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Abstract
Weprove that, given integersm ≥ 3, r ≥ 1 andn ≥ 0, themoduli space of torsion free sheaves
on P

m with Chern character (r , 0, . . . , 0,−n) that are trivial along a hyperplane D ⊂ P
m is

isomorphic to the Quot scheme QuotAm (O⊕r , n) of 0-dimensional length n quotients of the
free sheaf O⊕r on A

m . The proof goes by comparing the two tangent-obstruction theories on
these moduli spaces.
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746 A. Cazzaniga, A. T. Ricolfi

0 Introduction

This paper builds an identification between two classicalmoduli spaces in algebraic geometry:
themoduli space of framed sheaves on projective space P

m andGrothendieck’s Quot scheme.
Unless stated otherwise, we work over an algebraically closed field k of characteristic 0. If
D ⊂ Y is a divisor on a projective variety Y , a D-framed sheaf on Y is a pair (E, φ) where
E is a torsion free sheaf on Y and φ is an isomorphism E |D →̃O⊕r

D , where r = rkE . Such
pairs (E, φ) are a special case of the more general notion of framed modules introduced by
Huybrechts–Lehn [16].

For a fixed coherent sheaf V on Y , the Quot scheme QuotY (V , P) parametrises quotients
V � Q such that Q has Hilbert polynomial P . If P is a constant polynomial, the Quot
scheme also exists (as a quasiprojective scheme) for quasiprojective varieties. For instance,
if P = n ∈ Z≥0, we have a natural open immersion QuotAm (O⊕r , n) ↪→ QuotPm (O⊕r , n).

The following is the main result of this paper, proved in Theorem 2.7 in the main body of
the text.

Theorem A Fix integers m ≥ 2, r ≥ 1 and n ≥ 0. Fix a hyperplane D ⊂ P
m. Let Frr ,n(Pm)

be the moduli space of D-framed sheaves on P
m with Chern character (r , 0, . . . , 0,−n).

There is an injective morphism

η : QuotAm (O⊕r , n) → Frr ,n(Pm)

which is an isomorphism if and only if m ≥ 3 or (m, r) = (2, 1).

The map η, constructed in Proposition 2.3, is defined on closed points by

[

E O⊕r
Pm Q

]←↩ →i ←� �→ (

E, i |D
)

,

where Q is a 0-dimensional coherent sheaf on P
m supported away from D. The fact that

η is not an isomorphism for m = 2 (unless r = 1) ultimately depends on the fact that
on P

2 there are nontrivial vector bundles that are trivial on a line: this says that given a
framed sheaf (E, φ) of rank r > 1 on P

2, one may not be able to reconstruct an embedding
i : E ↪→ O⊕r

P2
, and this prevents η from being surjective. In fact, the moduli space Frr ,n(P2)

is a smooth variety of dimension 2nr containing QuotA2(O⊕r , n) as an irreducible subvariety
of dimension (r + 1)n, which is singular as soon as r , n > 1 (Example 3.3).

Donaldson [10] constructed a canonical identification between themoduli space of instan-
tons on S4 = R

4∪{∞}with SU (r)-framing at∞ and themoduli space of rank r holomorphic
vector bundles on P

2 trivial on a line �∞. He defined a partial compactification of the moduli
space on the 4-manifold side of the correspondence by allowing connections acquiring singu-
larities. This in turn corresponds to considering torsion free sheaves on the algebro-geometric
side, leading to the study of Frr ,n(P2).

The 3-dimensional analogue of Donaldson’s construction has attracted lots of attention in
string theory and hence, after translating in the language of algebraic geometry, inDonaldson–
Thomas theory. For instance, in the work of Cirafici–Sinkovics–Szabo [8, Sec. 4.1], the
authors construct a correspondence between non-commutative U (r)-instantons on A

3 and
the 3-dimensional analogue of Donaldson’s construction, namely themoduli space Frr ,n(P3).
They relate the construction to the quiver gauge theory of the ‘r -framed 3-loop quiver’
(Fig. 1), which corresponds to QuotA3(O⊕r , n) in a precise sense [2]. We briefly review this
story in Sect. 3. Moreover, the very same quiver gauge theory can be derived from the rank r
Donaldson–Thomas theory ofA4, as shown byNekrasov and Piazzalunga in [19]. TheoremA
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Framed sheaves on projective space and Quot schemes 747

formalises this correspondence from an algebraic perspective in the 3-dimensional case, and
extends it to higher dimensions.

Framed sheaves and framed modules were mostly studied on surfaces. We do not aim at
giving an exhaustive list of references, but we refer the reader to [4,26] for a more complete
bibliography. Framed sheaves were also studied on 3-folds by Oprea [20], where a symmetric
obstruction theory on their moduli space is constructed—we end Sect. 2 with a conjecture
suggesting that Oprea’s obstruction theory might take a very explicit form (Conjecture 2.12).
Quot schemes also received a lot of attention lately in enumerative geometry [13,21,23,25],
and in the context of motivic invariants [9,17,24].

1 Framedmodules and framed sheaves

In this section we briefly review the notion of stability on framed modules introduced by
Huybrechts–Lehn [16], and we show that D-framed sheaves on P

m (Definition 1.4) are
stable with respect to a suitable choice of stability parameters (Lemma 1.7). This implies the
representability of their moduli functor.

