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Résumé

Cette thése est un projet interdisciplinaire visant a proposer de nouvelles méthodologies et
de nouveaux algorithmes pour caractériser la polarisation des signaux non-stationnaires
polarisés et a appliquer ces nouveaux outils au contexte de 1’astronomie des ondes
gravitationnelles. L'observation directe des ondes gravitationnelles rendue possible par
les détecteurs avancés LIGO et Virgo constitue un changement de paradigme pour 'étude
des objets astrophysiques compacts tels que les trous noirs et les étoiles a neutrons.
L'analyse du grand volume de données provenant de ces détecteurs s’est jusqu’a présent
concentrée sur la morphologie de la forme d’onde enregistrée, a partir de laquelle des
informations sur la nature de la source peuvent étre extraites. La polarisation des ondes
a recu moins d’attention car le nombre de détecteurs était insuffisant pour tirer des
conclusions précises. Cependant, I'information de polarisation présente un intérét pour
certaines sources astrophysiques. Par exemple, pour les fusions de systemes binaires
d’étoiles compactes, la précession du plan orbital se traduit par une évolution spécifique
du schéma de polarisation. Cette thése part des aspects théoriques fondamentaux de
la représentation et la caractérisation des signaux polarisés pour ensuite développer
des outils d’analyse et de synthese adaptés au contexte de I'application considérée.
Les résultats présentés sont de trois ordres. Les différentes représentations des signaux
modulés en amplitude, en fréquence et en polarisation d’abord sont passées en revue, en
évaluantleur utilité pour I’analyse et la synthese de ces signaux. Cette revue met en lumiére
les problemes causés par la dégénérescence de certaines représentations, précise les
conditions d’apparition de celle-ci et propose des moyens d’y remédier. Sur la base de cette
étude, des modeles génératifs d’apprentissage automatique sont construits, et appliqués
au calcul rapide de forme d’ondes gravitationnelles, permettant ainsi 1’accélération de
I'inférence des parametres des sources. Ce modele génératif est proposé a la fois pour
les sources de trous noirs binaires sans précession et avec précession, et sa précision est
évaluée dans chaque cas. Finalement, de nouveaux principes de régularisation basés sur
des a priori de polarisation sont introduits afin d’améliorer la reconstruction des deux
composantes du signal a partir des données observationnelles. La méthode est évaluée sur
des données synthétiques réalistes. Elle permet de cibler I'analyse sur certaines catégories
de source associées a une polarisation particuliére.

Mots Clés: Polarisation - Traitement statistique du signal - Ondes gravitationnelles



Abstract

This thesis is an interdisciplinary project aiming at proposing new methodologies and
algorithms to characterize the polarization of non-stationary polarized signals and to apply
these new tools to the context of gravitational wave astronomy. The direct observation of
gravitational waves made possible by the advanced LIGO and Virgo detectors constitutes
a paradigm shift for the study of compact astrophysical objects such as black holes and
neutron stars. Analysis of the large volume of data from these detectors has so far focused
on the morphology of the recorded waveform, from which information about the nature
of the source can be extracted. The polarization of the waves has received less attention
because the number of detectors was insufficient to draw accurate conclusions. However,
polarization information is of interest for some astrophysical sources. For example, for
mergers of compact binary star systems, the precession of the orbital plane results in a
specific evolution of the polarization pattern. This thesis starts from the fundamental
theoretical aspects of the representation and characterization of polarized signals to
develop analysis and synthesis tools adapted to the context of the considered application.
The results presented are of three kinds. First, the different representations of amplitude,
frequency and polarization modulated signals are reviewed, evaluating their usefulness
for the analysis and synthesis of these signals. This review highlights the problems caused
by the degeneracy of certain representations, specifies the conditions of its occurrence
and proposes ways to remedy it. On the basis of this study, generative machine learning
models are built, and applied to the fast computation of gravitational waveforms, thus
allowing the acceleration of the inference of the source parameters. This generative model
is proposed both for binary black hole sources without precession and with precession,
and its accuracy is evaluated in each case. Finally, new regularization principles based
on polarization a priori are introduced to improve the reconstruction of the two signal
components from observational data. The method is evaluated on realistic synthetic data.
It allows to target the analysis on certain source categories associated with a particular
polarization.

Keywords: Polarization - Statistical signal processing - Gravitational waves
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Introduction

Multivariate signals are ubiquitous in physical science, whenever several quantities are
related and jointly measured, and for which interrelations between coupled observables
are often governed by physical phenomena. A central topic in data science is to represent
and extract the common information of the two variables. The case of bivariate signals
is of particular interest. Those appear in many fields, such as oceanography (position
of freely-drifting instruments), optics (transverse coordinates of the electric field) and
seismology (horizontal and vertical ground velocities), to name but a few.

The notion of polarization, usually used for waves, lies in a geometrical description of
the intercorrelation of the two variables. By analogy with optics, the same notion is used
to describe trajectories of an oscillatory bivariate signal in a 2D plane. A worth noticing
example is that of gravitational waves. Those are perturbations of spacetime metric due
to the coalescence of astrophysical compact bodies, e.g. black holes and neutron stars.
Gravitational waves are characterized by two degrees of freedom, forming a non stationary
bivariate signal whose properties depend on the source dynamics.

The direct observation of gravitational waves made possible by the advanced LIGO and
advanced Virgo detectors constitutes a paradigm shift for the study of compact astrophysical
objects such as black holes and neutron stars. The analysis of the large volume of data
from these detectors has so far focused on the gravitational waveform morphology from
which information about the nature of the source can be extracted. The polarization of the
waves has received less attention because the number of detectors was insufficient to draw
precise conclusions. To fully characterize the two polarizations predicted by the Theory of
General Relativity, it is necessary to observe the gravitational wave signal with, at least
three detectors, each collecting a substantial signal-to-noise ratio, which has not been the
case so far. This situation will change in the near future with the improved sensitivity of
LIGO and Virgo and the inception of new detectors (KAGRA in Japan and LIGO India). It
will then become possible to measure the polarization of gravitational waves, allowing the
exploration of new astrophysical questions.

This thesis, at the interface between data science and astrophysics, aims at proposing new
methodologies and algorithms to characterize the polarization of non stationary bivariate
signals and apply those tools to the context of gravitational-wave astronomy. The goal
is to build new techniques to infer on the dynamics of the sources. For the mergers of
binary compact star systems, a primary source of gravitational waves, this is of interest for
investigating dynamical phenomena such as the presence of precession of the orbital plane
which results in a specific evolution of the polarization pattern. Extracting this information
can therefore help to understand the formation mechanisms of these sources.

The field of the polarimetric analysis of non stationary bivariate signals is still not well
developed and a wide range of tools remain to be imagined and built along this avenue. In
this topic, and by means of a newly introduced quaternion formalism, the representation
problem of non stationary bivariate signals is addressed. From this study, a generative model
of surrogate gravitational waveform is proposed in order to shorten the inference of the
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source parameters. The reconstruction method is proposed, adding polarization constraint
when reconstructing a bivariate signal. A polarimetric analysis of gravitational waves is
conducted, showing that gravitational waves are a sum of non stationary components
whose polarizations depend on the line of sight of the observer with respect to the orbital
plane. A polarization modulation is thus found to be characteristic of the precession of
the orbital plane. Based on this status and from the perspective of detecting a precession
phenomenon, statistics are constructed to measure the detectability of precession effects on
the waveform.

This thesis is organized in four chapters.

» Chapter 1 reviews several representations of amplitude, frequency and polarization
modulated bivariate signals (AM-FM-PM signals) through quaternion formalism,
regarding possible interpretations and ambiguities when trying to estimate the re-
lated parameters. Expressions of the instantaneous frequency and first instantaneous
moments of the quaternionic Fourier transform are given for a generic AM-FM-PM
signal. A non degenerate interpretable parameterization of AM-FM-PM signals is
presented.

» Chapter 2 provides the basics of gravitational-wave astronomy, going from notions
of general relativity and detector design, to actual and future observations.

» Chapter 3 relates to the fast and accurate generation of gravitational waveforms
through machine learning algorithms. Based on a judicious choice of waveform
attributes, two generative models are proposed for different cases of coalescing
compact binaries.

» Chapter 4 addresses the polarimetric analysis of gravitational-wave signals. A regu-
larization term is introduced in order to incorporate a polarization-based prior when
reconstructing a bivariate signal. An application is given on a realistic gravitational-
wave simulated signal. It is shown that gravitational waveforms are the sum of
AM-FM-PM signals whose parameters are derived. Finally, indicators are built in
order to quantify the measurability of the polarization state of a signal embedded in
an additive Gaussian noise and to quantify the detectability of precession-induced
polarization modulations.



1.1

Non-stationary bivariate signals analysis

Introduction

Bivariate signals are a particular case of multivariate sig-
nals. They can be represented as complex signals! z(t) =
x(t) + iy(t) with given real and imaginary components x(t)
and y(t). Such signals appear in many applications e.g. optics,
seismology, oceanography and in many area of physics. A
domain of specific interest to this thesis is gravitational-wave
astronomy. A simulated gravitational wave is presented in
Figure 1.1. In all of these applications there is a notion of com-
mon information carried by the two oscillatory components.
This common information is embedded in cross-correlations
between x and y such that it can only be accessed by a joint
analysis of the two components.

1: We could have considered
a real valued vectorial signal
z(t) = [x(t), y(t)]", where the
subscript T denotes the vector
transpose, since the two repre-
sentations are isomorphic. Of
course, depending on the repre-
sentation, analysis methods will
not be the same. This will be dis-
cussed thereafter.

0
RE -5
= -3.0 —2.5 —-2.0 —1.5 -1.0 -0.5 0.0
< 01 Time (s)
‘ x 1029
-3 o _hX(t)
0
-7 . . . . . =5 . . . . . 7
-7 -3 0 3 7 -3.0 —2.5 —-2.0 —1.5 -1.0 -0.5 0.0

e (8)

Time (s)

Figure 1.1: Simulated gravitational wave h(t) € C from a precessing black hole binary. f = 0 corresponds to
the merger of the two objects. Gravitational waves are bivariate signals evolving on (possibly) time varying
ellipses. At each time the shape of the ellipse is fully determined by the orientation of the orbital plane with
respect to the observer. Precession is a physical phenomenon which corresponds to variations of the orbital
plane inducing variations of the elliptic trajectory. In Section 1.1.2 such signal is called an amplitude, frequency

and polarization modulated signal.

The fact that bivariate signals can be represented in the
complex plane allows a geometric interpretation. In this
chapter we develop a bivariate signal analysis framework
based on a geometric interpretation. We address question
related to the representation of bivariate signals, and their
computation.

Our interpretation is related to the concept of polarization,
which connects to the oscillation of transverse waves such
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[1]: Brosseau (1998), Fundamen-
tals of polarized light : a statistical
optics approach

[2]: Schreier et al. (2010), Statisti-
cal Signal Processing of Complex-
Valued Data: The Theory of Im-
proper and Noncircular Signals

[3]: Flamant (2018), A general ap-
proach for the analysis and filtering
of bivariate signals

1.1.1

2: This can be done consider-
ing x(t) as a complex signal
with a constant imaginary part

I {x@®)}=0.

3: That is, signals with elliptical
trajectory in the complex plane,
either if the trajectory is constant
over time (which is the case in
this section) or if it is a local
property (as presented in Sec-
tion 1.1.2).

as electromagnetic waves [1]. The polarization of an elec-
tromagnetic wave is a property linked to its direction or
mode of oscillation in the plane transverse to the propaga-
tion direction. For example, polarized light waves oscillating
along a single direction in the transverse plane are said to
be linearly polarized. Waves oscillating along two different
directions are elliptically or circularly polarized, depending
on the angle between the axes along which the field oscillates.
Thanks to this connection to wave optics we can benefit from
the theoretical development in the domain of physics as we
will see later.

The concept of polarization has been formalized for stochastic
bivariate signals in [2]. In this chapter we concentrate on
deterministic signals. We use a recently introduced formalism
which enables to extend classical notions of real-valued non-
stationary signal analysis to the bivariate case [3].

Monochromatic bivariate signals

The simplest case of oscillatory bivariate signal is certainly the
case of a monochromatic bivariate signal such as monochro-
matic light wave. Usual examples of monochromatic signals
come from the family of pure harmonic oscillations (real-
valued, univariate)

x(t) = acos @(t) (1.1)
and the associated complex-valued, bivariate wave
z(t) = ae'?®) (L2)

with @(t) = wot + @o. For both x(¢) and z(t), a > 0 is said to
be the amplitude of the waveform, wy its (angular) frequency
and ¢ its initial phase.

The concept of polarization allows to interpret the former
and the latter in a unified manner as two respectively linear?
and circular polarized signals carrying the same frequency
wo. Expressions "linear" and "circular" are associated to the
trajectory of these signals in the complex plane. From now
on and by analogy with optics, we refer to complex elliptical
signals® as polarized signals.
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Definition 1.1.1 We define the general model of monochromatic
polarized signal as the following:

z(t) = ae™ (cos x cos @(t) + isin ysinp(t)) € C  (1.3)
where the constant triplet [a, O, x| lies in

T TU T TC
Ro X _E’E[X vy z] (1.4)

and @(t) = wot + @ € R.

Definition 1.1.1 generalizes the case of monochromatic uni-
variate signal. It defines a variety of signals with various
trajectories in the complex plane. For a given frequency wy,
different values of a, 0 and x correspond to different el-
liptical trajectories in the complex plane. They correspond
to monochromatic polarized signals with the same angular
speed ¢(t) but different polarizations (different ellipses).

14 Lz

z(t)

y(t) 01 7 Time

‘ | (‘) 1 Time

Figure 1.2: Monochromatic polarized signal z(t) = x(t) + iy(f) generated with (1.5). This signal has a fixed
elliptical trajectory defined by the triplet [a, 6, x]. The time-varying phase @(t) determines the position of
z(t) on the ellipse.

Figure 1.2 illustrates the trajectory of a monochromatic polar-
ized signal in the complex plane generated for

a=1,0= % x = % and () =20mt.  (L5)
The trajectory of such signal is elliptic and the newly intro-
duced parameters 0 and x define the orientation and the
shape of the ellipse as presented in Figure 1.3. For 0 = y =0
we end up with the real valued monochromatic model (1.1).
For xy = /4 we get the associated monochromatic complex
wave z(t) = ae’?") such that Definition 1.1.1 generalizes the
previous cases of monochromatic signals. a, 0 and x are
respectively the amplitude, the orientation and the ellipticity
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Figure 1.3: Parametrization of a
monochromatic polarized signal
z. Themodel (1.3) defines a polar-
ized signal with a unique triplet
[a, 6, x] characterizing the tra-
jectory of z in the complex plane
and a time-evolving phase ¢(t)
which gives the time varying po-
sition of z on the ellipse.

4: See Appendix A2 for a
proper introduction of the spec-
tral Stokes parameters.

5: Here we focused on
monochromatic signals but one
can anticipate that if z is built
as a combination of monochro-
matic polarized signals with
different frequencies wy, wy, ...
then it exhibits a different
polarization at each one of these
frequencies. This means that z
scans different ellipses but each
with a different speed.

of z(t). a corresponds to the size of the scanned ellipse, 0
is the orientation of its great axis and x correspond to its
shape. ¢(t) is the instantaneous phase of z(¢) which is the
position of z(t) with respect to the great axis. wy is the rate
at which the ellipse is scanned. Fixing wg > 0, z(t) is said to
be counterclockwise circular if y > 0 and clockwise circular
if y <O.

Ux>0 y
Ux<0

z=x+1iy

asin|x|

=Y

a cos X

In optics, polarized light is commonly characterized using
the Stokes parameters, a set of 4 observables [1]. Those are
intensities measurements corresponding to time-averaged
values of cross-correlations between the two stochastic signals
x(t) and y(t) [1]. Stokes parameters can be defined in the
context of deterministic monochromatic bivariate signals
analysis [3]. For z(¢) a monochromatic polarized signal and
a, 0, x identified in (1.3), the associated Stokes parameters
at frequency wy are*

So =L12,
Sy =a? cos 2 cos 20, 16)
S, =a® cos 2 sin 20, '

S3 =a’sin2y.

Fori =1, 2, 3 we denote s; the normalized Stokes parameter
S; = Si / So.

The polarization state of z(t) is characterized by the polariza-
tion axis u, = (s1, s2, s3) € R>.

The Stokes parameters do not incorporate the phase nor the
frequency information ; they are purely geometric. Since
the physical notion of polarization came from oscillatory
signals, it is linked to the notion of cycles when scanning
the ellipse®. This is why the notion of frequency and Fourier
transform is particularly important for polarized signals. Key



1.1.2

analysis tools we use in order to analyse these kind of signals
(such that the quaternion Fourier transform) are presented
in Appendix A.2.

%/Q

(1,0,0) (0,1,0) (0,0, 1)

(—1,0,0)
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o
[\
G

Figure 1.4: Trajectory/polarization ellipse associated to the polarization state u, = (51, s2, s3). Itis a geometric

description of the trajectory of z in the complex plane.

As an illustration Figure 1.4 provides examples of polar-
ization axes which derive directly from (1.6) and (1.3). By

construction we have® Sy = \/ S1% + S22 + S3%. Also, s3 = 0
(x = 0) if z is linearly polarized and s3 = +1 (x = +71/4)
for counterclockwise circular and clockwise circular states
repectively”. The third normalized Stokes parameter s3 mea-
sures the amount of circularity of z i.e. the more s3 is near +1
(the more y is near 7/4), the more the trajectory is circular.
Values of s1, s; balance depending on the orientation of the
great axis of the ellipse. s; is attached to the x and y axes
and s to diagonal axes.

AM-FM-PM signals

What happens if we relax the constraints on the parameters
involved in Definition 1.1.1 ? If we allow a, 0 and x to vary
with time®, clearly the ellipse scanned by z will evolve with
time. We would also relax assumptions on ¢ to consider
other phase evolutions e.g. linear, power laws etc.. This
generalization is the subject of this section.

AM-FM signals
signals x(t) with time varying spectral properties. They
appear in many applications such as audio processing [4, 5].
Indeed speech or music are highly non stationary time series
with a spectral content subject to frequent changes over time.
Amplitude and frequency modulated signals (AM-FM) is a
class of non-stationary signals of particular interest in signal
processing, appearing as generalization of pure harmonic

Real-valued non-stationary signals are

6: Since the signal is determin-
istic, the degree of polariza-

tion O, = \/512 + 522 + 532/50

is equal to one.

7: Here we took the convention
wo > 0.If wg < 0then y = /4
and y = —m/4 correspond to
clockwise and counterclockwise
circular states respectively.

8: As we will see in Defini-
tion 1.1.2, they should be slowly
varying with respect to .

[4]: McAulay et al. (1986), Speech
analysis/Synthesis based on a sinu-
soidal representation

[5]: Flandrin (2018), Explorations
in Time-Frequency Analysis
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H{zly

2z =x+ H{z}i

Figure 1.5: Instantaneous param-
eters of the AM-FM signal (1.7)
in the complex plane. The cir-
cle represents the instantaneous
trajectory of x, in the complex
plane which is an augmented
version of x with its quadrature
part.

9: The Bedrosian theorem re-
quires a(t) and cos @(t) to be low
and high frequency respectively,
with disjoint spectral supports.

10: These conditions are only
heuristic, we skip technical con-
ditions notably on the structure
of p(t) [6].

11: From now on, we denote by a
dot the temporal derivative and a
double dot the second temporal
derivative.

[6]: Picinbono (1997), On Instan-
taneous Amplitude and Phase of
Signals

oscillations [5]. Such signals are modelled as

x(t) = a(t) cos p(t). (1.7)
a(t) > 0 has slow variations with respect to ¢(t) and charac-
terizes the slowly evolving envelope of the signal i.e. low fre-
quency part. cos @(t) characterizes the oscillating behaviour
and local spectral content i.e high frequency part.

Equation (1.7) describes a signal in terms of time varying
instantaneous parameters namely the instantaneous ampli-
tude a(t) and the instantaneous phase @(t) [5, 6]. They are
local properties encapsulating the time evolving oscillatory
behaviour of x.

For a given x there is an infinite number of solutions to (1.7),
showing that the pair [a(t), ¢(t)] is not well defined [6].
In order to define this pair without ambiguity, a classical
approach consists in considering that x(t) is the real part of
a complex-valued signal x(t) = a(t)e?**). This is a complex
augmented version involving a 7 phase shifted version of
x(t): a(t)sin@(t). As a(t) is supposed to be low frequency
compared to @(t), the instantaneous trajectory of x.(t) in
the complex plane is nearly circular and thus the instanta-
neous parameters a(t) and @(t) are directly interpretable
geometrically as presented in Figure 1.5.

A proper definition of the canonical pair [a(t), ¢(t)] involves
the introduction of the Hilbert transform #; defined as the
filtering operator with the frequency response —i sign(w).
A key property is that the Hilbert transform preserves the
instantaneous amplitude while creating a quadrature counter-
part of the cosinusoidal part through the Bedrosian theorem®.
When the following two conditions are satisfied'’: the ampli-
tude varies slowlier than the phase, i.e. |@(t)| > |a(t)| /|a(t)|,
and the instantaneous frequency™ ¢(t) is itself slowly vary-
ing, i.e. 1 > |p(t)| /|g02(t) , then the Hilbert transform of
a(t) cos @(t) preserves the amplitude and transforms the
cosine in a sine, i.e. #; {a(t)cos p(t)} = a(t)sin@(t) [6].
It naturally leads to the definition of the analytic signal
x4+(t) = x(t) + %#; {x} (t)i of the form

x.(t) = a(t)e'?®, (1.8)

The pair [a(t), ¢(t)] obtained with (1.8) is the so-called canon-
ical pair [6]. Under the above assumptions, the instantaneous
amplitude and phase of an AM-FM signal x(f) can thus be
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recovered by taking the modulus and phase of its associated
analytic signal x(t).

AM-FM-PM signals Non-stationary oscillating signal and
the various concepts introduced above for univariate signals
can be generalized to the bivariate case. This extension rests
on the notion of quaternionic spectral analysis based on an
analogous augmentation [3]. The approach we use leads to
the introduction of meaningful quantities describing instan-
taneous properties of non-stationary bivariate signals and
allows to generalize standard signal processing techniques
to the bivariate case.
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Figure 1.6: AM-FM-PM signal generated with the quadruplet (1.11) presented in Figure 1.7. It is an oscillatory
signal evolving on a time-varying ellipse determined by [a(t), 6(t), x(t)]. The scanning frequency of the
ellipse ¢(t) gives the rate at which the ellipse is scanned.

For a bivariate signal with real-valued components x(t) and
y(t), we make use of the complex representation z(t) = x(t)+
iy(t). The model (1.9) is a relaxed version of the previous
model of monochromatic polarized signal (1.3).
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12: In this definition the deriva-
tive of the instantaneous phase
used for the synthesis of the sig-
nal is called the instantaneous
ellipse scanning frequency. This
is a departure from the work
of Flamant et al. [7]. We will
show latter that the concept of in-
stantaneous frequency is a little
bit tricky for polarized bivariate
signals. The instantaneous fre-
quency of z is defined later and
is different from @(t).

[7]1: Flamant et al. (2019),
Time—frequency analysis of bivari-
ate signals

Definition 1.1.2 An amplitude, frequency and polarization
modulated signal (AM-FM-PM) is given as the complex-valued
signal of the form

z(t) = a(t)e®®) (cos x(t) cos @(t) + i sin x(t) sin @(t)),

(1.9)
assuming
P01 60, 10, |50
5(0) (1.10)
and (;fz(t) < 1.

In (1.9) and (1.10) we have added to the previous instanta-
neous amplitude a(t) > 0 and instantaneous phase @(t), the
instantaneous orientation O(t) and instantaneous ellipticity x(t).
¢@(t) is here called the instantaneous scanning frequency
of the ellipselz. As shown in Figure 1.6, such AM-FM-PM
signal z(t) describes a time evolving elliptical trajectory in
the complex plane. Figure 1.7 presents the corresponding
parameters used for its synthesis. They are defined as

a(t) = 4sin® (it) 2,
O(t) = 2mtt + sin (37t),
x(t) = gsin(Srct + 1) + g, (1.11)

p(t) = @tz + wot + @

with wp, w1 the starting and final elliptic frequencies and ¢g
a given initial phase. Compared to (1.7), this model allows for
a much larger variability in terms of geometry of the signal
trajectory.

Time

Time Time Time

Figure 1.7: Quadruplet of instantaneous parameters used to synthetize the AM-FM-PM signal of Figure 1.6.

The quadruplet is defined as (1.11).

This model implicitely describe the signal as a continuous
sequence of ellipses whose shape and orientation vary with
time. The instantaneous phase @(t) gives the position of the



signal on the ellipse with respect to its great axis. a(t), O(t)
and x(t) are geometrical parameters characterizing the ellipse
drawn by the signal in the complex plane, which evolves
over time. O(t) and x(t) are called instantaneous polarization
parameters. The instantaneous amplitude a(t) defines the size
of the ellipse. The instantaneous orientation 0(t) corresponds
to the angle of the great axis with respect to the real axis. The
instantaneous ellipticity x(t) determines the ratio between
the minor and the major axis of the ellipse. The sign of x(t)
determines the direction in which the ellipse is scanned,
counter-clockwise for x(t) > 0 and clockwise for x(t) < 0.
In particular, x(¢) = 7/4 and x(t) = —n/4 corresponds to
a counter-clockwise and clockwise circular instantaneous
polarization respectively'® whereas x(t) = 0 corresponds to
a linear instantaneous polarization.

Time

Time

Introduction of the model (1.9) by Flamant [3] and Lilly [8]
allows to go behond the classical model a(t)e’?® used for
the analytic signal (1.8). This new model allows to overcome
the limitation of (1.8) in the description of non-circular bi-
variate signals. As a simple example, Figure 1.8 presents
the case of a monochromatic elliptical signal z(¢) defined
as (1.9) with constant parameters a4, 0, x and a linear phase
p(t) = 2nwot + @o. x is fixed to a value # m/4 such that
the polarization is strictly elliptical (non-circular). We de-
compose z(t) into its modulus a(t) = |z(t)| and its argument
@(t) = —ilnz(t). Because of the underlying assumption of
circular polarization in (1.8), both a(t) and ¢(t) exhibit high
frequency oscillations and offer a complicated description of
the signal intrinsic geometry with inflating circles and oscilla-
tory phase). Indeed the amplitude and phase parametrization
seems not adapted since it does not rely on any notion of
polarization. Instead, (1.9) offers a simpler representation of
bivariate signals with interpretable parameters in terms of
instantaneous trajectory.

1.1 Introduction | 11

13: As before, ¢(t) > 0 by con-
vention.

Figure 1.8: Modulus a(t) and
argument ¢@(f) of a complex-
valued monochromatic signal
z(t) defined with (1.5). Although
the synthesis polarization pa-
rameters are constant, the modu-
lus and phase time-series of z(t)
are not interpretable.

[8]: Lilly et al. (2006), Wavelet
ridge diagnosis of time-varying el-
liptical signals with application to
an oceanic eddy
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1.1.3

[9]: Cohen et al. (1999), On an
ambiguity in the definition of the
amplitude and phase of a signal

1.2

Issues and limitations of the AM-FM-PM model

Unfortunately, the representation (1.9) given by the four
degrees of freedom introduced above is degenerate in certain
limiting cases. This is intimately related to the degeneracy of
the mapping from the data to the representation parameters.
This problem is well known in the case of real-valued AM-FM
signals [9] in particular for signals with vanishing amplitude.
As the phase triplet [O(t), x(t), ¢(t)] corresponds to Euler
angle parametrization of 3D rotations [3], the nature of the
indeterminacy is in the Euler angle singularity. The mapping
between 3D rotations and Euler angles is degenerated. This
chapter reviews and investigates alternatives representations
in order to find another representation not affected by the
same limitation. We address the following questions:

1. Is there a general representation of AM-FM-PM signals
with interpretable parameters in terms of instanta-
neous trajectory which is not limited to some particular
polarization cases ?

2. How to estimate the degrees of freedom of AM-FM-PM
signals from the data ? More precisely, we want to seek
robust and numerically stable methods to do so.

In this context, quaternions offer an appealing solution,
better suited than complex numbers used so far. They have
4 dimensions, equal to the number of degrees of freedom
of AM-FM-PM signals. The quaternionic formalism used in
this chapter was recently introduced by Flamant et al. [7].
We focus here on the practical estimation steps and their
impact on the model degeneracy . We investigate specificities
of bivariate signal processing when trying to estimate the
instantaneous parameters of the AM-FM-PM model (1.9).

Instantaneous parameters of
AM-FM-PM signals

In the first place, Section 1.1 introduced the concept of am-
plitude, polarization and frequency modulated signals as a
particular case of non-stationary bivariate signals that holds
a geometric information. We saw that the instantaneous
parameters of real-valued AM-FM signals are obtained un-
equivocally thanks to the introduction of the associated ana-
lytic signal. Section 1.2.2 presents the quaternionic formalism
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introduced by Flamant et al. [3, 7] for the analysis of AM-
FM-PM signals'. Section 1.2.3 defines relevant quantities for
the analysis of such signals, namely the instantaneous Stokes
parameters. The three polarization parameters a(t), 0(t) and
X (t) derive from these quantities. Contrarily to the univari-
ate case, Section 1.2.4 shows that the polarized model (1.9)
leads to intrinsic indeterminacies. Section 1.3 enumerates
possible alternative representations in order to circumvent
those limitations, and discusses their pros and cons.

