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Abstract

The question of “What is Dark Matter?” has been a focus of cosmological research
since the turn of the 20th century. Though the composition of Dark Matter is
unknown, the existence of Dark Matter is crucial to the modern theory of cosmology.
We focus on a theory of Dark Matter referred to as Scalar Field Wave Dark Matter
(SF¥DM), which has received an increasing amount of interest from the research
community since the late 2000s. SFy)DM is a peculiar theory in which Dark Matter is
composed of ultralight bosonic particles. As a result, SFyy DM has an astronomically
large deBroglie wavelength, generating complicated wave dynamics on the largest
cosmological scales.

This thesis focuses on describing the status of SFYDM theory, SF¥DM halos,
and how SFi¢¥'DM halos are affected by the wave-like features of the scalar field. In
particular, we offer an analysis of galactic rotation curves and how they relate to
SFyYDM excited states. This analysis yields a novel model for an observed galactic
trend referred to as the Baryonic Tully-Fisher Relation. Furthering this model, we
formulate an eigenfunction decomposition which can be used to describe superposi-
tions of excited states. Finally, we examine these superposition states and discuss
how they can be used to generate both oscillating and rotating patterns in SFyDM

halos.
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1

Introduction: Wave Dark Matter

This introductory chapter will serve three main purposes: it will familiarize the
reader with the various mathematical notations and requirements for the theoretical
aspects of the thesis, it will introduce the notion of Dark Matter in the context of
modern cosmology, and will offer a brief review of the Scalar Field Wave Dark Matter
theory. Section 1.1 will focus on the mathematical preliminaries. Sections 1.2-1.3
will introduce General Relativity and the modern theory of cosmology as well as
describe the basic context of the problem of Dark Matter. Finally, sections 1.4 and
1.5 will introduce Wave Dark Matter and offer a short review of Wave Dark Matter

phenomenology and constraints.

A reader who is familiar with General Relativity and Differential Geometry may
skip sections 1.1-1.2, but the author highly suggests one familiarize with the content
in these sections before advancing to the theoretical discussions in Chapter 2. Like-
wise, a reader who is familiar with Cosmology and the problem of Dark Matter can
omit reading section 1.3. Nonetheless, sections 1.4-1.5 should be considered essential
for any reading in order to develop the context required for the remainder of the

thesis.



1.1 Notation, Mathematics, and Conventions

In the bulk of this thesis, we assume a working knowledge of differential geometry
and differential equations. We will devote this section to describing our notation and
conventions. Firstly, we will define our systems of units, as the equations contained
in the remainder of the thesis depend on these. In following, we will develop the
geometric language and notation which is used to describe spacetime in the theory
of General Relativity; these descriptions are inspired by several texts which we highly

recommend (18; 64; 61).

1.1.1 Units and Notation

We choose to use a unit system which is a combination of geometerized and natural
units in order to simplify our equations and computations. This is achieved by taking
fundamental physical constants which appear, the speed of light for instance, to have
magnitude 1. Specifically, we take the scheme of ¢ = G = 1. Mainly, this has the
effect of simplifying our equations. We will reintroduce physical units when relevant
- usually for comparison to physical data or when citing equations from other text.
We list some common units and how to convert them to geometerized units in table
1.1. Other basic units can be converted by using a combination of the factors in
the table. We provide the conversion of energy to length values in the table as an
illustration, combining the factor for the mass to length conversion with that for the
velocity conversion. In this unit system, values of mass, length, and time can be
thought of as equivalent and inter-convertible. We choose to represent quantities in
terms of length in table 1.1.

In addition to these conversions, it is sometimes useful to convert particle masses
to their corresponding wavelength values. In terms of our equations, this amounts to
taking the value of A = 1 for the Klein-Gordon and Schrodinger equations. Denoting

the spatial frequency (inverse wavelength) as T we have

m=— (1.1)



m N T
10-22¢V — 3.45(ly)~!

(1.2)

Table 1.1: Basic Unit Conversions: We present some basic unit conversions. To
make the specified conversion, multiply by the given factor. To make the reverse
conversion, divide by the same factor.

Conversion Factor | Value | Geometerized Value
Mass — Length % 1 kg 7.43 +107%%m
Mass — Length C% 1 Mg 1477m
Time — Length c 1 year 1 light year (ly)
Energy — Mass c? leV 1.783 + 10~ %°kg

Energy — Length g leV 1.324 + 10~%m
Velocity — Unitless | ¢! | 31052 1

1.1.2  Spacetime Geometry: Coordinates, Metrics, and Vector Fields

We pose equations in both coordinate-free and coordinate-dependent notation. We
denote a set of coordinates at a point, x, as {z®}. The index «, in the context of
a 4-dimensional spacetime is taken to have values a@ = 0,1, 2,3, where 0 is usually

chosen to represent a timelike index. Each coordinate system has a corresponding set

0

=2z |e}. We will assume the Einstein summation convention

of basis vectors {e,|x =
where a repeated index implies a summation over the values of that index. A vector

field, V(x), is then expressed in several equivalent ways as

V(z) = v*(z)es|x = va(x)a%x = v%(x)04|s- (1.3)

The functions v*(z) are referred to as the components of the vector field and
depend on the chosen coordinate system. Importantly, a vector field evaluated at a
point x is a vector defined on the tangent space of that point. Vector fields give a
formal notion of the directional derivative of a function. The derivative of a function,

f, in the direction of a vector field, X, is usually expressed as

X(f)la = v*()0af o (1.4)

A spacetime manifold comes equipped with a Lorentzian metric, g. We choose

3



the (—, +, 4+, +) convention for the metric’s Lorentz signature. At a point, the metric

defines a non-degenerate bilinear product between vectors as

g(v, W) = (v, W), = v"ws = gas(2)v0". (1.5)

Here, the components of the metric are defined with respect to a the coordinate basis
vectors gag(x) = 8(0ales 0lx). The metric gives rise to the notion of lowering indices
for vectors and tensors, where v, = gov°. Likewise, the metric inverse, denoted
with superscripts as ¢®?, can raise an index as v® = gaﬂv[g.

A vector with a lowered index is sometimes referred to as a co-vector or dual

vector. This is due to the one-to-one correspondence between vectors and co-vectors
that is established by the metric. Given a vector, v, there always exists a co-vector
v defined as v = g(v, —). The co-vector defines a mapping taking vectors to scalars,
v(w) = g(v,w). Analogous to vector fields, one can define co-vector fields otherwise
known as one-forms. Given a vector field, V, its corresponding one-form can be

expressed in the following equivalent ways
V(z) = g(V, =) = gagt’da® = vadz® = v,(z)&". (1.6)

Here we have introduced the basis one-forms dz® = €* which are defined in relation

to the basis vectors as dx®(ds) = 5.

Lastly, we can define tensors in spacetime by using the basis one-forms. We
define a rank N tensor as a map which converts N vectors into a scalar. The metric

tensor, for example, is a realization of a rank 2 tensor.
g = Japda® ® da’ (1.7)

g(v,w) = gaﬁdmo‘(v)d:pﬁ(w) (1.8)

Lastly, a generic rank N tensor, S, is expressed as

S = Sat 00,0y dz™ @dr? ® ... Q dx™N (1.9)



We note that it is also possible to define rank (N, M) tensors which have N subscripts
and M superscripts. In this case the tensor receives N vectors and M co-vectors as

inputs and the M superscript components correspond to the basis vectors.

1.1.3  Spacetime Geometry: Levi Civita Connections

In the context of differential geometry a manifold’s connection, denoted V, is a
fundamental object which is used to relate the manifold’s many different tangent
spaces. Loosely speaking, the connection allows one to compare vectors which exist
in the tangent space of one point to vectors which exist in the tangent space of
another. Further, this allows one to formalize the notion of the differentiation of
vector fields as well as tensor fields. A Kozsul Connection for vector fields is denoted
as V(V,W) = VyW, and can be thought of as “the covariant derivative of W
in the direction of V.” V must satisfy the following properties to be considered a

connection:

VivW = fVyW (1.10)
Vv(fW) =V(f)W + fVvW (1.11)
VviuW = VyW + VygW. (1.12)

Every connection is associated with a set of connection coefficients, often referred

to as Christoffel Symbols. In our notation, the Christoffel symbols are expressed as

For a given manifold, there are many possible connections which satisfy the above
properties. However, there is a particular connection which can be uniquely defined
in terms of the metric which is referred to as the Levi-Civita Connection, V<C.
The Levi-Civita connection is the unique connection which satisfies two additional
properties: it is torsion free and metric compatible. These properties are stated

respectively through the following tensoral relations:

T(X,Y) = VY - V59X - [X, Y] =0 (1.14)

5



M(X,Y.Z) = X((Y.Z)) - (VX'Y,Z) - (Y, VX"Z) = 0. (1.15)
Here we identify the torsion tensor, T and the metric compatability tensor, M. This
leads to the unique formula for the connection coefficients of V¢

FLC _

ik = 5 (Okgij + 039 — Oigjr) - (1.16)

DN | —

The study of manifolds equipped with the Levi-Civita connection encompasses a
significant portion of the field of Differential Geometry. As well, the structures of
General Relativity are usually formulated with respect to the Levi-Civita connection.
Later, in Chapter 2, we will discuss the some of the implications of relaxing the
torsion-free condition of eq. 1.14 in the context of General Relativity and show that

this leads to a geometric interpretation of the Einstein-Klein Gordon Equations.

1.1.4 Spacetime Geometry: General Properties of Connections

To each connection, V, one can associate several tensoral quantities. In addition to
the torsion and metric compatibility tensors in eqs. 1.15 and 1.14, any two connec-
tions differ by a tensoral relation. In the case of the difference from the Levi-Civita

connection, one defines the difference tensor as:
D(X.Y.Z) = (VxY,Z) — (VY,Z) (1.17)

Each connection is associated to a characteristic set of curves referred to as

geodesics. Geodesics are the generalization of the concept of a‘“straight-line” on an

otherwise curved manifold. Formally, geodesics are auto-parallel curves which can

be found via solving the following differential equation posed in local coordinates:
d*x® da” da

=1 ——. 1.18
dr? B dr dr ( )

Lastly, the Curvature Tensor provides a description of how adjacent geodesics



deviate as a result of the manifold’s curvature.
R(X,Y)Z = VxVvyZ — VyVxZ — Vix v|Z (1.19)
More commonly, one forms the Riemann Curvature Tensor as
Riem(X,Y,Z, W) = (R(X,Y)Z,W). (1.20)

One then defines the Ricci Curvature and Scalar Curvature, which are used in General

Relativity, as:
Ric(X,Y) = g"Riem(X, 0;,Y, ;) (1.21)

R = g"Ric(d;, 0;) (1.22)

Importantly, to every connection one may associate such curvature quantities; only
for the Levi-Civita connection will these quantities result in formulae which are solely

determined by the metric.

1.2 General Relativity

In this section we detail the theory of General Relativity using the geometric lan-
guage developed in section 1.1. General Relativity (GR) is a classical and geometric
description of the gravitational interaction which was developed by Albert Einstein,
and first published in 1915 (23). GR describes our universe as a 4-dimensional mani-
fold referred to as a spacetime. Spacetime comes equipped with a Lorentzian metric,
g, and the Levi-Civita connection V¢, Our convention for the Lorentzian signature
will be to take the time component as negative in the (—,+, +,+) format. The
equations of GR are referred to as the Einstein Field-Equations (EFEs). Even more
fundamentally, the EFEs can be thought of as the critical point of the Hilbert action

- this discussion is deferred to Chapter 2. In tensoral form, the EFEs appear as

G + Ag = 87T (1.23)



This set of equations relates the Einstein Curvature, G, to the spacetime’s Stress-

Energy (SE) tensor, T. Put simply, the SE tensor encodes the distribution and
dynamics of the matter and energy contents of spacetime. In other words, one can
understand the functionality of the EFEs in the sense that matter generates a SE
which equates to a curvature in spacetime. This curvature is then associated with a
characteristic set of geodesics which are interpreted as the free-falling paths of “test
particles” in spacetime; the curving of these paths as a result of the SE tensor is what
one thinks of as “gravity.” In other words, the essence of GR lies in the statement
“Matter curves spacetime and spacetime curvature results in gravity.”

The assumption that spacetime comes equipped with the Levi-Civita connection
in GR is just that, an assumption. That being said, it is a highly convenient as-
sumption as it allows all of the quantities of the EFEs to be expressed in terms of
the metric and its derivatives, greatly simplifying the theory. Alternative GR-like
theories have been considered in which the spacetime connection is not necessarily
the Levi-Civita one. These theories relax the conditions imposed on the connection,
namely the conditions on the torsion and metric compatibility tensors in eqs. 1.14
and 1.15. For instance, Einstein-Cartan theory removes the Torsion-free condition
of eq. 1.14. Among other motivating features, Einstein-Cartan theory (89) has been
considered as a means of including the intrinsic spin of matter-fields into GR. Later,
in chapter 2 we will consider a similar type of theory which relaxes the same torsion
condition, resulting in a geometric motivation for the theory of Scalar Field Dark

Matter.

1.2.1 Phenomena in GR

In GR, spacetime curvature can result in a plethora of gravitational phenomena.
Importantly, most of these phenomena are unique to GR in comparison to New-
tonian theory and have been confirmed observationally. A few such phenomena
include: gravitational lensing, gravitational redshift, frame-dragging effects, orbital
precession, the formation of black holes, and gravitational waves. All of these effects

result from the spacetime curvature predicted by GR. Einstein first proposed GR



as an explanation for the anomalous precession of Mercury’s orbit in another 1915
paper (22), noting that the theory agreed closely with the known precession rate. In
addition, he also proposed that the curvature produced by massive celestial bodies
would cause the deflection of passing rays of light. This effect was first observed and
confirmed in 1919 by Eddington (21), who measured the deflection of light around
the sun during a total solar eclipse.

Orbital precession and the deflection of light can be explained by making adjust-
ments to standard Newtonian theory. Arguably, these adjustments usually result in
more issues than the ones they intend to solve. The gravitational redshift, frame-
dragging, and non-linear gravitational wave phenomena are truly unique to GR and
cannot be explained by such ad-hoc adjustments. Einstein argued in 1907 that
light would experience a Doppler-like redshift when moving through strong gravita-
tional fields. This gravitational redshift was first measured in the vicinity of a white
dwarf by Popper in 1954 (67). Frame-dragging effects result from the distortion of
spacetime by rotating massive bodies. Lense-Thirring precession and the Geodetic
effect are the two most prominent such effects. Geodetic precession has been mea-
sured in the vicinity of the Earth by the Gravity Probe B experiment (33) while
Lense-Thirring precession has yet to be accurately measured. Lastly, the motion
of massive bodies through space can generate ripples in spacetime which propagate
at light speed, referred to as gravitational waves. Gravitational waves were directly
detected for the first time in 2016 by LIGO, which detected the waves resulting from
a binary black hole merger (32).

The admittance of black holes is a unique feature of GR. Mathematically, black
holes are described by solutions to the vacuum (G = 0) Einstein Equations. The
vacuum equations admit two types of black hole solutions, static solutions giving the
Schwarzchild black hole, and stationary solutions giving the rotating Kerr black hole.
Black holes are characterized by their event horizon, a boundary at which gravity
becomes so strong that even light speed particles cannot escape. Importantly, direct
observation of black holes has been achieved recently in 2017 by the Event Horizon

Telescope (EHT), pioneering a new era of observational cosmology and black hole

9



physics (16).
1.3 Modern Cosmology: ACDM

The most successful theory of cosmology to date is referred to as A Cold Dark Matter
cosmology, or ACDM. In ACDM, the universe is described as a spacetime manifold
which obeys the Einstein Equations as described in section 1.2. In short, the Stress-
Energy content of the universe consists of five main components: Baryonic Matter
(BM), Cold Dark Matter (CDM), Dark Energy (DE), Electromagnetic Radiation,
and Neutrinos. The behavior and interactions of these components with each other
and with the Einstein Equations then determines the evolution of the universe.

The term “Baryonic Matter,” refers to all types of matter which consist of
protons and neutrons. More specifically, a baryon is a composite particle with an
odd number of valence quarks. In the cosmological context, matter consisting of
electrons is also included, though electrons are not baryons in a strict sense. As
such, all types of atoms and molecules are considered part of the universe’s BM
content. This BM content interacts via electromagnetism, and can therefore be
observed via its interactions with light. In other words, BM is wisible. The term
“Dark Matter” is used somewhat in compliment to refer to types of matter which
are specifically non-baryonic. Importantly, DM is assumed to lack electromagnetic
interactions. As a result, DM cannot be detected via interactions with light, hence it
is dark. Though DM is not visible, it is observable, specifically via its contributions to
gravity. Whether or not DM shares interactions with the Strong and Weak Nuclear
forces is often considered in ACDM, but remains an open question.

The character A in ACDM is chosen to represent the cosmological constant.
The cosmological constant appears as a constant term in the Einstein Equations,
contributing a constant energy density at all spatial points referred to as Dark Energy.
At the level of the Stress-Energy tensor, Dark Energy contributes an everywhere
negative pressure; this pressure is the source of the accelerating expansion of the
universe. This phenomena was experimentally confirmed in 1998 by two independent

groups (66; 69), solidifying the necessity of the cosmological constant in ACDM.

10



Moreover, modern studies of ACDM estimate Dark Energy to be the dominant energy
component of the present day universe, comprising 68% of its total energy content.
Though Electromagnetic Radiation and Neutrinos comprise a small amount of the
total energy content of the present day universe (< 1%), their dynamics in the early
universe are crucial to the ACDM model. In fact, the early universe contains a period
in which Electromagnetic Radiation comprised the majority of the universal energy

content.

1.3.1 The FLRW Model

The largest scale features of the universe and its energy components can be modelled
under the assumption that they are homogeneous and isotropic. This is observation-
ally valid at the largest observed scales (~ 260Mpc) (95). The equations which
govern the expansion of spacetime and the evolution of its energy components are
referred to as the Friedmann equations. For the ACDM model, the metric is referred
to as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and appears in

line element form as

2

r
1 —kr?

ds® = —dt* + a(t) < + r2df* + r* sin® 6d¢2> (1.24)
The function a(t) is referred to as the “scale factor” of the universe, describing
the spatial expansion of the universe in time. The value of k is referred to as the
spatial curvature. In the case that k = 0, the universe is spatially flat at the largest
scales. Positive and negative values of k likewise correspond to cosmologies which are
“closed” or “open” respectively. Qualitatively, if one omits the cosmological constant,
a universe with positive k will expand from a point, eventually reach a maximum
spatial size and then re-contract back to a point. Likewise, an open universe with
k < 0 is expected to expand indefinitely at an increasing rate. Lastly the spatially
flat case, £ = 0, the universe expands forever at a decreasing rate. Including the
cosmological constant, a flat universe will share the same fate as an open one and

expand forever, while a closed universe will still re-contract if A remains sufficiently
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small. Most modern observations, those by the Planck collaboration for instance
(15), suggest that the universe is spatially flat with & = 0 being consistent with
data. This value now faces tension with recent measurements, which suggest a small
but positive value for k (92).

Assuming that the SE tensor is homogeneous and isotropic and that the metric
is of the FLRW form in eq. 1.24, the Einstein Equation can be evaluated to obtain

the two Friedmann equations

Ht)?= —"—— - — (1.25)

p=—=3H(t)(p+p) (1.26)

Here we have introduced the Hubble constant, H(t) = %, which describes the relative

expansion rate of space. The density and pressure components of the SE tensor are
respectively expressed as p and p. A component’s “equation of state” relates its
pressure and density as p = wp, and is usually just specified by the value of w. Most
cosmological parameters are expressed in terms of the critical density, p., which is

defined as the threshold density for a universe with A = 0 such that £ = 0. This can
be found using eq. 1.25 as p. = %. The energy density, p is decomposed into its

various contributions from baryonic matter, DM, DE, and radiation

ﬁ = Qpm + Qpa + Qp + Qp. (127)

Pc

Here, each ) parameter is defined as the fraction of the corresponding density com-

ponent to the critical value. That is, €2, = ’;—’c‘. Substituting this definition into the
first Friedmann equation in eq. 1.25, and defining the “curvature contribution” as

Qp = —# returns the following
1=Qu+ Qpym + Qa + Qr + Q. (128)

The contributions excluding €2, are sometimes combined into a single parameter €.

12



The value of 2, representing the contributions of all matter and energy content,
directly determines whether or not the universe is spatially closed, flat, or open,
determined by €2 > 1, 2 = 1 and §2 < 1 respectively. Since the Hubble parameter as
the well density components are time dependent, the €2, parameters in eq. 1.28 are
as well. It is common practice to evaluate these parameters based on their present
day values, denoted by appending a subscript of 0.

Further than the homogeneous and isotropic features of the Friedman equations,
the ACDM paradigm has been used to model the largest cosmological substructures
including the galactic filaments and the cosmic microwave background (CMB). These
features have been observed by collaborations such as the Planck collaboration and
WMAP. In the modern day, simulations such as Illustris (26), EAGLE (86), and
CAMB (1) model these features to a high degree of precision. Going further, the
smallest cosmological structures (those of galaxies and galactic substructure), are

intimately related to the problem of Dark Matter, described in the following section.

1.83.2 What is Dark Matter?

The notion of “Dark Matter,” can be historically traced to a lecture series given by
Lord Kelvin in 1884 (87). Kelvin argued that measuring a galaxy’s luminosity distri-
bution alone was an insufficient method for determining that galaxy’s gravitational
mass. Put more formally, Kelvin noticed that the velocities of stars in the Milky
Way were too disperse to be accounted for by only considering the gravity gener-
ated by the galaxy’s luminous mass distribution. Accordingly, Kelvin supposed the
existence of “Dark Bodies” to account for this discrepancy. These “Dark Bodies,”
hypothesized to be some form of non-luminous matter, would then account for the
additional gravity required to generate the orbital velocities observed in the Milky
Way.

The term “Dark Bodies” evolved to be the term we use today (Dark Matter) in
1933 in a work regarding the Coma Cluster, fig. 1.1, by Fritz Zwicky (88). Zwicky
measured the relative velocities of the cluster’s galaxies as well as their inferred lumi-

nous mass. Famously, this led to the conclusion that these velocities were too great
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FIGURE 1.1: Coma Cluster: The Coma Cluster, imaged above by (2), is a cluster
with over 1000 identified galaxies. Zwicky reported that the mass of the cluster as
computed by the virial theorem was over 400 times of that inferred from luminosity
measurements. It was argued that the additional unmeasured mass of the cluster
must be in the form of non-luminous or “dark” matter.

to be sustained by the luminous mass of the galaxy alone; in order for the cluster to
be virialized or self-bound, additional non-luminous mass would be required. Zwicky
hypothesized the existence of such mass, referring to it as “Dunkle Materie” (Dark
Matter). As such, the search for this Dark Matter and what it could be composed
of continues to the present day.