1.1 Framedmodules after Huybrechts–Lehn

Let Y be a smooth projective variety over an algebraically closed field k of characteristic 0,
and let H be an ample divisor on Y . Fix a coherent sheaf G on Y . A framed module on Y , with
‘framing datum’ G, is a pair (E, α), where E is a coherent sheaf on Y and α : E → G is a
homomorphism of OY -modules. The map α is called the framing, whereas ker α (resp. rkE)
is called the kernel (resp. the rank) of the framedmodule. Set ε(α) = 1 if α �= 0 and ε(α) = 0
otherwise.

The Hilbert polynomial of a coherent sheaf E , with respect to H , is defined as PE (k) =
χ(E(k)), where E(k) = E ⊗ OY (k H). Fix a polynomial δ ∈ Q[k] with positive leading
coefficient. The framed Hilbert polynomial of a framed module (E, α), depending on the
pair (H , δ), is defined as

P(E,α) = PE − ε(α)δ. (1.1)

If j : E ′ ↪→ E is an OY -submodule, there is an induced framing α′ = α ◦ j : E ′ → G. Note
that

ε(α′) =
{

1 if E ′
� ker α

0 if E ′ ⊆ ker α.

Definition 1.1 [16, Def. 1.1] A framed module (E, α) of rank r is δ-semistable if for every
submodule E ′ ↪→ E of rank r ′, with induced framing α′, one has r P(E ′,α′) ≤ r ′ P(E,α). We
say that (E, α) is δ-stable if the same holds with ‘<’ replacing ‘≤’.

Huybrechts and Lehn defined moduli functors

Mst
δ (Y ; G, P) ⊆ Mss

δ (Y ; G, P)

parametrising isomorphism classes of flat families of δ-(semi)stable framed modules with
framing datum G and framed Hilbert polynomial P ∈ Q[k].

As proved in [16, Lemma 1.7], if deg δ ≥ m = dim Y then in every semistable framed
module (E, α) the framing α either vanishes or is injective, thus the study of δ-semistable
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748 A. Cazzaniga, A. T. Ricolfi

framed modules reduces to Grothendieck’s theory of the Quot scheme. Thus one focuses on
the case deg δ = m − 1, writing

δ(k) = δ1
km−1

(m − 1)! + δ2
km−2

(m − 2)! + · · · + δm, δ1 > 0. (1.2)

Huybrechts and Lehn defined the (H , δ)-slope of a framed module (E, α) with positive rank
as the ratio

μ(H ,δ)(E, α) = c1(E) · Hm−1 − ε(α)δ1

rkE
. (1.3)

Definition 1.2 [16, Def. 1.8] A framed module (E, α) of positive rank r = rkE is said to be
μ-semistable with respect to δ1 if ker α is torsion free and for every submodule E ′ ↪→ E ,
with 0 < rkE ′ < r , one has μ(H ,δ)(E ′, α′) ≤ μ(H ,δ)(E, α). Stability is defined replacing
‘≤’ with ‘<’.

For framed modules of positive rank, such as those studied in this paper, one has that μ-
stability with respect to δ1 implies δ-stability. Also note that a rank 1 framed module (E, α)

with E torsion free is μ-stable for any choice of (H , δ).
The notion which behaves best in the sense of moduli is δ-stability. We now recall the part

of the main theorem of [16] which is relevant for our paper.

Theorem 1.3 [16, Thm. 0.1] Let δ ∈ Q[k] be as in (1.2). Fix G ∈ Coh Y and P ∈ Q[k].
There exists a quasiprojective fine moduli scheme Mst

δ (Y ; G, P) representing the functor
Mst

δ (Y ; G, P) of isomorphism classes of δ-stable framed modules with framing datum G
and framed Hilbert polynomial P.

1.2 Framed sheaves on projective spaces

Fix a hyperplane ι : D ↪→ P
m , with m ≥ 2, and the polarisation H = OPm (1). Of course D

is linearly equivalent to H , so in particular we have D · Hm−1 = 1, but we distinguish them
as they play different roles.

Indeed, as framing datum we fix the coherent sheaf

G = ι∗O⊕r
D ,

for a fixed integer r ≥ 1. Note that the framings α ∈ Hom(E, G) naturally correspond to
morphisms φα : E |D → O⊕r

D via the adjunction ι∗ � ι∗.
Fix an integer n ≥ 0. Consider the Chern character

vr ,n = (r , 0, . . . , 0,−n) ∈ H∗(Pm, Z).

Definition 1.4 Let m ≥ 2 be an integer. A D-framed sheaf of rank r on P
m is a framed

module (E, α) on P
m with framing datum G = ι∗O⊕r

D , such that E is torsion free with Chern
character ch(E) = vr ,n for some n ≥ 0, and the morphism φα : E |D → O⊕r

D induced by the
framing α is an isomorphism.

Note that, for a D-framed sheaf (E, α), the torsion free sheaf E is locally free in a
neighborhood of D, and the canonical map E ↪→ E∨∨ is an isomorphism in a neighborhood
of D.

We will make crucial use of the following result due to Abe and Yoshinaga.
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Framed sheaves on projective space and Quot schemes 749

Theorem 1.5 [1, Thm. 0.2] Let F be a reflexive sheaf of positive rank on P
m, where m ≥ 3.