Basics of quaternions and quaternionic
harmonic analysis

The set of quaternions H is an extension of complex numbers
in dimension 4. It forms an associative algebra over the real
numbers but the multiplication is not commutative which
complicates manipulations. A specificity of quaternionsis the
existence of 3 differents roots of —1: 7, j and k. These roots
are different axes of H with which we define the cartesian
form of any quaternion q € H as

g=a+ib+jc+kd,

where a € R is its real part and b, ¢, d € R are coefficients
of its imaginary (or vector) part. Multiplications can be com-
puted through associativity by respecting the following cyclic
rules for the multiplication of imaginary components:

2=2=k*=-1
ij=—ji=k,
ki=—-ki=7j,
jk=—kj=i.

For each axis p = i, j, k the quaternion exponential is
defined as'® eF? = cos ¢ + psin ¢ for a given ¢ € R. Other
basic notions on quaternion algebra needed for this chapter
are detailed in Appendix A.1.

In particular, the canonical involution of axis j is such that
7 = —jgj = a- 1b + jc — kd (respectively for j and k).
We denote g7 = q =a + ib — jc + kd the combination of

an involution and a conjugation of axis j (respectively for i
and k).

14: Appendix A.l gives basic
elements on quaternion al-
gebra. In particular, q is said
to be "pure" if a = 0. The
quaternion conjugate of g is
definedas g =a —ib — jc — kd.
The modulus is defined as
g = a2 + b2 + 2 + d% and q is
said to be a unit quaternion if
g =1.

We define C; =
{a+ib,beR} c H as the
space generated by the couple
{1, i}. In the same way we note
C; and Cy the spaces generated
by the couples {1,7} and {1, k}
respectively. C;, C; and Cg
are isomorphic to C. In these
subsets, the multiplication is
commutative.

15: This definition is valid for
any pure quaternion y i.e. for all
€ Hsuch that p? = -



14 | 1 Non-stationary bivariate signals analysis

1.2.2

16: This is the equivalent of the
Hermitian symmetry of the com-
plex Fourier transform. See Ap-
pendix A.2 for further explana-
tion of this statement. The proof
is straightforward: remarks that
for z(t) = x(t) + iy(t) we get
Z(w) = X(w) + iY(w) by lin-
earity of the QFT (quaternion
Fourier transform), as x(t) and
y(t) are real-valued, X(w) and
Y(w) are Cj-valued. Being the
Fourier transform of real-valued
signals, X(w) and Y(w) verify
the Hermitian symmetry, such
that Z(-w) = X(w) + iY(w).
The proof ends by noting that

Z(w) =X(w)+iY(w).

The various concepts of spectral analysis, filtering etc. can be
extended using quaternions. A brief introduction of quater-
nion spectral analysis is done in Appendix A.2. For a square
integrable bivariate signal z(t) = x(t) + iy(t) the quaternion
Fourier transform is defined as

Z(w) = \/%_n/z(t)e"jwtdt.

Manipulations of this object is tricky because of the non-
commutativity of quaternion multiplication. For example,
moving the quaternion exponential to the left side of the
analyzed signal would define an other object.

(1.12)

(1.12) differs from the complex transform by the choice of
its axis: j. The choice of the orthogonal axis j compared
to i permits to analyse each signal component separately
(compute Fourier transforms along each axis at once). The
polarization analysis can be derived using the quaternion
algebra [3] as elaborated in the next section.

Quaternion embedding of bivarate signals

Let us consider an arbitrary bivariate signal z(t) = x(¢t)+1iy(t)
which is not necessarily a polarized monochromatic signal
nor an AM-FM-PM signal. As z(t) € C; the i-symmetry

property holds'® i.e. Z(-w) = Ta))l. This means that the
frequency content of the quaternionic Fourier transform is
symmetrically distributed around the zero frequency. Thus,
negative frequencies carry redundant information compared
to positive frequencies and removing them from the Fourier
transform of z can be done without loss of information. The
classic complex Fourier transform applied to a complex-
valued signal does not obey the same properties. Similarly
with the complex Fourier transform in the univariate case,
this is the first clue motivating the use of the quaternionic for-
malism for complex-valued signals analysis. This observation
leads to the definition of the quaternion embedding [7]

zy(t) = z(t) + #; {z} (t)]. (1.13)

The practical computation procedure is depicted in Ap-
pendix A.3. It is the equivalent of the analytic signal asso-
ciated to a real-valued signal but in the bivariate case with
#; the quaternionic Hilbert transform defined as a linear
filter operator of frequency response —j sign(w). The spectral
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content of the quaternionic embedding is by construction
Zy(w) = 0Vw € R* and Zy(w) = 2Z(w)Y w € R,. It fol-
lows immediately that Zy(t) € HVt € R and that 2y is
encapsulating the energetic and polarization content of z

such that
/ 2P dt = / zu(t) P dt,

/ z()z(t)7dt = / zu(t)zp(t)7dt.

(1.14) implies that the energy z is conserved as well as (1.15)
shows that its geometric content is conserved in zy.

(1.14)

(115)

A classical interpretation of the action of the complex Hilbert
transform involves AM-FM signals. For a given AM-FM
signal x(f) = a(t)cos@(t) one remarks that #; {x} (t) =
a(t)sin @(t), showing that the Hilbert transform creates a
quadrature counterpart of the analyzed signal [6]. The same
applies to the quaternionic Hilbert transform. For z a bivari-
ate AM-FM-PM signal defined as (1.9), assuming (1.10) and
further technical assumptions on the phase structure?, the
Bedrosian theorem implies'®

Hi{z}(t) = a(t)e’® (cos x(t)sin @(t) —isin x(t)cos @(t)).

(1.16)
Showing that the Hilbert transform does not affect the polar-
ization parameters [a(t), O(t), x(t)] and creates a 7/2 phase
shifted version of z.

As in the real-valued case, we use the Hilbert transform as an
instrument to access instantaneous parameters of AM-FM-
PM signals. In particular Section 1.2.3 uses it to introduce the
notion of instantaneous polarization state.

Instantaneous Stokes parameters

In optics, Stokes parameters are quadratic expectation quanti-
ties measuring the degree of polarization and the shape of the
polarization ellipse [1]. Since we focus on deterministic non-
stationary signals, we are interested in their time-varying
version defining the instantaneous polarization state of non-
stationary bivariate signals. We define the instantaneous Stokes
parameters associated to a non-stationary bivariate signal z
as

zu(t)]* = So(t) and  zw(t)zu(t)7 = S1(t)+iSa(t) — kSa(t)
(117)

17: A particular structure of the
phase is needed in order for the
Hilbert transform to convert a
cosine into a sine and conversely.
The argument is strictly the same
than for the complex Hilbert
transform [6].

18: As in the
case, (1.10) only defines heuristic
conditions. Bedrosian theorem
requires a disjoint spectral
support for sin@(f) and the
different = combinations  of
a(t), 6(t), x(t) involved in each
real and imaginary part of (1.9)
and sin@(t) should be high
frequency compared to other
terms.

real-valued
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Figure 1.9: Polarization curve
representing instantaneous po-
larization evolution of z along
time on the Poincare sphere.

where zy(t) is the quaternionic embedding defined Sec-
tion 1.2.2. Under technical conditions mentioned in Sec-
tion 1.2.2, one can find the following expressions for the
instantaneous Stokes parameters of an AM-FM-PM signal:

So(t) =a(t)?,

S1(t) =a(t)? cos 2x(t) cos 26(t),
So(t) =a(t)? cos2x(t) sin26(t),
Ss(t) =a(t)*sin2x(t).

(1.18)

While they do not depend on the instantaneous phase ¢(t),
they solely characterize the geometry of the instantaneous
trajectory of z in the complex plane. That is, the instanta-
neous polarization ellipse. When focusing on the geometrical
content, we rather consider their normalized version

s1(t) = S1(£)/So(t)  sa(t) = Sa(t)/So(t)  s3(t) = S3(t)/So(t)

(1.19)
for Sp(t) # 0. They define the instantaneous polarization
state of z which is characterized by the instantaneous po-
larization axis: u,(t) = (s1(t), s2(t), s3(t)) € R>. Figure 1.4
illustrates the interpretation of the instantaneous polariza-
tion axis which derives directly from (1.18). The interpretation
is similar to monochromatic polarized signals except that the
polarization axis is now a function of time. Polarization is
now a "local" property.

The normalized instantaneous Stokes parameters (1.19) are
the Cartesian coordinates of the instantaneous polarization
state of z on the Poincaré sphere. As opposed to the classical
introduction of Stokes parameters, we restrict our analysis

5, to deterministic signals which have the property to be fully

polarized i.e. v/S1(t)? + S3(t)? + S3(t)? = So(t) (itis also valid
in the spectral domain). This means that the instantaneous
polarization state of z lies on the surface of the Poincaré
sphere. p,(t) draws a curve on the Poincaré sphere corre-
sponding to the time evolution of the polarization state of an
AM-FM-PM signal. Figure 1.9 illustrates the idea of seeing po-
larization modulation on the Poincaré sphere. For a circularly
polarized signal it follows directly from (1.18) that Stokes
parameters are such that s1(t) = s»(t) = 0 and s3(f) = +1,
depending on x = +7. So the North and South hemispheres
of the Poincaré sphere correspond to counterclockwise and
clockwise polarization.

Stokes parameters do not offer a complete parameterization of
the signal since they lack a phase term. It is not obvious how to
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retrieve the phase term. We summarize some of our attempts
in the next section. As we elaborate in Section 1.4, the addition
of an instantaneous frequency information companion to the
Stokes parameters may be a good solution to complete the
parametrization.

The Euler angle polar form

The Euler angle polar form of the quaternion embedding is
the cornerstone of the quaternionic formalism introduced by
Flamant [3]. It motivates the use of a quaternionic formalism
to build an extension of real-valued signals analysis and
legitimate the previous work of Lilly and Olhede [8][10].
The Euler angle polar form is a particular decomposition of
quaternions by four parameters associated to each axis of H.
In the case of elliptic AM-FM-PM signal, the four parameters
of the Euler angle polar form

zu(t) = a(t)e?0WeFx®piet) (1.20)

are identified to those of (1.9). This is true under technical
conditions on the phase [6, 7]. The quadruplet [a(t), O(t),
X(t), p(t)] is then called the canonical quadruplet. So simply
by reading its phase argument, the quaternionic Hilbert
transform gives access to the instantaneous parameters of an
AM-FM-PM bivariate signal.

The canonical quadruplet can be computed in several ways [7,
8]. One makes use of the instantaneous Stokes parameters
defined in Section 1.2.3. Obviously the estimated instan-
taneous amplitude 4(t) is the modulus of zy(t), which
also corresponds to the square root of So(t). From the
three other instantaneous Stokes parameters we get (t) =
arctan [$,(¢)/51(t)] /2 and {(t) = arcsin$3(t)/2. Those are
directly unwrapped in order to avoid discontinuity of the
instantaneous orientation and phase resulting from the pos-
sible crossing between the major axis of the istantaneous
ellipse and the y axis of the complex plane. The instan-
taneous phase @(t) is then deduced by the logarithm of
a1()ekke=i0® z(1).

Unlike the standard AM-FM model, that has no ambiguity
between instantaneous parameters when conditions (1.10) are

[10]: Lilly et al. (2010), Bivariate
Instantaneous Frequency and Band-
width

19: By convention, estimated
quantities are denoted with a
hat.
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[11]: Hemingway et al. (2018), Per-
spectives on Euler angle singular-
ities, gimbal lock, and the orthogo-
nality of applied forces and applied
moments

satisfied [6], the AM-FM-PM model possesses two fundamen-
tal limitations. First, one can anticipate that the model (1.9)
becomes degenerate when the instantaneous trajectory be-
comes circular i.e. when x(t) = £7. We have especially

pi0) o Tk G ojp(t) — Li(O(B)+A() ,Fh T (@ (FA(L) (1.21)

for any A(t) € R. The signal looses one degree of freedom
and the decomposition (1.20) becomes redundant in the
circular case. This degeneracy is known as the Euler angle
singularity. Equation (1.21) emphasises the indeterminacy
between the instantaneous orientation and instantaneous
phase. In the counterclockwise circular casei.e. y = § taking
A(t) = —0(t) in (1.21) shows that the only valuable quantities
are a(t) and ¢@(t) + O(t). In the clockwise circular casei.e. xy =
—7, they become a(t) and ¢(t) — 6(t). The parametrization
[a(t), O(t), x(t), p(t)] is not adapted in the circular case
because there is no great axis, and thus no instantaneous
orientation 6(t). By analogy with classical mechanics we refer
to this singularity as the gimbal lock, even though these are
two different concepts [11]. In these cases it makes no sense to
consider a great axis given by 0(t) because the instantaneous
trajectory is circular, then the adapted polar decomposition
is zy(t) = a(t)eFrkielr®),

In the case of continuous time signals, the gimbal lock is
tractable if we accept to change the signal model on time
intervals where the signal is circularly polarized. For a bi-
variate signal with a time varying polarization axis passing
from an elliptical to a circular polarization state at time f¢, a
quadruplet [a(t), 0(t), %(t), @(t)] can always be computed
but is no longer unique. One should first compute the instan-
taneous polarization parameters and the instantaneous phase
on the time intervals I C R such that x(t) # +5 Vt € I, and
otherwise use a circular parametrization z(t) = a(t)ei(f’(t). A
quadruplet can be estimated along the whole time axis by
imposing regularity conditions or an underlying model for

O(t) and @(t).

The situation is further complicated in the case of discrete
time signals. Due to numerical errors, the above degener-
acy extends beyond the case where x = +7t/4 exactly. The
discretization of the quaternionic Hilbert transform causes
approximation errors which could arise from a phenomenon
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Figure 1.10: (a) is the estimated quadruplet [ﬁ (), 6(t), (), o), ] from the signal presented in Figure 1.6.
We expect to reconstruct the quadruplet presented in (1.11) and Figure 1.7, but we are limited by the
instrumental gimbal lock (aside errors du to the vanishing amplitude) which causes estimations errors in
time intervals when z(t) is quasi-circular. Zooms on a problematic time region are presented for (t) and
X(t). The corresponding time region is reported by dashed lines. In this case the instantaneous frequency is
near the edge of the frequency domain which amplifies the phenomenon. This time the instrumental gimbal

lock induces typical spurious jumps (continuously) in O(t). The instantaneous amplitude is replaced by a
Tukey window for (b), which result in a more comon pattern of the estimated parameters.

we call instrumental gimbal lock, mixing O(t) and P(t) esti-
mates in the near circular case | x(t)+ %l < €. It results that
for discrete signals the intervals are much more difficult
to handle. The proposed procedure creating surrogates in-
stantaneous parameters is operable under hard constrained
parameter models?.

It is well known that the computation of the discrete-time
complex Hilbert transform induces approximation errors
impacting instantaneous frequency approximation. These
limitations transfer to the discrete-time quaternionic Hilbert
transform in a way that for some polarization patterns they
lead to confusions between the instantaneous phase?! @[]
and the instantaneous orientation O[n]. That is, for nearly cir-
cular polarizations, estimates 0 [1] exhibit fast variations, tak-
ing some part of the information normally supported by ¢[n].
In other words, assuming O[n], x[n], @[n] are the "true"
parameters of some bivariate signal and O[n], ¢[n] their
respective estimates®?, then for | x[nl+ %| < € (typically for
€ < 1) the numerical errors induce a non-zero term A[n]
such that 8[n] = 6[n] + Aln] and P[n] = @[n] - Aln]. Ap-

20: The instrumental gimbal
lock has the effect of creating re-
gions where x(t) # ¥§ but 0(t)
and @(t) can’t be disentangled
from zy. Then, a choice has to be
made to select intervals on which
we are consciously "blind".

21: In this paragraph, the triplet
[0[n], x[n], p[n]] is the dis-
crete version of the previous
[6(t), x(t), @(t)] and respec-
tively for z[n].

22: @[n]and [n] are estimated
from zy[n] with the procedure
outlined in Section 1.2



20 | 1 Non-stationary bivariate signals analysis

23: This may result from cou-
pled effects with separability
conditions of the Bedrosian the-
orem.

24: Forany subset U C H, Projy,
is the projection operator on U.
Thus for g = a +ib + jc + kd,
Projc. {q} = a +ib.

proximation errors of the discrete-time quaternionic Hilbert
transform induce what we call an instrumental (or analogic)
gimbal lock. Figure 1.10 illustrates the instrumental gimbal
lock on the synthetised signal presented in Section 1.1.2. It
is different from the gimbal lock identified in Section 1.2.4
in the sense that there is no intrinsic indetermination since
x[n] # +7 for all n. The phenomenon is even more visible for
scanning frequency of the ellipse @(t) near the edges of the
frequency spectrum?3. Such approximation errors when com-
puting the discrete-time Hilbert transform does not influence
the validity of the synthesis scheme i.e. we always have that*!
Projc. {zu[n]} = z[n], but the only damper is that O[n] and
@[n] are not the expected ones. It is amplified by Gibbs
phenomenon and is more problematic for |¢(t)| < f;/4 and
|@(t)| > fs/4 where f; is the sampling frequency.

In practice, one must impose an underlying model for 6[n]
and @[n] in order to elude the indetermination. We suggest
a simple optimization procedure with possible constraints:

. N-1 , ot 2
04, @ are such that &, p = argmin Z ‘Zu-u[]’l] — d[n]eifalrlpitlnlpipgln] (1.22)
a, n=0

1.3

where the instantaneous orientation 6, and instantaneous
phase ¢ follow a regular trend (e.g. a spline) associated
with the parameters a and f respectively. The suggested
procedure was tested on toy examples. The results show that
it is not always possible to retrieve the synthesis parameters,
and to do so, strong constraints should be applied to the
parameter models.

Alternative representations of
AM-FM-PM signals

Section 1.2 has shown that a well suited parametrization of a
polarized signal z appears in the Euler angle polar decom-
position of its quaternion embedding zy. Unfortunately this
parametrization incorporates an intrinsic indeterminacy for
certain polarization states, namely circular states, and thus is
not adapted in a general analysis framework. In this section
we debate other possible representations of the quaternionic
embedding zy in order to find a better suited one from
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an analysis point of view. We are seeking an interpretable
representation not limited to certain polarization cases.

Vector and complex representations

The quaternion Fourier transform defined in (1.12) consists in
applying a complex Fourier transform to the real and imagi-
nary parts of a complex-valued signal, the introduction of
quaternion being motivated by the manipulation they allow.
Moreover, the canonical quadruplet [a(t), O(t), x(t), ¢(t)]
was first defined beside a quaternionic formalism [8]. These
remarks appeal for different representations of polarized
bivariate signals in the complex formalism. In the classical
complex-valued Fourier framework, the definition of the
quadruplet involves a first projection step of z(f) into two
orthogonal polarization states?

Vector representation One classic representation consists
in considering x(t) and y(t) independently?® [2, 10]. This
approach is motivated by a vectorial representation of bi-
variate signals: [x(t), y(t)]T, from which each component is
analysed separate1y27. Considering x(t) and y(t) as two real-
valued AM-FM signals, one can compute their associated
analytic signals and decompose them as x (t) = a,(t)e?~")
and y.(t) = ay(t)e(f’y(t). This defines a parametrization of
the bivariate signal z(t) = x(t) + iy(t) by the quadruplet
[ax(t), ay(t), ox(t), goy(t)]. Expressions of this quadruplet
according to parameters of the Euler angle polar form (1.20)
are the following;:

ax(t) =

a(t) = ”(t)\h T5), @y(t) = glt) - arctan 68

(1.23)

for a2(t) + a;(t) (non-circular case). As this parametrization
is associated to an orthogonal basis of R?, there are two linear
polarization states for which the first amplitude a,(t) or the
second ay,(t) vanishes?®

Complex representation Another approach consists in con-
sidering z(t) and its complex conjugate®” z(t) [2, 10]. This
way we get two circular components z(t) = a,(t)e?+®

25: Two  polarization axes
t1, 42 € R3 represent orthogo-
nal states if they are anti-aligned:
<H1,H2> -1 where (.,.)
stands for the wusual scalar
product of R3.

26: It corresponds to a projec-
tion of the signal on the two
orthogonal linear polarization
states g1 = (1,0, 0) and pp =
(-1, 0, 0).

27: Here the subscript T stands
for the vector transpose.

&m, @x(t) = @(t) + arctan (tan O(t) tan x(t)),

28: ay(t) and a,(t) vanish when

w(t) = (1,0,0) and pa(t) =
(=1, 0, 0) respectively.

29: It corresponds to a projec-
tion of the signal on the orthog-
onal polarization states py; =
(0,0, 1)and o = (0, 0, -1).
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30: Remark that s3(t) = —1 and
thus a,(t) = 0 for a clockwise cir-
cular polarization state, and re-
spectively for counterclockwise
circular polarization state with
s3(t) = 1 which implies a_(t) =
0.

[12]: Lilly et al. (2012), Analysis
of Modulated Multivariate Oscilla-
tions

31: The point is that one param-
eter is indeterminate even if the
energy of z is non zero.

1.3.2

[13]: Ell et al. (2014), Quaternion
Fourier Transforms for Signal and
Image Processing

and z_(t) = a_(t)e?-®) which are called the counterclock-
wise and clockwise rotary components respectively. They
are the analytic signals associated to the original bivariate
signal z(t) and its complex conjugate z(t). This way we build

the decomposition z(t) = (z+(t) + z—(t))/2 parametrized by
[as(t), a_(t), p+(t), p—(t)]. Each of these parameters has a
non-linear dependence on the previous Euler angle parame-
ters:

a(t) =a(t)\y1+ss3(t), @(t)=@(t)+0(t),
a_(t) = a(OVI = s3(t),  -(t) = (t) - O(t).

By construction z.(t) and z_(t) vanish for clockwise and
counterclockwise circular polarization states respective1y30.

(1.24)

Clearly the vector and complex representations lie in some
particular projection of z(t) on two orthogonal polariza-
tion states while the quaternionic approach does not. Aside
technical assumptions these projections are not motivated
since the instantaneous parameters are not attached to any
polarization state. Separately none of the introduced param-
eters are interpretable in terms of instantaneous polarization
ellipse property. Each one of these two representations in-
troduces parameters as non linear functions of the polariza-
tion parameters [a(t), O(t), x(t), @(t)]. However, unlike the
quaternionic approach, the vectorial approach does gener-
alize to other multivariate signals [12]. Expressions of the
Euler angle polar form parameters according to these two
parametrizations can be found in [3].

Those two representations also have problematic cases. When
the instantaneous polarization state of the analysed signal
p=(t) is equal to one of the two orthogonal polarization
states pq or o used by the representation, the corresponding
component (e.g. z+ or z_ for the complex representation)
vanishes and its phase is indeterminate®. We observe the
same behaviour as for the instrumental gimbal lock: when
Pz (t) is close to py (or pp), then discretization of the Hilbert
transform induces errors on phase estimation.

Symplectic forms

Previous examples have shown that all representations are
not equal in terms of interpretation and usefulness. Equa-
tion (1.13) directly provides the Cayley Dickson form of the
quaternionic embedding [13]
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zu(t) = z1(t) + za(t)j

with Zl(t) = le(t) + iZli(t) and Zz(t) = Zzl(t) + iZzi(t). In
this decomposition each z11(t), z1;(t), z21(t) and z»;(t) are
the parameters. From (1.13) it is clear that z;(t) = z(t) and
that z(t) is the 7 phase shifted version presented in (1.16).
Then the Cayley Dickson form gives the parametrization
[x(t), x+(t), y(t), y+(t)]. The decomposition is trivially use-
less in practice, as it introduces parameters that are the
analyzed signals (the two components of z) themselves and
their associated analytic signals.

The Cayley Dickson form is a particular case of the symplectic
form
zu(t) = (a(t) + b(H)p) + (c(t) + d(t)p)v

with g L v € H and p*> = v* = -1 that encompass

all non-polar representations of quaternions. In particu-
lar, any symplectic form with y,v € {i, j, k}, such as
the Cayley-Dickson, would get the same four parameters
[x(t), x+(t), y(t), y+(t)]. This comes from the linearity of
the quaternionic Hilbert transform. Other symplectic forms
would have at least x(t) as parameter and three polyno-
mial functions of {x.(t), y(t), y+(t)}. Overall, non-polar
representations seem not adapted to describe instantaneous
properties of polarized signals. Since they do not rely on
any notion of frequency or even angle, the possibilities of
geometric interpretation are compromised.

The classic polar form

The Euler angle polar form (1.20) depends on a particular
choice of axes. These axes are chosen in order to match
angles from (1.9) with those of (1.20). One may look for other
quaternion polar decompositions expecting no particular
indeterminate case. The general quaternion polar form [13]

zu(t) = a(t)e®) (1.25)

is defined with a pure quaternion argument Q(¢) € H and
a modulus a(t) € R,. Again a(t) is referred to as the instan-
taneous amplitude of the signal. The argument is decom-
posed in a phase term ¢(f) € R and a pure unit quater-
nion u(t) € span{i, j, k} which are the angle and the
axis of the rotation represented by zy(t)/a(t) respectively:

Q(t) = p()u(t).

[13]: Ell et al. (2014), Quaternion
Fourier Transforms for Signal and
Image Processing
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Unlike complex signals, the axis of the exponential u(t) is
varying. We get
32: As defined in Appendix A 1,
for any g € H such that g # 0 the (P(t) = arccos [ cos Q(t) cos X(t) Ccos (p(t)
logarithm is defined such that ) ) )
—sin O(t) sin x(t) sin (p(t)] ,
Im {q} Re {q}

—— arccos
[Tm {g}| g1

Equations (1.26) and (1.27) are y(t) = [iwll — s1(t) cos (gD(t) _ arctan tan X(t))

obtained from the vector rep- tan O(t)
resentation presented in Sec- +jy/1 + s1(t) sin (@(t) + arctan (tan O(t) tan x(t))

tion 1.3.1.
+ky/1 = s1(t) sin ((P(t) ~ arctan EZE )(;8) ]
a(t)
/$ [1 —51(t)

+ (1 +s1(t)) sin® [(p(t) + arctan ( tan O(t) tan )((t))]]
(1.27)

(1.26)

In(g) =In|q|+

Since parameters [a(t), Q(t)] and [a(t), (1), y(t)] are not
based on Euler angle decomposition of 3D rotations, they
are not subject to the same drawbacks as the Euler angle
polar form (1.20). That is, there is no indeterminate case
but on the other hand we have lost interpretability. Both
p(t) and ¢(t) are functions of the instantaneous phase ¢(t)
and other geometric parameters. The instantaneous axis
p(t) is rotating. One may see this by computing one of its

spherical coordinates: namely arctan (ui(t)/pi(t)) = () —

tan x(t)
tan O(t) "

arctan

1.3.4 The Cayley-Dickson polar form

Historically, the polar Cayley-Dickson form was introduced
before the interpretation of the Euler polar form [13]. It was an
attempt to build interpretable instantaneous parameters for
AM-FM-PM signals. It introduces two complex parameters
p(t), ¥(t) € C; such that

zu(t) = p(t)e? 1, (1.28)

p(t) is called the complex modulus and (t) the complex phase.
It is easy to see that this form as a particular Euler angle
representation

: i)
zu(t) = |p(t)] & T HT Nk (129)
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with different axes for the decomposition. One would prefer
to use the Euler angle polar form (1.25) since the axes are
adapted to the quantities directly involved in the AM-FM-PM
model (1.9).

Instantaneous frequency and first
instantaneous moments of the QFT

For real-valued AM-FM signals x(t) = a(t) cos ¢(t) the in-
stantaneous frequency w(t) is identified with the derivative
of the phase. It gives the local oscillation frequency of the sig-
nal. Two properties support this interpretation. First, ¢(t) is
identified with the first instantaneous moment of the spectral
energy density m | X, (w)|? [14, 15]. Second, it determines

the ridge of its time-frequency and time-scale transforms
(Gabor or Wavelet transforms for example) [16].

It is less direct to define an instantaneous frequency asso-
ciated to bivariate AM-FM-PM signals. We have seen in
Section 1.2.4 that when polarized signals become circular
the instantaneous phase of the polarized model (1.9) is not
well defined as it is degenerate with the orientation angle
O(t). This prevents the straightforward extension from the
real-valued case.

Lilly and Olhede [12] introduced the notion of joint instanta-
neous frequency in the broader case of oscillating multivariate
signals. They considered the case of multivariate signals
with multiple AM-FM components that have slightly differ-
ent instantaneous frequencies. In this setting it is possible to
generalize the notion of instantaneous frequency as a leading
common frequency from which each component has a small
instantaneous departure. It turns out that this joint instan-
taneous frequency is identified with the first instantaneous
spectral moment of the multivariate signal and also the ridge
of its time-frequency or time-scale transform. Figure 1.11
presents the ridge of the quaternion windowed Fourier trans-
form of the AM-FM-PM signal defined as (1.11).

