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Abstract

This note estimates distortions imposed by gravity on LCLS undulator strong-
backs. Because of the strongback’s asymmetric cross section, gravitational forces
cause both torsion as well as simple bending. The superposition of these two
effects yields a 4.4 pm maximum deflection and a 0.16 milli radian rotation of
the undulator axis. The choice of titanium is compared to aluminum.

1 Undulator Strongback Dimensions
LCLS strongbacks will be 0.8 ton titanium cylinders 3.4 meters long by .305 meter diame-
ter. Rectangular channels are cut into the sides to house the permanent magnet undulator

structure. Dimensions are shown below in Fig. 1. Table 1 contains strongback parameters.
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Figure 1: Undulator strongback, approx. dimensions measured from LCLS CDR.
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Table 1 Strongback Parameters

section area Agection | 462 x 10  mm?
section inertia I, | 3.65x10% mm?
centroid location* 37.53 mm
undulator axis* -52.60 mm
shear ctr.* 115.66 mm
strongback weight /length 0.208 kg/mm
PM weight /length w 0.030 kg/mm

5.95 x 101 kg*mm?
11.977 x 10*  kg/mm?
4.368 x 10°>  kg/mm?

0.33 unitless
447 %1075 kg/mm?

torsion stiffness
Ti Young’s modulus
Ti shear modulus
T1i Poisson’s ratio
Ti density

* 2 dimen to section circle ctr
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2 Deflection of non-symmetrical sections

Gravitational forces act throughout the strongback’s volume. To calculate gravitational
distortion without approximation would require integrating the effect of these distributed
body forces over the entire volume of the strongback. In this note, the strongback will
be treated instead as a simple beam with weight distributed uniformly along the axis of its
centroid at x.. Beams with fully symmetric cross sections suffer only simple bending if forces
act at the symmetry axis. However even if the beam cross section is not symmetric, there is
still a point in the cross section called the center of flexure or shear center x, where forces
can be applied causing only simple bending, free of any torsion. This shear center usually
lies within the beam cross section but for thin walled structural sections, x, may even fall
outside the section. (For fully symmetric sections, z; = z. and is the center of symmetry.)
The bending problem for a beam with asymmetric cross section can be decomposed into the
superposition of 2 simpler problems:

bending: Deflection of the shear center axis by simple bending of the beam under
the influence of distributed weight w (kg/mm) and reaction forces from
the supports.

torsion:  When mass ctr is not coincident with the shear center, gravity loads
the beam with axial torsion moments dM /dz (mm*kg/mm) distributed
along its length. Support reaction forces counter balance these mo-
ments (otherwise the beam will roll over). The resulting torsion « (ra-
dians/mm) vertically displaces the undulator axis by rotation around
the shear center x,.



3 Bending: optimal support location

Optimal location for support of a uniform beam loaded by gravity is defined by that pair of
support positions where the overhanging ends of the beam droop the same amount as the sag
at midpoint between the two supports. Any other support locations have larger deflection.
This pair of support points are called the Airy points after Astronomer Royal, Sir George
Airy. Derivation of their location follows.

Consider one half of the symmetric beam length [ = L/2. The free end of the beam and the
midpoint of the beam are required to have the same deflection (figure 2). This deflection is
the superposition of the downward droop of the half beam under uniform load w (kg/mm)
and the upward bending of the half beam by reaction force wil (kg) at location a to be
determined. Location a is adjusted until these 2 components of the total deflection just
cancel at the free ends of the beam. The sum of these two contributions to the end point
deflection is set to zero and solved for a:

wl wi?

@(ai’* — 31%a + 2I°) — 57 =" (1)

This yields a cubic equation for the reaction force location o = a/I,

5
of’—Soz—l—Z:O. (2)

This equation has 3 real unequal roots. The Handbook of Chemistry and Physics lists the
roots in parametric form based on angle ¢ defined by cos(¢) = —3(5/4), ¢ = 128.68":

a=2 cos(%), 2 COS(% +120°), 2 cos(% + 240°) (3)

The only relevant root (0 < o < 1) is the last: a = 2co0s(42.894° + 240°) = .4463. This
means that optimal support locations are (.4463/2)L = .22315L in from the ends of the full
length beam. The maximum amplitude of the deflection curve occurs slightly outboard of
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Figure 2: Optimal support location for minimal deflection under uniform load



the support location a. The coordinates of the top of the deflection curve measured from
the free end of the beam are:

Zmaz = \1® =3l —a)?
w
= 0 — (413 — 3
Ymax Ya + Zmaz + WUE I( Zmaz Zmaz 3 )
[
ya = %(2l3—3al2+a3)
wl
= —— (1 —a)? 4
-0 )

Evaluated for the LCLS undulator, 4,4, = .0017 mm at z,,,, = 732.25 mm. This 1.7 micron
deflection is compared with the deflection of the same beam supported at its end points
which would be 49 times larger:

5 wlL*

4 'Torsion constants z, and D

Calculation of torsion on a non-symmetrical beam requires two constants: (1) shear center
location (x5 —x.) which is the separation between the twisting axis and the section’s centroid
and (2) torsional stiffness D, the angular twist per unit length generated by unit axial torque.
For a few simple cross sections, (x5 — z.) and D can be looked up in structural engineering
handbooks, but usually these properties of the beam cross section must be calculated from
elastic theory. See for example Sokolnikoff[1]. Torsion stiffness D and shear center location
both require solution of 2D partial differential equations over the cross section. Matlab toolbox
PDE was used to compute D and z,. Figure 3 shows the solution for Sokolnikoff’s function
U[1] for D. Figure 4 shows the ¢y solution for (x; — x.). Equations are numbered following
Sokolnikoff but symbols for shear modulus G and poisson’s ratio ¢ have been changed to
follow notation of Roark[3] and Timoshenko[4]. Formula (53.4) for the shear center (z;—x.)
assumes that the coordinate system origin is located at the section’s centroid x.. Torsion
function ¢, has von Neumann boundary conditions where v is the boundary’s unit normal
vector. Two material properties enter into these equations. For the torsion stiffness D,
eq.(34.10), shear modulus G = 4.368 x 10° kg/mm® for titanium. For shear center (z, — .),
eq.(53.4), titanium’s poisson ratio € = .33. Numerical values for x5 and D are calculated
after solutions of eq. 35.7 and eq. 34.5 and are included in Table 1.

