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Thèse de doctorat
Spécialité Signal, Image, Parole, Télécom

Outils mathématiques et de traitement du signal pour
l’étude polarimétrique des ondes gravitationnelles

Cyril Cano

Jury:
Directeur de thèse
Nicolas Le Bihan, Directeur de recherche, CNRS, Gipsa-lab

Co-directeur de thèse
Éric Chassande-Mottin, Directeur de recherche, CNRS, APC

Rapporteur
André Ferrari, Professeur des universités, Université Côte d’Azur

Rapporteur
Antoine Roueff, Professeur des universités, Université de Toulon

Examinateur
Stanislav Babak, Directeur de recherche, CNRS, APC

Examinatrice
Sandrine Anthoine, Chargée de recherche, CNRS, I2M

Examinateur
Olivier Michel, Professeur des universités, Université Grenoble Alpes

Invité
Julien Flamant, Chargé de recherche, CNRS, CRAN



Université Grenoble Alpes

28 octobre 2022



Résumé

Cette thèse est un projet interdisciplinaire visant à proposer de nouvelles méthodologies et

de nouveaux algorithmes pour caractériser la polarisation des signaux non-stationnaires

polarisés et à appliquer ces nouveaux outils au contexte de l’astronomie des ondes

gravitationnelles. L’observation directe des ondes gravitationnelles rendue possible par

les détecteurs avancés LIGO et Virgo constitue un changement de paradigme pour l’étude

des objets astrophysiques compacts tels que les trous noirs et les étoiles à neutrons.

L’analyse du grand volume de données provenant de ces détecteurs s’est jusqu’à présent

concentrée sur la morphologie de la forme d’onde enregistrée, à partir de laquelle des

informations sur la nature de la source peuvent être extraites. La polarisation des ondes

a reçu moins d’attention car le nombre de détecteurs était insuffisant pour tirer des

conclusions précises. Cependant, l’information de polarisation présente un intérêt pour

certaines sources astrophysiques. Par exemple, pour les fusions de systèmes binaires

d’étoiles compactes, la précession du plan orbital se traduit par une évolution spécifique

du schéma de polarisation. Cette thèse part des aspects théoriques fondamentaux de

la représentation et la caractérisation des signaux polarisés pour ensuite développer

des outils d’analyse et de synthèse adaptés au contexte de l’application considérée.

Les résultats présentés sont de trois ordres. Les différentes représentations des signaux

modulés en amplitude, en fréquence et en polarisation d’abord sont passées en revue, en

évaluant leur utilité pour l’analyse et la synthèse de ces signaux. Cette revue met en lumière

les problèmes causés par la dégénérescence de certaines représentations, précise les

conditions d’apparition de celle-ci et propose des moyens d’y remédier. Sur la base de cette

étude, des modèles génératifs d’apprentissage automatique sont construits, et appliqués

au calcul rapide de forme d’ondes gravitationnelles, permettant ainsi l’accélération de

l’inférence des paramètres des sources. Ce modèle génératif est proposé à la fois pour

les sources de trous noirs binaires sans précession et avec précession, et sa précision est

évaluée dans chaque cas. Finalement, de nouveaux principes de régularisation basés sur

des a priori de polarisation sont introduits afin d’améliorer la reconstruction des deux

composantes du signal à partir des données observationnelles. La méthode est évaluée sur

des données synthétiques réalistes. Elle permet de cibler l’analyse sur certaines catégories

de source associées à une polarisation particulière.

Mots Clés: Polarisation - Traitement statistique du signal - Ondes gravitationnelles



Abstract

This thesis is an interdisciplinary project aiming at proposing new methodologies and

algorithms to characterize the polarization of non-stationary polarized signals and to apply

these new tools to the context of gravitational wave astronomy. The direct observation of

gravitational waves made possible by the advanced LIGO and Virgo detectors constitutes

a paradigm shift for the study of compact astrophysical objects such as black holes and

neutron stars. Analysis of the large volume of data from these detectors has so far focused

on the morphology of the recorded waveform, from which information about the nature

of the source can be extracted. The polarization of the waves has received less attention

because the number of detectors was insufficient to draw accurate conclusions. However,

polarization information is of interest for some astrophysical sources. For example, for

mergers of compact binary star systems, the precession of the orbital plane results in a

specific evolution of the polarization pattern. This thesis starts from the fundamental

theoretical aspects of the representation and characterization of polarized signals to

develop analysis and synthesis tools adapted to the context of the considered application.

The results presented are of three kinds. First, the different representations of amplitude,

frequency and polarization modulated signals are reviewed, evaluating their usefulness

for the analysis and synthesis of these signals. This review highlights the problems caused

by the degeneracy of certain representations, specifies the conditions of its occurrence

and proposes ways to remedy it. On the basis of this study, generative machine learning

models are built, and applied to the fast computation of gravitational waveforms, thus

allowing the acceleration of the inference of the source parameters. This generative model

is proposed both for binary black hole sources without precession and with precession,

and its accuracy is evaluated in each case. Finally, new regularization principles based

on polarization a priori are introduced to improve the reconstruction of the two signal

components from observational data. The method is evaluated on realistic synthetic data.

It allows to target the analysis on certain source categories associated with a particular

polarization.

Keywords: Polarization - Statistical signal processing - Gravitational waves
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Introduction

Multivariate signals are ubiquitous in physical science, whenever several quantities are

related and jointly measured, and for which interrelations between coupled observables

are often governed by physical phenomena. A central topic in data science is to represent

and extract the common information of the two variables. The case of bivariate signals

is of particular interest. Those appear in many fields, such as oceanography (position

of freely-drifting instruments), optics (transverse coordinates of the electric field) and

seismology (horizontal and vertical ground velocities), to name but a few.

The notion of polarization, usually used for waves, lies in a geometrical description of

the intercorrelation of the two variables. By analogy with optics, the same notion is used

to describe trajectories of an oscillatory bivariate signal in a 2D plane. A worth noticing

example is that of gravitational waves. Those are perturbations of spacetime metric due

to the coalescence of astrophysical compact bodies, e.g. black holes and neutron stars.

Gravitational waves are characterized by two degrees of freedom, forming a non stationary

bivariate signal whose properties depend on the source dynamics.

The direct observation of gravitational waves made possible by the advanced LIGO and

advanced Virgo detectors constitutes a paradigm shift for the study of compact astrophysical

objects such as black holes and neutron stars. The analysis of the large volume of data

from these detectors has so far focused on the gravitational waveform morphology from

which information about the nature of the source can be extracted. The polarization of the

waves has received less attention because the number of detectors was insufficient to draw

precise conclusions. To fully characterize the two polarizations predicted by the Theory of

General Relativity, it is necessary to observe the gravitational wave signal with, at least

three detectors, each collecting a substantial signal-to-noise ratio, which has not been the

case so far. This situation will change in the near future with the improved sensitivity of

LIGO and Virgo and the inception of new detectors (KAGRA in Japan and LIGO India). It

will then become possible to measure the polarization of gravitational waves, allowing the

exploration of new astrophysical questions.

This thesis, at the interface between data science and astrophysics, aims at proposing new

methodologies and algorithms to characterize the polarization of non stationary bivariate

signals and apply those tools to the context of gravitational-wave astronomy. The goal

is to build new techniques to infer on the dynamics of the sources. For the mergers of

binary compact star systems, a primary source of gravitational waves, this is of interest for

investigating dynamical phenomena such as the presence of precession of the orbital plane

which results in a specific evolution of the polarization pattern. Extracting this information

can therefore help to understand the formation mechanisms of these sources.

The field of the polarimetric analysis of non stationary bivariate signals is still not well

developed and a wide range of tools remain to be imagined and built along this avenue. In

this topic, and by means of a newly introduced quaternion formalism, the representation

problem of non stationary bivariate signals is addressed. From this study, a generative model

of surrogate gravitational waveform is proposed in order to shorten the inference of the
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source parameters. The reconstruction method is proposed, adding polarization constraint

when reconstructing a bivariate signal. A polarimetric analysis of gravitational waves is

conducted, showing that gravitational waves are a sum of non stationary components

whose polarizations depend on the line of sight of the observer with respect to the orbital

plane. A polarization modulation is thus found to be characteristic of the precession of

the orbital plane. Based on this status and from the perspective of detecting a precession

phenomenon, statistics are constructed to measure the detectability of precession effects on

the waveform.

This thesis is organized in four chapters.

▶ Chapter 1 reviews several representations of amplitude, frequency and polarization

modulated bivariate signals (AM-FM-PM signals) through quaternion formalism,

regarding possible interpretations and ambiguities when trying to estimate the re-

lated parameters. Expressions of the instantaneous frequency and first instantaneous

moments of the quaternionic Fourier transform are given for a generic AM-FM-PM

signal. A non degenerate interpretable parameterization of AM-FM-PM signals is

presented.

▶ Chapter 2 provides the basics of gravitational-wave astronomy, going from notions

of general relativity and detector design, to actual and future observations.

▶ Chapter 3 relates to the fast and accurate generation of gravitational waveforms

through machine learning algorithms. Based on a judicious choice of waveform

attributes, two generative models are proposed for different cases of coalescing

compact binaries.

▶ Chapter 4 addresses the polarimetric analysis of gravitational-wave signals. A regu-

larization term is introduced in order to incorporate a polarization-based prior when

reconstructing a bivariate signal. An application is given on a realistic gravitational-

wave simulated signal. It is shown that gravitational waveforms are the sum of

AM-FM-PM signals whose parameters are derived. Finally, indicators are built in

order to quantify the measurability of the polarization state of a signal embedded in

an additive Gaussian noise and to quantify the detectability of precession-induced

polarization modulations.
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1.1 Introduction

Bivariate signals are a particular case of multivariate sig-

nals. They can be represented as complex signals
1 𝑧(𝑡) = 1: We could have considered

a real valued vectorial signal

𝑧(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]𝑇 , where the

subscript 𝑇 denotes the vector

transpose, since the two repre-

sentations are isomorphic. Of

course, depending on the repre-

sentation, analysis methods will

not be the same. This will be dis-

cussed thereafter.

𝑥(𝑡) + 𝒊𝑦(𝑡) with given real and imaginary components 𝑥(𝑡)
and 𝑦(𝑡). Such signals appear in many applications e.g. optics,

seismology, oceanography and in many area of physics. A

domain of specific interest to this thesis is gravitational-wave

astronomy. A simulated gravitational wave is presented in

Figure 1.1. In all of these applications there is a notion of com-

mon information carried by the two oscillatory components.

This common information is embedded in cross-correlations

between 𝑥 and 𝑦 such that it can only be accessed by a joint

analysis of the two components.
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Figure 1.1: Simulated gravitational wave ℎ(𝑡) ∈ ℂ from a precessing black hole binary. 𝑡 = 0 corresponds to

the merger of the two objects. Gravitational waves are bivariate signals evolving on (possibly) time varying

ellipses. At each time the shape of the ellipse is fully determined by the orientation of the orbital plane with

respect to the observer. Precession is a physical phenomenon which corresponds to variations of the orbital

plane inducing variations of the elliptic trajectory. In Section 1.1.2 such signal is called an amplitude, frequency

and polarization modulated signal.

The fact that bivariate signals can be represented in the

complex plane allows a geometric interpretation. In this

chapter we develop a bivariate signal analysis framework

based on a geometric interpretation. We address question

related to the representation of bivariate signals, and their

computation.

Our interpretation is related to the concept of polarization,

which connects to the oscillation of transverse waves such
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as electromagnetic waves [1]. The polarization of an elec-[1]: Brosseau (1998), Fundamen-
tals of polarized light : a statistical
optics approach

tromagnetic wave is a property linked to its direction or

mode of oscillation in the plane transverse to the propaga-

tion direction. For example, polarized light waves oscillating

along a single direction in the transverse plane are said to

be linearly polarized. Waves oscillating along two different

directions are elliptically or circularly polarized, depending

on the angle between the axes along which the field oscillates.

Thanks to this connection to wave optics we can benefit from

the theoretical development in the domain of physics as we

will see later.

The concept of polarization has been formalized for stochastic

bivariate signals in [2]. In this chapter we concentrate on[2]: Schreier et al. (2010), Statisti-
cal Signal Processing of Complex-
Valued Data: The Theory of Im-
proper and Noncircular Signals

deterministic signals. We use a recently introduced formalism

which enables to extend classical notions of real-valued non-

stationary signal analysis to the bivariate case [3].

[3]: Flamant (2018), A general ap-
proach for the analysis and filtering
of bivariate signals

1.1.1 Monochromatic bivariate signals

The simplest case of oscillatory bivariate signal is certainly the

case of a monochromatic bivariate signal such as monochro-

matic light wave. Usual examples of monochromatic signals

come from the family of pure harmonic oscillations (real-

valued, univariate)

𝑥(𝑡) = 𝑎 cos 𝜑(𝑡) (1.1)

and the associated complex-valued, bivariate wave

𝑧(𝑡) = 𝑎𝑒 𝒊𝜑(𝑡) (1.2)

with 𝜑(𝑡) = 𝜔0𝑡 + 𝜑0. For both 𝑥(𝑡) and 𝑧(𝑡), 𝑎 > 0 is said to

be the amplitude of the waveform, 𝜔0 its (angular) frequency

and 𝜑0 its initial phase.

The concept of polarization allows to interpret the former

and the latter in a unified manner as two respectively linear
2

2: This can be done consider-

ing 𝑥(𝑡) as a complex signal

with a constant imaginary part

ℑ {𝑥(𝑡)} = 0.

and circular polarized signals carrying the same frequency

𝜔0. Expressions "linear" and "circular" are associated to the

trajectory of these signals in the complex plane. From now

on and by analogy with optics, we refer to complex elliptical

signals
3

as polarized signals.3: That is, signals with elliptical

trajectory in the complex plane,

either if the trajectory is constant

over time (which is the case in

this section) or if it is a local

property (as presented in Sec-

tion 1.1.2).
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Definition 1.1.1 We define the general model of monochromatic
polarized signal as the following:

𝑧(𝑡) = 𝑎𝑒 𝒊𝜃 (cos 𝜒 cos 𝜑(𝑡) + 𝒊 sin 𝜒 sin 𝜑(𝑡)) ∈ ℂ (1.3)

where the constant triplet [𝑎, 𝜃, 𝜒] lies in

ℝ+ ×
[
−𝜋

2

,
𝜋
2

[
×
[
−𝜋

4

,
𝜋
4

]
(1.4)

and 𝜑(𝑡) = 𝜔0𝑡 + 𝜑0 ∈ ℝ.

Definition 1.1.1 generalizes the case of monochromatic uni-

variate signal. It defines a variety of signals with various

trajectories in the complex plane. For a given frequency 𝜔0,

different values of 𝑎, 𝜃 and 𝜒 correspond to different el-

liptical trajectories in the complex plane. They correspond

to monochromatic polarized signals with the same angular

speed ¤𝜑(𝑡) but different polarizations (different ellipses).

−1 0 1
x(t)

−1

0

1

y(t)

z(t)

Time
−1

0

1 x(t)

Time
−1

0

1 y(t)

Figure 1.2: Monochromatic polarized signal 𝑧(𝑡) = 𝑥(𝑡) + 𝒊𝑦(𝑡) generated with (1.5). This signal has a fixed

elliptical trajectory defined by the triplet [𝑎, 𝜃, 𝜒]. The time-varying phase 𝜑(𝑡) determines the position of

𝑧(𝑡) on the ellipse.

Figure 1.2 illustrates the trajectory of a monochromatic polar-

ized signal in the complex plane generated for

𝑎 = 1, 𝜃 =
𝜋
4

, 𝜒 =
𝜋
8

and 𝜑(𝑡) = 20𝜋𝑡. (1.5)

The trajectory of such signal is elliptic and the newly intro-

duced parameters 𝜃 and 𝜒 define the orientation and the

shape of the ellipse as presented in Figure 1.3. For 𝜃 = 𝜒 = 0

we end up with the real valued monochromatic model (1.1).

For 𝜒 = 𝜋/4 we get the associated monochromatic complex

wave 𝑧(𝑡) = 𝑎𝑒 𝒊𝜑(𝑡) such that Definition 1.1.1 generalizes the

previous cases of monochromatic signals. 𝑎, 𝜃 and 𝜒 are

respectively the amplitude, the orientation and the ellipticity
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of 𝑧(𝑡). 𝑎 corresponds to the size of the scanned ellipse, 𝜃
is the orientation of its great axis and 𝜒 correspond to its

shape. 𝜑(𝑡) is the instantaneous phase of 𝑧(𝑡) which is the

position of 𝑧(𝑡)with respect to the great axis. 𝜔0 is the rate

at which the ellipse is scanned. Fixing 𝜔0 > 0, 𝑧(𝑡) is said to

be counterclockwise circular if 𝜒 > 0 and clockwise circular

if 𝜒 < 0.

Figure 1.3: Parametrization of a

monochromatic polarized signal

𝑧. The model (1.3) defines a polar-

ized signal with a unique triplet

[𝑎, 𝜃, 𝜒] characterizing the tra-

jectory of 𝑧 in the complex plane

and a time-evolving phase 𝜑(𝑡)
which gives the time varying po-

sition of 𝑧 on the ellipse.

χ

φ

θ

z = x+ iy

y

x

a cosχ

a sin |χ|

χ > 0

χ < 0

In optics, polarized light is commonly characterized using

the Stokes parameters, a set of 4 observables [1]. Those are

intensities measurements corresponding to time-averaged

values of cross-correlations between the two stochastic signals

𝑥(𝑡) and 𝑦(𝑡) [1]. Stokes parameters can be defined in the

context of deterministic monochromatic bivariate signals

analysis [3]. For 𝑧(𝑡) a monochromatic polarized signal and

𝑎, 𝜃, 𝜒 identified in (1.3), the associated Stokes parameters

at frequency 𝜔0 are
4

4: See Appendix A.2 for a

proper introduction of the spec-

tral Stokes parameters. 𝑆0 =𝑎2,

𝑆1 =𝑎2

cos 2𝜒 cos 2𝜃,

𝑆2 =𝑎2

cos 2𝜒 sin 2𝜃,

𝑆3 =𝑎2

sin 2𝜒.

(1.6)

For 𝑖 = 1, 2, 3 we denote 𝑠𝑖 the normalized Stokes parameter

𝑠𝑖 = 𝑆𝑖/𝑆0.

The polarization state of 𝑧(𝑡) is characterized by the polariza-
tion axis 𝝁𝑧 = (𝑠1, 𝑠2, 𝑠3) ∈ ℝ3

.

The Stokes parameters do not incorporate the phase nor the

frequency information ; they are purely geometric. Since

the physical notion of polarization came from oscillatory

signals, it is linked to the notion of cycles when scanning

the ellipse
5

5: Here we focused on

monochromatic signals but one

can anticipate that if 𝑧 is built

as a combination of monochro-

matic polarized signals with

different frequencies 𝜔0 , 𝜔1 , ...

then it exhibits a different

polarization at each one of these

frequencies. This means that 𝑧

scans different ellipses but each

with a different speed.

. This is why the notion of frequency and Fourier

transform is particularly important for polarized signals. Key
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analysis tools we use in order to analyse these kind of signals

(such that the quaternion Fourier transform) are presented

in Appendix A.2.

(−1, 0, 0)(0, 1, 0)(1, 0, 0) (0,
√
2

2
,−

√
2

2
)(0, 0, 1)

Figure 1.4: Trajectory/polarization ellipse associated to the polarization state 𝝁𝑧 = (𝑠1 , 𝑠2 , 𝑠3). It is a geometric

description of the trajectory of 𝑧 in the complex plane.

As an illustration Figure 1.4 provides examples of polar-

ization axes which derive directly from (1.6) and (1.3). By

construction we have
6 𝑆0 =

√
𝑆1

2 + 𝑆2

2 + 𝑆3

2

. Also, 𝑠3 = 0 6: Since the signal is determin-

istic, the degree of polariza-

tion Φ𝑧 =
√
𝑆1

2 + 𝑆2

2 + 𝑆3

2/𝑆0

is equal to one.

(𝜒 = 0) if 𝑧 is linearly polarized and 𝑠3 = ±1 (𝜒 = ±𝜋/4)

for counterclockwise circular and clockwise circular states

repectively
7
. The third normalized Stokes parameter 𝑠3 mea-

7: Here we took the convention

𝜔0 > 0. If 𝜔0 < 0 then 𝜒 = 𝜋/4
and 𝜒 = −𝜋/4 correspond to

clockwise and counterclockwise

circular states respectively.

sures the amount of circularity of 𝑧 i.e. the more 𝑠3 is near ±1

(the more 𝜒 is near 𝜋/4), the more the trajectory is circular.

Values of 𝑠1, 𝑠2 balance depending on the orientation of the

great axis of the ellipse. 𝑠1 is attached to the 𝑥 and 𝑦 axes

and 𝑠2 to diagonal axes.

1.1.2 AM-FM-PM signals

What happens if we relax the constraints on the parameters

involved in Definition 1.1.1 ? If we allow 𝑎, 𝜃 and 𝜒 to vary

with time
8
, clearly the ellipse scanned by 𝑧 will evolve with 8: As we will see in Defini-

tion 1.1.2, they should be slowly

varying with respect to 𝜑.

time. We would also relax assumptions on 𝜑 to consider

other phase evolutions e.g. linear, power laws etc.. This

generalization is the subject of this section.

AM-FM signals Real-valued non-stationary signals are

signals 𝑥(𝑡) with time varying spectral properties. They

appear in many applications such as audio processing [4, 5]. [4]: McAulay et al. (1986), Speech
analysis/Synthesis based on a sinu-
soidal representation
[5]: Flandrin (2018), Explorations
in Time-Frequency Analysis

Indeed speech or music are highly non stationary time series

with a spectral content subject to frequent changes over time.

Amplitude and frequency modulated signals (AM-FM) is a

class of non-stationary signals of particular interest in signal

processing, appearing as generalization of pure harmonic
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oscillations [5]. Such signals are modelled as

𝑥(𝑡) = 𝑎(𝑡) cos 𝜑(𝑡). (1.7)

𝑎(𝑡) > 0 has slow variations with respect to 𝜑(𝑡) and charac-

terizes the slowly evolving envelope of the signal i.e. low fre-

quency part. cos 𝜑(𝑡) characterizes the oscillating behaviour

and local spectral content i.e high frequency part.

φ

x+ = x+H{x}i
H{x}

x

a

Figure 1.5: Instantaneous param-

eters of the AM-FM signal (1.7)

in the complex plane. The cir-

cle represents the instantaneous

trajectory of 𝑥+ in the complex

plane which is an augmented

version of 𝑥 with its quadrature

part.

Equation (1.7) describes a signal in terms of time varying

instantaneous parameters namely the instantaneous ampli-
tude 𝑎(𝑡) and the instantaneous phase 𝜑(𝑡) [5, 6]. They are

local properties encapsulating the time evolving oscillatory

behaviour of 𝑥.

For a given 𝑥 there is an infinite number of solutions to (1.7),

showing that the pair [𝑎(𝑡), 𝜑(𝑡)] is not well defined [6].

In order to define this pair without ambiguity, a classical

approach consists in considering that 𝑥(𝑡) is the real part of

a complex-valued signal 𝑥+(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜑(𝑡). This is a complex

augmented version involving a
𝜋
2

phase shifted version of

𝑥(𝑡): 𝑎(𝑡) sin 𝜑(𝑡). As 𝑎(𝑡) is supposed to be low frequency

compared to 𝜑(𝑡), the instantaneous trajectory of 𝑥+(𝑡) in

the complex plane is nearly circular and thus the instanta-

neous parameters 𝑎(𝑡) and 𝜑(𝑡) are directly interpretable

geometrically as presented in Figure 1.5.

A proper definition of the canonical pair [𝑎(𝑡), 𝜑(𝑡)] involves

the introduction of the Hilbert transform H𝒊 defined as the

filtering operator with the frequency response −𝒊 sign(𝜔).
A key property is that the Hilbert transform preserves the

instantaneous amplitude while creating a quadrature counter-

part of the cosinusoidal part through the Bedrosian theorem
9
.9: The Bedrosian theorem re-

quires 𝑎(𝑡) and cos 𝜑(𝑡) to be low

and high frequency respectively,

with disjoint spectral supports.

When the following two conditions are satisfied
10

: the ampli-

10: These conditions are only

heuristic, we skip technical con-

ditions notably on the structure

of 𝜑(𝑡) [6].

tude varies slowlier than the phase, i.e. | ¤𝜑(𝑡)| ≫ | ¤𝑎(𝑡)| /|𝑎(𝑡)|,
and the instantaneous frequency11 ¤𝜑(𝑡) is itself slowly vary-

11: From now on, we denote by a

dot the temporal derivative and a

double dot the second temporal

derivative.

ing, i.e. 1 ≫ | ¥𝜑(𝑡)| /
�� ¤𝜑2(𝑡)

��
, then the Hilbert transform of

𝑎(𝑡) cos 𝜑(𝑡) preserves the amplitude and transforms the

cosine in a sine, i.e. H𝒊 {𝑎(𝑡) cos 𝜑(𝑡)} = 𝑎(𝑡) sin 𝜑(𝑡) [6].

[6]: Picinbono (1997), On Instan-
taneous Amplitude and Phase of
Signals

It naturally leads to the definition of the analytic signal
𝑥+(𝑡) = 𝑥(𝑡) +H𝒊 {𝑥} (𝑡)𝒊 of the form

𝑥+(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜑(𝑡). (1.8)

The pair [𝑎(𝑡), 𝜑(𝑡)] obtained with (1.8) is the so-called canon-

ical pair [6]. Under the above assumptions, the instantaneous

amplitude and phase of an AM-FM signal 𝑥(𝑡) can thus be
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recovered by taking the modulus and phase of its associated

analytic signal 𝑥+(𝑡).

AM-FM-PM signals Non-stationary oscillating signal and

the various concepts introduced above for univariate signals

can be generalized to the bivariate case. This extension rests

on the notion of quaternionic spectral analysis based on an

analogous augmentation [3]. The approach we use leads to

the introduction of meaningful quantities describing instan-

taneous properties of non-stationary bivariate signals and

allows to generalize standard signal processing techniques

to the bivariate case.

Time −→

−1

0

1

−1

0

1

z(
t) y(t)

x(t)

Figure 1.6: AM-FM-PM signal generated with the quadruplet (1.11) presented in Figure 1.7. It is an oscillatory

signal evolving on a time-varying ellipse determined by [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡)]. The scanning frequency of the

ellipse ¤𝜑(𝑡) gives the rate at which the ellipse is scanned.

For a bivariate signal with real-valued components 𝑥(𝑡) and

𝑦(𝑡), we make use of the complex representation 𝑧(𝑡) = 𝑥(𝑡)+
𝒊𝑦(𝑡). The model (1.9) is a relaxed version of the previous

model of monochromatic polarized signal (1.3).
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Definition 1.1.2 An amplitude, frequency and polarization
modulated signal (AM-FM-PM) is given as the complex-valued
signal of the form

𝑧(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜃(𝑡) (cos 𝜒(𝑡) cos 𝜑(𝑡) + 𝒊 sin 𝜒(𝑡) sin 𝜑(𝑡)) ,
(1.9)

assuming

| ¤𝜑(𝑡)| ≫
�� ¤𝜃(𝑡)�� , | ¤𝜒(𝑡)| , ���� ¤𝑎(𝑡)𝑎(𝑡)

����
and

���� ¥𝜑(𝑡)¤𝜑2(𝑡)

���� ≪ 1.

(1.10)

In (1.9) and (1.10) we have added to the previous instanta-

neous amplitude 𝑎(𝑡) ≥ 0 and instantaneous phase 𝜑(𝑡), the

instantaneous orientation 𝜃(𝑡) and instantaneous ellipticity 𝜒(𝑡).
¤𝜑(𝑡) is here called the instantaneous scanning frequency

of the ellipse
12

. As shown in Figure 1.6, such AM-FM-PM12: In this definition the deriva-

tive of the instantaneous phase

used for the synthesis of the sig-

nal is called the instantaneous

ellipse scanning frequency. This

is a departure from the work

of Flamant et al. [7]

[7]: Flamant et al. (2019),

Time–frequency analysis of bivari-
ate signals

. We will

show latter that the concept of in-

stantaneous frequency is a little

bit tricky for polarized bivariate

signals. The instantaneous fre-

quency of 𝑧 is defined later and

is different from ¤𝜑(𝑡).

signal 𝑧(𝑡) describes a time evolving elliptical trajectory in

the complex plane. Figure 1.7 presents the corresponding

parameters used for its synthesis. They are defined as

𝑎(𝑡) = 4 sin
2 (𝜋𝑡) 𝑡3,

𝜃(𝑡) = 2𝜋𝑡 + sin (3𝜋𝑡) ,

𝜒(𝑡) = 𝜋
8

sin(5𝜋𝑡 + 𝜋) + 𝜋
8

,

𝜑(𝑡) = 𝜔1 − 𝜔0

2

𝑡2 + 𝜔0𝑡 + 𝜑0

(1.11)

with 𝜔0, 𝜔1 the starting and final elliptic frequencies and 𝜑0

a given initial phase. Compared to (1.7), this model allows for

a much larger variability in terms of geometry of the signal

trajectory.

Time
0

1
a(t)

Time
0

π

2π
θ(t)

Time

0

π
4 χ(t)

Time
w0

w1 ϕ′(t)

Figure 1.7: Quadruplet of instantaneous parameters used to synthetize the AM-FM-PM signal of Figure 1.6.

The quadruplet is defined as (1.11).

This model implicitely describe the signal as a continuous

sequence of ellipses whose shape and orientation vary with

time. The instantaneous phase 𝜑(𝑡) gives the position of the
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signal on the ellipse with respect to its great axis. 𝑎(𝑡), 𝜃(𝑡)
and𝜒(𝑡) are geometrical parameters characterizing the ellipse

drawn by the signal in the complex plane, which evolves

over time. 𝜃(𝑡) and 𝜒(𝑡) are called instantaneous polarization
parameters. The instantaneous amplitude 𝑎(𝑡) defines the size

of the ellipse. The instantaneous orientation 𝜃(𝑡) corresponds

to the angle of the great axis with respect to the real axis. The

instantaneous ellipticity 𝜒(𝑡) determines the ratio between

the minor and the major axis of the ellipse. The sign of 𝜒(𝑡)
determines the direction in which the ellipse is scanned,

counter-clockwise for 𝜒(𝑡) > 0 and clockwise for 𝜒(𝑡) < 0.

In particular, 𝜒(𝑡) = 𝜋/4 and 𝜒(𝑡) = −𝜋/4 corresponds to

a counter-clockwise and clockwise circular instantaneous

polarization respectively
13

whereas 𝜒(𝑡) = 0 corresponds to 13: As before, ¤𝜑(𝑡) > 0 by con-

vention.
a linear instantaneous polarization.

Time
0

1

a(t)

Time
0

ϕ(T ) ϕ(t)

Figure 1.8: Modulus 𝑎(𝑡) and

argument 𝜑(𝑡) of a complex-

valued monochromatic signal

𝑧(𝑡) defined with (1.5). Although

the synthesis polarization pa-

rameters are constant, the modu-

lus and phase time-series of 𝑧(𝑡)
are not interpretable.

Introduction of the model (1.9) by Flamant [3] and Lilly [8] [8]: Lilly et al. (2006), Wavelet
ridge diagnosis of time-varying el-
liptical signals with application to
an oceanic eddy

allows to go behond the classical model 𝑎(𝑡)𝑒 𝒊𝜑(𝑡) used for

the analytic signal (1.8). This new model allows to overcome

the limitation of (1.8) in the description of non-circular bi-

variate signals. As a simple example, Figure 1.8 presents

the case of a monochromatic elliptical signal 𝑧(𝑡) defined

as (1.9) with constant parameters 𝑎, 𝜃, 𝜒 and a linear phase

𝜑(𝑡) = 2𝜋𝜔0𝑡 + 𝜑0. 𝜒 is fixed to a value ≠ 𝜋/4 such that

the polarization is strictly elliptical (non-circular). We de-

compose 𝑧(𝑡) into its modulus 𝑎(𝑡) = |𝑧(𝑡)| and its argument

𝜑(𝑡) = −𝒊 ln 𝑧(𝑡). Because of the underlying assumption of

circular polarization in (1.8), both 𝑎(𝑡) and 𝜑(𝑡) exhibit high

frequency oscillations and offer a complicated description of

the signal intrinsic geometry with inflating circles and oscilla-

tory phase). Indeed the amplitude and phase parametrization

seems not adapted since it does not rely on any notion of

polarization. Instead, (1.9) offers a simpler representation of

bivariate signals with interpretable parameters in terms of

instantaneous trajectory.



12 1 Non-stationary bivariate signals analysis

1.1.3 Issues and limitations of the AM-FM-PM model

Unfortunately, the representation (1.9) given by the four

degrees of freedom introduced above is degenerate in certain

limiting cases. This is intimately related to the degeneracy of

the mapping from the data to the representation parameters.

This problem is well known in the case of real-valued AM-FM

signals [9] in particular for signals with vanishing amplitude.[9]: Cohen et al. (1999), On an
ambiguity in the definition of the
amplitude and phase of a signal

As the phase triplet [𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)] corresponds to Euler

angle parametrization of 3D rotations [3], the nature of the

indeterminacy is in the Euler angle singularity. The mapping

between 3D rotations and Euler angles is degenerated. This

chapter reviews and investigates alternatives representations

in order to find another representation not affected by the

same limitation. We address the following questions:

1. Is there a general representation of AM-FM-PM signals

with interpretable parameters in terms of instanta-

neous trajectory which is not limited to some particular

polarization cases ?

2. How to estimate the degrees of freedom of AM-FM-PM

signals from the data ? More precisely, we want to seek

robust and numerically stable methods to do so.

In this context, quaternions offer an appealing solution,

better suited than complex numbers used so far. They have

4 dimensions, equal to the number of degrees of freedom

of AM-FM-PM signals. The quaternionic formalism used in

this chapter was recently introduced by Flamant et al. [7].

We focus here on the practical estimation steps and their

impact on the model degeneracy . We investigate specificities

of bivariate signal processing when trying to estimate the

instantaneous parameters of the AM-FM-PM model (1.9).

1.2 Instantaneous parameters of
AM-FM-PM signals

In the first place, Section 1.1 introduced the concept of am-

plitude, polarization and frequency modulated signals as a

particular case of non-stationary bivariate signals that holds

a geometric information. We saw that the instantaneous

parameters of real-valued AM-FM signals are obtained un-

equivocally thanks to the introduction of the associated ana-

lytic signal. Section 1.2.2 presents the quaternionic formalism
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introduced by Flamant et al. [3, 7] for the analysis of AM-

FM-PM signals
14

. Section 1.2.3 defines relevant quantities for 14: Appendix A.1 gives basic

elements on quaternion al-

gebra. In particular, 𝑞 is said

to be "pure" if 𝑎 = 0. The

quaternion conjugate of 𝑞 is

defined as 𝑞 = 𝑎 − 𝒊𝑏 − 𝒋𝑐 − 𝒌𝑑.

The modulus is defined as

|𝑞 |2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2
and 𝑞 is

said to be a unit quaternion if

|𝑞 | = 1.

We define ℂ𝒊 =

{𝑎 + 𝒊𝑏, 𝑏 ∈ ℝ} ⊂ ℍ as the

space generated by the couple

{1, 𝒊}. In the same way we note

ℂ𝒋 and ℂ𝒌 the spaces generated

by the couples {1, 𝒋} and {1, 𝒌}
respectively. ℂ𝒊 , ℂ𝒋 and ℂ𝒌

are isomorphic to ℂ. In these

subsets, the multiplication is

commutative.

the analysis of such signals, namely the instantaneous Stokes

parameters. The three polarization parameters 𝑎(𝑡), 𝜃(𝑡) and

𝜒(𝑡) derive from these quantities. Contrarily to the univari-

ate case, Section 1.2.4 shows that the polarized model (1.9)

leads to intrinsic indeterminacies. Section 1.3 enumerates

possible alternative representations in order to circumvent

those limitations, and discusses their pros and cons.

1.2.1 Basics of quaternions and quaternionic
harmonic analysis

The set of quaternions ℍ is an extension of complex numbers

in dimension 4. It forms an associative algebra over the real

numbers but the multiplication is not commutative which

complicates manipulations. A specificity of quaternions is the

existence of 3 differents roots of −1: 𝒊 , 𝒋 and 𝒌. These roots

are different axes of ℍ with which we define the cartesian

form of any quaternion 𝑞 ∈ ℍ as

𝑞 = 𝑎 + 𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑,

where 𝑎 ∈ ℝ is its real part and 𝑏, 𝑐, 𝑑 ∈ ℝ are coefficients

of its imaginary (or vector) part. Multiplications can be com-

puted through associativity by respecting the following cyclic

rules for the multiplication of imaginary components:

𝒊2 =𝒋2 = 𝒌2 = −1,

𝒊𝒋 = − 𝒋𝒊 = 𝒌 ,

𝒌𝒊 = − 𝒌𝒊 = 𝒋 ,

𝒋𝒌 = − 𝒌𝒋 = 𝒊.

For each axis 𝝁 = 𝒊 , 𝒋 , 𝒌 the quaternion exponential is

defined as
15 𝑒𝝁𝜙 = cos 𝜙 + 𝝁 sin 𝜙 for a given 𝜙 ∈ ℝ. Other 15: This definition is valid for

any pure quaternion 𝝁 i.e. for all

𝝁 ∈ ℍ such that 𝝁2 = −1.

basic notions on quaternion algebra needed for this chapter

are detailed in Appendix A.1.