For a given bivariate signal z, m |zs(t)|* and ||ziu||2 | Z(w)|?
are seen as probability densities describing an amount of
information at time ¢ and frequency w carried by z. Bivariate
signals are also characterized by>® an additional geomet-
ric content which is encapsulated in the spectral polarization

density ”2;”2 Zu(w)Zu(w)7 that can be seen as a density

[14]: Ville (1948), Théorie et Ap-
plications de la Notion de Signal
Analytique

[15]: Marple (1999), Computing
the discrete-time "analytic” signal
via FFT

[16]: Delprat et al. (1992), Asymp-
totic wavelet and Gabor analysis:
extraction of instantaneous frequen-
cies

33: The quaternion-valued spec-
tral density introduced by Fla-
mant [3] is defined with re-
spect to the two Parseval invari-
ants of the quaternion Fourier
transform, see Equations (A.8)
and (A.9) of Appendix A.
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Figure 1.11: Energy spectrogram (a) and polarization spectrogram (b) of the signal presented in Figure 1.6.
The frequency scale is normalized. In this example the signal is monochromatic: wg = w; = 0.25 and the
amplitude is a Tukey window (for visualization puposes). The black line is the first instantaneous moment
of the spectral energy density w,(t). The values of the instaneous Stokes parameters are on the ridge of the

spectrogram.

34: Note that the spectral polar-
ization density is a density on the
Poincaré sphere. It is a quadratic
quantity which is quaternion-
valued and for which each com-
ponent can take negative values.

of geometric information3%. The general results presented
in [12] apply for non stationary polarized signals but are
extended here with the notion of instantaneous polarization
moment defined as the instantaneous moment associated
with the spectral polarization density. If the first order mo-
ments of these spectral densities exist, their instantaneous
contributions w(t) € R and v;(t) € span {1, i, k} are such
that

[oiza@rao= [w.wzora s
and
/a)Zu.u(a))Zu.u(a))*jda):/vz(t)lzu.u(t)lzdt. (1.31)

w;(t) is the first instantaneous moment of the spectral energy
density and v, (t) the first instantaneous moment of the polariza-
tion energy density. As stated in Appendix A.2 Z(w)Z(w)7 =
S1(w) + iSy(w) — kS3(w) so the first instantaneous polar-
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ization moment v;(t) embodies distributions of each nor-
malized Stokes parameter. Thus v;q, v;; and —v; are the
instantaneous contributions to the mean normalized Stokes
parameters s1, s and s3 respectively.

From (1.30) and (1.31) one can find the following expressions
of the instantaneous moments>®

. —1_ 1\
w:(t) = Projg {%} , (1.32)
n(H)zu(H)j !
Vz(t) = Projspan{l,i,k} {%} : (133)

According to the AM-FM-PM model (1.9), we can derive the
following expressions

w(t) = @(t) + O(t)ss(t) (1.34)
and
vaalt) = p(B)si (1) + X(t)szzg
v2i(t) = p(t)sa(t) — XU)SlEB (1.35)

vk (t) = @()sa(t) + 6(t)

(and v;;(t) = 0) for each instantaneous moments (see Ap-
pendix A.4). Expressions (1.35) show that the contribution of
the instantaneous polarization axis i (¢) = (s1(t), sa2(t), s3(t))
to the mean polarization depends on the instantaneous fre-
quency ¢(t) plus a corrective term:

52(t) s1(t)
sa(f)’ sa(t)’

It trivially means that the more the instantaneous ellipse is
scanned, the more important its contribution to the polar-
ization moment is. More interestingly (1.34) shows that the
elliptic instantaneous frequency ¢(t) does not characterize
the local frequency content of the signal just like in the uni-
variate case, because the first instantaneous moment w, ()
(almost surely>°) involves contribution from the derivative
of the instantaneous orientation ().

vo(t) = p)u(t) + [ X () ==, —X(t)—= ot)|. (1.36)

Although in the first introduction of the quaternion formal-
ism @ (t) was called the instantaneous frequency [7], we claim
that it should not be named so¥. It would seem that this

35: See  Equations  (A.12)
and (A.14) of Appendix A.4.

36: The distinction should be
made for constant 6(¢) and lin-
ear polarization states.

37: After  the  preliminar
works [8, 10], Lilly and Olhede
defined w(f) as the joint
instantaneous frequency [12].
A term that they proved to be
better adapted.
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38: Note that ¢(f) can be
retrieved from w.(f) and
[S1(t), Sa(t), Ss(t)] using (1.34).

1.5

misconception is due to the analogy with the univariate case
where the first instantaneous moment of the spectral energy
density corresponds to the instantaneous phase derivative
@(t) [14]. In order to avoid possible confusions, in the context
of AM-FM-PM signal analysis we kept the term instanta-
neous scanning frequency of the ellipse attached to ¢(t) and
the term instantaneous frequency attached to w,(t).

One may remark that the dot product between the instanta-
neous polarization axis and the vector of first instantaneous
polarization moment gives the instantaneous frequency i.e.

Vz181(t) + v2i82(t) — vzss(t) = w:(t). (1.37)

Also, the instantaneous frequency, the third instantaneous
Stokes parameter and the associated instantaneous moment
characterize the instantaneous scanning frequency of the
ellipse, at least in the non circular case, with

w-() + -y (Ds5(8)

]

(1.38)

It follows that the signal is fully characterized by its instanta-
neous polarization and its first instantaneous spectral energy
moment®®: [S1(t), Sa(t), S3(t), w;(t)]. The last term allows to
retrieve the missing phase term as discussed in Section 1.2.3.
Those parameters are non-degenerate observables which can
always be estimated in a noisy setting [3, 12].

Conclusion

We defined the notion of bivariate signals modulated in
both amplitude, frequency and polarization as a general-
ization real-valued AM-FM signals synthetised with four
parameters: [a(t), O(t), x(t), ¢(t)]. AM-FM-PM signals are
a broad class of oscillating bivariate signal with time evolv-
ing elliptical trajectories. They are part of a broader range of
multivariate signals for which several components share a
leading common frequency [12].

It turns out that in some cases an AM-FM-PM signal loses one
degree of freedom, i.e., when the polarization state becomes
circular. This is a concern from an analysis point of view:
for a given signal z, in a noiseless situation, one would not
be able to recover the synthesis parameters. The decoupling
between ¢(t) and the ridge of time-frequency transforms



(which is the instantaneous moment w,(t)) concludes the
discussion of AM-FM-PM signal representations: ¢ (t) could
not be considered as the instantaneous frequency of z and
can’t be retrieved from a time-frequency analysis. Even if the
model (1.9) is well adapted in a synthesis point of view, it
is not true in an analysis framework. A recovery is possible
when imposing constraints on 9(t) and ¢(t) in order to
complete "blind" spots (e.g. regularity constraints).

From the perspective of finding a parametrization not subject
to the same limitations, we reviewed possible quaternion
representations. There are several desirable representation
properties: the representation should be interpretable and
should not have indeterminate cases (at least when the signal
energy is not vanishing). We showed that parametrization
of AM-FM-PM signals different from the Euler angle polar
representation are either not interpretable (classic polar form,
Cayley-Dickson polar form, symplectic forms) or subject
to particular limitations (vector and complex representa-
tions).

This work was motivated by the application presented in
Chapter 3, we were seeking a representation of gravitational
wave signals (which are AM-FM-PM signals) adapted to
the generation algorithm we propose. Considering a large
class of gravitational wave signals, we concatenate each
waveform attribute in a matrix that we expect to be low rank.
Unfortunately the instrumental gimbal lock is prohibiting for
the Euler angle polar representation as a generic solution.

The vector and complex representations also suffer from
limitations: (i) there are cases where one of the two phases is
indeterminate (even if the signal energy is non-zero), (ii) it is
not interpretable for a generic AM-FM-PM signal and (iii) the
parameters are not regular and oscillate. The usage of such
parametrizations associated to two orthogonal polarization
states is limited to certain classes of signals and applications.
In general, and specifically for the cases of interest in this
thesis, it will not be possible to get low rank decomposition
of signal parameters for signals passing through one of these
two polarization states. The classic polar form, the Cayley-
Dickson polar form and the symplectic forms have both
highly oscillating parameters which makes them impractical
for low rank decomposition.

Finally, we found observables characterizing AM-FM-PM
signals which are defined without ambiguity: [S 1(t), Sa(t),

Ss(t), a)z(t)], or equivalently [So(t), s1(t), sa(t), s3(t), a)z(t)].

1.5 Conclusion

29
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These parameters are interpretables and does not suffer
from indeterminacies for non-vanishing signals. They are
observables of a time-frequency representation of the signal.
As such, they can even be estimated in a noisy setting. For a
noiseless signal, the procedure is presented in Section 1.2.4.
In a noisy setting, the estimation procedure is classic: one
estimates the ridge of a signal’s time-frequency transform
and directly read the Stokes parameters on it while w;(t)
corresponds to the ridge skeleton [3, 12].

Nevertheless, and contrarily to other reviewed representa-
tions, the latter include a quantity that rest on a discrete
differentiation for practical implementations: the instanta-
neous frequency w;(t). One need to integrate w,(t) in order
to retrieve the bivariate signal z from its attributes. This ren-
ders the estimations errors of w(t) to scale cumulatively in
the regression error of z and prevented us to consider [Sl(t),
So(t), S3(t), w, (t)] as a possible waveform representation for
the application presented in Chapter 3. As will be detailed in
Chapter 3, the polarization of the waveform modes depends
on the choice of the source frame in which the gravitational
waveform is expanded. A geometrical tricks is used in order
to circumvent Euler angle indeterminacy, which consist in (i)
choosing the source frame to favour elliptic polarization and
(ii) restraining the polarization modulations by considering
a reduced region of the source parameters (and thus avoid
circular polarization states).



Introduction to

gravitational-wave astronomy

In the theory of general relativity, the space-time concept
mathematically represents space and time as two inseparable
and mutually influencing quantities. According to this theory,
gravitational interactions result from deformations in the
geometry of space-time, generated by masses.

Mathematically, space-time is defined as a 4-dimensional
semi-Riemannian manifold!, which is a locally Euclidean
topological space whose geometry is defined by a metric
tensor. The Einstein field equations define the way the metric
relates and evolves with energy or matter contents. Gravi-
tational waves are wave-like solutions of the Einstein field
equations, i.e. variations of the curvature of space-time prop-
agating in space. Gravitational waves are generated by ac-
celerated masses. The generation of substantial amount of
gravitational radiation requires very large masses at relativis-
tic velocities, properties that are only encountered in extreme
astrophysical systems of compact objects such as neutron
stars or black holes.

Both neutron stars and (stellar-mass) black holes are formed
from the gravitational collapse of the core of a massive star.
Neutron stars have a ~ 10-km core made of very dense matter
essentially composed of neutrons. Black holes are even more
compact celestial objects, so compact that they bend space-
time to the point of preventing any matter or radiation from
escaping from the inner region bounded by their horizon.

In our Galaxy it is common to observe pairs of stars, generally
referred to as binary star systems. Those can evolve into pairs
of black holes or/and neutron stars following the collapse of
each object, thus forming compact binaries.

When the two objects are sufficiently close to each other, they
radiate a significant fraction of their binding energy in the
form of gravitational waves and gradually move even closer,
eventually leading the final merger. During the inspiral, the
two components orbit around each other reaching relative
velocities close to the speed of light. Finally, the two objects
merge into a black hole whose mass is roughly the sum of
the two initial bodies” masses. The orbital motion during
the inspiral and merger induces a quasi-periodic gravita-
tional wave with a characteristic phase and amplitude time
evolution.

1: Semi-Riemannian manifolds
are a generalisation of Rieman-
nian manifolds with a smoothly
varying symmetric metric ten-
sor which is non-degenerate [17].
More precisely, it is a manifold
with a pseudo-Riemannian met-
ric i.e. a topological space which
is localy similar to a Euclidean
space for which the require-
ment of positive-definiteness is
relaxed and on which we can
derive differential calculus.

[17]: Petersen (2016), Riemannian
Geometry
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[18]: Abbott et al. (2016), Obser-
vation of Gravitational Waves from
a Binary Black Hole Merger

2: LIGO stands for Laser In-
terferometer Gravitational-Wave
Observatory.

[19]: Abbott et al. (2021), GWTC-
3: Compact Binary Coalescences
Observed by LIGO and Virgo Dur-
ing the Second Part of the Third
Observing Run

[20]: Abbott et al. (2020), GWTC-
2: Compact binary coalescences ob-
served by LIGO and Virgo during
the first half of the 3rd observing run

[21]: Buonanno et al. (1999), Ef-
fective one-body approach to general
relativistic two-body dynamics

2.1

[22]: Einstein (1923), Die Grund-
lage der allgemeinen Relativititsthe-
orie

[23]: Michelson et al. (1887),
LVIII. On the relative motion of the
earth and the luminiferous /Ether

The 14th of September 2015 marked the birth of gravitational-
wave astronomy [18]. The first ever recorded gravitational
wave was detected by both LIGO? instruments. It is the
product of the coalescence of two black holes of around 36 and
29 solar masses. The two objects orbiting at relativistic speed
merged and produced a single 62 solar masses black hole.
The event, located at more than one billion light-years from
Earth, released 3 solar masses as gravitational radiation.

Since then, about 90 signals have been detected by the LIGO-
Virgo collaboration [19] that are associated with the coales-
cence of compact binaries composed of either black holes
and/or neutron stars. The majority of the sources detected
so far are binary black holes [20], a type of source on which
we focus in this manuscript.

Some of the details of the source dynamics get imprinted
into the emitted gravitational wave. As a result, proper-
ties of the source can be learned from the analysis of the
gravitational-wave signal. Accurate gravitational waveform
models are deduced from the resolution of the source dy-
namics which is a difficult relativistic problem [21]. The
evaluation of the astrophysical waveform models can be com-
putationally demanding and thus resulting in an inflation of
the computational budget.

Based on the generic model introduced in the previous
chapter, this chapter is dedicated to the development of
models that approximate theoretical gravitational waveforms
but are much faster to compute.

Gravitational-wave theory

Published in 1905, the theory of general relativity succesfully
resolves the contradictions between Newtonian mechanics
and Maxwell theory of electromagnetism [22]. It reformulates
laws of classical mechanics and makes them compatible with
the invariance of the speed of light ¢ in a vacuum showed by
Michelson and Morley [23].

In GR (general relativity) spacetime is a 4-dimensional semi-
Riemannian manifold. Its geometry is described by the Ein-
stein tensor G v defined as

1
Gyv = Ryy — Eg‘uvR/



2.1 Gravitational-wave theory | 33

with R v the Ricci curvature tensor, R the scalar curvature
and g, the metric tensor which allows to compute distances
between spacetime points. p and v denote the time and
spatial coordinates.

The Einstein field equations associate the geometry of space-
time with the mass-energy evolving in it as

8nG
G w = TT;JV/
where G the Newtonian’s gravitational constant and T, the
stress-energy tensor linked to the mass-energy distribution.

The metric tensor g, includes information about spacetime
curvature as it characterizes the spacetime interval®:

ds? = gpdxtdx’.

In the flat Minkowski spacetime with coordinates (ct, x, y, z),
the Minkowski metric reads

-1 000
10 100
=10 01 0
0 001
and the invariant spacetime interval is* ds? = —c2dt? + dx? +

dy? + dz>.

Einstein’s equations are non-linear, but considering a weak
pertubation /1, of the metric 1,

Quv = Muv + hyy with || < 1,

they can be linearized as

- - — - 161G
Dhluv - nyvapaahpg - 8pavhyp - ap&!lhvp = _TTyv,
where EHV = hy —(1/2)n MWEW is the traceless tensor and
O = g1"d,0, is the d’Alembert operator. In an appropriate
coordinate system, namely the transverse-traceless-temporal
gauge, the above equation simplifies in a wave equation®

1 9?2
2 _
(v -5 _8t2) hyy =0,

whose solutions are called "gravitational waves".

Gravitational waves are transverse waves propagating at

3: In this section we use the
Einstein summation convention
that consists in summing over in-
dexes that are repeated in upper
and lower position.

4: For two events E; and
E, with respective coordinates
$1 = (ctl,xl,yl,zl) and s, =
(cta, X2, Y2, 22), their distance is
computed as a spacetime inter-
val:

As? = —Cz(tz - tl)z +(x3 —X1)2

+ (2 —y1)* + (z2 — 21)%

5. Here we denoted V2 =
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6: In the following, we denote
vector objects with an arrow —
and tensors with a double ar-
row «>. The arrows are removed
when expressing the objects in a
given coordinate frame.

Plus o
Cross o

Time

speed of light. Because the metric is the Minkowski metric
plus a small spatial perturbation, we can explicitely write
this metric for the three-dimensional Euclidean space. Con-
sidering a coordinate system such that its z axis is aligned
with the propagation direction, we define a vector® k which
points from the source to the observer, such that

»
I
=)

The matrix associated to the metric tensor perturbation
writes

hy hyx O
h=hx —hy O
0 0 O

with /4 and hy two independent degrees of freedom, func-

tions of t — k.7/c, and corresponding to two polarizations:
plus and cross polarizations respectively.

v

Figure 2.1: Effect of the plus and cross polarizations on a ring of test particles in the transverse (x, i) plane
with respect to the propagation direction z. There is no displacement along the direction of propagation. The
cross polarization is a 71/4-rotated version of the plus polarization.

It can also be presented as
h = h+€+ + hxeX

where

1 0 0 010
ey = 0 -1 0 and ey = 1 00
0 0 O 0 0O

are polarization matrices associated to the polarization basis
tensors e, and ey . They are defined such as % = pRpP—(®q
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and ¢y =P ® 3§ — 4 ® P for p and 7 the unit vectors defining
the wave frame. For an inertial frame (2], }, &%) attached to

the source, the wave frame (7, , k) is such that

_ Eéxl? -
q= - and p=kxq.
&L x k|

In this setting, the two polarizations lead to the physical effect
depicted in Figure 2.1. This figure shows the effect of a gravi-
tational wave on a ring of test particles in "free fall" (subject
to gravity only). Plus polarization alternates between vertical
stretching /horizontal squeezing and conversely. Cross polar-
ization is identical to plus polarization with a rotation by 7/4.
Gravitational waves are thus intrinsically bivariate signals,
with two signals /1, and hy associated to each polarization.

Gravitational-wave observatories

The Virgo detector

35

Virgo’ is a major European experiment designed to detect  7: Virgois named after the Virgo
gravitational waves [24]. It is located in Cascina, near Pisa  Cluster of about 1500 galaxies in

in Italy, and was put into operation in the early 2000s, see the Virgo constellation.

Figure 2.3.

[24]: Accadia et al. (2012), Virgo:

a laser interferometer to detect grav-

itational waves
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Figure 2.2: Simplified Advanced
Virgo optical layout. A light
beam is emitted and splitted into
the two arms of the detector by
the beam splitted (BS). The inter-
ference pattern of the recombi-
nated light beam at the photode-
tector depends on the relative
length of one arm compared to
the other. When a gravitational
wave passes through the detec-
tor, this relative length is modi-
fied and the interference pattern
is impacted. The mode cleaner
removes spurious modes while
the signal and power recycling
cavities, with the power and sig-
nal recycling mirrors (PRM and
SRM), enhance the sensitivity of
the detector.

Figure 2.3: Aerial view of Virgo
the European gravitational wave
detector. Virgo detector has two
arms of 3 kilometers.

[25]: Maggiore (2007), Gravita-
tional Waves: Volume 1: Theory and
Experiments

8: As the Earth is rotating, the
localization of the source should
varies during the observation
time. The observation time is
suffiently short to suppose 0, ¢
and ¢ to be constant for a given
event and we neglect the time
dependence. In practice the ob-
servation time is shorter than 1.5
seconds which suffices for this
assumption to remain valid.

End mirror

Input mirror

PRM

BS
Laser
D_—_ |

3 km
Fabry-Perot cavity
Input mode cleaner SRM
Photodiodes

The detector has two perpendicular 3 km arms in which a
laser beam is splitted. It measures a signal corresponding
to the relative difference AL of its arm length L thanks to
the interference scheme of the recombined light, see Fig-
ure 2.2. The two recombining beams interfere destructively
and photodiodes count the number of impinging photons.

As the spacetime interval is equal to zero for light (ds? = 0),
we can demonstrate that the effect of a gravitational wave
reaching the detector consists to stretch the detector arms so
the distance travelled by the photons will be different in each
arm [25]. The measured strain writes:

AL

() = By (OFL(6,6,9) + I(DF<(0,9,9) (1)
where F, and Fy are the antenna beam pattern, (6, ¢) the
position of the source in the sky® in spherical coordinates and
1 the polarization angle that characterizes the orientation
between the polarization basis and the observer frame, see

Figure 2.4. As the ratio of two distances, the strain (AL/L) (t)
has no physical unit.
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The observer frame (¢°, 29, 2’) is commonly identified to the

equatorial coordinate system. The polarization basis tensor is
defined in Section 2.1 with respect to p and g, i.e. the x and y
axes of the wave frame respectively. Their orientations are not

known a priori by the observer (p and g are not observables).

Thus we define a second wave frame (i, 7, Iz) associated to
the propagation direction k. Similarly, its x and y axes are
such that

. ang .
M:ﬁ and v=kXu
20 % ¥

3

As illustrated in Figure 2.5, the polarization angle 1) is then
the angle between the x (or i) axes of the two wave frames.

The antenna beam pattern ponderates the response of the
detector depending on the incidence of the wave onto the
instrument. Its derivation is straightforward: for [ and m

the perpendicular unit vectors aligned with the detector
>
arms, the double dot product of the detector tensor d =

(I®1-m ®m)/2 with the polarization basis tensors gives
—>

F, = d : e = d%e,, and respectively for Fy. In the

frame of the detector, i.e. for Eg = [ and for ¢©

T =1, we
get:

1
F.(0,¢,¢) = 5(1 + cos? 6) cos 2¢» cos 21y — cos & sin 2¢ sin 21,

Fi(6,0,¢) = %(1 +cos? §) cos 2¢ sin 2 — cos 6 sin 2¢) cos 21).

Figures 2.4 and 2.5 present the different angles involved in
the antenna beam pattern formula.

The detection of gravitational waves constitutes a technical
feat due to the size of the expected signal. Based on the arm

Figure 2.4: The wave frame
(5,7, k) is defined by the 3 an-
gles (6,¢,1) in the observer
frame (€7, 29, €9). The position
of the source in the sky is de-
fined by (0, ¢) and the orienta-
tion of the polarization basis is
characterized by ¢ thanks to the
introduction of a second wave
frame (i, 7, k).

Figure 2.5: The polarization an-
gle Y connects the two wave
frames: the wave frame defined
in the source frame and the one
defined in the observer frame.
Here the plane containing ii and

0 is viewed from above (E points
towards the reader).
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9: As an analogy, it is equiva-
lent to a variation as small as
the thickness of a human hair be-
tween earth and Alpha Centauri,
the closest star to our sun.

[26]: Acernese et al. (2015), Ad-
vanced Virgo: a second-generation
interferometric gravitational wave
detector

[27]: Acernese et al. (2020), Ad-
vanced Virgo Status

Figure 2.6: Advanced Virgo sen-
sitivity and expected noise con-
tributions in 2015 [28]. The Ad-
vanced Virgo sensitivity curve
(solid black) is the summation of
the different noise contributions.
[28]: Accadia et al. (2012), Ad-
vanced Virgo Technical Design Re-
port

length (3km), a detectable signal is of the size’ (AL/L) ~
10721, Advanced technologies and a specific optical design
are necessary to achieve this minimal target sensitivity.

Different upgrades have been implemented until the detector
became operational for gravitational wave observations in
2017 under the project Advanced Virgo [26, 27]. This second
generation detector is a dual-recycled Michelson interferom-
eter with Fabry-Perot cavities in the arms, see Figure 2.2. The
power of the bright fringe is recycled once by a semi-reflective
mirror, i.e. the Power Recycling Mirror, between the input
mode-cleaner and the Beam Splitter. The mirrors are sus-
pended to a chain of pendulums and the laser beam operates
under vacuum. Compared to the previous first generation
detectors, the signal is recycled by adding a Signal Recycling
Mirror between the Beam Splitter and the detection system.
This broadens the bandwidth of the interferometer in the
high frequency range of the detector.

e Quantum noise

Gravity Gradients

= Suspension thermal noise
Coating Brownian noise
Coating Thermo—optic noise
Substrate Brownian noise
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Total noise
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c
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Virgo is sensitive to gravitational waves for frequencies rang-
ing from ~ 20 Hz to ~ 2000 Hz. At design sensitivity the noise
floor of 3 X 1072*/VHz is reached at 300 Hz. See Figure 2.6
for a review of the most limiting noise sources.

The low frequency sensitivity is limited by seismic noise
and suspension thermal noise. Seismic noise is due to the
motion of the Earth surface as well as to human activity
while thermal noise is due to vibrations of the atoms that
compose the mirrors and suspensions. The mid frequency
sensitivity is mainly limited by thermal noise and quantum
noise. Quantum noise originates from the quantum nature
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of light and relates to the statistical counting uncertainty
when measuring the power at the output part of the inter-
ferometer [25]. Above 300 Hz, the shot noise becomes the
main limitation. The refraction induced by residual gazes in
the tubes is limited by a ultra-high vacuum. Stabilized lasers
are used to limit the fluctuations in the laser power and fre-
quency. Light scattering is limited by an extreme polishing of
the mirrors at a micro-roughness coating of exquisite optical
quality. Electronic noise coupled with other noise sources
can induce spurious non-stationary signals, named glitches,
that are detected and classified.

A worldwide network of detectors

10—18I L ol L sl
M LIGO Hanford

LIGO Livingston
Virgo

L L B L I MR L R R R

N —20
E 10
= 1072 1
g
3
2 1072
1072 -
10—24 . — . S —
10 100 1000
Frequency [Hz]

Advanced Virgo is part of a network that also includes the two
LIGO detectors based in the US: Advanced LIGO Hanford
and Advanced LIGO Livingston. KAGRAY, the Japanese
second generation detector joined the collaboration for the
third run and LIGO-India will be added to the list for the
fifth. An overview of past and future plans for LIGO, Virgo
and KAGRA detectors is presented in Figure 2.8.

Upgrades of the instrument are done in between observing
runs i.e. data collection campaigns for gravitational-wave
astronomy purposes. The first detection of gravitational
waves was announced in 2016 [18] after the first observing
run OL. Virgo joined the LIGO detectors during the second
observing run. The sensitivities obtained by LIGO and Virgo
during the third observing runs are shown in Figure 2.7.

Figure 2.7: Representative sensi-
tivity curves of LIGO and Virgo
detectors during the third ob-
serving run [19]. Contrarily to
the anticipated curve, these ones
include calibration lines and the
correponding harmonics.

10: KAGRA is short for Kamioka
Gravitational Wave Detector, but
is also a homophonic pun of the
Japanese word KAGURA.
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Figure 2.8: Review of the sensitivity of advanced LIGO, advanced Virgo and KAGRA for the past and
future observing runs [29]. Detector sensitivities are given in terms of sensitive luminosity distance for a
1.4 My + 1.4 M binary neutron star system. The O4 and O5 runs have been rescheduled recently and
postponed by six months with respect to what is shown here. The sensitivity of KAGRA has also been
significantly revised.

There are obvious similarities between the instruments. For
example, LIGO-India is a copy of LIGO observatories which
will be located in India. However, there are important pecu-
larities. LIGO detectors are larger than Virgo and KAGRA.
The formers have 4-km arms while the latters have 3-km
arms. KAGRA is the first underground detector with cryo-
genic technology used to cool down the Fabry-Perot mirrors
and reduce the thermal noise. The mirrors are made of
saphir which has excellent properties at low-temperatures.
Its undergrounding reduces drastically seismic noise.

2.2.3 Benefits of a detector network

The data collected by the instruments are shared and analysed
in a joint effort within the LIGO-Virgo-KAGRA collaboration.
The false alarm rate is reduced thanks to a coherent analysis
and the duty cycle is increased. The network of detector
is particularly important for the localization of the source.
Knowing that gravitational waves travel at the speed of light,
the time delays between the arrival at each detector are used
in order to locate the source in the sky with triangulation



224

2.2 Gravitational-wave observatories | 41

techniques. Using timing triangulation, a two detectors net-
work can only conclude on an concentric ring between the
two sites. A three detector network reduces the estimated
location to two points and a four detector network is able to
retrieve the exact sky location. In practice the time of arrivals
are combined with other informations, such as the beam
pattern of the detectors!!, which allows to draw credible
regions on the sky with less than four instruments [29, 30].

Fast inference of sky location is particularly important in the
case of mergers involving neutron stars. For the mergers of
binary neutron stars or a neutron star with a black hole a
short gamma-ray burst is theoretically emitted. We can use
optical telescopes so as to follow a possible electromagnetic
counterpart associated to a gravitational wave emission. The
coordinated observation of gravitational and electromagnetic
radiations is at the core of multi-messenger astronomy. It is a
unique opportunity to study cosmology and the physics of
astrophysical compact objects.

Future observatories

There are plans to improve the sensitivity of the detectors
even further. Detectors will have higher sensitivity (about
one order of magnitude) and allow to expand the observation
to more massive sources. Einstein Telescope is a third gener-
ation European gravitational wave detector project with an
underground infrastructure (beyond a total mass of ~ 200
in solar mass Mg, as allowed by current detectors). The de-
tector will have 10-km arms with cryogenic cooling system,
quantum technologies to reduce the fluctations of light and
active noise mitigation systems. Cosmic Explorer is a similar
US project with two sites, one with 40-km arms and one with
20-km arms. The idea is to increase the amplitude of the ob-
served signal with no increase in the noise by expanding the
arm lengths. Einstein Telescope and Cosmic explorer strive
to observe compact-object binaries from 10> Mg, to 10* M.
Finally LISA is a large-scale space mission of the European
Space Agency designed for mergers of massive black holes
at the center of galaxies, extreme mass ratio inspirals and
speculative astrophysical objects such as cosmic strings. The
instrument will be a constellation of three satellites in helio-
centric orbits forming three space interferometers with arms
of 2.5 million km. It will chase sources between 10 M and
10'° M. Due to the extreme sensitivity, the data collected

11: As the detectors are located
in different geographical areas,
they have different responses
for a given source, see (2.1) and
Figure 2.9. The presence or the
lack of signal in one detector
gives a hint on the possible loca-
tion of the source. For instance
GW170817 reached Virgo close
to 45 degrees, so Virgo was not
observing the signal but this in-
formation was critical for local-
ization.

