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Abstract

Motivated by the construction based on topological suspension of a family of compact
non-Kihler complex manifolds with trivial canonical bundle given by Qin and Wang
(Geom Topol 22:2115-2144, 2018), we study toric suspensions of balanced mani-
folds by holomorphic automorphisms. In particular, we show that toric suspensions of
Calabi—Yau manifolds are balanced. We also prove that suspensions associated with
hyperbolic automorphisms of hyperkdhler manifolds do not admit any pluriclosed,
astheno-Kéhler or p-pluriclosed Hermitian metric. Moreover, we consider natural
extensions for hypercomplex manifolds, providing some explicit examples of com-
pact holomorphic symplectic and hypercomplex non-Kihler manifolds. We also show
that a modified suspension construction provides examples with pluriclosed metrics.
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1 Introduction

Finding examples of special non-Kéhler metrics on compact complex manifolds has
become a question of increasing interest in recent years. It is partly due to developments
in Physics related to Hull-Strominger system [33, 43] and generalized geometry [29,
30, 32]. In [42] a new class of examples of non-Kihler manifolds with trivial canon-
ical bundle and nice topological properties have been introduced. It is based on the
topological suspension construction.

Given in general a smooth manifold M and a diffeomorphism f of M, the mapping
torus (or suspension) of f is defined to be the quotient M ; of the product M x R by
the Z-action defined by

(p.t) = (f"(p). t +n).

As aconsequence dt defines anonsingular closed 1-form on M y tangent to the fibration
M; — S' =R/Z.

Moreover, the vector field % on M x R defines a vector field on M , the suspension of
the diffeomorphism f. There is a natural correspondence between the orbits of f and
the trajectories of the vector field. Mapping tori have been used in [37] to construct
examples of co-symplectic and co-Kihler manifolds.

The suspension construction can be extended to complex manifolds in the following
way. Given a complex manifold M, a set of commuting holomorphic automorphisms
fi-j=1,...,2k,of M and alattice A C Ck of rank 2k, generated by &1, .. ., &y, one
can define an action of Z2K = (£, ..., &x) on M x CK via pj(m,z) = (fjm), z +
;). The quotient of M x CK by the action of Z* is called the toric suspension of
(M, fi1, ..., for). In particular, if f is an automorphism of a complex manifold M
and T2 = C/Z? an elliptic curve, one can construct the complex suspension of f
as the toric suspension S(f) of M associated with the pair (f, Idys). In the present
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Special Hermitian structures on suspensions 1101

paper we study the metric properties of the constructed manifolds, like the existence
of balanced metrics, that is, Hermitian metrics with co-closed fundamental form. We
also extend the construction to produce hypercomplex manifolds with special metric
properties.

Using a different construction related to automorphisms of 3-dimensional Sasakian
manifolds, we construct suspensions admitting pluriclosed metrics, that is, the Her-
mitian metrics with 39-closed fundamental forms.

In Sects. 2 and 3 we present the necessary information on hyperkéhler manifolds and
toric suspension construction. In Sect. 4 we prove that the complex toric suspension of
a balanced manifold M by two commuting holomorphic diffeomorphisms preserving
a volume form is balanced. As a corollary we show that if M is a Calabi—Yau manifold
and f is an automorphism of M preserving the holomorphic volume form, then the
complex suspension S( f) has trivial canonical bundle and admits a balanced metric.

In Sect.5 we show that the balanced manifolds constructed using any hyperbolic
automorphism of hyperkédhler manifolds do not admit any p-pluriclosed and locally
conformally Kéhler (LCK) metric. In Sect.6 we recover the construction in [42] as
toric suspension of a Kummer surface and we generalize it to suspension of the Hilbert
scheme of points on Kummer surfaces. In Sect.7 we discuss the natural extensions
of toric suspensions on hypercomplex manifolds and their metric structures. As an
application we construct explicit examples of compact holomorphic symplectic and
hypercomplex non-Ké#hler manifolds. The examples are in fact pseudo-hyperkéhler
and admit quaternionic balanced metric, but no hyperkéhler with torsion (HKT) metric.

Finally in Sect.8 we show how using automorphisms of Sasakian and Kihler
manifolds it is also possible to construct suspensions admitting pluriclosed metrics
recovering a recent example constructed in [19], as a compact 3-step solvmanifold.

2 Hyperkahler manifolds and their automorphisms

Here we introduce the necessary background materials on hyperkéhler geometry. We
follow [3, 4, 6, 9, 34].

2.1 Hyperkahler manifolds and the BBF form

Definition 2.1 A hyperkihler manifold is a compact, Kihler, holomorphically sym-
plectic manifold.

Definition 2.2 A hyperkihler manifold M is called to be of maximal holonomy (also:
simple, or IHS) if 771 (M) = 0 and H>*(M) = C.

Theorem 2.3 (Bogomolov’s decomposition [7]) Any hyperkdhler manifold admits a
finite covering which is a product of a torus and several hyperkdhler manifolds of
maximal holonomy.