In particular, the canonical involution of axis 𝒋 is such that

𝑞
𝒋
= −𝒋𝑞 𝒋 = 𝑎 − 𝒊𝑏 + 𝒋𝑐 − 𝒌𝑑 (respectively for 𝒋 and 𝒌).

We denote 𝑞∗𝒋 = 𝑞
𝒋
= 𝑎 + 𝒊𝑏 − 𝒋𝑐 + 𝒌𝑑 the combination of

an involution and a conjugation of axis 𝒋 (respectively for 𝒊
and 𝒌).
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The various concepts of spectral analysis, filtering etc. can be

extended using quaternions. A brief introduction of quater-

nion spectral analysis is done in Appendix A.2. For a square

integrable bivariate signal 𝑧(𝑡) = 𝑥(𝑡) + 𝒊𝑦(𝑡) the quaternion

Fourier transform is defined as

𝑍(𝜔) = 1√
2𝜋

∫
𝑧(𝑡)𝑒−𝒋𝜔𝑡dt. (1.12)

Manipulations of this object is tricky because of the non-

commutativity of quaternion multiplication. For example,

moving the quaternion exponential to the left side of the

analyzed signal would define an other object.

(1.12) differs from the complex transform by the choice of

its axis: 𝒋. The choice of the orthogonal axis 𝒋 compared

to 𝒊 permits to analyse each signal component separately

(compute Fourier transforms along each axis at once). The

polarization analysis can be derived using the quaternion

algebra [3] as elaborated in the next section.

1.2.2 Quaternion embedding of bivarate signals

Let us consider an arbitrary bivariate signal 𝑧(𝑡) = 𝑥(𝑡)+𝒊𝑦(𝑡)
which is not necessarily a polarized monochromatic signal

nor an AM-FM-PM signal. As 𝑧(𝑡) ∈ ℂ𝒊 the 𝒊-symmetry

property holds
16

i.e. 𝑍(−𝜔) = 𝑍(𝜔)
𝒊
. This means that the16: This is the equivalent of the

Hermitian symmetry of the com-

plex Fourier transform. See Ap-

pendix A.2 for further explana-

tion of this statement. The proof

is straightforward: remarks that

for 𝑧(𝑡) = 𝑥(𝑡) + 𝒊𝑦(𝑡) we get

𝑍(𝜔) = 𝑋(𝜔) + 𝒊𝑌(𝜔) by lin-

earity of the QFT (quaternion

Fourier transform), as 𝑥(𝑡) and

𝑦(𝑡) are real-valued, 𝑋(𝜔) and

𝑌(𝜔) are ℂ𝒋-valued. Being the

Fourier transform of real-valued

signals, 𝑋(𝜔) and 𝑌(𝜔) verify

the Hermitian symmetry, such

that 𝑍(−𝜔) = 𝑋(𝜔) + 𝒊𝑌(𝜔).
The proof ends by noting that

𝑍(𝜔)
𝒊
= 𝑋(𝜔) + 𝒊𝑌(𝜔).

frequency content of the quaternionic Fourier transform is

symmetrically distributed around the zero frequency. Thus,

negative frequencies carry redundant information compared

to positive frequencies and removing them from the Fourier

transform of 𝑧 can be done without loss of information. The

classic complex Fourier transform applied to a complex-

valued signal does not obey the same properties. Similarly

with the complex Fourier transform in the univariate case,

this is the first clue motivating the use of the quaternionic for-

malism for complex-valued signals analysis. This observation

leads to the definition of the quaternion embedding [7]

𝑧ℍ(𝑡) = 𝑧(𝑡) +H𝒋 {𝑧} (𝑡)𝒋. (1.13)

The practical computation procedure is depicted in Ap-

pendix A.3. It is the equivalent of the analytic signal asso-

ciated to a real-valued signal but in the bivariate case with

H𝒋 the quaternionic Hilbert transform defined as a linear

filter operator of frequency response−𝒋 sign(𝜔). The spectral
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content of the quaternionic embedding is by construction

𝑍ℍ(𝜔) = 0∀𝜔 ∈ ℝ∗− and 𝑍ℍ(𝜔) = 2𝑍(𝜔) ∀𝜔 ∈ ℝ+. It fol-

lows immediately that 𝑧̂ℍ(𝑡) ∈ ℍ∀ 𝑡 ∈ ℝ and that 𝑧̂ℍ is

encapsulating the energetic and polarization content of 𝑧

such that ∫
|𝑧(𝑡)|2 d𝑡 =

∫
|𝑧ℍ(𝑡)|2 d𝑡 , (1.14)∫

𝑧(𝑡)𝑧(𝑡)∗𝒋d𝑡 =
∫

𝑧ℍ(𝑡)𝑧ℍ(𝑡)∗𝒋d𝑡. (1.15)

(1.14) implies that the energy 𝑧 is conserved as well as (1.15)

shows that its geometric content is conserved in 𝑧ℍ.

A classical interpretation of the action of the complex Hilbert

transform involves AM-FM signals. For a given AM-FM

signal 𝑥(𝑡) = 𝑎(𝑡) cos 𝜑(𝑡) one remarks that H𝒊 {𝑥} (𝑡) =
𝑎(𝑡) sin 𝜑(𝑡), showing that the Hilbert transform creates a

quadrature counterpart of the analyzed signal [6]. The same

applies to the quaternionic Hilbert transform. For 𝑧 a bivari-

ate AM-FM-PM signal defined as (1.9), assuming (1.10) and

further technical assumptions on the phase structure
17

, the 17: A particular structure of the

phase is needed in order for the

Hilbert transform to convert a

cosine into a sine and conversely.

The argument is strictly the same

than for the complex Hilbert

transform [6].

Bedrosian theorem implies
18

18: As in the real-valued

case, (1.10) only defines heuristic

conditions. Bedrosian theorem

requires a disjoint spectral

support for sin 𝜑(𝑡) and the

different combinations of

𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡) involved in each

real and imaginary part of (1.9)

and sin 𝜑(𝑡) should be high

frequency compared to other

terms.

H𝒋 {𝑧} (𝑡) = 𝑎(𝑡)𝑒 𝒊𝜃(𝑡) (cos 𝜒(𝑡) sin 𝜑(𝑡) − 𝒊 sin 𝜒(𝑡) cos 𝜑(𝑡)) .
(1.16)

Showing that the Hilbert transform does not affect the polar-

ization parameters [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡)] and creates a 𝜋/2 phase

shifted version of 𝑧.

As in the real-valued case, we use the Hilbert transform as an

instrument to access instantaneous parameters of AM-FM-

PM signals. In particular Section 1.2.3 uses it to introduce the

notion of instantaneous polarization state.

1.2.3 Instantaneous Stokes parameters

In optics, Stokes parameters are quadratic expectation quanti-

ties measuring the degree of polarization and the shape of the

polarization ellipse [1]. Since we focus on deterministic non-

stationary signals, we are interested in their time-varying

version defining the instantaneous polarization state of non-

stationary bivariate signals. We define the instantaneous Stokes
parameters associated to a non-stationary bivariate signal 𝑧

as

|𝑧ℍ(𝑡)|2 = 𝑆0(𝑡) and 𝑧ℍ(𝑡)𝑧ℍ(𝑡)∗𝒋 = 𝑆1(𝑡)+ 𝒊𝑆2(𝑡)−𝒌𝑆3(𝑡)
(1.17)
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where 𝑧ℍ(𝑡) is the quaternionic embedding defined Sec-

tion 1.2.2. Under technical conditions mentioned in Sec-

tion 1.2.2, one can find the following expressions for the

instantaneous Stokes parameters of an AM-FM-PM signal:

𝑆0(𝑡) =𝑎(𝑡)2,
𝑆1(𝑡) =𝑎(𝑡)2 cos 2𝜒(𝑡) cos 2𝜃(𝑡),
𝑆2(𝑡) =𝑎(𝑡)2 cos 2𝜒(𝑡) sin 2𝜃(𝑡),
𝑆3(𝑡) =𝑎(𝑡)2 sin 2𝜒(𝑡).

(1.18)

While they do not depend on the instantaneous phase 𝜑(𝑡),
they solely characterize the geometry of the instantaneous

trajectory of 𝑧 in the complex plane. That is, the instanta-

neous polarization ellipse. When focusing on the geometrical

content, we rather consider their normalized version

𝑠1(𝑡) = 𝑆1(𝑡)/𝑆0(𝑡) 𝑠2(𝑡) = 𝑆2(𝑡)/𝑆0(𝑡) 𝑠3(𝑡) = 𝑆3(𝑡)/𝑆0(𝑡)
(1.19)

for 𝑆0(𝑡) ≠ 0. They define the instantaneous polarization

state of 𝑧 which is characterized by the instantaneous po-
larization axis: 𝝁𝑧(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡)) ∈ ℝ3

. Figure 1.4

illustrates the interpretation of the instantaneous polariza-

tion axis which derives directly from (1.18). The interpretation

is similar to monochromatic polarized signals except that the

polarization axis is now a function of time. Polarization is

now a "local" property.

S2
S0

S3
S0

S1
S0

2θ(t)

2χ(t)

Figure 1.9: Polarization curve

representing instantaneous po-

larization evolution of 𝑧 along

time on the Poincare sphere.

The normalized instantaneous Stokes parameters (1.19) are

the Cartesian coordinates of the instantaneous polarization

state of 𝑧 on the Poincaré sphere. As opposed to the classical

introduction of Stokes parameters, we restrict our analysis

to deterministic signals which have the property to be fully

polarized i.e.

√
𝑆1(𝑡)2 + 𝑆3(𝑡)2 + 𝑆3(𝑡)2 = 𝑆0(𝑡) (it is also valid

in the spectral domain). This means that the instantaneous

polarization state of 𝑧 lies on the surface of the Poincaré

sphere. 𝝁𝑧(𝑡) draws a curve on the Poincaré sphere corre-

sponding to the time evolution of the polarization state of an

AM-FM-PM signal. Figure 1.9 illustrates the idea of seeing po-

larization modulation on the Poincaré sphere. For a circularly

polarized signal it follows directly from (1.18) that Stokes

parameters are such that 𝑠1(𝑡) = 𝑠2(𝑡) = 0 and 𝑠3(𝑡) = ±1,

depending on 𝜒 = ±𝜋
4
. So the North and South hemispheres

of the Poincaré sphere correspond to counterclockwise and

clockwise polarization.

Stokes parameters do not offer a complete parameterization of

the signal since they lack a phase term. It is not obvious how to
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retrieve the phase term. We summarize some of our attempts

in the next section. As we elaborate in Section 1.4, the addition

of an instantaneous frequency information companion to the

Stokes parameters may be a good solution to complete the

parametrization.

1.2.4 The Euler angle polar form

The Euler angle polar form of the quaternion embedding is

the cornerstone of the quaternionic formalism introduced by

Flamant [3]. It motivates the use of a quaternionic formalism

to build an extension of real-valued signals analysis and

legitimate the previous work of Lilly and Olhede [8][10]. [10]: Lilly et al. (2010), Bivariate
Instantaneous Frequency and Band-
width

The Euler angle polar form is a particular decomposition of

quaternions by four parameters associated to each axis of ℍ.

In the case of elliptic AM-FM-PM signal, the four parameters

of the Euler angle polar form

𝑧ℍ(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡) (1.20)

are identified to those of (1.9). This is true under technical

conditions on the phase [6, 7]. The quadruplet [𝑎(𝑡), 𝜃(𝑡),
𝜒(𝑡), 𝜑(𝑡)] is then called the canonical quadruplet. So simply

by reading its phase argument, the quaternionic Hilbert

transform gives access to the instantaneous parameters of an

AM-FM-PM bivariate signal.

The canonical quadruplet can be computed in several ways [7,

8]. One makes use of the instantaneous Stokes parameters

defined in Section 1.2.3. Obviously the estimated instan-

taneous amplitude
19 𝑎̂(𝑡) is the modulus of 𝑧ℍ(𝑡), which 19: By convention, estimated

quantities are denoted with a

hat.

also corresponds to the square root of 𝑆0(𝑡). From the

three other instantaneous Stokes parameters we get 𝜃̂(𝑡) =
arctan [𝑠2(𝑡)/𝑠1(𝑡)] /2 and 𝜒̂(𝑡) = arcsin 𝑠3(𝑡)/2. Those are

directly unwrapped in order to avoid discontinuity of the

instantaneous orientation and phase resulting from the pos-

sible crossing between the major axis of the istantaneous

ellipse and the 𝑦 axis of the complex plane. The instan-

taneous phase 𝜑̂(𝑡) is then deduced by the logarithm of

𝑎̂−1(𝑡)𝑒𝒌𝜒̂(𝑡)𝑒−𝒊𝜃̂(𝑡)𝑧ℍ(𝑡).

Representation degeneracies and the gimbal lock

Unlike the standard AM-FM model, that has no ambiguity

between instantaneous parameters when conditions (1.10) are
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satisfied [6], the AM-FM-PM model possesses two fundamen-

tal limitations. First, one can anticipate that the model (1.9)

becomes degenerate when the instantaneous trajectory be-

comes circular i.e. when 𝜒(𝑡) = ±𝜋
4
. We have especially

𝑒 𝒊𝜃(𝑡)𝑒∓𝒌
𝜋
4 𝑒 𝒋𝜑(𝑡) = 𝑒 𝒊(𝜃(𝑡)+Δ(𝑡))𝑒∓𝒌

𝜋
4 𝑒 𝒋(𝜑(𝑡)∓Δ(𝑡)) (1.21)

for any Δ(𝑡) ∈ ℝ. The signal looses one degree of freedom

and the decomposition (1.20) becomes redundant in the

circular case. This degeneracy is known as the Euler angle

singularity. Equation (1.21) emphasises the indeterminacy

between the instantaneous orientation and instantaneous

phase. In the counterclockwise circular case i.e. 𝜒 = 𝜋
4

taking

Δ(𝑡) = −𝜃(𝑡) in (1.21) shows that the only valuable quantities

are 𝑎(𝑡) and 𝜑(𝑡)+𝜃(𝑡). In the clockwise circular case i.e. 𝜒 =

−𝜋
4
, they become 𝑎(𝑡) and 𝜑(𝑡) − 𝜃(𝑡). The parametrization

[𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)] is not adapted in the circular case

because there is no great axis, and thus no instantaneous

orientation𝜃(𝑡). By analogy with classical mechanics we refer

to this singularity as the gimbal lock, even though these are

two different concepts [11]. In these cases it makes no sense to[11]: Hemingway et al. (2018), Per-
spectives on Euler angle singular-
ities, gimbal lock, and the orthogo-
nality of applied forces and applied
moments

consider a great axis given by 𝜃(𝑡) because the instantaneous

trajectory is circular, then the adapted polar decomposition

is 𝑧ℍ(𝑡) = 𝑎(𝑡)𝑒∓𝒌 𝜋
4 𝑒 𝒋𝜑(𝑡).

In the case of continuous time signals, the gimbal lock is

tractable if we accept to change the signal model on time

intervals where the signal is circularly polarized. For a bi-

variate signal with a time varying polarization axis passing

from an elliptical to a circular polarization state at time 𝑡0, a

quadruplet

[
𝑎̂(𝑡), 𝜃̂(𝑡), 𝜒̂(𝑡), 𝜑̂(𝑡)

]
can always be computed

but is no longer unique. One should first compute the instan-

taneous polarization parameters and the instantaneous phase

on the time intervals 𝐼 ⊂ ℝ such that 𝜒(𝑡) ≠ ±𝜋
4
∀𝑡 ∈ 𝐼, and

otherwise use a circular parametrization 𝑧(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜑(𝑡). A

quadruplet can be estimated along the whole time axis by

imposing regularity conditions or an underlying model for

𝜃(𝑡) and 𝜑(𝑡).

Discrete time and numerically induced degeneracies

The situation is further complicated in the case of discrete

time signals. Due to numerical errors, the above degener-

acy extends beyond the case where 𝜒 = ±𝜋/4 exactly. The

discretization of the quaternionic Hilbert transform causes

approximation errors which could arise from a phenomenon
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Figure 1.10: (a) is the estimated quadruplet

[
𝑎̂(𝑡), 𝜃̂(𝑡), 𝜒̂(𝑡), 𝜑̂(𝑡),

]
from the signal presented in Figure 1.6.

We expect to reconstruct the quadruplet presented in (1.11) and Figure 1.7, but we are limited by the

instrumental gimbal lock (aside errors du to the vanishing amplitude) which causes estimations errors in

time intervals when 𝑧(𝑡) is quasi-circular. Zooms on a problematic time region are presented for 𝜃̂(𝑡) and

𝜒̂(𝑡). The corresponding time region is reported by dashed lines. In this case the instantaneous frequency is

near the edge of the frequency domain which amplifies the phenomenon. This time the instrumental gimbal

lock induces typical spurious jumps (continuously) in 𝜃̂(𝑡). The instantaneous amplitude is replaced by a

Tukey window for (b), which result in a more comon pattern of the estimated parameters.

we call instrumental gimbal lock, mixing 𝜃̂(𝑡) and 𝜑̂(𝑡) esti-

mates in the near circular case

��𝜒(𝑡) ∓ 𝜋
4

�� ⩽ 𝜖. It results that

for discrete signals the intervals are much more difficult

to handle. The proposed procedure creating surrogates in-

stantaneous parameters is operable under hard constrained

parameter models
20

. 20: The instrumental gimbal

lock has the effect of creating re-

gions where 𝜒(𝑡) ≠ ∓𝜋
4

but 𝜃(𝑡)
and 𝜑(𝑡) can’t be disentangled

from 𝑧ℍ. Then, a choice has to be

made to select intervals on which

we are consciously "blind".

It is well known that the computation of the discrete-time

complex Hilbert transform induces approximation errors

impacting instantaneous frequency approximation. These

limitations transfer to the discrete-time quaternionic Hilbert

transform in a way that for some polarization patterns they

lead to confusions between the instantaneous phase
21 𝜑[𝑛] 21: In this paragraph, the triplet

[𝜃[𝑛], 𝜒[𝑛], 𝜑[𝑛]] is the dis-

crete version of the previous

[𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)] and respec-

tively for 𝑧[𝑛].

and the instantaneous orientation 𝜃[𝑛]. That is, for nearly cir-

cular polarizations, estimates 𝜃̂[𝑛] exhibit fast variations, tak-

ing some part of the information normally supported by 𝜑[𝑛].
In other words, assuming 𝜃[𝑛], 𝜒[𝑛], 𝜑[𝑛] are the "true"

parameters of some bivariate signal and 𝜃̂[𝑛], 𝜑̂[𝑛] their

respective estimates
22

, then for

��𝜒[𝑛] ∓ 𝜋
4

�� ≪ 𝜖 (typically for 22: 𝜃̂[𝑛] and 𝜑̂[𝑛] are estimated

from 𝑧ℍ[𝑛] with the procedure

outlined in Section 1.2

𝜖 ≪ 1) the numerical errors induce a non-zero term Δ[𝑛]
such that 𝜃̂[𝑛] = 𝜃[𝑛] + Δ[𝑛] and 𝜑̂[𝑛] = 𝜑[𝑛] − Δ[𝑛]. Ap-
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proximation errors of the discrete-time quaternionic Hilbert

transform induce what we call an instrumental (or analogic)

gimbal lock. Figure 1.10 illustrates the instrumental gimbal

lock on the synthetised signal presented in Section 1.1.2. It

is different from the gimbal lock identified in Section 1.2.4

in the sense that there is no intrinsic indetermination since

𝜒[𝑛] ≠ ±𝜋
4

for all 𝑛. The phenomenon is even more visible for

scanning frequency of the ellipse ¤𝜑(𝑡) near the edges of the

frequency spectrum
23

. Such approximation errors when com-23: This may result from cou-

pled effects with separability

conditions of the Bedrosian the-

orem.

puting the discrete-time Hilbert transform does not influence

the validity of the synthesis scheme i.e. we always have that
24

24: For any subset𝑈 ⊂ ℍ, Proj𝑈

is the projection operator on 𝑈 .

Thus for 𝑞 = 𝑎 + 𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑,

Projℂ𝒊
{𝑞} = 𝑎 + 𝒊𝑏.

Projℂ𝒊
{𝑧ℍ[𝑛]} = 𝑧[𝑛], but the only damper is that 𝜃̂[𝑛] and

𝜑̂[𝑛] are not the expected ones. It is amplified by Gibbs

phenomenon and is more problematic for | ¤𝜑(𝑡)| ≪ 𝑓𝑠/4 and

| ¤𝜑(𝑡)| ≫ 𝑓𝑠/4 where 𝑓𝑠 is the sampling frequency.

In practice, one must impose an underlying model for 𝜃[𝑛]
and 𝜑[𝑛] in order to elude the indetermination. We suggest

a simple optimization procedure with possible constraints:

𝜃𝛼̂ , 𝜑𝛽̂ are such that 𝛼̂, 𝛽̂ = arg min

𝛼,𝛽

𝑁−1∑
𝑛=0

���𝑧ℍ[𝑛] − 𝑎̂[𝑛]𝑒 𝒊𝜃𝛼[𝑛]𝑒 𝒊𝜒̂[𝑛]𝑒 𝒊𝜑𝛽[𝑛]
���2 (1.22)

where the instantaneous orientation 𝜃𝛼 and instantaneous

phase 𝜑𝛽 follow a regular trend (e.g. a spline) associated

with the parameters 𝛼 and 𝛽 respectively. The suggested

procedure was tested on toy examples. The results show that

it is not always possible to retrieve the synthesis parameters,

and to do so, strong constraints should be applied to the

parameter models.

1.3 Alternative representations of
AM-FM-PM signals

Section 1.2 has shown that a well suited parametrization of a

polarized signal 𝑧 appears in the Euler angle polar decom-

position of its quaternion embedding 𝑧ℍ. Unfortunately this

parametrization incorporates an intrinsic indeterminacy for

certain polarization states, namely circular states, and thus is

not adapted in a general analysis framework. In this section

we debate other possible representations of the quaternionic

embedding 𝑧ℍ in order to find a better suited one from
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an analysis point of view. We are seeking an interpretable

representation not limited to certain polarization cases.

1.3.1 Vector and complex representations

The quaternion Fourier transform defined in (1.12) consists in

applying a complex Fourier transform to the real and imagi-

nary parts of a complex-valued signal, the introduction of

quaternion being motivated by the manipulation they allow.

Moreover, the canonical quadruplet [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)]
was first defined beside a quaternionic formalism [8]. These

remarks appeal for different representations of polarized

bivariate signals in the complex formalism. In the classical

complex-valued Fourier framework, the definition of the

quadruplet involves a first projection step of 𝑧(𝑡) into two

orthogonal polarization states
25

. 25: Two polarization axes

𝝁1 , 𝝁2 ∈ ℝ3
represent orthogo-

nal states if they are anti-aligned:〈
𝝁1 , 𝝁2

〉
= −1 where ⟨., .⟩

stands for the usual scalar

product of ℝ3
.

Vector representation One classic representation consists

in considering 𝑥(𝑡) and 𝑦(𝑡) independently
26

[2, 10]. This

26: It corresponds to a projec-

tion of the signal on the two

orthogonal linear polarization

states 𝝁1 = (1, 0, 0) and 𝝁2 =

(−1, 0, 0).

approach is motivated by a vectorial representation of bi-

variate signals: [𝑥(𝑡), 𝑦(𝑡)]𝑇 , from which each component is

analysed separately
27

. Considering 𝑥(𝑡) and 𝑦(𝑡) as two real-

27: Here the subscript 𝑇 stands

for the vector transpose.

valued AM-FM signals, one can compute their associated

analytic signals and decompose them as 𝑥+(𝑡) = 𝑎𝑥(𝑡)𝑒𝜑𝑥(𝑡)
and 𝑦+(𝑡) = 𝑎𝑦(𝑡)𝑒𝜑𝑦(𝑡). This defines a parametrization of

the bivariate signal 𝑧(𝑡) = 𝑥(𝑡) + 𝒊𝑦(𝑡) by the quadruplet[
𝑎𝑥(𝑡), 𝑎𝑦(𝑡), 𝜑𝑥(𝑡), 𝜑𝑦(𝑡)

]
. Expressions of this quadruplet

according to parameters of the Euler angle polar form (1.20)

are the following:

𝑎𝑥(𝑡) =
𝑎(𝑡)√

2

√
1 + 𝑠1(𝑡), 𝜑𝑥(𝑡) = 𝜑(𝑡) + arctan (tan𝜃(𝑡) tan 𝜒(𝑡)) ,

𝑎𝑦(𝑡) =
𝑎(𝑡)√

2

√
1 − 𝑠1(𝑡), 𝜑𝑦(𝑡) = 𝜑(𝑡) − arctan

tan 𝜒(𝑡)
tan𝜃(𝑡) .

(1.23)

for 𝑎2

𝑥(𝑡) ≠ 𝑎2

𝑦(𝑡) (non-circular case). As this parametrization

is associated to an orthogonal basis ofℝ2
, there are two linear

polarization states for which the first amplitude 𝑎𝑦(𝑡) or the

second 𝑎𝑦(𝑡) vanishes
28

. 28: 𝑎𝑦(𝑡) and 𝑎𝑦(𝑡) vanish when

𝝁𝑧(𝑡) = (1, 0, 0) and 𝝁𝑧(𝑡) =

(−1, 0, 0) respectively.

Complex representation Another approach consists in con-

sidering 𝑧(𝑡) and its complex conjugate
29 𝑧(𝑡) [2, 10]. This 29: It corresponds to a projec-

tion of the signal on the orthog-

onal polarization states 𝝁1 =

(0, 0, 1) and 𝝁2 = (0, 0, −1).

way we get two circular components 𝑧+(𝑡) = 𝑎+(𝑡)𝑒𝜑+(𝑡)
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and 𝑧−(𝑡) = 𝑎−(𝑡)𝑒𝜑−(𝑡) which are called the counterclock-

wise and clockwise rotary components respectively. They

are the analytic signals associated to the original bivariate

signal 𝑧(𝑡) and its complex conjugate 𝑧(𝑡). This way we build

the decomposition 𝑧(𝑡) = (𝑧+(𝑡) + 𝑧−(𝑡))/2 parametrized by

[𝑎+(𝑡), 𝑎−(𝑡), 𝜑+(𝑡), 𝜑−(𝑡)]. Each of these parameters has a

non-linear dependence on the previous Euler angle parame-

ters:

𝑎+(𝑡) = 𝑎(𝑡)
√

1 + 𝑠3(𝑡), 𝜑+(𝑡) = 𝜑(𝑡) + 𝜃(𝑡),
𝑎−(𝑡) = 𝑎(𝑡)

√
1 − 𝑠3(𝑡), 𝜑−(𝑡) = 𝜑(𝑡) − 𝜃(𝑡).

(1.24)

By construction 𝑧+(𝑡) and 𝑧−(𝑡) vanish for clockwise and

counterclockwise circular polarization states respectively
30

.30: Remark that 𝑠3(𝑡) = −1 and

thus 𝑎+(𝑡) = 0 for a clockwise cir-

cular polarization state, and re-

spectively for counterclockwise

circular polarization state with

𝑠3(𝑡) = 1 which implies 𝑎−(𝑡) =
0.

Clearly the vector and complex representations lie in some

particular projection of 𝑧(𝑡) on two orthogonal polariza-

tion states while the quaternionic approach does not. Aside

technical assumptions these projections are not motivated

since the instantaneous parameters are not attached to any

polarization state. Separately none of the introduced param-

eters are interpretable in terms of instantaneous polarization

ellipse property. Each one of these two representations in-

troduces parameters as non linear functions of the polariza-

tion parameters [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)]. However, unlike the

quaternionic approach, the vectorial approach does gener-

alize to other multivariate signals [12]. Expressions of the[12]: Lilly et al. (2012), Analysis
of Modulated Multivariate Oscilla-
tions

Euler angle polar form parameters according to these two

parametrizations can be found in [3].

Those two representations also have problematic cases. When

the instantaneous polarization state of the analysed signal

𝝁𝑧(𝑡) is equal to one of the two orthogonal polarization

states 𝝁1 or 𝝁2 used by the representation, the corresponding

component (e.g. 𝑧+ or 𝑧− for the complex representation)

vanishes and its phase is indeterminate
31

. We observe the31: The point is that one param-

eter is indeterminate even if the

energy of 𝑧 is non zero.

same behaviour as for the instrumental gimbal lock: when

𝝁𝑧(𝑡) is close to 𝝁1 (or 𝝁2), then discretization of the Hilbert

transform induces errors on phase estimation.

1.3.2 Symplectic forms

Previous examples have shown that all representations are

not equal in terms of interpretation and usefulness. Equa-

tion (1.13) directly provides the Cayley Dickson form of the

quaternionic embedding [13][13]: Ell et al. (2014), Quaternion
Fourier Transforms for Signal and
Image Processing
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𝑧ℍ(𝑡) = 𝑧1(𝑡) + 𝑧2(𝑡)𝒋

with 𝑧1(𝑡) = 𝑧11(𝑡) + 𝒊𝑧1𝒊(𝑡) and 𝑧2(𝑡) = 𝑧21(𝑡) + 𝒊𝑧2𝒊(𝑡). In

this decomposition each 𝑧11(𝑡), 𝑧1𝒊(𝑡), 𝑧21(𝑡) and 𝑧2𝒊(𝑡) are

the parameters. From (1.13) it is clear that 𝑧1(𝑡) = 𝑧(𝑡) and

that 𝑧2(𝑡) is the
𝜋
2

phase shifted version presented in (1.16).

Then the Cayley Dickson form gives the parametrization

[𝑥(𝑡), 𝑥+(𝑡), 𝑦(𝑡), 𝑦+(𝑡)]. The decomposition is trivially use-

less in practice, as it introduces parameters that are the

analyzed signals (the two components of 𝑧) themselves and

their associated analytic signals.

The Cayley Dickson form is a particular case of the symplectic

form

𝑧ℍ(𝑡) = (𝑎(𝑡) + 𝑏(𝑡)𝝁) + (𝑐(𝑡) + 𝑑(𝑡)𝝁)𝝂

with 𝝁 ⊥ 𝝂 ∈ ℍ and 𝝁2 = 𝝂2 = −1 that encompass

all non-polar representations of quaternions. In particu-

lar, any symplectic form with 𝝁, 𝝂 ∈ {𝒊 , 𝒋 , 𝒌}, such as

the Cayley-Dickson, would get the same four parameters

[𝑥(𝑡), 𝑥+(𝑡), 𝑦(𝑡), 𝑦+(𝑡)]. This comes from the linearity of

the quaternionic Hilbert transform. Other symplectic forms

would have at least 𝑥(𝑡) as parameter and three polyno-

mial functions of {𝑥+(𝑡), 𝑦(𝑡), 𝑦+(𝑡)}. Overall, non-polar

representations seem not adapted to describe instantaneous

properties of polarized signals. Since they do not rely on

any notion of frequency or even angle, the possibilities of

geometric interpretation are compromised.

1.3.3 The classic polar form

The Euler angle polar form (1.20) depends on a particular

choice of axes. These axes are chosen in order to match

angles from (1.9) with those of (1.20). One may look for other

quaternion polar decompositions expecting no particular

indeterminate case. The general quaternion polar form [13] [13]: Ell et al. (2014), Quaternion
Fourier Transforms for Signal and
Image Processing𝑧ℍ(𝑡) = 𝑎(𝑡)𝑒Ω(𝑡) (1.25)

is defined with a pure quaternion argument Ω(𝑡) ∈ ℍ and

a modulus 𝑎(𝑡) ∈ ℝ+. Again 𝑎(𝑡) is referred to as the instan-

taneous amplitude of the signal. The argument is decom-

posed in a phase term 𝜙(𝑡) ∈ ℝ and a pure unit quater-

nion 𝝁(𝑡) ∈ span {𝒊 , 𝒋 , 𝒌} which are the angle and the

axis of the rotation represented by 𝑧ℍ(𝑡)/𝑎(𝑡) respectively:

Ω(𝑡) = 𝜙(𝑡)𝝁(𝑡).
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Unlike complex signals, the axis of the exponential 𝝁(𝑡) is

varying. We get
32

32: As defined in Appendix A.1,

for any 𝑞 ∈ ℍ such that 𝑞 ≠ 0 the

logarithm is defined such that

ln(𝑞) = ln |𝑞 |+
Im {𝑞}
|Im {𝑞}| arccos

Re {𝑞}
|𝑞 | .

Equations (1.26) and (1.27) are

obtained from the vector rep-

resentation presented in Sec-

tion 1.3.1.

𝜙(𝑡) = arccos

[
cos𝜃(𝑡) cos 𝜒(𝑡) cos 𝜑(𝑡)

− sin𝜃(𝑡) sin 𝜒(𝑡) sin 𝜑(𝑡)
]
,

(1.26)

𝝁(𝑡) =
[
𝒊
√

1 − 𝑠1(𝑡) cos

(
𝜑(𝑡) − arctan

tan 𝜒(𝑡)
tan𝜃(𝑡)

)
+𝒋

√
1 + 𝑠1(𝑡) sin

(
𝜑(𝑡) + arctan

(
tan𝜃(𝑡) tan 𝜒(𝑡)

)
+𝒌

√
1 − 𝑠1(𝑡) sin

(
𝜑(𝑡) − arctan

tan 𝜒(𝑡)
tan𝜃(𝑡)

) ]
/ 𝑎(𝑡)√

2

[
1 − 𝑠1(𝑡)

+
(
1 + 𝑠1(𝑡)

)
sin

2

[
𝜑(𝑡) + arctan

(
tan𝜃(𝑡) tan 𝜒(𝑡)

) ] ]
.

(1.27)

Since parameters [𝑎(𝑡), Ω(𝑡)] and

[
𝑎(𝑡), 𝜙(𝑡), 𝝁(𝑡)

]
are not

based on Euler angle decomposition of 3D rotations, they

are not subject to the same drawbacks as the Euler angle

polar form (1.20). That is, there is no indeterminate case

but on the other hand we have lost interpretability. Both

𝝁(𝑡) and 𝜙(𝑡) are functions of the instantaneous phase 𝜑(𝑡)
and other geometric parameters. The instantaneous axis

𝝁(𝑡) is rotating. One may see this by computing one of its

spherical coordinates: namely arctan

(
𝝁𝑘(𝑡)/𝝁𝑖(𝑡)

)
= 𝜑(𝑡) −

arctan
tan 𝜒(𝑡)
tan𝜃(𝑡) .

1.3.4 The Cayley-Dickson polar form

Historically, the polar Cayley-Dickson form was introduced

before the interpretation of the Euler polar form [13]. It was an

attempt to build interpretable instantaneous parameters for

AM-FM-PM signals. It introduces two complex parameters

𝜌(𝑡), 𝜓(𝑡) ∈ ℂ𝒊 such that

𝑧ℍ(𝑡) = 𝜌(𝑡)𝑒𝜓(𝑡)𝒋 . (1.28)

𝜌(𝑡) is called the complex modulus and 𝜓(𝑡) the complex phase.
It is easy to see that this form as a particular Euler angle

representation

𝑧ℍ(𝑡) = |𝜌(𝑡)| 𝑒 𝒊 arctan

𝜌𝒊 (𝑡)
𝜌

1
(𝑡) 𝑒 𝒋𝜓1(𝑡)𝑒𝒌𝜓𝑖(𝑡) (1.29)
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with different axes for the decomposition. One would prefer

to use the Euler angle polar form (1.25) since the axes are

adapted to the quantities directly involved in the AM-FM-PM

model (1.9).

1.4 Instantaneous frequency and first
instantaneous moments of the QFT

For real-valued AM-FM signals 𝑥(𝑡) = 𝑎(𝑡) cos 𝜑(𝑡) the in-

stantaneous frequency 𝜔(𝑡) is identified with the derivative

of the phase. It gives the local oscillation frequency of the sig-

nal. Two properties support this interpretation. First, ¤𝜑(𝑡) is
identified with the first instantaneous moment of the spectral

energy density
1

∥𝑥+∥2
|𝑋+(𝜔)|2 [14, 15]. Second, it determines [14]: Ville (1948), Théorie et Ap-

plications de la Notion de Signal
Analytique
[15]: Marple (1999), Computing
the discrete-time "analytic" signal
via FFT

the ridge of its time-frequency and time-scale transforms

(Gabor or Wavelet transforms for example) [16].

[16]: Delprat et al. (1992), Asymp-
totic wavelet and Gabor analysis:
extraction of instantaneous frequen-
cies

It is less direct to define an instantaneous frequency asso-

ciated to bivariate AM-FM-PM signals. We have seen in

Section 1.2.4 that when polarized signals become circular

the instantaneous phase of the polarized model (1.9) is not

well defined as it is degenerate with the orientation angle

𝜃(𝑡). This prevents the straightforward extension from the

real-valued case.

Lilly and Olhede [12] introduced the notion of joint instanta-
neous frequency in the broader case of oscillating multivariate

signals. They considered the case of multivariate signals

with multiple AM-FM components that have slightly differ-

ent instantaneous frequencies. In this setting it is possible to

generalize the notion of instantaneous frequency as a leading

common frequency from which each component has a small

instantaneous departure. It turns out that this joint instan-

taneous frequency is identified with the first instantaneous

spectral moment of the multivariate signal and also the ridge

of its time-frequency or time-scale transform. Figure 1.11

presents the ridge of the quaternion windowed Fourier trans-

form of the AM-FM-PM signal defined as (1.11).