Throughout the 20th century, advances in observational astronomy have enabled
more precise measurements of stellar velocities, luminous mass, and gravitational
mass. Ultimately, this has led to further data and evidence for Dark Matter. For
instance, the advent of 21cm spectroscopy allowed increasingly precise measurements
of stellar velocities (31). This advance was utilized in 1978 by Rubin and Ford who

measured the flatness of galactic rotation curves, a remarkable evidence for dark
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FiGURE 1.2: Rotation Curves: An example rotation curve from the circular or-
bits of galaxy NGC 6503 (34). Observed data given with error bars; the inferred
contributions from the Dark Matter halo, stellar disk, and gaseous mass are shown.
Dark Matter is the primary contribution. Contributions from the disk and gas dis-
play decreasing velocity at large distances; the presence of Dark Matter flattens the
curve.

matter (71). By measuring the orbital velocities of stars within the spiral galaxies,

it was inferred that Dark Matter was about 6 times more abundant than luminous

matter. Shown in fig. 1.2, the flattening of galactic rotational velocity curves is a
strong indicator of the presence of Dark Matter in galaxies. Still, the composition of
Dark Matter and what types of objects it consists of, remains unknown.
Theoretical progress such as the founding of General Relativity has also increased
the capability to test the Dark Matter hypothesis. As an example, the FLRW model

of cosmology has been used in conjunction with measurements of the Cosmic Mi-
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FIGURE 1.3: Bullet Cluster: The Bullet Cluster, imaged by Chandra (55), is made
of two colliding clusters of galaxies. The inferred distributions of Dark Matter and
Baryonic Matter are shown in blue and red respectively. The collision has resulted
in a large offset between the two types of matter. The baryonic matter is slowed via
frictional forces while the Dark Matter is not, resulting in the separation.

crowave Background (CMB) to place constraints on the abundance of Dark Matter.
For instance, the 2012 WMAP results imply that Dark Matter composes 24% of the
energy content of the universe (25). Further, analyses of relativistic phenomena like
gravitational lensing and redshifting provide a means to investigate more localized

features of Dark Matter.

A possible alternative to the existence of Dark Matter lies in theories of Mod-
ified Gravity. These theories suppose our understanding of the gravitational force
to be insufficient to explain the orbital dynamics observed in galaxies. In this view,
one supposes a different form for the gravitational force law to account for the dis-
crepancies usually attributed to Dark Matter. Some such theories include “Modified
Newtonian Dynamics” and “f(R) gravity” (74; 82). These types of theories now face
strong tension with modern observations like Chandra’s observation of the Bullet
Cluster. Shown in fig. 1.3, Chandra infers a significant offset between the lumi-

nous center, and gravitational center of the Bullet Cluster merger, casting doubt on
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Modified Gravity theories and further suggesting the existence of some form of Dark

Matter (56; 14).

1.3.3 Dark Matter Candidates

How to Explain the
Anomalous Velocities of
Stars ang Galaxies

Dark Matter Modified Gravity
| -__' -.,___
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FiGure 1.4: DM Candidates: The problem of DM arises as an effort to explain
anomalously large velocities of stars and galaxies. DM arises as a way to explain this
motion without changing the gravitational force laws of General Relativity. Cold
DM has become the dominant candidate; Hot DM and Warm DM are usually ruled
out as they inhibit the formation of galactic scale structure. We make a further
dichotomy between Point-like particles and wave-like particles. Candidates for Wave
DM include ultralight particles such as ultralight scalars. Point-like DM comprises
the majority of traditional DM models, treated with N-body gravity.

In the modern context, “Dark Matter” (DM), refers to a hypothetical form
of matter which does not interact via the electromagnetic force but still has grav-
itational mass. As described, one cannot “see” DM, though one can observe its
interactions with other astronomical masses via gravity. Theories of what types of
matter or what particles could constitute DM vary, resulting in a myriad of possi-
bilities. Fig. 1.4 presents major categories of DM candidates tailored towards the

discussions of this thesis.
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The Hot, Warm, and Cold distinction refers to the velocities of DM particles.
Hot DM candidates are usually light, weakly interacting particles like neutrinos with
relativistic velocities. Theories in which hot DM comprises the majority of DM mass
face issues in regards to forming galactic scale structure. This is due to the hot
particles having a large free streaming length, resulting in a reduction of structures
at the observed galactic scale. In other words, hot DM reduces small scale structure
as desired but has the cost of preventing galaxy formation; this often receives the
title of the “Catch-22” problem of hot DM. Warm DM, usually thought to consist
of weakly interacting particles of a slightly greater mass range than hot DM, faces
a similar Catch-22 problem. Cold DM refers to DM particles with low velocity
and therefore insignificant free-streaming lengths. Cold DM theories are generally
consistent with the observed growth of cosmological structure and are therefore the
most strongly favored descriptions of DM in the field of cosmology. We note that
more complex DM theories involving mixtures of mostly cold DM and small amounts
of warm or hot DM could also be compatible with observation. This is an appealing
choice in scope of the large variety of hypothetical DM candidates, but introduces
additional difficulties in terms of modelling DM physics (finding the correct mixture
proportions for instance). For a more comprehensive review of the Hot, Cold, Warm
distinction we refer the reader to (68).

For this thesis, we suggest a further distinction between point-like and wave-
like cold DM. Point-like CDM candidates include objects which can be treated as
collisionless point particles on galactic and cosmological scales. Point-like CDM can-
didates include Weakly Interacting Massive Particles (WIMPs), hypothetical parti-
cles in the ~ 100 GeV mass range, and Massive Compact Halo Objects (MaCHOs),
large and dim objects like black holes or non-luminous stars. MaCHOs are usually
ruled out as a DM candidate as they are expected to generate an abundance of
gravitational lensing events which have not been observed (4). WIMPs remain the
most promising candidates for point-like CDM. Standard values for interaction cross
section and particle mass at the scale of the weak interaction are able to produce

particles with the same modern abundance as expected for DM. This is often referred
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to as the “WIMP Miracle.” For a review on WIMPs we suggest (54). Importantly,
direct detection efforts for WIMPs have, to date, provided no significant evidence for
their existence (77). Therefore, despite the success of the WIMP theory, alternative
DM candidates must be considered given the lack of WIMP detection events.
Wavelike particles refer to a class of CDM candidates with cosmologically rel-
evant wavelengths. As such, their wave dynamics must be resolved in cosmological
simulations. Candidates for wavelike particles are usually ultralight particles, around
the 10722eV range for ultralight scalars. Wavelike DM particles display unique co-
herence effects at galactic scales which are relevant in regards to structure formation.
This thesis specifically considers the case of ultralight scalar fields. We defer a more

detailed description of wavelike DM to section 1.4.

1.8.4 Small-Scale Crises of A\CDM

ACDM faces several issues in regards to modelling structure at galactic length
scales. These issues are often grouped and referred to as the “small-scale crisis” of
ACDM. Specifically, simulations of point-like CDM are associated with the Cusp-
Core problem, the Too-big-to-fail problem, and the Missing Satellites problem. The
Cusp-Core problem is the direct result of N-body simulations of DM halos. These
types of simulations display DM halos which tend towards singular density, cuspy
cores. This halo profile was first demonstrated in N-body simulations by Nevarro,
Frenk, and White in 1996 and is thus referred to as the NFW profile (63). Writing
the functional form of the NFW profile, it is clear that it is cuspy and singular at
the origin.

Po

-_— 1.29

pNFEw (1) =

The Too-big-to-fail (TBTF') problem and missing satellites problem (MSP) are
similar in that they regard the expected distribution of satellite galaxies for larger
galaxies like the Milky Way. The MSP gets its name from a discrepancy between the
observed number of galaxies satellite to the Milky Way and the number of these satel-

lite predicted by traditional ACDM. In other words, ACDM predicts more satellites
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than are observed, hence the satellites are “missing.” A commonly proposed resolu-
tion to the MSP is that the missing satellites do exist, but that they do not host
luminous matter components and are therefore not visible. The MSP can then, hypo-
thetically, be resolved by a careful consideration of detection efficiency and counting
statistics. In other words, if one provides a model for the connection of luminous
matter to DM halos, then that model can be used to make inferences about how
many satellites should actually be observable with a given detector. It was shown
in (46) that this method can resolve the MSP, and in some cases push the problem
towards the case of “too many satellites.” Importantly, a detailed understanding of
DM dynamics and how they affect the connection to luminous matter will help de-
termine the viability of such resolutions. The TBTF problem, somewhat similar but
still distinct from the MSP, also regards a lack of Milky Way satellites but at higher
masses than those of the MSP. Specifically, these massive satellites are so large that
they are expected to host luminous matter with high probability. The name “TBTF”
then comes from the notion that such large satellites would be “too big to fail to be
luminous.” Again, it has been suggested that the TBTF problem results from a lack
in understanding of how the dynamics of baryons or DM could affect the observed
distribution of galaxies. It can be argued that baryonic effects are insufficient to fully
resolve this problem. However, a recent suggestion in (65) argues that the TBTF
problem is the result of a naive misinterpretation of satellite statistics, and that the

observed satellite counts are consistent with the simulations [llustris and EAGLE.

1.4 Scalar Field Wave Dark Matter

1.4.1 What is Scalar Field Wave Dark Matter?

In this thesis we will focus on a theory of DM in which DM is represented by a
scalar field with an ultralight mass parameter (around m = 10~?2¢V). Importantly,
the small mass of the scalar results in an extremely large wavelength (around lkpc
for most cases). As a result, the DM exhibits unique wave-like features which can

be relevant on galactic and cosmological scales. Theories regarding such ultralight
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FiGure 1.5: DM Galactic Filaments: An example of the galactic filaments
as modelled by SF¢yDM and particle CDM taken from Schive (75). ¥DM results
in coherent wavelike features which result in a reduction of the smallest scales of
structure formation, seen as the lack of granularity in the left picture. SFyDM

forms a condensate structure on the largest scales that is otherwise similar to usual
ACDM.

scalars have been given many names: Fuzzy Dark Matter (FDM), Axion Dark Matter
(ADM), Bose-Einstein Condensate Dark Matter (BECDM), and Scalar Field Dark
Matter (SFDM) being a few of them. FDM, one of the most popular labels, was
coined by Hu to highlight the ultra-dispersed nature of the scalar field as a result of
its large wavelength, hence “Fuzzy” (41). ADM respects motivations from particle
physics in which the ultralight scalar corresponds to the QCD Axion, a particle which
has been investigated outside of DM contexts in interest of solving the strong CP
problem (93). The name BECDM comes from the tendency of the scalar field to
form a cosmic scale Bose-Einstein condensate with superfluid properties (85; 51).
Lastly, SFDM directly respects the representation of DM as a scalar field.

In these cases, DM is usually described by either the Einstein-Klein-Gordon
equations (below) or their non-relativistic analogs, the Poisson-Schrédinger equa-

tions.

G + Ag = 81T, (1.30)
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(o = m*¢ (1.31)

It is their galactic scale, wavelike features that gives these theories their unique
character in comparison to other DM theories. We choose to use the name Wave
Dark Matter (¢yDM) in homage to these wave features. Further, we note that the
name DM does not strictly require DM be represented by a scalar field; one could
consider some other type of ultralight matter field such as a vector or tensor. In the
most specific sense, this thesis describes a theory of ¥YDM which contains a single
ultralight scalar field, Scalar Field Wave Dark Matter (SF1{)DM). Interestingly,
apart from its wavelike features, SF¢)DM resembles usual ACDM at large scales,

shown in fig. 1.5.

1.4.2  Cosmological Azions

One way to motivate the theory of SF¥DM lies in the interpretation of DM particles
as axion-like particles. (57) provides a comprehensive review of Axion Cosmology; we
follow this review to provide a basic introduction to the topic. Axion-like particles
have been studied at a vast range of particle masses from the ultralight 10733V
regime all the way to the regime of the QCD axion at 10-%¢V. Axion-like particles
are so named for their similarity to the QCD axion, a particle which could solve
the strong CP problem of QCD. The axion is introduced as a Goldstone boson for
a massless complex scalar, x. Via some form of spontaneous symmetry breaking,
the Peccei-Quinn mechanism being a popular choice, the complex scalar takes on

its vacuum expectation value (vev), {x), and can be decomposed into this vev and

an angular argument as y = {x)e'?/. The angular field, ¢, is the real-valued axion
field and f is referred to as the “axion decay constant.” To all orders of perturbation
theory, the axion as a goldstone boson is massless. However, at some energy scale,
non-perturbative effects can induce a potential and therefore a mass for the axion.
Importantly, since the axion is an angular variable, this potential must be periodic. A

basic, but certainly not unique representation of the axion potential can be expressed
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as

V(p) = ut <1 — cos(?)) : (1.32)

Here, the value of p is determined by some form of non-perturbative physics and will
depend on the given axion model. To lowest order in ¢, the axion potential becomes

the usual potential of a massive real scalar, V(¢) ~ %m2¢2. Here we have the defined

. 4 . : . .
the axion mass as m? = &. Terms which are order ¢* and higher describe axion

b
self-interactions. Importantly, higher order interactions of ¢ are further suppressed
by the decay constant f, resulting in increasingly small coupling constants. At many
scales these couplings can be neglected, though at large cosmological scales they may
become relevant towards DM structure formation (noted by (83)). Assuming that
matter-radiation inequality occurs at a temperature of order ~ 1eV (as expected
from observation), the decay constant can be estimated as f ~ 107 GeV, which is
close to the energy scale of Grand Unified Theories of particle physics. At this scale

of decay constant, mass values of m ~ 10722V result in DM relic abundances near

the observed value. This is a rather convenient coincidence and has been likened to

the WIMP miracle. Citing (42), this abundance can be expressed as

f__p e (1.33)

Loaro ~ 0'1<1017Gev 10-2¢V

In a Friedmann universe with a Hubble constant H, the equation of motion for

the scalar field can be written as
¢+ 3Ho +m¢ = 0. (1.34)

For early times such that m? << H, the field oscillations are damped by the Hubble
expansion of the universe. The equation of state at these early times is w = —1,
allowing DM to contribute to the Hubble expansion. As the universe cools and
H continues to decrease, the axion field will begin to oscillate and behave as a

condensate, obeying the field’s classical equations of motion. In this cooling period
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the equation of state transitions from w = —1 to values which oscillate around w = 0.
If the universe becomes DM dominated early enough when w is negative, the scalar
field can contribute significantly to the expansion of the universe. Later, when w = 0
and the scalar field is oscillating, the field behaves as cold cosmological dark matter
with a time averaged pressure of 0. When the mass value is very small, m ~ 10~22eV,
the large deBroglie wavelength becomes significant in regards to the formation of DM

structure. In the following sections we describe such wave effects.

1.4.3 Soliton Condensation

The large scale wave nature of SFYDM gives rise to many interesting phenomena.
Cosmological simulations of SFYDM display the formation of a large condensed DM
structure referred to as a superfluid or Bose-Einstein Condensate (75; 29; 85). This
structure evolves under the influence of gravity but also experiences an outwards
scalar pressure which increases with density. Large fluctuations in the DM density
can trigger gravitational collapse and lead to a condensation-like process within the
Bose-Einstein Condensate. As the field collapses, its increasing outwards pressure
eventually reaches an equilibrium with the inwards force of gravity, resulting in a sta-
ble droplet-like structure referred to as a SFy¥DM soliton (described in mathematical
depth in chapter 2).

On scales much greater than the scalar field wavelength, these solitons evolve
due to gravity in a particle like fashion, similar to other DM theories like the WIMP
theory. However, on scales which are comparable to the wavelength, solitons begin to
interact with each other as a result of their wavelike nature. Therefore, in adopting
the theory of SFyDM, one can retain many of the large scale features of ACDM
while also gaining a complicated set of wave dynamics that must be resolved at the
galactic scale.

Soliton condensation can occur even starting from an almost homogeneous initial
condition (50). This has been demonstrated in both the context of an expanding
cosmology as well as in the context of virialized clusters of SFyYDM. Whether or

not this type of condensation occurs depends on the relative sizes of the cluster
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and deBroglie wavelength, as well as the timescale of the DM fluctuations. It is
an interesting question to ask whether or not soliton condensation can occur within
galactic halos which have already formed a central soliton core. If the DM deBroglie
wavelength is sufficiently small in comparison to the overall extent of the galactic
halo, this may be a possibility. For larger galaxies, this begins to be the case once
m = 10722eV, with the deBroglie wavelength decreasing for higher masses. Whether
or not this could occur at physically viable values of m is an open question. This
is mainly due to the difficulty which arises when computing galactic scale structure
for larger values of m; larger values require greater spatial resolution in order to
resolve the relevant wavelengths involved at such scales, greatly increasing required
computation time. Notably, the presence of DM self interactions can have significant
effects on the condensation process. (28) demonstrates the formation of sub-solitons
in a larger DM halo by considering such self-interactions. This case suggests that it

is at least plausible for smaller solitons to form in galactic halos in the context of

SFDM.

1.4.4 Galactic Dynamics and SFy DM

Our main contributions in chapters 3 and 4 concern the behavior of SF¢YDM on the
scale of galactic halos. Evaluated for typical galactic velocities (around 100km/s),

the physical deBroglie wavelength scale for SFyDM is

h m -1 v !
Adp = T & 0.2kpe (10*22(31/) <100km/5) ' (1.35)

At sufficiently small values of m, the dynamics of SF4DM are dominated by this
wavelength scale. As such, SFyDM paints a rich picture of the shape and dynamics of
DM halos. Bottom up style simulations of halos show the formation of a finite density
soliton core surrounded by a complicated and turbulent wave structure. The outer
halo is characterised by a structure of semi-persistent granules sometimes deemed
“quasiparticles,” resulting from the interference of its many constituent waves. De-

scribing how to model these halos with the Einstein-Klein-Gordon equations will be
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FiGURE 1.6: Halo Formation: This demonstrates the merging of 3 equal mass
solitons. Density is projected along the line of sight and placed on a logarithmic color
scale. As the solitons approach each other, their wave functions begin to overlap and
display interference patterns. When the cores finally merge, they release a burst of
scalar radiation due to the wave pressure. After a long time, the halo settles to a
turbulent and quasistable state with a soliton core at its center. Rectangular features
are merely artifacts of the simulation being on a discrete grid.

the primary focus of chapters 3 and 4. We show a basic example of a three-soliton

merger in fig. 1.6. Eventually, a quasi-stable system is formed with a soliton at the

core.

We depict a quasi-stable SF¢/yDM halo in fig. 1.7. SF¢DM halos have many
appealing properties in the context of galactic physics. To name a few: the central
soliton has a finite density, the outer halo converges to an NFW-like distribution,
and their rotation curves are approximately flat. Furthermore, the wave features
of the DM can generate some rather unique effects that are potentially observable.
For instance, the fluctuations of the halo quasiparticles can generate unique heating

effects. Such heating can result in thickening of the galactic disk as well as streams
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FIGURE 1.7: Virialized vyDM Halos: (Left) Visualization of a galactic scale
SFyYDM halo. (Right) Density profiles for generic halos. Image and graph cred-
ited to (62). Halos form stable soliton cores with a finite central density. The core
is surrounded by a complicated and turbulent structure resulting from the interfer-
ence of the halo’s many constituent wave modes. In the outer regions, the halo is
populated by “quasiparticles,” finite density fluctuations which evolve in an N-body
fashion.

of stars. The central soliton can exhibit significant density fluctuations. These
fluctuations could potentially generate orbital resonances that are observable at the
scales of dwarf galaxies.

In chapters 2-4 we explore the properties of galactic SF¢YDM halos via an anal-
ysis of the Einstein-Klein-Gordon equations. In particular, in chapter 3 we discuss
the properties of SFyDM rotation curves and their viability for modelling galactic
rotation curves. We use this analysis in combination with data from the observed
Baryonic Tully-Fisher relation to constrain the possible values of the scalar field
mass. In chapter 4, we further the discussions of chapter 3 to include a model for
halo oscillations. We detail a possible way to characterize oscillation frequencies of
SFyDM halos and then demonstrate the method to produce a halo with a pseudo-

stable density oscillation.
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1.5 Constraints and SFyDM Phenomenology

This section focuses on SF¥DM phenomena and how they can be analyzed to place
constraints on the theory. Specifically, we consider constraints on mass parameters
in the “Fuzzy Dark Matter Regime” of m ~ 10722eV. This is by no means an
exhaustive list of SFy phenomenology and constraints. Importantly, SFy)DM and the
investigation of axion-like particles is a growing and active field of modern cosmology.
We merely intend to provide an overview and discuss the status of some of the

constraints on m.

1.5.1 Heating of the Galactic Disk and Stellar Streams

The outer regions of SFYDM halos are populated with fluctuating quasiparticles.
One can naively think of these quasiparticles as semi persistent clumps of DM with

a mass scale of

Ar [ Aas(r)\’
Mfluctuation = ? ( dB2( )> phalo(r)- (].36)

As they pass, these fluctuations can transfer energy into the orbits of stars and gener-
ate heating effects. This effect was used to estimate the extent to which quasiparticle
fluctuations are able to thicken cold stellar streams (streams of stars stretched out
along their orbits, usually due to tidal stripping of star clusters) in (3). By compar-
ing to observations from GAIA regarding six Milky Way stellar streams this returns
a constraint of m > 1.5+ 10722eV. Importantly, since it does not account for heating
from subhalos and only considers quasiparticle heating, the model estimates a min-

imum thickness of the streams to achieve this lower bound. Future observations of

thinner stellar streams have the capability of increasing this lower bound. Similar
to the thickening of stellar streams, quasiparticle fluctuations can heat and thicken
a galaxy’s disk. (13) considers the effects of both subhalo heating and quasiparti-
cle heating on galactic disks. By comparing simulated disk thickness to that of the
Milky Way one can estimate constraints on m. For sufficiently small values of m,

the heating effects are found to be primarily dominated by the quasiparticle fluctu-
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ations and can exceed observational bounds. As m becomes large, heating due to
subhalos becomes the dominant effect. (13) determines that, in order to not exceed

the observed disk thickness, the lower bound on m must be m > 0.6 * 10722V,

1.5.2  Black Hole Superradiance

Scalar fields can interact with spinning black holes via a mechanism referred to
as superradiance (9). Loosely speaking, superradiance occurs when the scalar field
reflects at the black hole event horizon and emerges with an increased amplitude
via the Penrose process. This can lead to runaway growth of the scalar field which
in the process extracts angular momentum from the black hole. Oscillations in the
growing scalar field act as a source for gravitational radiation which then disperses
the black hole’s rotational energy. In summary, the superradiance mechanism allows
for the presence of a scalar field to deplete the angular momentum of a spinning
black hole. As a result of the superradiance mechanism, only certain combinations
of black hole angular momentum and black hole mass are possible in the presence
of the massive scalar field. For instance, if the black hole’s spin is too high given its
mass, the superradiance mechanism is expected to reduce the spin of the black hole
by exciting the scalar field.

Through analysis of superradiance, observations of a particular black hole’s mass
and spin can be used to place constraints on the scalar field’s mass parameter, m.
By assuming that the superradiance process is insufficient to deplete the observed
black hole spin, one can place both upper and lower bounds on m. It was determined
in (9) that by observing black holes covering the range of 1 Mg — 10'°M, one could
potentially place constraints on the particle mass range of m = 1072 —1071%V with
the heaviest values of m being probed by the smallest black hole masses of order
1M and the lightest values of m being probed by the heaviest black holes. The
observations of the M87 black hole have been used to provide such constraints in

(17). It is found that the M87 observations ezclude the following mass range:

2.9+107%'eV < m < 4.6+ 10" *'eV. (1.37)
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Importantly, observational black hole physics is an emerging field. Future develop-

ments in black hole observation could provide a means to exclude many regimes of

m.

1.5.3 The Subhalo Mass Function

The subhalo mass function (SHMF') describes the expected distribution of subhalos
for larger halos like that of the Milky Way. The SHMF of SFy¥DM was determined by
semi-analytical methods in (20). In short, (20) combines a modified Press-Schecter

model for halo merger trees with the semi-analytical code Galacticus in order to
produce a model for the SHMF. The form of the SF¢yDM SHMF can be expressed
in relation to the SHMF of WIMP-like CDM as

dN dN
(dlnM>SFDM = HM) + £olM) (dlnM)W[MP' (1.38)

Determining the form of the functions f;(M) and f3(M) was a primary goal of
the doctoral thesis (19). These functions are described in (78) and have the effect of
suppressing the low mass end of the SHMF. This effect is more prominent for smaller
values of m. (78) used this feature to place a lower bound on m by comparing the
low mass suppression to that of Warm Dark Matter models. In short, m values
which result in greater suppression than WDM models were considered excluded.