Remark 2.4 From now on all hyperkihler manifolds are assumed to be of maximal
holonomy.
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1102 A.Fino et al.

Theorem 2.5 (Fujiki [21]) Let M be a hyperkihler manifold, n € H*(M,7), and
n= dlm+M. Then fM 0" = cq(n, n)", where q is a primitive integer non-degenerate
quadratic form on H>(M, 7)), and ¢ > 0 is a rational number depending only on M.

Definition 2.6 This primitive integral quadratic form ¢ on H*(M,Z) is called
Bogomolov-Beauville-Fujiki form, or BBF form. It is defined by the Fujiki’s
relation uniquely, up to a sign. The sign is determined from the following formula
(Bogomolov, Beauville, see [4])

—n—1

Aq(n,m:fnmm"—lm
M

1 _ e
_r </n/\sz"—1Asz”)</nAsz"/\sz" ‘),
n M M

where 2 is the holomorphic symplectic form on M and A > O.

Remark 2.7 The BBF form ¢ has signature (3, b, —3) when extende_d on H*(M,R).Tt
is negative definite on primitive forms, and positive definite on (€2, 2, w), where wis a
n—1

Kihler form. On (1,1)-forms 7 it can be writtenas g (n, n) = ¢ fM NARASQLIAQ T,
where ¢ is a constant.

2.2 Classification of automorphisms of hyperkahler manifolds

Remark 2.8 The indefinite orthogonal group O (m, n), m,n > 0, is the Lie group of
all linear transformations of an /-dimensional real vector space that leave invariant
a nondegenerate, symmetric bilinear form ¢ of signature (m, n), where [ = m + n.
O (m, n) has 4 connected components. We denote the connected component of 1 by
SO™(m, n). We call a vector v positive if its square is positive, i.e. if g(v, v) > 0.

Definition 2.9 Let V be a real vector space of dimension n + 1 with a quadratic form
q of signature (1, n), Pos(V) = {x € V | g(x, x) > 0} its positive cone, and PTV
be the projectivization of Pos(V). Denote by g any SO (V)-invariant Riemannian
structure on PV (it is easy to see that g is unique up to a constant multiplier). Then
(PTV, g)is called hyperbolic space, and SO (V) the group of oriented hyperbolic
isometries.

Theorem 2.10 Letn > 0, and a € SOV (1, n) be an isometry acting on V. Then one
and only one of the following three cases occurs

(1) « has an eigenvector x with q(x) > 0 (« is “elliptic isometry”);

(i1) « has two eigenvectors x and y such that g(x,x) = q(y,y) = 0 and real
eigenvalues Ay and Ay = k;] satisfying |Ax| > 1 and all other eigenval-
ues have absolute value one («a is “hyperbolic isometry”, or loxodromic
isometry);

(iii) o has a unique (up to a constant) eigenvector x with q(x, x) = 0 with eigen-
value 1, and no fixed points on PTV (« is “parabolic isometry”).
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Special Hermitian structures on suspensions 1103

For a proof see for instance [34] or [25, Chapter 5].

Remark 2.11 All eigenvalues of elliptic and parabolic isometries have absolute value
1. Hyperbolic and elliptic isometries are semisimple (that is, diagonalizable over C).

Definition 2.12 Notice that any complex automorphism of a hyperkéhler manifold
acts by isometry on the space H''!(M, R) with the BBF metric which has signature
(1, by —3). A complex automorphism f of a hyperkéhler manifold M is called elliptic
(parabolic, hyperbolic) if the induced action f* of f is elliptic (parabolic, hyperbolic)
on H-1 (M, R).

Further on we shall need the following lemma.

Lemma 2.13 Let M be a hyperkdhler manifold, f : M — M a hyperbolic auto-
morphism, and n € H'(M,R) a non-zero f*-invariant class. Then q(n, ) < 0.

Proof Let v, v_ be eigenvectors of f* with the real eigenvalues 4 > 1 and A~
Then any invariant vector of f* belongs to (v, v_)*. However, ¢ is negative definite
on the space spanned by the other eigenvectors because signature of g on H'1 (M, R)
is (1, by — 3). O

3 Toric suspensions
3.1 Toric suspensions: definition and basic properties

Definition 3.1 Let M be a complex manifold, and f1, ..., for € Aut(M) a set of
commuting holomorphic automorphisms of M. Let A C CF be a lattice of rank 2k,
generated by &1, ..., &y. Define an action of 7%k = (@1, ..., 02k) on M x Ck via
@j(m,z) = (fj(m), z+&;). Inother words, 72k acts on Ck as a shift by the correspond-
ing element of A and on M as an automorphism obtained as an appropriate product of
fi. The quotient (M x CK)/Z?* is called the toric suspension of (M, fi, ..., for).

Remark 3.2 The toric suspension is clearly complex analytic, holomorphically fibered
over the torus CF /A, but not necessarily Kihler.