[29]: Abbott et al. (2020),
Prospects for observing and local-
izing gravitational-wave transients
with Advanced LIGO, Advanced
Virgo and KAGRA

[30]: Fairhurst (2018), Localiza-
tion of transient gravitational wave
sources: beyond triangulation

Figure 2.9: Antenna pattern of
Virgo (Mollweide projection) in
the equatorial coordinate system.
The colors of each sky pixel is
determined by

JE2(6,9,9) + F2(5,, V).

The power antenna pattern is
independent with respect to .
High values ~ 1 are in yellow
and small ones ~ 0 are in blue.
The maximum values are for sig-
nals coming from overhead or
underfoot.
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2.3

Figure 2.10: Whitened observa-
tions (blue) and matched filter
template (red) of GW150914 for
LIGO Hanford detector.

will consist of superpositions of gravitational signals from
possible millions of sources.

Gravitational wave detections

Advanced LIGO and Advanced Virgo detectors have per-
formed three rounds of data acquisition campaigns: O1, O2
and O3. The signals detected by the LIGO-Virgo-KAGRA col-
laboration are listed in the Gravitational Wave Transient Cata-
log GWTC-3 [19]. A total of 90 gravitational waves have been
detected so far. This includes sources at distances ranging
from 40 Mpc to 6 Gpc. All the sources are compact-object bi-
naries composed of stellar-mass black holes and neutron stars
with masses from 1.2 Mg to 106 M. This section reviews
the three data taking campaigns through some examples
of noteworthy detections. The gravitational-wave signature
from the merger of two compact stars will be detailed later
in Section 2.4.2.

0.25 0.30 0.35 0.40 0.45

GW150914 Three events have been detected during O1.
Among them, GW150914 [18] is the first gravitational-wave
signal ever detected. It is also the first observation of the
coalescence of two black holes. The strain was produced
by the merger of two black holes 440 Mpc away from Earth.
The two objects were around 36 My and 31 My, reaching
~ 60% of the speed of light before the final merger. The
remnant is a black hole of 63 M. 3 M were converted into
gravitational radiation observed by the LIGO detectors for
a duration of 0.2s. GW150914 proved the existence of BBHs
(binaries of black holes). The announcement of its confident
detection in 2016 [18] marked the birth of gravitational-waves
astronomy. Figure 2.10 presents a whitened data sample of
LIGO Hanford corresponding to GW150914 data segment.
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GW170817 Among the 8 confident detections made dur-
ing O2 by LIGO and Virgo, GW170817 [31] is the first ever
detected gravitational-wave from a binary neutron star. Be-
cause of the relatively small mass of the binary, the observed
signal (visible for 100s) is primarily related to the inspiral
phase of the coalescence ; the merger and postmerger are
not in the sensitive band of the instruments. GW170817 is
also the first multi-messenger observation [32] as a range of
electromagnetic counterparts have been observed together
with gravitational waves. For example, 1.7 s after the merger
time, the Fermi Gamma-ray Space Telescope and the Interna-
tional Gamma-Ray Astrophysics Laboratory (INTEGRAL)
spacecraft detected a gamma-ray burst that also originated
from the BNS (binary neutron star) merger. Multimessenger
observations can bring tremendous contributions through
several aspects, e.g. it is an alternative way to measure the
Hubble constant [33] and test general relativity [34]. The
electromagnetic observation provides important information
on a long standing question concerning the production of
such heavy elements such as gold and platinium, found to be
produced in the aftermaths of BNS mergers. Another BNS
merger was observed during O3, however no electromagnetic
counterpart was detected.

GW200105
binary mergers were observed for the first time, i.e. NS-
BH (black hole - neutron star binary) coalescences, and
GW200105is the first [35]. The nature of the objects is deduced
by the inferred component masses, about 8.9 M and 1.9 M.
The merger have taken place at 280 Mpc. It is an opportunity
to study matter under extreme conditions and the formation
channels of such binaries.

During the third observing run, two mixed

GW190412 A total of 79 signals were detected during O3.
GW190412 is different from the other observations due to the
asymmetric mass distribution among the two black holes:
~ 30 Mgy and ~ 8 M. The mass ratio of 0.26 allowed to
observe subdominant modes [36]. It is the first signal with
marginal hints of orbital precession. The source parameters
are in a previously unobserved region of the parameter
space, for which we lack an accurate waveform model. With
the scheduled increase in sensitivity of second generation
instruments, we expect to see more of those events with
detectable higher order modes as well as precession induced
modulation in future detections.

[31]: Abbott et al. (2017),
GW170817: Observation of Gravita-
tional Waves from a Binary Neutron
Star Inspiral

[32]: Abbott et al. (2017), Multi-
messenger Observations of a Binary
Neutron Star Merger

[33]: Abbott et al. (2017), A
gravitational-wave standard siren
measurement of the Hubble constant

[34]: Abbott et al. (2019), Tests of
General Relativity with GW170817

[35]: Abbott et al. (2021), Obser-
vation of Gravitational Waves from
Two Neutron Star—Black Hole Coa-
lescences

[36]: Abbott et al. (2020),
GW190412: Observation of a
binary-black-hole coalescence with
asymmetric masses



44 | 2 Introduction to gravitational-wave astronomy

24

2.4.1

2.4.2

12: This is usually referred to as
the Newtonian approximation.

Basics of compact binary coalescences

Phenomenology

We did not characterize how gravitational waves are emitted,
nor what are their sources. The emission of gravitational
waves from a physical system can be estimated to first order
by the "quadrupole formula" [25]. This formula establishes
that gravitational wave radiation requires the temporal vari-
ation of the mass quadrupole. This implies that gravitational
wave sources necessarily have a non-spherically symmetric
mass distribution. Stellar binaries is possibly the simplest
astrophysical system with this property. In the context of
ground-based detectors such as Virgo and LIGO that ob-
serve in the frequency band around 100 Hz, we concentrate
on binaries of stellar-mass compact objects (neutron stars
and black holes) — referred to as compact binaries — that
can possibly generate gravitational waves in this frequency
region. Compact binaries are the only gravitational wave
source detected so far, as discussed in Section 2.3.

Compact binaries gradually lose gravitational potential en-
ergy through gravitational radiation. This causes their orbital
separation to decay until the two objects merge into a rem-
nant, generally a black hole. The binary passes through three
different dynamical regimes during this coalescence process.
Initially, the two objects are far apart, and following slowly
shrinking quasi-circular orbits: this is the inspiral phase.
When the system reach the innermost last stable orbit [25]
the two objects "plunge" onto each other and merge: this
is the merger phase. The merger remnant settles down to
equilibrium: this is the ringdown phase.

Gravitational-wave signature

The gravitational wave signal is directly related to the source
dynamics. The three dynamical regimes described above are
visible in the waveform, see Figure 2.11.

Gravitational wave signature appears to be a amplitude and
frequency modulated signal. The frequency and amplitude
follow a specific time evolution. To leading order, the instan-
taneous frequency of the waveform can be approximated as
a power law!?
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50 X107 Inspiral Merger Ringdown
]

f (t)_ l i 1 3/8 Gl -5/8
oW - 7t \ 256 (tcoal - t) C3 ’

for t < teoal, Where tqoq) is the merger time.

At this crude approximation order, the frequency evolution
solely depends on the chirp mass Jl = (mym2)>/°/(m; +
m,)'/> [25] with the binary components masses 717 and 71;.
The plunge and merger occur when the binary reaches the
Innermost Stable Circular Orbit (ISCO) [25], associated with
the frequency

(2.2)

-1
M
fISCO ~2.2 kHZ (M_Q) ,

where M = mq + my is the total mass.

The merger phase results in a deformed black hole remnant
which "rings" analogously to an elastic body and radiates
gravitational waves at characteristic frequencies correspond-
ing to its quasi normal modes, typically

M

-1

for a rotating black hole with a dimensionless spin of'® 0.7.
This is the maximum frequency reached by the gravitational-
wave signal. This frequency is in the observable band when
M > 450 M.

The signal duration in the detection frequency band (from
20 Hz to few kHz) depends on the component masses. The
mass of a neutron star is typically between ~ 1.1 My and
~ 2.1 Mo", while stellar-mass black holes have a much
wider mass span ranging from 5 Mg to 100 M. The in-band
durationis a fraction of a second for black-hole binaries, while
the signal can last few tenths of seconds for neutron-star
binaries.

Figure 2.11: The three dynamical
regimes of a binary of compact
objects seen in a simulated strain.

13: This is the typical spin range-
for black holes formed by merg-
ers.

14: M denotes the mass of the
Sun.
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2.5

Using the quadrupole formula, the amplitude of the gravita-
tional wave strain can be estimated as

5/6
J
AL/L ~ 4.1 x 1072 | —

100 Mpc) (100 Hz)‘”6
D fmax ’

where D is the luminosity distance in Mpc between the
source and the observer.

Section 3.2.1 goes beyond the crudle and high level descrip-
tion given here, and reviews the various waveform approx-
imants that have the required accuracy to analyse the data
today.

Summary

Gravitational-wave astronomy is a new way to observe the
universe via the warping of space-time induced by the motion
of massive objects. It already gave precious informations
about the existence of black holes and the coalescence of
compact bodies as well as opportunities to test fundamental
physics.

At this date, 90 signals have been detected with sources
from 1.2 M to 106 My at distances up to 6 Gpc. The vast
majority of detected events were emitted by BBHs. 2 BNS and
2 BH-NS coalescences have been detected. Electromagnetic
counterparts have also been observed in association with
the BNS merger GW170817, it is the first multi-messenger
astronomy event involving gravitational waves.

Gravitational waves are bivariate signals, being particularly
adapted to the formalism introduced in Chapter 1. As shown
in Chapters 3 and 4, we can take advantage of the new
formalism introduced separately by Flamant and Lilly [7, 12]
to develop new data analysis techniques in the context of
gravitational-wave astronomy:.



Fast generation of gravitational waveforms

Gravitational-wave astronomy has given access to a range
of astrophysical objects in an unprecedent way by analysing
the ripples of spacetime with implications in astrophysics,
cosmology and possibilities to test theories as general rela-
tivity [37-39].

The number of detected signals is expected to increase with
the technical upgrades of the current instruments as well as
the addition of new observatories in the global network. The
LIGO-Virgo detector network performed three observing
runs over the last seven years. Among the 90 detections,
86 originate from binary black hole mergers. These are all
opportunities to study compact objects through the prism of
gravitational-wave astronomy.

Gravitational-wave modelling is a building block in order to
draw conclusions based on the observations of the detectors.
Theoretical waveforms are compared with observations by
Bayesian data analysis pipelines, drawing posterior proba-
bilities for parameter estimation and applying hypothesis
testing.

This chapter is dedicated to the generation of gravitational
waveforms with machine learning models. We address the
case of waveform modelling for spin-aligned and precessing
BBH sources. The core of the methods is based on a judicious
choice of signal representation, which leads to the introduc-
tion of waveform attributes with smooth variations with
respect to the source parameters. The appropriateness of the
representation makes possible the use of standard machine
learning methods to get an operable waveform generator.

We first start by briefly reviewing the current state of grav-
itational wave data analysis to establish the context and
motivations.

[37]: Kimball et al. (2021), Evi-
dence for Hierarchical Black Hole
Mergers in the Second LIGO-Virgo
Gravitational Wave Catalog

[38]: The LIGO Scientific Collab-
oration et al. (2022), Tests of gen-
eral relativity with GWTC-3

[39]: The LIGO Scientific Collab-
oration et al. (2021), The popula-
tion of merging compact binaries
inferred using gravitational waves
through GWTC-3
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3.1

3.1.1

[40]: Klimenko et al. (2004), A
wavelet method for detection of grav-
itational wave bursts

[41]: Klimenko et al. (2016),
Method for detection and recon-
struction of gravitational wave tran-
sients with networks of advanced
detectors

[42]: Usman et al. (2016), The Py-
CBC search for gravitational waves
from compact binary coalescence
[43]: Cannon et al. (2012), To-
ward early detection of gravitational
waves from compact binary coales-
cence

1: Note that the template bank
used for detection is fixed and
is not necessarily sampled regu-
larly over the binary parameters.

Gravitational-wave data analysis
in a nutshell

Search for gravitational-wave transients

Several approaches are used to detect gravitational-wave
signals. For example, GW150914 was initially detected with
coherent WaveBurst pipeline [40, 41] which is an unmod-
eled search algorithm identifying clusters of excess power
in wavelet transforms with different resolutions. While the
unmodeled approach provides a way to detect unantici-
pated signals such as GW150914, standard matched filtering
techniques are widely used in the gravitational-wave data
analysis [42, 43]. Matched filtering pipelines are less flexible
but more sensitive to weaker signals. For a detector d, the
matched filtering detection statistic is given by

X H*

called signal-to-noise ratio (SNR), where S is the estimated
power spectral density of the noise, X; and Hy are the
Fourier transfoms of the recorded signal x; and a waveform
template /1y associated to a set of physical parameters 9. The
frequency domain €); over which the integral is computed
is determined by the bandwith of the detector’s data. © is a
fixed collection of parameter sets, it is constructed in order
to pave the region of expected signals'. The network SNR is

defined as
pret(t) = [ D7 pa2(b).
d

It combines the SNR of individual detectors and is used to
assess the False Alarm Rate. These two statistics strongly
depend on the validity of the template bank and thus on the
waveform approximants.

e2mtdf  (3.)

The network SNR is a detection statistics which can be in-
volved in the computation of the p-value used to define
confident detections. The p-value ranks the significance of
a candidate event being a gravitational wave comparatively
to the rate at which the detectors produce noise with the
same detection statistics. Its computation needs to estimate
the noise background, which is a difficult task knowing that
the noise is not really stationary nor Gaussian and that it
is impossible to configure the detectors to have signal-free
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measurements. It is considered that the p-value is under the
detection threshold for roughly pnet(t) > 8.

Inference of source parameters

Once the signal has been detected, the nature and the prop-
erties of the sources are inferred from the observations made
by gravitational wave detectors. The waveform properties
are closely connected to the source parameters. For instance,
the masses of the objects can be inferred from the frequency
evolution of the signal. The luminosity distance (the distance
from the source to the observer) can be inferred from the am-
plitude. The sky location of the source can be retrieved from
the differences between the time of arrival at each detector.
From the amplitude and phase modulations (i.e. polarization
modulations, see Chapter 4) we can infer spins and orbital
eccentricity.

The Bayesian formalism is particularly adapted for parameter
inference and hypothesis testing. It derives from the Bayes’
theorem and standard rules of probability theory. For two
statistical events A and B the Bayes’ theorem reads

P(A[B)P(B)

P(Bl4) = =555

For some observed data A and hypothesis B, P(A|B) is the
likelihood of A given B, P(B|A) is the posterior distribution
i.e. the updated version of the prior distribution P(B) ac-
counting the new information broughtby the data A and
[P(A) is the marginal likelihood or model evidence.

In the context of gravitational wave data analysis, we want
to infer source parameters 9 (e.g. masses, spins etc.) given a
set of observed data x, a model # and a prior information I.
Bayes’ theorem gives the posterior density function

P(x|S, %, )P(3|%, )
P(x|7, 1)

PS|x, %,1) = (3.2)
The denominator is often neglected as it applies to all param-
eter sets in the parameter spacez.

For a given event, the detector observation is a gravita-
tional wave signal s corrupted by an additive noise®: x(t) =
s(t) + n(t). The noise is supposed to be a Gaussian and sta-
tionary process with zero mean on a short time segment
around the event. The likelihood is generally computed on

2: The important rela-
tion is P(S|x, #,1I) o
P(x|9,%,)P(S|%,I). Com-
putation of the normalization
factor for the posterior estimate
is straightforward. As a matter
of fact, Bayesian methods can be
applied without insuring that
each considered "density" sums
to one.

3: As mentioned in Chapter 2
s(t) = Fo(©)h(t) + Fx(®)h(t)
where i, » are the waveforms
associated to each polarization
mode and F, «(®) the antenna
beam pattern of the detector.
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3.1.3

[44]: Cornish et al. (2015),
Bayeswave: Bayesian inference for
gravitational wave bursts and in-
strument glitches

[45]: Thrane et al. (2019), An in-
troduction to Bayesian inference in
gravitational-wave astronomy: Pa-
rameter estimation, model selection,
and hierarchical models

[46]: Veitch et al. (2015), Parame-
ter estimation for compact binaries
with ground-based gravitational-
wave observations using the LAL-
Inference software library

3.2

the frequency domain. In this case, the noise variance is
given by the noise power spectral density S,(w), where w
is the frequency variable. The likelihood is then given by a
multivariate Gaussian distribution

—logP(x|9,%,1) « > [x(w) = s(w)|* /Su(w).

@

(3.3)

Bayesian samplers in the context of
gravitational-wave astronomy

While the algorithms based on standard matched filtering
uses a fixed lattice of waveforms paving the space of possible
signals [42], Bayesian inference techniques sample adapta-
tively 3 using standard Bayesian sampler such as Metropolis
Hastings or nested sampling in order to build a posterior den-
sity estimate [44, 45]. About 10° to 10° theoretical waveforms
are required to cover a sufficient portion of the parameter
space.

Two main software packages are available for parameter
inference: LALInference [46] and Bilby [45].

Parameter estimation is computationally highly demanding.
The analysis of a single event requires from tenths of hours
at best to days for a single run. Computations related to
waveform generation dominate this cost.

In the next decade, LIGO and Virgo detectors are expected
to conduct at least two major observing runs with improved
sensitivity, leading to a large increase in the number of de-
tected signals. The analysis of those future observations calls
for numerically efficient, yet accurate waveform generators.
In this context, this chapter is dedicated to the acceleration
of source’s parameters estimation through the development
of fast generation method of theoretical waveforms.

Binary black hole coalescences

Stellar collapse through supernova explosion can leave as
remnant a compact object. Depending on the mass of the
progenitor, it can be either a white dwarf, a neutron star or a
stellar-mass black hole. It is considered that remnants with
mass higher than ~ 3 M are more likely to be black holes.
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Black holes may form in binary systems, thus leading to
a black hole binary. It consists in two objects of masses*
my and mjy, with spin angular momentums §1 (t) and §2(t),
which are orbiting each other with an angular momentum
L(t) = W F(t) X p(t), where 7(t) and p(t) are the orbital
separation and its canonically conjugate momentum [47]
respectively. The system loses energy through emission of
gravitational radiations which causes the orbital separation
to decrease and the orbital frequency Qo (t) = |F X 71/ |7)2
to increase until they merge.

Different scenarios are anticipated for the formation of black
hole binaries (see [48] for a recent review). This results in
different binary properties, regarding the orientation of the
object spins or the separation of the two bodies. We mainly
differentiate between two configurations:

Spin-aligned BBHs Certain BBH formation scenarios favor
spin-aligned (or anti-aligned) configurations, e.g. isolated
BBHs from binary star systems. In this case, the black holes
created are likely to have spins close to being aligned. More-
over, the spins of black holes orbiting each other tend to align
themselves in the long time as the system loses energy by

emitting gravitational radiation [49, 50]. In this case, E(t)
and T(t) = E(t) + §1(t) + §2(t) are both normal to the orbital
plane which thus remains fixed with respect to an inertial
observer.

Precessing BBHs Other binary formation scenarios lead
to the misalignment of at least one of the component spins
with respect to the normal of the orbital plane. Let us define
the Newtonian orbital angular momentum EN(t) = ur(t) x
?(t), which is normal to the orbital plane by construction.
During the orbital motion, E(t), EN(t) and the spin S ()
and §2(t) undergo a precession movement around the total
angular momentum T(t), see Figure 3.1. In this more generic
configuration, the orientation of the line of sight compared
to the orbital plane is varying with time. The main difference
bewteen E(t) and I_:N(t) is that, while the head of the former
draw a circle around the total angular momentum, the latter
exibit an additional nutation as the two bodies are orbiting.

The large majority of the observed sources presented in
Section 2.3 are compatible with the first case (aligned spin)

4: The first and second objects
are chosen such that the mass
ratioqg = my/my > 1.

[47]: Pan et al. (2014), Inspiral-
merger-ringdown waveforms of
spinning, precessing black-hole bi-
naries in the effective-one-body for-
malism

[48]: Mapelli (2020), Binary Black
Hole Mergers: Formation and Pop-
ulations

[49]: Rodriguez et al. (2016), II-
luminating black hole binary for-
mation channels with spins in ad-
vanced LIGO

[50]: Gerosa et al. (2018), Spin
orientations of merging black holes
formed from the evolution of stellar
binaries

- -

~<o .

Figure 3.1: Precession of the or-
bital plane induced by the mis-
alignment of the spin of at least
one of the two bodies. The an-
gular momentum L(t) precess
around the total angular momen-

tum T(t).

5: In general, the orbital angular
momentum L(t) of a spinning
binary is not orthogonal to the
orbital plane while it is always
the case for EN(t).
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[51]: Ossokine et al. (2020), Multi-
polar effective-one-body waveforms
for precessing binary black holes:
Construction and validation

[52]: LIGO Scientific Collabora-
tion (2018), LIGO Algorithm Li-
brary - LALSuite

6: See Appendix B for a short
introduction to spin weighted
functions and spin weighted
spherical harmonics.

7: Our convention originates
from [51]. Here @g = 71/2 — Qs
where D, is the reference phase
in the LALSimulation conven-

tions [52].

Figure 3.2: Line of sight in the
inertial source frame (¢}, 2}, 2}).
The inclination ¢ and the initial
phase ¢q are the spherical co-
ordinates of the propagation di-

rection k in the inertial source
frame. The wave frame is con-
structed such that its z-axis is
aligned with k.

[53]: Schmidt (2020), Gravita-
tional Waves From Binary Black
Hole Mergers: Modeling and Obser-

vations 3.2.2

but there are few cases where the component spins appear
to be misaligned.

Gravitational waveforms

It is customary to present gravitational waves as complex
valued signals:

h(t) = hi(t) — ihx(t),

in particular for analytic developments. When modelling the
signal for a given source it is convenient to decompose &
using a spin weighted spherical harmonics expansion:

h(t) = D Z Z 1] e (8) <2 Y1m(t, @0) (3.4)

=2 m=-1

where the Y] (1, o) € C are the —2 spin weighted spheri-
cal harmonics® and the hl .(t) € C are the associated modes.
The spin weighted sphencal harmonics are functions of
and ¢, respectively the inclination and initial phase’ of the
source in an inertial source frame denoted I, see Figure 3.2.
M and D are respectively the total mass and the luminosity
distance in geometrical units (G = ¢ = 1).

It is worth noticing that Equation (3.4) outlines that the line
of sight (in the inertial frame) influences the value of each
spin weighted spherical harmonics —Y (1, ¢) whereas the
different modes h{’m(t) result from the source dynamics.

A number of theoretical models allow to compute the wave-
form modes of (3.4) related to initial source conditions by
approximating solutions of the source dynamics [53]. There
are no exact close-form solution for this relativistic problem,
however accurate approximations are available.

Review of available waveform approximants

Gravitational-wave signals are approximated by a range of
analytic and numerical techniques which define waveform
families. Depending on the approach, the strain is approxi-
mated with different accuracies and their computation lead
to different runtimes. Two main waveform families (Effective-
One-Body and Phenomenological approximants detailed
below) allow to compute the waveform associated with the
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entire coalescence process, including the three dynamical
phases : inspiral, merger and ringdown.

Post-Newtonian Theory and Numerical Relativity The
post-Newtonian (PN) [54] and numerical relativity (NR) [55]
formalisms are the major building blocks on which the
waveform families rely. For the inspiral phase, PN expansions
of the equations of motion at low velocities provides accurate
predictions till the orbital velocity becomes comparable to the
speed of light. NR are fully relativistic numerical resolution of
the Einstein field equations. They are acccurate including in
the highly non-linear regime of the merger phase, but requires
very expensive computing ressources. NR waveforms are
used to calibrate other models and create NR surrogates.

Effective-One-Body approximants [21] The Effective-One-
Body (EOB) formalism maps the two-body problem onto an
effective one-body problem [21]. This mapping reduces the
problem to a single test particle in a deformed Schwarzschild
metric with deformation parameter equal to the symmetric
mass ratio v = u/M. This "mapping trick" allows to accu-
rately resolve the source dynamics from the inspiral through
the merger phase. A complete waveform is obtained by stitch-
ing the adequate quasi-normal mode expected during the
ringdown phase. This approach works inherently in the time
domain, and requires the resolution of dynamical equations
that are computationally slow to evaluate. Waveform approx-
imants based on EOB are available for non-spinning and
spin-aligned binaries, but also for binaries with precessing
and eccentric orbits [56].

Phenomenological approximants [57] The phenomenolog-
ical framework is initially based on the waveform obtained
for the inspiral phase by the post-Newtonian expansion of
general relativity in the weak field regime, i.e. for small
velocities [54]. This initial waveform is expanded in the
merger and ringdown phases by a generic (polynomial and
Lorentzian) model which is fitted against the finite set of nu-
merical relativity simulations available today. This operation
is done in the frequency domain, so that the phenomenologi-
cal waveforms provide closed-form expressions of the signal
in frequency that are fast to compute and convenient for the
data analysis.

[54]: Blanchet (2014), Grav-
itational Radiation from Post-
Newtonian Sources and Inspiralling
Compact Binaries

[55]: Boyle et al. (2019), The SXS
collaboration catalog of binary black
hole simulations

[56]: Hinderer et al. (2017), Foun-
dations of an effective-one-body
model for coalescing binaries on ec-
centric orbits

[57]: Ajith et al. (2007), A phe-
nomenological template family for
black-hole coalescence waveforms
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8: By convention, the time grid
is such that t = 0 at the merger
of the two objects.

[58]: Bohé et al. (2017), Improved
effective-one-body model of spin-
ning, nonprecessing binary black
holes for the era of gravitational-
wave astrophysics with advanced
detectors

9: Or, as we will see,
for spin-aligned BBHs
9= {Qr X1z, X2z-} .

3.24

Waveform parametrization

The source parameters that impact the dynamics are the
masses 111, My and spins §1(t0), §2(to) of each object, where
to refers to a given initial time. By convention we use the
dimensionless spins X;(tg) = §i(to)/mi2 fori = 1,2 in
the computation of waveform models. Thus the system is
parametrized by

J = {mll Mz, X1x, le/ X1z, X2x/ XZ]/I XZZ} ’

where Xix, Xiy, Xiz are the coordinates in the source frame I
of the dimensionless spin Y;(tp). 9 is the set of parameters
"intrinsic" to the physical system while (, ¢g and D are
"extrinsic" parameters (that depend on the observer).

General relativity’s scale invariance implie58 h(t; my, my) =
h(At; Amy, Amy) [58]. So in practice the intrinsic parameter
set can be reduced to® 9 = {q, Xixs X1y, X1z, X2xs X2y, )(22}
where g is the mass ratio (defined as q = my/m;, and with
g > 1). Waveform models compute separately each waveform
mode h{m (in time or frequency domain) for a given 9,
and compute the waveform with (3.4) and the proper time
rescaling.

Sections 3.3 and 3.4 use this remark to construct fast and
accurate generative models of time-domain gravitational
waveforms using machine learning: the extrinsec parameters
used in the training stage (i.e. the total mass, the luminosity
distance and the line of sight) are fixed such that M* =
20 Mo, r* = 1Mpc, (1%, po*) = (0, 0).

Waveform approximation accuracy measure

Errors in the waveform approximation lead to systematic
errors in the astrophysical parameters estimates obtained
from the observations. Systematic errors from mis-modeling
should be smaller than the statistical errors due to the pres-
ence of noise in the observations.

The waveform approximation accuracy is measured by the
mismatch measure &, which writes

ll_ |<hf,g>|l

35
el gl (3:5)

e(h,g) = min
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for h, g two given complex-valued waveforms and h(t) =
h(t — 7). € is a common measure to test waveform accuracy
in gravitational wave data analysis [58]. It is time-shift and
phase-shift invariant. The scalar product is computed in the
frequency domain as

R

dw,

where w is the frequency variable and H and G are respec-
tively the Fourier transforms of & and g. S(w) is a frequency
dependent weighting that is usually fixed to the gravitational-
wave detector noise power spectrum density. As we do not
want to favour certain frequencies for the evaluation of the
model performances, we made the conservative assumption
of a flat noise curve® S(w) = 1.

Error in the waveform modelling can be seen as a systematic
error. A rule of thumb (see e.g., Appendix G of [59]) tells
at which mismatch the systematic error dominates over the
statistical error due to the random noise. This rule states
that the mismatch should be strictly smaller than statistical
error N/(2 X SNR?) where N is the effective number of
intrinsic parameters and SNR is the signal-to-noise ratio. In
the next observing runs of LIGO-Virgo-KAGRA collaboration
detectors, it is expected to see events with SNR going up
to 50 typically. For spin aligned BBHs with N = 3 effective
parameters and precessing BBHs with N = 7, this defines a
targeted accuracy of ¢ < 107 and ¢ < 107 respectively.