This results in a conservative lower bound of m > 21 = 10~22¢V.

1.5.4 Dwarf Galaxies

There have been a number of efforts to place constraints on SFy¥DM by comparing
theoretical halo profiles to the observed profiles of dwarf galaxies. (73) computes con-
straints by assuming that SFy¥DM halos follow a profile modelled by a soliton profile
which transitions to an NFW profile at a characteristic distance. This profile gives
an inconsistent fit when comparing the profiles of ultrafaint dwarf (UFD) galaxies to
those of the Milky Way satellites Sculptor and Fornax. Though Sculptor and Fornax

can be fitted by masses of m > 10722eV, the halo mass this would imply for similar
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fits to the UFDs is larger than observation by multiple orders of magnitude.

We note that (8) considered modelling dwarf galaxies by using SF¢/DM excited
states to fit dwarf mass profiles as opposed to using soliton cores. Similar values
of m = 10722eV are found for Sculptor and Fornax when assuming a soliton pro-
file. Assuming the profiles are matched by excited states increases the bound. For
instance, assuming third and twentieth excited states for Fornax returns bounds of
m = 4+10"%eV and m > 2+ 1072%eV respectively. Generally, modelling a halo with

an excited state allows one to increase the bounds on m. This raises an interest-

ing question in whether or not excited states occur physically. We will discuss the
possibility of using excited states as halo models further in the following chapters.
(10) computes a relation between the core density and core radius of SF¢yDM
halos as modelled by a similar soliton-NFW model. They find that the derived
relation is inconsistent with the observed relation for dwarf galaxy cores. Lastly,
(10) notes that a more detailed description of the transition region between the
soliton core and the NF'W region might be necessary for resolving this discrepancy.
Data regarding the UFD galaxy Eridanus II has been used to place multiple
constraints on the value of m. Eridanus II was first investigated in (58), which
combined an analysis of the Milky Way SHMF with a heating model for star clusters
in Eridanus II. It was noted that SF¢YDM could generate core density oscillations
in Eridanus II that could result in star cluster heating. Combining this inference
with data from Eridanus II’s star clusters, (58) claimed a strong bound of m >
0.6 * 10~%eV. This lower bound is significantly higher than most others we discuss,
which usually lie in the 1072*eV range. Recently, the stringency of this result has been
questioned in (12) which revisits the notion of heating due to density oscillations. The
paper concludes via 3D SF¥DM simulations that such oscillations produce negligible
heating effects in the 1072'eV range. Moreover, it also concludes that the SHMF as
used in (58) does not place a strong constraint on m. In final conclusions, (12)
suggests that simulations of Milky Way sized SFi)DM halos will be important to the

understanding of this issue.
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1.5.5 Matter Power Spectrum and the Jean Scale

The Matter Power spectrum is an important feature of any particular theory of
ACDM. In short, the Power Spectrum describes the length scales at which DM
structure and substructures form and cluster in the universe. Formally, the Power

Spectrum is related to the fluctuation, §(z), of the matter density field, p(z).
S(z) = L) =P (1.39)

The two-point correlation function of the fluctuation, ¢, is then related to the Matter

Power Spectrum, P(k), via Fourier transform.

(lz—2) = f Pk (o ") P(k) (1.40)
(2m)?

Issues like the Missing Satellites Problem are intimately related to the matter
power spectrum. Particle simulations of ACDM generally display an excess of small-
scale structures in comparison to observation. On the level of the power spectrum,
this is manifested as an excess in power at small length scales or high wavenumbers
when comparing to observed data. In 2008, Wayne Hu, (41) ,proposed that this
small scale power could be suppressed by assuming a FDM version of ACDM. The
scalar field of SFYDM exhibits an outwards pressure which inhibits the formation
of dense small scale structures. As described by Hu, the scale at which SF¢)DM

displays structure formation is described by the Jeans length and wavenumber:
L= = 7i(Gp) im 2. (1.41)

Perturbations smaller than L ; are stable by the Jean analysis and have sufficient pres-
sure support to prevent collapse, while those greater than L ; are unstable, resulting
in gravitational collapse of the scalar field. In other words, structure formation and
gravitational collapse experience a cutoff at scales corresponding to the Jeans Length,

Lj, with structure formation at scales smaller than L; being suppressed. Using a

32



simplified 1D model, Hu concluded that masses similar to m ~ 10722eV would result
in the suppression of kpc sized cusps and also introduce a cutoff to the low-mass end

of the matter power spectrum. Specifically, Hu finds that the cutoff resulting from

the Jean scale occurs around £k ~ (ﬁ) Y2 pe—t. Hu then suggests that detailed

3D simulations are necessary for fully testing this hypothesis.

1.5.6  Dynamical Friction

Due to its lack of Electromagnetic interaction, DM does not experience friction in
the same sense as gases and baryonic matter; a striking demonstration of this feature
is the observation of the Bullet Cluster from fig. 1.3. However, via its gravitational
interactions, DM can still cause and experience friction-like effects referred to as
dynamical friction. Dynamical friction plays an important role in many aspects of
galactic dynamics, including galaxy mergers, the motion of galactic bars, and the

orbital in-fall of satellites.

In the context of SFY DM, dynamics arising from the DM’s large wavelength affect
the physics of dynamical friction. (42) considers dynamical friction in the context of
a point mass moving through a DM fluid as a fundamental example. As the point
mass moves through the fluid, its gravity generates an overdensity pattern referred
to as a gravitational wake; this wake is associated with a drag-like effect which
in turn slows the mass down as it travels through the fluid. For SF¢)DM, outwards
scalar pressure is expected to inhibit the formation of the gravitational wake, thereby
reducing the dynamical friction experienced by the passing mass. This reduction was
estimated by (42) in the context of the orbital decay of globular clusters in the Fornax
dwarf galaxy. Computing the dynamical friction force exerted on an object involves
integration of the Energy-Momentum tensor of the DM halo, IT, over the surface of

the object.

F,=— JHZ-dej (1.42)
After computing the dynamical friction force exerted by the galaxy’s DM halo on
the globular clusters, (42) estimates the orbital decay time for each of the Fornax
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clusters with a simple formula. Denoting the cluster’s angular momentum as L, this

is:
L
Tinfall = |ﬁ| (1.43)

In the case of a cored SFyDM halo with m ~ 10722eV, the infall time for the Fornax
clusters are always increased when compared to the case of particle CDM with a
cuspy NF'W-like profile. In the case of the shortest infall time, SF¢¥)DM results in
a time of 2.2Gyr as opposed to 0.37Gyr when assuming particle CDM, raising the
possibility of solving the Fornax timing problem with a SF¥DM model.

A more detailed treatment of dynamical friction in the context of SF¥/DM can
be found in (47), which uses fully non-linear simulations to resolve the effect. This
leads to two primary conclusions. Firstly, particle masses of m > 1072V do not
solve the Fornax timing problem. Secondly, in-falling intermediate massed satellites
(around 10°Mg) lie outside of valid range for any available analytical theory and
warrant further numerical investigations. Ultimately, this regime could be relevant

to galactic mergers or in-falling black holes.

1.5.7 Lyman-a Forest

The Lyman-a Forest provides a means to measure the properties of the Matter Power
Spectrum along an observational line of sight and can be used to place constraints on
DM models. This is possible due to the Lyman-a transition in the neutral hydrogen
atom, the transition of the valence electron from the ground state to the first excited
state. The transition wavelength, being 121.6nm, can be used to detect clouds of
neutral hydrogen. As light from a distant source passes through such a cloud, the
121.6nm wavelengths stimulate the Lyman-« transition, resulting in a “forest” of
lines in the absorption signature.

The Lyman-a Forest provides a direct probe to the small scale features of the
matter power spectrum. The first constraints on SFyDM resulting from an analysis

of the Lyman-« Forest were published in (43), which reports a lower bound of m >

2x10?'eV. Both (27) and (30) were reported shortly thereafter, and show more or less
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similar results. Importantly, this constraint strongly depends on the assumed model
for the intergalactic medium (IGM), with (43) noting that assuming a smoother
thermal history can increase this bound by at least a factor of 2.

It has been argued that the observable affects SFyYDM on the IGM could be
mimicked by other IGM physics such as non-trivial gas pressure or large temperature
inhomogeneities (42); this highlights the complexity and nuance of using the Lyman-
a Forest as a means to constrain SFYDM. The most recent development in regards
to the Lyman-a constraint can be found in (70), which improves upon the IGM
model used in (43; 27; 30). In short, (70) uses an emulation method as opposed to a
brute force method in order to sample the parameter space relevant for producing the
matter power spectrum. Combining this method with AxionCAMB and Gadget-MP
hydrodynamics resulted in an updated bound of m > 2+ 1072%V. Importantly, (70)
notes that the exact impact of choosing more flexible IGM models on the bound for
m is non-trivial. Further, it is suggested that these bounds could be strengthened

by probing even smaller scales in the Lyman-«a data.

1.5.8 Resolution to Small-Scale Crises?

Whether or not SFyDM solves the many “small-scale crises” of ACDM is more or
less inconclusive at this point. There are many reasons one may wish to use SFyDM
to address these problems - SFy/DM'’s lack of cuspy density profiles for instance. On
the other hand, the non-linear wave features of SF¥DM require in depth simulations
in the relevant regime of m ~ 1072%eV.

As the value of m increases, the capability of SF¥/DM to directly affect the small-
scale crisis becomes lessened, but at the same time, the spatial resolution required
to simulate the non-linear dynamics of SFY¥DM also increases. Herein lies one of
the most challenging aspects of SFY DM theory; small scale wavelike dynamics must
be resolved to make strong conclusions about the 10722V regime. This becomes
particularly challenging when simulating the effects of small-scale SFY¥ DM physics
on larger scale structures like that of galaxies and galaxy clusters.

There are several senses by which SFyDM does not solve the small scale crisis.
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Constraints from the Lyman-« forest (43; 27; 30; 70) seem to be most at tension with
the overall notion, preferring higher values of m (m ~ 107?°¢V) than those originally
proposed as candidates for solving these small scale issues (m ~ 10722eV). However,
uncertainties and modelling difficulties arising from the IGM cause some to question
the Lyman-a constraints. Independently, results from quasar lensing and the SHMF
(78) seem to be more or less consistent with the Lyman-a constraints, bringing the
possibility of resolving small scale issues with SF¢)DM into question. On the other
hand, simulations of Milky-Way sized SF¢DM halos are required to provide a full
picture of what SF¢'DM implies for the SHMF.

As a final note, we re-emphasize that simulating the effects of SF¢yDM on struc-
ture formation is very computationally intense if one wishes to resolve all relevant
length scales. In order to understand the effects of SFy¥DM on structure formation,
one must resolve the scales of galaxies and galaxy clusters as well as the deBroglie
scale of the SF¢)yDM particles which can often be orders of magnitude smaller. At
this point, such a level of resolution has not been achieved by any 3D simulation
of SFyDM. Ultimately, higher resolution simulations of SF¢y DM may be necessary
to understand the full impacts of SFYDM on small-scale structure. Alternatively,
this opens the door for developing new and creative ways to model SFyDM physics

which might reduce the computational power required for such models.
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2

General Relativity and the Einstein Klein Gordon
Equations

2.1 The Hilbert Action

The Einstein Field Equations as posed in eq. 1.23 are the fundamental equations of
GR. Attributed to Hilbert in 1915, the EFEs are attainable via an action principle
formulation. That is, the EFEs are known to be the critical points of the Einstein-

Hilbert Action
Sy = JdV(R —2A +167Ly) = fd%«/ —det(g)(R —2A + 167 Lyy). (2.1)

Here, R refers to the scalar curvature ! (eq. 1.22) and Ly denotes a matter La-
grangian. Computing the critical point of the action, and thereby the EFEs, amounts
to solving the condition of Sy = 0. Then, a common scheme for this computation
is to consider variations with respect to the metric coefficients, g,,. The variation

of terms involving L), leads to a natural definition for the components of the SE

! In this chapter, R is assumed to be the Levi-Civita form of the scalar curvature.
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tensor:

B -2 0(Lan/—det(g))
T = —= o) Sg . (2.2)

The variation of the terms involving the scalar curvature reproduces the common

formula for the Einstein Curvature Tensor

1L 6(Ry/—detlg)) _

— det(g) ogH”

1
uy EguuR = G,ul/- (23)

Lastly, we list the variation of the cosmological constant term

1 d4/—det(g)A 1 (2.4)

= ~Agu.
—det(g) 5g;w 2 gu

Combining these variations results in the coordinate version of eq. 1.23.

0SH

55w =5

g™ =0 (2.5)

G + Agy = 87T}, (2.6)

2.2  The Einstein-Klein-Gordon Action

In GR, one can include the dynamics of matter fields at the action level by choosing a
form for the matter Lagrangian, L,;. For this thesis, we are particularly interested in
including the dynamics of a massive scalar field ¢, with a mass parameter m. Taking
inspiration from classical field theory, this is achieved by assuming the following

Lagrangian for the scalar
L, = _1 ) 2 1 2 2 27

We note that this equation is valid for both real and complex scalar fields. The

corresponding SE tensor can be computed as defined in eq. 2.2. We express this
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quantity in coordinate free form as

7, 40®do+do@ds <|d¢!2 +@> .

2.8
2m?2 2m? 2 (2.8)

Performing the variation with respect to the metric as in section 2.1 then results in
the EFEs with the above SE tensor. In addition, since ¢ is included at the action
level, one must consider the variations with respect to ¢ itself; this variation is well
known to produce the Klein-Gordon (KG) equation. We therefore reach the coupled
Einstein-Klein-Gordon (EKG) equations.

G + Ag = 87T, (2.9)

[l = m*¢ (2.10)

This set of equations describes a massive scalar field evolving under the influence of

its own self-gravity. Importantly, the coupling of the scalar to the metric can be seen

in the d’Alembert operator [J¢ = \/Tt(g)@( — det(g)gM,0).

2.3 Geometry and SFyDM

2.3.1 Weyl’s Uniqueness Theorem

The Einstein-Hilbert action of eq. 2.1 can be “derived” by making a few geometric
assumptions. To demonstrate these, let us first consider the part of the action integral

containing the scalar curvature. We can expand this term in coordinate expression

as
R=(g"¢" - 979" gijm+ (2.11)
ia jb _kc 1 ia jc kb ia jk bc 1 ij ab kc ij ac kb
GijkGab,c 1999 _éggg -9 99 _1999 +9°99

Upon inspection, we can make several notes about this expression: (1) It contains

derivatives of the metric up to second order; (2) It is linear in the second derivatives
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of the metric; (3) It is a geometric invariant. It is an interesting fact that, up to
an additive constant, R is the unique invariant that satisfies these properties. This
was originally proven by Weyl in (94), though is sometimes referred to as Lovelock’s
theorem due to Lovelock’s further study of the theorem in (53). Most formally stated,
up to an additive constant, the most unique action which satisfies properties (1)-(3)

is, for a constant, c,

Sy = chV(R —2A). (2.12)

2.3.2 Actions with Non-Trivial Connections

One could think of the criteria for Weyl’s uniqueness theorem as a set of axioms for
formulating the action of GR. It is an interesting venture to try to modify these crite-
ria. For instance, we could suppose that the action contains other types of geometric
couplings. (7) proved that if one allows the action to contain not only derivatives of
the metric, but also derivatives of the connection, that one can reproduce the EFEs
with a coupling to the KG equation. Following their procedure, we can state this
formally by modifying the assumptions (1)-(3) of Weyl’s theorem. Suppose that we
instead assume that the action functional: (1*) Contains the metric and its deriva-
tives up to second order. (2*) Is of linear order in the second derivatives of the
metric. (3*) Contains the connection coefficients and their first derivatives. (4*) Is
quadratic in the connection and its derivatives. (5%) Is a geometric invariant. These
axioms allow the inclusion of terms involving the Difference and Torsion tensors from
eqs. 1.14 and 1.17. Actions obeying (1*)-(5%) can then be written rather concisely

as

S = JdV(R oA — imy? + Quad(D)). (2.13)

The expression dv is the exterior derivative of the three form defined by the fully
antisymmetric part of the difference tensor. As well, this is the only object involving

derivatives of the Torsion tensor which obey (4*). Explicitly, v can be written in
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coordinate form in terms of the Torsion tensor as
1
Vijk = g(Tuk + Tiki + Thij)- (2.14)

The expression Quad(D) is a function which is at most quadratic with respect to
the difference tensor. This expression can be build out of the irreducible compo-
nents of the difference tensor. Still following the discussion of (7), we will consider a
simplified case where these irreducible components are all zero, other than the fully
antisymmetric component, . Importantly, connections with a fully antisymmet-
ric difference tensor have the same geodesics as the Levi-Civita connection. Thus,
the connection which results from this simplification will have geodesics which are

equivalent to those of standard GR. We thereby reach the following action:

_ _ _ ¢ 2, ©2 19
S—JdV(R 24— Zldof? + L) (2.15)

2.3.83 Deriwving the Einstein Klein Gordon FEquations

At this point, we need just evaluate the equations of motion. The three-form ~ can
be rewritten in terms of a vector field, v which is related to the Hodge dual of ~.
Explicitly, denoting the Hodge star as *, we have v = »(v) where we have denoted

the one-form dual of v as v. This brings the action to the form of
S = JdV(R —2A — (V- v)* + | v]?). (2.16)

We now compute the variations of the action similarly to section 2.1, but also
including the variations of the newly introduced vector field. Following the exact

computation in (7), the resulting equations of motion are

1
G"‘Ag:C{’@{,_§(CQ<V'V>2+CQ|V‘2)g (2.17)
c
V(V-v)=—v. (2.18)
(&)
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This system is equivalent to the EKGEs from eqgs. 2.9 and 2.10 with a particular

choice of parameterization. That is, if we make one last redefinition and take ¢ =

(é)%v - v (equivalent to taking vacVe) we finally reach the expected form

1
G+Ag=c (d¢®d¢ -3 <|d¢\2 + C—j&) g) (2.19)
Co
Co = ;(b. (2.20)
Finally, we need just identify the relevant constants as m = < and ¢ = 167 to

reproduce the EKGEs.

2.3.4 Some Comments Regarding Connections

The fact that the EKGEs can be reproduced from purely geometric arguments as
in the previous section is extremely interesting in the context of the theory of GR.
In short, this computation demonstrates that having a connection which is not Levi-
Civita can have physical consequences. In the case of section 2.3.3, that consequence
is interpreted as a dark matter density. Importantly, the form of eq. 2.16 was reached
by restricting to a small subset of connections for which the difference tensor was
antisymmetric, thereby producing the same geodesics as the standard Levi-Civita
connection. Effectively, this means that the theory derived was physically equivalent
to usual GR in the presence of a scalar field SE tensor.

We emphasize, one could consider a more generic set of connections and arrive at
a different, more complicated result. That is, if one considers the other components
of the difference tensor, the theory will be distinct from GR in that it contains a
connection with geodesics different from those of the Levi-Civita connection. What
this implies and what such theories represent in a physical context is an open ques-
tion. In principal, one could modify the procedure of section 2.3.2 to include actions
which allow for such connections. Going further, interpreting the SF¥DM theory as
being inspired by a non-trivial connection is an interesting alternative to the usual

particle physics inspired approach, and has the potential to make physically distinct
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predictions.

2.4 Spherically Symmetric Static Solutions

Complex valued scalar fields admit static solutions to the EKG equations which
are well characterized in the case of spherical symmetry (45; 72). These spherically
symmetric static (SSS) solutions can be described with the following ansatz for the

metric line element and the scalar field (35):
ds? = =2V dt? + ®(r)rdr? + r?df* + r?sin®(0)d¢? (2.21)

B(r,t) = W(r)e ™. (2.22)

Here, we have written the scalar field ¢ in terms of its radial component, ¥, multiplied

by an angular argument. In this ansatz, the function V(r) is interpreted as the

gravitational potential and ®(r) = (1 — 2@) contains the mass enclosed by a

radius, M (r). The variable w is referred to as the static state’s frequency, which we
will see later is related to the total mass of the state. Inserting this above ansatz into
the EKG equations of eqgs. 2.9 and 2.10 results in the following system of ordinary
differential equations (ODEs):

M, = dmr® [(m? + w2 2) 02 + oU?] (2.23)
2m?2 "
M Awr 2 2_—2V 7,2 2
2 P,
Uy + —0, + VU, + 20, = O (m? — w?e V)V, (2.25)
T

Bounded and physically realizable solutions require that M (0) = 0, V,.(0) = 0,
lim, o, M(r) and lim,_,o, V'(r) to be finite, and lim, o, ¥(r) = 0. The central condi-
tions ensure regularity at the origin, while the limits ensure a finite mass, compact so-

lution. We will take the usual convention that V'(r) is negative and lim, ., V(1) = 0,
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FIGURE 2.1: SSS States: Visualization of SSS State wavefunctions and correspond-
ing density profiles. Top row depicts the ground state, bottom row depicts the 4th
excited state. Density profiles (right) are projected along the line of sight and placed
on a logarithmic color scale for visualization. The excited state is characterised by
the nodes of the wavefunction (left).

so that the potential V (r) converges to the usual form of the Newtonian potential.
We note that this is not strictly required to compute bounded and compact solutions,
but can easily be achieved once such a solution is found. The equations are preserved
under the transformation of {V,w} — {V + V,we"}. At the level of the metric line
element, this is equivalent to rescaling the time coordinate by a factor of 62‘7; adding
a constant to the potential V' (r) amounts to a change of coordinates.

The behavior of the SSS wavefunctions, ¥(r), can be understood by considering
the right hand side of eq. 2.25. The term k?(r) = (m? — w?e~2") determines whether
or not W displays oscillatory or exponential behavior. Since the potential V (r) is

negative, solutions with w > m are always oscillatory, having an always negative
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k%(r); such solutions constitute an infinite mass, and are nonphysical. Likewise, only
solutions with w < m can display exponential behaviors, allowing exponential decay
to zero value. These solutions, given sufficiently negative V' (r), can have an initially
negative value of k%(r) and thus an oscillatory central region. Eventually, the solution
reaches a decay radius, Ry, at which k(Ry) = 0 and the oscillatory behavior converts
into an exponential decay. Each wavefunction, W(r), will therefore have a finite
number of nodes before eventually exhibiting an exponential decay. Counting the
number of nodes as n, the n = 0 solution is referred to as the ground state solution,
while the n > 0 states are referred to as excited states. Generically, we will refer to

a state of order n as an “nth-excited state.”

As described, bounded static solutions form a three-parameter family specified by
2 continuous parameters and 1 discrete parameter. A particularly intuitive parame-
terisation is fix the total mass and excitation number, n, of the solution by choosing
{m, Mio,n}. In other words, for a fixed value of the particle mass, m ,and a fixed
value of total dark matter mass, M;,;, there exists a countable number of solutions
which are nth-excited states. There exists other ways to parameterize the states,
{m,¥(0),w} for instance; fixing m and the central density amplitude ¥(0), there is

a discrete set of w which determine the nth-excited states.

Finding a family of nth-excited states is a computationally intensive process, but
can be achieved through basic numerical integration techniques. In the case of egs.
2.23 - 2.25, finding an nth-excited state requires one solve a shooting problem for the
initial conditions ¥(0) and V' (0), as well as the frequency w. We detail this procedure
in the Appendix for those who wish to compute the SSS excited states.

2.5 The Poisson Schrodinger Equations

The Poisson-Schrodinger Equations (PSEs), or sometimes dubbed the Schrédinger-
Newton Equations, are the non-relativistic and low-field analogs of the EKGEs. The
PSEs can be thought of as a modification of the usual Schrodinger equation in which

the relevant potential energy is taken to be the gravitational potential energy of
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the Schrodinger wave’s density as computed by the Poisson equation. This rather

intuitive construction can be immediately written down for a complex scalar field 1)

as

w1,
i = 2mv v+ mVay (2.26)

V2V = 47 |yp|?. (2.27)

Here, we identify the gravitational potential energy mV as being sourced from the
wave’s corresponding density [¢)|2. This system of equations was studied long before
the theory of Wave Dark Matter was founded in the context of boson stars (45; 72).
Boson stars are hypothetical objects formed by bosonic particles bound by their own
self gravity, usually motivated by studies of axion-like particles.