For a given bivariate signal 𝑧, 1

∥𝑧ℍ∥2
|𝑧ℍ(𝑡)|2 and

1

∥𝑧ℍ∥2
|𝑍ℍ(𝜔)|2

are seen as probability densities describing an amount of

information at time 𝑡 and frequency 𝜔 carried by 𝑧. Bivariate

signals are also characterized by
33

an additional geomet- 33: The quaternion-valued spec-

tral density introduced by Fla-

mant [3] is defined with re-

spect to the two Parseval invari-

ants of the quaternion Fourier

transform, see Equations (A.8)

and (A.9) of Appendix A.

ric content which is encapsulated in the spectral polarization
density 1

∥𝑧ℍ∥2
𝑍ℍ(𝜔)𝑍ℍ(𝜔)∗𝒋 that can be seen as a density
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Figure 1.11: Energy spectrogram (a) and polarization spectrogram (b) of the signal presented in Figure 1.6.

The frequency scale is normalized. In this example the signal is monochromatic: 𝜔0 = 𝜔1 = 0.25 and the

amplitude is a Tukey window (for visualization puposes). The black line is the first instantaneous moment

of the spectral energy density 𝜔𝑧(𝑡). The values of the instaneous Stokes parameters are on the ridge of the

spectrogram.

of geometric information
34

. The general results presented34: Note that the spectral polar-

ization density is a density on the

Poincaré sphere. It is a quadratic

quantity which is quaternion-

valued and for which each com-

ponent can take negative values.

in [12] apply for non stationary polarized signals but are

extended here with the notion of instantaneous polarization
moment defined as the instantaneous moment associated

with the spectral polarization density. If the first order mo-

ments of these spectral densities exist, their instantaneous

contributions 𝜔𝑧(𝑡) ∈ ℝ and 𝜈𝑧(𝑡) ∈ span {1, 𝒊 , 𝒌} are such

that ∫
𝜔 |𝑍ℍ(𝜔)|2 d𝜔 =

∫
𝜔𝑧(𝑡) |𝑧ℍ(𝑡)|2 dt (1.30)

and ∫
𝜔𝑍ℍ(𝜔)𝑍ℍ(𝜔)∗𝒋d𝜔 =

∫
𝜈𝑧(𝑡) |𝑧ℍ(𝑡)|2 dt. (1.31)

𝜔𝑧(𝑡) is the first instantaneous moment of the spectral energy
density and 𝜈𝑧(𝑡) the first instantaneous moment of the polariza-
tion energy density. As stated in Appendix A.2 𝑍(𝜔)𝑍(𝜔)∗𝒋 =
𝑆1(𝜔) + 𝒊𝑆2(𝜔) − 𝒌𝑆3(𝜔) so the first instantaneous polar-
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ization moment 𝜈𝑧(𝑡) embodies distributions of each nor-

malized Stokes parameter. Thus 𝜈𝑧1, 𝜈𝑧 𝒊 and −𝜈𝑧𝒌 are the

instantaneous contributions to the mean normalized Stokes

parameters 𝑠1, 𝑠2 and 𝑠3 respectively.

From (1.30) and (1.31) one can find the following expressions

of the instantaneous moments
35

: 35: See Equations (A.12)

and (A.14) of Appendix A.4.

𝜔𝑧(𝑡) = Projℝ

{
¤𝑧ℍ(𝑡)𝒋−1𝑧ℍ(𝑡)
|𝑧ℍ(𝑡)|2

}
, (1.32)

𝜈𝑧(𝑡) = Proj
span{1,𝒊 ,𝒌}

{
¤𝑧ℍ(𝑡)𝑧ℍ(𝑡)𝒋−1

|𝑧ℍ(𝑡)|2

}
. (1.33)

According to the AM-FM-PM model (1.9), we can derive the

following expressions

𝜔𝑧(𝑡) = ¤𝜑(𝑡) + ¤𝜃(𝑡)𝑠3(𝑡) (1.34)

and

𝜈𝑧1(𝑡) = ¤𝜑(𝑡)𝑠1(𝑡) + ¤𝜒(𝑡)
𝑠2(𝑡)
𝑠3(𝑡)

,

𝜈𝑧 𝒊(𝑡) = ¤𝜑(𝑡)𝑠2(𝑡) − ¤𝜒(𝑡)
𝑠1(𝑡)
𝑠3(𝑡)

,

−𝜈𝑧𝒌(𝑡) = ¤𝜑(𝑡)𝑠3(𝑡) + ¤𝜃(𝑡)

(1.35)

(and 𝜈𝑧 𝒋(𝑡) = 0) for each instantaneous moments (see Ap-

pendix A.4). Expressions (1.35) show that the contribution of

the instantaneous polarization axis𝝁𝑧(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡))
to the mean polarization depends on the instantaneous fre-

quency ¤𝜑(𝑡) plus a corrective term:

𝜈𝑧(𝑡) = ¤𝜑(𝑡)𝝁𝑧(𝑡) +
(
¤𝜒(𝑡) 𝑠2(𝑡)

𝑠3(𝑡)
, − ¤𝜒(𝑡) 𝑠1(𝑡)

𝑠3(𝑡)
, ¤𝜃(𝑡)

)
. (1.36)

It trivially means that the more the instantaneous ellipse is

scanned, the more important its contribution to the polar-

ization moment is. More interestingly (1.34) shows that the

elliptic instantaneous frequency ¤𝜑(𝑡) does not characterize

the local frequency content of the signal just like in the uni-

variate case, because the first instantaneous moment 𝜔𝑧(𝑡)
(almost surely

36
) involves contribution from the derivative 36: The distinction should be

made for constant 𝜃(𝑡) and lin-

ear polarization states.

of the instantaneous orientation 𝜃(𝑡).

Although in the first introduction of the quaternion formal-

ism ¤𝜑(𝑡)was called the instantaneous frequency [7], we claim

that it should not be named so
37

37: After the preliminar

works [8, 10], Lilly and Olhede

defined 𝜔𝑧(𝑡) as the joint

instantaneous frequency [12].

A term that they proved to be

better adapted.

. It would seem that this
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misconception is due to the analogy with the univariate case

where the first instantaneous moment of the spectral energy

density corresponds to the instantaneous phase derivative

¤𝜑(𝑡) [14]. In order to avoid possible confusions, in the context

of AM-FM-PM signal analysis we kept the term instanta-

neous scanning frequency of the ellipse attached to ¤𝜑(𝑡) and

the term instantaneous frequency attached to 𝜔𝑧(𝑡).

One may remark that the dot product between the instanta-

neous polarization axis and the vector of first instantaneous

polarization moment gives the instantaneous frequency i.e.

𝜈𝑧1𝑠1(𝑡) + 𝜈𝑧 𝒊𝑠2(𝑡) − 𝜈𝑧𝒌𝑠3(𝑡) = 𝜔𝑧(𝑡). (1.37)

Also, the instantaneous frequency, the third instantaneous

Stokes parameter and the associated instantaneous moment

characterize the instantaneous scanning frequency of the

ellipse, at least in the non circular case, with

¤𝜑(𝑡) = 𝜔𝑧(𝑡) + 𝜈𝑧𝒌(𝑡)𝑠3(𝑡)
1 − 𝑠2

3
(𝑡)

. (1.38)

It follows that the signal is fully characterized by its instanta-

neous polarization and its first instantaneous spectral energy

moment
38

: [𝑆1(𝑡), 𝑆2(𝑡), 𝑆3(𝑡), 𝜔𝑧(𝑡)]. The last term allows to38: Note that 𝜑(𝑡) can be

retrieved from 𝜔𝑧(𝑡) and

[𝑆1(𝑡), 𝑆2(𝑡), 𝑆3(𝑡)] using (1.34).

retrieve the missing phase term as discussed in Section 1.2.3.

Those parameters are non-degenerate observables which can

always be estimated in a noisy setting [3, 12].

1.5 Conclusion

We defined the notion of bivariate signals modulated in

both amplitude, frequency and polarization as a general-

ization real-valued AM-FM signals synthetised with four

parameters: [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)]. AM-FM-PM signals are

a broad class of oscillating bivariate signal with time evolv-

ing elliptical trajectories. They are part of a broader range of

multivariate signals for which several components share a

leading common frequency [12].

It turns out that in some cases an AM-FM-PM signal loses one

degree of freedom, i.e., when the polarization state becomes

circular. This is a concern from an analysis point of view:

for a given signal 𝑧, in a noiseless situation, one would not

be able to recover the synthesis parameters. The decoupling

between ¤𝜑(𝑡) and the ridge of time-frequency transforms



1.5 Conclusion 29

(which is the instantaneous moment 𝜔𝑧(𝑡)) concludes the

discussion of AM-FM-PM signal representations: ¤𝜑(𝑡) could

not be considered as the instantaneous frequency of 𝑧 and

can’t be retrieved from a time-frequency analysis. Even if the

model (1.9) is well adapted in a synthesis point of view, it

is not true in an analysis framework. A recovery is possible

when imposing constraints on 𝜃(𝑡) and 𝜑(𝑡) in order to

complete "blind" spots (e.g. regularity constraints).

From the perspective of finding a parametrization not subject

to the same limitations, we reviewed possible quaternion

representations. There are several desirable representation

properties: the representation should be interpretable and

should not have indeterminate cases (at least when the signal

energy is not vanishing). We showed that parametrization

of AM-FM-PM signals different from the Euler angle polar

representation are either not interpretable (classic polar form,

Cayley-Dickson polar form, symplectic forms) or subject

to particular limitations (vector and complex representa-

tions).

This work was motivated by the application presented in

Chapter 3, we were seeking a representation of gravitational

wave signals (which are AM-FM-PM signals) adapted to

the generation algorithm we propose. Considering a large

class of gravitational wave signals, we concatenate each

waveform attribute in a matrix that we expect to be low rank.

Unfortunately the instrumental gimbal lock is prohibiting for

the Euler angle polar representation as a generic solution.

The vector and complex representations also suffer from

limitations: (i) there are cases where one of the two phases is

indeterminate (even if the signal energy is non-zero), (ii) it is

not interpretable for a generic AM-FM-PM signal and (iii) the

parameters are not regular and oscillate. The usage of such

parametrizations associated to two orthogonal polarization

states is limited to certain classes of signals and applications.

In general, and specifically for the cases of interest in this

thesis, it will not be possible to get low rank decomposition

of signal parameters for signals passing through one of these

two polarization states. The classic polar form, the Cayley-

Dickson polar form and the symplectic forms have both

highly oscillating parameters which makes them impractical

for low rank decomposition.

Finally, we found observables characterizing AM-FM-PM

signals which are defined without ambiguity:

[
𝑆1(𝑡), 𝑆2(𝑡),

𝑆3(𝑡), 𝜔𝑧(𝑡)
]
, or equivalently

[
𝑆0(𝑡), 𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡), 𝜔𝑧(𝑡)

]
.
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These parameters are interpretables and does not suffer

from indeterminacies for non-vanishing signals. They are

observables of a time-frequency representation of the signal.

As such, they can even be estimated in a noisy setting. For a

noiseless signal, the procedure is presented in Section 1.2.4.

In a noisy setting, the estimation procedure is classic: one

estimates the ridge of a signal’s time-frequency transform

and directly read the Stokes parameters on it while 𝜔𝑧(𝑡)
corresponds to the ridge skeleton [3, 12].

Nevertheless, and contrarily to other reviewed representa-

tions, the latter include a quantity that rest on a discrete

differentiation for practical implementations: the instanta-

neous frequency 𝜔𝑧(𝑡). One need to integrate 𝜔𝑧(𝑡) in order

to retrieve the bivariate signal 𝑧 from its attributes. This ren-

ders the estimations errors of 𝜔𝑧(𝑡) to scale cumulatively in

the regression error of 𝑧 and prevented us to consider

[
𝑆1(𝑡),

𝑆2(𝑡), 𝑆3(𝑡), 𝜔𝑧(𝑡)
]

as a possible waveform representation for

the application presented in Chapter 3. As will be detailed in

Chapter 3, the polarization of the waveform modes depends

on the choice of the source frame in which the gravitational

waveform is expanded. A geometrical tricks is used in order

to circumvent Euler angle indeterminacy, which consist in (i)

choosing the source frame to favour elliptic polarization and

(ii) restraining the polarization modulations by considering

a reduced region of the source parameters (and thus avoid

circular polarization states).



2 Introduction to
gravitational-wave astronomy

In the theory of general relativity, the space-time concept

mathematically represents space and time as two inseparable

and mutually influencing quantities. According to this theory,

gravitational interactions result from deformations in the

geometry of space-time, generated by masses.

Mathematically, space-time is defined as a 4-dimensional

semi-Riemannian manifold
1
, which is a locally Euclidean 1: Semi-Riemannian manifolds

are a generalisation of Rieman-

nian manifolds with a smoothly

varying symmetric metric ten-

sor which is non-degenerate [17]

[17]: Petersen (2016), Riemannian
Geometry

.

More precisely, it is a manifold

with a pseudo-Riemannian met-

ric i.e. a topological space which

is localy similar to a Euclidean

space for which the require-

ment of positive-definiteness is

relaxed and on which we can

derive differential calculus.

topological space whose geometry is defined by a metric

tensor. The Einstein field equations define the way the metric

relates and evolves with energy or matter contents. Gravi-

tational waves are wave-like solutions of the Einstein field

equations, i.e. variations of the curvature of space-time prop-

agating in space. Gravitational waves are generated by ac-

celerated masses. The generation of substantial amount of

gravitational radiation requires very large masses at relativis-

tic velocities, properties that are only encountered in extreme

astrophysical systems of compact objects such as neutron

stars or black holes.

Both neutron stars and (stellar-mass) black holes are formed

from the gravitational collapse of the core of a massive star.

Neutron stars have a∼ 10-km core made of very dense matter

essentially composed of neutrons. Black holes are even more

compact celestial objects, so compact that they bend space-

time to the point of preventing any matter or radiation from

escaping from the inner region bounded by their horizon.

In our Galaxy it is common to observe pairs of stars, generally

referred to as binary star systems. Those can evolve into pairs

of black holes or/and neutron stars following the collapse of

each object, thus forming compact binaries.

When the two objects are sufficiently close to each other, they

radiate a significant fraction of their binding energy in the

form of gravitational waves and gradually move even closer,

eventually leading the final merger. During the inspiral, the

two components orbit around each other reaching relative

velocities close to the speed of light. Finally, the two objects

merge into a black hole whose mass is roughly the sum of

the two initial bodies’ masses. The orbital motion during

the inspiral and merger induces a quasi-periodic gravita-

tional wave with a characteristic phase and amplitude time

evolution.
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The 14th of September 2015 marked the birth of gravitational-

wave astronomy [18]. The first ever recorded gravitational[18]: Abbott et al. (2016), Obser-
vation of Gravitational Waves from
a Binary Black Hole Merger

wave was detected by both LIGO
2

instruments. It is the

2: LIGO stands for Laser In-

terferometer Gravitational-Wave

Observatory.

product of the coalescence of two black holes of around 36 and

29 solar masses. The two objects orbiting at relativistic speed

merged and produced a single 62 solar masses black hole.

The event, located at more than one billion light-years from

Earth, released 3 solar masses as gravitational radiation.

Since then, about 90 signals have been detected by the LIGO-

Virgo collaboration [19] that are associated with the coales-[19]: Abbott et al. (2021), GWTC-
3: Compact Binary Coalescences
Observed by LIGO and Virgo Dur-
ing the Second Part of the Third
Observing Run

cence of compact binaries composed of either black holes

and/or neutron stars. The majority of the sources detected

so far are binary black holes [20], a type of source on which

[20]: Abbott et al. (2020), GWTC-
2: Compact binary coalescences ob-
served by LIGO and Virgo during
the first half of the 3rd observing run

we focus in this manuscript.

Some of the details of the source dynamics get imprinted

into the emitted gravitational wave. As a result, proper-

ties of the source can be learned from the analysis of the

gravitational-wave signal. Accurate gravitational waveform

models are deduced from the resolution of the source dy-

namics which is a difficult relativistic problem [21]. The[21]: Buonanno et al. (1999), Ef-
fective one-body approach to general
relativistic two-body dynamics

evaluation of the astrophysical waveform models can be com-

putationally demanding and thus resulting in an inflation of

the computational budget.

Based on the generic model introduced in the previous

chapter, this chapter is dedicated to the development of

models that approximate theoretical gravitational waveforms

but are much faster to compute.

2.1 Gravitational-wave theory

Published in 1905, the theory of general relativity succesfully

resolves the contradictions between Newtonian mechanics

and Maxwell theory of electromagnetism [22]. It reformulates[22]: Einstein (1923), Die Grund-
lage der allgemeinen Relativitätsthe-
orie

laws of classical mechanics and makes them compatible with

the invariance of the speed of light 𝑐 in a vacuum showed by

Michelson and Morley [23].[23]: Michelson et al. (1887),

LVIII. On the relative motion of the
earth and the luminiferous Æther In GR (general relativity) spacetime is a 4-dimensional semi-

Riemannian manifold. Its geometry is described by the Ein-

stein tensor 𝐺𝜇𝜈 defined as

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2

𝑔𝜇𝜈𝑅,



2.1 Gravitational-wave theory 33

with 𝑅𝜇𝜈 the Ricci curvature tensor, 𝑅 the scalar curvature

and 𝑔𝜇𝜈 the metric tensor which allows to compute distances

between spacetime points. 𝜇 and 𝜈 denote the time and

spatial coordinates.

The Einstein field equations associate the geometry of space-

time with the mass-energy evolving in it as

𝐺𝜇𝜈 =
8𝜋𝐺

𝑐4

𝑇𝜇𝜈 ,

where 𝐺 the Newtonian’s gravitational constant and 𝑇𝜇𝜈 the

stress-energy tensor linked to the mass-energy distribution.

The metric tensor 𝑔𝜇𝜈 includes information about spacetime

curvature as it characterizes the spacetime interval
3
: 3: In this section we use the

Einstein summation convention

that consists in summing over in-

dexes that are repeated in upper

and lower position.

d𝑠2 = 𝑔𝜇𝜈d𝑥
𝜇
d𝑥𝜈 .

In the flat Minkowski spacetime with coordinates (𝑐𝑡, 𝑥, 𝑦, 𝑧),
the Minkowski metric reads

𝜂𝜇𝜈 =
©­­­«
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬
and the invariant spacetime interval is

4
d𝑠2 = −𝑐2

d𝑡2+d𝑥2+ 4: For two events 𝐸1 and

𝐸2 with respective coordinates

𝑠1 = (𝑐𝑡1 , 𝑥1 , 𝑦1 , 𝑧1) and 𝑠2 =

(𝑐𝑡2 , 𝑥2 , 𝑦2 , 𝑧2), their distance is

computed as a spacetime inter-

val:

Δ𝑠2 = −𝑐2(𝑡2− 𝑡1)2+(𝑥2−𝑥1)2

+ (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2.

d𝑦2 + d𝑧2
.

Einstein’s equations are non-linear, but considering a weak

pertubation ℎ𝜇𝜈 of the metric 𝜂𝜇𝜈

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 with

��ℎ𝜇𝜈�� ≪ 1,

they can be linearized as

□ℎ𝜇𝜈 − 𝜂𝜇𝜈𝜕𝜌𝜕𝜎ℎ𝜌𝜎 − 𝜕𝜌𝜕𝜈ℎ𝜇𝜌 − 𝜕𝜌𝜕𝜇ℎ𝜈𝜌 = −16𝜋𝐺

𝑐4

𝑇𝜇𝜈 ,

where ℎ𝜇𝜈 = ℎ𝜇𝜈 − (1/2)𝜂𝜇𝜈𝜂𝜇𝜈ℎ𝜇𝜈 is the traceless tensor and

□ = 𝑔𝜇𝜈𝜕𝜇𝜕𝜈 is the d’Alembert operator. In an appropriate

coordinate system, namely the transverse-traceless-temporal

gauge, the above equation simplifies in a wave equation
5

5: Here we denoted ∇2 =
3∑
𝑖=1

𝜕2

𝜕𝑥𝑖2
.(

∇2 − 1

𝑐2

𝜕2

𝜕𝑡2

)
ℎ𝜇𝜈 = 0,

whose solutions are called "gravitational waves".

Gravitational waves are transverse waves propagating at
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speed of light. Because the metric is the Minkowski metric

plus a small spatial perturbation, we can explicitely write

this metric for the three-dimensional Euclidean space. Con-

sidering a coordinate system such that its 𝑧 axis is aligned

with the propagation direction, we define a vector
6 ®𝑘 which6: In the following, we denote

vector objects with an arrow→
and tensors with a double ar-

row↔. The arrows are removed

when expressing the objects in a

given coordinate frame.

points from the source to the observer, such that

𝑘 =
©­«
0

0

1

ª®¬ .
The matrix associated to the metric tensor perturbation

writes

ℎ =
©­«
ℎ+ ℎ× 0

ℎ× −ℎ+ 0

0 0 0

ª®¬
with ℎ+ and ℎ× two independent degrees of freedom, func-

tions of 𝑡 − ®𝑘.®𝑟/𝑐, and corresponding to two polarizations:

plus and cross polarizations respectively.

Plus

Cross

Time

Figure 2.1: Effect of the plus and cross polarizations on a ring of test particles in the transverse (𝑥, 𝑦) plane

with respect to the propagation direction 𝑧. There is no displacement along the direction of propagation. The

cross polarization is a 𝜋/4-rotated version of the plus polarization.

It can also be presented as

ℎ = ℎ+𝑒+ + ℎ×𝑒×

where

𝑒+ =
©­«
1 0 0

0 −1 0

0 0 0

ª®¬ and 𝑒× =
©­«
0 1 0

1 0 0

0 0 0

ª®¬
are polarization matrices associated to the polarization basis

tensors
←→𝑒+ and

←→𝑒× . They are defined such as
←→𝑒+ = ®𝑝⊗®𝑝−®𝑞⊗®𝑞
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and
←→𝑒+ = ®𝑝 ⊗ ®𝑞 − ®𝑞 ⊗ ®𝑝 for ®𝑝 and ®𝑞 the unit vectors defining

the wave frame. For an inertial frame (®𝑒 𝐼
1
, ®𝑒 𝐼

2
, ®𝑒 𝐼

3
) attached to

the source, the wave frame (®𝑝, ®𝑞, ®𝑘) is such that

®𝑞 =
®𝑒 𝐼

3
× ®𝑘

|®𝑒 𝐼
3
× ®𝑘 |

and ®𝑝 = ®𝑘 × ®𝑞.

In this setting, the two polarizations lead to the physical effect

depicted in Figure 2.1. This figure shows the effect of a gravi-

tational wave on a ring of test particles in "free fall" (subject

to gravity only). Plus polarization alternates between vertical

stretching/horizontal squeezing and conversely. Cross polar-

ization is identical to plus polarization with a rotation by 𝜋/4.

Gravitational waves are thus intrinsically bivariate signals,

with two signals ℎ+ and ℎ× associated to each polarization.

2.2 Gravitational-wave observatories

2.2.1 The Virgo detector

Virgo
7

is a major European experiment designed to detect 7: Virgo is named after the Virgo

Cluster of about 1 500 galaxies in

the Virgo constellation.

gravitational waves [24]. It is located in Cascina, near Pisa

[24]: Accadia et al. (2012), Virgo:
a laser interferometer to detect grav-
itational waves

in Italy, and was put into operation in the early 2000s, see

Figure 2.3.
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Figure 2.2: Simplified Advanced

Virgo optical layout. A light

beam is emitted and splitted into

the two arms of the detector by

the beam splitted (BS). The inter-

ference pattern of the recombi-

nated light beam at the photode-

tector depends on the relative

length of one arm compared to

the other. When a gravitational

wave passes through the detec-

tor, this relative length is modi-

fied and the interference pattern

is impacted. The mode cleaner

removes spurious modes while

the signal and power recycling

cavities, with the power and sig-

nal recycling mirrors (PRM and

SRM), enhance the sensitivity of

the detector.

Laser

Photodiodes

End mirror

BS

Input mirror

PRM

SRM
Fabry-Perot cavity

3 km

Input mode cleaner

Figure 2.3: Aerial view of Virgo

the European gravitational wave

detector. Virgo detector has two

arms of 3 kilometers.

The detector has two perpendicular 3 km arms in which a

laser beam is splitted. It measures a signal corresponding

to the relative difference Δ𝐿 of its arm length 𝐿 thanks to

the interference scheme of the recombined light, see Fig-

ure 2.2. The two recombining beams interfere destructively

and photodiodes count the number of impinging photons.

As the spacetime interval is equal to zero for light (d𝑠2 = 0),

we can demonstrate that the effect of a gravitational wave

reaching the detector consists to stretch the detector arms so

the distance travelled by the photons will be different in each

arm [25]. The measured strain writes:[25]: Maggiore (2007), Gravita-
tional Waves: Volume 1: Theory and
Experiments Δ𝐿

𝐿
(𝑡) = ℎ+(𝑡)𝐹+(𝛿, 𝜙,𝜓) + ℎ×(𝑡)𝐹×(𝛿, 𝜙,𝜓) (2.1)

where 𝐹+ and 𝐹× are the antenna beam pattern, (𝛿, 𝜙) the

position of the source in the sky
8

in spherical coordinates and8: As the Earth is rotating, the

localization of the source should

varies during the observation

time. The observation time is

suffiently short to suppose 𝛿, 𝜙
and 𝜓 to be constant for a given

event and we neglect the time

dependence. In practice the ob-

servation time is shorter than 1.5

seconds which suffices for this

assumption to remain valid.

𝜓 the polarization angle that characterizes the orientation

between the polarization basis and the observer frame, see

Figure 2.4. As the ratio of two distances, the strain (Δ𝐿/𝐿) (𝑡)
has no physical unit.
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e⃗3
O

e⃗1
O

e⃗2
O

ϕ

δ
k⃗

v⃗

u⃗
ψ

p⃗
q⃗

Figure 2.4: The wave frame

(®𝑝, ®𝑞, ®𝑘) is defined by the 3 an-

gles (𝛿, 𝜙,𝜓) in the observer

frame (®𝑒𝑂
1
, ®𝑒𝑂

2
, ®𝑒𝑂

3
). The position

of the source in the sky is de-

fined by (𝛿, 𝜙) and the orienta-

tion of the polarization basis is

characterized by 𝜓 thanks to the

introduction of a second wave

frame (®𝑢, ®𝑣, ®𝑘).

u⃗

v⃗

k⃗

p⃗

q⃗
ψ

ψ

Figure 2.5: The polarization an-

gle 𝜓 connects the two wave

frames: the wave frame defined

in the source frame and the one

defined in the observer frame.

Here the plane containing ®𝑢 and

®𝑣 is viewed from above (
®𝑘 points

towards the reader).

The observer frame (®𝑒𝑂
1
, ®𝑒𝑂

2
, ®𝑒𝑂

3
) is commonly identified to the

equatorial coordinate system. The polarization basis tensor is

defined in Section 2.1 with respect to ®𝑝 and ®𝑞, i.e. the 𝑥 and 𝑦

axes of the wave frame respectively. Their orientations are not

known a priori by the observer (®𝑝 and ®𝑞 are not observables).

Thus we define a second wave frame (®𝑢, ®𝑣, ®𝑘) associated to

the propagation direction
®𝑘. Similarly, its 𝑥 and 𝑦 axes are

such that

®𝑢 =
®𝑒𝑂

3
× ®𝑘

|®𝑒𝑂
3
× ®𝑘 |

and ®𝑣 = ®𝑘 × ®𝑢.

As illustrated in Figure 2.5, the polarization angle 𝜓 is then

the angle between the 𝑥 (or 𝑦) axes of the two wave frames.

The antenna beam pattern ponderates the response of the

detector depending on the incidence of the wave onto the

instrument. Its derivation is straightforward: for
®𝑙 and ®𝑚

the perpendicular unit vectors aligned with the detector

arms, the double dot product of the detector tensor

←→
𝑑 =

(®𝑙 ⊗ ®𝑙 − ®𝑚 ⊗ ®𝑚)/2 with the polarization basis tensors gives

𝐹+ =
←→
𝑑 :
←→𝑒+ = 𝑑𝑎𝑏𝑒+ 𝑎𝑏 and respectively for 𝐹×. In the

frame of the detector, i.e. for ®𝑒𝑂
2

= ®𝑙 and for ®𝑒𝑂
1

= ®𝑚, we

get:

𝐹+(𝛿, 𝜙,𝜓) =
1

2

(1 + cos
2 𝛿) cos 2𝜙 cos 2𝜓 − cos 𝛿 sin 2𝜙 sin 2𝜓,

𝐹+(𝛿, 𝜙,𝜓) =
1

2

(1 + cos
2 𝛿) cos 2𝜙 sin 2𝜓 − cos 𝛿 sin 2𝜙 cos 2𝜓.

Figures 2.4 and 2.5 present the different angles involved in

the antenna beam pattern formula.

The detection of gravitational waves constitutes a technical

feat due to the size of the expected signal. Based on the arm
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length (3 km), a detectable signal is of the size
9 (Δ𝐿/𝐿) ∼9: As an analogy, it is equiva-

lent to a variation as small as

the thickness of a human hair be-

tween earth and Alpha Centauri,

the closest star to our sun.

10
−21

. Advanced technologies and a specific optical design

are necessary to achieve this minimal target sensitivity.

Different upgrades have been implemented until the detector

became operational for gravitational wave observations in

2017 under the project Advanced Virgo [26, 27]. This second[26]: Acernese et al. (2015), Ad-
vanced Virgo: a second-generation
interferometric gravitational wave
detector
[27]: Acernese et al. (2020), Ad-
vanced Virgo Status

generation detector is a dual-recycled Michelson interferom-

eter with Fabry-Perot cavities in the arms, see Figure 2.2. The

power of the bright fringe is recycled once by a semi-reflective

mirror, i.e. the Power Recycling Mirror, between the input

mode-cleaner and the Beam Splitter. The mirrors are sus-

pended to a chain of pendulums and the laser beam operates

under vacuum. Compared to the previous first generation

detectors, the signal is recycled by adding a Signal Recycling

Mirror between the Beam Splitter and the detection system.

This broadens the bandwidth of the interferometer in the

high frequency range of the detector.

Figure 2.6: Advanced Virgo sen-

sitivity and expected noise con-

tributions in 2015 [28]

[28]: Accadia et al. (2012), Ad-
vanced Virgo Technical Design Re-
port

. The Ad-

vanced Virgo sensitivity curve

(solid black) is the summation of

the different noise contributions.

Virgo is sensitive to gravitational waves for frequencies rang-

ing from∼ 20 Hz to∼ 2000 Hz. At design sensitivity the noise

floor of 3 × 10
−24/
√

Hz is reached at 300 Hz. See Figure 2.6

for a review of the most limiting noise sources.

The low frequency sensitivity is limited by seismic noise

and suspension thermal noise. Seismic noise is due to the

motion of the Earth surface as well as to human activity

while thermal noise is due to vibrations of the atoms that

compose the mirrors and suspensions. The mid frequency

sensitivity is mainly limited by thermal noise and quantum

noise. Quantum noise originates from the quantum nature
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of light and relates to the statistical counting uncertainty

when measuring the power at the output part of the inter-

ferometer [25]. Above 300 Hz, the shot noise becomes the

main limitation. The refraction induced by residual gazes in

the tubes is limited by a ultra-high vacuum. Stabilized lasers

are used to limit the fluctuations in the laser power and fre-

quency. Light scattering is limited by an extreme polishing of

the mirrors at a micro-roughness coating of exquisite optical

quality. Electronic noise coupled with other noise sources

can induce spurious non-stationary signals, named glitches,

that are detected and classified.

2.2.2 A worldwide network of detectors

Figure 2.7: Representative sensi-

tivity curves of LIGO and Virgo

detectors during the third ob-

serving run [19]. Contrarily to

the anticipated curve, these ones

include calibration lines and the

correponding harmonics.

Advanced Virgo is part of a network that also includes the two

LIGO detectors based in the US: Advanced LIGO Hanford

and Advanced LIGO Livingston. KAGRA
10

, the Japanese 10: KAGRA is short for Kamioka

Gravitational Wave Detector, but

is also a homophonic pun of the

Japanese word KAGURA.

second generation detector joined the collaboration for the

third run and LIGO-India will be added to the list for the

fifth. An overview of past and future plans for LIGO, Virgo

and KAGRA detectors is presented in Figure 2.8.

Upgrades of the instrument are done in between observing

runs i.e. data collection campaigns for gravitational-wave

astronomy purposes. The first detection of gravitational

waves was announced in 2016 [18] after the first observing

run O1. Virgo joined the LIGO detectors during the second

observing run. The sensitivities obtained by LIGO and Virgo

during the third observing runs are shown in Figure 2.7.
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Figure 2.8: Review of the sensitivity of advanced LIGO, advanced Virgo and KAGRA for the past and

future observing runs [29]. Detector sensitivities are given in terms of sensitive luminosity distance for a

1.4𝑀⊙ + 1.4𝑀⊙ binary neutron star system. The O4 and O5 runs have been rescheduled recently and

postponed by six months with respect to what is shown here. The sensitivity of KAGRA has also been

significantly revised.

There are obvious similarities between the instruments. For

example, LIGO-India is a copy of LIGO observatories which

will be located in India. However, there are important pecu-

larities. LIGO detectors are larger than Virgo and KAGRA.

The formers have 4-km arms while the latters have 3-km

arms. KAGRA is the first underground detector with cryo-

genic technology used to cool down the Fabry-Perot mirrors

and reduce the thermal noise. The mirrors are made of

saphir which has excellent properties at low-temperatures.

Its undergrounding reduces drastically seismic noise.

2.2.3 Benefits of a detector network

The data collected by the instruments are shared and analysed

in a joint effort within the LIGO-Virgo-KAGRA collaboration.

The false alarm rate is reduced thanks to a coherent analysis

and the duty cycle is increased. The network of detector

is particularly important for the localization of the source.

Knowing that gravitational waves travel at the speed of light,

the time delays between the arrival at each detector are used

in order to locate the source in the sky with triangulation
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techniques. Using timing triangulation, a two detectors net-

work can only conclude on an concentric ring between the

two sites. A three detector network reduces the estimated

location to two points and a four detector network is able to

retrieve the exact sky location. In practice the time of arrivals

are combined with other informations, such as the beam

pattern of the detectors
11

, which allows to draw credible 11: As the detectors are located

in different geographical areas,

they have different responses

for a given source, see (2.1) and

Figure 2.9. The presence or the

lack of signal in one detector

gives a hint on the possible loca-

tion of the source. For instance

GW170817 reached Virgo close

to 45 degrees, so Virgo was not

observing the signal but this in-

formation was critical for local-

ization.

regions on the sky with less than four instruments [29, 30].

[29]: Abbott et al. (2020),

Prospects for observing and local-
izing gravitational-wave transients
with Advanced LIGO, Advanced
Virgo and KAGRA
[30]: Fairhurst (2018), Localiza-
tion of transient gravitational wave
sources: beyond triangulation

Figure 2.9: Antenna pattern of

Virgo (Mollweide projection) in

the equatorial coordinate system.

The colors of each sky pixel is

determined by√
𝐹2

+(𝛿, 𝜙,𝜓) + 𝐹2

×(𝛿, 𝜙,𝜓).

The power antenna pattern is

independent with respect to 𝜓.

High values ∼ 1 are in yellow

and small ones ∼ 0 are in blue.

The maximum values are for sig-

nals coming from overhead or

underfoot.

Fast inference of sky location is particularly important in the

case of mergers involving neutron stars. For the mergers of

binary neutron stars or a neutron star with a black hole a

short gamma-ray burst is theoretically emitted. We can use

optical telescopes so as to follow a possible electromagnetic

counterpart associated to a gravitational wave emission. The

coordinated observation of gravitational and electromagnetic

radiations is at the core of multi-messenger astronomy. It is a

unique opportunity to study cosmology and the physics of

astrophysical compact objects.

2.2.4 Future observatories

There are plans to improve the sensitivity of the detectors

even further. Detectors will have higher sensitivity (about

one order of magnitude) and allow to expand the observation

to more massive sources. Einstein Telescope is a third gener-

ation European gravitational wave detector project with an

underground infrastructure (beyond a total mass of ∼ 200

in solar mass 𝑀⊙, as allowed by current detectors). The de-

tector will have 10-km arms with cryogenic cooling system,

quantum technologies to reduce the fluctations of light and

active noise mitigation systems. Cosmic Explorer is a similar

US project with two sites, one with 40-km arms and one with

20-km arms. The idea is to increase the amplitude of the ob-

served signal with no increase in the noise by expanding the

arm lengths. Einstein Telescope and Cosmic explorer strive

to observe compact-object binaries from 10
3 𝑀⊙ to 10

4 𝑀⊙.

Finally LISA is a large-scale space mission of the European

Space Agency designed for mergers of massive black holes

at the center of galaxies, extreme mass ratio inspirals and

speculative astrophysical objects such as cosmic strings. The

instrument will be a constellation of three satellites in helio-

centric orbits forming three space interferometers with arms

of 2.5 million km. It will chase sources between 10
7 𝑀⊙ and

10
10 𝑀⊙. Due to the extreme sensitivity, the data collected
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will consist of superpositions of gravitational signals from

possible millions of sources.

2.3 Gravitational wave detections

Advanced LIGO and Advanced Virgo detectors have per-

formed three rounds of data acquisition campaigns: O1, O2

and O3. The signals detected by the LIGO-Virgo-KAGRA col-

laboration are listed in the Gravitational Wave Transient Cata-

log GWTC-3 [19]. A total of 90 gravitational waves have been

detected so far. This includes sources at distances ranging

from 40 Mpc to 6 Gpc. All the sources are compact-object bi-

naries composed of stellar-mass black holes and neutron stars

with masses from 1.2𝑀⊙ to 106𝑀⊙. This section reviews

the three data taking campaigns through some examples

of noteworthy detections. The gravitational-wave signature

from the merger of two compact stars will be detailed later

in Section 2.4.2.