Then F splits into a direct sum of line bundles if and only if there exists a hyperplane D ⊂ P
m

such that F |D splits into a direct sum of line bundles.

Corollary 1.6 Let (E, α) be a D-framed sheaf of rank r on P
m, with m ≥ 3, such that

ch(E) = vr ,n. Then there is a natural short exact sequence of sheaves

0 → E → O⊕r
Pm → Q → 0 (1.4)

where Q has finite support contained in A
m = P

m\D.

Proof Since E is torsion free, the natural map E → E∨∨ to its double dual is injective.
Moreover, E∨∨ is reflexive and α induces a canonical isomorphism E∨∨|D ∼= O⊕r

D . By
Theorem 1.5 we have that E∨∨ splits as a direct sum of line bundles, and it is immediate to
see that these line bundles are necessarily trivial. This yields an isomorphism E∨∨ ∼= O⊕r

Pm ,
and since E |D ∼= O⊕r

D it follows that the quotient Q = O⊕r
Pm /E is supported on finitely many

points lying in P
m\D. ��

In the case of projective surfaces it has been proved by Bruzzo and Markushevich that
μ(H ,δ)-stability is automatically implied when considering a “good framing” [4, Thm. 3.1].
The strategy of the proof does not extend in full generality to higher dimensional varieties,
as observed by Oprea [20]. We shall now provide a new argument for the particular case at
hand, but it is still an open question whether it is possible to extend the result to more general
settings.

Lemma 1.7 Fix integers m ≥ 3, and r ≥ 1. Let (E, α) be a D-framed sheaf of rank r on
P

m, and consider a polynomial δ as in (1.2), such that 0 < δ1 < r . Then (E, α) is μ-stable
with respect to δ1, thus in particular it is δ-stable.

Proof First of all, since c1(E) = 0 and ε(α) = 1, the (H , δ)-slope of (E, α) defined in
Eq. (1.3) is

μ(H ,δ)(E, α) = −δ1

r
. (1.5)

Clearly ker α ↪→ E is torsion free because E is torsion free by definition. Moreover, by
means of the diagram

E(−D) E ι∗ι∗E

E ι∗O⊕r
D

←↩ → ←�

←→ ∼⇐ ⇐

←→α

we deduce that ker α = E(−D).
If r = 1 there is nothing left to prove, so we can assume r > 1. Fix a submodule E ′ ↪→ E

of rank r ′, where 0 < r ′ < r . By Corollary 1.6, we have an inclusion E ′ ↪→ E ↪→ O⊕r
Pm .

Since O⊕r
Pm is μH -semistable of slope 0, we have μH (E ′) ≤ 0. We now have to distinguish

two cases:

(1) E ′
� ker α. This means ε(α′) = 1, where α′ : E ′ ↪→ E → ι∗O⊕r

D is the induced framing
on E ′. We have the sought after inequality

μ(H ,δ)(E ′, α′) = c1(E ′) · Hm−1 − δ1

r ′ = μH (E ′) − δ1

r ′ < −δ1

r
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750 A. Cazzaniga, A. T. Ricolfi

if and only if μH (E ′) < δ1(1/r ′ − 1/r). But since δ1 > 0 and r ′ < r we have δ1(1/r ′ −
1/r) > 0. Since E ′ embeds in the μH -semistable module O⊕r

Pm , necessarily μH (E ′) ≤
0 < δ1(1/r ′ − 1/r), as claimed.

(2) E ′ ⊆ ker α = E(−D). This means ε(α′) = 0. We compute the ordinary H -slope

μH (E ′(D)) = c1(E ′(D)) · Hm−1

r ′ = (r ′ D + c1(E ′)) · Hm−1

r ′ = 1 + μH (E ′) ≤ 0

where the inequality is induced by the inclusion E ′(D) ↪→ E ↪→ O⊕r
Pm . So we obtain

μ(H ,δ)(E ′, α′) = c1(E ′) · Hm−1

r ′ = μH (E ′) ≤ −1 < −δ1

r
= μ(H ,δ)(E, α),

by our assumption δ1 < r and Eq. (1.5).

The proof is complete. ��

1.3 Themoduli functor of framed sheaves

Fix integersm ≥ 2, r ≥ 1, and n ≥ 0.Alsofix a hyperplane ι : D ↪→ P
m . Consider themoduli

functor of D-framed sheaves of rank r on P
m with Chern character vr ,n = (r , 0, . . . , 0,−n),

i.e. the functor Frr ,n(Pm) : Schopk → Sets sending

B �→
{

(E ,�)

∣

∣

∣

∣

E ∈ Coh(Pm ×k B) is a B-flat family of torsion free sheaves
with ch(Eb) = vr ,n for all b ∈ B, and � : E |D×kB →̃O⊕r

D×kB

}/

∼

where (E ,�) ∼ (F , 
) if and only if there is an isomorphism θ : E →̃F such that 
 ◦
θ |D×kB = �. We have defined the functor using the map E |D×kB → O⊕r

D×kB , but we could

have used E → (ι × idB)∗O⊕r
D×kB instead.

Let δ be a rational polynomial as in (1.2). If (E, α) is a D-framed sheaf with ch(E) = vr ,n

then, since ε(α) = 1, according to Eq. (1.1) we have

P(E,α)(k) = Pr ,n(k) − δ(k) ∈ Q[k],
where Pr ,n(k) = χ(E(k)) is the Hilbert polynomial of a coherent sheaf E with Chern
character vr ,n .