It is important to understand how the PSEs can be derived as the low-field and
non-relativistic limit of the EKGEs. We will describe two simple constructions which
are equivalent in this limit, one in which the scalar field is taken to be complex at
the level of the EKGEs and one in which the scalar field is taken to be strictly real.
Both of these cases can be effectively described by the PSEs for a complez scalar field
as in eqgs. 2.26 and 2.27.

2.5.1 PSFEs from a Real Klein-Gordon Field

The case of assuming a real scalar field at the level of the EKGEs comes with the
possibility of interpreting the scalar as an axion-like particle. We start from egs.
2.9 and 2.10, taking ¢ to be a real scalar field and taking A << 1. The A << 1
approximation simply allows us to restrict to small scales at which the expansion
of spacetime is negligible, similar to galactic length scales. To apply the low-field
non-relativistic limit, we take the gravitational potential to be small, V' << 1. This
can be achieved by assuming the following weak-field metric line element (detailed
in (40)).

ds® = —(1 + 2V)dt* + (1 — 2V)(da? + dy® + d2?) (2.28)

To obtain the PSEs we must also ensure that the boson is non-relativistic (i.e.
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low energy). This is usually done by parameterizing the real field, ¢, as the real part
of a complex field, ¥, and then assuming that the energy of v is small. That is, we
write ¢ as

1

o= 7g(weimt + e, (2.29)

The small energy condition can then be expressed as

Ey = z%—if << 1. (2.30)
This energy condition is equivalent to assuming that the energy of the real field, ¢,
is close to its rest mass energy. In other words, this condition ensures the velocity of
the wave to be small. By taking the assumptions expressed in egs. 2.28 thru 2.30 at
the level of the EKGEs in eqgs. 2.9 thru 2.10 and lastly, retaining only leading order

terms of the potential, V', and its derivatives, one arrives at the PSEs of eqs. 2.26

and 2.27.

2.5.2 PSFEs from a Complex Klein-Gordon Field

Assuming a complex scalar field at the level of the EKGEs is highly convenient in the
sense that it simplifies many computations. Moreover, complex scalar fields admit
solutions to the EKGEs which are long-time stable, something which real scalars
can only achieve in the low-field limit. Of course, irrespective of these benefits, the
low-field and non-relativistic limit is equivalent to the real case and is expressed by
the PSEs. This limit is taken similarly to the real case in that we can assume the
weak-field metric from eq. 2.28. The small energy condition can still be applied,
but must be slightly modified to account for the fact that ® is already taken to be

complex. This results in expressing ® in terms of a low energy complex scalar, .

¢ = he~imt (2.31)
Ey = z%—f <<1 (2.32)
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Combining these assumptions with the EKGEs of egs. 2.9 and 2.10, again results
in the PSEs from eqs. 2.26 and 2.27, this time expressed in terms of a complex scalar

field ©.

2.5.3 PSFEs in Fluid Form: Madelung Transformation

The PSEs describe the density amplitude of the Schrédinger wave as . By applying
the well known Madelung Transformation, one can convert egs. 2.26 and 2.27 to a

form describing the density and velocity of a fluid (84). This transformation appears

as
e (2.33)

1
v=—VS. (2.34)

m

Here, we interpret p = [¢|*> as the density of the fluid and ¢ as the corresponding

fluid velocity. Inserting these parameterizations into eqs. 2.26 and 2.27 results in

the fluid form of the PSES:

F

a—f +V - (pt) =0 (2.35)
o7 |
a—: +( V)T = =VQ+V). (2.36)

Here, we have expressed the “quantum potential” as (), which represents the following

formula:

1 V2/p
Q = TN (2.37)

Further, the pressure of the scalar field can be written as a tensoral object:

P— V@) (2.38)

4m?2
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Lastly, we can express the energies and angular momenta of the wave. The kinetic

energy, potential energy, and angular momentum densities are respectively

1
k=g VY (2.39)
1 2
u = §mV|¢| (2.40)
=7 x (p0). (2.41)

The total mass, M = ((d®zp), total energy, £ = {(d®z(k + u)), and total angular

momentum L = {(d3z]) are conserved quantities of the PS system and thus constant

in time.
2.5.4 Scaling Relations of the PS Equations

A well known and useful property of the PSEs is that they admit a set of exact scaling
relations (81). That is, once a solution to the system is found, another solution can
be generated by appropriately re-scaling the values of the original. There are two
scalings of interest: spatial dilation of the form z — az, and scalings of the boson
mass of the form m — fm. Under a spatial dilation, we can express the scaling as

follows for a positive scaling constant a:
{m’ I7t7 V? ¢} - {m7 ax’ a2t7 a_2‘/v7 a_2¢}‘ (2'42)

Likewise, for scalings of the boson mass we take 5 to be positive, stating the relation

as:

{mazata‘/aw} - {ﬁm,x,ﬂt,ﬁ*QV, Bilw}' (243)

These two sets of scaling relations can of course be combined into a single line to

display the full scaling properties of the PSEs. For completeness this gives

{m,z,t,V,¢} — {pm,ax,a?Bt,a B2V, a2 1}, (2.44)
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One could choose to express this relation for different types of re-scalings. For in-
stance, instead of considering spatial dilation like z — «x one could consider a scaling
of the wavefunction amplitude as ¢» — 1. In this case we need only identify the
relationship between these scalings by taking a2 = .

All relevant physical quantities can be rescaled by an appropriate application of
eq. 2.44. For instance, to rescale the density, p, we make use of the relationship

of p = 1|2, resulting in a scaling of p — a=*372p. Likewise, the DM mass values,

energies, angular momentum scales transform respectively as
{(M,E,L} - {a '37?M,a 3 *E, o 'B73L}. (2.45)

An interesting and useful result of the scaling relationships just described is that each
solution is associated with many scale-invariant quantities. The most illustrative
example is the following product of half of the solution total mass, Mj, and the

radius containing half that mass, Ry:
I =m> MRy, (2.46)

One can see that no matter what values of o and S are chosen from eq. 2.44, the

value of [ is unchanged. Another way to read eq. 2.46 is that for any given solution

the value of M, R, lies on a hyperbola defined by the boson mass, M, R, = # (see

fig. 2.2). Finally, this means that for any particular value of m, the product MR},
is constant. Larger values of M), necessarily correspond to smaller values of R;, and
vice-versa. For the case of a ground state soliton, the mass-radius relation can be

evaluated as in (42) to yield the following relation

10°Mg\ (1072ev\”
Rh=.335kpc( - 9)( e”) . (2.47)

tot m

Any particular product of DM mass and radius corresponding to the PSEs will
form a similar invariant as in eq. 2.47. For instance, one can replace M) with the

total mass, M,,, instead and compute a similar relation. Going further, one can
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FiGURE 2.2: Hyperbolas of Constant m: Plot rendered with computational
units of m = 100. Various re-scalings of the ground state mass profile are shown.
The half-mass radius is denoted on each curve by a black point. A hyperbola is
superimposed, demonstrating that My R, = constant for a fixed value of m.

construct characteristic functions which are invariant under rescaling. To illustrate,

we define the following function
C(r) = m*M(r)r. (2.48)

Here, we denote the DM mass contained within a radius r as M (r). We can see that
under a scaling as in eq. 2.44, that C(r) transforms as C(r) — C(ar). Hence, if

we re-parameterize the function in terms of some characteristic radius, z = RLh for

instance, we will have a function, C'(z), which is unchanged by the scaling of eq.
2.44.
C(z) = m*M(z) Rz (2.49)

For an illustrative example of the scaling relations, we refer the reader to fig. 2.4.

2.5.5 Poisson-Schrodinger Equations in SSS Case

It will be instructive as well as useful to describe the SSS states in the non-relativistic

and low-field limit. We will describe two ways of attaining the SSS equations for
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this limit. Firstly, we will directly apply the limit to the SSS EKG system in egs.
2.23-2.25. Secondly we will attain the same set of equations by applying a similar
harmonic ansatz to eq. 2.22 to the already low-field and non-relativistic form of the
PSEs in eq. 2.26 and 2.27.

First, we consider the SSS EKGEs in eqs. 2.23-2.25. To apply the low-field and
non-relativistic limit, we apply two sets of approximations. To ensure the low-field
criteria we take the approximations that V << 1,  ~ 1, V, << 1, and ¢, << 1.
These are equivalent to assuming the metric to be close to the Minkowski metric.
The non-relativistic limit corresponds to taking the approximations of # ~ 1 and
U, << 1. This is equivalent to taking the group velocity of the DM to be small in
comparison to the speed of light. Applying these approximations then results in the

SSS version of the PSEs

M, = 47r*| U (2.50)
M
V=3 (2.51)
2
U, + =V, =2m(m —w +mV)W. (2.52)
T

Eqgs. 2.50 and 2.51 are the analog to the Poisson Equation. This can be seen by
computing the Laplacian of V (r) in spherical coordinates and inserting the eqs. 2.50

and 2.51.

M, M 2
- —2— + “4nr?|U? = 4rr?U? = dnr? |y (2.53)
r r oo

2
VIV =V + 2V, =

Taking the low-field and non-relativistic limit therefore recovers the effective DM
density again as |U|?.

Equation 2.52 plays the role of the Schrédinger equation of eq. 2.26. This equa-
tion can be computed directly by assuming the harmonic ansatz of ¢ = Welm—«)t
and applying it to eq. 2.26. We note that this is effectively the same as taking the
slightly different harmonic ansatz of eq. 2.22 at the level of the EKGEs and then
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applying the low-field and non-relativistic limit as described in section 2.5.2. The
additional factor of €™ cancels with the factor of e~ from the approximation in
eq. 2.31, ensuring that the Klein-Gordon field matches the appropriate ansatz from
eq. 2.22. Further, we can identify the quantity of (m — w) as an energy eigenvalue
for the static state. The low energy condition can be thought of as equivalent to the

low group velocity condition stated earlier, = ~ 1.

Solutions to the SSS PSEs are analogous to the ones described for the SSS EKGEs
described in section 2.4. Namely, they can be specified by their total mass and
number of wavefunction nodes, forming a family of excited states. We identify the

relevant wavenumber in this case as k*(r) = —2m(m — w + mV (r)).

2.6 Properties of Solitons and Excited States

The SSS states have been studied in many contexts. The first instance of considering
the EKG system can be traced to (45) in which they were used to model systems of
self gravitating scalar particles commonly referred to as “Boson Stars.” Importantly,
complex scalars admit boson star solutions with the harmonic form of eq. 2.22. These
solutions form quasibound states, with only the ground state being long time stable
upon perturbations. The ground state boson star, otherwise known as the SFy DM
soliton has a critical mass value, M., above which the state will either collapse into
a black hole or reduce its mass by emission of scalar radiation. This mass value was

first computed by (44), and can be expressed in standard units as

M.~ 0.633hc?

2.54
¢ Gm (2.54)

10722V
~ 8.5 10" Mg (—) :

m

For comparison, in the 10722¢V regime, this mass value is comparable to that
expected for large supermassive black holes (with M87 having a mass of ~ 109 M).
Soliton masses that are small in comparison to M, can be considered in the low-field
regime, and are well approximated by the Poisson Schrodinger system. The soliton

itself will have a density distribution which is well approximated by the “core-halo”
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FiGURE 2.3: Core Halo Relation: The Core Halo relation plotted for the ground
state (left) as well as a 25th excited state (right). Plots rendered using units of m =
100 and value of w = 0.999m. The core-halo relation describes the density behavior
well, at least to leading order. Excited states generically have more compacted central
cores but greater total spatial extent.

relation from (76) (see fig. 2.3).

0e() = po (1 +.091 <r1>2> B (2.55)

Here, pg is the central density and r. is the “core-radius” at which the density
has fallen to half of its central value. We note that while this relation is a good fit to
the ground state soliton, it also describes the leading order behavior of the excited
states fairly well, this can be seen in fig. 2.3. Importantly, the effective radius of any
particular state can be determined by its total mass. This is a result of the scaling
relations in eq. 2.44 for a constant value of m. The mass and radius of a ground
state soliton are given by eq. 2.47. Similar relations can be computed for the excited

states.

In a dark matter only context, the fact that excited state boson stars are unstable

is well established. In fact, it can be proven analytically that the ground state is the
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only SSS state with long time stability, at least in the low-field case (59). Generically,
the excited states will decay via emission of scalar radiation until a stable soliton
is formed. However, the presence of external gravitational potentials sourced from
other matter can have non-trivial effects on the stability of the states. In principle, a
sufficient amount of external gravity may allow some excited states to be stabilized.
This has been demonstrated for the first excited state in (59).

How excited states may manifest themselves in a physical context is an interesting
question. As seen in fig. 2.5, excited states have rotation curves which are naturally
flat at large distance. This is quite appealing in regards to reproducing galactic
rotation curves. The transient properties of excited states, such as their oscillation
frequencies and interference patterns, may carry over into the dynamics of more
complicated halos. Moreover, how superpositions of excited states might be seen in
galactic halos is actively researched (6; 37). The modelling of rotation curves will be
the primary focus of chapter 3, while a basic description of superposition states is

discussed in chapter 4.

2.7 Real Scalar Field Oscillatons

The case of the SSS states in section 2.4 are strictly for a complex field. Real scalar
fields do not admit time stationary solutions in the same sense. It is worth noting
that real scalar fields do admit “quasi-breather” solutions which are approximately
time periodic and approximately local in space; such solutions are referred to as
“oscillatons.” This was first demonstrated in (80). While the form of oscillatons from
(80) was not analytically verified as a solution to the EKGEs, numerical solutions
rapidly converge to the expected behavior. It is noted that the solutions may be
only “quasi-periodic” in that non-linear effects may be able to alter the oscillation
frequency. Nonetheless, (80) demonstrates the stability of oscillations on time scales
which are orders of magnitude greater than the oscillation period. Moreover, such
solutions were demonstrated to form under generic initial conditions, resulting from

Jean instability. Oscillatons were further pursued in (91), which computed their
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critical mass value as 0'600—7mhc, which is quite similar to the critical mass in the case of

complex scalars. (91) further pursued the study of oscillations and investigated the
low-field version of oscillations, which can be described as a semi-analytic solution to
the PSEs. As a final note, this thesis is primarily concerned with the case of complex
scalars. Though the low-field limit of the real and complex cases coincide, real scalar
oscillations could display distinct properties at the level of the EKGEs which might

be relevant towards the growth of structure.
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FIGURE 2.4: Excited State Scalings: Here we show excited state solutions of
the SSS PSEs for n € [2,6]. Each panel applies a different scaling condition. (Top
Left) States scaled to have the same central density. Higher excitation numbers in
this case correspond to greater spatial extent. (Top Right) States scaled to have
the same frequency value. The resulting solutions have central density decreasing
with n. (Bottom Left) States scaled to have the same total mass. Generically, higher
excitation numbers correspond to lower densities but greater spatial extent. (Bottom
Right) States scaled to have the same value of decay radius R,. In this case, higher
excitation numbers correspond to halos with greater density and total mass.
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FiGure 2.5: SSS Excited State Rotation Curve: Plot rendered with units of
m = 100 and frequency w = 0.999m. The rotation curve of the N = 10 excited state
and its wave function are shown. Left: The wave function along with its effective
amplitude (see section 3.3.1). Right: The corresponding rotation curve. The rotation
curve displays a step rise due to the high density soliton-like core. The rotation curve
is then approximately flat, with a gradual rise. Once the decay radius (indicated by
the vertical line) is reached, the rotation curve increases briefly, but then begins to
fall once the majority of the mass is enclosed.
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3

Wave Dark Matter and the Baryonic Tully-Fisher
Relation

This chapter is a documentation of my own work,(39), regarding the Baryonic Tully-
Fisher Relation (BTFR) and its relation to the Wave DM theory. In fact, we will
see that Wave DM provides a unique motivation for the existence of this empirically
measured relationship. This is a rather surprising result, and provides a novel model
for the BTFR unique to Wave DM theory. We follow with a discussion of how this

relation can be used to constrain the theory, placing a bound on the mass parameter

m.

3.1 The Baryonic Tully-Fisher Relation

3.1.1 The Tully-Fisher Relation

The TFR (distinct from the BTFR) is an empirical relationship first reported in 1977
by Brent Tully and Richard Fisher, originally suggested as a measure for the distance
to spiral-type galaxies (90). This relation states that the width of a spiral galaxy’s
21cm spectral line, a distance independent observable, can be related to its absolute
magnitude. This is particularly useful in that the derived absolute magnitude of the

galaxy can then be compared to its apparent magnitude, providing a tool to measure
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the distance to that galaxy.
The TFR, stated more formally, relates a spiral galaxy’s absolute magnitude, L,
to its 21cm spectral width, d, through the following proportion, for some positive

exponent, x:

L oc 6%, (3.1)

The galaxy’s absolute magnitude can be converted to its total stellar mass, Mj

through the stellar-mass-to-light ratio, Y.
My=7",L (3.2)

The galaxy’s 21cm spectral width relates directly to its maximal rotational velocity,
Um. This can be understood as a result of the relativistic Doppler effect; one side
of the galaxy will experience a redshift as it rotates “away from us” while the other
side will experience a blueshift as it rotates “towards us,” resulting in a spreading
of the 21cm hydrogen emission line. For galaxies with an “edge-on” inclination, one

expects the line width and rotational velocities to relate as
3§ O Uy (3.3)

Combining egs. 3.1, 3.2 and 3.3, the TFR can be restated as a proportionality
between a spiral galaxy’s stellar mass and its rotational velocity. Put simply, it

states that more massive spiral galaxies rotate faster.
Mg oc vy, (3.4)
3.1.2 The Baryonic Tully-Fisher Relation

The Baryonic TFR (BTFR) was suggested in 2000 by Stacy McGaugh (60) as a
modified version of the original TFR. McGaugh noticed that the TFR, as stated in eq.
3.4, failed to describe low surface brightness (LSB) galaxies. This was explained by
noting that LSB galaxies have a higher fraction of their mass contained in gas than do
higher brightness spirals. Due to this higher gas fraction, LSB galaxies have greater

rotational velocities than one would infer by only considering their measured stellar

60



Baryonic Tully-Fisher Relationship

11,54 —— Sope=3.e

11.0 A

10.5 4

12.0 4

9.5 4

log(M} (Solar Masses)

9.0

1.6 L 2.0 22 2.4
loq (v rar) (emys)y

FiGure 3.1: Observed BTFR: The BTFR as reported by the SPARC Survey
(omitting error bars). On a logarithmic scale the relation appears as linear. This
visualization assumes a stellar-light-to-mass ratio of T, = 0.5]\5—8. Qualitatively,
higher values of T, correspond to steeper slopes.

mass; the TFR therefore underestimates the velocities of LSB galaxies. McGaugh
proposed that this issue could be resolved if one modified the relation of eq. 3.4 to
include the total baryonic mass, M,, of the galaxy instead of only its stellar mass.
This results in the BTFR,

M, oc v (3.5)

The value of the BTFR exponent, x, is a topic worthy of discussion and an actively
researched topic. Various systematic choices affect the inferred value of x. For
instance, it is shown in (48) that the treatment of the stellar-mass-to-light ratio,
T,, directly impacts the measured value of x. More so, one would expect different
galaxy samples to have different values of T,, depending on their stellar content.
Even further, the value of T, may vary within individual galaxies (5), adding to the
difficulty of determining a sample’s mass distribution. It is suggested in (48) that this
issue can be avoided, or at least remedied, by considering luminosity measurements
in the near-infrared wavelength bands. Systematics aside, x usually takes some value

between = 3 and z = 4.
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3.1.8 The SPARC Survey

In the later parts of this chapter, we will use a SF¥YDM model to compute a fit
to the actual BTFR. This section is dedicated towards describing the observational
data sample that we use for the fitting procedure, known as the Spitzer Photom-
etry and Accurate Rotation Curves (SPARC) survey (49). SPARC consists of 175
extended rotation curves collected from the 21em Hydrogen (H1) emission observa-
tions of several large surveys: the Westerbork Synthesis Ratio Telescope (WRST),
the Very Large Array (VLA), the Australia Telescope Compact Array (ATCA), and
the Giant Metrewave Radio Telescope (GMRT). The rotation curves are paired with
infrared images from the Spitzer archive which detail the stellar distributions of the
corresponding galaxies. The total sample contains both spiral and irregular galaxies,
spanning 3 degrees of magnitude (dex) of surface brightness, 5 dex of stellar mass,
and a variety of gas fractions.

Each galaxy in the SPARC survey is decomposed into its various mass compo-
nents. The galaxy total mass is computed from the rotation curve by inverting the
Newtonian rotational velocity, eq. 3.9. To infer the dark matter mass, one must then

decompose this total into the DM and baryonic mass contributions.
Mo = Mppy + Mp (36)

SPARC reports the baryonic mass as decomposed into several components: gaseous

mass, My, the mass of the stellar disk, M,, and the stellar bulge, M;. Described in

detail in (49), this decomposition is computed as follows:
Mg = Mg + Y.L+ TypLy. (37)

Here, we have introduced the notation of the stellar-light-to-mass ratios represented
by T, and T,. These ratios are used to convert observed luminosity data into data
regarding total stellar mass. For instance, the stellar disk mass is computed as
M, = Y,.L,. For most cases, it is a reasonable approximation to take T, = T,.

However, some adjustments should be made for cases in which the stellar bulge is
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particularly prominent. In those cases, SPARC uses the value of T, = 1.47,.
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Ficure 3.2: SPARC Data Sample: (Top left) All 175 SPARC Rotation Curves
plotted in physical units. (Top right) A single rotation curve isolated from the survey
and the corresponding contribution from baryons. (Bottom left) The same curve as in
the top right, but parameterized in terms of the maximum circular velocity and core
radius. (Bottom right) An equal weighting average of all SPARC curves. Average is
computed by taking a spline of each rotation curve, and then averaging all splines
for each value of -. If an individual curve lacks data at a radius, it is not included in
the average for that radius. This is similar to the averaging procedure used in (24).

The stellar luminosities of each galaxy, L, and L;, are computed by perform-
ing a disk-bulge decomposition of its 3.6um surface brightness distribution. The
wavelength of 3.6um is chosen for SPARC since it is expected that the value of

T, is approximately constant between galaxy samples at this value. The particular
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decomposition used for SPARC assumes a stellar disk with an exponential vertical
distribution and a stellar bulge with a strictly spherical distribution. It is noted that
the uncertainties in this procedure are dominated by the value of T, as opposed
to the particular choice of geometry. Finally, the gaseous mass is inferred from H1
surface density profiles. To adjust for the presence of Helium, the total gaseous mass
is taken to be a multiple of the total H1 mass M, = 1.33My;.

We use a specific set of 118 samples from the SPARC survey that were prepared
in (48) to generate the observed BTFR. These samples were selected based on having
flat rotation curves as well as small angles of inclination with respect to the line of
sight. For the sake of preparing this sample, the total baryonic mass of each galaxy
is estimated with the total luminosity in the 3.6um band, L3¢

My = My + Ty Lz (3.8)

We note that this is equivalent to taking the assumption that T, = T, ineq. 3.7. The
corresponding circular velocity for the BTFR is extracted from that galaxy’s SPARC
rotation curve. (48) takes this velocity to be that of the “flat” part of the rotation
curve and details an averaging procedure to compute this velocity. This procedure
first computes the average of the two outermost points of the rotation curve; then, the
average is recomputed by including the next outermost point, stopping the procedure

once the next point differs by more than 5% of the previous average.