Figure 2.10: Whitened observa-

tions (blue) and matched filter

template (red) of GW150914 for

LIGO Hanford detector.
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GW150914 Three events have been detected during O1.

Among them, GW150914 [18] is the first gravitational-wave

signal ever detected. It is also the first observation of the

coalescence of two black holes. The strain was produced

by the merger of two black holes 440 Mpc away from Earth.

The two objects were around 36𝑀⊙ and 31𝑀⊙, reaching

∼ 60% of the speed of light before the final merger. The

remnant is a black hole of 63𝑀⊙. 3𝑀⊙ were converted into

gravitational radiation observed by the LIGO detectors for

a duration of 0.2 s. GW150914 proved the existence of BBHs

(binaries of black holes). The announcement of its confident

detection in 2016 [18] marked the birth of gravitational-waves

astronomy. Figure 2.10 presents a whitened data sample of

LIGO Hanford corresponding to GW150914 data segment.
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GW170817 Among the 8 confident detections made dur-

ing O2 by LIGO and Virgo, GW170817 [31] is the first ever [31]: Abbott et al. (2017),

GW170817: Observation of Gravita-
tional Waves from a Binary Neutron
Star Inspiral

detected gravitational-wave from a binary neutron star. Be-

cause of the relatively small mass of the binary, the observed

signal (visible for 100 s) is primarily related to the inspiral

phase of the coalescence ; the merger and postmerger are

not in the sensitive band of the instruments. GW170817 is

also the first multi-messenger observation [32] as a range of [32]: Abbott et al. (2017), Multi-
messenger Observations of a Binary
Neutron Star Merger

electromagnetic counterparts have been observed together

with gravitational waves. For example, 1.7 s after the merger

time, the Fermi Gamma-ray Space Telescope and the Interna-

tional Gamma-Ray Astrophysics Laboratory (INTEGRAL)

spacecraft detected a gamma-ray burst that also originated

from the BNS (binary neutron star) merger. Multimessenger

observations can bring tremendous contributions through

several aspects, e.g. it is an alternative way to measure the

Hubble constant [33] and test general relativity [34]. The [33]: Abbott et al. (2017), A
gravitational-wave standard siren
measurement of the Hubble constant

[34]: Abbott et al. (2019), Tests of
General Relativity with GW170817

electromagnetic observation provides important information

on a long standing question concerning the production of

such heavy elements such as gold and platinium, found to be

produced in the aftermaths of BNS mergers. Another BNS

merger was observed during O3, however no electromagnetic

counterpart was detected.

GW200105 During the third observing run, two mixed

binary mergers were observed for the first time, i.e. NS-

BH (black hole - neutron star binary) coalescences, and

GW200105 is the first [35]. The nature of the objects is deduced [35]: Abbott et al. (2021), Obser-
vation of Gravitational Waves from
Two Neutron Star–Black Hole Coa-
lescences

by the inferred component masses, about 8.9𝑀⊙ and 1.9𝑀⊙.

The merger have taken place at 280 Mpc. It is an opportunity

to study matter under extreme conditions and the formation

channels of such binaries.

GW190412 A total of 79 signals were detected during O3.

GW190412 is different from the other observations due to the

asymmetric mass distribution among the two black holes:

∼ 30𝑀⊙ and ∼ 8𝑀⊙. The mass ratio of 0.26 allowed to

observe subdominant modes [36]. It is the first signal with [36]: Abbott et al. (2020),

GW190412: Observation of a
binary-black-hole coalescence with
asymmetric masses

marginal hints of orbital precession. The source parameters

are in a previously unobserved region of the parameter

space, for which we lack an accurate waveform model. With

the scheduled increase in sensitivity of second generation

instruments, we expect to see more of those events with

detectable higher order modes as well as precession induced

modulation in future detections.



44 2 Introduction to gravitational-wave astronomy

2.4 Basics of compact binary coalescences

2.4.1 Phenomenology

We did not characterize how gravitational waves are emitted,

nor what are their sources. The emission of gravitational

waves from a physical system can be estimated to first order

by the "quadrupole formula" [25]. This formula establishes

that gravitational wave radiation requires the temporal vari-

ation of the mass quadrupole. This implies that gravitational

wave sources necessarily have a non-spherically symmetric

mass distribution. Stellar binaries is possibly the simplest

astrophysical system with this property. In the context of

ground-based detectors such as Virgo and LIGO that ob-

serve in the frequency band around 100 Hz, we concentrate

on binaries of stellar-mass compact objects (neutron stars

and black holes) – referred to as compact binaries – that

can possibly generate gravitational waves in this frequency

region. Compact binaries are the only gravitational wave

source detected so far, as discussed in Section 2.3.

Compact binaries gradually lose gravitational potential en-

ergy through gravitational radiation. This causes their orbital

separation to decay until the two objects merge into a rem-

nant, generally a black hole. The binary passes through three

different dynamical regimes during this coalescence process.

Initially, the two objects are far apart, and following slowly

shrinking quasi-circular orbits: this is the inspiral phase.

When the system reach the innermost last stable orbit [25]

the two objects "plunge" onto each other and merge: this

is the merger phase. The merger remnant settles down to

equilibrium: this is the ringdown phase.

2.4.2 Gravitational-wave signature

The gravitational wave signal is directly related to the source

dynamics. The three dynamical regimes described above are

visible in the waveform, see Figure 2.11.

Gravitational wave signature appears to be a amplitude and

frequency modulated signal. The frequency and amplitude

follow a specific time evolution. To leading order, the instan-

taneous frequency of the waveform can be approximated as

a power law
12

12: This is usually referred to as

the Newtonian approximation.
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Figure 2.11: The three dynamical

regimes of a binary of compact

objects seen in a simulated strain.

𝑓GW(𝑡) =
1

𝜋

(
5

256

1

(𝑡coal − 𝑡)

)
3/8 (

𝐺M

𝑐3

)−5/8
,

for 𝑡 < 𝑡coal, where 𝑡coal is the merger time.

At this crude approximation order, the frequency evolution

solely depends on the chirp mass M = (𝑚1𝑚2)3/5/(𝑚1 +
𝑚2)1/5 [25] with the binary components masses 𝑚1 and 𝑚2.

The plunge and merger occur when the binary reaches the

Innermost Stable Circular Orbit (ISCO) [25], associated with

the frequency

𝑓ISCO ∼ 2.2 kHz

(
𝑀

𝑀⊙

)−1

, (2.2)

where 𝑀 = 𝑚1 + 𝑚2 is the total mass.

The merger phase results in a deformed black hole remnant

which "rings" analogously to an elastic body and radiates

gravitational waves at characteristic frequencies correspond-

ing to its quasi normal modes, typically

𝑓QNR ∼ 885 Hz

(
𝑀

𝑀⊙

)−1

for a rotating black hole with a dimensionless spin of
13

0.7. 13: This is the typical spin range-

for black holes formed by merg-

ers.

This is the maximum frequency reached by the gravitational-

wave signal. This frequency is in the observable band when

𝑀 > 450𝑀⊙.

The signal duration in the detection frequency band (from

20 Hz to few kHz) depends on the component masses. The

mass of a neutron star is typically between ∼ 1.1𝑀⊙ and

∼ 2.1𝑀⊙14
, while stellar-mass black holes have a much 14: 𝑀⊙ denotes the mass of the

Sun.
wider mass span ranging from 5𝑀⊙ to 100𝑀⊙. The in-band

duration is a fraction of a second for black-hole binaries, while

the signal can last few tenths of seconds for neutron-star

binaries.
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Using the quadrupole formula, the amplitude of the gravita-

tional wave strain can be estimated as

Δ𝐿/𝐿 ∼ 4.1 × 10
−22

(
M

𝑀⊙

)
5/6 (

100 Mpc

𝐷

) (
100 Hz

𝑓max

)−1/6
,

where 𝐷 is the luminosity distance in Mpc between the

source and the observer.

Section 3.2.1 goes beyond the crudle and high level descrip-

tion given here, and reviews the various waveform approx-

imants that have the required accuracy to analyse the data

today.

2.5 Summary

Gravitational-wave astronomy is a new way to observe the

universe via the warping of space-time induced by the motion

of massive objects. It already gave precious informations

about the existence of black holes and the coalescence of

compact bodies as well as opportunities to test fundamental

physics.

At this date, 90 signals have been detected with sources

from 1.2𝑀⊙ to 106𝑀⊙ at distances up to 6 Gpc. The vast

majority of detected events were emitted by BBHs. 2 BNS and

2 BH-NS coalescences have been detected. Electromagnetic

counterparts have also been observed in association with

the BNS merger GW170817, it is the first multi-messenger

astronomy event involving gravitational waves.

Gravitational waves are bivariate signals, being particularly

adapted to the formalism introduced in Chapter 1. As shown

in Chapters 3 and 4, we can take advantage of the new

formalism introduced separately by Flamant and Lilly [7, 12]

to develop new data analysis techniques in the context of

gravitational-wave astronomy.
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Gravitational-wave astronomy has given access to a range

of astrophysical objects in an unprecedent way by analysing

the ripples of spacetime with implications in astrophysics,

cosmology and possibilities to test theories as general rela-

tivity [37–39]. [37]: Kimball et al. (2021), Evi-
dence for Hierarchical Black Hole
Mergers in the Second LIGO–Virgo
Gravitational Wave Catalog
[38]: The LIGO Scientific Collab-

oration et al. (2022), Tests of gen-
eral relativity with GWTC-3
[39]: The LIGO Scientific Collab-

oration et al. (2021), The popula-
tion of merging compact binaries
inferred using gravitational waves
through GWTC-3

The number of detected signals is expected to increase with

the technical upgrades of the current instruments as well as

the addition of new observatories in the global network. The

LIGO-Virgo detector network performed three observing

runs over the last seven years. Among the 90 detections,

86 originate from binary black hole mergers. These are all

opportunities to study compact objects through the prism of

gravitational-wave astronomy.

Gravitational-wave modelling is a building block in order to

draw conclusions based on the observations of the detectors.

Theoretical waveforms are compared with observations by

Bayesian data analysis pipelines, drawing posterior proba-

bilities for parameter estimation and applying hypothesis

testing.

This chapter is dedicated to the generation of gravitational

waveforms with machine learning models. We address the

case of waveform modelling for spin-aligned and precessing

BBH sources. The core of the methods is based on a judicious

choice of signal representation, which leads to the introduc-

tion of waveform attributes with smooth variations with

respect to the source parameters. The appropriateness of the

representation makes possible the use of standard machine

learning methods to get an operable waveform generator.

We first start by briefly reviewing the current state of grav-

itational wave data analysis to establish the context and

motivations.
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3.1 Gravitational-wave data analysis
in a nutshell

3.1.1 Search for gravitational-wave transients

Several approaches are used to detect gravitational-wave

signals. For example, GW150914 was initially detected with

coherent WaveBurst pipeline [40, 41] which is an unmod-[40]: Klimenko et al. (2004), A
wavelet method for detection of grav-
itational wave bursts
[41]: Klimenko et al. (2016),

Method for detection and recon-
struction of gravitational wave tran-
sients with networks of advanced
detectors

eled search algorithm identifying clusters of excess power

in wavelet transforms with different resolutions. While the

unmodeled approach provides a way to detect unantici-

pated signals such as GW150914, standard matched filtering

techniques are widely used in the gravitational-wave data

analysis [42, 43]. Matched filtering pipelines are less flexible

[42]: Usman et al. (2016), The Py-
CBC search for gravitational waves
from compact binary coalescence
[43]: Cannon et al. (2012), To-
ward early detection of gravitational
waves from compact binary coales-
cence

but more sensitive to weaker signals. For a detector 𝑑, the

matched filtering detection statistic is given by

𝜌𝑑(𝑡) = max

𝜗∈Θ
2 Re

∫
Ω𝑑

𝑋𝑑( 𝑓 )𝐻∗𝜗( 𝑓 )
𝑆𝑑( 𝑓 )

𝑒2𝒊𝜋 𝑓 𝑡
d 𝑓 (3.1)

called signal-to-noise ratio (SNR), where 𝑆𝑑 is the estimated

power spectral density of the noise, 𝑋𝑑 and 𝐻𝜗 are the

Fourier transfoms of the recorded signal 𝑥𝑑 and a waveform

template ℎ𝜗 associated to a set of physical parameters 𝜗. The

frequency domain Ω𝑑 over which the integral is computed

is determined by the bandwith of the detector’s data. Θ is a

fixed collection of parameter sets, it is constructed in order

to pave the region of expected signals
1
. The network SNR is1: Note that the template bank

used for detection is fixed and

is not necessarily sampled regu-

larly over the binary parameters.

defined as

𝜌net(𝑡) =
√∑

𝑑

𝜌𝑑2(𝑡).

It combines the SNR of individual detectors and is used to

assess the False Alarm Rate. These two statistics strongly

depend on the validity of the template bank and thus on the

waveform approximants.

The network SNR is a detection statistics which can be in-

volved in the computation of the p-value used to define

confident detections. The p-value ranks the significance of

a candidate event being a gravitational wave comparatively

to the rate at which the detectors produce noise with the

same detection statistics. Its computation needs to estimate

the noise background, which is a difficult task knowing that

the noise is not really stationary nor Gaussian and that it

is impossible to configure the detectors to have signal-free
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measurements. It is considered that the p-value is under the

detection threshold for roughly 𝜌net(𝑡) > 8.

3.1.2 Inference of source parameters

Once the signal has been detected, the nature and the prop-

erties of the sources are inferred from the observations made

by gravitational wave detectors. The waveform properties

are closely connected to the source parameters. For instance,

the masses of the objects can be inferred from the frequency

evolution of the signal. The luminosity distance (the distance

from the source to the observer) can be inferred from the am-

plitude. The sky location of the source can be retrieved from

the differences between the time of arrival at each detector.

From the amplitude and phase modulations (i.e. polarization

modulations, see Chapter 4) we can infer spins and orbital

eccentricity.

The Bayesian formalism is particularly adapted for parameter

inference and hypothesis testing. It derives from the Bayes’

theorem and standard rules of probability theory. For two

statistical events 𝐴 and 𝐵 the Bayes’ theorem reads

ℙ(𝐵|𝐴) = ℙ(𝐴|𝐵)ℙ(𝐵)
ℙ(𝐴) .

For some observed data 𝐴 and hypothesis 𝐵, ℙ(𝐴|𝐵) is the

likelihood of 𝐴 given 𝐵, ℙ(𝐵|𝐴) is the posterior distribution

i.e. the updated version of the prior distribution ℙ(𝐵) ac-

counting the new information broughtby the data 𝐴 and

ℙ(𝐴) is the marginal likelihood or model evidence.

In the context of gravitational wave data analysis, we want

to infer source parameters 𝜗 (e.g. masses, spins etc.) given a

set of observed data 𝑥, a model Hand a prior information 𝐼.

Bayes’ theorem gives the posterior density function

ℙ(𝜗|𝑥,H, 𝐼) = ℙ(𝑥 |𝜗,H, 𝐼)ℙ(𝜗|H, 𝐼)
ℙ(𝑥 |H, 𝐼) . (3.2)

The denominator is often neglected as it applies to all param-

eter sets in the parameter space
2

2: The important rela-

tion is ℙ(𝜗|𝑥,H, 𝐼) ∝
ℙ(𝑥 |𝜗,H, 𝐼)ℙ(𝜗|H, 𝐼). Com-

putation of the normalization

factor for the posterior estimate

is straightforward. As a matter

of fact, Bayesian methods can be

applied without insuring that

each considered "density" sums

to one.

.

For a given event, the detector observation is a gravita-

tional wave signal 𝑠 corrupted by an additive noise
3
: 𝑥(𝑡) = 3: As mentioned in Chapter 2

𝑠(𝑡) = 𝐹+(Θ)ℎ+(𝑡) + 𝐹×(Θ)ℎ×(𝑡)
where ℎ+,× are the waveforms

associated to each polarization

mode and 𝐹+,×(Θ) the antenna

beam pattern of the detector.

𝑠(𝑡) + 𝑛(𝑡). The noise is supposed to be a Gaussian and sta-

tionary process with zero mean on a short time segment

around the event. The likelihood is generally computed on
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the frequency domain. In this case, the noise variance is

given by the noise power spectral density 𝑆𝑛(𝜔), where 𝜔
is the frequency variable. The likelihood is then given by a

multivariate Gaussian distribution

− logℙ(𝑥 |𝜗,H, 𝐼) ∝
∑
𝜔

|𝑥(𝜔) − 𝑠(𝜔)|2 /𝑆𝑛(𝜔). (3.3)

3.1.3 Bayesian samplers in the context of
gravitational-wave astronomy

While the algorithms based on standard matched filtering

uses a fixed lattice of waveforms paving the space of possible

signals [42], Bayesian inference techniques sample adapta-

tively 𝜗 using standard Bayesian sampler such as Metropolis

Hastings or nested sampling in order to build a posterior den-

sity estimate [44, 45]. About 10
5

to 10
6

theoretical waveforms[44]: Cornish et al. (2015),

Bayeswave: Bayesian inference for
gravitational wave bursts and in-
strument glitches
[45]: Thrane et al. (2019), An in-
troduction to Bayesian inference in
gravitational-wave astronomy: Pa-
rameter estimation, model selection,
and hierarchical models

are required to cover a sufficient portion of the parameter

space.

Two main software packages are available for parameter

inference: LALInference [46] and Bilby [45].

[46]: Veitch et al. (2015), Parame-
ter estimation for compact binaries
with ground-based gravitational-
wave observations using the LAL-
Inference software library

Parameter estimation is computationally highly demanding.

The analysis of a single event requires from tenths of hours

at best to days for a single run. Computations related to

waveform generation dominate this cost.

In the next decade, LIGO and Virgo detectors are expected

to conduct at least two major observing runs with improved

sensitivity, leading to a large increase in the number of de-

tected signals. The analysis of those future observations calls

for numerically efficient, yet accurate waveform generators.

In this context, this chapter is dedicated to the acceleration

of source’s parameters estimation through the development

of fast generation method of theoretical waveforms.

3.2 Binary black hole coalescences

Stellar collapse through supernova explosion can leave as

remnant a compact object. Depending on the mass of the

progenitor, it can be either a white dwarf, a neutron star or a

stellar-mass black hole. It is considered that remnants with

mass higher than ∼ 3𝑀⊙ are more likely to be black holes.
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Black holes may form in binary systems, thus leading to

a black hole binary. It consists in two objects of masses
4

4: The first and second objects

are chosen such that the mass

ratio 𝑞 = 𝑚1/𝑚2 ⩾ 1.

𝑚1 and 𝑚2, with spin angular momentums
®𝑆1(𝑡) and

®𝑆2(𝑡),
which are orbiting each other with an angular momentum

®𝐿(𝑡) = 𝜇 ®𝑟(𝑡) × ®𝑝(𝑡), where ®𝑟(𝑡) and ®𝑝(𝑡) are the orbital

separation and its canonically conjugate momentum [47] [47]: Pan et al. (2014), Inspiral-
merger-ringdown waveforms of
spinning, precessing black-hole bi-
naries in the effective-one-body for-
malism

respectively. The system loses energy through emission of

gravitational radiations which causes the orbital separation

to decrease and the orbital frequency Ωorb(𝑡) = |®𝑟 × ¤®𝑟 |/|®𝑟 |2
to increase until they merge.

Different scenarios are anticipated for the formation of black

hole binaries (see [48] for a recent review). This results in [48]: Mapelli (2020), Binary Black
Hole Mergers: Formation and Pop-
ulations

different binary properties, regarding the orientation of the

object spins or the separation of the two bodies. We mainly

differentiate between two configurations:

Spin-aligned BBHs Certain BBH formation scenarios favor

spin-aligned (or anti-aligned) configurations, e.g. isolated

BBHs from binary star systems. In this case, the black holes

created are likely to have spins close to being aligned. More-

over, the spins of black holes orbiting each other tend to align

themselves in the long time as the system loses energy by

emitting gravitational radiation [49, 50]

[49]: Rodriguez et al. (2016), Il-
luminating black hole binary for-
mation channels with spins in ad-
vanced LIGO
[50]: Gerosa et al. (2018), Spin
orientations of merging black holes
formed from the evolution of stellar
binaries

. In this case,
®𝐿(𝑡)

and
®𝐽(𝑡) = ®𝐿(𝑡) + ®𝑆1(𝑡) + ®𝑆2(𝑡) are both normal to the orbital

plane which thus remains fixed with respect to an inertial

observer.

J⃗(t)

L⃗(t)

Figure 3.1: Precession of the or-

bital plane induced by the mis-

alignment of the spin of at least

one of the two bodies. The an-

gular momentum
®𝐿(𝑡) precess

around the total angular momen-

tum
®𝐽(𝑡).

Precessing BBHs Other binary formation scenarios lead

to the misalignment of at least one of the component spins

with respect to the normal of the orbital plane. Let us define

the Newtonian orbital angular momentum
®𝐿𝑁 (𝑡) = 𝜇 ®𝑟(𝑡) ×

¤®𝑟(𝑡), which is normal to the orbital plane by construction
5
.

5: In general, the orbital angular

momentum
®𝐿(𝑡) of a spinning

binary is not orthogonal to the

orbital plane while it is always

the case for
®𝐿𝑁 (𝑡).

During the orbital motion,
®𝐿(𝑡), ®𝐿𝑁 (𝑡) and the spin

®𝑆1(𝑡)
and
®𝑆2(𝑡) undergo a precession movement around the total

angular momentum
®𝐽(𝑡), see Figure 3.1. In this more generic

configuration, the orientation of the line of sight compared

to the orbital plane is varying with time. The main difference

bewteen
®𝐿(𝑡) and

®𝐿𝑁 (𝑡) is that, while the head of the former

draw a circle around the total angular momentum, the latter

exibit an additional nutation as the two bodies are orbiting.

The large majority of the observed sources presented in

Section 2.3 are compatible with the first case (aligned spin)
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but there are few cases where the component spins appear

to be misaligned.

3.2.1 Gravitational waveforms

It is customary to present gravitational waves as complex

valued signals:

ℎ(𝑡) = ℎ+(𝑡) − 𝒊ℎ×(𝑡),

in particular for analytic developments. When modelling the

signal for a given source it is convenient to decompose ℎ

using a spin weighted spherical harmonics expansion:

ℎ(𝑡) = 𝑀

𝐷

∞∑
𝑙=2

𝑙∑
𝑚=−𝑙

ℎ𝐼
𝑙,𝑚
(𝑡) −2𝑌𝑙 ,𝑚(𝜄, 𝜑0) (3.4)

where the −2𝑌𝑙 ,𝑚(𝜄, 𝜑0) ∈ ℂ are the −2 spin weighted spheri-

cal harmonics
6

6: See Appendix B for a short

introduction to spin weighted

functions and spin weighted

spherical harmonics.

and the ℎ𝐼
𝑙,𝑚
(𝑡) ∈ ℂ are the associated modes.

The spin weighted spherical harmonics are functions of 𝜄
and 𝜑0, respectively the inclination and initial phase

7

7: Our convention originates

from [51]

[51]: Ossokine et al. (2020), Multi-
polar effective-one-body waveforms
for precessing binary black holes:
Construction and validation

. Here 𝜑0 = 𝜋/2 −Φref

where Φref is the reference phase

in the LALSimulation conven-

tions [52]

[52]: LIGO Scientific Collabora-

tion (2018), LIGO Algorithm Li-
brary - LALSuite

.

of the

source in an inertial source frame denoted 𝐼, see Figure 3.2.

𝑀 and 𝐷 are respectively the total mass and the luminosity

distance in geometrical units (𝐺 = 𝑐 = 1).

e⃗3
I

e⃗1
I

e⃗2
I

φ0

ι

k⃗
p⃗

q⃗

Figure 3.2: Line of sight in the

inertial source frame (®𝑒 𝐼
1
, ®𝑒 𝐼

2
, ®𝑒 𝐼

3
).

The inclination 𝜄 and the initial

phase 𝜑0 are the spherical co-

ordinates of the propagation di-

rection
®𝑘 in the inertial source

frame. The wave frame is con-

structed such that its 𝑧-axis is

aligned with
®𝑘.

It is worth noticing that Equation (3.4) outlines that the line

of sight (in the inertial frame) influences the value of each

spin weighted spherical harmonics −2𝑌𝑙 ,𝑚(𝜄, 𝜙)whereas the

different modes ℎ𝐼
𝑙,𝑚
(𝑡) result from the source dynamics.

A number of theoretical models allow to compute the wave-

form modes of (3.4) related to initial source conditions by

approximating solutions of the source dynamics [53]

[53]: Schmidt (2020), Gravita-
tional Waves From Binary Black
Hole Mergers: Modeling and Obser-
vations

. There

are no exact close-form solution for this relativistic problem,

however accurate approximations are available.

3.2.2 Review of available waveform approximants

Gravitational-wave signals are approximated by a range of

analytic and numerical techniques which define waveform

families. Depending on the approach, the strain is approxi-

mated with different accuracies and their computation lead

to different runtimes. Two main waveform families (Effective-

One-Body and Phenomenological approximants detailed

below) allow to compute the waveform associated with the
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entire coalescence process, including the three dynamical

phases : inspiral, merger and ringdown.

Post-Newtonian Theory and Numerical Relativity The

post-Newtonian (PN) [54] and numerical relativity (NR) [55] [54]: Blanchet (2014), Grav-
itational Radiation from Post-
Newtonian Sources and Inspiralling
Compact Binaries

[55]: Boyle et al. (2019), The SXS
collaboration catalog of binary black
hole simulations

formalisms are the major building blocks on which the

waveform families rely. For the inspiral phase, PN expansions

of the equations of motion at low velocities provides accurate

predictions till the orbital velocity becomes comparable to the

speed of light. NR are fully relativistic numerical resolution of

the Einstein field equations. They are acccurate including in

the highly non-linear regime of the merger phase, but requires

very expensive computing ressources. NR waveforms are

used to calibrate other models and create NR surrogates.

Effective-One-Body approximants [21] The Effective-One-

Body (EOB) formalism maps the two-body problem onto an

effective one-body problem [21]. This mapping reduces the

problem to a single test particle in a deformed Schwarzschild

metric with deformation parameter equal to the symmetric

mass ratio 𝜈 = 𝜇/𝑀. This "mapping trick" allows to accu-

rately resolve the source dynamics from the inspiral through

the merger phase. A complete waveform is obtained by stitch-

ing the adequate quasi-normal mode expected during the

ringdown phase. This approach works inherently in the time

domain, and requires the resolution of dynamical equations

that are computationally slow to evaluate. Waveform approx-

imants based on EOB are available for non-spinning and

spin-aligned binaries, but also for binaries with precessing

and eccentric orbits [56]. [56]: Hinderer et al. (2017), Foun-
dations of an effective-one-body
model for coalescing binaries on ec-
centric orbitsPhenomenological approximants [57] The phenomenolog-

[57]: Ajith et al. (2007), A phe-
nomenological template family for
black-hole coalescence waveforms

ical framework is initially based on the waveform obtained

for the inspiral phase by the post-Newtonian expansion of

general relativity in the weak field regime, i.e. for small

velocities [54]. This initial waveform is expanded in the

merger and ringdown phases by a generic (polynomial and

Lorentzian) model which is fitted against the finite set of nu-

merical relativity simulations available today. This operation

is done in the frequency domain, so that the phenomenologi-

cal waveforms provide closed-form expressions of the signal

in frequency that are fast to compute and convenient for the

data analysis.
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3.2.3 Waveform parametrization

The source parameters that impact the dynamics are the

masses 𝑚1, 𝑚2 and spins
®𝑆1(𝑡0), ®𝑆2(𝑡0) of each object, where

𝑡0 refers to a given initial time. By convention we use the

dimensionless spins ®𝜒𝑖(𝑡0) = ®𝑆𝑖(𝑡0)/𝑚𝑖
2

for 𝑖 = 1, 2 in

the computation of waveform models. Thus the system is

parametrized by

𝜗 =
{
𝑚1, 𝑚2, 𝜒1𝑥 , 𝜒1𝑦 , 𝜒1𝑧 , 𝜒2𝑥 , 𝜒2𝑦 , 𝜒2𝑧

}
,

where 𝜒𝑖𝑥 , 𝜒𝑖𝑦 , 𝜒𝑖𝑧 are the coordinates in the source frame I

of the dimensionless spin ®𝜒𝑖(𝑡0). 𝜗 is the set of parameters

"intrinsic" to the physical system while 𝜄, 𝜑0 and 𝐷 are

"extrinsic" parameters (that depend on the observer).

General relativity’s scale invariance implies
8 ℎ(𝑡;𝑚1, 𝑚2) =8: By convention, the time grid

is such that 𝑡 = 0 at the merger

of the two objects.

ℎ(𝜆𝑡;𝜆𝑚1,𝜆𝑚2) [58]. So in practice the intrinsic parameter

[58]: Bohé et al. (2017), Improved
effective-one-body model of spin-
ning, nonprecessing binary black
holes for the era of gravitational-
wave astrophysics with advanced
detectors

set can be reduced to
9 𝜗 =

{
𝑞, 𝜒1𝑥 , 𝜒1𝑦 , 𝜒1𝑧 , 𝜒2𝑥 , 𝜒2𝑦 , 𝜒2𝑧

}

9: Or, as we will see,

for spin-aligned BBHs

𝜗 = {𝑞, 𝜒1𝑧 , 𝜒2𝑧 .} .

where 𝑞 is the mass ratio (defined as 𝑞 = 𝑚1/𝑚2 and with

𝑞 ⩾ 1). Waveform models compute separately each waveform

mode ℎ𝐼
𝑙,𝑚

(in time or frequency domain) for a given 𝜗,

and compute the waveform with (3.4) and the proper time

rescaling.

Sections 3.3 and 3.4 use this remark to construct fast and

accurate generative models of time-domain gravitational

waveforms using machine learning: the extrinsec parameters

used in the training stage (i.e. the total mass, the luminosity

distance and the line of sight) are fixed such that 𝑀∗ =
20𝑀⊙ , 𝑟∗ = 1 Mpc, (𝜄∗, 𝜑0

∗) = (0, 0).

3.2.4 Waveform approximation accuracy measure

Errors in the waveform approximation lead to systematic

errors in the astrophysical parameters estimates obtained

from the observations. Systematic errors from mis-modeling

should be smaller than the statistical errors due to the pres-

ence of noise in the observations.

The waveform approximation accuracy is measured by the

mismatch measure 𝜀, which writes

𝜀 (ℎ, 𝑔) = min

𝜏∈ℝ

[
1 − |⟨

ℎ𝜏 , 𝑔⟩|
∥ℎ𝜏∥ ∥𝑔∥

]
(3.5)
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for ℎ, 𝑔 two given complex-valued waveforms and ℎ𝜏(𝑡) =
ℎ(𝑡 − 𝜏). 𝜖 is a common measure to test waveform accuracy

in gravitational wave data analysis [58]. It is time-shift and [58]: Bohé et al. (2017), Improved
effective-one-body model of spin-
ning, nonprecessing binary black
holes for the era of gravitational-
wave astrophysics with advanced
detectors

phase-shift invariant. The scalar product is computed in the

frequency domain as

⟨ℎ, 𝑔⟩ =
∫

𝐻(𝜔)𝐺(𝜔)
𝑆(𝜔) d𝜔,

where 𝜔 is the frequency variable and 𝐻 and 𝐺 are respec-

tively the Fourier transforms of ℎ and 𝑔. 𝑆(𝜔) is a frequency

dependent weighting that is usually fixed to the gravitational-

wave detector noise power spectrum density. As we do not

want to favour certain frequencies for the evaluation of the

model performances, we made the conservative assumption

of a flat noise curve
10 𝑆(𝜔) = 1. 10: It would be straightforward

to compute 𝜀 in (3.5) with a given

noise curve.
Error in the waveform modelling can be seen as a systematic

error. A rule of thumb (see e.g., Appendix G of [59]) tells [59]: Chatziioannou et al. (2017),

Constructing Gravitational Waves
from Generic Spin-Precessing Com-
pact Binary Inspirals

at which mismatch the systematic error dominates over the

statistical error due to the random noise. This rule states

that the mismatch should be strictly smaller than statistical

error 𝑁/(2 × SNR
2) where 𝑁 is the effective number of

intrinsic parameters and SNR is the signal-to-noise ratio. In

the next observing runs of LIGO-Virgo-KAGRA collaboration

detectors, it is expected to see events with SNR going up

to 50 typically. For spin aligned BBHs with 𝑁 = 3 effective

parameters and precessing BBHs with 𝑁 = 7, this defines a

targeted accuracy of 𝜀 ⩽ 10
−5

and 𝜀 ⩽ 10
−4

respectively.

3.3 Spin-aligned binary black holes

Non-precessing BBH mergers are the most common type of

sources detected by the LIGO-Virgo Collaboration [60]. They [60]: The LIGO Scientific Collab-

oration et al. (2021), GWTC-3:
Compact Binary Coalescences Ob-
served by LIGO and Virgo During
the Second Part of the Third Observ-
ing Run

are BBHs for which each object has a spin
11

, respectively
®𝑆1(𝑡)

11: We consider zero spin bina-

ries as spin-aligned binaries.

and
®𝑆2(𝑡), aligned (or anti-aligned) with the orbital angular

momentum
®𝐿(𝑡) as represented in Figure 3.3. In this case, the

orbital plane remains fixed during the coalescence.
®𝐿(𝑡) is

normal to the orbital plane and is used to define an inertial

frame 𝐼 attached to the source. For a given time 𝑡0 we define

a basis (®𝑒 𝐼
1
, ®𝑒 𝐼

2
, ®𝑒 𝐼

3
) such that the 𝑧 axis of the frame is aligned

with the angular momentum, i.e. ®𝑒 𝐼
3
≡ ®𝐿(𝑡0), and the 𝑥 axis

points from the second body to the first, i.e. ®𝑒 𝐼
1
≡ ®𝑟(𝑡0). By

definition 𝑆1 and 𝑆2 have no 𝑥 and 𝑦 components in the

inertial frame. The set of intrinsic parameters is reduced to
12

12: As mentioned in Sec-

tion 3.2.3, the dimensionless

spins ®𝜒1 and ®𝜒2 used in

waveform models are defined

such that ®𝜒1 = ®𝑆1/𝑚1

2
and

respectively for ®𝜒2.



56 3 Fast generation of gravitational waveforms

𝜗 = {𝑚1, 𝑚2, 𝜒1𝑧 , 𝜒2𝑧}. The extrinsic parameters (relative

to position and orientation of the binary) are defined with

respect to this frame as illustrated in Figure 3.3.

Figure 3.3: Physical parameters

of a spin aligned BBH. The spin

of each black hole is aligned

with the orbital angular momen-

tum
®𝐿(𝑡) which coincides with

the normal to the orbital plane.

The orbital plane is fixed dur-

ing the coalescence. The inertial

source frame is such that its 𝑧
axis is aligned with

®𝐿(𝑡) and its

𝑥 axis is aligned with the (par-

tially dashed) black line going

from one object to the other. The

source motion is guided by the

spins and masses of the objects.

The waveform also depends on

extrinsic parameters such as the

luminosity distance 𝐷 and the

line of sight (𝜄, 𝜑0).

ι

φ0

L⃗

Earth

S⃗1 S⃗2

m1

m2

D

In the case of spin-aligned BBHs, the modes of the spin

weighted spherical harmonics expansion of ℎ(𝑡) verify the

conjugate symmetry

ℎ𝐼
𝑙,−𝑚(𝑡) = (−1)𝑙ℎ𝐼

𝑙,𝑚
(𝑡). (3.6)

Then it is sufficient to compute modes with positive values of

𝑚. Moreover, for low mass ratios the dominant (2,±2)modes

give a good approximation of the complete waveform [53].

The proposed model only needs to generate the (2, 2)mode

which is a complex-valued amplitude and frequency modu-

lated signal such that ℎ𝐼
𝑙,𝑚
(𝑡) = 𝑎(𝑡)𝑒𝜑(𝑡) [58].

3.3.1 Generative model

The generation of noise-free waveform surrogates in the case

of spin-aligned BBHs has been successfully realized using

reduced-order modelling (based on tensor spline fitting) [61,

62]

[61]: Pürrer (2016), Frequency
domain reduced order model
of aligned-spin effective-one-body
waveforms with generic mass-ratios
and spins
[62]: Lackey et al. (2019), Surro-
gate model for an aligned-spin ef-
fective one body waveform model of
binary neutron star inspirals using
Gaussian process regression

and more standard machine learning approaches such

as mixture-of-experts regression [63]

[63]: Schmidt et al. (2021), Ma-
chine learning gravitational waves
from binary black hole mergers

and artificial neural

networks [64, 65]

[64]: Khan et al. (2021),

Gravitational-wave surrogate
models powered by artificial neural
networks
[65]: Chua et al. (2019), Reduced-
Order Modeling with Artificial
Neurons for Gravitational-Wave
Inference

. We built on [63] and propose a model

with reduced complexity based on principal component

regression. It improves the overall regression accuracy by

about an order of magnitude. These performances are no-

tably achieved thanks to a different choice of features. The
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full pipeline is implemented using the Scikit-learn software

library [66] resulting in a compact code, easy to maintain. [66]: Pedregosa et al. (2011),

Scikit-learn: Machine Learning in
Python

Outline of the model

The machine learning model we present takes as input a set

of astrophysical parameters 𝜗 and returns a corresponding

waveform. The model is based on a judicious representation

of the waveform modes.

For non-precessing BBH it suffices to generate the dominant

(2,±2) modes in order to have a good approximation of

ℎ. Thanks to the conjugate symmetry property (3.6) the

computation of the (2,−2) mode is left to post-processing

and we consentrate to the generation of the (2, 2)mode can

be done from (2, 2) at post processing stage.