Proposition 1.8 Fix integers m ≥ 2, r ≥ 1, and n ≥ 0. Let δ be a polynomial as in (1.2),
with 0 < δ1 < r . Set G = ι∗O⊕r

D and P = Pr ,n − δ. Then the moduli functor Frr ,n(Pm) is
represented by an open subscheme Frr ,n(Pm) ⊂ Mst

δ (Pm; G, P).

Proof The case of P
2 is well known [4,18]. Hence, we can restrict to the case m ≥ 3. The

locus of framed modules (E, α) ∈ Mst
δ (Pm; G, P) such that E is torsion free, and the map

φα : E |D → O⊕r
D induced by the framing α is an isomorphism, is open. But by Lemma 1.7,

all D-framed sheaves are δ-stable. ��

2 Moduli of framed sheaves and Quot schemes

In this section we review the notion of tangent-obstruction theory on a deformation functor
[12], and we compare the tangent-obstruction theory on the local Quot functor with that on
the D-framed sheaves local moduli functor. This leads to the proof of Theorem A.

123



Framed sheaves on projective space and Quot schemes 751

2.1 Comparing tangent-obstruction theories

We refer the reader to [12, Ch. 6] for a thorough exposition on tangent-obstruction theories
on deformation functors.

Let Artk be the category of local artinian k-algebras with residue field k.1 A deformation
functor is a covariant functor D : Artk → Sets such that D(k) is a singleton. A tangent-
obstruction theory on a deformation functor D is defined to be a pair (T1, T2) of finite
dimensional k-vector spaces such that for any small extension I ↪→ B � A in Artk there is
an ‘exact sequence of sets’

T1 ⊗k I → D(B) → D(A)
ob−→ T2 ⊗k I , (2.1)

which would be decorated with an additional ‘0’ on the left whenever A = k, and is moreover
functorial in small extensions in a precise sense [12, Def. 6.1.21]. We spell out here what
exactness of a short exact sequence of sets such as (2.1) means. Exactness at D(A) means
that an element α ∈ D(A) lifts to D(B) if and only if ob(α) = 0. Exactness at D(B) means
that, if there is a lift, then T1 ⊗k I acts transitively on the set of lifts. If the sequence started
with a ‘0’, it would mean that lifts form an affine space under T1 ⊗k I .

The tangent space of the tangent-obstruction theory is T1, and is canonical, in the sense that
it is determined by the deformation functor as T1 = D(k[t]/t2). The obstruction space, T2,
is not canonical: any larger k-linear space U2 ⊃ T2 yields a new tangent-obstruction theory
(T1, U2). A deformation functor D is pro-representable if D ∼= Homk-alg(R,−) for some
local k-algebra R with residue field k. A tangent-obstruction theory on a pro-representable
deformation functor is always decorated with a ‘0’ on the left in the sequences (2.1), for any
small extension I ↪→ B � A.

Example 2.1 Let V be a coherent sheaf on a projective k-scheme Y , and fix a polynomial P .
The Quot functor

Q = QuotY (V , P) : Schopk → Sets

sends a k-scheme B to the set of isomorphism classes of surjections π∗
Y V � Q, where

πY : Y ×k B → Y is the projection and Q is a coherent sheaf on Y ×k B, flat over B,
whose fibres Qb = Q|Y×k{b} have Hilbert polynomial P . Two surjections are ‘isomorphic’
if they have the same kernel. The Quot functor is represented by a projective k-scheme
Q = QuotY (V , P). We refer the reader to [12, Ch. 5] for a complete, modern discussion on
Quot schemes. Fix a point x0 ∈ Q(k) corresponding to a quotient V � Q with kernel E . One
can consider the local Quot functor at x0, namely the subfunctorQx0 ⊂ Q|Artk : Artk → Sets
sending a local artinian k-algebra A to the set of families x ∈ Q(Spec A) such that x |m = x0,
where m is the closed point of Spec A. By representability of Q, the functor Qx0 is pro-
representable, isomorphic to Homk-alg(OQ,x0 ,−). By [12, Thm. 6.4.9], the pair of k-vector
spaces

T1 = Hom(E, Q), T2 = Ext1(E, Q) (2.2)

form a tangent-obstruction theory on the deformation functor Qx0 .

The proof of the following result is included for the sake of completeness (and for lack of
a suitable reference).

1 The content of Sect. 2.1 works over fields of arbitrary characteristic.
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752 A. Cazzaniga, A. T. Ricolfi

Proposition 2.2 Let D and D′ be two pro-representable deformation functors carrying
tangent-obstruction theories (T1, T2) and (T ′

1, T ′
2), respectively. Let η : D → D′ be a natu-

ral transformation inducing a k-linear isomorphism d : T1 →̃ T ′
1 and a k-linear embedding

T2 ↪→ T ′
2. Then η is a natural equivalence.