Spin-aligned binary black holes

Non-precessing BBH mergers are the most common type of
sources detected by the LIGO-Virgo Collaboration [60]. They
are BBHs for which each object has a spinu, respectively S 1(t)
and §2(t), aligned (or anti-aligned) with the orbital angular
momentum E(t) as represented in Figure 3.3. In this case, the
orbital plane remains fixed during the coalescence. E(t) is
normal to the orbital plane and is used to define an inertial
frame I attached to the source. For a given time ¢, we define
abasis (¢], &), €!) such that the z axis of the frame is aligned

with the angular momentum, i.e. Eé = E(to), and the x axis
points from the second body to the first, i.e. E{ = 7(to). By
definition S; and S, have no x and y components in the
inertial frame. The set of intrinsic parameters is reduced to'?

[58]: Bohé et al. (2017), Improved
effective-one-body model of spin-
ning, nonprecessing binary black
holes for the era of gravitational-
wave astrophysics with advanced
detectors

10: It would be straightforward
to compute ¢ in (3.5) with a given
noise curve.

[59]: Chatziioannou et al. (2017),
Constructing Gravitational Waves
from Generic Spin-Precessing Com-
pact Binary Inspirals

[60]: The LIGO Scientific Collab-
oration et al. (2021), GWTC-3:
Compact Binary Coalescences Ob-
served by LIGO and Virgo During
the Second Part of the Third Observ-
ing Run

11: We consider zero spin bina-
ries as spin-aligned binaries.

12: As
tion 3.2.3, the dimensionless
spins Y1 and X2 used in
waveform models are defined
such that Y1 = §1/m12 and
respectively for Y».

mentioned in Sec-
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Figure 3.3: Physical parameters
of a spin aligned BBH. The spin
of each black hole is aligned
with the orbital angular momen-
tum E(t) which coincides with
the normal to the orbital plane.
The orbital plane is fixed dur-
ing the coalescence. The inertial
source frame is such that its z
axis is aligned with L(t) and its
x axis is aligned with the (par-
tially dashed) black line going
from one object to the other. The
source motion is guided by the
spins and masses of the objects.
The waveform also depends on
extrinsic parameters such as the
luminosity distance D and the
line of sight (¢, o).

[61]: Piirrer (2016), Frequency
domain  reduced order model
of aligned-spin effective-one-body
waveforms with generic mass-ratios
and spins

[62]: Lackey et al. (2019), Surro-
gate model for an aligned-spin ef-
fective one body waveform model of
binary neutron star inspirals using
Gaussian process regression

3.3.1

[63]: Schmidt et al. (2021), Ma-
chine learning gravitational waves
from binary black hole mergers

[64]: Khan et al. (2021),
Gravitational-wave surrogate
models powered by artificial neural
networks

[65]: Chua et al. (2019), Reduced-
Order Modeling with Artificial
Neurons for Gravitational-Wave
Inference

O = {my, ma, X1z, X2z} The extrinsic parameters (relative
to position and orientation of the binary) are defined with
respect to this frame as illustrated in Figure 3.3.

Earth
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L ,(,
/
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In the case of spin-aligned BBHs, the modes of the spin
weighted spherical harmonics expansion of h(t) verify the
conjugate symmetry

By _,(8) = (=D (8). (3.6)
Then it is sufficient to compute modes with positive values of
m. Moreover, for low mass ratios the dominant (2, £2) modes
give a good approximation of the complete waveform [53].
The proposed model only needs to generate the (2,2) mode

which is a complex-valued amplitude and frequency modu-
lated signal such that h{m(t) = a(t)e?®) [58].

Generative model

The generation of noise-free waveform surrogates in the case
of spin-aligned BBHSs has been successfully realized using
reduced-order modelling (based on tensor spline fitting) [61,
62] and more standard machine learning approaches such
as mixture-of-experts regression [63] and artificial neural
networks [64, 65]. We built on [63] and propose a model
with reduced complexity based on principal component
regression. It improves the overall regression accuracy by
about an order of magnitude. These performances are no-
tably achieved thanks to a different choice of features. The



3.3 Spin-aligned binary black holes | 57

full pipeline is implemented using the Scikit-learn software
library [66] resulting in a compact code, easy to maintain.

The machine learning model we present takes as input a set
of astrophysical parameters 3 and returns a corresponding
waveform. The model is based on a judicious representation
of the waveform modes.

For non-precessing BBH it suffices to generate the dominant
(2, £2) modes in order to have a good approximation of
h. Thanks to the conjugate symmetry property (3.6) the
computation of the (2, —2) mode is left to post-processing
and we consentrate to the generation of the (2, 2) mode can
be done from (2, 2) at post processing stage.

The (2,2) mode is a complex-valued signal hé,z(t) = a(t)eiP®)
with a modulated amplitude a(t) and a modulated phase
@(t), often referred to as "chirp" for short. Compared to the
mode waveform, the two attributes a(t) and ¢(t) exhibit
non-oscillatory and smooth variations with respect to the
features, that can thus be accurately fitted.

As presented in Section 2.4.2, the amplitude and phase evolve
over different timescales during the dynamical regimes of
the chirp signal. To capture their variations with a uniform
accuracy over the entire waveform duration, amplitude and
phase are discretized in time with a varying sampling res-
olution. The waveform attributes are resampled on a time
grid fgoing from tgart = —20s to teng = 0.006 s and such that

t = sign(t) |t|% where @ = 0.35 [63].

We propose a principal component regressor [67] that consists
in a polynomial regression of the (truncated) PCA coefficients
of the attributes. The generative model is first learned from a
training set of waveforms.

More precisely, the waveform amplitudes (and similarly for
phases) are concatenated in a matrix A € Jln pm(R), where
N is the size of the training set and M is the size of the time
grid. K principal components of A are computed and stacked
in Wk € JMlx,m(R), from which we get the reduced matrix
Ak = AWE € JMn,k(R). A polynomial regressor py is used
in order to predict the k-th reduced amplitude coefficients.
The regressor takes as input a set of features 3 that are
obtained from the set of binary parameters 3 by a non-linear
mapping. This mapping is optimized in order to improve the

[66]: Pedregosa et al. (2011),
Scikit-learn: Machine Learning in
Python

[67]: Hastie et al. (2017), The ele-
ments of statistical learning
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performances. At the generation step, the model regresses
the k-th reduced amplitude coefficient as pi(S) = dg[k]. The
truncated PCA is finally inverted such that 4 = axWk € RM,
The same procedure is applied for ¢.

The usage of the truncated PCA is motivated by the strong
correlation of the waveform attributes for different values
of binary parameters. It simplifies the regression task by
reducing the dimension of the target space.

The waveform synthesis is performed according to the fol-
lowing steps:

1. The features § are computed from the requested wave-
form parameters 9.

2. Given 9, a(t) and @(t) PCA coefficients are regressed
from a polynomial combining of the features.

3. The PCA is inverted to compute the attributes a(t) and
@(t), which are mapped to (2,2) mode waveform.

4. Post processing: based on (3.4), the estimated waveform
is computed as follows

h(t) = flﬁ,z(t)—zYz,z(L, ®o) + flﬁ,_z(t)—zYz,—z(l, ®0)-

The various parameters of the generative model (number of
PCA, order of the polynomial regression, type of regressor)
are optimized in order to minimize the regression accuracy
(score) quantified by the mismatch ¢(h, ) between the true
and estimated waveform defined in Section 3.2.4.

Results

Several models can be used to generate approximate yet
accurate waveforms for data analysis purposes [53]. In this
work, we use SEOBNRv4 [58], so the generative model predict
waveform approximations obtained with this model. It can be
adapted to other waveform models by replacing the training
set with corresponding waveforms. Our choice is motivated
by the comparison it allows with the results of Schmidt [63]
and by the model used later in Section 3.4, which is also
a model generalizing SEOBNRvV4 in the case of precessing
binaries.

The code needed to reproduce the presented results is public:
https:/ /git.ligo.org/cyril.cano/gw-generation. It takes the
form of a python package from which one can compute
and evaluate a waveform generative model. A precomputed
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model is given, it allows an external user to generate gravi-
tational waveforms without having to compute the training
set.

A dataset of 4000 randomly distributed BBH waveforms was
computed with LALSimulation software library [52]. The
construction of the dataset was performed using the GRICAD
infrastructure!®, which is supported by Grenoble research
communities, while the learning part is done on a personal
laptop. The mass ratio g is uniformly sampled over [1, 20]
and the dimensionless spins x1;, X2, are uniformly drawn
in [-0.8, 0.95].

x10~13

a(t)

4000 A

2000 1

-20 —8.5 -2.5 0.28 0.0012

Time (s)

The attributes are stacked in two matrices, used for the
computation of the principal components. Each waveform
attribute is aligned to zero at t = tsrt for PCA efficiency

purposes't.

The dataset is made to be comparable with the one used
by Schmidt et al. [63]. It is splitted into a training and a
testing set that corresponds to 80% and 20% respectively. All
reported results are obtained with the testing set.

Figure 3.4 shows a selection of examples from the training
set. The attributes appear to have a regular dependency with
respect to the feature 4.

There are two origins for the modelling errors for each at-
tribute: the PCA truncation error and the regression error.

13: GRICAD is a Scientific Com-
puting and Data Infrastructure
supported by CNRS, Grenoble
Alpes University, Grenoble In-
stitute of Engineering and IN-
RIA. See https://gricad.univ-
grenoble-alpes.fr.

Figure 3.4: Sample of size 20 of
the attributes in the dataset. The
time grid is sampled in a non-
uniform way, with more sample
near the merger than during the
inspiral. The color is indexed on
the mass ratio value. Red corre-
sponds to g ~ 20 and blue to
qg~1.

14: The amplitude and phase
offsets subtracted by the align-
ment procedure can be fitted
and added back at the gener-
ation stage to produce the full
waveform. Though we don't de-
tail this part here but this can be
done with good accuracy with
the same regressor.
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Figure 3.5: Median mismatch vs
number of principal components
retained after PCA truncation.
The mismatch is computed af-
ter fitting the amplitude only
(phase is exact) for blue circles
and red plus signs, and the phase
only for violet boxes and green
crosses. Circles and boxes repre-
sent mismatches solely due to
the PCA truncation and plus
signs and crosses represent mis-
matches due to the overall model
(including the regression step).
The dashed line indicates the se-
lected PC truncation level at 6
PC.
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Figure 3.5 presents the modelling error imputed to PCA
truncation (circles and boxes) as well as the total error in-
cluding regression (plus signs and crosses) when fitting the
amplitude (phase is exact) in blue and red, or the phase
(amplitude is exact) in violet and green.

The phase approximation errors lead the overall score. For
example, the truncation to only one PC (principal component)
leads to a mismatch of 5 X 107> for the amplitude and 0.7 for
the phase. The accuracy of phase regression is thus critical
for the final overall accuracy.

The overall error after regression stabilizes at 6 PCs for the
phase (green crosses) with a mismatch median score of about
107°. This is the retained number of PCs after truncation as
this indicates the regressor fails to estimate higher order PC
coefficients. For simplicity, the PCA expansion is truncated to
the same number of PCs for both the amplitude and phase.

The choice of the feature set has a significant impact on the
final score and regression accuracy. Schmidt et al. [63] use
a mixture of experts regressor to infer the PCA coefficients
from the set of intrinsic parameters 3 = {my, ma, X1z, X2z}
This ensemble learning method is based on a weighted sum
of linear regressors called "experts" [67]. A range of experi-
ments was made, we tested several regressor (e.g. multilayer
perceptron, random forest regressor) and preferred to work
with a simpler regressor applied to a different feature set 3.

To leading order, the amplitude and phase evolution are
known [53] to depend on the chirp mass Jl, the mass ratio g
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and the effective spin xef = (§ X1z + X2z) /(1 + ). Naturally
those physically motivated parameters are good candidates
to fit the data.

Systematic tests of different feature combinations were per-
formed. Promising feature sets were pre-selected based on
their 72 score [66] obtained for the prediction of the first PCs
of the phase as it essentially determine the overall perfor-
mance. The tested feature sets have up to 6 parameters. They
include parameters such as the masses m1, m;, their inverses
1/my, 1/m,, the effective spin x.f, the mass ratio g4 and the
chirp mass J.

Twenty feature sets were found to give the best median
mismatch of order 107°. Among them, {x1z, X2z, 9, m2} and
{X2z, Xefi, M} are of particular interest. The latter have the
nice property to have only three features, as the number of
intrinsic parameters, however the former results in a much
smaller variance for the mismatch (which implies that the
95% percentile of the observed distribution is much more
lower) and is thus preferred.

Interestingly physically motivated feature sets such as {g, x1z,
X2z} or {g, xess, M} do not perform as well, with a median
mismatch of 0.03 and 0.1 respectively.

0
10 °
10—1 4
10—2 4

1073 4

Median mismatch

10—4 i
’ [ 1 L
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To capture the non-linear part of the signal, the regression
model is applied to the polynomial expansion of the features
S = {X1z, X22z,9,m2} up to a pre-determined order. This
maximum order is chosen to optimize the score. Figure 3.6
shows the results for polynomial orders from 1 to 15. As the
polynomial order increases, the performance improves. After
the 13" order, it faces an overfitting problem. The 7t order is

Figure 3.6: Median mismatch vs
order of the polynomial expan-
sion of features { X1z, X2z, 4, M2}.
The dashed line shows the se-
lected degree of 7.
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15: Classically polynomial re-
gression methods use lower or-
der so the results are inter-
pretable. Here we prefered to
focus on the performances of the
model rather than insuring its
interpretability.

Figure 3.7: Histogram of mis-
matches on the test set for the
proposed model (orange) and
Schmidt’s model (violet). Even if
the dataset we used is supposed
to be comparable to the dataset
used in [63], we were not able to
exactly reproduce the presented
results.

selected®: it is found to be the smallest order that minimizes
the median mismatch.
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The objective was to build a generative model with mismatch
scores ¢ < 107. It is achieved by the proposed model on
almost all the parameter space. Figure 3.7 shows the mis-
match distribution over the testing set using the feature
S = {X1z, X2z, 9, m2}. The median mismatch is 1.8 X 107
(average is 6.8 X 107°) and the 5% and 95% percentiles are
2.2x107%and 1.6x10~* respectively. The worst case mismatch
is ~ 1072,

Figure 3.8 presents the example of two predicted waveforms.
The first example is representative of the median prediction
accuracy for which the prediction error can not be seen by
eyes. The second example is the worst prediction made in
the testing set. For this one, phase prediction error is clearly
visible.

We implemented the model presented in [63] in order to
compare it. As shown on Figure 3.7 we were not able to
reproduce the presented results. No matter which reference
is considered ([63] or our reproduction), we show an im-
provement of at least one order of magnitude compare to
Schmidt et al. model.

The distribution of errors is not uniform in the parameter
space. Figure 3.9 shows that the best fits are for high mass
ratios. The model struggles to obtain the same accuracy level
at low mass ratios and for high effective spins, where there
is a more important diversity in the waveform attributes.

Schmidt et al. [63] achieve a median mismatch value of
5 X 107* for the spin aligned case, with tails going to 107! in
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the worst case. This corresponds to an applicability range
that goes up to SNR = 54 (3 in the worst case). Our model
has generation errors uniformly much smaller than the in-
trinsic numerical and modeling errors of SEOBNRv4 (which
is less than 1% [58]). Thus it produces approximations of
SEOBNRv4 waveforms without adding substantial errors.

We compared the generation time of SEOBNRv4 model
with the proposed machine learning model. Figure 3.10
presents a distribution of the speed-up factor defined as
the ratio between the generation time of SEOBNRv4 (using
LALSimulation [52]) and the proposed principal component
regression model. A set of 500 BBH waveforms was generated
for a uniform distribution of total mass between 40 M and
100 M. The other parameters are distributed as for the
mismatch evaluation. The observed median speed-up is
~ 10? (comparable to [63]). It illustrates the benefits of using

Figure 3.8: Zoom on target wave-
forms (grey) generated by SEOB-
NRv4 and predictions (blue)
from the proposed model. (a):
waveform for which the mis-
matchis 107> (median mismatch
on the testing set). (b): waveform
for which the mismatch is 1072
(worst mismatch on the testing
set).
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Figure 3.9: Scatter plot of the mis-
matches with respect to the mass
ratio and the effective spin. Each
point corresponds to a compact
binary in the test set.

Figure 3.10: Speed up factor of
the proposed model compared
to SEOBNRv4 for a population
of spin-aligned BBHs with to-
tal masses going from 40 Mg, to
100 Me.

[68]: Abbott et al. (2021), Open
data from the first and second ob-
serving runs of Advanced LIGO
and Advanced Virgo

[69]: Ashton et al. (2019), Bilby:
A User-friendly Bayesian Inference
Library for Gravitational-wave As-
tronomy
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the proposed model to accelerate parameter estimation with
Bayesian samplers [45].

Bilby [45] is a user-friendly parameter estimation code made
for gravitational-wave astronomy. Bilby allows a user-defined
prior and likelihood function to be passed to a sampler, and
collects the posterior samples and the evidence calculated by
the sampler. It provides an easy access to the gravitational-
wave data [68] as well as to a range of priors and likeli-
hood functions that are often encountered in the context of
gravitational-wave astronomy.

In collaboration with Tom Colin, we used the principal
component regression model with Bilby [69]. The model
was used for the estimation of posterior distribution for the
event GW150914. As illustrated in Figure 3.11, the results
show consistent posterior estimation with respect to physical
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waveform models as SEOBNRv4. On a modern laptop, the
computation took 3 h 13 min and 21 min for the proposed
generative model and SEOBNRV4 respectively, that is an
acceleration factor of about 10.
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Figure 3.11: Corner plot showing the comparison of the posterior distribution obtained for the event GW150914
with Bilby using the SEOBNRv4 (frequency domain approximant) in blue and the fast approximant model
proposed here in green. The posterior densities are shown for the following parameters: the detected chirp
mass M. , the mass ratio g, the merger time ¢, in the geocentric frame, the inclination angle 0yy and the
luminosity distance dj..
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Precessing binary black holes

In a generic configuration, BBHs have spin angular momen-
tums S (t) and §2(t) not aligned (nor anti-aligned) with
the Newtonian angular momentum L n(t) i.e. the normal to
the orbital plane. In this case, as illustrated in Figure 3.12,
the spins and the Newtonian angular momentum precesses
around the total angular momentum T(t).

—

A J(t)

An inertial frame I can be defined at a given time fy such
that & = Ln(to) and él = 7(to) (where 7(t) points from the
second body to the first). The inclination ¢ and the initial
phase ¢ are defined with respect to the basis (E{, Eé, Eé i
where &} = ¢} x ]. The spin components are defined in this

basis, leading to the set of intrinsic parameters ¥ = {ml, mo,
X1xs le/ X1z, X2xs XZ]// XZZ}-

The waveform modes of the spin weighted spherical expan-
sion (3.4) are defined with respect to the inertial frame I. As
opposed to spin-aligned binaries, the effect of the subdom-
inant modes is enhanced by precession and the restriction
to the dominant (2, +£2) modes leads to a significant error.
Also the conjugate symmetry property (3.6) no longer holds.
Each inertial mode should be computed separately by its
own generative model.

Referring to Chapter 4, the polarization state of the wave-
form modes is determined by the orientation of the orbital
plane with respect to the observer and the precession motion

Figure 3.12: Precession of the or-
bital plane induced by the mis-
alignment of the spin of at least
one of the two bodies with the
Newtonian angular momentum
EN(t). In constrat to the EOB or-
bital angular momentum L(t),
EN(t) has a slight nutation. Vari-
ations of the orientation of the

orbital plane affect the polariza-
tion of the waveform modes.
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modulates their polarization state over time. In Chapter 1, we
studied a number of representation for AM-FM-PM signals.
We tested and applied these representations to the modes
that dominantes the expansion of a gravitational waveform
of a precessing BBH. Based on this, in this section, we in-
vestigate various options to construct a machine learning
generative model for time-domain gravitational waveforms
from precessing BBH thanks to the Euler angle parametriza-
tion presented in Chapter 1.

3.4.1 Rotation of the inertial frame

As what will be shown in Chapter 4, orbital precession modu-
lates the polarization of waveform inertial modes. Figure 3.13
displays the (2,1) modes of two simulated gravitational

waveforms, both from a non-precessing and a precessing
BBH.

() (b)

Figure 3.13: Inertial modes h£,1 (t) simulated with SEOBNRv4P for a spin-aligned (a) and a precessing (b) BBH.
The inertial mode associated with the spin-aligned binary is an amplitude and frequency modulated signal
(it is circularly polarized) while the same mode for a highly precessing binary is modulated in polarization (it
evolves in a time varying ellipse). The non-precessing binaries is such that m; = 15, my = 5 with spins x1, =
0.9, x2: = 0.9. The precessing one has spins x1x = 0.1, X1y = 0.6, x1z = 0.2, xor = 0.4, x2y =0, x2: = 0.5,
which correponds to x, = 0.6 (highly precessing binary).

The Euler angle parametrization presented in Chapter 1 de-
composes such signal in a quadruplet [a(t), O(t), x(t), @(t)]
as a generalization of AM-FM signal decomposition used in
Section 3.3. It was shown that this parametrization is subject
to an indeterminacy problem for circular and nearly circular
instantaneous polarization states.
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Inertial modes are circularly polarized when L N(t) is aligned
with Eé (which is by convention parallel to EN(to)). The
general dynamics of the system is such that periodically
EN(t) reaches same positions (see Figure 3.12), where the
waveform modes are circular. This causes the Euler angle
indeterminacy to occur periodically.
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Figure 3.14: (2, 2) inertial mode in the I frame (a) and the I’ frame (b) for a precessing BBH. In the I frame,
the gimbal lock induces spurious variations of the instantaneous ellipticity and phase when the signal is
quasi-circular (see the phase and orientation curves in (a) aroud ¢ = —3s). The estimated instantaneous
orientation in (a) shows variations about 20 rad during the last 8 sec of the coalescence, while in (b) it remains
between +7/2 rad. The problem is solved in the rotated frame I’ in which the mode is kept elliptic all the time.
The binary is such that m; = 15 Mg, mz = 5 Mg with spins x1x = 0.1, x1, = 0.6, x1z = 0.2, x2r = 0.4, x2y =

0, x2: = 0.5, which correponds to x, = 0.6 (highly precessing binary).

In order to avoid such indeterminate configurations, we
switch to a different inertial frame I’ for the spin weighted

spherical harmonic expansion of the gravitational waveform.

By convention this frame is fixed such that its z axis is inclined
by 71/3 rad compared to eé. The rationale is that the waveform
expressed in this new inclined frame is less likely to be purely
circular and therefore become locally degenerate for the Euler
angle representation. The rotation of the modes from I to the

new inertial frame I’ is achieved with the Wigner D-matrices,

such as

)
W, = > (6D, 0,m/3,0), (37

m'=—I
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16: Note that the choice of the
inertial frame in which the wave-
form is expanded is a free pa-
rameter. The choice of a given
source frame is important in the
definition of the spin weighted
spherical harmonics _,Y] ,,,, with
respect to which the waveform
modes are computed.

3.4.2

[70]: Thomas et al. (2022), Ac-
celerating multimodal gravitational
waveforms from precessing compact
binaries with artificial neural net-
works

where D!, are the Wigner D-matrices described in Ap-
pendix B. The waveform is thus decomposed in the new
inertial frame I’ as'®

Y L
h(t) = ) ZZ > (2w, @0). (3.8)

=2 m=-1

This solution is not valid for highly precessing BBHs for which
the orbital plane can even flip, resulting in a temporary quasi-
alignment (or anti-alignment) of Eg and EN(t). Figure 3.14
demonstrates the effect of the rotation of the inertial frame on
the (2, 2) mode of a precessing BBH. In particular we show
that the instantaneous parameters of the I’ modes are not
subject to the same indetermination.

Generative model

The generation of gravitational waveforms from precessing
BBHs is a difficult problem due to the diversity of the wave-
forms. Also the generative model has to fit the polarization
modulation induced by the orbital precession. The purely
circularly polarized model used in the previous section does
not work.

It has been recently achieved with an artificial neural net-
work [70] (achieving a median mismatch of ~ 10~%). Thomas’
model [70] computes the waveform in a co-precessing frame
and rotates it to correspond to an inertial frame. In the
co-precessing frame the modes are not modulated in polar-
ization, such that the generation procedure consists (roughly)
to generate spin-aligned modes and rotation parameters. We
propose a different approach based on a specific represen-
tation of waveform inertial modes as amplitude, frequency
and polarization modulated signals. While facing technical
limitations, we show promising results.

The proposed model has the same global structure as for
spin-aligned BBHs. It generates the inertial waveform modes
{(2,+2), (2,+1),(2,0)} in the rotated frame I’ thanks to a
decomposition in adapted waveform attributes. The (2, +£2)
and (1, £1) modes are decomposed in four attributes: the
instantaneous amplitude a(t), instantaneous orientation 0(t),
instantaneous ellipticity x(t) and instantaneous phase ¢(f).
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The real and imaginary parts of the (2,0) mode are treated
separately and decomposed in instantaneous amplitude and

instantaneous phase17.

The mode attributes are computed with the procedure pre-
sented in Appendix A.3. The waveform is zero padded and
windowed before applying the discrete quaternion Hilbert
transform in order to avoid instrumental gimbal lock as well
as aliasing. The instantaneous parameters of the (2, +2) and
(2, 1) modes are deduced from their quaternion embed-
dings. The amplitude and phase of the real and imaginary
parts of the (2,0) mode are deduced from the associated
analytic signal constructed with the complex Hilbert trans-
form.

For each mode attribute the model performs a principal com-
ponent regression [67]. The PCA coefficients of the attribute
are predicted thanks to a polynomial regression from a set
of features 9.

The model has to account for new effects with respect to
spin-aligned BBH. The nutation of the orbital plane has an
effect on mode attributes, adding an oscillatory behaviour
as shown in Figure 3.14. This prevents from using the non-
uniform time grid resolution as in the spin-aligned case,
which in turn will limit the model’s ability to generate long
duration waveforms.

The model synthesis phase can be decomposed in the follow-
ing steps:

1. A set of features 3 is computed based on the user input
binary parameters

S = {m1, ma, X1x, X1y, X1z, Xox, X2y, X2z} -

2. The reduced coefficients of each mode attribute are
regressed by a polynomial regressor.
3. The PCAs are inverted to compute mode attributes.

17: The real part and the imagi-
nary part of the (2, 0) mode com-
puted with SEOBNRv4P have
quite different instantaneous fre-
quencies, such that hgo(t) can-
not be considered as an AM-FM-
PM signal as defined in Chap-
ter 1.

4. Finally, the gravitational waveform is constructed from (3.8).

Results

In principle, the proposed machine learning model can be
adapted to every time-domain waveform models. In this
work we used SEOBNRvV4P [51] which is an EOB model for
precessing BBHs'®. EOB models outperform Phenomeno-
logical models in terms of waveform accuracy but their

18: The formalism of SEOB-
NRv4P, discussed in Section 3.2,
is based on a definition of a co-
precessing frame P (see Chap-
ter 4). In this frame we consid-
ered both the (2, +2) and (2, £1)
modes.
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Figure 3.15: Sample size 20 of the
dataset corresponding to (2,2)
mode. The color scale is indexed
on the value of x, which corre-
spond to the level of precession.
Low values ~ 0 are represented
in blue and high values ~ 0.5 are
represented in red.

19: This is four times less than
the previous study.

20: GRICAD is a Scientific Com-
puting and Data Infrastructure
supported by CNRS, Grenoble
Alpes University, Grenoble In-
stitute of Engineering and IN-
RIA. See https://gricad.univ-
grenoble-alpes.fr.

[71]: Schmidt et al. (2015), To-
wards models of gravitational wave-
forms from generic binaries: 11. Mod-
elling precession effects with a single
effective precession parameter

21: We denote |x1.|| =

VX1x% + X15% and respectively

for [x2.|-

computation time is more important. Building a fast and ac-
curate generative machine learning model is a way to get fast
approximation of SEOBNRv4P waveforms without losing
performances in the inference process.

0.2 1

0.0 1

—0.2

—i.5 1.03 0.I54
Time (s)

—0.058

We computed a dataset consisting in 1000 different con-
figurations!®, composed of (2,+2), (2, +1) and (2,0) iner-
tial modes in the rotated inertial frame I’. The computa-
tion was performed on GRICAD clusters?’. The mass ra-
tio is uniformly sampled in [1, 4] and the norm of the
spins is uniformly sampled in [0, 0.95]. The orientation
of the spin is sampled from an isotropic distribution on
the north hemisphere of the I frame. We further applied
a selection threshold on the value of the dimensionless ef-
fective precession spin xp = S,/(A1m1?) which governs
the precession dynamics at the first order [71], where S, =
max (A1m1? || x1.||, Aamo? || x2.|]) is the effective precession
spin?land A = 2+34q/2, A = 2+3/(29). Values of Xp higher
than 0.5 are discarded in order to limit the precession and
avoid indeterminate cases while computing the attributes of
the modes (i.e. cases where x(t) ~ m/4), which correspond
to configurations when the z axis of the rotated frame I’ is


https://gricad.univ-grenoble-alpes.fr
https://gricad.univ-grenoble-alpes.fr

3.4 Precessing binary black holes | 73

nearly aligned with the Newtonian orbital angular momen-
tum Ly(t), and is likely to happen for strongly precessing
binaries.