The (2, 2)mode is a complex-valued signal ℎ𝐼
2,2
(𝑡) = 𝑎(𝑡)𝑒 𝒊𝜑(𝑡)

with a modulated amplitude 𝑎(𝑡) and a modulated phase

𝜑(𝑡), often referred to as "chirp" for short. Compared to the

mode waveform, the two attributes 𝑎(𝑡) and 𝜑(𝑡) exhibit

non-oscillatory and smooth variations with respect to the

features, that can thus be accurately fitted.

As presented in Section 2.4.2, the amplitude and phase evolve

over different timescales during the dynamical regimes of

the chirp signal. To capture their variations with a uniform

accuracy over the entire waveform duration, amplitude and

phase are discretized in time with a varying sampling res-

olution. The waveform attributes are resampled on a time

grid 𝑡 going from 𝑡start = −20 s to 𝑡end = 0.006 s and such that

𝑡 = sign(𝑡) |𝑡 |
1

𝛼 where 𝛼 = 0.35 [63].

We propose a principal component regressor [67] that consists [67]: Hastie et al. (2017), The ele-
ments of statistical learning

in a polynomial regression of the (truncated) PCA coefficients

of the attributes. The generative model is first learned from a

training set of waveforms.

More precisely, the waveform amplitudes (and similarly for

phases) are concatenated in a matrix 𝐴 ∈M𝑁,𝑀(ℝ), where

𝑁 is the size of the training set and 𝑀 is the size of the time

grid. 𝐾 principal components of 𝐴 are computed and stacked

in 𝑊𝐾 ∈ M𝐾,𝑀(ℝ), from which we get the reduced matrix

𝐴𝐾 = 𝐴𝑊𝑇
𝐾
∈ M𝑁,𝐾(ℝ). A polynomial regressor 𝑝𝑘 is used

in order to predict the 𝑘-th reduced amplitude coefficients.

The regressor takes as input a set of features 𝜗̃ that are

obtained from the set of binary parameters 𝜗 by a non-linear

mapping. This mapping is optimized in order to improve the
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performances. At the generation step, the model regresses

the 𝑘-th reduced amplitude coefficient as 𝑝𝑘(𝜗̃) = 𝑎̂𝐾[𝑘]. The

truncated PCA is finally inverted such that 𝑎̂ = 𝑎̂𝐾𝑊𝐾 ∈ ℝ𝑀
.

The same procedure is applied for 𝜑̂.

The usage of the truncated PCA is motivated by the strong

correlation of the waveform attributes for different values

of binary parameters. It simplifies the regression task by

reducing the dimension of the target space.

The waveform synthesis is performed according to the fol-

lowing steps:

1. The features 𝜗̃ are computed from the requested wave-

form parameters 𝜗.

2. Given 𝜗̃, 𝑎(𝑡) and 𝜑(𝑡) PCA coefficients are regressed

from a polynomial combining of the features.

3. The PCA is inverted to compute the attributes 𝑎(𝑡) and

𝜑(𝑡), which are mapped to (2, 2)mode waveform.

4. Post processing: based on (3.4), the estimated waveform

is computed as follows

ℎ̂(𝑡) = ℎ̂𝐼
2,2(𝑡)−2𝑌2,2(𝜄, 𝜑0) + ℎ̂𝐼

2,−2
(𝑡)−2𝑌2,−2(𝜄, 𝜑0).

The various parameters of the generative model (number of

PCA, order of the polynomial regression, type of regressor)

are optimized in order to minimize the regression accuracy

(score) quantified by the mismatch 𝜀(ℎ̂ , ℎ) between the true

and estimated waveform defined in Section 3.2.4.

3.3.2 Results

Several models can be used to generate approximate yet

accurate waveforms for data analysis purposes [53]. In this

work, we use SEOBNRv4 [58], so the generative model predict

waveform approximations obtained with this model. It can be

adapted to other waveform models by replacing the training

set with corresponding waveforms. Our choice is motivated

by the comparison it allows with the results of Schmidt [63]

and by the model used later in Section 3.4, which is also

a model generalizing SEOBNRv4 in the case of precessing

binaries.

The code needed to reproduce the presented results is public:

https://git.ligo.org/cyril.cano/gw-generation. It takes the

form of a python package from which one can compute

and evaluate a waveform generative model. A precomputed

https://git.ligo.org/cyril.cano/gw-generation


3.3 Spin-aligned binary black holes 59

model is given, it allows an external user to generate gravi-

tational waveforms without having to compute the training

set.

Training and testing datasets

A dataset of 4000 randomly distributed BBH waveforms was

computed with LALSimulation software library [52]. The

construction of the dataset was performed using the GRICAD

infrastructure
13

, which is supported by Grenoble research 13: GRICAD is a Scientific Com-

puting and Data Infrastructure

supported by CNRS, Grenoble

Alpes University, Grenoble In-

stitute of Engineering and IN-

RIA. See https://gricad.univ-

grenoble-alpes.fr.

communities, while the learning part is done on a personal

laptop. The mass ratio 𝑞 is uniformly sampled over [1, 20]
and the dimensionless spins 𝜒1𝑧 , 𝜒2𝑧 are uniformly drawn

in [−0.8, 0.95].

0

1

2
×10−13

a(t)

−20 −8.5 −2.5 0.28 0.0012

Time (s)

0

2000

4000 ϕ(t)
Figure 3.4: Sample of size 20 of

the attributes in the dataset. The

time grid is sampled in a non-

uniform way, with more sample

near the merger than during the

inspiral. The color is indexed on

the mass ratio value. Red corre-

sponds to 𝑞 ∼ 20 and blue to

𝑞 ∼ 1.

The attributes are stacked in two matrices, used for the

computation of the principal components. Each waveform

attribute is aligned to zero at 𝑡 = 𝑡start for PCA efficiency

purposes
14

. 14: The amplitude and phase

offsets subtracted by the align-

ment procedure can be fitted

and added back at the gener-

ation stage to produce the full

waveform. Though we don’t de-

tail this part here but this can be

done with good accuracy with

the same regressor.

The dataset is made to be comparable with the one used

by Schmidt et al. [63]. It is splitted into a training and a

testing set that corresponds to 80% and 20% respectively. All

reported results are obtained with the testing set.

Figure 3.4 shows a selection of examples from the training

set. The attributes appear to have a regular dependency with

respect to the feature 𝑞.

Number of principal components

There are two origins for the modelling errors for each at-

tribute: the PCA truncation error and the regression error.

https://gricad.univ-grenoble-alpes.fr
https://gricad.univ-grenoble-alpes.fr
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Figure 3.5: Median mismatch vs
number of principal components

retained after PCA truncation.

The mismatch is computed af-

ter fitting the amplitude only

(phase is exact) for blue circles

and red plus signs, and the phase

only for violet boxes and green

crosses. Circles and boxes repre-

sent mismatches solely due to

the PCA truncation and plus

signs and crosses represent mis-

matches due to the overall model

(including the regression step).

The dashed line indicates the se-

lected PC truncation level at 6

PC.

Figure 3.5 presents the modelling error imputed to PCA

truncation (circles and boxes) as well as the total error in-

cluding regression (plus signs and crosses) when fitting the

amplitude (phase is exact) in blue and red, or the phase

(amplitude is exact) in violet and green.

The phase approximation errors lead the overall score. For

example, the truncation to only one PC (principal component)

leads to a mismatch of 5 × 10
−5

for the amplitude and 0.7 for

the phase. The accuracy of phase regression is thus critical

for the final overall accuracy.

The overall error after regression stabilizes at 6 PCs for the

phase (green crosses) with a mismatch median score of about

10
−5

. This is the retained number of PCs after truncation as

this indicates the regressor fails to estimate higher order PC

coefficients. For simplicity, the PCA expansion is truncated to

the same number of PCs for both the amplitude and phase.

Feature selection

The choice of the feature set has a significant impact on the

final score and regression accuracy. Schmidt et al. [63] use

a mixture of experts regressor to infer the PCA coefficients

from the set of intrinsic parameters 𝜗 = {𝑚1, 𝑚2, 𝜒1𝑧 , 𝜒2𝑧}.
This ensemble learning method is based on a weighted sum

of linear regressors called "experts" [67]. A range of experi-

ments was made, we tested several regressor (e.g. multilayer

perceptron, random forest regressor) and preferred to work

with a simpler regressor applied to a different feature set 𝜗̃.

To leading order, the amplitude and phase evolution are

known [53] to depend on the chirp mass M, the mass ratio 𝑞
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and the effective spin 𝜒eff = (𝑞𝜒1𝑧 + 𝜒2𝑧) /(1 + 𝑞). Naturally

those physically motivated parameters are good candidates

to fit the data.

Systematic tests of different feature combinations were per-

formed. Promising feature sets were pre-selected based on

their 𝑟2
score [66] obtained for the prediction of the first PCs

of the phase as it essentially determine the overall perfor-

mance. The tested feature sets have up to 6 parameters. They

include parameters such as the masses 𝑚1, 𝑚2, their inverses

1/𝑚1, 1/𝑚2, the effective spin 𝜒eff, the mass ratio 𝑞 and the

chirp mass M.

Twenty feature sets were found to give the best median

mismatch of order 10
−5

. Among them, {𝜒1𝑧 , 𝜒2𝑧 , 𝑞, 𝑚2} and

{𝜒2𝑧 , 𝜒eff,M} are of particular interest. The latter have the

nice property to have only three features, as the number of

intrinsic parameters, however the former results in a much

smaller variance for the mismatch (which implies that the

95% percentile of the observed distribution is much more

lower) and is thus preferred.

Interestingly physically motivated feature sets such as {𝑞, 𝜒1𝑧 ,

𝜒2𝑧} or {𝑞, 𝜒eff, M} do not perform as well, with a median

mismatch of 0.03 and 0.1 respectively.

Order of polynomial features

Figure 3.6: Median mismatch vs
order of the polynomial expan-

sion of features {𝜒1𝑧 , 𝜒2𝑧 , 𝑞, 𝑚2}.
The dashed line shows the se-

lected degree of 7.

To capture the non-linear part of the signal, the regression

model is applied to the polynomial expansion of the features

𝜗̃ = {𝜒1𝑧 , 𝜒2𝑧 , 𝑞, 𝑚2} up to a pre-determined order. This

maximum order is chosen to optimize the score. Figure 3.6

shows the results for polynomial orders from 1 to 15. As the

polynomial order increases, the performance improves. After

the 13
th

order, it faces an overfitting problem. The 7
th

order is
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selected
15

15: Classically polynomial re-

gression methods use lower or-

der so the results are inter-

pretable. Here we prefered to

focus on the performances of the

model rather than insuring its

interpretability.

: it is found to be the smallest order that minimizes

the median mismatch.

Accuracy and runtime benchmarking

Figure 3.7: Histogram of mis-

matches on the test set for the

proposed model (orange) and

Schmidt’s model (violet). Even if

the dataset we used is supposed

to be comparable to the dataset

used in [63], we were not able to

exactly reproduce the presented

results.

The objective was to build a generative model with mismatch

scores 𝜀 ⩽ 10
−5

. It is achieved by the proposed model on

almost all the parameter space. Figure 3.7 shows the mis-

match distribution over the testing set using the feature

𝜗̃ = {𝜒1𝑧 , 𝜒2𝑧 , 𝑞, 𝑚2}. The median mismatch is 1.8 × 10
−5

(average is 6.8 × 10
−5

) and the 5% and 95% percentiles are

2.2×10
−6

and 1.6×10
−4

respectively. The worst case mismatch

is ∼ 10
−2

.

Figure 3.8 presents the example of two predicted waveforms.

The first example is representative of the median prediction

accuracy for which the prediction error can not be seen by

eyes. The second example is the worst prediction made in

the testing set. For this one, phase prediction error is clearly

visible.

We implemented the model presented in [63] in order to

compare it. As shown on Figure 3.7 we were not able to

reproduce the presented results. No matter which reference

is considered ([63] or our reproduction), we show an im-

provement of at least one order of magnitude compare to

Schmidt et al. model.

The distribution of errors is not uniform in the parameter

space. Figure 3.9 shows that the best fits are for high mass

ratios. The model struggles to obtain the same accuracy level

at low mass ratios and for high effective spins, where there

is a more important diversity in the waveform attributes.

Schmidt et al. [63] achieve a median mismatch value of

5 × 10
−4

for the spin aligned case, with tails going to 10
−1

in
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Figure 3.8: Zoom on target wave-

forms (grey) generated by SEOB-

NRv4 and predictions (blue)

from the proposed model. (a):
waveform for which the mis-

match is 10
−5

(median mismatch

on the testing set). (b): waveform

for which the mismatch is 10
−2

(worst mismatch on the testing

set).

the worst case. This corresponds to an applicability range

that goes up to SNR = 54 (3 in the worst case). Our model

has generation errors uniformly much smaller than the in-

trinsic numerical and modeling errors of SEOBNRv4 (which

is less than 1% [58]). Thus it produces approximations of

SEOBNRv4 waveforms without adding substantial errors.

We compared the generation time of SEOBNRv4 model

with the proposed machine learning model. Figure 3.10

presents a distribution of the speed-up factor defined as

the ratio between the generation time of SEOBNRv4 (using

LALSimulation [52]) and the proposed principal component

regression model. A set of 500 BBH waveforms was generated

for a uniform distribution of total mass between 40𝑀⊙ and

100𝑀⊙. The other parameters are distributed as for the

mismatch evaluation. The observed median speed-up is

∼ 10
2

(comparable to [63]). It illustrates the benefits of using
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Figure 3.9: Scatter plot of the mis-

matches with respect to the mass

ratio and the effective spin. Each

point corresponds to a compact

binary in the test set.
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Figure 3.10: Speed up factor of

the proposed model compared

to SEOBNRv4 for a population

of spin-aligned BBHs with to-

tal masses going from 40𝑀⊙ to

100𝑀⊙.

the proposed model to accelerate parameter estimation with

Bayesian samplers [45].

Usage with Bilby

Bilby [45] is a user-friendly parameter estimation code made

for gravitational-wave astronomy. Bilby allows a user-defined

prior and likelihood function to be passed to a sampler, and

collects the posterior samples and the evidence calculated by

the sampler. It provides an easy access to the gravitational-

wave data [68] as well as to a range of priors and likeli-[68]: Abbott et al. (2021), Open
data from the first and second ob-
serving runs of Advanced LIGO
and Advanced Virgo

hood functions that are often encountered in the context of

gravitational-wave astronomy.

In collaboration with Tom Colin, we used the principal

component regression model with Bilby [69]. The model[69]: Ashton et al. (2019), Bilby:
A User-friendly Bayesian Inference
Library for Gravitational-wave As-
tronomy

was used for the estimation of posterior distribution for the

event GW150914. As illustrated in Figure 3.11, the results

show consistent posterior estimation with respect to physical
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waveform models as SEOBNRv4. On a modern laptop, the

computation took 3 h 13 min and 21 min for the proposed

generative model and SEOBNRV4 respectively, that is an

acceleration factor of about 10.
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Figure 3.11: Corner plot showing the comparison of the posterior distribution obtained for the event GW150914

with Bilby using the SEOBNRv4 (frequency domain approximant) in blue and the fast approximant model

proposed here in green. The posterior densities are shown for the following parameters: the detected chirp

mass 𝑀𝑐 , the mass ratio 𝑞, the merger time 𝑡𝑐 in the geocentric frame, the inclination angle 𝜃𝐽𝑁 and the

luminosity distance 𝑑𝐿.
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3.4 Precessing binary black holes

In a generic configuration, BBHs have spin angular momen-

tums
®𝑆1(𝑡) and

®𝑆2(𝑡) not aligned (nor anti-aligned) with

the Newtonian angular momentum
®𝐿𝑁 (𝑡) i.e. the normal to

the orbital plane. In this case, as illustrated in Figure 3.12,

the spins and the Newtonian angular momentum precesses

around the total angular momentum
®𝐽(𝑡).

L⃗N(t)

J⃗(t)

S⃗1(t)

S⃗2(t)
Figure 3.12: Precession of the or-

bital plane induced by the mis-

alignment of the spin of at least

one of the two bodies with the

Newtonian angular momentum

®𝐿𝑁 (𝑡). In constrat to the EOB or-

bital angular momentum
®𝐿(𝑡),

®𝐿𝑁 (𝑡) has a slight nutation. Vari-

ations of the orientation of the

orbital plane affect the polariza-

tion of the waveform modes.

An inertial frame 𝐼 can be defined at a given time 𝑡0 such

that ®𝑒 𝐼
3
≡ ®𝐿𝑁 (𝑡0) and ®𝑒 𝐼

1
≡ ®𝑟(𝑡0) (where ®𝑟(𝑡) points from the

second body to the first). The inclination 𝜄 and the initial

phase 𝜑0 are defined with respect to the basis (®𝑒 𝐼
1
, ®𝑒 𝐼

2
, ®𝑒 𝐼

3
),

where ®𝑒 𝐼
2
= ®𝑒 𝐼

3
× ®𝑒 𝐼

1
. The spin components are defined in this

basis, leading to the set of intrinsic parameters 𝜗 =
{
𝑚1, 𝑚2,

𝜒1𝑥 , 𝜒1𝑦 , 𝜒1𝑧 , 𝜒2𝑥 , 𝜒2𝑦 , 𝜒2𝑧

}
.

The waveform modes of the spin weighted spherical expan-

sion (3.4) are defined with respect to the inertial frame 𝐼. As

opposed to spin-aligned binaries, the effect of the subdom-

inant modes is enhanced by precession and the restriction

to the dominant (2,±2) modes leads to a significant error.

Also the conjugate symmetry property (3.6) no longer holds.

Each inertial mode should be computed separately by its

own generative model.

Referring to Chapter 4, the polarization state of the wave-

form modes is determined by the orientation of the orbital

plane with respect to the observer and the precession motion
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modulates their polarization state over time. In Chapter 1, we

studied a number of representation for AM-FM-PM signals.

We tested and applied these representations to the modes

that dominantes the expansion of a gravitational waveform

of a precessing BBH. Based on this, in this section, we in-

vestigate various options to construct a machine learning

generative model for time-domain gravitational waveforms

from precessing BBH thanks to the Euler angle parametriza-

tion presented in Chapter 1.

3.4.1 Rotation of the inertial frame

As what will be shown in Chapter 4, orbital precession modu-

lates the polarization of waveform inertial modes. Figure 3.13

displays the (2, 1) modes of two simulated gravitational

waveforms, both from a non-precessing and a precessing

BBH.
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Figure 3.13: Inertial modes ℎ𝐼
2,1
(𝑡) simulated with SEOBNRv4P for a spin-aligned (a) and a precessing (b) BBH.

The inertial mode associated with the spin-aligned binary is an amplitude and frequency modulated signal

(it is circularly polarized) while the same mode for a highly precessing binary is modulated in polarization (it

evolves in a time varying ellipse). The non-precessing binaries is such that 𝑚1 = 15, 𝑚2 = 5 with spins 𝜒1𝑧 =

0.9, 𝜒2𝑧 = 0.9. The precessing one has spins 𝜒1𝑥 = 0.1, 𝜒1𝑦 = 0.6, 𝜒1𝑧 = 0.2, 𝜒2𝑥 = 0.4, 𝜒2𝑦 = 0, 𝜒2𝑧 = 0.5,

which correponds to 𝜒𝑝 = 0.6 (highly precessing binary).

The Euler angle parametrization presented in Chapter 1 de-

composes such signal in a quadruplet [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)]
as a generalization of AM-FM signal decomposition used in

Section 3.3. It was shown that this parametrization is subject

to an indeterminacy problem for circular and nearly circular

instantaneous polarization states.
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Inertial modes are circularly polarized when
®𝐿𝑁 (𝑡) is aligned

with ®𝑒 𝐼
3

(which is by convention parallel to
®𝐿𝑁 (𝑡0)). The

general dynamics of the system is such that periodically

®𝐿𝑁 (𝑡) reaches same positions (see Figure 3.12), where the

waveform modes are circular. This causes the Euler angle

indeterminacy to occur periodically.
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Figure 3.14: (2, 2) inertial mode in the 𝐼 frame (a) and the 𝐼′ frame (b) for a precessing BBH. In the 𝐼 frame,

the gimbal lock induces spurious variations of the instantaneous ellipticity and phase when the signal is

quasi-circular (see the phase and orientation curves in (a) aroud 𝑡 = −3 s). The estimated instantaneous

orientation in (a) shows variations about 20 rad during the last 8 sec of the coalescence, while in (b) it remains

between ±𝜋/2 rad. The problem is solved in the rotated frame 𝐼′ in which the mode is kept elliptic all the time.

The binary is such that 𝑚1 = 15𝑀⊙ , 𝑚2 = 5𝑀⊙ with spins 𝜒1𝑥 = 0.1, 𝜒1𝑦 = 0.6, 𝜒1𝑧 = 0.2, 𝜒2𝑥 = 0.4, 𝜒2𝑦 =

0, 𝜒2𝑧 = 0.5, which correponds to 𝜒𝑝 = 0.6 (highly precessing binary).

In order to avoid such indeterminate configurations, we

switch to a different inertial frame 𝐼′ for the spin weighted

spherical harmonic expansion of the gravitational waveform.

By convention this frame is fixed such that its 𝑧 axis is inclined

by𝜋/3 rad compared to 𝑒 𝐼
3
. The rationale is that the waveform

expressed in this new inclined frame is less likely to be purely

circular and therefore become locally degenerate for the Euler

angle representation. The rotation of the modes from 𝐼 to the

new inertial frame 𝐼′ is achieved with the Wigner D-matrices,

such as

ℎ𝐼
′

𝑙 ,𝑚
(𝑡) =

𝑙∑
𝑚′=−𝑙

ℎ𝐼
𝑙,𝑚′(𝑡)𝐷

𝑙
𝑚′,𝑚(0,𝜋/3, 0), (3.7)
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where 𝐷 𝑙
𝑚′,𝑚 are the Wigner D-matrices described in Ap-

pendix B. The waveform is thus decomposed in the new

inertial frame 𝐼′ as
16

16: Note that the choice of the

inertial frame in which the wave-

form is expanded is a free pa-

rameter. The choice of a given

source frame is important in the

definition of the spin weighted

spherical harmonics −2𝑌𝑙 ,𝑚 , with

respect to which the waveform

modes are computed.

ℎ(𝑡) = 𝑀

𝐷

∞∑
𝑙=2

𝑙∑
𝑚=−𝑙

ℎ𝐼
′

𝑙 ,𝑚
(𝑡)−2𝑌𝑙 ,𝑚(𝜄′, 𝜑0

′). (3.8)

This solution is not valid for highly precessing BBHs for which

the orbital plane can even flip, resulting in a temporary quasi-

alignment (or anti-alignment) of ®𝑒 𝐼′
3

and
®𝐿𝑁 (𝑡). Figure 3.14

demonstrates the effect of the rotation of the inertial frame on

the (2, 2)mode of a precessing BBH. In particular we show

that the instantaneous parameters of the 𝐼′ modes are not

subject to the same indetermination.

3.4.2 Generative model

The generation of gravitational waveforms from precessing

BBHs is a difficult problem due to the diversity of the wave-

forms. Also the generative model has to fit the polarization

modulation induced by the orbital precession. The purely

circularly polarized model used in the previous section does

not work.

It has been recently achieved with an artificial neural net-

work [70] (achieving a median mismatch of ∼ 10
−4

). Thomas’[70]: Thomas et al. (2022), Ac-
celerating multimodal gravitational
waveforms from precessing compact
binaries with artificial neural net-
works

model [70] computes the waveform in a co-precessing frame

and rotates it to correspond to an inertial frame. In the

co-precessing frame the modes are not modulated in polar-

ization, such that the generation procedure consists (roughly)

to generate spin-aligned modes and rotation parameters. We

propose a different approach based on a specific represen-

tation of waveform inertial modes as amplitude, frequency

and polarization modulated signals. While facing technical

limitations, we show promising results.

Outline of the model

The proposed model has the same global structure as for

spin-aligned BBHs. It generates the inertial waveform modes

{(2,±2), (2,±1), (2, 0)} in the rotated frame 𝐼′ thanks to a

decomposition in adapted waveform attributes. The (2,±2)
and (1,±1) modes are decomposed in four attributes: the

instantaneous amplitude 𝑎(𝑡), instantaneous orientation 𝜃(𝑡),
instantaneous ellipticity 𝜒(𝑡) and instantaneous phase 𝜑(𝑡).
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The real and imaginary parts of the (2, 0)mode are treated

separately and decomposed in instantaneous amplitude and

instantaneous phase
17

. 17: The real part and the imagi-

nary part of the (2, 0)mode com-

puted with SEOBNRv4P have

quite different instantaneous fre-

quencies, such that ℎ𝐼
′

2,0(𝑡) can-

not be considered as an AM-FM-

PM signal as defined in Chap-

ter 1.

The mode attributes are computed with the procedure pre-

sented in Appendix A.3. The waveform is zero padded and

windowed before applying the discrete quaternion Hilbert

transform in order to avoid instrumental gimbal lock as well

as aliasing. The instantaneous parameters of the (2,±2) and

(2,±1) modes are deduced from their quaternion embed-

dings. The amplitude and phase of the real and imaginary

parts of the (2, 0) mode are deduced from the associated

analytic signal constructed with the complex Hilbert trans-

form.

For each mode attribute the model performs a principal com-

ponent regression [67]. The PCA coefficients of the attribute

are predicted thanks to a polynomial regression from a set

of features 𝜗.

The model has to account for new effects with respect to

spin-aligned BBH. The nutation of the orbital plane has an

effect on mode attributes, adding an oscillatory behaviour

as shown in Figure 3.14. This prevents from using the non-

uniform time grid resolution as in the spin-aligned case,

which in turn will limit the model’s ability to generate long

duration waveforms.

The model synthesis phase can be decomposed in the follow-

ing steps:

1. A set of features 𝜗̃ is computed based on the user input

binary parameters

𝜗 =
{
𝑚1, 𝑚2, 𝜒1𝑥 , 𝜒1𝑦 , 𝜒1𝑧 , 𝜒2𝑥 , 𝜒2𝑦 , 𝜒2𝑧

}
.

2. The reduced coefficients of each mode attribute are

regressed by a polynomial regressor.

3. The PCAs are inverted to compute mode attributes.

4. Finally, the gravitational waveform is constructed from (3.8).

3.4.3 Results

In principle, the proposed machine learning model can be

adapted to every time-domain waveform models. In this

work we used SEOBNRv4P [51] which is an EOB model for

precessing BBHs
18

18: The formalism of SEOB-

NRv4P, discussed in Section 3.2,

is based on a definition of a co-

precessing frame 𝑃 (see Chap-

ter 4). In this frame we consid-

ered both the (2,±2) and (2,±1)
modes.

. EOB models outperform Phenomeno-

logical models in terms of waveform accuracy but their
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computation time is more important. Building a fast and ac-

curate generative machine learning model is a way to get fast

approximation of SEOBNRv4P waveforms without losing

performances in the inference process.

Training and testing datasets

Figure 3.15: Sample size 20 of the

dataset corresponding to (2, 2)
mode. The color scale is indexed

on the value of 𝜒𝑝 which corre-

spond to the level of precession.

Low values ∼ 0 are represented

in blue and high values∼ 0.5 are

represented in red.
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We computed a dataset consisting in 1000 different con-

figurations
19

, composed of (2,±2), (2, ±1) and (2, 0) iner-19: This is four times less than

the previous study.
tial modes in the rotated inertial frame 𝐼′. The computa-

tion was performed on GRICAD clusters
20

. The mass ra-20: GRICAD is a Scientific Com-

puting and Data Infrastructure

supported by CNRS, Grenoble

Alpes University, Grenoble In-

stitute of Engineering and IN-

RIA. See https://gricad.univ-

grenoble-alpes.fr.

tio is uniformly sampled in [1, 4] and the norm of the

spins is uniformly sampled in [0, 0.95]. The orientation

of the spin is sampled from an isotropic distribution on

the north hemisphere of the 𝐼 frame. We further applied

a selection threshold on the value of the dimensionless ef-

fective precession spin 𝜒𝑝 = 𝑆𝑝/
(
𝐴1𝑚1

2

)
which governs

the precession dynamics at the first order [71], where 𝑆𝑝 =[71]: Schmidt et al. (2015), To-
wards models of gravitational wave-
forms from generic binaries: II. Mod-
elling precession effects with a single
effective precession parameter

max

(
𝐴1𝑚1

2 ∥𝜒1⊥∥ , 𝐴2𝑚2

2 ∥𝜒2⊥∥
)

is the effective precession

spin
21

and𝐴1 = 2+3𝑞/2, 𝐴2 = 2+3/(2𝑞). Values of 𝜒𝑝 higher

21: We denote ∥𝜒1⊥∥ =√
𝜒1𝑥

2 + 𝜒1𝑦
2

and respectively

for |𝜒2⊥ |.

than 0.5 are discarded in order to limit the precession and

avoid indeterminate cases while computing the attributes of

the modes (i.e. cases where 𝜒(𝑡) ∼ 𝜋/4), which correspond

to configurations when the 𝑧 axis of the rotated frame 𝐼′ is

https://gricad.univ-grenoble-alpes.fr
https://gricad.univ-grenoble-alpes.fr
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nearly aligned with the Newtonian orbital angular momen-

tum
®𝐿𝑁 (𝑡), and is likely to happen for strongly precessing

binaries.

To keep the data volume manageable despite the high

sampling frequency needed to capture the nutation oscilla-

tions
22

, we limit the time grid between 𝑡start = −2.5 s and 22: We used SEOBNRv4P wave-

forms sampled at 8kHz, that al-

lows a sufficient level of over-

sampling and smoothness of the

waveform attributes.

𝑡end = 0.006 s. The time origin of the waveform attributes is

set to 𝑡 = 𝑡start.

A sample of the dataset is shown in Figure 3.15. Compared

to the previous case with spin alignment, there is a larger

diversity of waveforms which makes the generation a much

more complicated problem.

The training and testing sets correspond to 80% and 20% of

the dataset respectively. All reported results are obtained

with the testing set.

Number of principal components

PCA truncation is the first source of error. The number of

selected principal components is determined by the objective

on the waveform accuracy and the regressor performances

on each reduced coefficients.
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Figure 3.16: Median mismatch

vs number of principal compo-

nents. The green points are ob-

tained by including only the

(2,±2) modes for the wave-

form approximation. The (2,±1)
modes are added to the (2,±2)
modes for the blue points and

the red points are obtained with

all the inertial modes.

The mismatch is given for a zero inclination in the rotated

inertial frame 𝐼′, which is equivalent to say that 𝜄 = 𝜋/3 in

the inertial frame 𝐼. It allows to sanction subdominant mode

prediction errors
23

. 23: The expression of the differ-

ent modes is ponderated by the

spin weighted spherical harmon-

ics, which depends on the incli-

nation of the source 𝜄.

Figure 3.16 presents the median mismatch depending on the

number of principal components that is kept. The PCA trun-

cation error goes below 10
−3

for a minimum of 14 principal

components. Figure 3.16 also illustrates the importance of

including subdominant modes in the waveform predictions.
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Figure 3.17: Scatterplot of mis-

matches attributable to PCA

truncation at 25 principal com-

ponents according to the mass

ratio and the dimensionless ef-

fective precession spin.
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The mismatch is much smaller when including all the inertial

modes.

The PCA approximation error of the modes’ attributes is

not constant over the parameter space. As illustrated in Fig-

ure 3.17, the waveform mismatch induced by PCA truncation

is higher for high mass ratio and high dimensionless effective

precession spin, that is for highly precessing binaries.

Regression of reduced PC coefficients

As a generalization of the spin-aligned generative model,

the regression is performed by a polynomial regressor over

a set of features 𝜗. The set of features and the order of the

polynomial regression should be optimized through cross

validation.

We could not find a feature set nor a polynomial order able to

reach a mismatch of 10
−4

uniformly over the full parameter

space. Note that the learning process is limited by the small

size of the training set
24 ∼ 800.24: The training set is smaller

than the one used for spin-

aligned binaries even though the

regression problem is more com-

plex.

As in the spin-aligned case (see Figure 3.5), the phase reduced

coefficients regression accuracy is found to lead the overall

prediction error. These leading coefficients have rather poor

regression accuracy with a polynomial regressor. For instance,

given the set of features

𝜗 =
{
𝑞, 𝜒𝑝 , 𝑚1, 𝑚2, 𝜒1𝑥 , 𝜒1𝑦 , 𝜒1𝑧 , 𝜒2𝑥 , 𝜒2𝑦 , 𝜒2𝑧

}
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Figure 3.18: Scatterplot of the

features vs first reduced coeffi-

cients of the attributes of the

(2, 2)mode. True reduced coeffi-

cients are in blue and predicted

ones are in orange.

and a polynomial order of 7, the 𝑟2
score regarding the first

reduced coefficients of the phase for the different modes is of

the order of 10
−2

while it was ∼ 10
−9

in the spin aligned case.

It is of the order of 10
−1

for the second reduced coefficients of

the phase of the different modes, while it was ∼ 10
−7

in the

spin aligned case. Figure 3.18 shows the first reduced attribute

coefficients of the dominant (2, 2)mode. The regressor clearly

succeeds to fit the general trend but fails to fit the details at

the required 10
−4

precision level.

Figure 3.19 compares a waveform predicted by the proposed

model with the corresponding SEOBNRv4PHM waveform. It

is clear that the results are not as good as in the spin-aligned

case. An additional difficulty we found here was highlighted

by the gap between the red curve of Figure 3.16 and the others.

This time, the evaluated waveform is a sum of oscillatory

signals and thus a slight mislanignment between the phase

of the predicted modes can drastically change the result.
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Figure 3.19: Zoom on a target

(2, 2)waveform mode (grey) gen-

erated by SEOBNRv4PHM (in

the rotated inertial frame 𝐼′) and

a prediction (blue) from the pro-

posed model. The mismatches

of the total waveform and of the

rotated (2, 2)mode are ∼ 0.6.
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Discussion and perspectives

The presented approach shows promising results for wave-

form generation in the case of precessing BBHs. As illustrated

in Figure 3.18 (e.g. see the last line), the distribution of the

reduced coefficients of the different attributes have a clear

dependence on some features. These results call for an exten-

tion of the size of the dataset in order to test the limits of the

model
25

. The regression task should be tackled by a more25: Hardware limitation is the

main constraint on the size of the

dataset. One should completely

run the proposed model on a

computing cluster.

complex regressor able to fit the non linearity of the data, e.g.

a neural network.

Interestingly, the reduced coefficients of the mode attribute

are very similar i.e. the first reduced coefficients of the phase

for the (2,±2), (2,±1) and (2, 0)modes are very close to each

other. This suggests that, just like what we propose, the same

regressor can be used for all the modes’ attributes.

Additional subdominant modes, modelled by SEOBNRv4PHM,

could be added to the principal component regression model.

This would lead to consider (5,±𝑚) inertial modes for𝑚 ≤ 5

and respectively (4,±𝑚) and (3,±𝑚) inertial modes. It is es-

pecially important for parameter inference purpose, allowing

unbiased estimates.

SEOBNRv4P computes modes’ amplitude and phase in a

(non-inertial) co-precessing 𝑃 attached to the Newtonian

orbital angular momentum
®𝐿𝑁 (𝑡). In LALSimulation library,

the modes are rotated and mapped to the inertial frame 𝐼

with the Wigner D-matrices as in (3.7). Expressions of the

quadruplet [𝑎(𝑡), 𝜃(𝑡), 𝜒(𝑡), 𝜑(𝑡)] according to the rotation

parameters between the two frames 𝑃 and 𝐼, and the am-

plitudes and phases in the precessing frame, are given in
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Chapter 4. Given the modes’ amplitude and phase in the

precessing frame, as well as the rotation parameters, the

Euler angle parametrization of the inertial modes could be

computed without the discrete quaternion Hilbert trans-

form. Thus, the dataset construction might not be limited

by Euler angle indeterminacy considerations. Unfortunately,

because of technical reasons we were limited in the usage

of LALSimulation code and could not benefit from such

simulation sub-products.

The conclusion of Chapter 1 mentioned that the represention

with instantaneous Stokes parameters and instantaneous

frequency is more adapted for the analysis of non-stationary

polarized signals, mainly because it is not submitted to un-

determination problems (that we avoided by rotating the

inertial frame and limiting the effective precession spin).

However, in this situation this representation is not appropri-

ate since the instantaneous frequency needs to be summed

to construct the full waveform. The phase regression error

cumulates in the integral causing the final performance to

drop.

3.5 Summary

Thanks to the recent introduction of new detectors and the

sensitivity improvement of the LIGO and Virgo detectors
26

, it 26: The commissioning of the

detectors is currently progress-

ing.

is expected to see more events (of order 200 expected during

O4 and 500 during O5) during the next observing runs. It

will be more and more important to have fast generative

model of gravitational waveforms in order to use efficiently

the computational ressources. Consistently with the past

observing runs, it is likely that non-precessing BBHs will be

prevalent, but we expect to see wider variety of sources such

as precessing binaries as already indicated in the most recent

observations.

We presented a principal component regression model able to

generate gravitational waveforms accurately. The proposed

model is fast to evaluate and can greatly reduce the parame-

ter inference computational budget. It has been interfaced

with the Bayesian inference library Bilby for gravitational

wave astronomy, and shows consistent posterior estimation

compared to other waveform models.

The generative model is extended to precessing BBHs’ wave-

forms. Although the model is not able to reach the required



78 3 Fast generation of gravitational waveforms

performance level, we presented promising results. As dis-

cussed in the previous section, the model can be extended

to other regions of the parameter space, i.e. higher dimen-

sionless effective precession spin, as well as to include sub-

dominant modes. Further investigation would require more

computational power during the training phase.