3.2 Wave Dark Matter and the BTFR

3.2.1 A Wave Dark Matter Tully-Fisher Relation

Though the BTFR describes a galaxy’s baryonic mass content, the galaxy’s rota-
tional velocity is a function of its total mass content. This can be understood through

the Newtonian formula for a galaxy’s circular orbits, and therefore rotational velocity.

v(r) = (3.9)

64



Scaled Excited State N=10 Scaled Family of Excited States

50 1
60
-0
ol ‘| an
£ 04 | =
&
20
w
o |!| ﬂ\jr\ S o '{'}“WV S AT
-10 \}
T ; T T T T T T T T
0.00 Q.05 0,10 015 0.0 0.15 0.x0 0.35 0o o1 0.2 0.3 0.4
Radius Radius
s Scaled Family of Excited States A decay vs. Excitation Number
///
rd [LE.R | /_f
o ,— /
T ol e o
1 5 e
7 : ‘x\ 0.6 4 o
- Jreasas | e S 2
= ~ § Py
/ 5|
4 LR |
3 /
2N s
N
24 024
-3 T T T T T T T T
0.20 0,32 0.34 036 0.28 [s 2 i) 042 0.44 o 20 ag &0 820 100
Radiug Excitation Number (N}

FiGUrEe 3.3: Tully-Fisher Boundary Conditions: A depiction of the boundary
conditions applied by Goetz (35). Each excited state is scaled to have the same
amplitude at its decay radius. (Top Left) A single excited state, vertical line denot-
ing the decay radius, horizontal line denoting the boundary amplitude. (Top Right)
Three consecutive excited states under the same boundary condition. (Bottom Left)
Zoom of the red boxed region showing the boundary condition applied at each de-
cay radius. (Bottom Right) The decay radii for this boundary problem increase
empirically as Ryocq/n.

The function M (r) describes the total mass contained within a galactocentric radius
of r. The maximal velocity from the BTFR, v,, = max(v(r)), therefore depends
both on the distribution of baryonic matter, as well as the distribution of dark
matter. In fact, most galaxies have rotation curves which are highly dominated by
the distribution of dark matter, with upwards of 90% of their mass being contained
in the form of dark matter. In this regard, the BTFR, though observed through the
dynamics of baryons, can be considered a result of the behavior of dark matter.

A possible connection between the BTFR and the Wave Dark Matter theory was
observed in the thesis of Andrew Goetz (35). Goetz observed that a relationship
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similar to the BTFR could be recovered from Wave-Dark Matter excited states.

This relationship was recovered by imposing a particular type of boundary condition
to the excited states at their decay radius (as defined in section 2.4). Formally, given
an nth excited state radial wave function, ¥,,, with decay radius R,,, the boundary

condition is stated as
U, (R,) = W. (3.10)

In other words, fixing the same amplitude of the radial wave function at the decay
radius for each excited state recovers a family of solutions which obey a Tully-Fisher-
Like relationship for dark matter halos. That is, extracting the rotation curves from

these states results in the following relational form for the excited states,

Mn,tot oc Uz (311)

n,max"*

Even further, analytical arguments in (35) suggest that the boundary condition of
eq. 3.10 produces a Tully-Fisher slope of x ~ 3.4 in the low field regime. Importantly,
this boundary condition is always applied at the decay radius, marking the transition
of the halo’s oscillatory behavior to an exponential decay. In a qualitative sense, this
boundary condition can be thought of as setting a density scale in the outer regions
of the halo (seen in fig. 3.3), with the decay radius being the scaling point. In other
words, at the decay radius, each excited state will have the same density given this

condition. The relation corresponding to eq. 3.11 can be seen in fig. 3.4.

3.3 A Toy Model for a Wave Dark Matter Galaxies

The primary goal of this chapter is to simulate the BTFR using SFy¥DM theory in
order to place a constraint on the SFyYDM mass, m. We will compare and fit the
simulation to the observed BTFR as reported by the SPARC survey. Since the BTFR
relates a galaxy’s baryonic mass to its rotational velocity, a quantity depending on
both its baryonic and dark matter content, making this comparison will require us to
provide a good model for both the baryonic and dark matter contributions of Tully-

Fisher galaxies. We will organize this section into four primary parts: The first
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FiGure 3.4: SFyyDM TF-like Relation: Result of the boundary problem shown
in fig. 3.3. (Left) Observed BTFR from SPARC. (Right)Dark matter only (DMO)
analog of the BTFR generated from the first 200 solutions of the boundary problem.
This illustrative case chooses ¥ = 1. Slope of relation converges to 3.4 for large
values of n.

part will describe how to model SFWDM halos as generic solutions to the EKGEs;
the second section will describe various quantities and properties of Spherically SSS
SEFy¥DM halos in a purely DM-only context; thirdly, we will discuss how to include a
baryonic contribution at the level of the PSEs; finally, we will describe a SSS model
for both components which will be used in the following to model the BTFR.

3.3.1 Generic SFi DM Halos

In section 1.4.4, we described SFyDM halos as complicated and turbulent wave
structures. Simulations of halos formed in a bottom up fashion display finite density
soliton cores surrounded by a region of fluctuating “quasiparticles” which eventually
converges to an NFW-like profile. Our ultimate goal will be to model these halos
with generic solutions to the EKGEs represented by a wavefunction ¢ (7,t). The
main difficulty in computing these solutions stems from the coupling of the Klein-
Gordon equation to the spacetime metric determined by the Einstein equations.
This results in non-linearity which is difficult to approach in a general context. We
can attempt to circumvent this issue by fixing the spacetime metric and effectively

decoupling the Klein-Gordon equation from the Einstein equations. In the case of

67



a fixed metric, the Klein-Gordon equation itself becomes linear. One could then
expand the wavefunction ¢ (7,t) as a linear combination of functions involving the

spherical harmonics, Y;"(0, ¢). For the case of a complex scalar field these terms

appear as

Y7, t) = 7Y™, @)Wy, (r)ent. (3.12)

nl

We note that a similar model has been used in (7) for the case of a real scalar field
with a flat background metric. Hypothetically, if a halo resides in a fixed gravita-
tional potential, one could compute the best linear combination of these functions
to represent the halo. In reverse, understanding such solutions could give insight to
the dynamics of halos.

As a first step towards understanding more general solutions to the EKGEs we
consider the case of [ = 0 for a single frequency. This results in the ansatz for the

SSS states discussed in section 2.4.
Y(1rt) = \I/(r)e_w (3.13)

Even reintroducing the coupling to the spacetime metric, the case of the SSS states
can be categorized as in Chapter 2. Importantly, this provides a justification for
modelling SFyYDM halos as SSS excited states, at least to the leading order. We
will explore the viability of using this leading order approximation in the context
of producing the BTFR. Specifically, we will generate each halo with a single SSS
excited state. In chapter 4, we will extend this discussion to include basic super-

positions of such states.

3.3.2  Dark Matter Only SSS Halos

The SSS solutions described thus far are DMO states. Though ultimately we want
to describe states which include baryonic matter, itemizing and understanding the
properties in the DMO case is instructive and useful. We show an example of a DMO
halo in fig. 3.5. Firstly, for the sake of simplicity, we will take SSS form of the PSEs
in egs. 2.50 - 2.52. We identify the following quantities:
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m: The SFyYDM particle mass.

¥ (r,t): The halo total wavefunction.

e U(r): The radial wavefunction component.

e V(r): The halo gravitational potential.

e M (r): The DM mass contained within a sphere of radius r.

e n: The SSS state excitation number.
® Uuire(r) =4/ @: The velocity of a circular orbit at radius r.

e w: The static state frequency.
e p(r) = ¥(r)%: The DM density.
o k*(r) = —2m(m — w + mV(r)): The halo spatial frequency.

o \(r) = %: The halo local wavelength.

o A%(r) = U2(r) + kg—(i): The wavefunction amplitude (described below).
e R;: The decay radius specified by k(R4) = 0.

o lim, ., M(r) = M;y: The total DM mass.

e lim, ., V(r) = V,: Potential at infinity set by convention.

The set {¥(r), V(r), M(r),w} describes a physically reasonable solution if Vi,
Miot, and W (r) are finite. Moreover, to avoid singular behavior at the origin, ¥,.(0) =
M(0) = 0 must be enforced. The only such solutions are the SSS states as described
in section 2.4. The value of V, is a convention; we will take the usual value of V,, = 0.

It should be noted that the ability to shift V, by a constant remains a useful feature
of this set of ODEs.
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The wavelength and amplitude functions, A(r) and A(r), are constructed specif-
ically for the purpose of modelling the BTFR. The main reason for this is that the
quantity A2A forms a scale invariant which will be useful for applying halo bound-
ary conditions. Discussion of this quantity is contained later in section 3.4.2. The
amplitude function is constructed by assuming the radial wavefunction to have local

behavior similar to the following
U(r+ R) = A(R)sin(k(R)r + (R)) (3.14)

This essentially decomposes the oscillating behavior from its amplitude, at least in an
approximate sense. The wavelength quantity is a direct result of the form of the ODE
in eq. 2.52. Importantly, the wavelength and amplitude quantities diverge and begin
to lose their physical interpretations at the decay radius, Ry since k(R4) = 0. This
is merely a result of the transition of the wavefunction from its oscillating behavior
to its exponentially decaying behavior. The value of w can be related to the total
mass of the halo. For the case of a fixed excitation number, n, and assuming V,, = 0,
smaller values of w will correspond to halos with a greater total mass. This can be
understood by considering the energy eigenvalue of the wavefunction 1 at the level
of the Schrodinger equation. The energy relates to w as Foc(m — w). Smaller w
then correspond to greater energy and therefore larger total mass. Interestingly, for
a fixed value of w, the mass of halos scales in an approximately linear fashion with
excitation number (36).

M,(n) ~ (n+ 1)M,(0) (3.15)

3.4  On Halo Boundary Conditions

3.4.1 Physical Motivation

As described in section 3.2 and (35), the global properties of SF¥)DM excited states
can vary greatly depending on the imposed boundary conditions. Importantly, choos-
ing the boundary condition of eq. 3.10 which is imposed at the halo decay radius
reproduces a trend very similar to the BTFR. We wish to specify a set of physically
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FiGURE 3.5: Example DM-Only Halo: Example of the n = 50 SSS Excited state.
State prepared with units of m = 100 and w = 0.999m for ease of computation. All
vertical lines correspond to the decay radius Ry. (Top left) Radial wavefunction
and corresponding amplitude function as defined in section 3.3.1. (Top right) Cor-
responding gravitational potential using the convention V., = 0. (Bottom left) The
mass function. (Bottom Right) The rotation curve.

motivated boundary conditions that will reproduce this property that can be applied
to our model of the BTFR.

In fig. 3.6, we depict a SFyyDM halo as an N-body system of DM particles (or
quasiparticle fluctuations). This image will serve as the motivation for our boundary
conditions. We compare this to an N-body system of stars forming a globular cluster.
Though these two systems would occur at vastly different physical scales, we only
wish to compare the qualitative properties resulting from the N-body dynamics.
In the central region of the halo, the individual DM particles overlap significantly
due to their number density. In comparison, the particles in the outer region are

further separated and can be seen as individual points. We suggest that SFy DM
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FiGURE 3.6: Background Boundary Conditions: A motivation for SFyYDM
boundary conditions. Top left: A system of DM particles placed to emulate an N-
body system; particles are uniformly distributed by radius, and randomly distributed
by angle. Saturation effects are applied for visualization. Top right: A globular
cluster demonstrating a real N-body system. Bottom left: The same as the top left
image, but distributed uniformly in angle to compare to a spherically symmetric
setting. Bottom right: A possible description of SFYDM halos. As seen in the
top left image, the particles become densely packed in the central regions of the
halo resulting in a large amount of interference and overlap. In the bottom left
image, we can identify the radius at which the particles begin to display substantial
overlap, this is shown with a red circle. Outside of this boundary the particles can be
individually resolved while inside the boundary they cannot. The bottom right image
suggests describing the central region as a fully nonlinear solution to the EKGEs,
characterized by the overlap of the halo’s many DM particles. The outer region of
the halo can then be thought of as an N-body problem of DM particles evolving in
the gravitational well of the halo.
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halos display a boundary between two such regions, indicated by the red circle in the
figure.

We depict the same image in a spherically symmetrized setting in the bottom left
panel. Importantly, the number density of the DM particles becomes great enough
in comparison to the particle size that the particles begin to overlap. We suggest
that the particle size and density are related to the wavelength and density of the
aggregate DM halo. Denoting the amplitude and wavelength scales as ppys and Apyy
this gives us our first notion of a galactic boundary condition. That is, at some

generic radius depending on the halo, R, the halo has a preferred scale

(p(R), A(R)) = (ppr, Apm)- (3.16)

We then account for the fact that the halo itself will display density oscillations
of the order ppys by considering the amplitude function, A(r), as opposed to the
wavefunction. We therefore define a boundary value Ap,;, and propose the boundary
problem to be

(A(R), A(R)) = (Apm, Apu). (3.17)

Finally, we present a more generic depiction of our boundary condition in the
bottom right panel of fig. 3.6. Conceptually this can be thought of as follows: DM
particles are sufficiently dispersed in the outer regions of the halo, and thus form an
approximate N-body system. Eventually, as one moves towards the center region, the
particles begin to significantly overlap and can no longer be individually resolved.
This overlap causes a non-linear interference between the particles and should be
thought of as being governed by the EKGEs.

As a last point regarding fig. 3.6, we note that there are various interpretations
of the DM particles. It is a tempting analogy to think of each DM particle as a
SFDM soliton since the soliton state is the only truly stable SFy/DM configuration.
On the other hand, such an interpretation has never been realized in simulation.
Simulations of halos formed in a bottom-up fashion from solitons generally display

an outer region populated with quasiparticle fluctuations. In regards to our boundary
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condition, the values of Apy; and Apys should reflect the relative size and amplitude
of these quasiparticles. It is a separate question to ask whether or not sufficient
quasiparticle fluctuations can result in the condensation of solitons within galactic
halos. This has never been demonstrated, though one would expect this process to
occur if the quasiparticle region reaches the “kinetic regime” as in (50). This becomes
more and more likely at higher values of the m where the quasiparticle wavelength
becomes smaller in comparison to the overall halo. Further, in the case that SFyDM
has a self interaction term, it has been shown that multiple solitons can form within
a halo (11). This then begs the question “Does soliton condensation occur within

galactic halos, and if so does it have a preferred length scale?”

3.4.2  Amplitude- Wavelength Boundary Conditions

We now detail the boundary problem which we will solve in order to generate the
BTFR. We wish to fix the amplitude and wavelength scales of the SSS states following

the discussion of the prior section. This requirement can be stated as

An(Rn) = Apas. (3.19)

In other words, we wish to choose some characteristic scales denoted by Ap,s and
Apwr, and fix them at some generic value of radius R,, for each excited state. This
boundary problem can be straightforwardly solved using shooting problem methods.
However, it is faster and more revealing to make use of the PS scaling relationships
described in section 2.5.4. Firstly, we will consider scalings for the case of a fixed
boson mass, m. This is equivalent to taking the rescaling parameter 5 = 1 in eq.
2.44. As a result of the scaling relationships in eq. 2.44, we can define a function
based on the amplitude and wavelength functions which is invariant upon rescalings

for constant values m.

L.(z) = A2 (2) A, (z) (3.20)
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Here, for convenience, we define the dimensionless radius, x, as the fraction of the

decay radius, z = #. The boundary problem posed in eq. 3.17 can then be

solved by locating the characteristic radii, X,,, for each excited state which allows

the following product condition be satisfied.
L.(X,) = Ipy = Moy Apar = V(X)) A(X,) (3.21)

Once each radius, X,,, is found, we identify this point as the scaling boundary. While
this radius ensures A and A have the correct product, it does not necessarily ensure
the individually desired values of Apys and Apys. To completely solve the boundary
problem and produce the correct amplitude and wavelength for the excited state
boundary, one then applies the scaling relations in eq. 2.44 so that the correct values

are attained.

To summarize, we can use the following procedure to solve the boundary problem
for a particular excited state: (1) Choose a value of m and boundary values for Apyy,
Apar; (2) Compute a SSS excited state of order n; (3) Compute the function I,(x)
for that state; (4) Find the intersection of I(z) with Ipys and denote this intersection
point as X,,; (5) Choose a value of the scaling parameter o which gives the excited
state the appropriate value of Apy;.

We depict a family of Amplitude-Wavelength functions, eq. 3.20, and the cor-
responding boundary value in fig. 3.7. In the left panel we depict the boundary
problem with a single excited state. On the right panel we show the corresponding
functions for the first 25 excited states. The functions I,,(X,,) display several features
which have important implications for the boundary problem in eq. 3.17: Each I,
has a minimum value and also diverges at the decay radius X,, = 1. The divergence
at X,, = 1 can be easily understood as due to the divergence of Apy; and Apy, at the
decay radius. Further, for any given n = N, Iy(Xy) bounds all the I,,(X,,) of greater
excitation number from above. That is, Ix(X) > [,(X) for all n > N. This property
is an observed trend from on our computational results. In combination with each

I,, having a global minimum, this feature allows one to determine whether or not a
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FiGure 3.7: Amplitude-Wavelength Functions: (Left) The Amplitude-
Wavelength boundary problem plotted for a single excited state. The excited state
density as well as the invariant corresponding to eq. 3.20. (Right) The family of
excited state invariants for a fixed m. Each excited state is bounded by above by
the prior state. All states display a divergence at the decay radius. Some states can
be excluded from the boundary problem by the choice of Ipy;, as they will display
no real intersection.

particular I,, is capable of achieving the prescribed boundary value. If Ipy < Inmin,
then the state will never intersect the boundary value and can therefore never achieve
the prescribed values. Further, all other states with n < N will have the same issue.
One could, in principle, use this to exclude low excitation states from the family of
solutions by appropriately decreasing Ipy;.

Given a state Iy and a value of Ipys > Inmin, there will be two values of Xy
which are candidates for the boundary radius defined by the two intersections of Ipy,
with Iy. We note that applying the boundary condition at the leftmost intersection
point, closest to the origin, does not reproduce a BTFR-like relation. This is due to
the fact that the intersection points for successive values of N will be at smaller and
smaller values of X,,, making the boundary radius a smaller fraction of the overall
halo size. This directly conflicts with the expectation of more massive galaxies to

have higher excitation and therefore greater spatial extent. For these reasons, we do

76



not consider the leftmost intersection. The rightmost intersection point generically
occurs in the outer regions of the DM halo. In fact, as one takes the limit of n — oo,
the intersection point limits to the decay radius X,, = 1. This will generate the same
boundary problem as investigated by Goetz in eq. 3.10, scaling the DM halos at
their decay radius. Further, this implies that the prescribed value of Ipy, will not
affect the limiting behavior of the boundary problem as long as Ipy; > 0 is strictly

enforced.

3.5 Including Baryonic Contributions in SSS States

Though the gravity which generates a galaxy’s rotation curve is mostly sourced
from DM, the BTFR directly relates the rotation curve to the galaxy’s baryonic
content. Simulating the BTFR for SF¢DM will therefore require us provide a working
description of that baryonic content as well as how it alters the shape of the DM halo.
At the level of the PS system, this can be thought of as including additional sources
of gravity via the gravitational potential, V. Thus, we will consider the inclusion of
spherical external densities, p..:. The corresponding gravitational potential, V., is

taken to be a solution to the Poisson Equation
V2Vt = 4T et (3.22)

We then reach a slightly modified version of the PSEs which include this gravitational

potential.
N g
ZE = —%V ¢ + m(V + ‘/ea:t)'(ﬁ (323)
VAV 4 Vi) = 47(|0)? + peat) (3.24)

Given that the SSS SF¢/DM states described in the prior sections reproduce such
a promising trend in their rotation curves, we would like to preserve the SSS ansatz
as much as possible. To achieve this, we still assume the DM wavefunction v to have
the SSS form from eq. 2.22. In addition, we consider external densities which are as

well spherical and static, pe.:(r). We therefore reach the analogous versions of eqs.
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2.26 and 2.27 but with an external baryonic contribution.
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Ficure 3.8: SF¢YDM Halo with Baryonic Contribution: Figures rendered
using units of c = G = A = 1, m = 100, and frequency of w = 99.9. The effects
of including additional matter contributions. An external density of p(r) = Ke=°"
(described later in section 3.6.1) is used. Total dark matter fraction is set to 90%.
The DM fraction at the baryon half mass radius is set to 50%. Top: The overall DM
wavefunction displays minimal change from the inclusion of the external component.
Bottom left: Including external components can greatly affect the overall shape of
the rotation curve. Sizeable contributions near the central region tend to flatten the
overall rotation curve. An analogous DMO halo is included for comparison. Bottom
right: Mass functions corresponding to the top two plots, again including a DMO
analog. A contraction of the overall galaxy as a result of including the external
matter is evident, and can be seen by comparing the two DM halos.

This ansatz now describes a SSS distribution of DM, represented by the wavefunc-
tion ¢, under the influence of SSS external potential sourced by pe.;. The solutions
to these equations should be thought of as similar to those of the DM-only setting

but with alterations in shape which depend on the relative size and distribution of
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the external density in comparison to the DM density. An example of such an al-
teration is shown in fig. 3.8. In most galactic contexts, the relatively small ratio of
baryonic mass to DM mass will result in small changes to the overall solution for
1 in comparison to the DM-only setting. However, the resulting appearance of the
rotation curve can change significantly, even from small external contributions.

Computing the analog of SSS excited states in the presence of a background
baryon density can be achieved with similar methods to the DM-only case. Using
a method similar to (59), we compute these states by the use of a continuation
parameter, v. That is, we solve the system in egs. 2.50-2.52 with the substitutions
of

M — M + M.y, (3.25)
Vo>V 4+ Ve (3.26)

The parameter + is initially set to 0, resulting in a DM-only state. Then, the value
of v is increased in small increments and the system is resolved until v = 1, including
the full external contribution. Otherwise, the solving routines are analogous the the
DMO case in the Appendix.

Later, once we compute solutions with appropriate baryonic contributions, we
will want to rescale the solutions to match the observed BTFR. In this case, we need
to make use of the scaling relations of the PSEs in section 2.5.4. This can be achieved
as long as the same relations are applied to the external components V.,; and pey.
That is, as long as the external density and potential are rescaled in the same way

as their DM analogs, then the scaling relations can be applied.

3.6 Modelling the BTFR with SSS Excited States

In this section we detail a particular method for using the BTFR to constrain the
mass parameter of the SFyYDM theory, m. This method will combine the various
aspects of the SSS excited states discussed so far. Described briefly, we solve for

the SSS excited states in the presence of a static baryon density. We will choose
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the baryonic component to have mass fractions comparable with observation and
well known galactic simulations. Finally, we will apply a version of the Amplitude-
Wavelength boundary condition detailed in section 3.4.2 to each excited state in order
to fix the density scale of the halo’s outer regions. We then extract the relevant
velocity and mass data and vary this boundary condition until a best fit to the

observed BTFR  is reached.