To keep the data volume manageable despite the high
sampling frequency needed to capture the nutation oscilla-
tions??, we limit the time grid between fgary = —2.55 and
tend = 0.006s. The time origin of the waveform attributes is
set to f = fgtart.

A sample of the dataset is shown in Figure 3.15. Compared
to the previous case with spin alignment, there is a larger
diversity of waveforms which makes the generation a much
more complicated problem.

The training and testing sets correspond to 80% and 20% of
the dataset respectively. All reported results are obtained
with the testing set.

PCA truncation is the first source of error. The number of
selected principal components is determined by the objective
on the waveform accuracy and the regressor performances
on each reduced coefficients.

le-0

le-1 A

le-2 A

le-3

Median mismatch

le-4

T T T T T

1 5 10 15 20 25
Number of principal components

The mismatch is given for a zero inclination in the rotated
inertial frame I’, which is equivalent to say that ¢ = /3 in
the inertial frame I. It allows to sanction subdominant mode

prediction errors?3,

Figure 3.16 presents the median mismatch depending on the
number of principal components that is kept. The PCA trun-
cation error goes below 1072 for a minimum of 14 principal
components. Figure 3.16 also illustrates the importance of
including subdominant modes in the waveform predictions.

22: We used SEOBNRv4P wave-
forms sampled at 8kHz, that al-
lows a sufficient level of over-
sampling and smoothness of the
waveform attributes.

Figure 3.16: Median mismatch
vs number of principal compo-
nents. The green points are ob-
tained by including only the
(2,£2) modes for the wave-
form approximation. The (2, +1)
modes are added to the (2, +2)
modes for the blue points and
the red points are obtained with
all the inertial modes.

23: The expression of the differ-
ent modes is ponderated by the
spin weighted spherical harmon-
ics, which depends on the incli-
nation of the source t.
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Figure 3.17: Scatterplot of mis-
matches attributable to PCA
truncation at 25 principal com-
ponents according to the mass
ratio and the dimensionless ef-
fective precession spin.

24: The training set is smaller
than the one used for spin-
aligned binaries even though the
regression problem is more com-
plex.

—2.0
0.4 1
& F-25
e,
0.3 | o
. 30 2
2
=
0.2 - —3.5
0.1{ of [ —4.0
o —4.5
0.0 7 T T T T
1 2 3 4

The mismatch is much smaller when including all the inertial
modes.

The PCA approximation error of the modes” attributes is
not constant over the parameter space. As illustrated in Fig-
ure 3.17, the waveform mismatch induced by PCA truncation
is higher for high mass ratio and high dimensionless effective
precession spin, that is for highly precessing binaries.

As a generalization of the spin-aligned generative model,
the regression is performed by a polynomial regressor over
a set of features 9. The set of features and the order of the
polynomial regression should be optimized through cross
validation.

We could not find a feature set nor a polynomial order able to
reach a mismatch of 10~ uniformly over the full parameter
space. Note that the learning process is limited by the small
size of the training set?* ~ 800.

Asin the spin-aligned case (see Figure 3.5), the phase reduced
coefficients regression accuracy is found to lead the overall
prediction error. These leading coefficients have rather poor
regression accuracy with a polynomial regressor. For instance,
given the set of features

O = {q/ Xp/ my, Mz, Xix, le/ X1z, X2x, XZy/ XZZ}
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and a polynomial order of 7, the 72 score regarding the first
reduced coefficients of the phase for the different modes is of

the order of 1072 while it was ~ 107 in the spin aligned case.

It is of the order of 107! for the second reduced coefficients of
the phase of the different modes, while it was ~ 1077 in the
spin aligned case. Figure 3.18 shows the first reduced attribute
coefficients of the dominant (2, 2) mode. The regressor clearly
succeeds to fit the general trend but fails to fit the details at
the required 10™* precision level.

Figure 3.19 compares a waveform predicted by the proposed
model with the corresponding SEOBNRv4PHM waveform. It
is clear that the results are not as good as in the spin-aligned
case. An additional difficulty we found here was highlighted

by the gap between the red curve of Figure 3.16 and the others.

This time, the evaluated waveform is a sum of oscillatory
signals and thus a slight mislanignment between the phase
of the predicted modes can drastically change the result.

Figure 3.18: Scatterplot of the
features vs first reduced coeffi-
cients of the attributes of the
(2,2) mode. True reduced coeffi-
cients are in blue and predicted
ones are in orange.
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Figure 3.19: Zoom on a target
(2,2) waveform mode (grey) gen-
erated by SEOBNRv4PHM (in
the rotated inertial frame I’) and
a prediction (blue) from the pro-
posed model. The mismatches
of the total waveform and of the
rotated (2,2) mode are ~ 0.6.

25: Hardware limitation is the
main constraint on the size of the
dataset. One should completely
run the proposed model on a
computing cluster.
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The presented approach shows promising results for wave-
form generation in the case of precessing BBHs. As illustrated
in Figure 3.18 (e.g. see the last line), the distribution of the
reduced coefficients of the different attributes have a clear
dependence on some features. These results call for an exten-
tion of the size of the dataset in order to test the limits of the
model?. The regression task should be tackled by a more
complex regressor able to fit the non linearity of the data, e.g.
a neural network.

Interestingly, the reduced coefficients of the mode attribute
are very similar i.e. the first reduced coefficients of the phase
for the (2, +2), (2, 1) and (2, 0) modes are very close to each
other. This suggests that, just like what we propose, the same
regressor can be used for all the modes’ attributes.

Additional subdominant modes, modelled by SEOBNRv4PHM,
could be added to the principal component regression model.
This would lead to consider (5, £m) inertial modes for m < 5
and respectively (4, £m) and (3, £m) inertial modes. It is es-
pecially important for parameter inference purpose, allowing
unbiased estimates.

SEOBNRv4P computes modes” amplitude and phase in a
(non-inertial) co-precessing P attached to the Newtonian
orbital angular momentum EN(t). In LALSimulation library,
the modes are rotated and mapped to the inertial frame [
with the Wigner D-matrices as in (3.7). Expressions of the
quadruplet [a(t), O(t), x(t), ¢(t)] according to the rotation
parameters between the two frames P and I, and the am-
plitudes and phases in the precessing frame, are given in
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Chapter 4. Given the modes” amplitude and phase in the
precessing frame, as well as the rotation parameters, the
Euler angle parametrization of the inertial modes could be
computed without the discrete quaternion Hilbert trans-
form. Thus, the dataset construction might not be limited
by Euler angle indeterminacy considerations. Unfortunately,
because of technical reasons we were limited in the usage
of LALSimulation code and could not benefit from such
simulation sub-products.

The conclusion of Chapter 1 mentioned that the represention
with instantaneous Stokes parameters and instantaneous
frequency is more adapted for the analysis of non-stationary
polarized signals, mainly because it is not submitted to un-
determination problems (that we avoided by rotating the
inertial frame and limiting the effective precession spin).
However, in this situation this representation is not appropri-
ate since the instantaneous frequency needs to be summed
to construct the full waveform. The phase regression error
cumulates in the integral causing the final performance to

drop.

Summary

Thanks to the recent introduction of new detectors and the
sensitivity improvement of the LIGO and Virgo detectors?®, it
is expected to see more events (of order 200 expected during
O4 and 500 during O5) during the next observing runs. It
will be more and more important to have fast generative
model of gravitational waveforms in order to use efficiently
the computational ressources. Consistently with the past
observing runs, it is likely that non-precessing BBHs will be
prevalent, but we expect to see wider variety of sources such
as precessing binaries as already indicated in the most recent
observations.

We presented a principal component regression model able to
generate gravitational waveforms accurately. The proposed
model is fast to evaluate and can greatly reduce the parame-
ter inference computational budget. It has been interfaced
with the Bayesian inference library Bilby for gravitational
wave astronomy, and shows consistent posterior estimation
compared to other waveform models.

The generative model is extended to precessing BBHs” wave-
forms. Although the model is not able to reach the required
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26: The commissioning of the
detectors is currently progress-

ing.
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performance level, we presented promising results. As dis-
cussed in the previous section, the model can be extended
to other regions of the parameter space, i.e. higher dimen-
sionless effective precession spin, as well as to include sub-
dominant modes. Further investigation would require more
computational power during the training phase.



Gravitational-wave polarimetric analysis

Unmodeled pipelines perform gravitational-wave detection
and reconstruction without a precise physical model and
with a very few a priori on the targetted waveform. They
allow to discover unanticipated sources, as for GW150914 [18],
and to identify new components from the gravitational-wave
signature that was not anticipated by the theory of general
relativity.

Gravitational waves being intrinsically bivariate, their polari-
metric analysis may be particularly useful in the "agnostic"
context where one does not formulate an a priori on the
nature of the source. This has not received much attention in
the litterature so far.

The difficulty comes from the measurement method, which
provides as observable a linear combination of the two
polarization modes waveforms /i, and hy. The reconstruction
of these variables or of the signal polarization parameters
is thus necessary. As a consequence, this requires to first
localize the source in the sky.

This chapter introduces an original method to regularize this
ill-posed inverse problem by imposing an a priori on the
polarization of the targeted signal. The application of this
method is presented in a realistic setting.

For compact star mergers, gravitational waveforms are mod-
elled as a sum of non stationary polarized signals whose
instantaneous polarization parameters depend on the orien-
tation of the line of sight with respect to the orbital plane.
Through the use of a source frame on which the conjugate
symmetry holds between opposite waveform m-modes, the
instantaneous polarization state and instantaneous frequency
of the polarized components are derived.

The polarimetric analysis of gravitational waves is of partic-
ular interest for the observation of precession of the orbital
plane. Its observation amounts to detect a variation in the
polarization state of the received signal [72]. In this context, a
general SNR-like quantity is introduced in order to quantify
the detectability of the polarization state of a signal in an
additive Gaussian noise.

[72]: Flamant et al. (2018),
Non-parametric characterization of
gravitational-wave polarizations
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4.1

Whitened LIGO Lingston data Whitened LIGO Hanford data
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Figure 4.1: Simulated gravitational wave signal (energy spectrogram) as observed by the three LIGO and
Virgo detectors. The properties of the source are described in Section 4.2.4.

1: The polarization angle corre-
sponds to a rotation of the po-
larization basis, see Figures 2.4
and 2.5.

2: In practice the observation
time is shorter than few tenths
of seconds which suffices for this
assumption to remain valid.

xp(t = 1r,5,¢) FL(5,¢,¢9) F
xu(t = th,s,0)| = [FY (
xv(t = 1v,5,0) FY (

As introduced in Equation (2.1), the strain measured by a
detector depends on the antenna pattern of the detector

[F+ (6,¢,9), Fx (9, (,Z),gb)] € R? such as
xa(t) = ha(DFL (0,0, 9) + hx()FS (8, ¢, ) + ma(t),

where (6, ¢) € R? denotes the position of the source in
the sky in spherical coordinates (i.e. longitude and latitude
respectively), 1 is the so called polarization angle! and 14(t)
is an additive noise. If the observation time is sufficiently
short? then the Earth rotation can be neglected.

Gravitational-waves travel at the speed of light and reach
the detectors at different times. The current three detectors
network observation can be written as the following linear
vectorial equation:

0 (]5 Y >L< (6’ (]5, lwb) hi(F) nr(t - TL,(S,(,‘D)
0,9, l,b) Ff (6, o, 110) lh+(t) + |ny(t — TH,5,¢) (4.1)
6,¢,0) FL(6,0,0)] ny(t = tv,s,¢)

where the subscripts L, H, V stand for the LIGO Livinsg-
ton, LIGO Hanford and Virgo detectors. As an illustration,
Figure 4.1 shows a simulated gravitational-wave signal corre-
sponding to a BBH of total mass 40 M added to LIGO and
Virgo noise. In a more compact form

x(t;0,¢) =F (6, ¢, %) h(t) +n(t; 6, ) 4.2)
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where x(t; 0, ¢) denotes the recorded signal of the network,
F (6, ¢, ) is the beam pattern matrix composed of the de-
tectors” antenna patterns, h(t) is the bivariate gravitational
wave signal and n(; 6, ¢) is the network additive noise. Ac-
cording to the sky position, the time shifts 7 s map the
three observation times in a common frame related to the
Earth center. The noises nr(t), ny(t), ny(t) are supposed to
be independent and stationary®.

As shown in Equation (4.2), the signal lies in a two di-
mensional plane given by span {F+ (6, ¢, lp) , Fx (5, o, gb)}
where F., (6, o, 1,1)) and Fyx ((5, ¢, l,b) are the two columns of
the network antenna pattern in (4.1).

The polarization angle

As discussed in Section 2.2.1, the polarization angle character-
izes the orientation of the polarization basis with respect to
the observer frame. It is not an observable as it corresponds
to a rotation of the antenna pattern?, i.e. for 1y and ¥, two
given polarization angles, the corresponding antenna pattern
vectors are related by

Fo(5, ¢, 11) = cos 285 F+ (5, &, o) + sin 285 Fx (8, &, o),
Fx(0,¢,P1) = —sin2AyF1 (6, ¢, o) + cos 2Ay Fx (6, ¢, o),

where Ay = 11 — 1g. This means that F(6, ¢, {1)h(t) =
F(6, ¢, Yo)R(—2AY)h(t) where R(—2Ay) is the 2 X 2 rotation
matrix of angle —2A1.

-~ —
i

A preferred frame for the definition of the polarization angle
is given by the dominant polarization frame (DPF) [73].
For any sky coordinates (9, ¢), the dominant polarization
frame is defined by LPDPF such that the network antenna
pattern vectors f,(0,¢) = F+(6,¢,¢DPF) and fx(6,¢) =
Fy(6, ¢, $PFF) are orthogonal and ||£.(5, §)|| > || (5, ¢)

see Figure® 4.2. A direct computation leads to

4

3: The noise is supposed to be
stationary during the observa-
tion time. In practice, drifts are
observed on longer time periods
in addition to transient noises
that can overlap intermittently
with gravitational-wave signals.

4: Another way to see it is to
write the network observation in
the complex formalism as

x(t) = Re {F(5, p)e 2V h(t) }+n(t),

where x(t), n(t) € R?, h(t) =
hi(t)—ihx(t) € Cand F(5, ¢) =
F1(8,$,0) + iFx(5,¢,0) € C3.

Figure 4.2: Dominant polariza-
tion frame vectors (f4, fx) com-
pared to antenna pattern vectors
(F+,Fx) associated to a given
polarization frame, i.e. a given

lp + I]ZJDPF.

[73]: Klimenko et al. (2005), Con-
straint likelihood analysis for a net-
work of gravitational wave detectors

5: Note that all the develop-
ments presented are for a net-
work of three detectors because
this allows a clear geometrical
interpretation, but the results re-
main valid for a larger network.
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4.1.2

6: See Section 4.2.4 for details
about the corresponding data

segment and the chosen sky po-
sition (6, ¢).

ngPF = 1 arctan2 2 <F+(6’ ¢.0), B0, ¢, O)> ,
IR0, 0 - [F, 0,0l

where arctan? stands for the four-quadrant inverse tangent.
f+(6, ) and £« (6, ¢) are named the DPF vectors.

For now on, in order to simplify the expressions, we suppose
that the line of sight is known so the dependence of the
antenna pattern on the line of sight (6, ¢) is dropped and
the detectors observations are time shifted so the waveforms
h(t) and hy(t) are aligned in each detector and (4.1) holds.

Polarization has received little interest in the gravitational
wave data analysis community so far because there are limita-
tions for their reconstruction and analysis. First, the reduced
number of detectors make difficult the location of the source
which is necessary in order to write (4.2). For the majority of
the detected signals only two detectors are involved, the SNR
being not equilibrated between the detectors, when at least
three are needed for an accurate localization. Second, due
to the low noise level, accurate reconstruction methods are
restrained to the single axis f1(6, ¢) of the two-dimensional
plane spanned by {f.(6, ¢), fx(6, ¢)}. Based on the work
presented in Chapter 1, we aim to bring new methods ex-
ploiting the fact that h(t) is an amplitude, frequency and
polarization modulated signal or the sum of several such
signals.

Polarimetric characterization of the noise

A common assumption on the detector noises is that they are
Gaussian, stationary and independent from a detector to the
other. The detector noise is characterized in the frequency
domain by its power spectral density Ss(w), where w is the
frequency variable. The amplitude spectral densities /Sg(w)
can be estimated on a segment of LIGO-Virgo data® as shown
in Figure 4.3.

The covariance matrix of the detector network is constructed
from these estimated noise spectral densities. For each fre-
quency, we get the noise covariance matrix

SL(a)) 0 0
Aw)=| 0 Suw) 0 |. (4.4)
0 0 Sy(w)
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Then, equation (4.2) can be rewritten in the frequency domain
with the whitened detectors’ observations, such as

X(w) = F (w;9) H(w) + N(w), (4.5)
where X(w) = A™Y2X(w) is the whitened vector of obser-
vations, I (w; 1) = A(w)"V2F (1) is the noise-scaled beam
pattern and similarly for N(w) which is now a standard
white Gaussian noise.

The projection operator on the noise-scaled signal plane
span {F+ (w; ), Fx (w; 1,D)} is given by the Moore-Penrose
inverse of the noise-scaled beam pattern matrix

P = (@ Fep) F@y. @)

The covariance matrix of the noise projection in the noise-
scaled wave plane F' (w; ) N(w) is given by
V() = F (w; 9) (FY (w; )" (47)

By definition of the Moore-Penrose inverse, we get V(w) =
(FT (w; ) F (w;))~". Tt is straightforward to get

R @l I @l [ =)

Figure 4.3: Estimated ampli-
tude spectral densities (Welch’s
method) of the data segment for
Virgo (purple), LIGO Livingston
(blue) and LIGO Hanford (red)
used to reconstruct the signal.

Viw) = (@) (i) K@) (48)
where
(s (w; ), Fx (0;0)) |Ex (@; 9)|
w;P) = — — and wP) = ——— 49
O ol " YT R Y
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7: By the plus and cross compo-
nents, we call the parts of the
noise aligned with fi(w) and
fu(w) respectively.

8: One has that [1]

So(w) = E [n4(w)|* + E [nx(w)|?,
S1(@) = E |[n4())* - E [nx(w)*,
Sa(w) = 2ReE {11+ (w)itx(w)},
S3(w) = 2ImE {n.(w)ix(w)} .

for a given bivariate stochastic
process n(t) = [n4(t), nx(t)]".

9: The data segment and the sky
location used for the estimation
are described in Section 4.2.4.

Choosing 1 = PPF where yPF is the polarization an-
gle of the dominant polarization frame defined with the
noise-scaled antenna pattern, i.e. °*F is such that f,(w) =
Fi (0;9PF) and fu(w) = Fx (w; $PTF) are orthogonal and
K (a);l,bDPF) < 1, then

= -2
V(w) = Ifet@) = 0 Ll (4.10)
0 [l
Equation (4.10) shows that in the DPF, the plus and cross com-
ponents’ of the noise are independent. Since x (w; P°FF) < 1,
the noise power is higher in the cross component than in the
plus component.

The polarization of the noise is embedded in the covariance
matrix® V(w). In the DPF, the Stokes parameters of the noise
are given by

Sow) = [|fe(@)]| " + |A@)]

Si(w) = ||Fe (@) = | A@)|
Sz(a)) = 53(0)) = 0.

(4.11)

Figure 4.4 shows the normalized Stokes parameters estimated
on a segment of the LIGO-Virgo detectors data’.

The estimated spectral polarization degree defined as

VE (S1(@)F + E {S2(@)) + E {S3(@)}
E{So(@)}

is also given. This quantity is the fraction of polarized noise
power (0 < @, (w) < 1)at frequency w [1]: P,(w) = 1 for
a fully polarized stochastic signal, and ®,(w) = 0 for an
unpolarized signal. As for the amplitude spectral density,
the polarization degree is invariant with respect to the polar-
ization angle (this is not the case for the normalized Stokes
parameters).

Oy (w) = (4.12)

In the wave plane span { f+(6, o), fx(é, qb)}, the noise is thus
strongly polarized, which means that its observed polariza-
tion state is stable over time. By construction of the DPF, it
is linearly polarized along the cross direction. This indicates
that sx measurements are much more noisy than that of

h.



4.2

4.2 Reconstruction of gravitational-wave signals | 85

10—21 i

10—22 i

V'S0

102 e

S1
—0.99 1

—1.00 - . ,

0.05 -
59

0.00

—0.05 -

0.05 1
53

0.00

—005 h T T

1.00 1

0.99 -

100 10°
Frequencies (Hz)

Note that the estimated polarization parameters presented
in Figure 4.3 are dependent on the chosen line of sight. One
would have different values for a different choice of (6, ¢).

Reconstruction of gravitational-wave
signals

It follows from Equation (4.11) that the noise of the detector
network is linearly polarized: the noise is mostly located
in the cross component. As expected this complicates the
reconstruction of hy from noisy observations. Contrarily
to the noise, in general the gravitational-wave strain is not
necessarily linearly polarized (it is not for compact-star binary
mergers that are not edge-on, i.e. ¢ # 71/2). Based on these
differences in the polarization patterns this section presents a

Figure 4.4: Estimated normal-
ized noise Stokes parameters
(s1(w), s2(w), s3(w)) and polar-
ization degree ®,(w). The am-
plitude of the noise is given
by 4/So(w). The Stokes param-
eters are computed with (4.11)
from the estimated power spec-
tral densities of the detectors
shown in Figure 4.3.
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4.2.1

10: This is true under the con-
dition that the noise is uncor-
related over the time-frequency
bins.

11: Coherent Waveburst
uses the likelihood ratio
P(x|H1)/P(x|Hy) between the
null hypothesis Hy (no signal
is present in the data) and the
alternative hypothesis H; (a
signal is present in the data).
This allows to build maximum
likelihood ratio test [73]. While
the distinction from the pre-
sented developments is notably
important for the detection of
gravitational-wave signals, it is
not significative in the restrained
context of signal reconstruction.

new regularization term which promotes certain polarizaton
states.

Standard approach

As it clearly appears from (4.5), the reconstruction of the
gravitational-wave strain & from noisy data is an inverse
problem. This problem is generally ill posed as for a great part
of the sky, the mixing matrix Fx(w; ) is ill conditionned, i.e.
K (a); wDPF) < 1in (4.9). Geometrically, this means that for
an arbitrary polar angle ¢, F1(w; 1) and Fx(w; 1) are nearly
aligned or one of them is close to zero. For instance, the cross
component /1y cannot be retrieved when « (a) ; I,DDPF) =0.

We propose an approach where the reconstruction problem is
modeled as an optimization problem with a data fidelity term
W(h, x) and a regularization term €)(%), the reconstructed
strain /1 is obtained as

h= argmin W(h, x) + AQ(h),
he#

(4.13)

where A > 0 is a regularization parameter and # is a fi-
nite dimensional Hilbert space. Motivated by a statistical
interpretation of the reconstruction scheme, the data fidelity
term is often chosen as to be the log likelihood of the ob-
servations, which from equation (4.5) can be written in the
time-frequency domain as the noise weighted least square
function!®

W(h,x)= Z % ||X(cu, 7) — F(w)H(w, T)|
(w,7)el

2
S (41

where I' corresponds to time-frequency bins in which the
signal is present.

Coherent Waveburst [40, 41], one of the LIGO-Virgo pipelines,
follows this approach!!. It identifies time-frequency regions
with excess of power [41]. Time-frequency bins that show a
statistically significant excess of power with respect to the
reference noise estimation are selected. I is identified among
the pre-selected bins with a ad-hoc clustering algorithm.
Solutions of (4.13) assuming A = 0 are given by

H(w, ) = FY(w)X(w, 1) (4.15)

where Ft(w) is the Moore Penrose inverse defined in (4.6).
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The beam pattern vector asymmetry renders the inverse
problem ill posed, in particular for the cross component /.
Depending on the assumptions we have about the signal
being sought, regularization constraints can be added to the
likelihood functional. This insures that the reconstructed
signal will have desired physical properties. Regularizations
have been already proposed in the form of polarization con-
straints [41, 73]. h.., hy and their quadrature parts (i.e. Hilbert
transforms) are parametrized with respect to polarization
parameters (e.g. ellipticity, orientation) and inverse problem
solutions are derived depending on the values imposed to
the polarization parameters [41, 73]. We generalize and ex-
tend those schemes by using the framework introduced for
bivariate signal representations.

Regularization with polarization constraint

Motivated by the differences in the signal and noise polar-
ization patterns described in Section 4.1.2, we propose a
Tikhonov regularization [74] based on polarization priors.
The quadratic constraint is of the form

1
Q) = 3 5 [piwnH @, ol (4.16)

w,T

where L_(4,7) is the Jones matrix of a polarizer [75] of axis

—Uw, 1) = (s1(w, 1), 52(w, 1), 53(w, 7)), (4.17)
such that
I _1 1+ s1(w, 1) So(w, ) + isz(w, T)
“H@r) = 2 SZ(C‘)/ T) - ng(C(), T) 1- 51(0), T)
(4.18)

L_yw,nH(w, T) corresponds to the quasi-projection of the
polarization axis of H(w, 7) on —p(w, 7). For a signal h with
an orthogonal polarization state y,(w, 7) = p(w, 7), the out-
put of the filter is Ly, H(w,7) = [0, 0]”. The signal is
unchanged if p,(w, T) = —p(w, 7). Thus the regularization
term (4.16) is penalizing polarizations different from the tar-
getted axis p(w, 7). A is viewed as the power of the polarizing
filter and can be different in each bin (w, ) € T.

The linearity of the inverse problem (4.2) is preserved by the
Tikhonov regularization, resulting in a closed-form solution

[74]: Willoughby (1979), Solu-
tions of Ill-Posed Problems (A. N.
Tikhonov and V. Y. Arsenin)

[75]: Gil et al. (2022), Polarized
Light and the Mueller Matrix Ap-
proach



88 | 4 Gravitational-wave polarimetric analysis

12: Notice that for the hard con-
straint the sign of p is unchanged,
while the polarizer is defined
with respect to —u for the soft
constraint.

4.2.3

[76]: Bammey et al. (2018),
Sparse Time-Frequency Representa-
tion of Gravitational-Wave signals
in Unions of Wilson Bases

of the inverse problem, such that

L) (@)%,
(4.19)

Aw, 1) = (ﬁT(a))ﬁ(w) +ALT,

(w,7)

for all time-frequency bins.

Standard regularization used by Coherent Waveburst is a
penalization on the cross component [73], and results in a
soft constraint that reconstructs the maximum likelihood
solution ﬁx with a penalty factor. This is equivalent to choose
a constant polarization prior in (4.16) with u = (1,0, 0), i.e.
a linear polarization (horizontal) prior with a constraint on
the cross component, justified by (4.11). This standard linear
polarization prior favors high signal power and near edge
on sources (i.e. sources with an inclination ¢ ~ 7t/2) with a
polarization angle near ¥PPF or YPFF + 71/2.

A hard polarization constraint is achieved by the quasi-
projection of the polarization state of the solution to the least
square problem by the polarizer'? Ly, 1), such that

H(w,7) = Ly, o F (@)X (w,7), (4.20)

where p(w, T) corresponds to the targeted polarization state.
For example, choosing u = (1, 0, 0) will reconstruct /. as the
solution of the least square problem (given by (4.15)) and
ftx =0.

Regularization with polarization and sparsity
constraints

Gravitational-wave signals are supposed to be decomposed
in a small number of time-frequency bins [76]. Based on
this assumption, the proposed reconstruction method can
be refined by including additional regularization terms, no-
tably on the number and distribution of the time-frequency
coefficients of the desired signal.

A sparsity prior can be included by an additional regular-
ization term with the non smooth functional ®(H(w, 7)) =
|H(w, 7)||;- In this case, the objective functional becomes

1,4 ~ A
D > |X(w, 7) - F(w)H(w, ’I)”; + 72 ||Ly(w,T)H(a), T)”; + M |H(w,7)ll;,  (4.21)

(w,7)eT
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where the regularization constants A1 and A, can be functions
of (w, 7).

The Iterative Shrinkage-Thresholding Algorithm (ISTA) [77]
is often used for the resolution of the Lasso: arg min, W(h) +
A®(h). Combettes et al. [78] have extended ISTA to the case
of general non smooth regularizer. For a non smooth func-
tion @ taking finite dimensional complex entries, a forward-
backward algorithm is defined with a proximity operator
given by

1
proxy(z) = arg min 5 ||z — u||§ + ®d(u), (4.22)
u

where z is a finite dimension complex vector. The general
algorithm is given in the context of a least square data fidelity
term and a polarization prior in Algorithm 1%3.

Algorithm 1: ISTA

HD e CMN k=1,1,€eR,

S, 1) = (FI@)F(@) + ALy, Luw)

y(@,7) = |IE(w, 1)E(w, 7)]|;

repeat

VO (w, 1) = B(w, 1) H® (0, 1) = F(0)X(w, T);
H(k+1)(a), 7) =

k 1
o (H( @055

VQW(w, T));

prox A
y(w,7)

k=k+1;
until convergence;

In the case of a sparsity prior (4.21), the proximity operator
of Algorithm 1 is given by the soft-threshodling operator, i.e.

prox_y o = S A, , where
Y(w,7) y(w,7)

S\ (H(w, 7)) = H(w, 7) max (1 _ IH(;\—T)IO) (23

As a generalization of the Lasso, structured/social spar-
sity regularization [79, 80] has shown promizing results on
several applications [81-83] including gravitational-wave
reconstruction [84]. Contrarily to the Lasso regularization,
this approach amounts to impose a prior on the repartition
of the time-frequency coefficients of the signal. The regular-
ization is achieved by the introduction of mixed norms and
expansion operators [80].