Proof We already know that ηB : D(B) → D′(B) is bijective when B = k and when
B = k[t]/t2, by assumption. We then proceed by induction on the length of the artinian
rings A ∈ Artk. Fix a small extension I ↪→ B � A in Artk and form the commutative
diagram

0 T1 ⊗k I D(B) D(A) T2 ⊗k I

0 T ′
1 ⊗k I D′(B) D′(A) T ′

2 ⊗k I

←→ ←→
←→ ∼

←→

←→

ηB

←→ob

←→ ∼ ←
↩→

←→ ←→ ←→ ←→
where the leftmost vertical map is d ⊗k id I and the isomorphism D(A) →̃D′(A) is the
induction hypothesis. We have to show that ηB is bijective. The statement is reminiscent of
the Five Lemma, but since we are dealing with the (non-standard) concept of short exact
sequence of sets, we include full details.

To prove injectivity, pick two elements β1 �= β2 ∈ D(B). We may assume their images in
D(A) agree, for otherwise there is nothing to prove. Then, by pro-representability of D, we
have β2 = v · β1 for a unique nonzero v ∈ T1 ⊗k I . Then, after setting v′ = (d ⊗k id I )(v),
we find ηB(β2) = v′ · ηB(β1) �= ηB(β1) since v′ �= 0 and D′ is pro-representable.

To prove surjectivity, pick β ′ ∈ D′(B). It maps to 0 ∈ T ′
2 ⊗k I , and its image α′ in D′(A)

lifts uniquely to an element α ∈ D(A) such that ob(α) goes to 0 ∈ T ′
2 ⊗k I . But by the

injectivity assumption, we have ob(α) = 0, i.e. α lifts to some β ∈ D(B). But ηB(β) is a
lift of α′ ∈ D(A), so β ′ = v′ · ηB(β) for a unique v′, as above. Then, if v ∈ T1 ⊗k I is the
preimage of v′, we conclude that v · β ∈ D(B) is a preimage of β ′ under ηB . ��

2.2 Relating Quot scheme and framed sheaves

Let k be an algebraically closed field of characteristic 0. Let M = Mst
δ (Y ; G, P) be a

fine moduli space of δ-stable framed modules (with framing datum G and framed Hilbert
polynomial P) on a smooth projective k-variety Y , as in Theorem 1.3. Fix a closed point
y0 ∈ M(k) corresponding to a framed module (E, α). Consider the deformation functor

My0 : Artk → Sets

defined as the subfunctor ofMst
δ (Y ; G, P)|Artk sending a local artinian k-algebra A to the set

of isomorphism classes of families of δ-stable framed modules y ∈ Mst
δ (Y ; G, P)(Spec A)

such that y|m = y0, where m is the closed point of Spec A. It is the local moduli functor
attached to y0 ∈ M(k). By representability of Mst

δ (Y ; G, P), the functor My0 is pro-
representable: it is isomorphic to Homk-alg(OM,y0 ,−).

Fix m ≥ 2. If Y = P
m , ι : D ↪→ P

m is a hyperplane and y0 ∈ Frr ,n(Pm)(k) ⊂
Mst

δ (Pm; G, P)(k) corresponds to a D-framed sheaf (E, α) for a choice of (δ, G, P) as
in Proposition 1.8, we denote by Fry0 ⊂ My0 the corresponding open subfunctor. By [16,
Thm. 4.1], the pair of vector spaces

T1 = Ext1(E, E(−D)), T2 = Ext2(E, E(−D))

form a natural tangent-obstruction theory on the deformation functor Fry0 .
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On the other hand, we have Grothendieck’s Quot functor

Q = QuotPm (O⊕r , n) : Schopk → Sets.

It contains as an open subfunctor the Quot functor

QuotAm (O⊕r , n) ↪→ Q,

parametrising quotients O⊕r
Pm×kB � Q such that the projection SuppQ → P

m factors
through A

m = P
m\D.

Proposition 2.3 Fix integers m ≥ 2, r ≥ 1 and n ≥ 0. Then there is a morphism ofk-schemes

η : QuotAm (O⊕r , n) → Frr ,n(Pm)

which is injective on geometric points, and is a bijection if m ≥ 3 or (m, r) = (2, 1).

Proof Fix a k-scheme B. Consider a short exact sequence

0 → E
i−→ O⊕r

Pm×kB → Q → 0

defining an element of QuotAm (O⊕r , n)(B) ⊂ Q(B). This means that the image of
SuppQ ⊂ P

m ×k B → P
m is disjoint from D, in particular Q|D×kB = 0. Then we

define ηB : QuotAm (O⊕r , n)(B) → Frr ,n(Pm)(B) by sending such an exact sequence to the
pair (E ,�), where

� = i |D×kB : E |D×kB →̃O⊕r
D×kB .

Note that E is B-flat since Q is B-flat.
Such a map is easily seen to be injective on geometric points, by definition of the Quot

functor. If m ≥ 3, we can construct the inverse of ηk as follows. Given a D-framed sheaf
(E, φ), with trivialisation φ : E |D →̃O⊕r

D , we know by the proof of Corollary 1.6 how to
construct a canonical isomorphism E∨∨ →̃O⊕r

Pm . Thus the inverse of ηk will send (E, φ) to
the isomorphism class of the surjection

O⊕r
Pm � O⊕r

Pm /E .

The same argument works in the isolated case (m, r) = (2, 1). Indeed, in that case E = IZ

is an ideal sheaf of a 0-dimensional subscheme Z ⊂ A
2 = P

2\D of length n, and again we
have I ∨∨

Z →̃OP2 , canonically. The proof is complete. ��
We will use an infinitesimal method based on Proposition 2.2 to prove that the map η of

Proposition 2.3 is an isomorphism as long as m ≥ 3.