4 Gravitational-wave polarimetric analysis

Unmodeled pipelines perform gravitational-wave detection

and reconstruction without a precise physical model and

with a very few a priori on the targetted waveform. They

allow to discover unanticipated sources, as for GW150914 [18],

and to identify new components from the gravitational-wave

signature that was not anticipated by the theory of general

relativity.

Gravitational waves being intrinsically bivariate, their polari-

metric analysis may be particularly useful in the "agnostic"

context where one does not formulate an a priori on the

nature of the source. This has not received much attention in

the litterature so far.

The difficulty comes from the measurement method, which

provides as observable a linear combination of the two

polarization modes waveforms ℎ+ and ℎ×. The reconstruction

of these variables or of the signal polarization parameters

is thus necessary. As a consequence, this requires to first

localize the source in the sky.

This chapter introduces an original method to regularize this

ill-posed inverse problem by imposing an a priori on the

polarization of the targeted signal. The application of this

method is presented in a realistic setting.

For compact star mergers, gravitational waveforms are mod-

elled as a sum of non stationary polarized signals whose

instantaneous polarization parameters depend on the orien-

tation of the line of sight with respect to the orbital plane.

Through the use of a source frame on which the conjugate

symmetry holds between opposite waveform m-modes, the

instantaneous polarization state and instantaneous frequency

of the polarized components are derived.

The polarimetric analysis of gravitational waves is of partic-

ular interest for the observation of precession of the orbital

plane. Its observation amounts to detect a variation in the

polarization state of the received signal [72]. In this context, a [72]: Flamant et al. (2018),

Non-parametric characterization of
gravitational-wave polarizations

general SNR-like quantity is introduced in order to quantify

the detectability of the polarization state of a signal in an

additive Gaussian noise.
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4.1 Observations with a detector network
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Figure 4.1: Simulated gravitational wave signal (energy spectrogram) as observed by the three LIGO and

Virgo detectors. The properties of the source are described in Section 4.2.4.

As introduced in Equation (2.1), the strain measured by a

detector depends on the antenna pattern of the detector[
𝐹+

(
𝛿, 𝜙,𝜓

)
, 𝐹×

(
𝛿, 𝜙,𝜓

) ]
∈ ℝ2

such as

𝑥𝑑(𝑡) = ℎ+(𝑡)𝐹𝑑+
(
𝛿, 𝜙,𝜓

)
+ ℎ×(𝑡)𝐹𝑑×

(
𝛿, 𝜙,𝜓

)
+ 𝑛𝑑(𝑡),

where

(
𝛿, 𝜙

)
∈ ℝ2

denotes the position of the source in

the sky in spherical coordinates (i.e. longitude and latitude

respectively), 𝜓 is the so called polarization angle
1

and 𝑛𝑑(𝑡)1: The polarization angle corre-

sponds to a rotation of the po-

larization basis, see Figures 2.4

and 2.5.

is an additive noise. If the observation time is sufficiently

short
2

then the Earth rotation can be neglected.

2: In practice the observation

time is shorter than few tenths

of seconds which suffices for this

assumption to remain valid.

Gravitational-waves travel at the speed of light and reach

the detectors at different times. The current three detectors

network observation can be written as the following linear

vectorial equation:


𝑥𝐿(𝑡 − 𝜏𝐿,𝛿,𝜙)
𝑥𝐻(𝑡 − 𝜏𝐻,𝛿,𝜙)
𝑥𝑉(𝑡 − 𝜏𝑉,𝛿,𝜙)

 =

𝐹𝐿+

(
𝛿, 𝜙,𝜓

)
𝐹𝐿×

(
𝛿, 𝜙,𝜓

)
𝐹𝐻+

(
𝛿, 𝜙,𝜓

)
𝐹𝐻×

(
𝛿, 𝜙,𝜓

)
𝐹𝑉+

(
𝛿, 𝜙,𝜓

)
𝐹𝑉×

(
𝛿, 𝜙,𝜓

) 
[
ℎ+(𝑡)
ℎ×(𝑡)

]
+

𝑛𝐿(𝑡 − 𝜏𝐿,𝛿,𝜙)
𝑛𝐻(𝑡 − 𝜏𝐻,𝛿,𝜙)
𝑛𝑉(𝑡 − 𝜏𝑉,𝛿,𝜙)

 (4.1)

where the subscripts 𝐿, 𝐻, 𝑉 stand for the LIGO Livinsg-

ton, LIGO Hanford and Virgo detectors. As an illustration,

Figure 4.1 shows a simulated gravitational-wave signal corre-

sponding to a BBH of total mass 40𝑀⊙ added to LIGO and

Virgo noise. In a more compact form

x(𝑡; 𝛿, 𝜙) = 𝐹
(
𝛿, 𝜙,𝜓

)
h(𝑡) + n(𝑡; 𝛿, 𝜙) (4.2)
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where x(𝑡; 𝛿, 𝜙) denotes the recorded signal of the network,

𝐹
(
𝛿, 𝜙,𝜓

)
is the beam pattern matrix composed of the de-

tectors’ antenna patterns, h(𝑡) is the bivariate gravitational

wave signal and n(𝑡; 𝛿, 𝜙) is the network additive noise. Ac-

cording to the sky position, the time shifts 𝜏.,𝛿,𝜙 map the

three observation times in a common frame related to the

Earth center. The noises 𝑛𝐿(𝑡), 𝑛𝐻(𝑡), 𝑛𝑉(𝑡) are supposed to

be independent and stationary
3
. 3: The noise is supposed to be

stationary during the observa-

tion time. In practice, drifts are

observed on longer time periods

in addition to transient noises

that can overlap intermittently

with gravitational-wave signals.

As shown in Equation (4.2), the signal lies in a two di-

mensional plane given by span

{
𝐹+

(
𝛿, 𝜙,𝜓

)
, 𝐹×

(
𝛿, 𝜙,𝜓

)}
where 𝐹+

(
𝛿, 𝜙,𝜓

)
and 𝐹×

(
𝛿, 𝜙,𝜓

)
are the two columns of

the network antenna pattern in (4.1).

4.1.1 The polarization angle

As discussed in Section 2.2.1, the polarization angle character-

izes the orientation of the polarization basis with respect to

the observer frame. It is not an observable as it corresponds

to a rotation of the antenna pattern
4
, i.e. for 𝜓0 and 𝜓1 two 4: Another way to see it is to

write the network observation in

the complex formalism as

𝑥(𝑡) = Re

{
𝐹(𝛿, 𝜙)𝑒−2𝒊𝜓ℎ(𝑡)

}
+𝑛(𝑡),

where 𝑥(𝑡), 𝑛(𝑡) ∈ ℝ3
, ℎ(𝑡) =

ℎ+(𝑡)− 𝒊ℎ×(𝑡) ∈ ℂ and 𝐹(𝛿, 𝜙) =
𝐹+(𝛿, 𝜙, 0) + 𝒊𝐹×(𝛿, 𝜙, 0) ∈ ℂ3

.

given polarization angles, the corresponding antenna pattern

vectors are related by

𝐹+(𝛿, 𝜙,𝜓1) = cos 2Δ𝜓𝐹+(𝛿, 𝜙,𝜓0) + sin 2Δ𝜓𝐹×(𝛿, 𝜙,𝜓0),
𝐹×(𝛿, 𝜙,𝜓1) = − sin 2Δ𝜓𝐹+(𝛿, 𝜙,𝜓0) + cos 2Δ𝜓𝐹×(𝛿, 𝜙,𝜓0),

where Δ𝜓 = 𝜓1 − 𝜓0. This means that 𝐹(𝛿, 𝜙,𝜓1)ℎ(𝑡) =
𝐹(𝛿, 𝜙,𝜓0)𝑅(−2Δ𝜓)ℎ(𝑡)where 𝑅(−2Δ𝜓) is the 2×2 rotation

matrix of angle −2Δ𝜓.

f×

f+

F+

F× Figure 4.2: Dominant polariza-

tion frame vectors ( 𝑓+ , 𝑓×) com-

pared to antenna pattern vectors

(𝐹+ , 𝐹×) associated to a given

polarization frame, i.e. a given

𝜓 ≠ 𝜓DPF
.

A preferred frame for the definition of the polarization angle

is given by the dominant polarization frame (DPF) [73]. [73]: Klimenko et al. (2005), Con-
straint likelihood analysis for a net-
work of gravitational wave detectors

For any sky coordinates (𝛿, 𝜙), the dominant polarization

frame is defined by 𝜓DPF
such that the network antenna

pattern vectors 𝑓+(𝛿, 𝜙) = 𝐹+(𝛿, 𝜙,𝜓DPF) and 𝑓×(𝛿, 𝜙) =
𝐹×(𝛿, 𝜙,𝜓DPF) are orthogonal and



 𝑓+(𝛿, 𝜙)

 ⩾ 

 𝑓×(𝛿, 𝜙)

,
see Figure

5
4.2. A direct computation leads to 5: Note that all the develop-

ments presented are for a net-

work of three detectors because

this allows a clear geometrical

interpretation, but the results re-

main valid for a larger network.
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𝜓DPF =
1

4

arctan2

2

〈
𝐹+(𝛿, 𝜙, 0), 𝐹×(𝛿, 𝜙, 0)

〉

𝐹×(𝛿, 𝜙, 0)

2 −


𝐹+(𝛿, 𝜙, 0)

2

, (4.3)

where arctan2 stands for the four-quadrant inverse tangent.

𝑓+(𝛿, 𝜙) and 𝑓×(𝛿, 𝜙) are named the DPF vectors.

For now on, in order to simplify the expressions, we suppose

that the line of sight is known so the dependence of the

antenna pattern on the line of sight (𝛿, 𝜙) is dropped and

the detectors observations are time shifted so the waveforms

ℎ+(𝑡) and ℎ×(𝑡) are aligned in each detector and (4.1) holds.

Polarization has received little interest in the gravitational

wave data analysis community so far because there are limita-

tions for their reconstruction and analysis. First, the reduced

number of detectors make difficult the location of the source

which is necessary in order to write (4.2). For the majority of

the detected signals only two detectors are involved, the SNR

being not equilibrated between the detectors, when at least

three are needed for an accurate localization. Second, due

to the low noise level, accurate reconstruction methods are

restrained to the single axis 𝑓+(𝛿, 𝜙) of the two-dimensional

plane spanned by

{
𝑓+(𝛿, 𝜙), 𝑓×(𝛿, 𝜙)

}
. Based on the work

presented in Chapter 1, we aim to bring new methods ex-

ploiting the fact that ℎ(𝑡) is an amplitude, frequency and

polarization modulated signal or the sum of several such

signals.

4.1.2 Polarimetric characterization of the noise

A common assumption on the detector noises is that they are

Gaussian, stationary and independent from a detector to the

other. The detector noise is characterized in the frequency

domain by its power spectral density 𝑆𝑑(𝜔), where 𝜔 is the

frequency variable. The amplitude spectral densities

√
𝑆𝑑(𝜔)

can be estimated on a segment of LIGO-Virgo data
6

as shown6: See Section 4.2.4 for details

about the corresponding data

segment and the chosen sky po-

sition (𝛿, 𝜙).

in Figure 4.3.

The covariance matrix of the detector network is constructed

from these estimated noise spectral densities. For each fre-

quency, we get the noise covariance matrix

Δ(𝜔) =

𝑆𝐿(𝜔) 0 0

0 𝑆𝐻(𝜔) 0

0 0 𝑆𝑉(𝜔)

 . (4.4)
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Figure 4.3: Estimated ampli-

tude spectral densities (Welch’s

method) of the data segment for

Virgo (purple), LIGO Livingston

(blue) and LIGO Hanford (red)

used to reconstruct the signal.

Then, equation (4.2) can be rewritten in the frequency domain

with the whitened detectors’ observations, such as

𝑋̃(𝜔) = 𝐹̃ (𝜔;𝜓)𝐻(𝜔) + 𝑁̃(𝜔), (4.5)

where 𝑋̃(𝜔) = Δ−1/2𝑋(𝜔) is the whitened vector of obser-

vations, 𝐹̃ (𝜔;𝜓) = Δ(𝜔)−1/2𝐹 (𝜓) is the noise-scaled beam

pattern and similarly for 𝑁̃(𝜔) which is now a standard

white Gaussian noise.

The projection operator on the noise-scaled signal plane

span

{
𝐹̃+ (𝜔;𝜓) , 𝐹̃× (𝜔;𝜓)

}
is given by the Moore-Penrose

inverse of the noise-scaled beam pattern matrix

𝐹̃† (𝜔;𝜓) =
(
𝐹̃𝑇 (𝜔;𝜓) 𝐹̃ (𝜔;𝜓)

)−1

𝐹̃ (𝜔;𝜓) . (4.6)

The covariance matrix of the noise projection in the noise-

scaled wave plane 𝐹̃† (𝜔;𝜓) 𝑁̃(𝜔) is given by

𝑉(𝜔) = 𝐹̃† (𝜔;𝜓) (𝐹̃† (𝜔;𝜓))𝑇 . (4.7)

By definition of the Moore-Penrose inverse, we get 𝑉(𝜔) =
(𝐹̃𝑇 (𝜔;𝜓) 𝐹̃ (𝜔;𝜓))−1. It is straightforward to get

𝑉(𝜔) =


𝐹̃+ (𝜔;𝜓)



−1


𝐹̃× (𝜔;𝜓)



−1

1 − 𝑐2 (𝜔;𝜓)

[
𝜅 (𝜔;𝜓) −𝑐 (𝜔;𝜓)
−𝑐 (𝜔;𝜓) 𝜅−1 (𝜔;𝜓)

]
. (4.8)

where

𝑐 (𝜔;𝜓) =
〈
𝐹̃+ (𝜔;𝜓) , 𝐹̃× (𝜔;𝜓)

〉

𝐹̃+ (𝜔;𝜓)


 

𝐹̃× (𝜔;𝜓)



 and 𝜅 (𝜔;𝜓) =


𝐹̃× (𝜔;𝜓)





𝐹̃+ (𝜔;𝜓)


 (4.9)
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Choosing 𝜓 = 𝜓DPF
where 𝜓DPF

is the polarization an-

gle of the dominant polarization frame defined with the

noise-scaled antenna pattern, i.e. 𝜓DPF
is such that 𝑓+(𝜔) =

𝐹̃+
(
𝜔;𝜓DPF

)
and 𝑓×(𝜔) = 𝐹̃×

(
𝜔;𝜓DPF

)
are orthogonal and

𝜅
(
𝜔;𝜓DPF

)
⩽ 1, then

𝑉(𝜔) =
[

 𝑓+(𝜔)

−2

0

0



 𝑓×(𝜔)

−2

]
. (4.10)

Equation (4.10) shows that in the DPF, the plus and cross com-

ponents
7

of the noise are independent. Since 𝜅
(
𝜔;𝜓DPF

)
⩽ 1,7: By the plus and cross compo-

nents, we call the parts of the

noise aligned with 𝑓+(𝜔) and

𝑓×(𝜔) respectively.

the noise power is higher in the cross component than in the

plus component.

The polarization of the noise is embedded in the covariance

matrix
8 𝑉(𝜔). In the DPF, the Stokes parameters of the noise8: One has that [1]

𝑆0(𝜔) = 𝔼 |𝑛+(𝜔)|2 + 𝔼 |𝑛×(𝜔)|2 ,
𝑆1(𝜔) = 𝔼 |𝑛+(𝜔)|2 − 𝔼 |𝑛×(𝜔)|2 ,
𝑆2(𝜔) = 2 Re𝔼 {𝑛+(𝜔)𝑛×(𝜔)} ,
𝑆3(𝜔) = 2 Im𝔼 {𝑛+(𝜔)𝑛×(𝜔)} .

for a given bivariate stochastic

process 𝑛(𝑡) = [𝑛+(𝑡), 𝑛×(𝑡)]𝑇 .

are given by

𝑆0(𝜔) =


 𝑓+(𝜔)

−2 +



 𝑓×(𝜔)

−2

,

𝑆1(𝜔) =


 𝑓+(𝜔)

−2 −



 𝑓×(𝜔)

−2

,

𝑆2(𝜔) = 𝑆3(𝜔) = 0.

(4.11)

Figure 4.4 shows the normalized Stokes parameters estimated

on a segment of the LIGO-Virgo detectors data
9
.9: The data segment and the sky

location used for the estimation

are described in Section 4.2.4.
The estimated spectral polarization degree defined as

Φ𝑛(𝜔) =

√
𝔼 {𝑆1(𝜔)}2 + 𝔼 {𝑆2(𝜔)}2 + 𝔼 {𝑆3(𝜔)}2

𝔼 {𝑆0(𝜔)}
(4.12)

is also given. This quantity is the fraction of polarized noise

power (0 ⩽ Φ𝑛(𝜔) ⩽ 1)at frequency 𝜔 [1]: Φ𝑛(𝜔) = 1 for

a fully polarized stochastic signal, and Φ𝑛(𝜔) = 0 for an

unpolarized signal. As for the amplitude spectral density,

the polarization degree is invariant with respect to the polar-

ization angle (this is not the case for the normalized Stokes

parameters).

In the wave plane span

{
𝑓+(𝛿, 𝜙), 𝑓×(𝛿, 𝜙)

}
, the noise is thus

strongly polarized, which means that its observed polariza-

tion state is stable over time. By construction of the DPF, it

is linearly polarized along the cross direction. This indicates

that ℎ× measurements are much more noisy than that of

ℎ+.
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Figure 4.4: Estimated normal-

ized noise Stokes parameters

(𝑠1(𝜔), 𝑠2(𝜔), 𝑠3(𝜔)) and polar-

ization degree Φ𝑛(𝜔). The am-

plitude of the noise is given

by

√
𝑆0(𝜔). The Stokes param-

eters are computed with (4.11)

from the estimated power spec-

tral densities of the detectors

shown in Figure 4.3.

Note that the estimated polarization parameters presented

in Figure 4.3 are dependent on the chosen line of sight. One

would have different values for a different choice of (𝛿, 𝜙).

4.2 Reconstruction of gravitational-wave
signals

It follows from Equation (4.11) that the noise of the detector

network is linearly polarized: the noise is mostly located

in the cross component. As expected this complicates the

reconstruction of ℎ× from noisy observations. Contrarily

to the noise, in general the gravitational-wave strain is not

necessarily linearly polarized (it is not for compact-star binary

mergers that are not edge-on, i.e. 𝜄 ≠ 𝜋/2). Based on these

differences in the polarization patterns this section presents a
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new regularization term which promotes certain polarizaton

states.

4.2.1 Standard approach

As it clearly appears from (4.5), the reconstruction of the

gravitational-wave strain ℎ from noisy data is an inverse

problem. This problem is generally ill posed as for a great part

of the sky, the mixing matrix 𝐹̃×(𝜔;𝜓) is ill conditionned, i.e.

𝜅
(
𝜔;𝜓DPF

)
≪ 1 in (4.9). Geometrically, this means that for

an arbitrary polar angle 𝜓, 𝐹̃+(𝜔;𝜓) and 𝐹̃×(𝜔;𝜓) are nearly

aligned or one of them is close to zero. For instance, the cross

component ℎ× cannot be retrieved when 𝜅
(
𝜔;𝜓DPF

)
= 0.

We propose an approach where the reconstruction problem is

modeled as an optimization problem with a data fidelity term

Ψ(ℎ, 𝑥) and a regularization term Ω(ℎ), the reconstructed

strain ℎ̂ is obtained as

ℎ̂ = arg min

ℎ∈H
Ψ(ℎ, 𝑥) + 𝜆Ω(ℎ), (4.13)

where 𝜆 > 0 is a regularization parameter and H is a fi-

nite dimensional Hilbert space. Motivated by a statistical

interpretation of the reconstruction scheme, the data fidelity

term is often chosen as to be the log likelihood of the ob-

servations, which from equation (4.5) can be written in the

time-frequency domain as the noise weighted least square

function
10

10: This is true under the con-

dition that the noise is uncor-

related over the time-frequency

bins.

Ψ(ℎ, 𝑥) =
∑
(𝜔,𝜏)∈Γ

1

2



𝑋̃(𝜔, 𝜏) − 𝐹̃(𝜔)𝐻(𝜔, 𝜏)

2

2

, (4.14)

where Γ corresponds to time-frequency bins in which the

signal is present.

Coherent Waveburst [40, 41], one of the LIGO-Virgo pipelines,

follows this approach
11

. It identifies time-frequency regions11: Coherent Waveburst

uses the likelihood ratio

ℙ(𝑥 |𝐻1)/ℙ(𝑥 |𝐻0) between the

null hypothesis 𝐻0 (no signal

is present in the data) and the

alternative hypothesis 𝐻1 (a

signal is present in the data).

This allows to build maximum

likelihood ratio test [73]. While

the distinction from the pre-

sented developments is notably

important for the detection of

gravitational-wave signals, it is

not significative in the restrained

context of signal reconstruction.

with excess of power [41]. Time-frequency bins that show a

statistically significant excess of power with respect to the

reference noise estimation are selected. Γ is identified among

the pre-selected bins with a ad-hoc clustering algorithm.

Solutions of (4.13) assuming 𝜆 = 0 are given by

𝐻̂(𝜔, 𝜏) = 𝐹̃†(𝜔)𝑋̃(𝜔, 𝜏) (4.15)

where 𝐹̃†(𝜔) is the Moore Penrose inverse defined in (4.6).
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The beam pattern vector asymmetry renders the inverse

problem ill posed, in particular for the cross component ℎ×.
Depending on the assumptions we have about the signal

being sought, regularization constraints can be added to the

likelihood functional. This insures that the reconstructed

signal will have desired physical properties. Regularizations

have been already proposed in the form of polarization con-

straints [41, 73]. ℎ+, ℎ× and their quadrature parts (i.e. Hilbert

transforms) are parametrized with respect to polarization

parameters (e.g. ellipticity, orientation) and inverse problem

solutions are derived depending on the values imposed to

the polarization parameters [41, 73]. We generalize and ex-

tend those schemes by using the framework introduced for

bivariate signal representations.

4.2.2 Regularization with polarization constraint

Motivated by the differences in the signal and noise polar-

ization patterns described in Section 4.1.2, we propose a

Tikhonov regularization [74] based on polarization priors. [74]: Willoughby (1979), Solu-
tions of Ill-Posed Problems (A. N.
Tikhonov and V. Y. Arsenin)

The quadratic constraint is of the form

Ω(ℎ) =
∑
𝜔,𝜏

1

2



𝐿−𝝁(𝜔,𝜏)𝐻(𝜔, 𝜏)

2

2

(4.16)

where 𝐿−𝝁(𝜔,𝜏) is the Jones matrix of a polarizer [75] of axis [75]: Gil et al. (2022), Polarized
Light and the Mueller Matrix Ap-
proach−𝝁(𝜔, 𝜏) = (𝑠1(𝜔, 𝜏), 𝑠2(𝜔, 𝜏), 𝑠3(𝜔, 𝜏)) , (4.17)

such that

𝐿−𝝁(𝜔,𝜏) =
1

2

[
1 + 𝑠1(𝜔, 𝜏) 𝑠2(𝜔, 𝜏) + 𝒊𝑠3(𝜔, 𝜏)

𝑠2(𝜔, 𝜏) − 𝒊𝑠3(𝜔, 𝜏) 1 − 𝑠1(𝜔, 𝜏)

]
.

(4.18)

𝐿−𝝁(𝜔,𝜏)𝐻(𝜔, 𝜏) corresponds to the quasi-projection of the

polarization axis of 𝐻(𝜔, 𝜏) on −𝝁(𝜔, 𝜏). For a signal ℎ with

an orthogonal polarization state 𝝁ℎ(𝜔, 𝜏) = 𝝁(𝜔, 𝜏), the out-

put of the filter is 𝐿𝝁(𝜔,𝜏)𝐻(𝜔, 𝜏) = [0, 0]𝑇 . The signal is

unchanged if 𝝁ℎ(𝜔, 𝜏) = −𝝁(𝜔, 𝜏). Thus the regularization

term (4.16) is penalizing polarizations different from the tar-

getted axis 𝝁(𝜔, 𝜏).𝜆 is viewed as the power of the polarizing

filter and can be different in each bin (𝜔, 𝜏) ∈ Γ.

The linearity of the inverse problem (4.2) is preserved by the

Tikhonov regularization, resulting in a closed-form solution
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of the inverse problem, such that

𝐻̂(𝜔, 𝜏) =
(
𝐹̃𝑇(𝜔)𝐹̃(𝜔) + 𝜆𝐿𝑇−𝝁(𝜔,𝜏)𝐿−𝝁(𝜔,𝜏)

)−1

𝐹̃𝑇(𝜔)𝑋̃(𝜔, 𝜏)
(4.19)

for all time-frequency bins.

Standard regularization used by Coherent Waveburst is a

penalization on the cross component [73], and results in a

soft constraint that reconstructs the maximum likelihood

solution ℎ̂× with a penalty factor. This is equivalent to choose

a constant polarization prior in (4.16) with 𝝁 = (1, 0, 0), i.e.

a linear polarization (horizontal) prior with a constraint on

the cross component, justified by (4.11). This standard linear

polarization prior favors high signal power and near edge

on sources (i.e. sources with an inclination 𝜄 ≈ 𝜋/2) with a

polarization angle near 𝜓DPF
or 𝜓DPF + 𝜋/2.

A hard polarization constraint is achieved by the quasi-

projection of the polarization state of the solution to the least

square problem by the polarizer
12 𝐿𝝁(𝜔,𝜏), such that12: Notice that for the hard con-

straint the sign of𝝁 is unchanged,

while the polarizer is defined

with respect to −𝝁 for the soft

constraint.

𝐻̂(𝜔, 𝜏) = 𝐿𝝁(𝜔,𝜏)𝐹̃
†(𝜔)𝑋̃(𝜔, 𝜏), (4.20)

where 𝝁(𝜔, 𝜏) corresponds to the targeted polarization state.

For example, choosing 𝝁 = (1, 0, 0)will reconstruct ℎ̂+ as the

solution of the least square problem (given by (4.15)) and

ℎ̂× ≡ 0.

4.2.3 Regularization with polarization and sparsity
constraints

Gravitational-wave signals are supposed to be decomposed

in a small number of time-frequency bins [76]. Based on[76]: Bammey et al. (2018),

Sparse Time-Frequency Representa-
tion of Gravitational-Wave signals
in Unions of Wilson Bases

this assumption, the proposed reconstruction method can

be refined by including additional regularization terms, no-

tably on the number and distribution of the time-frequency

coefficients of the desired signal.

A sparsity prior can be included by an additional regular-

ization term with the non smooth functional Φ(𝐻(𝜔, 𝜏)) =
∥𝐻(𝜔, 𝜏)∥

1
. In this case, the objective functional becomes

∑
(𝜔,𝜏)∈Γ

1

2



𝑋̃(𝜔, 𝜏) − 𝐹̃(𝜔)𝐻(𝜔, 𝜏)

2

2

+ 𝜆2

2



𝐿𝝁(𝜔,𝜏)𝐻(𝜔, 𝜏)

2

2

+ 𝜆1 ∥𝐻(𝜔, 𝜏)∥1 , (4.21)



4.2 Reconstruction of gravitational-wave signals 89

where the regularization constants𝜆1 and𝜆2 can be functions

of (𝜔, 𝜏).

The Iterative Shrinkage-Thresholding Algorithm (ISTA) [77] [77]: Beck et al. (2009), A Fast Iter-
ative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems

is often used for the resolution of the Lasso: arg minℎΨ(ℎ) +
𝜆Φ(ℎ). Combettes et al. [78] have extended ISTA to the case

[78]: Combettes et al. (2005), Sig-
nal Recovery by Proximal Forward-
Backward Splitting

of general non smooth regularizer. For a non smooth func-

tion Φ taking finite dimensional complex entries, a forward-

backward algorithm is defined with a proximity operator

given by

proxΦ(𝑧) = arg min

𝑢

1

2

∥𝑧 − 𝑢∥2
2
+Φ(𝑢), (4.22)

where 𝑧 is a finite dimension complex vector. The general

algorithm is given in the context of a least square data fidelity

term and a polarization prior in Algorithm 1
13

. 13: Algorithm 1 takes the part of

representing the quadratic part

of (4.21) as a single quadratic

operator 𝑄 (𝐻(𝜔, 𝜏)) =

Ψ (𝐻(𝜔, 𝜏)) + 𝜆2Γ (𝐻(𝜔, 𝜏)) in

order to simplify the reading.

Algorithm 1: ISTA

1 𝐻(1) ∈ ℂ𝑀,𝑁 , 𝑘 = 1, 𝜆1,2 ∈ ℝ+
2 Ξ(𝜔, 𝜏) =

(
𝐹̃𝑇(𝜔)𝐹̃(𝜔) + 𝜆2𝐿

∗
𝝁(𝜔,𝜏)𝐿𝝁(𝜔,𝜏)

)
;

3 𝛾(𝜔, 𝜏) = ∥Ξ(𝜔, 𝜏)Ξ∗(𝜔, 𝜏)∥;
4 repeat
5 ∇𝑄(𝑘)(𝜔, 𝜏) = Ξ(𝜔, 𝜏)𝐻(𝑘)(𝜔, 𝜏) − 𝐹̃𝑇(𝜔)𝑋̃(𝜔, 𝜏);
6 𝐻(𝑘+1)(𝜔, 𝜏) =

prox 𝜆
1

𝛾(𝜔,𝜏)Φ

(
𝐻(𝑘)(𝜔, 𝜏) − 1

𝛾(𝜔,𝜏)∇𝑄
(𝑘)(𝜔, 𝜏)

)
;

7 𝑘 = 𝑘 + 1;

8 until convergence;

In the case of a sparsity prior (4.21), the proximity operator

of Algorithm 1 is given by the soft-threshodling operator, i.e.

prox 𝜆
1

𝛾(𝜔,𝜏)Φ
= 𝕊 𝜆

1

𝛾(𝜔,𝜏)
, where

𝕊𝜆(𝐻(𝜔, 𝜏)) = 𝐻(𝜔, 𝜏)max

(
1 − 𝜆

|𝐻(𝜔, 𝜏)| , 0
)
. (4.23)

As a generalization of the Lasso, structured/social spar-

sity regularization [79, 80]

[79]: Kowalski et al. (2009), Struc-
tured Sparsity: from Mixed Norms
to Structured Shrinkage
[80]: Kowalski et al. (2013), So-
cial Sparsity! Neighborhood Sys-
tems Enrich Structured Shrinkage
Operators

has shown promizing results on

several applications [81–83]

[81]: Costa et al. (2017), Bayesian
EEG source localization using a
structured sparsity prior
[82]: Jia et al. (2012), Robust
and Practical Face Recognition via
Structured Sparsity
[83]: Siedenburg et al. (2014), Au-
dio declipping with social sparsity

including gravitational-wave

reconstruction [84]

[84]: Feng et al. (2018), Struc-
tured sparsity regularization for
gravitational- wave polarization re-
construction

. Contrarily to the Lasso regularization,

this approach amounts to impose a prior on the repartition

of the time-frequency coefficients of the signal. The regular-

ization is achieved by the introduction of mixed norms and

expansion operators [80].
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For these methods, solutions are constructed by adapting the

proximity operator of the general proximal gradient descent

method presented in Algorithm 1. For instance, the Persistent

Empirical Wiener (PEW) proximity operator [83] is given by

𝕊PEW

𝜆 (𝐻(𝜔, 𝜏)) = 𝐻(𝜔, 𝜏)max

©­­­­«
1 − 𝜆2√ ∑

(𝜔′,𝜏′)∈Γ𝜔,𝜏
𝐶𝜔,𝜏(𝜔′, 𝜏′) |𝐻(𝜔′, 𝜏′)|2

, 0

ª®®®®¬
, (4.24)

where Γ(𝜔, 𝜏) is a set of indices forming a neighborhood of

the time-frequency bin (𝜔, 𝜏) and 𝐶𝜔,𝜏 ∈ ℂ2×|Γ𝜔,𝜏 |
is a collec-

tion of weights over the neighborhood such that ∥𝐶𝜔,𝜏∥2 = 1.

That is, for each (𝜔, 𝜏), the neighborhood time-frequency

bins are involved in the shrinkage operator. This tends to

discard isolated large coefficients and keep coefficients with

an appropriate neighborhood. Different weights correspond

to different clustering effects. The exponentiation of 𝜆 tends

to preserve energetic coefficients 𝐻(𝜔, 𝜏), which leads to

better performances in this one step reconstruction proce-

dure [83].

4.2.4 Results

The proposed regularization methods with a polarization

promoting prior are implemented and tested on realistic

synthetic data. For each LIGO and Virgo detectors, we con-

sidered a noisy data segment of the third observing run [68].

The data segment start from January 29, 2020 at 06 : 54 GMT

and last ∼ 7 sec.

A gravitational-wave signal is generated using SEOBNRv4 [58]

for a black hole binary with non spinning bodies of masses

20𝑀⊙ each, at a distance of 500 Mpc, see Figure 4.5. The

binary is viewed face-on (𝜄 = 𝜑0 = 0) which corresponds to

a constant circular polarization (see section 4.3).

The position of the source in the sky is fixed to (𝛿, 𝜙) =
(𝜋/4,𝜋/4). The polarization angle of the injected signal cor-

responds to the DPF polarization angle. Both the noise and

the signal are filtered with an high-pass filter with a cutting

frequency of 25 Hz. The network SNR is 20, it is 13, 14 and 5

for the LIGO Livingston, LIGO Hanford and Virgo detectors



4.2 Reconstruction of gravitational-wave signals 91

2.0 2.5 3.0

Time (s)

100

50

F
re

q
u

en
cy

(H
z)

Original h+

2.0 2.5 3.0

Time (s)

Original h×

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

×10−22

(a)

2.0 2.5 3.0

Time (s)

100

50

F
re

q
u

en
cy

(H
z)

Whitened observation h+

2.0 2.5 3.0

Time (s)

Whitened observation h×

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
×10−21

(b)

Figure 4.5: Injected signal (en-

ergy spectrogram) (a) and with-

ened observations (b) in the

wave plane.

respectively. For the reconstruction, a time-frequency region

Γ is roughly selected around the event (see the time-frequency

region corresponding to Figure 4.5).

Polarization prior In this example, the injected waveform

is circularly polarized and a high circular polarization reg-

ularization leads to better a result. However, in order to

illustrate the variability offered by the penalization coeffi-

cient 𝜆2, the reconstruction result is presented for 𝜆2 = 0.1

and 𝝁 = (0, 0,−1) in Figure 4.7. The effect of the constraint

is seen from row (a) to row (b), where the polarization of

the signal has partially changed. In addition, the ridge of

the signal is partially reconstructed. For real applications, 𝜆2

should be adapted to the degree of confidence in favor of a

given polarization state.
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Structured sparsity and polarization prior For simplicity,

the polarization prior and the weights of the PEW operator

are fixed over the time-frequency bins. The weights are

defined such that

𝐶 =


0 0 1

0 1 0

1 0 0

 , (4.25)

which favors diagonal time-frequency clusters. The recon-

struction result is presented for 𝜆2 = 2, 𝜆1 = 3 and 𝝁 =

(0, 0,−1) in Figures 4.6 and 4.7. This defined a strong (not

hard) constraint on both the structure of the time-frequency

clusters and the reconstructed polarization. The ridge of

the signal is selected by the structured sparsity prior. The

end of the ridge is not selected as it is vertical and does not

correspond to the prior given by 𝐶.

Figure 4.6: Original (red) and re-

constructed (blue) polarization

waveforms ℎ+ and ℎ× for a cir-

cular polarization prior (𝜆2 = 2)

and a structured sparsity prior

(𝜆1 = 3). This corresponds to Fig-

ure 4.7c.
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The reconstruction accuracy is measured with the mismatch

metric 𝜖 defined in Equation (3.5) for both the injected bi-

variate gravitational-wave signal ℎ and the two polarization

waveforms ℎ+ and ℎ×. The different results are summarized

in Table 4.1.

As highlighted by the results, the polarization constraint

can help to retrieve faint signals or faint polarization wave-

form (e.g. ℎ×) without imposing a strong constraint for the

reconstruction. The structured sparsity addition includes a

physical prior on the selected time-frequency regions, which

performs better than a fixed truncation.

The hyperparameters of the presented methods (e.g. the

weights of the PEW operator and others) can be empirically

adjusted on a large dataset of injected signals. They can be

adapted in time and frequency in order to correspond to the

different phases of the waveform (inspiral, merger, ringdown).
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Table 4.1: Reconstruction accuracy of the bivariate signal ℎ and the mode waveforms ℎ+ , ℎ× for different

methods. The "truncated least square" and "circular polarization prior with truncation" methods involve a

truncation of the time-frequency coefficients with a threshold defined by the 99.5% quantile of 𝑆0(𝜔, 𝜏).