[77]: Beck et al. (2009), A Fast Iter-
ative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems

[78]: Combettes et al. (2005), Sig-
nal Recovery by Proximal Forward-
Backward Splitting

13: Algorithm 1 takes the part of
representing the quadratic part
of (4.21) as a single quadratic
operator Q (H(w, 1)) =
V¥ (H(w, 1)) + AT (H(w, 7)) in
order to simplify the reading.

[79]: Kowalski et al. (2009), Struc-
tured Sparsity: from Mixed Norms
to Structured Shrinkage

[80]: Kowalski et al. (2013), So-
cial Sparsity! Neighborhood Sys-
tems Enrich Structured Shrinkage
Operators

[81]: Costa et al. (2017), Bayesian
EEG source localization using a
structured sparsity prior

[82]: Jia et al. (2012), Robust
and Practical Face Recognition via
Structured Sparsity

[83]: Siedenburg et al. (2014), Au-
dio declipping with social sparsity

[84]: Feng et al. (2018), Struc-
tured sparsity reqularization for
gravitational- wave polarization re-
construction



90

4 Gravitational-wave polarimetric analysis

For these methods, solutions are constructed by adapting the
proximity operator of the general proximal gradient descent
method presented in Algorithm 1. For instance, the Persistent
Empirical Wiener (PEW) proximity operator [83] is given by

/\2

ST™W(H(w, 7)) = H(w, T) max| 1 — L0, (429

4.2.4

Y Cople, ) |H(w!, 7))

(', 7)€l 0

where I'(w, 7) is a set of indices forming a neighborhood of
the time-frequency bin (w, 7) and C,, . € C?*ITwl is a collec-
tion of weights over the neighborhood such that ||C,, ||, = 1.
That is, for each (w, 7), the neighborhood time-frequency
bins are involved in the shrinkage operator. This tends to
discard isolated large coefficients and keep coefficients with
an appropriate neighborhood. Different weights correspond
to different clustering effects. The exponentiation of A tends
to preserve energetic coefficients H(w, 7), which leads to
better performances in this one step reconstruction proce-
dure [83].

Results

The proposed regularization methods with a polarization
promoting prior are implemented and tested on realistic
synthetic data. For each LIGO and Virgo detectors, we con-
sidered a noisy data segment of the third observing run [68].
The data segment start from January 29, 2020 at 06 : 54 GMT
and last ~ 7 sec.

A gravitational-wave signal is generated using SEOBNRv4 [58]
for a black hole binary with non spinning bodies of masses
20 Mo each, at a distance of 500 Mpc, see Figure 4.5. The
binary is viewed face-on (1 = ¢ = 0) which corresponds to
a constant circular polarization (see section 4.3).

The position of the source in the sky is fixed to (0, ¢) =
(11/4, t/4). The polarization angle of the injected signal cor-
responds to the DPF polarization angle. Both the noise and
the signal are filtered with an high-pass filter with a cutting
frequency of 25 Hz. The network SNR is 20, it is 13, 14 and 5
for the LIGO Livingston, LIGO Hanford and Virgo detectors
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respectively. For the reconstruction, a time-frequency region
I'isroughly selected around the event (see the time-frequency
region corresponding to Figure 4.5).

Polarization prior In this example, the injected waveform
is circularly polarized and a high circular polarization reg-
ularization leads to better a result. However, in order to
illustrate the variability offered by the penalization coeffi-
cient A,, the reconstruction result is presented for A, = 0.1
and p = (0,0, —1) in Figure 4.7. The effect of the constraint
is seen from row (a) to row (b), where the polarization of
the signal has partially changed. In addition, the ridge of
the signal is partially reconstructed. For real applications, A,
should be adapted to the degree of confidence in favor of a
given polarization state.

Figure 4.5: Injected signal (en-
ergy spectrogram) (a) and with-
ened observations (b) in the
wave plane.
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Figure 4.6: Original (red) and re-
constructed (blue) polarization
waveforms h, and hy for a cir-
cular polarization prior (A, = 2)
and a structured sparsity prior
(A1 = 3). This corresponds to Fig-
ure 4.7c.

Structured sparsity and polarization prior For simplicity,
the polarization prior and the weights of the PEW operator
are fixed over the time-frequency bins. The weights are
defined such that

C= (4.25)

— o O

O = O

S O =
~

which favors diagonal time-frequency clusters. The recon-
struction result is presented for A, = 2, Ay = 3 and p =
(0,0, 1) in Figures 4.6 and 4.7. This defined a strong (not
hard) constraint on both the structure of the time-frequency
clusters and the reconstructed polarization. The ridge of
the signal is selected by the structured sparsity prior. The
end of the ridge is not selected as it is vertical and does not
correspond to the prior given by C.

x10~22
L hy {
0.4E,,\/\/'\/\ \AANNNS \/\1\f\I\AI\I\I\I\/\/\f\AMMMAM"IL
VUV AAMMARL VW LTIHLILL 4
—54
x10~22
o b ]
Laannnaannnaanaaanaat A0S
ATATAY vu/\fvvaVVVVUVVVWWWW"IV
_5— L
210 2?2 2f4 2?6 2f8 3?0

Time (s)

The reconstruction accuracy is measured with the mismatch
metric € defined in Equation (3.5) for both the injected bi-
variate gravitational-wave signal h and the two polarization
waveforms h, and hy. The different results are summarized
in Table 4.1.

As highlighted by the results, the polarization constraint
can help to retrieve faint signals or faint polarization wave-
form (e.g. hx) without imposing a strong constraint for the
reconstruction. The structured sparsity addition includes a
physical prior on the selected time-frequency regions, which
performs better than a fixed truncation.

The hyperparameters of the presented methods (e.g. the
weights of the PEW operator and others) can be empirically
adjusted on a large dataset of injected signals. They can be
adapted in time and frequency in order to correspond to the
different phases of the waveform (inspiral, merger, ringdown).



4.2 Reconstruction of gravitational-wave signals | 93

Table 4.1: Reconstruction accuracy of the bivariate signal & and the mode waveforms h., hy for different
methods. The "truncated least square" and "circular polarization prior with truncation" methods involve a
truncation of the time-frequency coefficients with a threshold defined by the 99.5% quantile of Sp(w, 7).

Reconstruction method e(h, ﬁ) e(hy, ﬁ+) e(hy, flx)
Least square 0.61 0.34 0.81
Truncated least square 0.63 0.39 0.73
Circular polarization prior

0.26 0.26 0.26
(u=1(0,0,-1), A, =2)
Linear polarization prior

0.58 0.27 0.85
([J- = (1/ 01 0)/ /\2 = 2)
Circular polarization prior with truncation

0.15 0.15 0.15
([J‘ = (01 01 _1)1 AZ = 2)
Polarization prior and sparsity
(=(0,0,-1), A = 2,4, = 3) 0.14 0.12 0.15
Polarization prior and structured sparsity
(=(0,0,-1), A =2,A; = 3) 0.13 0.14 0.13

Such weakly modelled method can retrieve faint signals with
a few assumptions (e.g. with a circular polarization prior).
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Figure 4.7: Energy and polarization spectrograms of the reconstructed signal for different methods.(a): the
weighted least square reconstruction, i.e. the whitened observations of the gravitational-wave signal in noisy
data. (b): the penalized weighted least square with a polarization prior such that A, = 0.1 and g = (0,0, -1).
(c): the penalized weighted least square with a polarization and structured sparsity prior such that A, = 2,
Ar=3and p=(0,0,-1).
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Gravitational-wave polarization

Recent results shown that gravitational-waves emitted by
BBHs are non stationary polarized signals whose polariza-
tion state can be expressed with respect to the orientation
of the orbital plane [72]. In this section, previous results are
generalized to provide a decomposition of gravitational wave-
forms as the sum of polarized components with a "model-
independent" approach'4.

Co-precessing source frame

Binaries assembled dynamically in dense stellar environ-
ments are likely to contain black holes with isotropic random
spin orientations. As discussed in Chapter 3, this causes the
orbital angular momentum of the system E(t) and the spins
of the objects §1(t), §2(t) to precess around the total angular
momentum J(#). The motion of the orbital plane is described
by the normal to the orbital plane i.e. the Newtonian orbital
angular momentum L(t), see Figure 3.12.

A co-precessing frame P is attached to the Newtonian orbital
angular momentum. At each instant, a basis of the precess-
ing frame (e, (t), €, (t), €5 (t)) is such that e; () is aligned
with Ly (t). et (t), &, (t) are chosen to satisfy a minimal rota-
tion condition [47]. In the co-precessing frame, the effect of
precession on the waveform modes is minimized.

At t = ty, where t{ is the reference time from which the
inertial frame I is defined (see Section 3.4), the precessing
and inertial frames are identified. The motion of the orbital
plane is parametrized by three Euler angles (a(t), f(t), y(t))

14: The approach does not lie in
a particular waveform model as
presented in Section 3.2.2.

Figure 4.8: Euler angles («, 8, )
of the rotation from the iner-
tial frame I to the co-precessing
frame P.
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4.3.2

which correspond to the rotation from the inertial frame to the
co-precessing frame with the convention zyz as illustrated
in Figure 4.8. We will refer to 3(t) the opening angle between
the z axis of the I and P frames as the precession angle. ()

and «a(t) track the motion of L ~(t) while y(t) is a phase term
insuring the minimal rotation condition [47].

Since the choice of the inertial frame is arbitrary, the de-
velopments presented in this chapter apply for any inertial
frame I. For example, one could define an inertial frame as
aligned to the total angular momentum T(to) and so use the
corresponding definition of the triplet (a(t), B(t), v(t)).

In the EOB formalism, gravitational waveforms from precess-
ing binaries are first computed in the co-precessing source
frame P introduced in Section 4.3.1, such that

M
) =5 >0 20 1 u(D2Yim(©()), (4.26)
1=2 m=-I
where ©O(t) is the time varying line of sight in the frame P.

In this frame, precession modulations of the waveform modes
are limited. The precessing modes are symmetrized such
that the following symmetry holds

IMOEICITING (4.27)

as in the non-precessing case [51].

The waveform modes can be rotated with the Wigner D-
matrices in order to build inertial modes, such that

1
(8= > B (0D, (=y (), =B(t), —a(t), (4.28)

m’'=—1

from which h(t) is expanded as (3.4).
Gravitational waveforms as a sum of polarized
waveforms

The precessing modes are modeled as amplitude and fre-
quency modulated signals, which from the conjugate sym-



4.3 Gravitational-wave polarization | 97

metry (4.27) verify hy ,(t) = aj (t)e™ ") and hy _,(t) =
(=1 ap  (t)e P10,

Without loss of generality, one can choose [ to be even and
denote by ,, the restriction of the gravitational waveform to
the (I, £m) precessing modes, such as

brm(t) = 1y (D) -2Ysm(O) + 1] _, () -2Yi, - m(O(1)). (4.29)
Onehasby ,(t) = a(t)U(t) cos @(t)—ia(t)V(t)sin ¢(t), where

U(t) = Y1 m(©(t)) + (-1) Y7 — (O(t)) (4.30)
V() = YL m(O() — (1) Y1 - (O(1)). (4.31)

The quaternion embedding of fy; ,, is given by

b,mn(t) =a(t)U(t) cos p(t) + #;j {a1,n(H)U(t) cos @1,m(t)} j
- ial,m(t)v(t) sin @y (t) - %j {ial,m(t)v(t) sin (Pl,m(t)} j

by linearity of the quaternion Hilbert transform #;. We admit
that the bedrosian theorem holds such that

i {ar,m(H)U(t) cos p(t)} = au (H)U(t)Fj {cos @1, (t)}

and that the phase verifies #; {cos ¢, (t)} = sing(t),
then

D () = apn () (U () + V(E)k)el 71n®), (4.32)

U(t) and V(t) can be developed with respect to the rotation
from the inertial frame I to the precessing frame P given
by (a(t), B(t), y(t)) and the line of sight in the inertial frame
(1, o). To do so, we use a specific property of the spin
weighted harmonics, such that

l
—ZYl,m(®(t)) = Z Dfﬂ,m,(a(t), ;B(t)/ y(t))—ZYl,m’(L/ §00)

m'=—1
(4.33)
As shown in Appendix B, we have in particular

Drmn(t) = anm(t) [U(po + a(t), 1, ) + V(o + a(t), 1, )k | e/ P1nO=mr ) (4.34)

which states that the instantaneous phase of I); ,,, 1, as defined
in (1.9), is given by

¢ = Qrm(t) —my(t). (4.35)
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15: Here we abreviated U(qp —
a(t), B(t), 1) by U(t) and respec-
tively for V(t). The calculations
are always valid with U(¢) and
V(t).

The instantaneous Stokes parameters of b ,, can be computed
with (1.17). The calculation is as follows!

DD = a2,,(8) [T ) + T (k[

So(t) = ab,,(0) ([T + |70

= a2, (1) (|C1(t)|2 + |V(t)|2) (4.36)
and
bt m (D01 mw” (8) = a7, (U(E) + V(OR)U () + V(1))
) . = ek (4.37)
= a2, (0 (AU +2Re {TOT ()] k- VO (1)),
which gives the instantaneous Stokes parameters as
Si(t) = a? (1) (Re (T} = Re {7 ()} = Im {TI(1)}" + Im {V(t)}z)

o (4.38)

Sa(t) =247, (1) (Re {Gn} m {U ()} -Re {V()} Im {V(1)})
Sa(t) = —2a2, ()Re {Cl(t)%}

Equations (4.38) are still valid
with U(t) and V(t). Here the dis-
tinction is made to stress that the
normalized Stokes parameters
are functions of @ + a(t), t and

B(t).

16: Note that this result de-
pends on three assumptions. The
conjugate symmetry of the co-
precessing modes should hold.
The Bedrosian theorem requires
that ¢ ,,(f) has sufficently high
variations compared to the other
parameters. More technically,
the Hilbert transform requires
a particular structure of @y ,, (¢)
in order to create a quadrature
part of cos @, (t).

The instantaneous polarization state (given by the normalized
Stokes parameters s;(f) = Si(t)/So(t), see Chapter 1) is such
that uy, ,, (po + a(t), 1, (1)), i.e. it is only determined by the
orientation of the line of sight in the co-precessing frame. The
instantaneous frequency of by ,,(t) is computed from (1.34).
Thus the waveform can be decomposed as a sum of AM-
FM-PM components with different frequencies!®

wbl,m ~
(Pl,m(t)-

As an illustration, Figure 4.9 shows the time-frequency trans-
form of a simulated signal for a precessing binary. The
brightest ridge of the energy spectrogram corresponds to
b, and other ridges correspond to subdominant polarized
components. The ridge curves are given by the instantaneous
frequencies of the polarized components. Values of the Stokes
parameters along the ridges are given by (4.38) and their
variations are due to the precession of the orbital plane.
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Figure 4.9: Energy and polarization spectrogram of a simulated gravitational waveform with SEOBNRv4PHM
including (2, £2), (2, 1), (3,£3), (4, +4) and (5, +5) precessing modes. The source is a precessing binary
inclined at 80 deg with bodies of masses m; = 29.7 M, m; = 8.4 M and spins x, = (0.5,0.2,0.2), x, =

(0.2,0.2,0.5) (x = 0.5).

The dominant polarized component I, »

As for spin-aligned BBHs, the (2, £2) modes are dominant in
the co-precessing frame [85].

The restriction of the gravitational waveform to the dominant
(2, £2) co-precessing mode is given by

D22(t) = hy (£)-2Y2,2(O()) + hy_,(t)-2Ya,-2(O(#)).

We present here an illustration of the previous method on the
dominant AM-FM-PM component by, »(¢). Consider a face-on
binary in the inertial frame, i.e. t = @g = 0. Then, one obtains
that:

2
2Y22(0() = D5 D3 (), B(E), y(£)-2Ya,m(0,0)

m'==2

1 b
-2 \/g cost ? S2i(a(ty ()
(4.39)

and

2
LYo 2(0(H) = D) D2, (alt), B(t), y()-2Ya,m(0,0)

m/'==2

_1 \/E sint PO 2iatr-e)
2V 7 2

Knowing that y(t) is only involved in the instantenous phase

(4.40)

[85]: Babak et al. (2017), Validat-
ing the effective-one-body model of
spinning, precessing binary black
holes against numerical relativity
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17: In this particular case, the
expression of b, from (4.39)
and (4.40) is quite simple. How-
ever we want to illustrate the ap-
propriateness of the Stokes pa-
rameters derivation presented in
the last section.

4 Gravitational-wave polarimetric analysis

of B 5, it is dropped to gives the following terms!”

u) = %\/geﬁ“(t) (cos4 @ + sin? ?) (4.41)
V() = %\/gezm(t) (cos4 @ — sin* @) (4.42)
Then, the expressions of the Stokes parameters are
2 (t
So(t) = az’;( )% (sin8 @ + cos® @) ,
2 (¢t
S1(t) = ‘12,2( )E sin® B(t) cos 4a(t),
Jo (4.43)
ay,(t) 5 4 .
So(t) = T B(t)sinda(t),
2 (¢t
Ss(t) = az’;( )% (sin8 @ - cos® @) )

For instance, when the orbital plane is face-on (3(t) = 0), b2,
is counter-clockwise circularly polarized with s1(t) = s»(t) =
0 and s3(t) = —1. When the orbital plane is edge-on (B(t) =
711/2), b,2 is linearly polarized with s3(t) = 0 (horizontal for
a = 0 and vertical for a = 71/4). For 0 < B < m/2, oy is
elliptically polarized.

We have a closed form expression of the instantaneous Stokes
parameters of D (t) and its instantaneous phase (which
is @(t) = @a(t) — 2y(t)) with respect to the rotation pa-
rameters (a(t), B(t), y(t)) and the amplitude and phase of
the co-precessing mode (a2,2(f), 2,2(t)). The instantaneous
frequency of the dominant polarized component can be
computed from (1.34), such that

sin®(B(t)/2) — cos(B(t)/2)
sin®(B(t)/2) + cos3(B(t)/2)
(4.44)

w(t) = P2(t) = 27() + 24(t)

While we content ourselves to the dominant polarized com-
ponent, the same straightforward derivation applies to sub-
dominant polarized components by ,,: the instantaneous po-
larization parameters and the instantaneous frequency are
expressed with respect to the orientation of the line of sight
and the amplitude and phase of the waveform modes in the
co-processing source frame.
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Precession induced variations of
waveform polarization state

Section 4.3 shown that gravitational waves emitted by the
coalescence of compact objects are a sum of non stationary
polarized signals whose polarizations depend on the orien-
tation of the line of sight with respect to the orbital plane.
A variation of polarization state over time is characteristic
of a precession movement of the orbital plane. This sug-
gests a methodology for the detection of precession effects,
which would consist to detect time variations of the nor-
malized Stokes parameters/polarization state of a polarized
component.

Sensitivity of the normalized Stokes parameters

For precessing BHHSs, the instantaneous polarization state
of the polarized components only depends on the triplet
(a(t), B(t), y(t)) parametrizing the precession motion with
respect to an inertial source frame, and the orientation of
the observer in this frame (¢, o). At a given time ¢, 3(t) is
the opening angle between the Newtonian orbital angular
momentum EN(t) and a given reference inertial vector'®,
which we defined as EN(to).

During the coalescence, the spins of the two objects tend to
align themselves [49, 50] and thus limit the precession effects
during the last stages of the coalescence, when the signal is
in the observable bandwith. At this date, hints of precession
are reported [36] but there is no confident detection of a
precessing binary. From this status, this section considers the
influence of small precession effects, i.e. small variations of
B(t), on the instantaneous Stokes parameters. The objective
is to evaluate which configurations are more or less favorable
to the detection of precession.

For each polarized component, the Taylor series of the nor-
malized Stokes parameters with respect to the precession
angle B(t) can be computed from (4.38). In particular, this
leads to

18: A small variation of B(t) cor-
responds to a small precession
and conversely a large B(f) cor-
responds to a high precession.
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sin?

sin ¢ cos t(cos* 1 — 1) cos(¢po + a(t))

s1(t) = t) + O(BA(t
1) sin* 1 + 8 cos? (cost t +6cos? 1 +1)2 BE) +O(B°(1))
. 3 .
sin” L sin + alt
s2(t) = 4— Skl ))5(t) +O(B(t)) (4.45)
sin* ( + 8 cos?
cos (1 + cos? 1) sin” 1 cos (o + a(t)) )
s3(t) = —4 - t) + O(B(t
a(t) cos*t+6¢cos?t+1  (cos*i+6cos?t+ 1)2ﬁ( ) +OEE)
for the dominant polarized component I, ».
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Figure 4.10: First coefficients of the expansion of the Stokes of the (2,2) precessing modes.

I I I
0 T o2r
3 2 3

Inclination (rad)

Figure 4.11: Second order coeffi-
cients of the Taylor series of the
normalized Stokes parameters:
(blue) 16]ci1(1)], (red) 4|ca(0)],
(green) 4 |c3(t)]. The dashed line
corresponds to a threshold value
of 1.

Equation (4.45) reveals that the inclination ¢ is leading the
dependence of the Stokes parameters with respect to S(t).
Moreover, for almost all inclinations s1(t), s2(f) and s3(t)
linearly depends on (t). Exceptions are notably the face-on
(t = 0) and face-off (1 = 1) cases for which none of them
has a linear dependence, and the edge-on (1 = 11/2) case for
which the first order coefficient of s1(t) is vanishing.

In order to differentiate between the different terms of the
expansions, Equation (4.45) is shortened as

s1(t) = b1(1) + 16¢1(1) cos(o + a(t))B(t) + 6(82),
Sa(t) = 4ca(t) cos(po + a(t))p(t) + @([32), (4.46)
s3(t) = —4b3(1) — 4es(1) cos(po + a(t)B(t) + 6(B?),
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where zero and first order coefficients of the normalized
Stokes parameters are shown in Figure 4.10.

Without precession, the values of the normalized instan-
taneous Stokes parameters are given by19 s1 = b1(1), s =
0, s3 = —4b3(1). Depending on the amplitude of the first
order coefficients 16 |c1(1)|, 4 |c2(t)| and 4 |c3(1)|, the normal-
ized Stokes parameters are more or less sensitive to small
variations of B(t). The amplitude of the first order coefficients
is drawn as a function of ¢ in Figure 4.11. For ¢ € [11/3, 21t/3]
(inclinations between 60 and 120 degrees), variations of
s1(t), sa(t), s3(t) are of the same order as variations of B(t)
(expect for s1(f) on a small interval around ¢ = 71/2). Outside
this interval variations of s1(t), s2(t), s3(t) are much smaller
than actual variations of 3(¢). The normalized Stokes param-
eters are thus more sensitive to variations of the orbital plane
for near edge-on binaries.

One could expand (4.45) up to the second order. Doing so,
we see that for ¢ = 71/2, none of s1(t), sa(t), s3(t) exhibit
a quadratic dependence on f(t). In the face-on and face-
off cases, the second order terms of s,(t), s3(f) vanish. The
approximation (4.45) is thus more accurate for near edge-on
binaries.

Considering a given distribution of the line of sight in the
source frame, one can predict the expected distribution of
Stokes variations for the upcoming signals (4.45). This defines
a goal for the accuracy of Stokes parameters estimation.

For an isotropic distribution of the line of sight, the inclination
distribution is given by g(t) = sin(t)/2 for ¢ € [0, 7], see
Figure 4.12. Based on the difference of amplitude of the
waveform for different inclinations??, Schutz [86] estimated
a distribution of detectable inclination as

F(1) = 0.076076(1 + 6 cos® L + cos* 1) sin 1, (4.47)

see Figure 4.12.

We define fmax as the opening angle of the cone drawn by

the Newtonian angular momentum L N(t) (see Figure 3.12),
i.e. the maximum precession angle of the binary. For a given

19: Here we work in the wave
source frame. That is, the polar-
ization angle is null.

0.4 1

0.2 1

0.0 1
T T T
0 5 T

Inclination (rad)
Figure 4.12: Uniform inclination
(blue) and detectable inclination
(green) distributions.

20: Without precession, 3(t) can
be replaced by t in (4.43). Then
Sp gives the power of the signal
as a function of the inclination
angle.

[86]: Schutz (2011), Networks of
gravitational wave detectors and
three figures of merit
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Pmax < 1 and a given inclination ¢,

Asq(t, ﬁmax) =16 |C1(L)| Pmax
ASZ(L/ 5max) =4 |CZ(L)| Pmax (4.48)
ASB(L/ 5max) =4 |C3(L)| ﬁmax

are the first order variations of the normalized Stokes param-
eters induced by a low precession of the orbital plane.
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Figure 4.13: Histogram of As; for a uniform distribution of inclinations (a) and for a distribution of detectable
inclinations (b).

Table 4.2: Quantiles of the distribution of As; associated to fmax = 5deg for the uniform distribution of
inclination (a) and the detectable distribution of inclination (b).

\ 45% 450% 495% \ 45% 450% 495%
Asy | 2.8x107% 1.3x107! 3.5x107! As; | 45x107™% 2.6x1072 3x107!
Asy; [29%x107% 1.7x107! 6.8x 107! Asy | 44%x107% 2.6x1072 4.3x107!
As3 | 3.8x107° 3.8x107%2 6.7x107! As3 | 5.1x107% 6.1x10™* 2.6x107!
(a) (b)

For a given fmax and a distribution of inclination (g(t) or f (1)),
we draw the distribution of As;, As, and Asjz. The results are
illustrated in Figure 4.13 for Bmax = 5 deg. The quantiles of the
As; are given in Table 4.2. For a precession angle of 5 deg, the
maximum value of As; are given by 4fmax ~ 0.34 for s, and
s3. Considering the uniform distribution, this means that for
half of the binaries As; € [0.17, 0.34] and As3z € [0.038, 0.34].
It goes to Asy € [0.026, 0.34] and As € [6.1 x 107#, 0.34] for
detectable binaries.

As1, Asy; and As3 are figures of merit for the detection of
low precession in the detector network observations. They
define the sensitivity that a method detecting precession
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should have with respect to the inclination of a binary and
the precession level.

Towards the detection of precession

Section 4.4.1 introduced As, As; and As3 as characterizing
the level of variation of the normalized Stokes parameters
depending on the inclination and precession angle. This
suggests a strategy for the detection of precession which
consists to detect two distinct polarization states at different
instants in the signal observations. For example by comparing
gains of Hermitian filters [3] with distinct polarization axes.
As a first step, this proposed approach supposes to detect
the polarization state of the signal in noisy data.

In order to measure the detectability of the polarization state
of a given gravitational waveform, we propose a polarization
SNR as the power spectral density of the filtered signal, with
a whitening and unpolarizing filter as defined by Flamant [3].
The polarization SNR writes

pWMrz‘/ﬂEHwﬂzdw (4.49)

where H(w) € H is the quaternion Fourier transform of the
waveform /i, and

H(w) = K() (H(@) + n(@)pn(w)H(w)j) (4.50)

is its filtered version with a quaternion Hermitian filter [3]
corresponding to statistical properties of the noise. The po-
larizing power of the filter is such that

1—-+/1-P%(w)

D} (w)

n(w) = (4.51)

where @, (w) is the polarization degree of the noise at fre-
quency . iy (@) is the noise main polarization axis and the
homogenous gain is

1 D} (@)

250,n(w) (1 - CD%(Q))) (1 - W)

K*(w) =

(4.52)
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where S ,(w) is the power spectral density of the noise.

Ppolar measures the detectability of the polarization state of
a signal in an additive Gaussian noise. It depends on the
ratio between the signal energy and the noise power spectral
density and on the correlation between the noise and signal
polarization axis [3].

For a signal with a sufficient polarization SNR, one expect
to detect variations of the polarization state. As for compact
binaries, the polarization state of the gravitational-wave
signal is determined by the orientation of the orbital plane.
Detect a variation of polarization state remains to detect
precession effects in the gravitational waveform. To do so,
we compute a dominant polarization axis as the polarization
axis which maximizes the energy of the output of a polarizer,
such that

fi = arg max / |hu(t) + th(t)j|2 dt, (4.53)
H

where hy is the quaternion embedding of /1, and define the
precession SNR as

Pp=/|ﬁw_p(t)|2dt, (4.54)

where

hua-a(t) = ht) + phua(t)j (4.55)

is the output of a polarizer of axis —fi and iy —a(t) is defined
as in (4.50) with respect to noise properties.

pp measures the energy of /1 that corresponds to polarization
states distinct from fI. For a given signal with a fixed polar-
ization axis over time uy, I = yy and thus p, = 0, whereas
pp > 0 for a signal with a varying polarization axis.

In order to quantify the variability of the polarization of a
given deterministic signal /1, we define a polarization stability
measure as

0<Dp,=1-9, <1, (4.56)
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where

_ \/812 + 822 + 832
= S

is the deterministic version of the polarization degree for
stochastic processes and §; = / Si(t)dt are the averaged
Stokes parameters of h. One can compute the polarization
stability measure as

Dy,

(4.57)

| rmyia s
' [ ae |

Dy, is a measure of stability of the polarization axis of h. For
a given signal h with a fixed polarization axis g = (s1, s, 53),
we have §; = 5;8§ for i = 1,2, 3 and then Dy, = 0. Conversely,
for signals with a constant energy So in a given interval [1, T]
and such that u(t) = (cos(at),sin(at),0) with a constant
angular velocity a, we have D), = 1. For precessing binaries
Dy, quantifies the level of polarization modulations induced
by precession for a given waveform.

