition of ypaq “ ypbq “ 0.

Physically, this can be compared to standing waves on a fixed string.

c2 B
2y

Bx2
“
B2y

Bt2
(A.9)

Suppose we now assume a harmonic ansatz that ynpx, tq “ Ynpxqe
iωnt. This results

in the following ordinary differential equation, subject to Ynp0q “ Ynpaq “ 0:

Y 2n pxq “ ´
ω

c2
Ynpxq “ ´λYnpxq (A.10)

This ODE now forms a standard Sturm-Liouville problem, the solutions being the

standard sine function:

Ynpxq “ sin
nπx

a
(A.11)

6



where the eigenvalues are λn “
n2π2

a2
and the weight function is trivially wpxq “ 1.

These eigenfunctions can now be used to solve a generic initial value formulation of

this 1-D Wave equation, subject to the boundary conditions at x “ 0 and x “ a. That

is, we can write the generic solution by combining our ansatz, with the orthogonality

conditions of the eigenfunctions

ypx, tq “ lim
NÑ8

N
ÿ

n“0

`

Anynpxqe
iωnt `Bnynpxqe

´iωnt
˘

(A.12)

An `Bn “

ż a

0

ypx, 0q sinp
nπx

a
qdx (A.13)

ipAn ´Bnq “ ωn

ż a

0

ytpx, 0q sinp
nπx

a
qdx (A.14)

A.2.1 Singular SL Problems

If one or more of the SL conditions are violated, then the SL problem is referred to

as singular. For the purposes of this thesis, we will consider a SL problem posed on

an infinite domain, r0,8q. In the example of the wave equation from the previous

section, this would correspond to having an infinitely long string with an endpoint

fixed at the origin. This can have interesting results in terms of the eigenvalue

problem. In particular, infinite domains allow for continuous spectra of eigenvalues.

In practice, solving singular SL problems amounts to taking the limit which

extends the interval to have infinite length. For instance, in the case of a domain

r0,8q, one may consider the ordinary SL problem on a domain of r0, bs and examine

the behavior of the ordinary problem while taking a limit b Ñ 8. The analytical

approach to taking this limit is dependent on the structure of the particular ODE

being solved. In a computational sense, taking this limit corresponds to solving

the ordinary problem on a larger and larger computational domain, emulating the

behavior of the singular case.
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A.2.2 SL Theory of the KG equation

In this section we will describe the SL theory for the KG equation under the influence

of a fixed metric. As a starting point, we will evaluate the ansatz from eqsx 4.1 - 4.3.

Firstly, we make the definition of Φ “ p1´ 2M
r
q for simplicity of writing the equations.

We then evaluate the KG equation by using the definition of the d’Alembert operator

lψnlm “ m2ψnlm (A.15)

|g|´1{2
Bλp|g|

1{2gλµBµψnlmq “ m2ψnlm (A.16)

Firstly, the determinant of the metric is g “ ´e2V Φ´1r4 sin2pθq. Then, since the

metric is chosen in a diagonal form, only the terms of the sum with λ “ µ result in

non zero contributions. Applying these two facts we arrive at

pe´V Φ1{2r´2 sinpθq´1
q
`

Bµppe
V Φ´1{2r2 sinpθqqgµµBµψnlmq

˘

“ m2ψnlm (A.17)

Now we evaluate the sum over µ, noting that gµµ “ pgµµq
´1, and we apply the

derivative operations

lψnlm “ pe
´V Φ1{2r´2 sinpθq´1

qt (A.18)

Btppe
V Φ´1{2r2 sinpθqqp´e´2V

qBtψnlmq`

Brppe
V Φ´1{2r2 sinpθqqpΦqBrψnlmq`

Bθppe
V Φ´1{2r2 sinpθqqpr´2

qBθψnlmq`

Bφppe
V Φ´1{2r2 sinpθqqpr´2 sinpθq´2

qBφψnlmqu

Next, we evaluate the derivatives and simplify resulting in

lψnlm “ t´e
´2V
Bttψnlm ` ΦBrrψnlm` (A.19)

VrBrψnlm ´
1

2
ΦrBrψnlm`

2r´1
Brψnlm ` r

´2
Bθθψnlm`

r´2 cotpθqBθψnlm ` r
´2 sinpθq´2

Bφφψnlmu
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Finally, we apply the spherical harmonic ansatz of ψnlm “ rlΨnlprqY
m
l pθ, φqe

´iωnlt

and utilize the fact that the spherical harmonics are eigenfunctions of the angular

part of the d’Alembert operator. That is, we use the following fact

`

r´2
Bθθ ` r

´2 cotpθqBθ ` r
´2sinpθq´2

Bφφ
˘

Y m
l “

lpl ` 1q

r2
Y m
l (A.20)

This brings us the final form which is an ODE for Ψnl in terms of the variable r

ω2e´2V rlΨnl`ΦprlΨnlqrr`Vrpr
lΨnlqr´

1

2
ΦrpΨnlr

l
qr`

2

r
pΨnlr

l
qr`

lpl ` 1q

r2
Ψnlr

l
“ m2Ψnlr

l

(A.21)

We can now analyze this ODE with SL theory, and compute its eigenfunctions.

Firstly, we will simplify the problem by taking the following substitutions

Hnlprq “ rl`1Ψnlprq (A.22)

Bprq “ Vr `
Φr

2Φ
(A.23)

This brings the ODE to the more simplified form of

Hnl,rr `BHnl,r ´ p
B

r
`
m2

Φ
`
lpl ` 1q

r2
qHnl ` p

ω2e´2V

Φ
qHnl “ 0 (A.24)

We are now tasked with placing this equation into the SL form. We achieve this by

defining the SL functions pprq, qprq, and wprq as

pprq “ expp

ż r

0

Bpsqdsq (A.25)

qlprq “ pprqp
B

r
`
m2

Φ
`
lpl ` 1q

r2
q (A.26)

wlprq “ pprq
e´2V

Φ
(A.27)
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This finally brings the KG equation into the SL form

ppprqHnl,rqr ´ qlprqHnl ` ω
2
nlwprqHnl “ 0 (A.28)

We can finally identify the eigenvalues and draw the standard conclusions from SL

theory. Firstly, we see that each value of l results in a distinct SL problem with an

eigenvalue of ωnl. Thus, for each value of l there exists a countable number of ωnl with

increasing eigenvalues. These solutions can be identified by their number of zeros, n.

Lastly, if we wish to convert these eigenfunctions back into the corresponding density

amplitude, we need just apply the relation of eq. A.22 to retrieve each Ψnlmprq. A

generic solution to the KG equation would then be expressed as

ψnlm “
ÿ

nlm

Anlmr
lΨnlY

m
l e

iωt (A.29)

To isolate the coefficients Anlm we can make use of the orthogonality conditions for

both the spherical harmonics and for the eigenfunctions, giving

An1l1m1 “

ż
ˆ

dΩY m1

l1 pθ, φq

ż

drpr2pl`1qwlprqΨn1,l1prqψnlmprqpt “ 0qq

˙

(A.30)

In practice, evaluating these coefficients is a computationally intensive process. This

is mainly due to the fact that each value of l has a countably infinite number of

orthogonal modes characterized by n. Examining the form of this equation, we

can identify the radial wave functions for each mode as ρnl “ rlΨnl, showing that

this orthogonality condition reduces to a simple wave function orthogonality with a

weight of wl. Even further, if one takes the low field limit, the value of wlprq “ 1,

showing an orthogonality between the wavefunctions when integrated over the full

spatial volume.
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