Reconstruction method 𝜀(ℎ, ℎ̂) 𝜀(ℎ+, ℎ̂+) 𝜀(ℎ×, ℎ̂×)
Least square 0.61 0.34 0.81

Truncated least square 0.63 0.39 0.73

Circular polarization prior

0.26 0.26 0.26

(𝝁 = (0, 0,−1), 𝜆2 = 2)

Linear polarization prior

0.58 0.27 0.85

(𝝁 = (1, 0, 0), 𝜆2 = 2)

Circular polarization prior with truncation

0.15 0.15 0.15

(𝝁 = (0, 0,−1), 𝜆2 = 2)

Polarization prior and sparsity

0.14 0.12 0.15

(𝝁 = (0, 0,−1), 𝜆2 = 2,𝜆1 = 3)

Polarization prior and structured sparsity

0.13 0.14 0.13

(𝝁 = (0, 0,−1), 𝜆2 = 2,𝜆1 = 3)

Such weakly modelled method can retrieve faint signals with

a few assumptions (e.g. with a circular polarization prior).
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Figure 4.7: Energy and polarization spectrograms of the reconstructed signal for different methods.(a): the

weighted least square reconstruction, i.e. the whitened observations of the gravitational-wave signal in noisy

data. (b): the penalized weighted least square with a polarization prior such that 𝜆2 = 0.1 and 𝝁 = (0, 0,−1).
(c): the penalized weighted least square with a polarization and structured sparsity prior such that 𝜆2 = 2,

𝜆1 = 3 and 𝝁 = (0, 0,−1).
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4.3 Gravitational-wave polarization

Recent results shown that gravitational-waves emitted by

BBHs are non stationary polarized signals whose polariza-

tion state can be expressed with respect to the orientation

of the orbital plane [72]. In this section, previous results are

generalized to provide a decomposition of gravitational wave-

forms as the sum of polarized components with a "model-

independent" approach
14

. 14: The approach does not lie in

a particular waveform model as

presented in Section 3.2.2.

4.3.1 Co-precessing source frame

Binaries assembled dynamically in dense stellar environ-

ments are likely to contain black holes with isotropic random

spin orientations. As discussed in Chapter 3, this causes the

orbital angular momentum of the system
®𝐿(𝑡) and the spins

of the objects
®𝑆1(𝑡), ®𝑆2(𝑡) to precess around the total angular

momentum 𝐽(𝑡). The motion of the orbital plane is described

by the normal to the orbital plane i.e. the Newtonian orbital

angular momentum
®𝐿𝑁 (𝑡), see Figure 3.12.

A co-precessing frame 𝑃 is attached to the Newtonian orbital

angular momentum. At each instant, a basis of the precess-

ing frame (®𝑒𝑃
1
(𝑡), ®𝑒𝑃

2
(𝑡), ®𝑒𝑃

3
(𝑡)) is such that ®𝑒𝑃

3
(𝑡) is aligned

with
®𝐿𝑁 (𝑡). ®𝑒𝑃

1
(𝑡), ®𝑒𝑃

2
(𝑡) are chosen to satisfy a minimal rota-

tion condition [47]. In the co-precessing frame, the effect of

precession on the waveform modes is minimized.

e⃗3
I

e⃗3
P (t)

e⃗2
P (t)

e⃗1
P (t)

e⃗1
I

e⃗2
I

α(t)

γ(t)
β(t)

Figure 4.8: Euler angles (𝛼, 𝛽, 𝛾)
of the rotation from the iner-

tial frame 𝐼 to the co-precessing

frame 𝑃.

At 𝑡 = 𝑡0, where 𝑡0 is the reference time from which the

inertial frame 𝐼 is defined (see Section 3.4), the precessing

and inertial frames are identified. The motion of the orbital

plane is parametrized by three Euler angles (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))
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which correspond to the rotation from the inertial frame to the

co-precessing frame with the convention 𝑧𝑦𝑧 as illustrated

in Figure 4.8. We will refer to 𝛽(𝑡) the opening angle between

the 𝑧 axis of the 𝐼 and 𝑃 frames as the precession angle. 𝛽(𝑡)
and 𝛼(𝑡) track the motion of

®𝐿𝑁 (𝑡)while 𝛾(𝑡) is a phase term

insuring the minimal rotation condition [47].

Since the choice of the inertial frame is arbitrary, the de-

velopments presented in this chapter apply for any inertial

frame 𝐼. For example, one could define an inertial frame as

aligned to the total angular momentum
®𝐽(𝑡0) and so use the

corresponding definition of the triplet (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)).

Waveform modes in the co-precessing frame

In the EOB formalism, gravitational waveforms from precess-

ing binaries are first computed in the co-precessing source

frame 𝑃 introduced in Section 4.3.1, such that

ℎ(𝑡) = 𝑀

𝐷

∞∑
𝑙=2

𝑙∑
𝑚=−𝑙

ℎ𝑃
𝑙,𝑚
(𝑡)−2𝑌𝑙 ,𝑚(Θ(𝑡)), (4.26)

where Θ(𝑡) is the time varying line of sight in the frame 𝑃.

In this frame, precession modulations of the waveform modes

are limited. The precessing modes are symmetrized such

that the following symmetry holds

ℎ𝑃
𝑙,𝑚
(𝑡) = (−1)𝑙ℎ𝑃

𝑙,−𝑚(𝑡) (4.27)

as in the non-precessing case [51].

The waveform modes can be rotated with the Wigner D-

matrices in order to build inertial modes, such that

ℎ𝐼
𝑙,𝑚
(𝑡) =

𝑙∑
𝑚′=−𝑙

ℎ𝑃
𝑙,𝑚′(𝑡)𝐷

𝑙
𝑚′,𝑚(−𝛾(𝑡),−𝛽(𝑡),−𝛼(𝑡)), (4.28)

from which ℎ(𝑡) is expanded as (3.4).

4.3.2 Gravitational waveforms as a sum of polarized
waveforms

The precessing modes are modeled as amplitude and fre-

quency modulated signals, which from the conjugate sym-
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metry (4.27) verify ℎ𝑙 ,𝑚(𝑡) = 𝑎𝑙 ,𝑚(𝑡)𝑒−𝒊𝜑𝑙 ,𝑚(𝑡) and ℎ𝑙 ,−𝑚(𝑡) =
(−1)𝑙𝑎𝑙 ,𝑚(𝑡)𝑒 𝒊𝜑𝑙 ,𝑚(𝑡).

Without loss of generality, one can choose 𝑙 to be even and

denote 𝔥𝑙 ,𝑚 the restriction of the gravitational waveform to

the (𝑙 ,±𝑚) precessing modes, such as

𝔥𝑙 ,𝑚(𝑡) = ℎ𝑃
𝑙,𝑚
(𝑡)−2𝑌𝑙 ,𝑚(Θ(𝑡))+ℎ𝑃𝑙,−𝑚(𝑡)−2𝑌𝑙 ,−𝑚(Θ(𝑡)). (4.29)

One has 𝔥𝑙 ,𝑚(𝑡) = 𝑎(𝑡)𝑈(𝑡) cos 𝜑(𝑡)−𝒊𝑎(𝑡)𝑉(𝑡) sin 𝜑(𝑡), where

𝑈(𝑡) = −2𝑌𝑙 ,𝑚(Θ(𝑡)) + (−1)𝑙−2𝑌𝑙 ,−𝑚(Θ(𝑡)) (4.30)

𝑉(𝑡) = −2𝑌𝑙 ,𝑚(Θ(𝑡)) − (−1)𝑙−2𝑌𝑙 ,−𝑚(Θ(𝑡)). (4.31)

The quaternion embedding of 𝔥𝑙 ,𝑚 is given by

𝔥𝑙 ,𝑚ℍ(𝑡) = 𝑎(𝑡)𝑈(𝑡) cos 𝜑(𝑡) +H𝒋 {𝑎𝑙 ,𝑚(𝑡)𝑈(𝑡) cos 𝜑𝑙 ,𝑚(𝑡)} 𝒋
− 𝒊𝑎𝑙 ,𝑚(𝑡)𝑉(𝑡) sin 𝜑𝑙 ,𝑚(𝑡) −H𝒋 {𝒊𝑎𝑙 ,𝑚(𝑡)𝑉(𝑡) sin 𝜑𝑙 ,𝑚(𝑡)} 𝒋

by linearity of the quaternion Hilbert transform H𝒋 . We admit

that the bedrosian theorem holds such that

H𝒋 {𝑎𝑙 ,𝑚(𝑡)𝑈(𝑡) cos 𝜑(𝑡)} = 𝑎𝑙 ,𝑚(𝑡)𝑈(𝑡)H𝒋 {cos 𝜑𝑙 ,𝑚(𝑡)}

and that the phase verifies H𝒋 {cos 𝜑𝑙 ,𝑚(𝑡)} = sin 𝜑(𝑡),
then

𝔥𝑙 ,𝑚ℍ(𝑡) = 𝑎𝑙 ,𝑚(𝑡)(𝑈(𝑡) +𝑉(𝑡)𝒌)𝑒 𝒋𝜑𝑙 ,𝑚(𝑡). (4.32)

𝑈(𝑡) and 𝑉(𝑡) can be developed with respect to the rotation

from the inertial frame 𝐼 to the precessing frame 𝑃 given

by (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)) and the line of sight in the inertial frame

(𝜄, 𝜑0). To do so, we use a specific property of the spin

weighted harmonics, such that

−2𝑌𝑙 ,𝑚(Θ(𝑡)) =
𝑙∑

𝑚′=−𝑙
𝐷 𝑙
𝑚,𝑚′(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))−2𝑌𝑙 ,𝑚′(𝜄, 𝜑0).

(4.33)

As shown in Appendix B, we have in particular

𝔥𝑙 ,𝑚ℍ(𝑡) = 𝑎𝑙 ,𝑚(𝑡)
[
𝑈̃(𝜑0 + 𝛼(𝑡), 𝜄, 𝛽(𝑡)) + 𝑉̃(𝜑0 + 𝛼(𝑡), 𝜄, 𝛽(𝑡))𝒌

]
𝑒 𝒋(𝜑𝑙 ,𝑚(𝑡)−𝑚𝛾(𝑡))

(4.34)

which states that the instantaneous phase of 𝔥𝑙 ,𝑚ℍ, as defined

in (1.9), is given by

𝜑 = 𝜑𝑙 ,𝑚(𝑡) − 𝑚𝛾(𝑡). (4.35)
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The instantaneous Stokes parameters of 𝔥𝑙 ,𝑚 can be computed

with (1.17). The calculation is as follows
15

15: Here we abreviated 𝑈̃(𝜑0 −
𝛼(𝑡), 𝛽(𝑡), 𝜄) by 𝑈̃(𝑡) and respec-

tively for 𝑉̃(𝑡). The calculations

are always valid with 𝑈(𝑡) and

𝑉(𝑡).

|𝔥𝑙 ,𝑚ℍ(𝑡)|2 = 𝑎2

𝑙 ,𝑚
(𝑡)

��𝑈̃(𝑡) + 𝑉̃(𝑡)𝒌��2
= 𝑎2

𝑙 ,𝑚
(𝑡)

(��𝑈̃(𝑡)��2 + ��𝑉̃(𝑡)��2) (4.36)

and

𝔥𝑙 ,𝑚ℍ(𝑡)𝔥𝑙 ,𝑚ℍ
∗𝒋(𝑡) = 𝑎2

𝑙 ,𝑚
(𝑡)(𝑈̃(𝑡) + 𝑉̃(𝑡)𝒌)(𝑈̃(𝑡) + 𝑉̃(𝑡)𝒌)∗𝒋

= 𝑎2

𝑙 ,𝑚
(𝑡)

(
𝑈̃(𝑡)𝑈̃(𝑡)∗𝒋 + 2Re

{
𝑈̃(𝑡)𝑉̃(𝑡)

}
𝒌 − 𝑉̃(𝑡)𝑉̃(𝑡)∗𝒌

)
,

(4.37)

which gives the instantaneous Stokes parameters as

𝑆0(𝑡) = 𝑎2

𝑙 ,𝑚
(𝑡)

(��𝑈̃(𝑡)��2 + ��𝑉̃(𝑡)��2)
𝑆1(𝑡) = 𝑎2

𝑙 ,𝑚
(𝑡)

(
Re

{
𝑈̃(𝑡)

}
2 − Re

{
𝑉̃(𝑡)

}
2 − Im

{
𝑈̃(𝑡)

}
2 + Im

{
𝑉̃(𝑡)

}
2

)
𝑆2(𝑡) = 2𝑎2

𝑙 ,𝑚
(𝑡)

(
Re

{
𝑈̃(𝑡)

}
Im

{
𝑈̃(𝑡)

}
− Re

{
𝑉̃(𝑡)

}
Im

{
𝑉̃(𝑡)

})
𝑆3(𝑡) = −2𝑎2

𝑙 ,𝑚
(𝑡)Re

{
𝑈̃(𝑡)𝑉̃(𝑡)

} (4.38)

Equations (4.38) are still valid

with𝑈(𝑡) and𝑉(𝑡). Here the dis-

tinction is made to stress that the

normalized Stokes parameters

are functions of 𝜑0 + 𝛼(𝑡), 𝜄 and

𝛽(𝑡).

The instantaneous polarization state (given by the normalized

Stokes parameters 𝑠𝑖(𝑡) = 𝑆𝑖(𝑡)/𝑆0(𝑡), see Chapter 1) is such

that 𝝁𝔥𝑙 ,𝑚 (𝜑0 + 𝛼(𝑡), 𝜄, 𝛽(𝑡)), i.e. it is only determined by the

orientation of the line of sight in the co-precessing frame. The

instantaneous frequency of 𝔥𝑙 ,𝑚(𝑡) is computed from (1.34).

Thus the waveform can be decomposed as a sum of AM-

FM-PM components with different frequencies
16 𝜔𝔥𝑙 ,𝑚 ≈16: Note that this result de-

pends on three assumptions. The

conjugate symmetry of the co-

precessing modes should hold.

The Bedrosian theorem requires

that 𝜑𝑙 ,𝑚(𝑡) has sufficently high

variations compared to the other

parameters. More technically,

the Hilbert transform requires

a particular structure of 𝜑𝑙 ,𝑚(𝑡)
in order to create a quadrature

part of cos 𝜑𝑙 ,𝑚(𝑡).

¤𝜑𝑙 ,𝑚(𝑡).

As an illustration, Figure 4.9 shows the time-frequency trans-

form of a simulated signal for a precessing binary. The

brightest ridge of the energy spectrogram corresponds to

𝔥2,2 and other ridges correspond to subdominant polarized

components. The ridge curves are given by the instantaneous

frequencies of the polarized components. Values of the Stokes

parameters along the ridges are given by (4.38) and their

variations are due to the precession of the orbital plane.
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Figure 4.9: Energy and polarization spectrogram of a simulated gravitational waveform with SEOBNRv4PHM

including (2,±2), (2,±1), (3,±3), (4,±4) and (5,±5) precessing modes. The source is a precessing binary

inclined at 80 deg with bodies of masses 𝑚1 = 29.7𝑀⊙ , 𝑚2 = 8.4𝑀⊙ and spins 𝜒𝑥 = (0.5, 0.2, 0.2), 𝜒𝑦 =

(0.2, 0.2, 0.5) (𝜒𝑝 = 0.5).

4.3.3 The dominant polarized component 𝔥2,2

As for spin-aligned BBHs, the (2,±2)modes are dominant in

the co-precessing frame [85]. [85]: Babak et al. (2017), Validat-
ing the effective-one-body model of
spinning, precessing binary black
holes against numerical relativity

The restriction of the gravitational waveform to the dominant

(2,±2) co-precessing mode is given by

𝔥2,2(𝑡) = ℎ𝑃
2,2(𝑡)−2𝑌2,2(Θ(𝑡)) + ℎ𝑃

2,−2
(𝑡)−2𝑌2,−2(Θ(𝑡)).

We present here an illustration of the previous method on the

dominant AM-FM-PM component 𝔥2,2(𝑡). Consider a face-on

binary in the inertial frame, i.e. 𝜄 = 𝜑0 = 0. Then, one obtains

that:

−2𝑌2,2(Θ(𝑡)) =
2∑

𝑚′=−2

𝐷2

2,𝑚′(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))−2𝑌2,𝑚′(0, 0)

=
1

2

√
5

𝜋
cos

4
𝛽(𝑡)

2

𝑒2𝒊(𝛼(𝑡)+𝛾(𝑡))

(4.39)

and

−2𝑌2,−2(Θ(𝑡)) =
2∑

𝑚′=−2

𝐷2

−2,𝑚′(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))−2𝑌2,𝑚′(0, 0)

=
1

2

√
5

𝜋
sin

4
𝛽(𝑡)

2

𝑒2𝒊(𝛼(𝑡)−𝛾(𝑡)).

(4.40)

Knowing that 𝛾(𝑡) is only involved in the instantenous phase
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of 𝔥2,2, it is dropped to gives the following terms
17

17: In this particular case, the

expression of 𝔥2,2 from (4.39)

and (4.40) is quite simple. How-

ever we want to illustrate the ap-

propriateness of the Stokes pa-

rameters derivation presented in

the last section.

𝑈̃(𝑡) = 1

2

√
5

𝜋
𝑒2𝒊𝛼(𝑡)

(
cos

4
𝛽(𝑡)

2

+ sin
4
𝛽(𝑡)

2

)
(4.41)

𝑉̃(𝑡) = 1

2

√
5

𝜋
𝑒2𝒊𝛼(𝑡)

(
cos

4
𝛽(𝑡)

2

− sin
4
𝛽(𝑡)

2

)
(4.42)

Then, the expressions of the Stokes parameters are

𝑆0(𝑡) =
𝑎2

2,2
(𝑡)

2

5

𝜋

(
sin

8
𝛽(𝑡)

2

+ cos
8
𝛽(𝑡)

2

)
,

𝑆1(𝑡) =
𝑎2

2,2
(𝑡)

16

5

𝜋
sin

4 𝛽(𝑡) cos 4𝛼(𝑡),

𝑆2(𝑡) =
𝑎2

2,2
(𝑡)

16

5

𝜋
sin

4 𝛽(𝑡) sin 4𝛼(𝑡),

𝑆3(𝑡) =
𝑎2

2,2
(𝑡)

2

5

𝜋

(
sin

8
𝛽(𝑡)

2

− cos
8
𝛽(𝑡)

2

)
.

(4.43)

For instance, when the orbital plane is face-on (𝛽(𝑡) = 0), 𝔥2,2

is counter-clockwise circularly polarized with 𝑠1(𝑡) = 𝑠2(𝑡) =
0 and 𝑠3(𝑡) = −1. When the orbital plane is edge-on (𝛽(𝑡) =
𝜋/2), 𝔥2,2 is linearly polarized with 𝑠3(𝑡) = 0 (horizontal for

𝛼 = 0 and vertical for 𝛼 = 𝜋/4). For 0 < 𝛽 < 𝜋/2, 𝔥2,2 is

elliptically polarized.

We have a closed form expression of the instantaneous Stokes

parameters of 𝔥2,2(𝑡) and its instantaneous phase (which

is 𝜑(𝑡) = 𝜑2,2(𝑡) − 2𝛾(𝑡)) with respect to the rotation pa-

rameters (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)) and the amplitude and phase of

the co-precessing mode (𝑎2,2(𝑡), 𝜑2,2(𝑡)). The instantaneous

frequency of the dominant polarized component can be

computed from (1.34), such that

𝜔(𝑡) = ¤𝜑2,2(𝑡) − 2 ¤𝛾(𝑡) + 2 ¤𝛼(𝑡)
sin

8(𝛽(𝑡)/2) − cos
8(𝛽(𝑡)/2)

sin
8(𝛽(𝑡)/2) + cos

8(𝛽(𝑡)/2)
.

(4.44)

While we content ourselves to the dominant polarized com-

ponent, the same straightforward derivation applies to sub-

dominant polarized components 𝔥𝑙 ,𝑚 : the instantaneous po-

larization parameters and the instantaneous frequency are

expressed with respect to the orientation of the line of sight

and the amplitude and phase of the waveform modes in the

co-processing source frame.
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4.4 Precession induced variations of
waveform polarization state

Section 4.3 shown that gravitational waves emitted by the

coalescence of compact objects are a sum of non stationary

polarized signals whose polarizations depend on the orien-

tation of the line of sight with respect to the orbital plane.

A variation of polarization state over time is characteristic

of a precession movement of the orbital plane. This sug-

gests a methodology for the detection of precession effects,

which would consist to detect time variations of the nor-

malized Stokes parameters/polarization state of a polarized

component.

4.4.1 Sensitivity of the normalized Stokes parameters

For precessing BHHs, the instantaneous polarization state

of the polarized components only depends on the triplet

(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)) parametrizing the precession motion with

respect to an inertial source frame, and the orientation of

the observer in this frame (𝜄, 𝜑0). At a given time 𝑡, 𝛽(𝑡) is

the opening angle between the Newtonian orbital angular

momentum
®𝐿𝑁 (𝑡) and a given reference inertial vector

18
, 18: A small variation of 𝛽(𝑡) cor-

responds to a small precession

and conversely a large 𝛽(𝑡) cor-

responds to a high precession.

which we defined as
®𝐿𝑁 (𝑡0).

During the coalescence, the spins of the two objects tend to

align themselves [49, 50] and thus limit the precession effects

during the last stages of the coalescence, when the signal is

in the observable bandwith. At this date, hints of precession

are reported [36] but there is no confident detection of a

precessing binary. From this status, this section considers the

influence of small precession effects, i.e. small variations of

𝛽(𝑡), on the instantaneous Stokes parameters. The objective

is to evaluate which configurations are more or less favorable

to the detection of precession.

First order approximation

For each polarized component, the Taylor series of the nor-

malized Stokes parameters with respect to the precession

angle 𝛽(𝑡) can be computed from (4.38). In particular, this

leads to
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𝑠1(𝑡) =
sin

4 𝜄

sin
4 𝜄 + 8 cos

2 𝜄
+ 16

sin 𝜄 cos 𝜄(cos
4 𝜄 − 1) cos(𝜑0 + 𝛼(𝑡))

(cos
4 𝜄 + 6 cos

2 𝜄 + 1)2 𝛽(𝑡) + O(𝛽2(𝑡))

𝑠2(𝑡) = 4

sin
3 𝜄 sin (𝜑0 + 𝛼(𝑡))
sin

4 𝜄 + 8 cos
2 𝜄

𝛽(𝑡) + O(𝛽2(𝑡))

𝑠3(𝑡) = −4

cos 𝜄(1 + cos
2 𝜄)

cos
4 𝜄 + 6 cos

2 𝜄 + 1

− 4

sin
7 𝜄 cos (𝜑0 + 𝛼(𝑡))

(cos
4 𝜄 + 6 cos

2 𝜄 + 1)2𝛽(𝑡) + O(𝛽2(𝑡))

(4.45)

for the dominant polarized component 𝔥2,2.
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Figure 4.10: First coefficients of the expansion of the Stokes of the (2,2) precessing modes.

Equation (4.45) reveals that the inclination 𝜄 is leading the

dependence of the Stokes parameters with respect to 𝛽(𝑡).
Moreover, for almost all inclinations 𝑠1(𝑡), 𝑠2(𝑡) and 𝑠3(𝑡)
linearly depends on 𝛽(𝑡). Exceptions are notably the face-on

(𝜄 = 0) and face-off (𝜄 = 𝜋) cases for which none of them

has a linear dependence, and the edge-on (𝜄 = 𝜋/2) case for

which the first order coefficient of 𝑠1(𝑡) is vanishing.

0 π
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π
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0

2
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Figure 4.11: Second order coeffi-

cients of the Taylor series of the

normalized Stokes parameters:

(blue) 16 |𝑐1(𝜄)|, (red) 4 |𝑐2(𝜄)|,
(green) 4 |𝑐3(𝜄)|. The dashed line

corresponds to a threshold value

of 1.

In order to differentiate between the different terms of the

expansions, Equation (4.45) is shortened as

𝑠1(𝑡) = 𝑏1(𝜄) + 16𝑐1(𝜄) cos(𝜑0 + 𝛼(𝑡))𝛽(𝑡) + O(𝛽2),
𝑠2(𝑡) = 4𝑐2(𝜄) cos(𝜑0 + 𝛼(𝑡))𝛽(𝑡) + O(𝛽2),
𝑠3(𝑡) = −4𝑏3(𝜄) − 4𝑐3(𝜄) cos(𝜑0 + 𝛼(𝑡))𝛽(𝑡) + O(𝛽2),

(4.46)



4.4 Precession induced variations of waveform polarization state 103

where zero and first order coefficients of the normalized

Stokes parameters are shown in Figure 4.10.

Without precession, the values of the normalized instan-

taneous Stokes parameters are given by
19 𝑠1 = 𝑏1(𝜄), 𝑠2 = 19: Here we work in the wave

source frame. That is, the polar-

ization angle is null.

0, 𝑠3 = −4𝑏3(𝜄). Depending on the amplitude of the first

order coefficients 16 |𝑐1(𝜄)| , 4 |𝑐2(𝜄)| and 4 |𝑐3(𝜄)|, the normal-

ized Stokes parameters are more or less sensitive to small

variations of 𝛽(𝑡). The amplitude of the first order coefficients

is drawn as a function of 𝜄 in Figure 4.11. For 𝜄 ∈ [𝜋/3, 2𝜋/3]
(inclinations between 60 and 120 degrees), variations of

𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡) are of the same order as variations of 𝛽(𝑡)
(expect for 𝑠1(𝑡) on a small interval around 𝜄 = 𝜋/2). Outside

this interval variations of 𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡) are much smaller

than actual variations of 𝛽(𝑡). The normalized Stokes param-

eters are thus more sensitive to variations of the orbital plane

for near edge-on binaries.

One could expand (4.45) up to the second order. Doing so,

we see that for 𝜄 = 𝜋/2, none of 𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡) exhibit

a quadratic dependence on 𝛽(𝑡). In the face-on and face-

off cases, the second order terms of 𝑠2(𝑡), 𝑠3(𝑡) vanish. The

approximation (4.45) is thus more accurate for near edge-on

binaries.

Probability distributions of Δ𝑠1, Δ𝑠2, Δ𝑠3

0 π
2 π

Inclination (rad)

0.0

0.2

0.4

Figure 4.12: Uniform inclination

(blue) and detectable inclination

(green) distributions.

Considering a given distribution of the line of sight in the

source frame, one can predict the expected distribution of

Stokes variations for the upcoming signals (4.45). This defines

a goal for the accuracy of Stokes parameters estimation.

For an isotropic distribution of the line of sight, the inclination

distribution is given by 𝑔(𝜄) = sin(𝜄)/2 for 𝜄 ∈ [0, 𝜋], see

Figure 4.12. Based on the difference of amplitude of the

waveform for different inclinations
20

, Schutz [86] estimated

20: Without precession, 𝛽(𝑡) can

be replaced by 𝜄 in (4.43). Then

𝑆0 gives the power of the signal

as a function of the inclination

angle.

[86]: Schutz (2011), Networks of
gravitational wave detectors and
three figures of merit

a distribution of detectable inclination as

𝑓 (𝜄) = 0.076076(1 + 6 cos
2 𝜄 + cos

4 𝜄) 32 sin 𝜄, (4.47)

see Figure 4.12.

We define 𝛽max as the opening angle of the cone drawn by

the Newtonian angular momentum
®𝐿𝑁 (𝑡) (see Figure 3.12),

i.e. the maximum precession angle of the binary. For a given
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𝛽max ≪ 1 and a given inclination 𝜄,

Δ𝑠1(𝜄, 𝛽max) = 16 |𝑐1(𝜄)| 𝛽max

Δ𝑠2(𝜄, 𝛽max) = 4 |𝑐2(𝜄)| 𝛽max

Δ𝑠3(𝜄, 𝛽max) = 4 |𝑐3(𝜄)| 𝛽max

(4.48)

are the first order variations of the normalized Stokes param-

eters induced by a low precession of the orbital plane.
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Figure 4.13: Histogram of Δ𝑠𝑖 for a uniform distribution of inclinations (a) and for a distribution of detectable

inclinations (b).

Table 4.2: Quantiles of the distribution of Δ𝑠𝑖 associated to 𝛽max = 5 deg for the uniform distribution of

inclination (a) and the detectable distribution of inclination (b).

𝑞5% 𝑞50% 𝑞95%

Δ𝑠1 2.8 × 10
−3

1.3 × 10
−1

3.5 × 10
−1

Δ𝑠2 2.9 × 10
−3

1.7 × 10
−1

6.8 × 10
−1

Δ𝑠3 3.8 × 10
−6

3.8 × 10
−2

6.7 × 10
−1

(a)

𝑞5% 𝑞50% 𝑞95%

Δ𝑠1 4.5 × 10
−4

2.6 × 10
−2

3 × 10
−1

Δ𝑠2 4.4 × 10
−4

2.6 × 10
−2

4.3 × 10
−1

Δ𝑠3 5.1 × 10
−8

6.1 × 10
−4

2.6 × 10
−1

(b)

For a given 𝛽max and a distribution of inclination (𝑔(𝜄) or 𝑓 (𝜄)),
we draw the distribution of Δ𝑠1, Δ𝑠2 and Δ𝑠3. The results are

illustrated in Figure 4.13 for 𝛽max = 5 deg. The quantiles of the

Δ𝑠𝑖 are given in Table 4.2. For a precession angle of 5 deg, the

maximum value of Δ𝑠𝑖 are given by 4𝛽max ≈ 0.34 for 𝑠2 and

𝑠3. Considering the uniform distribution, this means that for

half of the binariesΔ𝑠2 ∈ [0.17, 0.34] andΔ𝑠3 ∈ [0.038, 0.34].
It goes to Δ𝑠2 ∈ [0.026, 0.34] and Δ𝑠3 ∈ [6.1× 10

−4, 0.34] for

detectable binaries.

Δ𝑠1, Δ𝑠2 and Δ𝑠3 are figures of merit for the detection of

low precession in the detector network observations. They

define the sensitivity that a method detecting precession
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should have with respect to the inclination of a binary and

the precession level.

4.4.2 Towards the detection of precession

Section 4.4.1 introduced Δ𝑠1, Δ𝑠2 and Δ𝑠3 as characterizing

the level of variation of the normalized Stokes parameters

depending on the inclination and precession angle. This

suggests a strategy for the detection of precession which

consists to detect two distinct polarization states at different

instants in the signal observations. For example by comparing

gains of Hermitian filters [3] with distinct polarization axes.

As a first step, this proposed approach supposes to detect

the polarization state of the signal in noisy data.

The polarization SNR

In order to measure the detectability of the polarization state

of a given gravitational waveform, we propose a polarization

SNR as the power spectral density of the filtered signal, with

a whitening and unpolarizing filter as defined by Flamant [3].

The polarization SNR writes

𝜌polar =

∫ ��𝐻̃(𝜔)��2 d𝜔 (4.49)

where 𝐻(𝜔) ∈ ℍ is the quaternion Fourier transform of the

waveform ℎ, and

𝐻̃(𝜔) = 𝐾(𝜔)
(
𝐻(𝜔) + 𝜂(𝜔)𝝁𝑛(𝜔)𝐻(𝜔)𝒋

)
(4.50)

is its filtered version with a quaternion Hermitian filter [3]

corresponding to statistical properties of the noise. The po-

larizing power of the filter is such that

𝜂(𝜔) = 1 −
√

1 −Φ2

𝑛(𝜔)
Φ2

𝑛(𝜔)
(4.51)

where Φ𝑛(𝜔) is the polarization degree of the noise at fre-

quency 𝜔. 𝝁𝑛(𝜔) is the noise main polarization axis and the

homogenous gain is

𝐾2(𝜔) = 1

2𝑆0,𝑛(𝜔)
Φ2

𝑛(𝜔)(
1 −Φ2

𝑛(𝜔)
) (

1 −
√

1 −Φ2

𝑛(𝜔)
) (4.52)
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where 𝑆0,𝑛(𝜔) is the power spectral density of the noise.

𝜌polar measures the detectability of the polarization state of

a signal in an additive Gaussian noise. It depends on the

ratio between the signal energy and the noise power spectral

density and on the correlation between the noise and signal

polarization axis [3].

A precession SNR

For a signal with a sufficient polarization SNR, one expect

to detect variations of the polarization state. As for compact

binaries, the polarization state of the gravitational-wave

signal is determined by the orientation of the orbital plane.

Detect a variation of polarization state remains to detect

precession effects in the gravitational waveform. To do so,

we compute a dominant polarization axis as the polarization

axis which maximizes the energy of the output of a polarizer,

such that

𝝁̂ = arg max

𝝁

∫ ��ℎℍ(𝑡) + 𝝁ℎℍ(𝑡)𝒋��2 d𝑡 , (4.53)

where ℎℍ is the quaternion embedding of ℎ, and define the

precession SNR as

𝜌𝑝 =

∫ ��ℎ̃ℍ−𝝁̂(𝑡)��2 d𝑡 , (4.54)

where

ℎℍ−𝝁̂(𝑡) = ℎℍ(𝑡) + 𝝁̂ℎℍ(𝑡)𝒋 (4.55)

is the output of a polarizer of axis −𝝁̂ and ℎ̃ℍ−𝝁̂(𝑡) is defined

as in (4.50) with respect to noise properties.

𝜌𝑝 measures the energy of ℎ that corresponds to polarization

states distinct from 𝝁̂. For a given signal with a fixed polar-

ization axis over time 𝝁ℎ , 𝝁̂ = 𝝁ℎ and thus 𝜌𝑝 = 0, whereas

𝜌𝑝 > 0 for a signal with a varying polarization axis.

A polarization stability measure

In order to quantify the variability of the polarization of a

given deterministic signal ℎ, we define a polarization stability

measure as

0 ⩽ 𝐷ℎ = 1 −Φℎ ⩽ 1, (4.56)
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where

Φℎ =

√
S1

2 + S2

2 + S3

2

S0

(4.57)

is the deterministic version of the polarization degree for

stochastic processes and S𝑖 =
∫
𝑆𝑖(𝑡)d𝑡 are the averaged

Stokes parameters of ℎ. One can compute the polarization

stability measure as

𝐷ℎ = 1 −
��∫ ℎℍ(𝑡)ℎℍ(𝑡)∗𝒋d𝑡

��∫
|ℎℍ(𝑡)|2 d𝑡

. (4.58)

𝐷ℎ is a measure of stability of the polarization axis of ℎ. For

a given signal ℎ with a fixed polarization axis 𝝁 = (𝑠1, 𝑠2, 𝑠3),
we have S𝑖 = 𝑠𝑖S0 for 𝑖 = 1, 2, 3 and then 𝐷ℎ = 0. Conversely,

for signals with a constant energy 𝑆0 in a given interval [1, 𝑇]
and such that 𝝁(𝑡) = (cos(𝛼𝑡), sin(𝛼𝑡), 0) with a constant

angular velocity 𝛼, we have 𝐷ℎ = 1. For precessing binaries

𝐷ℎ quantifies the level of polarization modulations induced

by precession for a given waveform.

4.5 Summary

Gravitational-wave reconstruction require the resolution of

an ill-posed inverse problem. This results from the bad con-

ditioning of the mixing matrix, as from the noise properties.

A regularization method is proposed for the reconstruction

of non stationary polarized signals. Based on a polarization

prior, the reconstruction problem is penalized by the energy

of the signal on a given polarization axis. The proposed regu-

larization is a weak polarization constraint which allows for

weakly modelled reconstruction of gravitational-wave sig-

nals. A refined method is proposed with a structured sparsity

prior selecting time-frequency clusters with a physical prior.

The proposed reconstruction methods are implemented and

evaluated on realistic synthetic data.

While the polarization state of the dominant precessing

modes (2,±2)was first computed by Flamant [7], we demon-

strate as a more general result that gravitational waveforms

are a sum of AM-FM-PM components 𝔥𝑙 ,𝑚 with different

instantaneous frequencies. The instantaneous Stokes param-

eters and the instantaneous frequency of the polarized com-

ponents are derived. We found that the instantaneous po-

larization state of a polarized component is determined by
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the orientation of the orbital plane compared to the observer.

Thus a variation of the instantaneous polarization state of

the waveform is characteristic of a precession of the orbital

plane.

The main assumption on the gravitational waveform is that

the conjugate symmetry must hold ; this is true for a range of

sources [87]. Efforts are made by the data analysis community[87]: Thompson et al. (2020),

Modeling the gravitational wave sig-
nature of neutron star black hole
coalescences

to move data analysis pipelines in the time-frequency do-

main [88] and these results can be particularly important for

[88]: Cornish (2020), Time-
frequency analysis of gravitational
wave data

waveform modelling. As a perspective, the decomposition of

gravitational waveforms in polarized components could be

generalized to gravitational theories alternative from general

relativity, which may result in additional polarizations (up

to 6 polarization modes).

For compact star mergers, the sensitivity of the normalized

Stokes parameters with respect to a variation of inclination of

the orbital plane is characterized. For an opening angle of the

cone drawn by the Newtonian orbital angular momentum

𝛽max = 5 deg, we computed a distribution of the deviation of

the normalized Stokes parameters Δ𝑠𝑖 for two different popu-

lation of binaries. Finally, different quantities are introduced:

the polarization SNR 𝜌polar, which is a contrast measure

between the signal and noise polarizations ponderated by

their respective energies ; the precession SNR 𝜌𝑝 , which

measures the detectability of polarization modulations ; the

polarization stability measure 𝐷ℎ , which depends on the

variation of the instantaneous polarization of a given signal

ℎ. In particular the precession SNR can be used as a detection

statistics for precession effects.



Conclusion and perspectives

The field of polarimetric analysis of non stationary bivariate signals is in its infancy. It still

essentially relies and borrows from the techniques developed for the univariate signals,

applied trivially to each component separately, and thus missing the important geometrical

information shared by the two. This field has recently regain interest with the successful

application of polarimetric analysis over different contexts, e.g. oceanography [8] and

gravitational wave analysis [72].

Flamant introduced a quaternion formalism [3] based in an embedding of a complex-valued

signals in a four dimensional space. Each of the signal variables are analysed in two separate

dimensions, and the polarimetric analysis methods derive from quaternion calculus. On

the other hand, the approach of Lilly is more conventional [10, 12]. It lies in a vectorial

representation of bivariate signals from which the same methods can be derived. The latter

leads to less straightforward calculations but it remains adapted to multivariate signals

with more than two variables.