Summary

Gravitational-wave reconstruction require the resolution of
an ill-posed inverse problem. This results from the bad con-
ditioning of the mixing matrix, as from the noise properties.
A regularization method is proposed for the reconstruction
of non stationary polarized signals. Based on a polarization
prior, the reconstruction problem is penalized by the energy
of the signal on a given polarization axis. The proposed regu-
larization is a weak polarization constraint which allows for
weakly modelled reconstruction of gravitational-wave sig-
nals. A refined method is proposed with a structured sparsity
prior selecting time-frequency clusters with a physical prior.
The proposed reconstruction methods are implemented and
evaluated on realistic synthetic data.

While the polarization state of the dominant precessing
modes (2, +2) was first computed by Flamant [7], we demon-
strate as a more general result that gravitational waveforms
are a sum of AM-FM-PM components b, ,, with different
instantaneous frequencies. The instantaneous Stokes param-
eters and the instantaneous frequency of the polarized com-
ponents are derived. We found that the instantaneous po-
larization state of a polarized component is determined by

4.5 Summary

107



108 | 4 Gravitational-wave polarimetric analysis

[87]: Thompson et al. (2020),
Modeling the gravitational wave sig-
nature of neutron star black hole
coalescences

[88]: Cornish (2020), Time-
frequency analysis of gravitational
wave data

the orientation of the orbital plane compared to the observer.
Thus a variation of the instantaneous polarization state of
the waveform is characteristic of a precession of the orbital
plane.

The main assumption on the gravitational waveform is that
the conjugate symmetry must hold ; this is true for a range of
sources [87]. Efforts are made by the data analysis community
to move data analysis pipelines in the time-frequency do-
main [88] and these results can be particularly important for
waveform modelling. As a perspective, the decomposition of
gravitational waveforms in polarized components could be
generalized to gravitational theories alternative from general
relativity, which may result in additional polarizations (up
to 6 polarization modes).

For compact star mergers, the sensitivity of the normalized
Stokes parameters with respect to a variation of inclination of
the orbital plane is characterized. For an opening angle of the
cone drawn by the Newtonian orbital angular momentum
Pmax = 5deg, we computed a distribution of the deviation of
the normalized Stokes parameters As; for two different popu-
lation of binaries. Finally, different quantities are introduced:
the polarization SNR ppolar, which is a contrast measure
between the signal and noise polarizations ponderated by
their respective energies ; the precession SNR p,, which
measures the detectability of polarization modulations ; the
polarization stability measure D}, which depends on the
variation of the instantaneous polarization of a given signal
h.In particular the precession SNR can be used as a detection
statistics for precession effects.



Conclusion and perspectives

The field of polarimetric analysis of non stationary bivariate signals is in its infancy. It still
essentially relies and borrows from the techniques developed for the univariate signals,
applied trivially to each component separately, and thus missing the important geometrical
information shared by the two. This field has recently regain interest with the successful
application of polarimetric analysis over different contexts, e.g. oceanography [8] and
gravitational wave analysis [72].

Flamant introduced a quaternion formalism [3] based in an embedding of a complex-valued
signals in a four dimensional space. Each of the signal variables are analysed in two separate
dimensions, and the polarimetric analysis methods derive from quaternion calculus. On
the other hand, the approach of Lilly is more conventional [10, 12]. It lies in a vectorial
representation of bivariate signals from which the same methods can be derived. The latter
leads to less straightforward calculations but it remains adapted to multivariate signals
with more than two variables.

This thesis connects the previous work of Flamant [7] and that of Lilly [10, 12] on the
representation problem of oscillating and non stationary bivariate signals. Chapter 1
reviewed representations of non stationary polarized signals throughout the quaternion
formalism introduced in [7]. It is shown that contrarily to what suggested Lilly and Flamant,
the Euler angle parametrization of a bivariate signal is indeed well suited in a synthesis
scheme, but it is not generally the case in an analysis scheme. A parametrization is proposed,
defined with time-frequency observables, namely the instantaneous Stokes parameters and
the instantaneous frequency.

This initial work was motivated by the main application presented in this thesis, i.e.
gravitational-wave data analysis. Gravitational wave astronomy is a new field which
has significantly benefited from the development of dedicated mathematical and signal
processing tools [89, 90]. This thesis follows this line of research, with a focus on the
not still developed polarimetric analysis of gravitational waves. The technical limitations
encountered for this type of study are about to disappear with the extension of the network
of second generation detectors spreading around the globe.

Based on a judicious choice of representation, generative machine learning models of
gravitational waveforms are built in order to shorten estimation time of compact binary
parameters. A model is proposed for both spin-aligned and precessing black hole binaries.
They both are evaluated on EOB waveforms [21]. While the proposed generative model
shows operational results for current and future observations of spin-aligned binaries,
technical difficulties prevented the proper evaluation of the model for precessing binaries.

A new regularization method based on a polarization prior is introduced in the resolution
scheme of the reconstruction denoising problem of a signal embedded in an additive
Gaussian noise. The proposed regularization method is found to be more versatile than
existing methodologies [41]. An application is shown on realistic synthetic data.
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The observation and characterization of precessing binaries is one of the interesting
challenges in gravitational-wave data analysis. These sources are of particular interest
regarding the developments made in Chapter 1. As described in Chapter 4, they produce
a signal which is a sum of waveforms whose amplitude, frequency and polarization are
modulated over time. The instantaneous Stokes parameters and instantaneous frequency
of the polarized components are expressed as a function of the amplitude and phase
of co-precessing modes and rotation parameters describing the precession of the orbital
plane.

The dependence of the normalized instantaneous Stokes parameters with respect to the
precession angle is characterized. It is shown that in the case of low precession angles, the
normalized instantaneous Stokes parameters linearly depend on this angle. Regarding
a distribution of compact binary inclinations, a distribution of first order variations of
the normalized instantaneous Stokes parameters is drawn. Indicators on the intrinsic and
detectable level of polarization modulations of a generic bivariate signal are introduced,
paving the way towards the non modelled or poorly modelled detection of precession.

This work introduces a number of mathematical tools that can be hopefully usefull for
the future of gravitational-wave astronomy. The availability of additional detectors, in
particular KAGRA in Japan and LIGO India, will be a game changer for this question.
Within this scope, several developments can be foreseen. The most straightforward possible
development is the construction of a generative model in the case of precessing black hole
binaries. Technical limitations encountered in this work can be overcome by using more
computing power for the training and evaluation of the model. The waveform attributes can
be computed without the need to implement a Hilbert transform, using expressions of the
waveform parameters given in Chapter 4. The model could be constructed in the spectral
domain as in the time-frequency/wavelet domain with a stationary phase approximation.
Secondly, the proposed polarization targeting prior can be included in data analysis pipeline
which already uses the same inverse problem approach. Another important line of work is
the use and evaluation of the polarization SNR and precession SNR for actual and future
observations. From the perspective of waveform approximants, Chapter 1 and 4 suggest to
synthesize the waveform modes as AM-FM-PM signals. So far, the waveform modes are
modelled as AM-FM signals and thus waveform approximants focus on the computation (in
time or frequency domain) of the modes” amplitude and phase possibly modulated by the
effect of orbital precession. For precessing binaries, the computed amplitudes and phases
are not interpretable and highly oscillating (e.g. as in Figure 1.8). Modelling the modes as
AM-FM-PM signals would remain to compute the (more regular) amplitude, orientation,
ellipticity and phase of the Euler angle representation. Such change of consideration
would lead to a major evolution in the standard way of thinking about gravitational-wave
signals.

Beyond gravitational-wave astronomy, the presented methodological work is of general
purpose and is a contribution to the newly introduced field of non stationary bivariate
signals analysis. It raises several questions that are left for future work. For instance, starting
from the work of Brosseau [1] on the polarimetric analysis of stochastic signals, is there
a proper manner to directly detect/estimate the polarization state of a non stationary
signal from noisy observations without having to estimate the signal at first? For a given
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application, one might be interested in estimating the instantaneous parameters of the Euler
angle parametrization even if the signal goes through circular polarization states. This
raises the question of the structure that should be imposed on the instantaneous orientation
and instantaneous phase of the signal, and under which conditions they can be retrieved.
A question that emerges concerns the decomposition of non stationary bivariate signals on
a system of "basic" polarized waveforms. A mathematically motivated decomposition of
any bivariate signal as a sum of polarized atoms (more general than the decomposition in
rotatory components of Section 1.3.1) would impact a range of applications. By analogy
with the chirplet transform [91] which generalizes the classic wavelet transform [92] with
chirp-like atoms (chirplets), is it possible to build a transform which decomposes a bivariate
signal on a system of (non uniformly) polarized atoms? Besides the direct implications of
such transform (e.g. reconstruction and synthesis of polarized signals), this would lead to
a deeper comprehension of the nature of non-stationary polarized signals.
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The quaternion formalism

Quaternions

Quaternions form a generalisation of complex numbers in
four dimensions. The set of quaternions H forms an alge-
bra over the real numbers. The main difference with com-
plex numbers is that multiplication is associative but non-
commutative. Similarly to complex numbers, a quaternion
g € H has a unique cartesian expression

g=a+ib+jc+kd, (A1)

witha,b,c,d € Rand i, j, k three distinct roots of —1. The
cartesian form (A.1) allows to define the addition in a simple
way. For a given quaternion p = e +if +jg + kh, the addition

p + g gives
p+g=(@a+e)+i(b+f)+j(c+g)+k(d+h).

Multiplication rules for the three imaginary units define
cyclic relations. They read

i?=j=k*=-1,

o — iz k,
A (42)
ki=-ki=j,
jk=-kj=1i.

Thanks to the distributivity of multiplication, (A.2) directly
gives the following results for the multiplication of p and

q

qp =ae —(bf +cg+dh)+a(if +jg+ kh)+e(ib+jc + kd)
+i(ch—dg)+j(df —bh)+ k(bg — cf).
(A.3)
The non-commutativity of quaternion product, which is
evident from (A.3), comes from multiplication rules (A.2).
Thus in general

qap #pq.
Due to the non-commutativity of the product, the position of
each element is important in the definition of quaternionic

operators. For example, position of the exponential and
imaginary component j in the quaternion Fourier and Hilbert

Definions of this section are
taken from [13]. One may refer
to [93] for a deeper introduction
on the subject.

[93]: Altmann (2005), Rotations,

quaternions, and double groups;
Corrected ed.
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transforms are important. In an analogous way to complex
numbers, for g defined in (A.1), a denotes its real part and
ib + jc + kd its imaginary part. Thus the conjugate of g is

g=a—1ib—jc—kd.

The modulus of a quaternion is as expected

9] = \/qG = Va2 + b2 + c2 + d2.
g is a unit quaternion if |g| = 1. It is a pure unit quaternion

if and only if g% = —1.
An involution by a pure unit quaternion y is defined as

gt = pqp.

In this manuscript we mainly use the combination of a
conjugation and a canonical involution of axis j

g7 =5 =5 =a+ib-jc+kd.
In particular, one directly has
qp = pgand qp’ = §'p’.
One may verify that its inverse is

a_ 19
gl

)

The widely used quaternion exponential is defined, as for
real numbers, as a series expansion

el =S (A.4)

A direct calculation shows that e = e?eib+ictkd = pa [ 3 Imi—?}n),
n=0 )
where we denoted the imaginary part Im {gq} = ib + jc + kd.

Then one show thate? = e* (cos IIm {gq}| + Im{q}sin|1rn{q}|)
withIm {q} = |[Im {g}|Im {g}andIm {g} = Im {gq} /|Im {q}|.

In the particular case of pure unit quaternion y i.e. a quater-
nion without real part and with modulus equal to 1, and a
given real value ¢, then

eP* = cos ¢ + psin . (A.5)
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Thus Equation (A.5) is in particular valid for y = i,j and
k.

The logarithm of a quaternion is defined such that

Im {q} Re {q}

arccos

(@) = Il 1+ ey 4]

(A.6)

There are several decompositions of quaternion: cartesian
form (A.1) is only one of the symplectic forms, while polar
forms derive from Equation (A.5).

Quaternion spectral analysis

The quaternionic analysis of polarized bivariate signals is
based on a recent formalism proposed by Flamant [3]. This
formalism uses frequency and time-frequency analysis tech-
niques on the space of quaternions to study spectral and
time-frequency polarization properties of bivariate signals.
Since the notion of polarization is linked to the notion of cycle
when scanning an ellipse, spectral analysis is a keystone in
the analysis of polarized signals.

The definition of a quaternion Fourier transform (QFT) is a
basis for our analysis of bivariate signals!. There are several
equivalent ways to define the quaternionic Fourier transform
because of the non commutativity of the product in H. This
requires to differentiate the transformation with exponential
on the right-hand side from the one with exponential on
the left. The axis of the transformation is also a degree of
freedom and we follow here the convention used in the work
of Flamant [3].

Definition A.2.1 (Quaternion Fourier transform) We de-

fine the quaternion Fourier transform (of axis j) as the linear
application which associates to f € L2(R, H)

F {f} () = \/%_n / f(eTotdt YoeR (A7)

and we denote F {f} = f € LA(R, H).

As in the complex case we can demonstrate the existence of
an inverse for the QFT, with f(t) = ﬁ [F{f} )/ dw

1: The construction of the quater-
nionic Fourier transform on the
Hilbert space L*(R, H) is similar
to the construction of the classic
Fourier transform on L%(R,C).
One can find such a construction
in [94].

[94]: Jamison (1970), Extension
of some theorems of complex func-
tional analysis to linear spaces over
the quaternions and Cayley num-
bers
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2: This justifies the choice of j as
the axis of the QFT (it is sufficient
to choose an axis orthogonal to

).

as well as other properties like the Parseval-Plancherel iden-
tities

/vwﬁﬂifwvﬂmm@ (A8)

/f@mﬂm=/@ﬁﬂmgvﬁm%m (A9)

It follows that |F {f} (w)|* and F {f} (0)F {f} ()7 can be
seen as spectral domain densities.

An important point for the analysis of bivariate signals is
the i-Hermitian symmetry?: for all f € L?*(R, H) such that
f(t) € C; we have

F{f}(-w0)=F{f} (@) VYoeR.  (AI0)

The i-Hermitian symmetry implies that the information
carried by the negative frequencies is redundant, the signal
can be described only with its positive frequencies. In this
way, we associate to a signal its counterpart made up only of
positive frequencies.

The spectral Stokes parameters are defined as

|F {f} (@) = So(),

g (A.11)
F{fH(@)F {f} ()’ = S1(w) +iSy(w) - kS3(w).

They are the energetic and geometric content preserved
by the quaternion Fourier transform. While Syp(w) is the
energy of the two components at frequency w: So(w) =
| X (@)[*+]Y (w)|?, the other Stokes parameters are constructed
with cross-correlation products:

Si(w) = [X(@) = [Y(@)I?,
S2(w) =2 (Re {X(w)} Re{Y(w)} +Im {X(w)} Im {Y(w)}),
S3(w) = 2(Im {X(w)} Re {Y(w)} = Re {X(w)} Im {Y(w)}) .

The invocation of quaternions is motivated by the fact that
polarization is revealed by correlation of signal components,
thus in the first time it becomes necessary to apply a spectral
analysis of each component separately. Classical methods
such as the complex Fourier transform mix the two dimen-
sions of a complex-valued signal, whereas quaternions allow
us to construct a Fourier transform that analyzes them sep-
arately and brings out their relationships in a natural way.
This is because they allow to associate two different axes to
the frequency representation of each signal component. A
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bivariate signal of the form z(t) = x(t) + iy(t) has its first
component x(t) analysed on axes {1,j} while its second
component y(t) is analysed on {7, k}. A fortiori the number
of dimension is equal to the number of degree of freedom
for polarized signals. A deeper discussion of these aspects
can be found in [3] .

Discrete quaternion embedding

We considered so far continuous-time signals, building fun-
dations on which we rely to analyse finite discrete time
signals. A major concern when estimating the instantaneous
parameters of a bivariate discrete-time signal is the discrete
Hilbert transform and the discrete computation of the quater-
nion embedding. For infinite duration signals, problems arise
from the impossibility to process all the signal at once. For
finite duration signals, the periodicity of the discrete-time
quaternion Fourier transform prevents to define a signal
with strictly zero negative frequencies. Instead we consider a
quaternion embedding-like signal with the idea of removing
redundancy of the negative frequencies in each spectral pe-
riod. These considerations are well discussed in the signal
processing litterature in the context of discrete real-valued
signals and the associated analytic-like signals [15][95, 96].
Section 1.2.2 introduced the continuous Hilbert transform as
an ideal filter of frequency response —j sin @ which is used
in order to compute the quaternion embedding zy. This filter
should be approximated for digital applications.

Finite duration signals Let us assume that z[n] = x[n] +
iy[n]is a sampled version of a band-limited continuous-time
bivariate signal i.e. z[n] = z(nT) with T € R, the sampling
interval in seconds and n € {0, ..., N — 1}. We suppose that
the continuous-time signal has been low-pass filtered or T’
has been chosen (zero padding) so that there is no aliasing
and apply the same derivation for finite duration discrete-
time bivariate signals as the one used in section 1.2.2. The
discrete-time quaternionic Fourier transform of z[n]

N-1
Z[m] = > z[n]e”? T
n=0

exhibits a periodic structure such as in the discrete real-
valued case’. It is convenient that the discrete quaternion

[95]: Oppenheim et al. (2009),
Discrete-Time Signal Processing
[96]: Reilly et al. (1994), Analytic
signal generation-tips and traps

3: See Figure 1 of [15] for ex-
ample. This came from the def-
inition of the discrete quater-
nion Fourier transform which de-
rives from a discretization of the
quaternion Fourier transform of
periodic signals.
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embedding zy[n] fulfils basic properties that its continuous
version verifies. For instance, the fact that its projection on C;
gives back the original analyzed signal: Pc, {zn} [n] = z[n].
Also, by definition of the continuous Hilbert transform #
as a filter of frequency response —j sign(w), the i-Hermitian
symmetry implies that: (z, # {z});; = 0. This derives from
simple manipulations noting that

/z(t)% {z} (t)dt :/Z(a))(—jsign(w)Z(a)))dw

__ /R Zw)ao + /R E) ) de
-/ 17(@)f jdo - Ji 7@ jdo
=0.

Similarly to what Marple showed for real-valued signals [15],
(if N is even) the discrete quaternion embedding should be
defined as the signal such that

Z|m], form=0andm =N/2.
Zu[m] ={2Z[m], forl<m < N/2-1.
0, forforIN/2+1<m<N-1.

This definition implies that the two previous conditions are
satisfied: C;-projection and orthogonality conditions. The
special coefficient applied to the null and Nyquist frequency
(m = 0and m = N /2 respectively) terms are motivated by the
periodicity of the discrete Fourier transform which involves
that those are shared between the negative and positive
frequency halves of the periodic spectrum. Usual discrete
Fourier transform considerations appear in the usage of the
quaternion embedding: aliasing can be limited by filtering
or zero padding and the signal should be periodic. If these
conditions are not satisfied the estimated instantaneous pa-
rameters [ﬁ[n], O[n], t[n], g?)[n]] (see Section 1.2.2) exhibit
artificial oscillations. These oscillations are notably important
because they are added to the instrumental gimbal lock.

Infinite duration signals The case of infinite duration dis-
crete signals is beyond the scope of this work. Since the
classical results for real-valued signals analysis applied for
the quaternion Hilbert transform, we restrict ourselves to a
brief conclusion of the given references [95, 96]. For infinite
duration signal the previous approach is not relevant because
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the signal should be truncated on finite time intervals. This
may cause aliasing if the size of the window (time intervals) is
not well chosen. In addition the signal will not be periodic in
each window. Such procedure may construct strongly biased
approximation of the quaternion embedding. Oppenheim
and Schafer [95] present several possible real-valued Finite
Impulse Response (FIR) filters in order to approximate the
ideal Hilbert filter impulse response

0, forn =0.
h(n] =
2sin(nm/2) /nm, forn # 0.

Reilly an Frazer [96] have shown that a complex filter (which
transposes into a quaternion j-filter in our case) have better
properties than real-valued ones. It is constructed with a
low pass filter that cut at f;/4 (where f; is the sampling
frequency) which is modulated by a complex exponential
(quaternion exponential in our case) in order for the stop
band to cover the whole negative frequency spectrum. In
contrast to real-valued filters, in this approach the original
signal z[n] is alterated by filtering, thus the projection of
zp[n] on C; is different from z[n] (but the orthogonality
property between z and # {z} holds).

Instantaneous frequency of an
AM-FM-PM signal

The computation of the first instantaneous moment of the
energy density, i.e. the instantaneous frequency, is done
from its definition in Equation (1.30). One develops the
left side of (1.30) using the differentiation property of the
Fourier transform, i.e. & { f } (w) = wF(w)j, and the Parceval-
Plancherel identity (A.9), such as

/wlZH(w)|2dw:/wZH(w)ZH(w)da)
- / F {21} (@) Zn(@)dw
= / £w(t)j " zn(t)dt

_ / a0 () [z () dt.
(A12)
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Then w,(t) is deduced from (A.12) by

. (t) =Re {zH(t)j—l (Z[H](t))_l}
:Re{(E‘l(t)eie(t)e—kx(t)ejgo(t) T a(B)ida(H)e O Oekx(D) gt
+a(Oe POk ((He OO + o)oK (1)l 0)
X j—la—l(t)e—ﬂp(t)ekx(t)e—e(t)} (A13)
:Re{%eieme—kx(t) R0 mI00) 4 (1) 100 —kx(0) =1 x(D)pi6()
4 ei@(t)k-1X(t)e-kx(t)]--1ekx(t)e-ie(t)} + ()

=¢(t) + a(t) sin 2x (t).

The same procedure is used to compute the first moment of
the spectral polarization density, such that

[ oizu@Pao = [ oza@Ziwio
- [ 7 b @)Y Zatwiide
- [ 7 ) @) Ziwrdas (A14)
- / 2tz (Dt
- / 2t) (2 (1)) [z (D) b

Denoting Pspan(1,i,k} the projection operator on the axes 1, i
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and k, we compute v;(t) such as

Vz(t) :Pspan{l,i,k} {Zﬂ'ﬂ(t) (Zﬂ'l](t))_1 j_l}
=Papaniri ) { (70 FX eI 4 a(p)ia(p)ei0We kA0
+a(t)e OOk i (e FDeiv®) 4 a(f)eie(t)f«’_k’((t)]'(?(t)ej(p(t))

x a1 (£)e~1PH k() ,=00) ]-—1}

:Pspan{l,i,k}{ - %j —a(t)k —ix(t)cos20(t) + x(t)sin26(t)
4 (P(t)eie(t)e—2kx(t)ei6(t)}

=p(D)s1(t) + 1(1) sin20(t) + i (@(t)sa(t) = £(t) cos20(1))

— k (p(t)ss(t) +a(t)).
(A.15)
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B.2

The spin-weighted spherical functions

Spin weighted functions

Spin-weighted spherical functions are functions of both a
point on the sphere and a choice of frame in the tangent
space at this point [97]. A Hilbert basis of the s spin-weighted
square integrable functions on the unit sphere is given by
the s-spin-weighted spherical harmonics. Applications of
spin-weighted spherical functions are found in gravitational-
wave astronomy [25] [98] and cosmic microwave background
measurement [99].

Let be f a function defined on a space of dimension three
with the norm associated to the Euclidean scalar product.
For a given direction represented by the unit vector n, we
consider an orthonormal basis formed with the right-handed
triplet (a, b, n). For v a rotation angle with respect to n, and
a vector m = (a + ib)/V2, we define the rotated complex
vector m, = e'*Vm. Then f is said to be of spin weight s if it
transforms as

fmy, n) = eV f(m, n). (B.1)

For instance, denoting h(t) = h(t) + ihy(t) the gravitational
waveform defined for a zero polarization angle (see Sec-
tion 2.2.1) and hy(t) the one defined for a polarization angle
Y, then

hy(t) = e 2V h(t). (B.2)

Which came from the definition of the waveform / as a spin
weighted function with s = -2.

We refer to [97, 98] [100] for a detailed introduction to spin
weighted spherical functions and spin weighted spherical
harmonics.

Wigned D-matrices

Wigner D-matrices [101] form an irreducible representation of
the rotation groups SU(2) and SO(3) with finite dimensional
matrices.

[97]: Boyle (2016), How should
spin-weighted spherical functions
be defined?

[98]: Boyle (2013), Angular veloc-
ity of gravitational radiation from
precessing binaries and the corotat-
ing frame

[99]: Marinucci et al. (2011), Ran-
dom Fields on the Sphere: Represen-
tation, Limit Theorems and Cosmo-
logical Applications

[100]: Torres del Castillo (2003),
3-D Spinors, Spin-Weighted Func-
tions and their Applications

[101]: Wigner (1960), Group The-
ory and Its Application to the Quan-
tum Mechanics of Atomic Spectra
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mm’

[102]: Pratten et al. (2021), Com-
putationally efficient models for the
dominant and subdominant har-

monic modes of precessing binary
black holes

B.3

[103]: Goldberg et al. (1967), Spin-
s Spherical Harmonics and 0

1: As for the spin weighted
functions introduced in Ap-
pendix B.1, the spin weighted
spherical harmonics are func-
tions on the sphere whose po-
sition is given by (¢, o). The tan-
gent basis is fixed by convention
with a rotation angle equal to
zero.

[104]: Ajith et al. (2007), Data for-
mats for numerical relativity waves

Z(

B The spin-weighted spherical functions

The Wigner D-matrices are given by

D), wla, B,y)=e™d, (e, (B.3)
where d;ln, () is the Wigner d-matrix defined as
v VI +m)i(1 —m)i(I +m")(I - m’)!
(I+m—-n)ni(l-m- 1’1)!(71 —m+ n,1’)! (BA)
ﬁ 21-2n+m—m ﬁ 2n+m’—m
X (cos E) (sin E)

where 1 belongs to max(0, m—m’) < n < min(I+m, [-m’).

For example we get

and d%zlz(ﬁ) = sin4§

p
dgg(ﬁ) = cos* 3 (B.5)
that are used in the computation of b »(f) in Chapter 4. Other
Wigner d-matrices defined whith the same conventions can
be found in [102]. In particular, the relation

—m m’(ﬁ) - ( 1)m " dm m’(ﬁ) = din’,m(:B) (B6)

allows to retrieve additional Wigner d-matrices.

Spin-weighted spherical harmonics

Spin-weighted spherical harmonics are a special case of
Wigner D-matrices forming a basis of spin weighted functions
on the sphere [103]. For a given function f(t, @y), the spin
weighted spherical harmonics expansion takes the form!

Zflm sYl m(l §00) (B-7)

f(t, po) =

such as what is used to compute gravitational waveforms.

Our conventions of spin weighted spherical harmonics and
Wigner d-matrices are in accordance with [104]. This leads to
the definition of the spin weighted spherical harmonics as

21 +1
47

iy s ()™,

—sYl,m(Lr (PO) = (_1)S (B.8)

where the dinls(t) are the Wigner d-matrices.
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For a rotation parametrized by the triplet (a, 8, 7), one can
rotate to the spin weighted spherical harmonics as [98]

l
~Yim(©) = D3 Dy (@, B,7)-sYimw (1, 90).  (B.9)

m’'=—I

A sample of spin weighted spherical harmonics is given in
Table B.1 for s = 2 and I = 2. Those are used in the computa-
tion of the dominant polarized component b, » presented in
Section 4.3.3.

m 2Y5 (L, ®o)

2 %\/%(1 + cos 1)%e?i?

1 %\/%(1+cos 1)sin ¢ i
0 %\/%sinz L

-1 %\/%(1 —cost)sin e
-2 %\/%(1 — cos 1)%e %

Development of polarized components

In order to prove (4.34), we need to verify that by ,, (¢, ©(t))
is such that

bm(t; ©(t)) = brm(t; o + a(t), 1, f(t), @1m(t) — my(t)).
(B.10)

This is done by developing the expression of b, ,, from (4.29).
It is known that for any couple (I, m), one have hf () =
ar (t)e" () and hi_m(t) = (=1)!aj y(t)e'?1n®), The latter
is the only assumption needed to compute the instanta-

neous Stokes parameters and instantaneous frequency in
Section 4.3.2.

From the definition of —2 spin weighted spherical harmonics

Table B.1: Spin weighted spher-
ical harmonics Y5 ,, for m =
-2,-1,0,1,2.
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and Wigner D-matrices in Appendices B.2 and B.3, we get
b,m(£) =hy,, (D) -2Y1m(©()) + by _,, (1)-2Y,-m(O(1)

[
=am(t) > [e-iﬁolw(”D;,m,(a(t),/s(t),y(t))_m,mf(x,(po)

m’=—|
+ (=1’ DL (alt), BE), Y (1) =2Yi,m (1, o)

20+1 &
47t 2 A (1)

m’'=—1

X [e_i((Pl,nl(t)_my(t))eim’(a(t)+¢0)d£n m/(‘B(t))

:al,m(t)

+ (—1)1ei(m(t)—mw))eim’m“)w‘))d’_m,mf(ﬁ(t))] :
(B.11)

The rest of the demonstration consists in applying the Hilbert
transform to (B.11).
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