2.3 Infinitesimal method

Let y0 = η(x0) ∈ Frr ,n(Pm) be the image of a point x0 ∈ QuotAm (O⊕r , n) under the
morphism η. We obtain an induced natural transformation

η0 : Qx0 → Fry0

between the local moduli functors—Qx0 was defined in Example 2.1. Both functors are pro-
representable and carry a tangent-obstruction theory, cf. (2.2) for the case of theQuot scheme.
Our next goal is to show that η0 is an equivalence when m ≥ 3, using Proposition 2.2. This
will be achieved by means of the following two lemmas.
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Lemma 2.4 Fix m ≥ 3 and a hyperplane D ⊂ P
m. Let E be a torsion free sheaf on P

m such
that E |D ∼= O⊕r

Pm . Then

Hm−1 (

P
m, E(−m)

) = 0

Hm (

P
m, E(−m)

) = 0.

If the strict inequality m > 3 holds, then

Hm−2 (

P
m, E(−m)

) = 0.

Proof Consider the short exact sequence of sheaves

0 → E(k − 1) → E(k) → ι∗ι∗E(k) → 0 (2.3)

obtained from the ideal sheaf short exact sequence of the hyperplane D ⊂ P
m . The map

E(k − 1) → E(k) is injective because it is locally given as multiplication by the defining
equation of D, and the sheaf E is torsion-free. Notice first that

H�(Pm, ι∗ι∗E(k)) = H�(D, ι∗E(k)) = H�(D,OD(k))⊕r .

Since D ∼= P
m−1, we have

Hm−2 (D,OD(k)) = 0 for all k,

Hm−1 (D,OD(k)) = 0 if k > −m,

Hm (D,OD(k)) = 0 for all k.

The first vanishing follows by our assumption m ≥ 3. For any k > −m we then deduce the
following isomorphisms from the long exact sequence in cohomology associated to (2.3):

Hm−1 (

P
m, E(k − 1)

) →̃Hm−1 (

P
m, E(k)

)

,

Hm (

P
m, E(k − 1)

) →̃Hm (

P
m, E(k)

)

.

Since both cohomology groups on the right hand side of the isomorphisms vanish
for k large enough by Serre’s vanishing theorem, we deduce Hm−1 (Pm, E(−m)) =
Hm (Pm, E(−m)) = 0.

If m > 3, then

Hm−3 (D,OD(k)) = 0 for all k,

and applying analogously Serre’s vanishing theorem we deduce Hm−2 (Pm, E(−m)) = 0. ��

Lemma 2.5 Fix m ≥ 3 and a hyperplane D ⊂ P
m. Let (E, α) be a D-framed sheaf of rank

r on P
m, and let Q = O⊕r

Pm /E be as in (1.4). Then there is a k-linear isomorphism

Hom(E, Q) →̃ Ext1(E, E(−D))

and a k-linear inclusion

Ext1(E, Q) ↪→ Ext2(E, E(−D)).

If the strict inequality m > 3 holds, the k-linear inclusion is in fact an isomorphism.
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Proof Twisting the exact sequence (1.4) by O(−D) and applying the Hom(E,−) functor
we obtain a long cohomology sequence

· · · → Hom(E,OPm (−D)⊕r ) → Hom(E, Q) → Ext1(E, E(−D))

→ Ext1(E,OPm (−D)⊕r ) → Ext1(E, Q) → Ext2(E, E(−D)) → Ext2(E,OPm (−D)⊕r ) → · · ·
and by Serre duality we have

Hom(E,OPm (−D)⊕r )∨ ∼= Hm(Pm, E(−m))⊕r

Exti (E,OPm (−D)⊕r )∨ ∼= Hm−i (Pm, E(−m))⊕r

for i = 1, 2, so that the result follows from the vanishings of Lemma 2.4. ��
We have thus essentially obtained the proof of the following result.

Proposition 2.6 If m ≥ 3, the natural transformation η0 : Qx0 → Fry0 of local moduli
functors induces an isomorphism on tangent spaces and an injection on obstruction spaces.
Hence, η0 is a natural equivalence.

Proof The first statement follows from Lemma 2.5. The conclusion follows from Proposi-
tion 2.2. ��

We can now finish the proof of our main result.

Theorem 2.7 Fix integers m ≥ 2, r ≥ 1 and n ≥ 0. The morphism of schemes

η : QuotAm (O⊕r , n) → Frr ,n(Pm)

constructed in Proposition 2.3 is an isomorphism if and only if m ≥ 3 or (m, r) = (2, 1).

Proof The case (m, r) = (2, 1) is proved in [18, Thm. 2.1]. However, a direct argument is
as follows: for fixed n, both schemes are smooth and irreducible of dimension 2n, so since
η : Hilbn(A2) → Fr1,n(P2) is bijective (Proposition 2.3), it has to be an isomorphism by
Zariski’s main theorem.