This thesis connects the previous work of Flamant [7] and that of Lilly [10, 12] on the

representation problem of oscillating and non stationary bivariate signals. Chapter 1

reviewed representations of non stationary polarized signals throughout the quaternion

formalism introduced in [7]. It is shown that contrarily to what suggested Lilly and Flamant,

the Euler angle parametrization of a bivariate signal is indeed well suited in a synthesis

scheme, but it is not generally the case in an analysis scheme. A parametrization is proposed,

defined with time-frequency observables, namely the instantaneous Stokes parameters and

the instantaneous frequency.

This initial work was motivated by the main application presented in this thesis, i.e.

gravitational-wave data analysis. Gravitational wave astronomy is a new field which

has significantly benefited from the development of dedicated mathematical and signal

processing tools [89, 90]. This thesis follows this line of research, with a focus on the

not still developed polarimetric analysis of gravitational waves. The technical limitations

encountered for this type of study are about to disappear with the extension of the network

of second generation detectors spreading around the globe.

Based on a judicious choice of representation, generative machine learning models of

gravitational waveforms are built in order to shorten estimation time of compact binary

parameters. A model is proposed for both spin-aligned and precessing black hole binaries.

They both are evaluated on EOB waveforms [21]. While the proposed generative model

shows operational results for current and future observations of spin-aligned binaries,

technical difficulties prevented the proper evaluation of the model for precessing binaries.

A new regularization method based on a polarization prior is introduced in the resolution

scheme of the reconstruction denoising problem of a signal embedded in an additive

Gaussian noise. The proposed regularization method is found to be more versatile than

existing methodologies [41]. An application is shown on realistic synthetic data.
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The observation and characterization of precessing binaries is one of the interesting

challenges in gravitational-wave data analysis. These sources are of particular interest

regarding the developments made in Chapter 1. As described in Chapter 4, they produce

a signal which is a sum of waveforms whose amplitude, frequency and polarization are

modulated over time. The instantaneous Stokes parameters and instantaneous frequency

of the polarized components are expressed as a function of the amplitude and phase

of co-precessing modes and rotation parameters describing the precession of the orbital

plane.

The dependence of the normalized instantaneous Stokes parameters with respect to the

precession angle is characterized. It is shown that in the case of low precession angles, the

normalized instantaneous Stokes parameters linearly depend on this angle. Regarding

a distribution of compact binary inclinations, a distribution of first order variations of

the normalized instantaneous Stokes parameters is drawn. Indicators on the intrinsic and

detectable level of polarization modulations of a generic bivariate signal are introduced,

paving the way towards the non modelled or poorly modelled detection of precession.

This work introduces a number of mathematical tools that can be hopefully usefull for

the future of gravitational-wave astronomy. The availability of additional detectors, in

particular KAGRA in Japan and LIGO India, will be a game changer for this question.

Within this scope, several developments can be foreseen. The most straightforward possible

development is the construction of a generative model in the case of precessing black hole

binaries. Technical limitations encountered in this work can be overcome by using more

computing power for the training and evaluation of the model. The waveform attributes can

be computed without the need to implement a Hilbert transform, using expressions of the

waveform parameters given in Chapter 4. The model could be constructed in the spectral

domain as in the time-frequency/wavelet domain with a stationary phase approximation.

Secondly, the proposed polarization targeting prior can be included in data analysis pipeline

which already uses the same inverse problem approach. Another important line of work is

the use and evaluation of the polarization SNR and precession SNR for actual and future

observations. From the perspective of waveform approximants, Chapter 1 and 4 suggest to

synthesize the waveform modes as AM-FM-PM signals. So far, the waveform modes are

modelled as AM-FM signals and thus waveform approximants focus on the computation (in

time or frequency domain) of the modes’ amplitude and phase possibly modulated by the

effect of orbital precession. For precessing binaries, the computed amplitudes and phases

are not interpretable and highly oscillating (e.g. as in Figure 1.8). Modelling the modes as

AM-FM-PM signals would remain to compute the (more regular) amplitude, orientation,

ellipticity and phase of the Euler angle representation. Such change of consideration

would lead to a major evolution in the standard way of thinking about gravitational-wave

signals.

Beyond gravitational-wave astronomy, the presented methodological work is of general

purpose and is a contribution to the newly introduced field of non stationary bivariate

signals analysis. It raises several questions that are left for future work. For instance, starting

from the work of Brosseau [1] on the polarimetric analysis of stochastic signals, is there

a proper manner to directly detect/estimate the polarization state of a non stationary

signal from noisy observations without having to estimate the signal at first? For a given
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application, one might be interested in estimating the instantaneous parameters of the Euler

angle parametrization even if the signal goes through circular polarization states. This

raises the question of the structure that should be imposed on the instantaneous orientation

and instantaneous phase of the signal, and under which conditions they can be retrieved.

A question that emerges concerns the decomposition of non stationary bivariate signals on

a system of "basic" polarized waveforms. A mathematically motivated decomposition of

any bivariate signal as a sum of polarized atoms (more general than the decomposition in

rotatory components of Section 1.3.1) would impact a range of applications. By analogy

with the chirplet transform [91] which generalizes the classic wavelet transform [92] with

chirp-like atoms (chirplets), is it possible to build a transform which decomposes a bivariate

signal on a system of (non uniformly) polarized atoms? Besides the direct implications of

such transform (e.g. reconstruction and synthesis of polarized signals), this would lead to

a deeper comprehension of the nature of non-stationary polarized signals.



112 4 Gravitational-wave polarimetric analysis



A The quaternion formalism

A.1 Quaternions

Quaternions form a generalisation of complex numbers in

four dimensions. The set of quaternions ℍ forms an alge-

bra over the real numbers. The main difference with com-

plex numbers is that multiplication is associative but non-

commutative. Similarly to complex numbers, a quaternion Definions of this section are

taken from [13]. One may refer

to [93]

[93]: Altmann (2005), Rotations,
quaternions, and double groups;
Corrected ed.

for a deeper introduction

on the subject.

𝑞 ∈ ℍ has a unique cartesian expression

𝑞 = 𝑎 + 𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑, (A.1)

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ and 𝒊 , 𝒋 , 𝒌 three distinct roots of −1. The

cartesian form (A.1) allows to define the addition in a simple

way. For a given quaternion 𝑝 = 𝑒+ 𝒊 𝑓 + 𝒋𝑔+𝒌ℎ, the addition

𝑝 + 𝑞 gives

𝑝 + 𝑞 = (𝑎 + 𝑒) + 𝒊(𝑏 + 𝑓 ) + 𝒋(𝑐 + 𝑔) + 𝒌(𝑑 + ℎ).

Multiplication rules for the three imaginary units define

cyclic relations. They read

𝒊2 =𝒋2 = 𝒌2 = −1,

𝒊𝒋 = − 𝒋𝒊 = 𝒌 ,

𝒌𝒊 = − 𝒌𝒊 = 𝒋 ,

𝒋𝒌 = − 𝒌𝒋 = 𝒊.

(A.2)

Thanks to the distributivity of multiplication, (A.2) directly

gives the following results for the multiplication of 𝑝 and

𝑞

𝑞𝑝 = 𝑎𝑒 − (𝑏 𝑓 + 𝑐𝑔 + 𝑑ℎ) + 𝑎(𝒊 𝑓 + 𝒋𝑔 + 𝒌ℎ) + 𝑒(𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑)
+ 𝒊(𝑐ℎ − 𝑑𝑔) + 𝒋(𝑑𝑓 − 𝑏ℎ) + 𝒌(𝑏𝑔 − 𝑐 𝑓 ).

(A.3)

The non-commutativity of quaternion product, which is

evident from (A.3), comes from multiplication rules (A.2).

Thus in general

𝑞𝑝 ≠ 𝑝𝑞.

Due to the non-commutativity of the product, the position of

each element is important in the definition of quaternionic

operators. For example, position of the exponential and

imaginary component 𝒋 in the quaternion Fourier and Hilbert



114 A The quaternion formalism

transforms are important. In an analogous way to complex

numbers, for 𝑞 defined in (A.1), 𝑎 denotes its real part and

𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑 its imaginary part. Thus the conjugate of 𝑞 is

𝑞̄ = 𝑎 − 𝒊𝑏 − 𝒋𝑐 − 𝒌𝑑.

The modulus of a quaternion is as expected

|𝑞 | =
√
𝑞𝑞̄ =

√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.

𝑞 is a unit quaternion if |𝑞 | = 1. It is a pure unit quaternion

if and only if 𝑞2 = −1.

An involution by a pure unit quaternion 𝝁 is defined as

𝑞̄𝝁 = 𝝁̄𝑞𝝁.

In this manuscript we mainly use the combination of a

conjugation and a canonical involution of axis 𝒋

𝑞∗𝒋 = 𝑞̄ 𝒋 = 𝑞̄
𝒋
= 𝑎 + 𝒊𝑏 − 𝒋𝑐 + 𝒌𝑑.

In particular, one directly has

𝑞𝑝 = 𝑝̄ 𝑞̄ and 𝑞𝑝
𝒋
= 𝑞̄ 𝒋 𝑝̄ 𝒋 .

One may verify that its inverse is

𝑞−1 =
𝑞

|𝑞 |2
.

The widely used quaternion exponential is defined, as for

real numbers, as a series expansion

𝑒𝑞 =
∞∑
𝑛=0

𝑞𝑛

𝑛!

. (A.4)

A direct calculation shows that 𝑒𝑞 = 𝑒 𝑎𝑒 𝒊𝑏+𝒋𝑐+𝒌𝑑 = 𝑒 𝑎
(
∞∑
𝑛=0

Im{𝑞}𝑛
𝑛!

)
,

where we denoted the imaginary part Im {𝑞} = 𝒊𝑏 + 𝒋𝑐 + 𝒌𝑑.

Then one show that 𝑒𝑞 = 𝑒 𝑎
(
cos |Im {𝑞}| +�

Im {𝑞} sin |Im {𝑞}|
)

with Im {𝑞} = |Im {𝑞}|�Im {𝑞} and
�
Im {𝑞} = Im {𝑞} /|Im {𝑞}|.

In the particular case of pure unit quaternion 𝝁 i.e. a quater-

nion without real part and with modulus equal to 1, and a

given real value 𝜙, then

𝑒𝜙𝝁 = cos 𝜙 + 𝝁 sin 𝜙. (A.5)
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Thus Equation (A.5) is in particular valid for 𝝁 = 𝒊 , 𝒋 and

𝒌.

The logarithm of a quaternion is defined such that

ln(𝑞) = ln |𝑞 | +
Im {𝑞}
|Im {𝑞}| arccos

Re {𝑞}
|𝑞 | . (A.6)

There are several decompositions of quaternion: cartesian

form (A.1) is only one of the symplectic forms, while polar

forms derive from Equation (A.5).

A.2 Quaternion spectral analysis

The quaternionic analysis of polarized bivariate signals is

based on a recent formalism proposed by Flamant [3]. This

formalism uses frequency and time-frequency analysis tech-

niques on the space of quaternions to study spectral and

time-frequency polarization properties of bivariate signals.

Since the notion of polarization is linked to the notion of cycle

when scanning an ellipse, spectral analysis is a keystone in

the analysis of polarized signals.

The definition of a quaternion Fourier transform (QFT) is a

basis for our analysis of bivariate signals
1
. There are several 1: The construction of the quater-

nionic Fourier transform on the

Hilbert space 𝐿2(ℝ,ℍ) is similar

to the construction of the classic

Fourier transform on 𝐿2(ℝ,ℂ).
One can find such a construction

in [94]

[94]: Jamison (1970), Extension
of some theorems of complex func-
tional analysis to linear spaces over
the quaternions and Cayley num-
bers

.

equivalent ways to define the quaternionic Fourier transform

because of the non commutativity of the product in ℍ. This

requires to differentiate the transformation with exponential

on the right-hand side from the one with exponential on

the left. The axis of the transformation is also a degree of

freedom and we follow here the convention used in the work

of Flamant [3].

Definition A.2.1 (Quaternion Fourier transform) We de-
fine the quaternion Fourier transform (of axis 𝒋) as the linear
application which associates to 𝑓 ∈ 𝐿2(ℝ,ℍ)

F{ 𝑓 } (𝜔) = 1√
2𝜋

∫
𝑓 (𝑡)𝑒−𝒋𝜔𝑡dt ∀𝜔 ∈ ℝ (A.7)

and we denote F{ 𝑓 } = 𝑓 ∈ 𝐿2(ℝ,ℍ).

As in the complex case we can demonstrate the existence of

an inverse for the QFT, with 𝑓 (𝑡) = 1√
2𝜋

∫
F{ 𝑓 } (𝜔)𝑒 𝒋𝜔𝑡d𝜔
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as well as other properties like the Parseval-Plancherel iden-

tities ∫
| 𝑓 (𝑡)|2 d𝑡 =

∫
|F{ 𝑓 } (𝜔)|2d𝜔, (A.8)∫

𝑓 (𝑡) 𝑓 (𝑡)∗𝒋d𝑡 =
∫

F{ 𝑓 } (𝜔)F{ 𝑓 } (𝜔)∗𝒋d𝜔. (A.9)

It follows that |F{ 𝑓 } (𝜔)|2 and F{ 𝑓 } (𝜔)F{ 𝑓 } (𝜔)∗𝒋 can be

seen as spectral domain densities.

An important point for the analysis of bivariate signals is

the 𝒊-Hermitian symmetry
2
: for all 𝑓 ∈ 𝐿2(ℝ,ℍ) such that2: This justifies the choice of 𝒋 as

the axis of the QFT (it is sufficient

to choose an axis orthogonal to

𝒊).

𝑓 (𝑡) ∈ ℂ𝒊 we have

F{ 𝑓 } (−𝜔) = F{ 𝑓 } (𝜔)
𝒊
∀𝜔 ∈ ℝ. (A.10)

The 𝒊-Hermitian symmetry implies that the information

carried by the negative frequencies is redundant, the signal

can be described only with its positive frequencies. In this

way, we associate to a signal its counterpart made up only of

positive frequencies.

The spectral Stokes parameters are defined as

|F{ 𝑓 } (𝜔)|2 = 𝑆0(𝜔),
F{ 𝑓 } (𝜔)F{ 𝑓 } (𝜔)∗𝒋 = 𝑆1(𝜔) + 𝒊𝑆2(𝜔) − 𝒌𝑆3(𝜔).

(A.11)

They are the energetic and geometric content preserved

by the quaternion Fourier transform. While 𝑆0(𝜔) is the

energy of the two components at frequency 𝜔: 𝑆0(𝜔) =
|𝑋(𝜔)|2+|𝑌(𝜔)|2, the other Stokes parameters are constructed

with cross-correlation products:

𝑆1(𝜔) = |𝑋(𝜔)|2 − |𝑌(𝜔)|2 ,
𝑆2(𝜔) = 2 (Re {𝑋(𝜔)}Re {𝑌(𝜔)} + Im {𝑋(𝜔)} Im {𝑌(𝜔)}) ,
𝑆3(𝜔) = 2 (Im {𝑋(𝜔)}Re {𝑌(𝜔)} − Re {𝑋(𝜔)} Im {𝑌(𝜔)}) .

The invocation of quaternions is motivated by the fact that

polarization is revealed by correlation of signal components,

thus in the first time it becomes necessary to apply a spectral

analysis of each component separately. Classical methods

such as the complex Fourier transform mix the two dimen-

sions of a complex-valued signal, whereas quaternions allow

us to construct a Fourier transform that analyzes them sep-

arately and brings out their relationships in a natural way.

This is because they allow to associate two different axes to

the frequency representation of each signal component. A
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bivariate signal of the form 𝑧(𝑡) = 𝑥(𝑡) + 𝒊𝑦(𝑡) has its first

component 𝑥(𝑡) analysed on axes {1, 𝒋} while its second

component 𝑦(𝑡) is analysed on {𝒊 , 𝒌}. A fortiori the number

of dimension is equal to the number of degree of freedom

for polarized signals. A deeper discussion of these aspects

can be found in [3] .

A.3 Discrete quaternion embedding

We considered so far continuous-time signals, building fun-

dations on which we rely to analyse finite discrete time

signals. A major concern when estimating the instantaneous

parameters of a bivariate discrete-time signal is the discrete

Hilbert transform and the discrete computation of the quater-

nion embedding. For infinite duration signals, problems arise

from the impossibility to process all the signal at once. For

finite duration signals, the periodicity of the discrete-time

quaternion Fourier transform prevents to define a signal

with strictly zero negative frequencies. Instead we consider a

quaternion embedding-like signal with the idea of removing

redundancy of the negative frequencies in each spectral pe-

riod. These considerations are well discussed in the signal

processing litterature in the context of discrete real-valued

signals and the associated analytic-like signals [15][95, 96]. [95]: Oppenheim et al. (2009),

Discrete-Time Signal Processing
[96]: Reilly et al. (1994), Analytic
signal generation-tips and traps

Section 1.2.2 introduced the continuous Hilbert transform as

an ideal filter of frequency response −𝒋 sin 𝜔 which is used

in order to compute the quaternion embedding 𝑧ℍ. This filter

should be approximated for digital applications.

Finite duration signals Let us assume that 𝑧[𝑛] = 𝑥[𝑛] +
𝒊𝑦[𝑛] is a sampled version of a band-limited continuous-time

bivariate signal i.e. 𝑧[𝑛] = 𝑧(𝑛𝑇)with 𝑇 ∈ ℝ+ the sampling

interval in seconds and 𝑛 ∈ {0, ..., 𝑁 − 1}. We suppose that

the continuous-time signal has been low-pass filtered or 𝑇

has been chosen (zero padding) so that there is no aliasing

and apply the same derivation for finite duration discrete-

time bivariate signals as the one used in section 1.2.2. The

discrete-time quaternionic Fourier transform of 𝑧[𝑛]

𝑍[𝑚] =
𝑁−1∑
𝑛=0

𝑧[𝑛]𝑒−2𝜋𝒋𝑚𝑛𝑇

exhibits a periodic structure such as in the discrete real-

valued case
3

3: See Figure 1 of [15] for ex-

ample. This came from the def-

inition of the discrete quater-

nion Fourier transform which de-

rives from a discretization of the

quaternion Fourier transform of

periodic signals.

. It is convenient that the discrete quaternion
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embedding 𝑧ℍ[𝑛] fulfils basic properties that its continuous

version verifies. For instance, the fact that its projection on ℂ𝒊

gives back the original analyzed signal: 𝑃ℂ𝒊 {𝑧ℍ} [𝑛] = 𝑧[𝑛].
Also, by definition of the continuous Hilbert transform H

as a filter of frequency response −𝒋 sign(𝜔), the 𝒊-Hermitian

symmetry implies that: ⟨𝑧,H{𝑧}⟩ℍ = 0. This derives from

simple manipulations noting that∫
𝑧(𝑡)H{𝑧} (𝑡)d𝑡 =

∫
𝑍(𝜔)(−𝒋 sign(𝜔)𝑍(𝜔))d𝜔

= −
∫
ℝ+

𝑍(𝜔)(𝜔)d𝜔 +
∫
ℝ+

𝑧̂(𝜔)
𝒊
𝒋𝑍(𝜔)

𝒊
d𝜔

=

∫
ℝ+

|𝑍(𝜔)|2 𝒋d𝜔 −
∫
ℝ+

|𝑍(𝜔)|2 𝒋d𝜔

= 0.

Similarly to what Marple showed for real-valued signals [15],

(if 𝑁 is even) the discrete quaternion embedding should be

defined as the signal such that

𝑍ℍ[𝑚] =


𝑍[𝑚], for 𝑚 = 0 and 𝑚 = 𝑁/2.
2𝑍[𝑚], for 1 ⩽ 𝑚 ⩽ 𝑁/2 − 1.

0, for for 1𝑁/2 + 1 ⩽ 𝑚 ⩽ 𝑁 − 1.

This definition implies that the two previous conditions are

satisfied: ℂ𝒊-projection and orthogonality conditions. The

special coefficient applied to the null and Nyquist frequency

(𝑚 = 0 and𝑚 = 𝑁/2 respectively) terms are motivated by the

periodicity of the discrete Fourier transform which involves

that those are shared between the negative and positive

frequency halves of the periodic spectrum. Usual discrete

Fourier transform considerations appear in the usage of the

quaternion embedding: aliasing can be limited by filtering

or zero padding and the signal should be periodic. If these

conditions are not satisfied the estimated instantaneous pa-

rameters

[
𝑎̂[𝑛], 𝜃̂[𝑛], 𝜒̂[𝑛], 𝜑̂[𝑛]

]
(see Section 1.2.2) exhibit

artificial oscillations. These oscillations are notably important

because they are added to the instrumental gimbal lock.

Infinite duration signals The case of infinite duration dis-

crete signals is beyond the scope of this work. Since the

classical results for real-valued signals analysis applied for

the quaternion Hilbert transform, we restrict ourselves to a

brief conclusion of the given references [95, 96]. For infinite

duration signal the previous approach is not relevant because
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the signal should be truncated on finite time intervals. This

may cause aliasing if the size of the window (time intervals) is

not well chosen. In addition the signal will not be periodic in

each window. Such procedure may construct strongly biased

approximation of the quaternion embedding. Oppenheim

and Schafer [95] present several possible real-valued Finite

Impulse Response (FIR) filters in order to approximate the

ideal Hilbert filter impulse response

ℎ[𝑛] =
{

0, for 𝑛 = 0.

2 sin (𝑛𝜋/2) /𝑛𝜋, for 𝑛 ≠ 0.

Reilly an Frazer [96] have shown that a complex filter (which

transposes into a quaternion 𝒋-filter in our case) have better

properties than real-valued ones. It is constructed with a

low pass filter that cut at 𝑓𝑠/4 (where 𝑓𝑠 is the sampling

frequency) which is modulated by a complex exponential

(quaternion exponential in our case) in order for the stop

band to cover the whole negative frequency spectrum. In

contrast to real-valued filters, in this approach the original

signal 𝑧[𝑛] is alterated by filtering, thus the projection of

𝑧ℍ[𝑛] on ℂ𝒊 is different from 𝑧[𝑛] (but the orthogonality

property between 𝑧 and H{𝑧} holds).

A.4 Instantaneous frequency of an
AM-FM-PM signal

The computation of the first instantaneous moment of the

energy density, i.e. the instantaneous frequency, is done

from its definition in Equation (1.30). One develops the

left side of (1.30) using the differentiation property of the

Fourier transform, i.e. F
{ ¤𝑓 } (𝜔) = 𝜔𝐹(𝜔)𝒋, and the Parceval-

Plancherel identity (A.9), such as∫
𝜔 |𝑍ℍ(𝜔)|2 d𝜔 =

∫
𝜔𝑍ℍ(𝜔)𝑍ℍ(𝜔)d𝜔

=

∫
F{ ¤𝑧ℍ} (𝜔)𝒋−1𝑍ℍ(𝜔)d𝜔

=

∫
¤𝑧ℍ(𝑡)𝒋−1𝑧ℍ(𝑡)d𝑡

=

∫
¤𝑧ℍ(𝑡)𝒋−1 (𝑧ℍ(𝑡))−1 |𝑧ℍ(𝑡)|2 d𝑡.

(A.12)
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Then 𝜔𝑧(𝑡) is deduced from (A.12) by

𝜔𝑧(𝑡) =Re

{
¤𝑧ℍ(𝑡)𝒋−1 (𝑧ℍ(𝑡))−1

}
=Re

{(
¤𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡) + 𝑎(𝑡)𝒊 ¤𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡)

+ 𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝒌−1 ¤𝜒(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡) + 𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝒋 ¤𝜑(𝑡)𝑒 𝒋𝜑(𝑡)
)

× 𝒋−1𝑎−1(𝑡)𝑒−𝒋𝜑(𝑡)𝑒𝒌𝜒(𝑡)𝑒−𝜃(𝑡)
}

=Re

{ ¤𝑎(𝑡)
𝑎(𝑡) 𝑒

𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝒋−1𝑒𝒌𝜒(𝑡)𝑒−𝒊𝜃(𝑡) + 𝒊 ¤𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝒋−1𝑒𝒌𝜒(𝑡)𝑒−𝒊𝜃(𝑡)

+ 𝑒 𝒊𝜃(𝑡)𝒌−1 ¤𝜒(𝑡)𝑒−𝒌𝜒(𝑡)𝒋−1𝑒𝒌𝜒(𝑡)𝑒−𝒊𝜃(𝑡)
}
+ ¤𝜑(𝑡)

= ¤𝜑(𝑡) + ¤𝑎(𝑡) sin 2𝜒(𝑡).

(A.13)

The same procedure is used to compute the first moment of

the spectral polarization density, such that

∫
𝜔 |𝑍ℍ(𝜔)|2 d𝜔 =

∫
𝜔𝑍ℍ(𝜔)𝑍ℍ(𝜔)d𝜔

=

∫
F{ ¤𝑧ℍ} (𝜔)𝒋−1𝒋−1𝑍ℍ(𝜔)𝒋d𝜔

=

∫
F{ ¤𝑧ℍ} (𝜔)𝑍ℍ(𝜔)d𝜔𝒋−1

=

∫
¤𝑧ℍ(𝑡)𝑧ℍ(𝑡)d𝑡 𝒋−1

=

∫
¤𝑧ℍ(𝑡) (𝑧ℍ(𝑡))−1 |𝑧ℍ(𝑡)|2 d𝑡 𝒋−1.

(A.14)

Denoting 𝑃
span{1,𝒊 ,𝒌} the projection operator on the axes 1, 𝒊
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and 𝒌, we compute 𝜈𝑧(𝑡) such as

𝜈𝑧(𝑡) =𝑃span{1,𝒊 ,𝒌}
{
¤𝑧ℍ(𝑡) (𝑧ℍ(𝑡))−1 𝒋−1

}
=𝑃

span{1,𝒊 ,𝒌}
{(
¤𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡) + 𝑎(𝑡)𝒊 ¤𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡)

+ 𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝒌−1 ¤𝜒(𝑡)𝑒−𝒌𝜒(𝑡)𝑒 𝒋𝜑(𝑡) + 𝑎(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−𝒌𝜒(𝑡)𝒋 ¤𝜑(𝑡)𝑒 𝒋𝜑(𝑡)
)

× 𝑎−1(𝑡)𝑒−𝒋𝜑(𝑡)𝑒𝒌𝜒(𝑡)𝑒−𝜃(𝑡)𝒋−1

}
=𝑃

span{1,𝒊 ,𝒌}
{
− ¤𝑎(𝑡)
𝑎(𝑡) 𝒋 − ¤𝑎(𝑡)𝒌 − 𝒊 ¤𝜒(𝑡) cos 2𝜃(𝑡) + ¤𝜒(𝑡) sin 2𝜃(𝑡)

+ ¤𝜑(𝑡)𝑒 𝒊𝜃(𝑡)𝑒−2𝒌𝜒(𝑡)𝑒 𝒊𝜃(𝑡)
}

= ¤𝜑(𝑡)𝑠1(𝑡) + ¤𝜒(𝑡) sin 2𝜃(𝑡) + 𝒊 ( ¤𝜑(𝑡)𝑠2(𝑡) − ¤𝜒(𝑡) cos 2𝜃(𝑡))
− 𝒌 ( ¤𝜑(𝑡)𝑠3(𝑡) + ¤𝑎(𝑡)) .

(A.15)
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B The spin-weighted spherical functions

B.1 Spin weighted functions

Spin-weighted spherical functions are functions of both a

point on the sphere and a choice of frame in the tangent

space at this point [97]. A Hilbert basis of the 𝑠 spin-weighted [97]: Boyle (2016), How should
spin-weighted spherical functions
be defined?

square integrable functions on the unit sphere is given by

the 𝑠-spin-weighted spherical harmonics. Applications of

spin-weighted spherical functions are found in gravitational-

wave astronomy [25] [98] and cosmic microwave background [98]: Boyle (2013), Angular veloc-
ity of gravitational radiation from
precessing binaries and the corotat-
ing frame

measurement [99].

[99]: Marinucci et al. (2011), Ran-
dom Fields on the Sphere: Represen-
tation, Limit Theorems and Cosmo-
logical Applications

Let be 𝑓 a function defined on a space of dimension three

with the norm associated to the Euclidean scalar product.

For a given direction represented by the unit vector 𝑛, we

consider an orthonormal basis formed with the right-handed

triplet (𝑎, 𝑏, 𝑛). For 𝜈 a rotation angle with respect to 𝑛, and

a vector 𝑚 = (𝑎 + 𝒊𝑏)/
√

2, we define the rotated complex

vector 𝑚𝜈 = 𝑒 𝒊𝑠𝜈𝑚. Then 𝑓 is said to be of spin weight 𝑠 if it

transforms as

𝑓 (𝑚𝜈 , 𝑛) = 𝑒 𝒊𝑠𝜈 𝑓 (𝑚, 𝑛). (B.1)

For instance, denoting ℎ(𝑡) = ℎ+(𝑡) + 𝒊ℎ×(𝑡) the gravitational

waveform defined for a zero polarization angle (see Sec-

tion 2.2.1) and ℎ𝜓(𝑡) the one defined for a polarization angle

𝜓, then

ℎ𝜓(𝑡) = 𝑒−2𝒊𝜓ℎ(𝑡). (B.2)

Which came from the definition of the waveform ℎ as a spin

weighted function with 𝑠 = −2.

We refer to [97, 98] [100] for a detailed introduction to spin [100]: Torres del Castillo (2003),

3-D Spinors, Spin-Weighted Func-
tions and their Applications

weighted spherical functions and spin weighted spherical

harmonics.

B.2 Wigned D-matrices

Wigner D-matrices [101] form an irreducible representation of [101]: Wigner (1960), Group The-
ory and Its Application to the Quan-
tum Mechanics of Atomic Spectra

the rotation groups 𝑆𝑈(2) and 𝑆𝑂(3)with finite dimensional

matrices.
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The Wigner D-matrices are given by

𝐷 𝑙
𝑚,𝑚′(𝛼, 𝛽, 𝛾) = 𝑒 𝒊𝑚

′𝛼𝑑𝑙𝑚,𝑚′(𝛽)𝑒 𝒊𝑚𝛾 , (B.3)

where 𝑑𝑙𝑚,𝑚′(𝛽) is the Wigner d-matrix defined as

𝑑𝑙𝑚,𝑚′(𝛽) =
∑
𝑛

(−1)𝑛
√
(𝑙 + 𝑚)!(𝑙 − 𝑚)!(𝑙 + 𝑚′)!(𝑙 − 𝑚′)!

(𝑙 + 𝑚 − 𝑛)!𝑛!(𝑙 − 𝑚′ − 𝑛)!(𝑛 − 𝑚 + 𝑚′)!

×
(
cos

𝛽

2

)
2𝑙−2𝑛+𝑚−𝑚′ (

sin

𝛽

2

)
2𝑛+𝑚′−𝑚 (B.4)

where 𝑛 belongs to max(0, 𝑚−𝑚′) ⩽ 𝑛 ⩽ min(𝑙+𝑚, 𝑙−𝑚′).

For example we get

𝑑2

2,2(𝛽) = cos
4
𝛽

2

and 𝑑2

−2,2(𝛽) = sin
4
𝛽

2

(B.5)

that are used in the computation of 𝔥2,2(𝑡) in Chapter 4. Other

Wigner d-matrices defined whith the same conventions can

be found in [102]. In particular, the relation[102]: Pratten et al. (2021), Com-
putationally efficient models for the
dominant and subdominant har-
monic modes of precessing binary
black holes

𝑑𝑙−𝑚,−𝑚′(𝛽) = (−1)𝑚−𝑚′𝑑𝑙𝑚,𝑚′(𝛽) = 𝑑𝑙𝑚′,𝑚(𝛽) (B.6)

allows to retrieve additional Wigner d-matrices.

B.3 Spin-weighted spherical harmonics

Spin-weighted spherical harmonics are a special case of

Wigner D-matrices forming a basis of spin weighted functions

on the sphere [103]. For a given function 𝑓 (𝜄, 𝜑0), the spin[103]: Goldberg et al. (1967), Spin-
s Spherical Harmonics and ð

weighted spherical harmonics expansion takes the form
1

1: As for the spin weighted

functions introduced in Ap-

pendix B.1, the spin weighted

spherical harmonics are func-

tions on the sphere whose po-

sition is given by (𝜄, 𝜑0). The tan-

gent basis is fixed by convention

with a rotation angle equal to

zero.

𝑓 (𝜄, 𝜑0) =
∑
𝑙 ,𝑚

𝑓𝑙 ,𝑚 −𝑠𝑌𝑙 ,𝑚(𝜄, 𝜑0), (B.7)

such as what is used to compute gravitational waveforms.

Our conventions of spin weighted spherical harmonics and

Wigner d-matrices are in accordance with [104]. This leads to

[104]: Ajith et al. (2007), Data for-
mats for numerical relativity waves

the definition of the spin weighted spherical harmonics as

−𝑠𝑌𝑙 ,𝑚(𝜄, 𝜑0) = (−1)𝑠
√

2𝑙 + 1

4𝜋
𝑑𝑙𝑚,𝑠(𝜄)𝑒 𝒊𝑚𝜑0 , (B.8)

where the 𝑑𝑙𝑚,𝑠(𝜄) are the Wigner d-matrices.
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For a rotation parametrized by the triplet (𝛼, 𝛽, 𝛾), one can

rotate to the spin weighted spherical harmonics as [98]

−𝑠𝑌𝑙 ,𝑚(Θ(𝑡)) =
𝑙∑

𝑚′=−𝑙
𝐷 𝑙
𝑚,𝑚′(𝛼, 𝛽, 𝛾)−𝑠𝑌𝑙 ,𝑚′(𝜄, 𝜑0). (B.9)

A sample of spin weighted spherical harmonics is given in

Table B.1 for 𝑠 = 2 and 𝑙 = 2. Those are used in the computa-

tion of the dominant polarized component 𝔥2,2 presented in

Section 4.3.3.

𝑚 −2𝑌2,𝑚(𝜄, 𝜑0)
2

1

8

√
5

𝜋 (1 + cos 𝜄)2𝑒2𝒊𝜑

1
1

4

√
5

𝜋 (1 + cos 𝜄) sin 𝜄 𝑒 𝒊𝜑

0

√
6

8

√
5

𝜋 sin
2 𝜄

−1
1

4

√
5

𝜋 (1 − cos 𝜄) sin 𝜄 𝑒−𝒊𝜑

−2
1

8

√
5

𝜋 (1 − cos 𝜄)2𝑒−2𝒊𝜑

Table B.1: Spin weighted spher-

ical harmonics −2𝑌2,𝑚 for 𝑚 =

−2,−1, 0, 1, 2.

B.4 Development of polarized components

In order to prove (4.34), we need to verify that 𝔥𝑙 ,𝑚(𝑡 ,Θ(𝑡))
is such that

𝔥𝑙 ,𝑚(𝑡;Θ(𝑡)) = 𝔥𝑙 ,𝑚(𝑡; 𝜑0 + 𝛼(𝑡), 𝜄, 𝛽(𝑡), 𝜑𝑙 ,𝑚(𝑡) − 𝑚𝛾(𝑡)).
(B.10)

This is done by developing the expression of 𝔥𝑙 ,𝑚 from (4.29).

It is known that for any couple (𝑙 , 𝑚), one have ℎ𝑃
𝑙,𝑚
(𝑡) =

𝑎𝑙 ,𝑚(𝑡)𝑒−𝒊𝜑𝑙 ,𝑚(𝑡) and ℎ𝑃
𝑙,−𝑚(𝑡) = (−1)𝑙𝑎𝑙 ,𝑚(𝑡)𝑒 𝒊𝜑𝑙 ,𝑚(𝑡). The latter

is the only assumption needed to compute the instanta-

neous Stokes parameters and instantaneous frequency in

Section 4.3.2.

From the definition of −2 spin weighted spherical harmonics
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and Wigner D-matrices in Appendices B.2 and B.3, we get

𝔥𝑙 ,𝑚(𝑡) =ℎ𝑃𝑙,𝑚(𝑡)−2𝑌𝑙 ,𝑚(Θ(𝑡)) + ℎ𝑃𝑙,−𝑚(𝑡)−2𝑌𝑙 ,−𝑚(Θ(𝑡))

=𝑎𝑙 ,𝑚(𝑡)
𝑙∑

𝑚′=−𝑙

[
𝑒−𝒊𝜑𝑙 ,𝑚(𝑡)𝐷 𝑙

𝑚,𝑚′(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))−2𝑌𝑙 ,𝑚′(𝜄, 𝜑0)

+ (−1)𝑙𝑒 𝒊𝜑𝑙 ,𝑚(𝑡)𝐷 𝑙
−𝑚,𝑚′(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡))−2𝑌𝑙 ,𝑚′(𝜄, 𝜑0)

]
=𝑎𝑙 ,𝑚(𝑡)

√
2𝑙 + 1

4𝜋

𝑙∑
𝑚′=−𝑙

𝑑𝑙𝑚′,2(𝜄)

×
[
𝑒−𝒊(𝜑𝑙 ,𝑚(𝑡)−𝑚𝛾(𝑡))𝑒 𝒊𝑚

′(𝛼(𝑡)+𝜑0)𝑑𝑙𝑚,𝑚′(𝛽(𝑡))

+ (−1)𝑙𝑒 𝒊(𝜑𝑙 ,𝑚(𝑡)−𝑚𝛾(𝑡))𝑒 𝒊𝑚
′(𝛼(𝑡)+𝜑0)𝑑𝑙−𝑚,𝑚′(𝛽(𝑡))

]
.

(B.11)

The rest of the demonstration consists in applying the Hilbert

transform to (B.11).
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