3.6.1 Spherical Baryonic Contributions

First, we choose the baryonic component to be spherically symmetric and static
so that the methods from the prior section can be applied to the excited states.
Specifically, we choose the external baryonic density to be of the following exponential

form

Peat(1) = Ke . (3.27)

Assuming that this distribution solves the Poisson equation, it corresponds to a

gravitational potential of

—4AnK (2 —Cr —Cr
Vewt (1) = el <;(1 —e ") —=Ce ) . (3.28)
Conveniently, the values of K and C relate to the total mass and the effective radius
of the external baryonic component. Solving for the total mass and half mass radius

of this distribution yields
STK

Mext,tot = 3 (329)
2.67
Rewt,h = 7 (330)

In order to choose values for C' and K, we will fix the values of the total dark matter

fraction, fi; = ]\]\44’?1;1 and the dark matter fraction at the baryon half mass radius

from eq. 3.30, f,. This can be achieved through standard shooting problem methods.
We will sample fractions which are consistent with the IllustrisTNG simulations in

(52), using fractions in the ranges of fi,; € [0.7,0.9] and f,, € [0.5,0.9].
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To summarize, we compute SSS excited states, paired with an appropriately
proportioned baryonic density with the following procedure: (1) Choose target values
for fi+ and f, and compute the excited state without an external contribution. (2)

Choose the constant C for the external contribution to be some reasonable value in

comparison to the length scale of the excited state. (3) Compute a value of K which
gives the correct total external mass such that the desired fraction f, is satisfied. (4)
Using the chosen values of K and C, include the external density via the continuation
parameter method described in section 3.5. (5) Extract the attained values for fi,
and f;. The value of f;,; should be close to the target but f, may or may not. (6)
Adjust the values of C' and iterate starting at step (2) so that the attained f, is
closer to the target. Usually, a larger value of C' will correspond to a larger value of

fn- (7) Repeat this procedure until the desired fractions are reached.

3.6.2  Applying Boundary Conditions

The SSS states with their external baryonic components can be computed as in
the prior section at any convenient scale. For instance, we choose to first compute
the states for a constant value of the frequency parameter w in order to simplify
the computational routine. We will wish to apply scalings so that the family of
excited states reproduces a BTFR, similar to the relation described in section 3.2.
Specifically, for each value of the mass parameter, we will apply the Amplitude-
Wavelength boundary condition to fix the amplitudes of the excited states at some
large radii.

Once the SSS states and their corresponding baryon distribution are found,
the process for solving this boundary problem is rather straightforward. We first
choose a value for m™'Ipy = A%,,Apar. Specifically, we choose a value which is
sufficiently large so that no SSS states are excluded from the boundary problem as
described in section 3.5. Using computational units of m = 100, we find that a value
of m™Ipy = 0.4 suffices for this purpose. We then compute the function I(z) as
defined in section 3.4.2 for each excited state, find its outermost intersection with

Ipyr, and use this intersection point as a scaling point. We then specify the value of
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Apr and scale each state to have that amplitude at the scaling point. The result is
a family of excited states with similar amplitude and wavelength scales in the outer

regions that also reproduces a BTFR-like relation.

3.6.3 Fitting the BTFR and Constraining m

For each value of m, the prescribed value of Ap,; will determine the physical scale
of the corresponding DM halos and baryonic distributions. This will directly cor-
respond to a scaling of the baryonic mass and rotational velocity corresponding
to the BTFR. Solving by using the scaling relations of eq. 2.44, the scaling of
Apy — aApyy corresponds to taking { M, Vror} — {02 Megy, /%0, }. Since the
baryonic mass and rotational velocity are both scaled by the same factor, the result
on the BTFR is a simple translation in logarithmic space. In other words, it takes
{log(Meyt),10g(vrot)} = {log(Mey) + 3 10g(at), 10g(veqr) + 3 log(c)}, effectively trans-
posing each point of the relation by the same vector in log space. As a result, for
each value of m there will be a best fit value of Apy; which will overlap with the
observed BTFR. This procedure is demonstrated in fig. 3.9.

The most striking and useful feature of the prescribed boundary condition is that

one can exclude certain values of m based on its best fit to the BTFR. This is due

to the fact that as m decreases, the excited states corresponding to a best fit tend
to have larger masses for any given excitation number. As a result, if m is chosen to
be too small, then all of the excited states will have masses larger than the smallest
observed members of the SPARC data set. We use this to place a lower bound on m.
As seen in fig. 3.10, masses of the order m = 10724eV are not capable of describing
the lower mass end of the BTFR. Depending on how one defines the criteria for
modelling the BTFR one may derive different lower bounds. For instance, if one
supposes that Tully-Fisher galaxies be modelled by excited states with n > 2 then
one can push the bound up to 10722¢V. In general, BTFRs produced by more highly

excited states are consistent with greater values for m.
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Fitting the TF Relation (m ~107-23 eV)
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FiGuRrk 3.9: Fitting the BTFR via Boundary Conditions: An example of the
fitting routine for the BTFR using m = 10723%eV. First, the boundary problem is
imposed on sequence of excited states, resulting in a BTFR-like relation. Next, the
boundary values are adjusted until the simulated relation overlaps the data (shown
as the progression of the 3 simulations in blue). Scaling the boundary values shifts
the entire relation, maintaining its slope. The relation extends indefinitely towards
higher masses, but the minimum mass is bounded from below by the ground state
profile.

3.7 Results and Discussion

The following subsections discuss various results and features of our BTFR model.
In addition to the constraints on the particle mass, our main results are included in
figs. 3.13, 3.12, 3.10 and 3.11. In fig. 3.11, we consider the affects of changing the
total DM fraction of each simulated galaxy. We conclude that this results in rather
negligible change to our computed fits to the BTFR. In fig. 3.13 we compare our
simulated rotation curves to those of the SPARC survey. Specifically, we normalize
and average our results in the same manner as described in figure 3.2. Lastly, in fig.
3.12, we show the dependence of BTFR properties on the state excitation number.
Namely, we extract the dependence of the baryonic mass content and circular velocity
corresponding to the BTFR. In addition, we extract a relation between the excitation

number and the scale of the DM fluctuations corresponding to the red boundary in
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fig. 3.6.

3.7.1 Bounds on m
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Ficure 3.10: BTFR Fits: Example fittings of the BTFR for multiple values of
the SF¥DM mass, m. Generically, higher values of m correspond to smaller overall
masses, shifting the simulated fit towards the lower mass region. For sufficiently
small mass values, the simulated fit does not overlap the observed data points (see
the bottom right panel). This allows one to constrain the possible values of m.
For instance, assuming states n > 0 results in a constraint of m > 1072 whereas
assuming n > 3 results in m > 10722, The first 200 excited states are used for
generating the plot. Using more states will extend the linear trend further into the
high mass regimes.
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Returning to fig. 3.10, we observe that each value of m has a corresponding best
fit to the BTFR. Qualitatively, larger values of excitation number correspond to
larger galaxies in our simulations. The lowest excitation numbers therefore provide

a lower bound on the rotational velocities and mass values which are consistent with

modelling the BTFR using SSS states. Decreasing the value of m results in halos
which are more and more massive for a fixed value of n. Eventually, for sufficiently
small m values, there will be no SSS excited states which are small enough to overlap
with the lower mass end of the observed BTFR.

We conservatively determine a bound of m > 10723eV. This is achieved by taking
the criteria that the BTFR must be modelled by states with n > 1. In other words,
we observed that the n > 1 state overlaps the smallest mass data point of the SPARC
survey at m = 10723V, and becomes too massive once m is further decreased. By
strengthening the criterion for n, one can push this lower bound to higher values. For
instance, if we take n > 3, the bound becomes m > 10~22eV. In addition to placing a
lower bound of m by choosing a lower bound on n, one could hypothetically place an
upper bound on m by enforcing some upper bound on n for Tully-Fisher galaxies. To
summarize, restricting the range of allowed n restricts the range of allowed values for
m. Conversely, stating a range of possible values for m could allow one to estimate
the excitation numbers of Tully-Fisher galaxies.

This constraint on m remains true even when varying the relevant DM fractions
of the simulated galaxies. The value of the half-fraction, f;, does not affect the
overall fit. This is due to the fact that the baryon half mass radius almost always
occurs at a radius much smaller than the radius at which the flat rotational velocity
is measured, and therefore does not change the measured value. This is consistent
with the rotation curves in the SPARC survey. Changing the total DM fraction,
fiot, can change the overall fit to the BTFR, though the range of potential values
for fi; is too small to make a qualitative difference. This is depicted in fig. 3.11.
Adjusting f;,; will adjust the value of the rotational velocity and therefore shift the
fit. In principle, this can change the bound on m. However, observed values of f;,

lie in a narrow range, making this effect rather negligible for the purposes of fitting
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the BTFR.
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FI1GURE 3.11: Varying DM Fractions: Example of varying the total DM fraction.
Increasing the total fraction has the effect of shifting the entire BTFR towards lower
masses. However, the range of reasonable value of the total fraction is too small to
make a qualitative difference to the overall fit.

We did not consider the effects of varying the stellar-light-to-mass ratio, Y. Im-
portantly, changing the assumed value of T, can change both the slope and intercept

of the observed BTFR. Taking the value of T, to be constant for Tully-Fisher type

galaxies is a large simplification. We used a value of T, = 0.5%, which provided an

excellent fit for the purposes of our analysis. Moreover, T, = ().5%92 minimizes the

scatter in the observed BTFR. We expect that a careful treatment of T, would pro-

duce the same overall trend in the simulated BTFR but with increased scatter. One

possibility would be to vary T, from galaxy to galaxy by sampling a distribution of

values of T, centered around the preferred value of 0.5]24—8 This would likely result

in an increased scatter in the simulation.
Our lower bound of m > 10722V is consistent with most other independent
constraints (those presented in Chapter 1 for instance). We note that our analysis

does not provide a clear preference for m so long as it is above this bound. However,
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when comparing to other constraints and values, this analysis of the BTFR provides
a unique interpretation in regards to the energetic aspects of galactic halos. In other
words, the BTFR provides a means to estimate the excitation numbers of galactic
halos for a given value of m; we discuss this feature in the coming subsections.
Considering the lower end of constraint values for m, near 10722V, comes with
the interpretation that galactic halos have relatively low excitation numbers (n <
100). In contrast, higher values of m like those preferred by the Lyman-a Forest
(m ~ 107%%eV) come with the interpretation that galactic halos have much higher
excitation levels (n ~ 1000). This is particularly important when one considers
modelling individualized galactic halos, as the spatial extent of equally massed halos

varies strongly with excitation number (see fig. 2.4).

3.7.2 BTFR FExcitation Numbers

The halo excitation number is an important feature of our simulated BTFR galaxies.
The value of the excitation number will determine where the galaxy lies on the BTFR,
and is directly related to its expected baryonic mass content. Shown in fig. 3.12, we

see that the baryonic mass is related to n by an approximate power law
M(n)ocn'? (3.31)

M(n) ~ Cn*3. (3.32)

We can use this relation to place an estimate on the excitation numbers for the
BTFR. For instance, if we identify M (1) = C, then we can relate the mass of the

Nth excited state as

M(n) ~ pl3
M(1)

(3.33)

Suppose then, for instance, we want to cover 4 orders of magnitude in M, similar

to the BTFR, starting with the first excited state. With the above relation this

M(1)

would require = 1000, implying that n ~ 200. Thus, if we want to cover the

BTFR, starting with the first excited state, we require around 200 states. We verify
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Baryonic Mass vs. Excitation Number Circular Velocity vs. Excitation Number
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FIGURE 3.12: Halo Properties vs. n: Several trends for the m = 10722¢V fit.
Approximate power laws are extracted for the: Total baryonic mass (top left), “flat”
circular velocity (top right), density at 3.5R. (bottom left), and wavelength at 3.5R,
(bottom right). The bottom two relations imply a mass value at 3.5R, which is held
constant versus excitation number, namely M = 4?“)\3;).

this result by referring to fig. 3.10 where we use 200 states and effectively cover the

relation.

3.7.83 Individual Rotation Curves

The fact that SFyDM excited states can produce such a striking fit to the BTFR
suggests that they can also be used to model the rotation curves of individual galaxies.
We display our resulting rotation curves and a comparison to the SPARC survey for

the m = 10722eV case in fig. 3.13. The rise of the rotation curve takes about lkpc
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while the flat portion can extend to the order of 10kpc or larger depending on the
excitation number. We compute an averaged rotation curve similar to the averaging
procedure from fig. 3.2, and compare it to that of the SPARC survey. While the
baryonic contribution does not display a perfect fit, we suggest that this could be
improved by a more rigorous treatment of the fraction f; and the light-to-mass ratio
T,.. We note that the case of f; ~ 0.5 most closely resembles the case of real rotation
curves. Nonetheless, the average rotation curve gives a good qualitative fit to the
SPARC sample.

We used a spherically symmetric model of the baryonic contribution to the
galactic rotation curve. This is a theoretically convenient choice, but nonetheless
will affect the shape of the rotation curve. In reality, most Tully-Fisher galaxies have
exponentially thin, disk-shaped, baryonic distributions. Our spherically symmetric
profile of eq. 3.27 is merely meant as an approximation. This is likely one source
of the discrepancy between our simulated rotation curves and the observed samples
from SPARC. Given an improved model of the baryonic component, the methods in
this paper remain valid as long as the model is spherically symmetric. A profile that
resembles an exponential disk would require a more sophisticated treatment of the
SFyYDM excited states with such external contributions.

In regards to the BTFR fit, we do not expect the spherically symmetric approx-
imation of the baryonic component to significantly affect our results. This is, again,
due to the fact that the majority of the baryonic component is already enclosed by
the time the flat rotational velocity is achieved. As a result, the flat rotational veloc-
ity will be affected only marginally by the shape of the baryon distribution. In other
words, two different baryon distributions with the same total mass will contribute
similarly to the flat rotational velocity in the outer parts of the halo, reproducing
the same data point on the BTFR. Changing the model for the baryonic component
will have a significant affect on the inner part of the rotation curve, but the outer

part corresponding to the BTFR velocity will remain similar.
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F1GURE 3.13: Resulting Rotation Curves: Rotation curves corresponding to the
BTFR fit at m = 10%2eV, ftot = 0.9, and fb = 0.5. Units converted to kpc and km/s
for realistic values. Top left: A selection of rotation curves with excitation numbers
ranging from 25-50. Top Right: A single rotation curve. Vertical lines denote the
values of R, and 0.5R, respectively. Horizontal line denotes the “flat rotational
velocity.” Bottom left: The averaged SFy¥DM rotation curve following the averaging
procedure as in fig. 3.2. Bottom right: The same as the bottom left, but with the
SPARC data superimposed for comparison.

3.7.4 Interpretation of Boundary Conditions

In simulating the BTFR, we solved a boundary value problem defined by eq. 3.17
to fix the amplitude and wavelength scales of the family of DM halos. Namely, we

found that fixing a value of A2A for fixed values of m produces a BTFR-like trend
which can then be scaled to overlap the observed BTFR. Each state was scaled to
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have a similar density amplitude at the point where the product condition I,, = Ipys
is satisfied. In a sense, the “boundary radii” of R, which achieve the product of
Ipys are a computational convenience; they pick out the locations in the halos which
are capable of being scaled to the same amplitude and wavelength. The physical
interpretation is less clear, as this location almost always occurs in the outer regions
of the halo. We wish to instead consider a boundary closer to the inner regions of
the halo which reflects the discussion regarding fig. 3.6. In this section we provide a
possible interpretation for this inner boundary.

If one interprets the DM halo as a central region surrounded by a region of
quasiparticle fluctuations, a natural question would be “what is the fluctuation size
at the inner boundary from fig. 3.67” This boundary should hypothetically separate
the inner core region from the outer quasiparticle region. A reasonable choice for
this boundary is the radius of r = 3.5r., where r. is the core radius defined as in
eq. 2.55. It was shown in (62) that generic halos display a transition at this radius,
corresponding from a transition from the inner soliton core to the outer N-body like
region. We choose to extract the mass fluctuation size at this radius of 3.57. so
as to make a comparison with the 3D simulation of (62). To do so, we consider
the density amplitude as the approximate fluctuation density and the wavelength as
its corresponding length scale. Returning to fig. 3.12, we display the dependence of
A(3.57.) and p(3.5r.) on the excitation number, n. Interestingly, we find the following

approximately rational power laws
A(3.5r.)ocn™0? (3.34)

p(3.5r.)ocn'®. (3.35)

Combining these results in a relation between the density and wavelength of the DM

halo at this transitional radius.
p(3.57:)ocA"3(3.5r,) (3.36)

This relation provides a possible interpretation of the inner boundary in figure 3.6.
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Notably, this boundary corresponds to a fluctuation mass which is approximately the

same for all values of n, Mpctuation ~ %(W)Sp(?)brc). We use the factor of 4?”

somewhat arbitrarily as an assumption that the fluctuations condense in a spherical
manner; this factor may vary depending on the nature or shape of the fluctuation
and should be further investigated. For the case of m = 10722eV, we extract this
mass as on the order of 107 Mg — 108 Mg, If such a mass fluctuation condensed into
a stable soliton, it would correspond via eq. 2.47 to a radius of R,/ ~ lkpc, putting
it on similar length and mass scales to that of globular clusters and galaxy cores.
We suggest that this mass scale could be related to the galaxy formation process
or to its parent subhalos. In practice, one may wish to identify the radii at which
the proportions in eqs. 3.34 and 3.35 are exactly satisfied. This could give a more
rigorous definition for the inner boundary between the soliton core and quasiparticle

region.
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4

Wave Dark Matter Superpositions and Oscillations

So far we have focused on describing SFyDM halos with generic solutions to the
EKGEs and PSEs. In particular, we have explored the SSS solutions and used them
to develop a first description of DM halos. The strength of this method lies in the
fact that it allows one to explore the properties of halos in purely theoretical and
mathematical context. Outside of the case of spherical symmetry, the equations
which describe generic halos become increasingly and overwhelmingly complicated.
This difficulty stems mostly from the non-linearity and complexity of the Einstein
Equations. On the other hand, these difficulties can be addressed with computational
methods like the ones used in (62; 75; 79) to simulate images like figs. 1.7 and 1.6.
Such techniques are vital towards understanding how SF¢)DM halos form, behave,
and evolve in a general context.

A purely numerical approach lacks the same descriptive power as a theoretical
approach in which solutions can be decomposed and characterized in a mathemati-
cally precise fashion. Moreover, three dimensional numerical simulations of SFyyDM
can be slow and extremely expensive if one wishes to appropriately resolve the smaller

scale wavelike nature of halos. In this section we focus on making a bridge between
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these two methods. In particular, we will consider superpositions of states like the
ones suggested in eq. 3.12 to create precise models of halos and their time evolution.
We will then construct and demonstrate these solutions with numerical integration
techniques to show correspondence between the methods. Finally, we will discuss

the implications for physical SFyDM halos.
4.1 Halo Decomposition in Static Potentials

Returning to the discussion from section 3.3.1, we would like to describe SFyY DM
halos as solutions to the EKGEs. Ultimately, an expansion of the wave function in
terms of spherical harmonics as in eq. 3.12 should provide a complete description of
a halo. In practice, solving such an ansatz is difficult due to the non-linearity that
arises from the couplings to the Einstein equations. This issue can be avoided if one
assumes that the metric, and therefore the gravitational potential which influences
the halo, is fixed in time. Effectively, this decouples the Klein-Gordon and Einstein
equations. In this case, SFY)DM can be described by the KG equation with a fixed
potential, drastically simpler than the case of the coupled EKGEs.

As an illustration, we will consider the case that the halo resides in an approxi-
mately spherical and static gravitational potential. This should closely resemble the
behavior of an isolated halo long after it has formed. We denote this potential and
its corresponding mass distribution as {Vq(r), Mya(r)}. At the level of the metric

line element, this is written as

Mya(r)

ds? = —e2Vou () g2 4 (1 -2
,

-1
> dr?® + r*df* + r? sin®(0)d¢”. (4.1)

We can then suppose that the SF¢DM wave function can be decomposed in terms
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of spherical harmonics as in eq. 3.12. That is, we define eigenfunctions ,,,, as
Dt (75 1) = 710 (1) Y™ (6, @)™ (4.2)
Then, we write the wavefunction as

@b(ﬁ t) = Z Anlmwnlm(ﬁ t) (43)

nlm

The dynamics of the wavefunction are then determined by the KG equation with the
metric of equation 4.1. Referring to the Appendix for details of the computation,
the resulting equation for U, is

I(1+1)

3 Wt =m0,

w2eZVTZ\I’nl—I—(I)(T’l‘Ifnl)M—FV;«(Tl\I’nl)r—%@T(\Pnﬂ”l)r—l-;(\I/nl’f’l)r-i-
(4.4)

The low field analog of this equation is rather simple, and can be found by taking

® =1, and V << 1 in the above equation, or by simply applying the ansatz of egs.

4.2-4.3 to the PS equation as opposed to the KG equation. Either way, the result is

2 I(l+1
(r'"WUp)r + = (Wrh), = 2m(m — w +mV) — ( —; ))rl\Ifnl. (4.5)
r r
Simplifying further by applying the derivatives of 7 we reach
2(l+1
Ut e + ( )\I/nl,,a =2m(m —w + mV)V,,. (4.6)

One can notice that this is almost identical to the SSS version of the PS equation
in eq. 2.52, except for the newly introduced (I + 1) term and a now static potential,
V. The solutions for each value of [ are analogous to the SSS excited states, and can
be indexed by their number of nodes, n. Moreover, the eigenfunctions ¥,; and their

corresponding frequencies, w, can be well characterized with the Sturm-Liouville
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theory for second order ODEs. This will be the focus of the following sections.
4.2 Sturm-Liouville Theory of the KG Equation

The equation describing the halo, eq. 4.4, is a linear, second order, ordinary differ-
ential equation. If one assumes the background potential is dominated by some static
DM distribution, this equation can be thought of as describing the perturbations on
that distribution. Solutions to such ODEs can be well categorized and decomposed
in terms of orthogonal functions described by Sturm-Liouville (SL) theory. For those
who are not familiar with, or would like a refresher on SL theory and its results, we
include a discussion in the Appendix. We also defer the bulk of the computations

regarding the SL form of eq. 4.4 to the Appendix.
4.2.1 Spherical Modes

As an illustration of the SL theory, we will first consider the spherically symmetric,
[ = 0 case of eq. 4.4. Importantly the properties of the non-spherical modes with
[ > 0 are quite analogous. Taking [ = 0 only for the wave-function expansion we

have
w = Z Cno\Ifno(r)e*i””Ot. (47)

Taking [ = 0 in eq. 4.4, each spherical mode is described by the following ODE:

2 Dy — _
\I]nO,rr + <— + ‘/Ygal,r + gal, ) \I]TLOJ” = (I)gall(mQ — wie QVQ‘”)\IJTLQ. (48)
r 2(139,1[

1-— %) We then enforce the separable boundary condi-

Again, we define @4 = (
tions that W,0(0) = 1 and that lim, ., ¥,,o(r) = 0. We note that in a computational
sense, the condition at infinity must be artificially enforced at some large finite value

of R; in such a case, the problem is a regular SL problem. SL theory then enforces

that there is a lowest value of the frequency eigenvalue w,, which generates a solution
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with zero nodes. In general, the value of wy is found via computational methods
similar to those used to compute the SSS excited states. Further, there exists a
countable number of frequencies of increasing value which denote solutions with in-
teger numbers of nodes. Naturally, we can identify the integer n with this number.
In the physical case of R — o0, the results are somewhat more complicated since the
problem becomes a singular SL problem. We will see in the following discussion that
this results in having two sets of orthogonal functions, a countable set representing
finite and bounded modes, and a continuum set representing unbounded modes.

Case I. Discrete Bounded Modes, wy < w, < m: In the case that w, < m,
solutions to eq. 4.4 are analogous to those of the SSS states. The behavior of ¥,
will be oscillatory but eventually converge to exponential decay as Vi, tends towards
zero at large distance. In principle, there exists an infinite and countable number
of these modes in this finite frequency domain. In practice, computing these modes
is limited by both the prescribed value of the computational boundary, R, and the
precision with which one can estimate the eigenvalues. The frequencies become more
and more closely spaced as n gets large. This is akin to the behavior of hydrogenic
wave functions with energy eigenvalues becoming more closely spaced at higher exci-
tation. In fact, in the low field equivalent, one can identify the energy eigenvalue as
proportional to (w,, —m), giving a direct analogy to energy eigenvalues. Importantly,
these energy eigenvalues are negative. This is because the eigenfunctions constitute
a finite total mass and have wavefunctions which decay at infinity. In other words,
the energy is negative because the state is gravitationally bounded by the background
potential. Sometimes, such states are referred to as gravitational atoms.