5 Torsion curve

Gravity acting on the strongback’s center of mass w at x. and permanent magnets w,,, at
x, generates a moment/unit length around the shear center axis dM/dz = (xs — z.)w +
(x5 — y)Wpy. Each support carries half the total weight W. At the 1st support, rotation
¢ is locked to zero. At the 2nd support, reaction forces generate an additional moment.
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Calculation of torsion stiffness D
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Figure 3: Stress Function ¥ (mm?)

Calculation of shear center z,

(34.5) V2@, =0 in section region R

ds

(52.16) - = [(1+ €)y* — ex®] cos(y,v) normal derivative on boundary C
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Figure 4: Torsion Function ¢y (mm?)



Geometry of 2nd support can be chosen by design to generate a torsion cancelling the twist
which has accumulated along the axis between the two support locations. Twisting angle ¢
will then reach a minimal maximum at midspan. Support geometry is illustrated in Figure 5
with 2nd support reaction force at x,.. (illustration exaggerates the offset of the roller support
circle from the strongback ctr.) Twisting moments which develop along the span between
the two support points consist of two components:

(1) moment dM/dz = (x5 — x.)w + (x5 — T, )Wy, due to strongback and magnet weight
times their offsets from the shear center. This moment accumulates along the length
of the strongback reaching a maximum at the 1st support where the rotation ¢ is fixed
to zero.

2) a constant axial moment along the strongback between the supports due to the offset
g g
(xs — x,) between the 2nd support reaction force W/2 and the shear center at z.

Along the length of the strongback beyond the fixed support 1, the sum of these moments
can be integrated to find twist angle ¢. If the total weight W = (w + wpy,)L and the
torsionally free length of the strongback I’ = (1 — .2231)L, then

d dM w
Dd—f:M(z) = E(l'—z)——(xs—xr)
2
D¢ = %(l'z - %) - %(ms — )z (6)

The offset (xs—x,) of the 2nd support reaction force which cancels ¢ at z = [ = (1—2%.2231)L
is:

L dM
(s —x,) = W = 89.5 mm. (7)

Figure 5: Support geometry for cancellation of torsion



The remaining maximum twist occurs at mid span at z = /2 where ¢4, = 1.59 X 107°
radian. Since the undulator axis x, is offset 168.25 mm from the strongback shear center x,
this rotation causes an additional (1.59 x 107°)(168.25 mm) = 2.7 micron deflection of the
undulator axis.

6 Conclusion: Titanium vs Aluminum

Gravity loads on Ti strongbacks cause a 1.7 pym beam deflection plus a 2.7 um torsional
deflection totaling to 4.4 pm at mid-span. These numbers are challenging to measure over
a strongback length of 3.4 meters. They are negligible compared to practical machining
tolerances. But this small calculated deflection depends on an optimal support geometry. If
the strongback were supported from its extreme ends without cancellation of gravitational
torsion moment, distortion could be orders of magnitude larger.

Mechanical /thermal properties of titanium and aluminum are compared in Table 2. There
is almost no distinction between titanium and aluminum from the the standpoint of gravita-
tional deflection. Gravitational deflection depends on the ratio of elastic modulus to density.
For Ti, E/p = 2.679 x 10° meters while for Al, E/p = 2.59 x 10° meters. Deflections in a Ti
strongback would be only 4 percent less than in aluminum.

Table 2 Ti vs Al

property ‘ Ti ‘ Al ‘
Young’s modulus E | 11.977 x 10° | 7.045 x 10° | kg/mm?
shear modulus G| 4.368 x 10° | 2.642 x 10° | kg/mm?
Poisson’s ratio € 0.33 0.30 unitless
density p| 447x107% | 272 x 107° | kg/mm?
thermal expansion a| 84x107% |23.9x%x107%|°C™!
thermal conductivity A 0.171 2.37 watts/cm/°C

Comparison of titanium with aluminum from the standpoint of thermal distortion depends
on both expansion coefficient and thermal conductivity [2]. Transverse thermal gradients
cause the strongback to bend toward the warmer side. Long bars of width h and length L
with transverse thermal gradients deflect § /AT = aL?/8h mm/°C. For the LCLS strongback
made from titanium, 6/AT = 39.8 um/°C. Made from aluminum, 6 /AT = 113.2 um/°C. It
might appear that titanium would be less affected by thermal disturbances than aluminum
because of its lower expansion coefficient. But thermal distortions are driven by heat fluxes.
Surprisingly small transverse fluxes lead to significant distortion. The ratio of thermal ex-
pansion « to thermal conductivity A determines the strongback’s sensitivity to heat flux.
Deflection/transverse heat flux §/q = %2% Made from titanium, 6/q = .89 pum/watt/m”.
Made from aluminum, §/q = .18 pm/watt/m”. Aluminum’s high thermal conductivity more
than compensates for its higher thermal expansion. Thermal gradients and the distortion
they cause will be lower in aluminum than in titanium. Ti’s poor thermal conductivity also
effects precision machining where localized cutting heat leads to distortion during machining

operations.
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