Assume m ≥ 3 for the rest of the proof. The morphism η is locally of finite type, since the
Quot scheme is of finite type. Next, we check that η is formally étale, using the infinitesimal
criterion. Consider a square zero extension S ↪→ S of fat points (i.e. spectra of objects A, B
of Artk), denote by m the closed point of S and form a commutative diagram

S QuotAm (O⊕r , n)

S Frr ,n(Pm)

←
↩→

i

←→h

←→

η← →
u

←→
h

where the dotted arrow u is the unique extension of h we have to find in order to establish
formal étaleness of η at x0 = h(m) �→ y0 = h(m). We shall use the notation Hom p(T , Y ),
for T a fat point and p a point on a scheme Y , to indicate the set of morphisms T → Y
sending the closed point to p ∈ Y . Using pro-representability of Qx0 and Fry0 , the condition
that η0 is a natural equivalence (proved in Proposition 2.6) translates into a commutative
diagram

Homx0(S,QuotAm (O⊕r , n)) Homx0(S,QuotAm (O⊕r , n))

Homy0(S,Frr ,n(Pm)) Homy0(S,Frr ,n(Pm))

←→ ∼

←→◦i

←→ ∼

← →◦i
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756 A. Cazzaniga, A. T. Ricolfi

where the vertical maps are the isomorphisms η0,S and η0,S respectively. Since h ∈
Homy0(S,Frr ,n(Pm)) lifts to a map

u ∈ Homx0(S,QuotAm (O⊕r , n))

and both u ◦ i and h map to η ◦ h ∈ Homy0(S,Frr ,n(Pm)), they must be equal, since the
vertical map on the right is also a bijection. Thus u is the unique lift we wanted to find.

We conclude that η is étale. Since it is bijective by Proposition 2.3, it is an isomorphism.
��

Remark 2.8 If m = 2, we still have Hom(E,OPm (−D)) ∼= H2(P2, E(−2))∨ = 0, inducing
a (proper) linear inclusion

Hom(E, Q) ↪→ Ext1(E, E(−D)),

but Ext1(E,OP2(−D)) ∼= H1(P2, E(−2))∨ ∼= kn does not vanish.

Remark 2.9 We thank A. Henni for suggesting that it might also be possible to give a proof
of Theorem A combining the formalism of perfect extended monads [14,15] with the result
of Abe–Yoshinaga (Theorem 1.5). The 3-dimensional case is also studied along these lines
in [5, Sec. 2.1.2].

Corollary 2.10 The scheme Frr ,n(P3) is a global critical locus, i.e. it can be written as the
scheme-theoretic zero locus of an exact 1-form d f , where f is a function on a smooth variety
Ur ,n,3.

Proof This follows by combining Theorem 2.7 with [2, Thm. 2.6], which works over an
arbitrary algebraically closed field of characteristic 0. The pair (Ur ,n,3, f ) will be given in
Remark 3.1. ��
Remark 2.11 Another Quot scheme onA

3 that has been recently proven to be a global critical
locus is QuotA3(IL , n), where IL ⊂ C[x, y, z] is the ideal sheaf of a line L ⊂ A

3 [9]. This
was the starting point for the motivic refinement of the local DT/PT (or, ideal sheaves/stable
pairs) correspondence around a smooth curve in a 3-fold [22,23].

Set k = C. By Oprea’s construction [20, Thm. 1 and Sec. 4.4], there exists a symmetric
perfect obstruction theory

E = Rπ∗RH om(E (−D), E ⊗ ωπ)[2] → LFrr,n(P3)

onFrr ,n(P3), whereπ : P
3×CFrr ,n(P3) → Frr ,n(P3) is the projection, (E ,�) is the universal

framed sheaf, and L denotes the truncated cotangent complex. On the other hand, the critical
locus structure on the Quot scheme [2, Thm. 2.6]

Q = QuotA3(O⊕r , n) = {d f = 0} ⊂ U = Ur ,n,3

induces a canonical ‘critical’ symmetric perfect obstruction theory

Ecrit = [

TU
∣

∣

Q

Hess( f )−−−−→ �U
∣

∣

Q

] → LQ.

See [3] for background on symmetric obstruction theories. See also [21,25] for the construc-
tion of virtual fundamental classes on several Quot schemes for varieties of dimension at
most 3.

We propose the following conjecture, essentially a higher rank version of [13, Conj. 9.9].
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Fig. 1 The r -framed m-loop quiver ˜Lm

Conjecture 2.12 The isomorphism η of Theorem 2.7 induces an isomorphism of perfect
obstruction theories

Ecrit ∼= η∗
E

over the truncated cotangent complex of QuotA3(O⊕r , n).

3 Relation to quiver gauge theories

In this section we set k = C, essentially to be coherent with the literature on the subject.
We start by recalling the explicit description of the Quot scheme as a closed subscheme of a
nonsingular variety, the so-called non-commutative Quot scheme, which can be seen as the
moduli space of stable r -framed representations on a quiver (Fig. 1); the relations cutting
out QuotAm (O⊕r , n) are precisely given by annihilating the commutators between all the
matrices arising from the m loops in the quiver. This story is particularly rich in the case
m = 3, where such relations agree with a single vanishing relation ‘d f = 0’ (Remark 3.1).
We emphasise this since it is the starting point of higher rank Donaldson–Thomas theory of
points in all its flavours: enumerative [2,25], motivic [6,24], K-theoretic [13].

We conclude this final section by stressing the dichotomy between the case m = 2 and the
casem ≥ 3.More precisely, in Sect. 3.2 we exhibit the equations cutting out QuotA2(O⊕r , n)

inside the moduli space Frr ,n(P2) of framed sheaves on P
2. In the case of higher rank r > 1,

the describes QuotA2(O⊕r , n) as a closed singular subvariety of Frr ,n(P2) of codimension
n(r − 1).