Case II. Unbounded Continuum Modes, w > m: For frequencies which
exceed m, all solutions to eq. 4.4 are infinitely oscillatory. Moreover, such solutions
correspond to an infinite amount of mass and have positive energy eigenvalues. We

interpret these modes as unbounded or radiative modes. For a given choice of compu-
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FIGURE 4.1: Bounded and Unbounded Eigenfunctions: We show the two
distinct types of SL-Eigenfunctions which correspond to KG equation with a fixed
spherical potential. Plots correspond to the functions ¥,; of eq. 4.4. Left: Bound
eigenfunctions with w < m are similar to the SSS states from chapter 3. These
eigenfunctions display a countable number of zeros and then converge to zero via
exponential decay. Right: Unbound eigenfunctions with w > m oscillate indefinitely
with an amplitude that converges to zero.

tational boundary, R, such modes can be used to describe matter which escapes the
gravitational well of the simulation. In the case of R — oo, this would correspond
to scalar radiation which is not gravitationally bounded to the DM halo and has
velocity sufficient to escape the halo. We depict both the bounded and unbounded

modes in fig. 4.1.
4.2.2  Non-Spherical Modes and Generation of Angular Momentum

The [ # 0 cases of eq. 4.3 correspond to describing the non-spherical features of the
halo. For the most part, the radial wavefunctions of ¥, are similar to those of the
[ = 0 case in that there exist a countable number of bounded modes and a continuum
of unbounded modes for each value of [. We note that only the [ > 0 states have
a non-zero angular momentum eigenvalue. This is directly resulting from the fact
that the spherical harmonics, Y;™, are the eigenfunctions of the angular Laplacian.

In other words, each mode has an angular momentum eigenvalue of I(l + 1). At the

98



level of the wavefunction, the rotational behavior can be explicitly seen when writing

the spherical harmonics in terms of the associated Legendre polynomials P,.
@Dnlm(f’a t) = Tl\llnlpl(COS(Q))ei(md)_wnlt) (49)

We see that each ,,,, is associated with a time dependent angular phase of m¢—wy,t.
If superimposed with another mode, an [ = 0 mode for instance, this will result
in a rotating density interference pattern. As an example, we could encode some

rotational motion into a soliton by having a wave function of the form
w(F, t) = Aooo@oo(?")@iwoot + Allqufﬂ(T)Pl(COS(Q))ei((ﬁiwnt). (410)
4.3 Pseudospectral Simulations

We choose to verify our SL analysis by comparing its conclusions to a full 3-
dimensional simulation of the PSEs. Specifically, we will use the pseudospectral
solving method from (62). This method utilizes unitary operations in combination
with the Fourier transform to solve for the time evolution of the PSEs. Firstly, the
values for 1(7) are placed onto a cubical grid with a resolution of N units per side.
Denoting the Fourier transform and its inverse as ' and F~!, the Poisson Equation

can be solved as

V=F" (F<47];—2W’2)) : (4.11)

This can be easily achieved in a computational sense by use of fast discrete Fourier
transform (DFFT) algorithms. The time evolution of the wave function is then
separated into three parts. First, denoting the time-step as At, the wave function

evolves due to the potential for half of a time step through the operation of
At
1) — exp (z’?mv> . (4.12)
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This is referred to as a “kick” by the potential. Next, the wave function must evolve
due to the kinetic term % of the Schrodinger equation. This is most easily achieved
by applying a similar operation but in Fourier space. That is, the wave function’s

“kinetic drift” is computed as

W — F! <exp (z’At%) F(¢)> . (4.13)

Lastly, the time evolution is completed by applying another potential kick for a half
time step, repeating the transformation of eq. 4.12. This numerical method can
then be iterated for the desired number of time steps. For accuracy and to maintain
the stability of the solving routine, At must be chosen to be appropriately small.
Criterion for a suitable At were determined in (79) as

m

At <
max{ 5

(Az), — } | (4.14)

m|v|max
4.3.1 Boundary Conditions for Spectral Methods

The spectral methods described in the previous section naturally give rise to a
solution with periodic boundary conditions and conserved total mass. Due to this
feature, matter escaping one side of the simulation boundary will necessarily re-enter
on another side. As such, halos simulated with spectral methods will be constantly
disturbed by the presence of incoming and outgoing waves. This feature may be
relevant for halos which are formed in a cosmological context, being disturbed from
the formation of other nearby halos (62).

For simulations of more isolated halos, one may wish to reduce the level of
interference which results from the periodic boundary. Conceptually, this can be
achieved by removing matter which traverses the boundary. A “sponge” method for

achieving this effect was proposed in (38) and utilized for simulations of isolated halos
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FiGURE 4.2: Sponge Boundary Conditions: FExample of including sponge
boundary conditions as in section 4.3.1. Each panel displays the result of a 3 soliton
merger, each with equivalent initial conditions. Density is projected along the line of
sight, normalized to the maximum value, and placed on a logarithmic color scale. V
corresponds to the “height” of the sponge. A spherical sponge is placed at approx-
imately half of the frame radius. (Top Left) With no sponge, boundary conditions
are effectively periodic, allowing disturbances from waves entering and exiting at the
boundary. This results in a turbulent region caused by the attenuation of such waves.
The sponge acts as a “sink” for matter, causing densities to drop off at the sponge.
(Bottom Left) For larger values of V', boundary conditions more closely represent
those for undisturbed and isolated halos. Disturbances from travelling waves are
greatly reduced, resulting in a less turbulent halo. (Bottom Right) As the sponge
height is further increased, the halo disperses at an increasing rate, losing matter to
the sponge and expanding due to scalar pressure.
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n (79). One can include a “sponge” which removes matter by adding an imaginary

potential to a boundary region. In other words one adjusts the potential as
V =V + iVsponge- (4.15)

In the regions which contain the sponge, matter density is constantly lost. This can
be understood by evaluating the corresponding continuity equation analogous to eq.
2.35. The imaginary part of V appears as a density source or sink, depending on its
sign. Explicitly we have

ap

Fri (w V) + V- (V) = 2Vipongep- (4.16)

Regions with negative values of Vpn4e Will display density loss at a rate proportional
to the magnitude of pVi,onge. This can be used to impose an artificial boundary
at which matter is removed from the simulation. Explicitly, we will use a sponge
boundary of the form

‘/sponge = _‘/Ts@(T - Rs) (417)

We therefore define the sponge boundary with two parameters: the sponge height,
Vi, and the radius at which the sponge is “turned on,” R,. For an example of the

results of imposing a sponge boundary, see fig. 4.2.

4.4 Consistent SFyYDM Superpositions States

It is a natural question to ask whether or not SFy)DM halos can exist in a multi-state
or superposition state configuration. In fact, multi-state boson star configurations
have been considered in regards to modelling DM halos in multiple contexts (6; 37).
In this chapter, we have defined how to attain superposition solutions to the KGE in
terms of sets of orthogonal eigenfunctions. Computing these functions requires one

approximate the galactic gravitational potential as spherically symmetric and static.
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Once this potential is specified, the halo can be decomposed in terms of well defined
eigenfunctions as in section 4.1. In this section, we will use these results to consider
the notion of basic superposition halos.

Firstly, we need a working model of the gravitational potential in which the
DM halo resides. Ultimately, this potential should be chosen to be consistent with
the mass distribution of the halo itself, and for our purposes be SSS. One option
to achieve this would be to start with a known solution to the EKGEs like a SSS
excited state or a ground state soliton. For example, suppose we assume that the
majority of the potential is determined by a soliton. We can compute a soliton
solution ¥(r,t) = Wq(r)e ™ similar to that of eq. 2.22. Then, solving the SSS
EKGEs, we can compute the wavefunction, potential, and mass distribution of the
soliton and denote them as {Uq, Vo, Mq}.

Next, we use the soliton solution to pose the Sturm-Liouville problem, resulting
in eq. 4.4, but with Vo, = Vo and My, = Mg. There are a few features we can
note for the eigenfunctions for fixed values of [. There will exist a countable set
of solutions with w,, < m that will be gravitationally bound to the galaxy. These
solutions are finite in mass and are similar to the SSS states. There will also be a
continuum of solutions with w > m that are unbounded, akin to scalar radiation.
Finally, for [ = 0, one bounded state will necessarily have w, = €2, and be a scalar
multiple of the background soliton or excited state. This is merely the zero mode,
an artifact of choosing to model the background with a SSS ground state.

Once the SL problem is solved and the bounded states are computed, we can
explore the possibilities of halo superposition states. We can suppose the halo wave
function to be of the form

¢(T7 t) = \IIQ(T)e_iQt + Z Anlmwnlm(r)e_iu)t- (418)

nlm
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As long as the coefficients Ay, are sufficiently small (that is | A, Pul* << [Pql?),
then this wavefunction will be consistent with the background potential, Vg, to lead-
ing order. For the discussion in this section, we will consider only the gravitationally
bound modes with w < m. The density of the halo can be computed by taking
|42, For the sake of simplicity, we show the resulting density for the case that only

{ = m = 0 contribute to the sum.

p(rt) = Wg(r) + YA, 0, [+ (4.19)

Uo(r) Y. (50, (r)e ™ + A, 0, (r)e ™) + 3 AR A, U, (r) T, (r)erm! (4.20)
n nm

Here we identify halo oscillation frequencies of €2, = 2 — w and wy,, = W, — Wi
Mathematically, all values of n and m contribute to the sum, but in a practical appli-
cation one will take finitely many terms. We see that each bound state contributes
a small but constant density offset, represented by the second term in the sum. The
third term, with the frequencies €2,,, result in the largest density fluctuations. Impor-
tantly, these fluctuations are of order |A,¥,¥q| as opposed to order |A,¥,|2. One
could interpret this set of oscillations as resulting from the interference of the bound
states with the dominant soliton mode of the DM halo. The last set of oscillations,
with the frequencies wy,,, result from the interference of the bound states with each
other, and are significantly smaller than the first set. Importantly, the halo oscilla-
tion frequencies are formed by differences of frequencies which are of order m. In the
low field limit and non relativistic limit, the values of (m — w,) << 1, thus the halo
frequencies will satisfy €2, << 1 and w,,, << 1 in that regime.

In this section, we have seen that a SF1/yDM halo in a static gravitational potential
can host a variety of gravitationally bound modes that can cause density interference

patterns throughout the halo. In full generality, the non-spherical modes with [, m #
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0 as well as the gravitationally unbound modes with w > m should be included. We

will demonstrate these cases via numerical simulation in the following sections.
4.5 Simulations and Results

In this section we verify and demonstrate the results of the SL decomposition by
comparing its predictions to the results of the pseudospectral simulations detailed in
section 4.3. Specifically, we compute eigenfunctions which are bound by the gravi-
tational potential of a soliton and assume the soliton to be the dominant source of
the gravitational potential. Next, we use superposition states like eq. 4.18 to gen-
erate initial conditions for 3D pseudo-spectral simulations. Finally, we compare the
time evolution of these simulations to the evolution predicted by the eigenfunction

decomposition.
4.5.1 Spherical Modes and Core Oscillations

Oscillations of the core density are a common feature of SFy¥ DM halos and can result
from generic halo mergers. The magnitude of the core oscillations can be significant,
up to 30% of the average central density depending on the simulation (62). The
spherically symmetric density modes of section 4.2.1 provide a basic mechanism for
these oscillations. When the coefficients, A,,, are taken to be real, the equation

describing superpositions of spherical modes (eq. 4.19) can be reduced further to

1
p(rt) = W2(r) + an |A 0,7 + Zn: UoA, cos(Qnt) + 3 ; An AU, U, cos(Wpmt).

(4.21)
Since all of the [ = 0 wave functions have a finite and non zero central density, this
will result in core oscillations characterized by the frequencies of €2, and wy,,. The
size of the oscillations will depend on the relative size of the soliton central amplitude,

Uq(0), and the central amplitudes of the trapped modes, A4,¥, (0). In fig. 4.5, we
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show the superposition of the first excited spherical mode with a soliton background.

We see that the spectral simulation demonstrates the same relative oscillation
frequencies as those that we can theoretically predict with the SL analysis. We can
characterize the time periods of these oscillations in terms of the total halo mass
as well as the mass parameter of the scalar field. We describe the leading order
frequencies in the following discussion. Importantly, gravitationally bounded core
oscillations can only result from the interference of the [ = 0 modes, as all possible
modes with [ > 0 result in zero contribution to the central density due to being
multiplied by 7.

Core oscillations occur generically as the result of halo mergers. Even after long
relaxation times, merged halos can still demonstrate significant core oscillations (62).
We suggest that this is a result of DM being trapped in spherical modes. During the
merging, halos can emit bursts of scalar radiation resulting from the excitation of
highly energetic modes. Once initially relaxed, one can usually identify the presence
of multiple spherical modes by investigating the core oscillations. We observe a

gradual decay in these oscillations, with the highest frequencies decaying faster.
4.5.2  Angular Momentum and Spiral Patterns

We test the impact of imparting angular momentum by inlcuding non-spherical, [ >
0 modes into the halo wavefunction. We consider the [ = 1 case for our simulations,

using wavefunctions of the form

Y7 t) = U (r)e' D + 3" A, W (r)en® + " B U (r) Y™ (60, ¢)e™m". (4.22)

Here we have included the spherically symmetric modes with [ = 0 in the first sum-
mation, and the rotating non spherical modes with [ = 1 in the second summation.

We demonstrate cases including only the rotational modes as well as cases including
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FI1GURE 4.3: Core Oscillations: An example of a spherical oscillation mode. Den-
sity is projected along the line of sight, normalized to the maximum value, and placed
on a logarithmic color scale. A soliton and an excited spherical mode (corresponding
to eigenfunction with frequency wigg) are initialized in a superposition. The configu-
ration is evolved via the spectral method of section 4.3. We show a single oscillation
period. Amplitudes are set such that the excited mode has a central density am-
plitude equal to 1% of the soliton’s central amplitude. The oscillation generates a
recurring density fringe corresponding to the overlap of the excited state. Video
demonstration is available at https://www.youtube.com/watch?v=ch,GY e — A6S.

only the [ = 0 spherical modes in figs. 4.4 and 4.5.

In fig. 4.4, we demonstrate the time evolution of an [ = 1 mode. We observe that
the rotation of the mode creates short lived spiral pattern in the DM density itself.
We observe that the rotation lasts hundreds of rotation periods without decay and
that it remains bound to the soliton. This is rather interesting and could perhaps
provide a mechanism for generating long lived spiral patterns within a galactic disk,

similar to (7). However, so far this is just a conjecture and would require an detailed
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FIGURE 4.4: Rotational Modes & Spiral Patterns: An example of bound
rotational modes and Dark Matter spiral patterns. The central cross section of the
density is shown, normalized to the maximum value and placed on a logarithmic
color scale. A soliton and a [ = 1 mode (corresponding to wqy1) are initialized in a
superposition. The configuration then evolves via the spectral method. The density
amplitudes are chosen such that the excited state wavefunction amplitude is 1% of
that of the soliton’s at the center. We show the evolution of the rotational pattern;
this does not necessarily correspond to one oscillation period. A counterclockwise
rotational pattern is seen which persists for at least hundreds of oscillation periods.
Video demonstration is available at https://youtu.be/YFVq4V5EvGA4.

simulation which includes the evolution of baryonic matter. As a final note, even
when the [ = 0 modes are not included in the initial conditions, they are easily excited
by computational defects. In other words, the error resulting from the discrete nature
of the simulations can contribute to these oscillations; this results in an oscillating

core density in effectively every simulated case.

108



Time Average Density (SL Decomposition) Time Average Density (Spectral Method)

— Net Halo — Net Halo
— Soliton —— Sofiton

Density
De

N

A bkl L
s A )] A i
AL A

| v e

i /\/ Y ( “ /
UV A W
JU \j \J AU

F1GURE 4.5: Core Oscillations Result: Results from superimposing a soliton with
the first two excited state spherical modes. At the center, modes are give a density
of .01 of that of the soliton. (Top) Comparison of the density profile predicted from
the SL decomposition versus the results of the 3D Pseudospectral method. Vertical
line corresponds to the value of r = 3.57., denoting the “break” in the soliton profile.
We superimpose the best fit soliton core. Qualitatively, the profiles experience the
same profile break. The profile break occurs due to the outer maxima of the excited
state. (Bottom) The core density extracted from each method and scaled to have a
maximum density of 1. Each halo displays similar frequency patterns and oscillation
amplitude.
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4.5.8  Discussion

The eigenfunction analysis from this chapter provides a means to estimate the
dominant frequencies at which SFyDM halos rotate and oscillate. In particular,
we identified the difference frequencies w,,, and €2, in section 4.4. As discussed in
the prior sections, these frequencies can generate behaviors which are approximately
long time stable. Since this analysis occurs in the low-field non-relativistic regime,
the scaling relations of eq. 2.44 can be used to place values on the periods of these
oscillations. Denoting the mass of the central soliton as M, the oscillation periods

obey the following generic proportion
Toc M 2m™3 (4.23)

Importantly, the oscillation periods have steep inverse scalings with M, and m.
In other words, both larger halo mass and larger boson mass imply shorter oscillation
periods. We will discuss a few simple cases of spherical modes and rotational modes.
The interference of each mode with its host soliton has a characteristic frequency
which we denote as €,;,, = Q — wum. We directly compute these frequencies using

the SL eigenfunction analysis outlined in this chapter, and convert to their relative

period T}y = 927; L
10°°Mg\? /1072
Tioo ~ 250k 4.24
10 Y ( Mol ) ( m ) ( )
101°Mg\? /1072¢V\*
Thoo ~ 160k 4.25
0 Y ( Mo ) ( m ) ( )
101Mg\* /107 2eV\
Ton ~ 340k 4.26
o Y < Mol ) ( m ) ( )

1 'We use units of 1ky = 1000years and 1My = 10%years
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100°Mg\? /1072
Ty ~ 210k 4.27
o Y ( Mol ) ( m ) ( )

As a basic trend, we note that the values of T,,,, decrease as the values of n and
[ increase. The dependence on n is a result of the Sturm-Liouville analysis; for each
fixed value of [, there exists a set of eigenfrequencies which increase with n. The [
dependence can be explained as a result of the ODE in eq. 4.4; in other words, as a
result of eq. 4.4, larger values of [ correspond to a greater value for the fundamental
frequency of the SL analysis.

It is important to ask whether or not these oscillation frequencies can be physically
relevant on galactic scales. Answering this question definitively would require a full
3D simulation of a halo and the baryonic components it contains. However, our
analysis still provides some insight as to what regimes may or may not be relevant
in this regards. Firstly, we consider the period of the spherical mode Tjgg. For

large dwarf galaxies, one can suppose that M, ~ 10°Mg. This results in a period

_ 3
of Tigo ~ 25My <M) . Interestingly, this is somewhat similar to the orbital

m

periods that one expects to occur inside dwarfs. As a rough example, a circular
orbit with a diameter of ~ 10*y and velocity of ~ 100’%” corresponds to a period of
~ 100My. Given that this is within an order of magnitude of T}, it seems plausible
that spherical oscillations are relevant to the dynamics of orbits in dwarfs for the
m ~ 1072V regime. However, this window of opportunity swiftly vanishes as m
is increases. For instance, the m ~ 1072'eV regime results in oscillations that are
1000 times faster than the relevant orbits, making it unlikely that the oscillations
are relevant in this regime. This issue is somewhat reduced if one considers the halo
to be in an excited configuration; we discuss the effect in the following paragraph.
Given the observation that the [ > 0 modes result in stable rotational modes (as

in fig. 4.4), one may ask whether or not these modes could be related to the patterns
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that appear in spiral galaxies. Given our results, this at first seems very unlikely.

Taking a value of M, ~ 10'2Mg, we return a value of Ty, ~ 34y <w>3. This
is many orders of magnitude smaller than orbits within spirals (~ 10 — 100My) and
should therefore be negligible to such orbits. On the other hand, this model considers
the galactic halo to be well approximated by a soliton. We do not expect this to
be true - in fact our results regarding the BTFR in chapter 3 suggest otherwise.
We expect large spiral galaxies to have excitation numbers on the order of n ~
200 or greater. As such, we should adjust the oscillation period according to this
expectation. To do so, we utilize a result from (36) which estimates the dependence of

excited state frequency, w,, with excitation number. For a fixed value of total mass,

we have that wnm#. We can then make an ad-hoc adjustment of T;; by multiplying

it by n?. Given n = 200, this results in a period of Ty, ~ 1.4My <W>3, which
is closer to the relevant regime. Therefore, if one supposes that the halos of spiral
galaxies are in highly excited configurations, the bound SF¢DM rotational modes
could potentially be relevant. Whether or not large halos actually form these excited
configurations remains an open question, requiring detailed simulations.

We emphasize that the eigenfunction analysis in this section should be further
investigated with full 3D simulations which also include baryonic matter contribu-
tions. Overall, we expect our analysis to be a good first order description of halo
oscillations. We note that spherical oscillations occur with periods that could be rel-
evant in dwarf galaxies for the m ~ 10722¢V regime. This is consistent with results
from (58) which suggests that core oscillations could result in observable orbital res-
onances within dwarf galaxies. Lastly, we note that 3D simulations of SFy)DM halos
on the mass and length scales of spirals like the Milky Way have not been achieved
at this point. Whether or not such halos exhibit the properties of excited state con-

figurations therefore remains a conjecture at this point. However, we re-emphasize
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that the BTFR suggests this to be possible. A definitive conclusion as to whether
or not rotational modes could be related to spiral patterns therefore requires further

investigation.
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5

Conclusions: On Excited States and the Future of
SEywDM

This thesis had three main goals: To introduce the theory of SFyDM and its
corresponding phenomenology (Chapter 1), to detail the theoretical basis of the
EKG equations (Chapter 2), and to investigate and model excited state features of
SF¢YDM halos (Chapters 3 and 4). In doing so, we achieved two main results: we
showed that SFyDM excited states can produce a novel model/explanation of the
BTFR (Chapter 3) and used that model to constrain the value of the SFyyDM mass
parameter m, and we showed that superpositions of excited states (Chapter 4) result
in halo oscillations that may be relevant towards galactic length scales and time
scales. This chapter is purposed towards summarizing these results, explaining their
relevance for modelling galactic phenomena, and outlining some future directions for

the study of SFYDM excited states and their features.
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5.1 Excited States and the BTFR

The discussions of Chapter 3 were focused on furthering the work of (35) which
showed that SSS SF¢)DM excited states, under appropriate boundary conditions,
reproduce a trend similar to the BTFR but in a DMO setting. Following this obser-
vation, we developed a model for SSS halos in the presence of SSS distributions of
baryonic matter. This enabled us to produce a simulation of the BTFR which was
consistent with observational data. Moreover, analysis of this simulation allowed us
to place a constraint on the value of m and relate this constraint to the excitation
numbers of SFYDM halos. Importantly, our constraint on m provides a lower bound
for both the value of m as well as the excitation number of halos corresponding to
Tully-Fisher galaxies. This has an interesting consequence in that one is able to use
this result to estimate halo excitation numbers given a value of m.

Our lower bound of 10722eV is consistent with most other independently com-
puted constraints (like those discussed in Chapter 1). Using this value, Tully-Fisher
galaxies are inferred to have excitation numbers on the order of n ~ 1 — 200. If one
considers larger values of m, like those suggested by Lyman-a Forest observations
(m = 107%%eV), then the corresponding excitation numbers are increased substan-
tially (n ~ 10® — 10%). While we did not compute the direct relationship between
the value of m and the corresponding excitation numbers, our results resoundingly
suggest that the halos of Tully-Fisher galaxies can be modelled as being in highly
excited states. This is quite interesting, especially given that most studies only con-
sider soliton-like, ground state halos. This is usually justified by the fact that excited
states are inherently unstable and that the soliton ground state is a stable attractor.
Based on our BTFR results, we argue that this view is somewhat oversimplified and
that excited state properties should be considered given the value of m. This could

be particularly relevant for larger galaxies. In particular, when comparing a soliton
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with an excited state of the same total mass, the soliton is much more compact and
has a much greater central density; this can be seen in figure 2.4. Therefore, if one
assumes a large halo to be in the ground state configuration as opposed to an excited
state configuration, they may mistakenly expect an extremely dense central density
which would not be realized by an excited state halo. Further, if one assumes two
halos of different total mass to both be modelled by ground states, then the two
halos could return vastly different constraints on m which would seemingly be incon-
sistent. We suggest that the smallest halos, like those of dwarfs, should be thought
of as having the lowest overall excitation number and that more massive galaxies,
like large spirals, should be thought of as being in highly excited states. Overall, we
believe that the model of the BTFR from Chapter 3 should give good insight as to
what excitation numbers one would expect.

The fact that excited state configurations are known to be unstable could possi-
bly be misleading. In particular, the mathematical sense of stability is not necessarily
what one would expect in a physical context. We argue that galaxies are in highly
dynamical states that are constantly evolving in time. As a result, the transient
features of excited states may still be realized in halos even though those halos
wouldn’t converge to an excited state in the mathematical sense. It is important to
ask whether or not these transient features occur on timescales that are observable
in the galactic context - this is partly the focus of Chapter 4. Going further, ex-
cited states are unstable in a purely DMO context. It is possible that other matter
somewhat alleviates this instability - this principle has been demonstrated in (59).

Lastly, we would like to discuss what is meant by “boundary conditions” in
the context of the BTFR and what relevance this may hold for halos. It is impor-
tant to distinguish the boundary conditions from section 3.4.2 from the boundary
conditions required to solve the EKGEs. All physical halos must obey boundary
conditions at infinity. That is, all halos must respect the boundary conditions that
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density converges to 0 at large distance and that total mass is finite. This is distinct
from applying a scaling condition at a boundary as in Chapter 3. The amplitude-
wavelength boundary conditions from Chapter 3 describe a means to scale excited
state halos so that the family of excited states appropriately reproduces the BTFR.
This result suggests that the BTFR is related to a characteristic mass scale, de-
scribed in the results section of Chapter 3, that is held constant amongst the family
of excited states. Interestingly, we found that this mass scale is directly related to
the “break” in the halo profile at which the halo converts from a soliton-like core to
an NFW-like region. We suggest that this mass scale is in somehow related to the
quasiparticle fluctuations that occur in simulated halos. A further investigation of
this mass scale and how it arises could be be particularly interesting and perhaps

provide insight to SF¥yDM halo formation and halo substructure.
5.2 Superposition States and Halo Oscillations

Chapter 4 was focused on discussing the transient properties of excited states and
how they might be realized in halos. In particular, we developed a theoretical model
capable of describing superpositions of excited states in the presence of a stable soli-
ton core. This relied on the use of Sturm-Liouville theory applied to the EKGEs. As
a result, we found that superposition states can result in halo oscillations that occur
on the same timescale as orbits within galaxies (around 10My for m ~ 1072%eV).
Moreover, in the perturbative regime, we observed that these oscillations persist for
hundreds if not thousands of oscillation periods. Therefore, it is at least feasible for
these oscillations to have an effect on orbital dynamics. Going further, we found
that halo oscillations can generate spiral patterns, even in a DMO context. This is
a peculiar feature of SFyDM that merits further investigation.

We consider the work of Chapter 4 to be a preliminary investigation of the notion

of superposition states and suggest that it can be greatly extended. In particular,

117



our model could be extended to consider halos in which the dominant contribution is
an excited state as opposed to a ground state - this could be a meaningful extension
given that the BTFR of Chapter 3 suggest galaxies to be in highly excited states.
For instance, our preliminary results for a soliton-dominated halo suggest rotational
periods that are much too short for the generation of large spirals. However, we also
demonstrated that adjusting this model to instead consider large spirals to be in
highly excited states results in much more reasonable timescales, close to what one
would expect for the generation of large spirals. This is a particularly interesting
feature. Moreover even without such adjustments, the rotational timescales we found
lie in the relevant regime for the generation of dwarf spiral galaxies. An investigation
of dwarf spirals could provide unique insight towards this feature.

The existence of spherically symmetric oscillation modes is particularly relevant
towards the dynamics of dwarf galaxies. This idea has already been investigated in
the context of density oscillations of soliton cores. Core oscillations can be quite
substantial (up to order 30% of the central density), even when the superposition
states are in the perturbative regime. Moreover, core oscillations can be observed
in nearly all generic simulations of SFY¥DM halos. It has been suggested that such
oscillations can produce resonances with orbits within dwarf galaxies. Our results
confirm that the timescales of core oscillations are within the relevant regime for
this to occur. We suggest that such oscillations could be particularly relevant for
the inner regions of dwarf galaxies, perhaps supplying energy to orbits in these
regions. This may have an observable effect on the phase space distribution of such
orbits or in the galaxy’s velocity dispersion profile. However, this notion should be
investigated further in order to make more quantifiable predictions. Doing so would
involve simulating superposition states in the presence of baryonic matter, a natural
next extension for our model.

Lastly, we note that the timescale at which superposition states oscillate de-
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creases sharply with the value of m with an approximate scaling of m ™3, providing
a somewhat narrow regime in which these timescales are relevant for galactic ha-
los. This scaling could be somewhat alleviated by assuming that larger values of
m correspond to halos with greater excitation number. However, the relationship
between halo excitation numbers and the value of m is non trivial and should be

further investigated to reinforce this notion.
5.3 Future Directions and Discussion

Our work in this thesis is unique in that it considers excited state features of SFyyDM
and shows that they could be relevant towards galactic scale phenomena. The re-
sults regarding the BTFR in Chapter 3 solidify this notion, showing that excited state
configurations can reproduce the BTFR as well as a constraint on m consistent with
other independent studies of SFyDM. Further studies of excited states could provide
unique insights to the SF¥DM theory. There are several avenues that we suggest
could be fruitful in this regard: Modelling excited states outside of the restriction of
spherical symmetry, the axially symmetric case for instance; simulating superposi-
tion states in the presence of excited state halos; modelling the inclusion of baryonic
matter in the context of superposition states; investigating the characteristic mass
scale implied by the BTFR; comparing oscillations which result from superpositions
with the dynamics of dwarf galaxies, particularly dwarf spirals. These avenues rep-
resent a few possible directions for further understanding the physical relevance of
excited states.

Solving the EKGEs and the PSEs can be challenging and mathematically intense.
It is important to approach this issue from a theoretical perspective as well as with
rigorous 3D simulations. Our results show that it is possible to successfully compare
these two perspectives. 3D simulations of the largest halos, like those of Milky Way
sized halos, are incredibly difficult and have not been achieved at the time of this
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thesis, at least to our knowledge. This arises from the difficulty of resolving the
deBroglie wavelength scale as well as the larger scale of the galaxy. These scales can
differ by orders of magnitude, particularly for larger values of m, making it difficult
to resolve both in simultaneity. On even larger scales, those of galaxy clusters for
instance, this is exacerbated. We were able to approach the features of large spirals
from a theoretical perspective in our study of the BTFR. This provides insight which
at this point is not achievable with 3D simulations, highlighting the importance of
this perspective. Further, in our investigation of superposition states, we found
that the results of our theoretical predictions were consistent with the results of 3D
simulations. Ultimately, both perspectives should be reconciled to achieve a complete
understanding of SFyYDM.

SEFyYDM is a rapidly growing field at the time of this thesis and represents
a new frontier of DM physics. Investigating SFy) DM phenomena can be somewhat
overwhelming due to the complicated wave phenomena that occur in the theory. This
is not a good reason to rule out the theory, we suggest quite the opposite. Studies
of SFYDM offer a rich opportunity to learn from both a mathematical perspective
as well as a physical perspective, providing a bridge between pure mathematical
theory and physical observation. We suggest that advances in 3D modelling as well
as the mathematical understanding of the EKGEs are equally important and likely
to further our understanding of SF¢)DM. There are many theoretical avenues that
have yet to be investigated. In particular, SFY¥DM can be motivated by geometric
arguments unrelated to the common axion-like particle motivation. This is very
interesting when considering the theory of General Relativity as a result of geometric
theory. Further, the study of manifolds with non-trivial torsion is relevant not only
to SFYDM but also to the field of Differential Geometry as a whole. Studying this
class of manifolds and their possible physical manifestations therefore represents an
important frontier for both DM physics and mathematics.

120



We would like to end this thesis with the following sentiment: understanding the
full implications of the SFy/DM theory will require a significant amount of creativity
and attention to detail. It is important to investigate the basic assumptions that
we make when comparing to observational data. For instance, asking the question
“Is it appropriate to model halos as being in ground state configurations?” One
could quickly dismiss this question due to the known instability of excited states
and stability of the ground state. If we followed this conclusion exactly, our results
regarding the BTFR may have never been achieved. This is not to suggest that
such conclusions are not useful, but that they should always be considered in light
of the assumptions that we make. Truly understanding SF¢¥DM theory may require
the community to challenge many such notions and conclusions; we see this not as
an opportunity to contend with other studies, but as an opportunity to learn and
question our own biases. SF¢DM is a peculiar and difficult theory to understand,
both a gift to the puzzling mind and important to our fundamental understanding

of the universe.
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Appendix A

Appendix

A.1 Numerical Solutions of the SSS EKGEs

This section is meant to outline some of the basic numerical and computational
methods that this thesis used to solve the SSS EKGEs. These methods are similar
to and inspired by those documented in the thesis of Andrew Goetz (35).

We start at the SSS EKGEs as listed in eqs. 2.23-2.25. To generate physically
reasonable solutions with the standard convention for the gravitational potential, we

must take the following set of assumptions:

M(0) =V,(0)=0 (A1)
rlglgo M(r) =My, < (A.2)
Th_)rgo V(r)=0 (A.3)

The first assumption is necessary to ensure regularity at the origin, » = 0. This

M

can be concluded from considering the 3 and 29

r

~ terms in eqs. 2.24 and 2.25.
Next, the assumption on M (r) enforces solutions to have finite mass. Lastly, the
assumption on V(r) corresponds to taking the convention that the gravitational

1



potential approaches 0 at infinite distance from the origin. It should be noted that
an arbitrary constant, V', can be added to V (r) without affecting the solution. Thus,
a solution which satisfies the first two assumptions, but not the third can be made
to satisfy the third by an appropriate adjustment of V (r).

Each solution is then specified by a choice of initial conditions, (¥¢, Vo) = (¥(0), V(0)),
as well as its frequency w. We take the convention that the potential function, V'(r),
is always negative, and thus consider only Vj < 0. Moreover, we take ¥(0) > 0
without loss of generality since solutions are equivalent under the transformation of
U — —W. The frequency must be in the regime of w < m to generate bound states.
Solutions with w > m will be infinitely oscillatory, therefore violating the finite mass
condition.

Solutions which satisfy the criteria of A.1-A.3 are specified by a choice of three
parameters, with two continuous and one discreet parameter. For this section we
will use the parameter set of (m,w, n) to define the solutions. We note that there are
many other was to parameterize the solutions, choosing (m, M, n) for instance. For
numerical purposes, it is convenient to consider the case in which the frequency w is
taken to be fixed, allowing one to solve a shooting problem for the central conditions
of the ¥(r) and V(r).

Solutions with fixed w can be uniquely specified by their excitation number n.
Finding a solution of order n requires one find the appropriate initial conditions
at the origin for the chosen values of n and w, (¥o(n,w), Vo(n,w). These initial
conditions will then produce solutions (¥ (r;n,w), V(r;n,w), M (r;n,w)) which must
obey the criteria of eqs. A.1-A.3.

Taking a naive guess of (¥, Vp) will likely result in solutions which are exponen-
tially divergent shortly after the decay radius is reached, violating the criteria of egs.
A.2 and A.3. In fact, for a fixed value of ¥y, the set of V) which result in convergent
solutions is countable; these Vj correspond to bound, finite mass, excited states, but
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do not necessarily satisfy the convention for V,,. To make sure the condition for V,,
is satisfied, one may consider the asymptotic behavior of V(r). That is, for V to
appropriately approach 0 in the Newtonian fashion, we can check for the following

condition:

Vi(r) — %ln <1 — %) =Y(r)~0 (A.4)

This condition is equivalent to the assumption that the spacetime metric is asymp-

@ at large

totically Schwarszchild, or in other words that the potential V(r) ~
radii.

Fixing the values of w and n, computing the correct set of initial conditions for
U(0) and V(0) can be achieved through a shooting problem method. This can be

achieved with the following routine:
e Choose a value of w < m, and guess a value for ¥y.

e Given ¥y, choose a value of V; which is consistent with the condition of £?(0) <
0, this ensures the wavefunction is initially oscillatory as are the expected

solutions.

e Solve the ODES of egs. 2.23-2.25 up to the decay radius Ry where k(Ry) = 0,
and extend the solution to a chosen maximum distance beyond R4. Count the

number of zeros ¥ displays up to this point, and denote it as N.

e To generate a solution of order n, adjust the value of ¥y until N = n, record

this value of ¥ as W,,.
e Further adjust ¥, to attain a solution with N = n + 1, and record ®,,,1

e The pairings (U, Vp) and (V,,41, Vo) generate solutions with n and n + 1 zeros,

though may display exponential divergences.



To find the set without exponential divergence, perform a bisection search in
the value of ¥y. The bound, non-diverging solution with n zeros will lie on
the boundary of solutions with n and n + 1 zeros. Call the resulting value of

Yy = ;.

The pair (Wy,Vp) generates a bound solution of order n, but may not have

VQOZO

To achieve V,, = 0, perform a shooting problem in the value of V{, repeating
the entirety of the above procedure for each considered value of Vj). Note that

the previous value of ¥, will provide a good initial guess for the next iteration.

Vary V} and repeat procedure until the condition A.3 is satisfied to a determined

distance tolerance.

Result is (¥o(n,w), Vo(n,w)). To generate solutions for different values of w
(and therefore of different mass scale), apply the scaling relations from section
2.5.4 to find appropriate guesses for the parameters then repeat this entire
procedure. In the low field regime, these guesses will approximate the actual

solutions.

This procedure as outlined, will generate SSS solutions to the EKGEs. We will

note that the same method can be applied to the low field PS analogs from egs.

2.50-2.52. These solutions have been described in a DM only context with no con-

tributions from external baryonic potentials. However, solutions which include ex-

ternal potentials due to other matter are quite analogous. The necessary conditions

of eqs. A.1-A.3 can still be achieved in this setting with the procedure outlined

above, though the use of a continuation parameter greatly simplifies the problem.

To include an external potential then, one may repeat the above procedure first in a

DMe-only setting, and then slowly introduce the external potential by increasing the
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continuation parameter. That is, considering V;,; = V + aV,,;, the solution is close
to that of the DM-only setting if « is taken sufficiently small. Therefore, utilizing
small steps in « one may iterate this outlined procedure, incrementally finding new
guesses for Wy and Vj until solutions for a = 1 are achieved, fully including the

external contribution.
A.2  Sturm-Liouville Theory and the EKGEs

Sturm-Liouville theory is the theory of second order ordinary differential equations

with the following canonical form:

@+ oo = rotaly (A.5)

This ODE is said to form a regular Sturm-Liouville problem on a finite interval, [a, b],

given the following conditions and boundary conditions:
e p(z), p'(x), q(z), w(x) are continuous on |a, b]
e p(z) >0, w(z) >0, on [a,b]
e aiy(a) + ay'(a) =0 for o} + a3 > 0

o B1y(b) + B2y (b) = 0 for B2 + B2 > 0
For each regular Sturm-Liouville problem, there exists a set of values for A which
result in solutions satisfying the boundary conditions at * = a and x = b. These
values of A are usually referred to as the problem’s eigenvalues. Again, given that
the problem is regular, these eigenvalues are countable and can be labelled as A,
corresponding to a solution to the ODEs denoted as y,(x). Moreover, when listed
in increasing order, these eigenvalues correspond to solutions with exactly n zeros.

That is, we can find eigenvalues such that

Ao < A < Ay < As...
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and such that y,(z) has exactly n zeros on the interval [a, b].
A powerful feature of the Sturm-Liouville eigenvalue problem, is that the eigen-
functions y,(x) form an orthonormal basis on the interval [a, b]. That is to say, one

can define the following inner product with use of the weight function, w(x).

b

(Yn (), ym (x)) = f Yn(@)ym (@)w(z)d = Gnp, (A.6)

a

This inner product then allows one write any function, f(z), which is defined on the

interval [a, b] to be written as an series of the eigenfunctions.

f(:L‘) =1 2 (Anyn(x)) (A7)

An = | [(@)yn(x)w(z)dz (A.8)

This feature, akin to the Fourier series, is often utilized to solve complicated
partial differential equations, such as the wave equation. For instance, consider the
1-dimensional wave equation, subject to the boundary condition of y(a) = y(b) = 0.

Physically, this can be compared to standing waves on a fixed string.

252_1/ _ %y

o2 e (A.9)

Suppose we now assume a harmonic ansatz that y,(z,t) = Y, (z)e™"’. This results

in the following ordinary differential equation, subject to Y,(0) = Y, (a) = 0:

Y'(2) = —2V,(2) = —A\Y, () (A.10)

c2

This ODE now forms a standard Sturm-Liouville problem, the solutions being the

standard sine function:
Y, (2) = sin % (A.11)

a
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where the eigenvalues are A\, = "Zf and the weight function is trivially w(z) = 1.

These eigenfunctions can now be used to solve a generic initial value formulation of
this 1-D Wave equation, subject to the boundary conditions at z = 0 and x = a. That
is, we can write the generic solution by combining our ansatz, with the orthogonality

conditions of the eigenfunctions

N
. iwnt —iwnt
y(x,t) = ]\1]1_1)1%0712=0 (Anyn(z)e™™" + Buyn(z)e ) (A.12)
Ay + B, — f (2, 0) sin("™% ) da (A.13)
0 a
i(A, — By) = wn f yi(,0) sin(?)das (A.14)
0

A.2.1 Singular SL Problems

If one or more of the SL conditions are violated, then the SL problem is referred to
as singular. For the purposes of this thesis, we will consider a SL problem posed on
an infinite domain, [0,0). In the example of the wave equation from the previous
section, this would correspond to having an infinitely long string with an endpoint
fixed at the origin. This can have interesting results in terms of the eigenvalue
problem. In particular, infinite domains allow for continuous spectra of eigenvalues.

In practice, solving singular SL problems amounts to taking the limit which
extends the interval to have infinite length. For instance, in the case of a domain
[0,00), one may consider the ordinary SL problem on a domain of [0, b] and examine
the behavior of the ordinary problem while taking a limit b — co. The analytical
approach to taking this limit is dependent on the structure of the particular ODE
being solved. In a computational sense, taking this limit corresponds to solving
the ordinary problem on a larger and larger computational domain, emulating the

behavior of the singular case.



A.2.2  SL Theory of the KG equation

In this section we will describe the SL theory for the KG equation under the influence
of a fixed metric. As a starting point, we will evaluate the ansatz from eqsx 4.1 - 4.3.
Firstly, we make the definition of ® = (1— %) for simplicity of writing the equations.

We then evaluate the KG equation by using the definition of the d’Alembert operator

D@Z)nlm = m2¢nlm <A15)
|g|_1/26)\(|g|1/zg>\uau¢nlm) = mQ'lanlm (A16)
Firstly, the determinant of the metric is ¢ = —e?® r4sin?(#). Then, since the

metric is chosen in a diagonal form, only the terms of the sum with A = p result in

non zero contributions. Applying these two facts we arrive at

(e7V®Y2r=2sin(9) ) (aﬂ((eV(Ifl/Qr2 sin(0)) 9" 0uthnim)) = MV, (A.17)

-1

Now we evaluate the sum over p, noting that ¢"* = (g,,)”", and we apply the

derivative operations

i = (e7V ®Y2r~25in(0)~1){ (A.18)
0i((€V @2 sin(0)) (—e V) 0 thim ) +
Or((e¥ @72 sin(6)) () thnim) +
0p((eV 212 5in () (r=2) 0pthnim ) +
Op((e” @712 sin(6)) (=2 sin(6) =) 2t )}

Next, we evaluate the derivatives and simplify resulting in

Dwnlm = {_e_2vattwnlm + (I)arrwnlm"i' (Alg)

1
‘/rar"ybnlm - §(I)rar¢nlm+
27'_1arwnlm + 70_2699wnlm+
7% cot(0) Ppthnim + 17 SIn(0) 2 Opgnim }
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Finally, we apply the spherical harmonic ansatz of ¥, = r'WU,,;(r)Y;™(0, ¢)e
and utilize the fact that the spherical harmonics are eigenfunctions of the angular
part of the d’Alembert operator. That is, we use the following fact

I(1+1)

r2

(r~20g9 + 2 cot(0)dp + 1 2sin(0) 20ps) Y™ = y" (A.20)

This brings us the final form which is an ODE for ¥,,; in terms of the variable r

I(1+1)

3 Uyrt = m?W,,r!

1 2
w2e’2vrl\llnl+¢>(rl\lfnl)rr+w(Tl\Ifnz)r—§@r(‘1’nzrl)r+;(‘I’nlrl)rJr

(A.21)
We can now analyze this ODE with SL theory, and compute its eigenfunctions.

Firstly, we will simplify the problem by taking the following substitutions

Hy(r) = v, (r) (A.22)
B(r)=V, + ;I%; (A.23)

This brings the ODE to the more simplified form of

B m?* I(l+1) w?e™?V
H BH, ., — (—+ — H
nhm‘+’ nl,r (T + ¢)‘+ r2 ) nl*‘( d

)H, = 0 (A.24)

We are now tasked with placing this equation into the SL form. We achieve this by

defining the SL functions p(r), ¢(r), and w(r) as

p(r) = eXp(LT B(s)ds) (A.25)

alr) = ptr) (2 + 1 D, (A.26)
6_2V

wi(r) = p(r)— (A.27)



This finally brings the KG equation into the SL form
(p(r)Hpip)r — qu(r)Hyy + w2w(r)Hpy = 0 (A.28)

We can finally identify the eigenvalues and draw the standard conclusions from SL
theory. Firstly, we see that each value of [ results in a distinct SL problem with an
eigenvalue of w,,;. Thus, for each value of [ there exists a countable number of w,,; with
increasing eigenvalues. These solutions can be identified by their number of zeros, n.
Lastly, if we wish to convert these eigenfunctions back into the corresponding density
amplitude, we need just apply the relation of eq. A.22 to retrieve each W, (r). A
generic solution to the KG equation would then be expressed as

zbnlm = Z Anlmrl\pnl%meim‘/ <A29)

nlm

To isolate the coefficients A,,;,, we can make use of the orthogonality conditions for

both the spherical harmonics and for the eigenfunctions, giving

Aty = f (dQ (0, ¢) J dr (2D (1)U (1) i (1) (t = 0))) (A.30)

In practice, evaluating these coefficients is a computationally intensive process. This
is mainly due to the fact that each value of [ has a countably infinite number of
orthogonal modes characterized by n. Examining the form of this equation, we
can identify the radial wave functions for each mode as p,; = r'V,;, showing that
this orthogonality condition reduces to a simple wave function orthogonality with a
weight of w;. Even further, if one takes the low field limit, the value of w;(r) = 1,
showing an orthogonality between the wavefunctions when integrated over the full

spatial volume.
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