3.1 Embedding in the non-commutative Quot scheme

The Quot scheme

QuotAm (O⊕r , n)

can be embedded in a smooth quasiprojective variety Ur ,n,m , called the non-commutative
Quot scheme in [2,13], as follows. Consider the m-loop quiver, i.e. the quiver Lm with one
vertex ‘0’ and m loops. Now consider the quiver ˜Lm obtained by adding one additional
vertex ‘∞’ along with r edges ∞ → 0 (see Fig. 1). This construction is called r -framing—
for m = 3 it has some relevance in motivic Donaldson–Thomas theory [6,7] and K-theoretic
Donaldson–Thomas theory [13]. It is also performed with care in [15] in the r = 1 case and
in [14] for arbitrary r .

The space of representations of ˜Lm of dimension vector (n, 1) is the affine space

Rep(n,1)(
˜Lm) = End(Cn)⊕m ⊕ Hom(C, C

n)⊕r
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758 A. Cazzaniga, A. T. Ricolfi

of dimension mn2 + rn. Now consider the open subscheme

Wr ,n,m ⊂ Rep(n,1)(
˜Lm)

consisting of those tuples (A1, . . . , Am, v1, . . . , vr ) for which the vectors generate the under-
lying representation (A1, . . . , Am) ∈ Repn(Lm) of the m-loop quiver. Explicitly, this means
that

dimC Span{Aα1
1 · · · Aαm

m · vi |αi ≥ 0, 1 ≤ � ≤ r} = n.

Of course, Wr ,n,m could be defined without reference to quivers, but it is interesting to
notice that there exists a quiver stability condition θ on Lm such that the open subscheme
of Rep(n,1)(

˜Lm) consisting of θ -stable representations is precisely Wr ,n,m . The gauge group
GLn acts freely on the smooth quasi-affine scheme Wr ,n,m , by conjugation on the matrices
and via the natural action on the vectors. Therefore the quotient

Ur ,n,m = Wr ,n,m/GLn

is a smooth quasiprojective variety, of dimension (m−1)n2+rn. TheQuot scheme is realised
as the closed subscheme

QuotAm (O⊕r , n) ⊂ Ur ,n,m (3.1)

cut out as the locus where the m matrices commute, i.e. by the vanishing relations

[Ai , A j ] = 0, 1 ≤ i < j ≤ m.

Remark 3.1 If m = 3, then the inclusion (3.1) is cut out scheme-theoretically by the single
relation

d f = 0,

where f ∈ �(Ur ,n,3,O) is the function (A1, A2, A3, v1, . . . , vr ) �→ TrA1[A2, A3], see [2,
Thm. 2.6].

Remark 3.2 The scheme QuotAm (O⊕r , 1) is smooth of dimension m − 1 + r , because it is
equal to Ur ,1,m . If m = 1, all Quot schemes QuotA1(O⊕r , n) are smooth. If r = 1, then
the Quot scheme is just the Hilbert scheme of points Hilbn

A
m , which is nonsingular (of

dimension mn) if and only if m ≤ 2 or n ≤ 3. Finally, if m ≥ 2 and r ≥ 2, the Quot scheme
QuotAm (O⊕r , n) is in general singular, as Example 3.3 shows.

3.2 The 2-dimensional case

The following example shows that the Quot scheme of a surface, such asA
2, is often singular.

Example 3.3 Let S be a smooth surface, p ∈ S a point, and fix n = r > 1. Consider a
quotient

ξ = [

O⊕r
S � O⊕r

p

] ∈ QuotS(O⊕r
S , r).

Then the tangent space to QuotS(O⊕r
S , r) at ξ is given by

Hom(I ⊕r
p ,O⊕r

p ) = Hom(Ip,Op)
⊕r2 ∼= C

2r2 ,

using that Hom(Ip,Op) is 2-dimensional, being the tangent space to the smooth scheme
Hilb1S = S at p. On the other hand, the Quot scheme QuotA2(O⊕r , n) is irreducible of
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dimension (r + 1)n, as was proven by Ellingsrud and Lehn [11]. Since 2r2 > (r + 1)r , the
point ξ is a singular point.

In the case of P
2, we already mentioned that Theorem A does not hold (unless r = 1). In

this case, we do have a closed immersion

QuotA2(O⊕r , n) ↪→ Frr ,n(P2) (3.2)

of codimension n(r − 1), which is an isomorphism if and only if r = 1. The moduli space
of framed sheaves is smooth and irreducible of dimension 2nr , and can be realised as

{

(B1, B2, i, j)

∣

∣

∣

∣

[B1, B2] + i j = 0, and there is no subspace
S � C

n such that Bα(S) ⊂ S and im i ⊂ S

}/

GLn,

where Bi ∈ End(Cn), i ∈ Hom(Cr , C
n) and j ∈ Hom(Cn, C

r ). See [18, Thm. 2.1] and
the references therein. The inclusion (3.2) is obtained as the locus j = 0. In particular,
QuotA2(O⊕r , n) is a (singular) scheme, cut out as the zero locus of a section of a tautological
bundle of rank nr on the smooth quiver variety Frr ,n(P2).
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