Theorem 3.3 Let S(M, fi, ..., fak) be a toric suspension, with M a compact Kdhler
manifold. Then S(M, f1, ..., far) is Kdhler if and only if there is a Kdhler class
[w] € HYY(M) such that f7([0]) = [o].

Proof See the proof of Theorem 3.4.1 in the paper [38]. O

3.2 Hyperbolic suspensions

The following definition is motivated by the classification of the automorphism groups
of hyperbolic manifolds, such as a K3 surface.

Definition3.4 Let f : M —> M be an automorphism of a compact complex man-
ifold of Kihler type (i.e. admitting a Kéhler metric). We say that f is a hyperbolic
automorphism if the induced action of f on H!(M,R) has a unique (up to a con-
stant) eigenvector n with eigenvalue A > 1.
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1104 A.Fino et al.

We list some immediate properties of hyperbolic automorphisms.

Proposition3.5 Let f : M —> M be a hyperbolic automorphism of a compact
complex manifold of Kiihler type, and n € H'(M) an eigenvector with an eigenvalue
f*n = An such that > > 1. Denote by Kah(M) c H"“'(M,R) the Kiihler cone of
M. Then

(1) n belongs to the closure of the Kdhler cone.
(ii) fM n" =0, where n = dimc M. In particular, n ¢ Kah(M).
(iii) The action of f on Kah(M) has no fixed points.

Proof Let S ¢ H'“'(M,R) be the sum of all eigenspaces of f on H"Y (M, R)
with eigenvalues different from A. Since A is the biggest eigenvalue, for any v €
H]’I(M, R)\S, one has lim; (f?# = cn where ¢ is a nonzero constant. Since
Kah(M) is open, this is also true for general Kihler class w. We obtained 7 as a limit
of Kédhler forms. This proves (i).

To see (i), we notice that [}, n" = [, f*()" = A" [, n".

To obtain (iii), assume that f fixes a Kihler class @ on M. Then f is an elliptic
isometry on H'!(M,R), but by Theorem 2.10 f can not be hyperbolic, giving a
contradiction. O

Remark 3.6 Since a hyperbolic automorphism of a hyperkéhler manifold preserves its
Kahler cone, and the eigenvector x with [Ly| > 1 sits on the boundary of the Kihler
cone (Proposition 3.5), the number A, is positive.

Definition 3.7 Let f : M —> M be an automorphism of a compact complex man-
ifold of Kihler type, and T2 = C/Z? an elliptic curve. Consider a toric suspension
S(f) of M associated with the pair (f, Idys). This manifold is called a complex
suspension of f. We call S(f) a hyperbolic suspension if f is hyperbolic.

Remark 3.8 The toric suspension S(f) of M associated with the pair (f, Idys) can be
viewed as the product manifold My x § !, where M r 1s the mapping torus of M by f
obtained as the quotient of M x R by the Z-action

(p.t) > (f"(p), t +n).

If (¢, s) are local coordinates on R x S!, then ;—[ on M x R defines a vector field X ¢
on S(f) called the suspension vector field of f (see [26]). Note that the vector field
Xy—i % on S(f) is holomorphic. Moreover the vector fields X 7, % provide a natural
splitting TS(f) = Tyer: S(f) @ 7*T E, which defines a flat Ehresmann connection
on S(f), which we call the standard connection. We will denote by 6 the associated
connection 1-form such 8 + /=1 ds is a (1, 0)-form with respect to the complex
structure on S(f).

Remark 3.9 By Proposition 3.5 (iii) and Theorem 3.3, a hyperbolic suspension is never
Kihler.
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Special Hermitian structures on suspensions 1105

4 Balanced metrics on Calabi-Yau suspensions

Balanced metrics were introduced in [39]. For further properties and examples see
e.g. [1, 2] and [23].

Definition 4.1 Let (M, I, h) be a complex Hermitian manifold, dim¢ M = n, and w
the fundamental (1, 1)-form associated to /. We say that 4 is balanced if " ! is
closed.

The main result of the present Section is the following theorem.

Theorem 4.2 Let M be a balanced compact manifold of complex dimension n and
f1. f» € Aut(M) two commuting holomorphic automorphisms preserving a volume
form V. Denote by w : S — E the corresponding suspension over an elliptic curve
E. Assume that M is balanced. Then S is also balanced.

Proof Let wg be a Kidhler form on E. Recall that a smooth fibration 7 : § — E over
an elliptic curve is called essential [39] if 7*(wg) is not Aeppli exact, i.e. 7*(wE)
cannot be equal to da + da, for any (1, 0)-form «. Michelsohn [39] proves that the
total space S of an essential fibration with balanced fibers over a complex curve is
balanced. To prove Theorem 4.2 it remains only to show that 7*(wg) is not Aeppli
exact.

Since V is fj-invariant, j = 1,2, we may extend V to a form Vj, on S vanishing
on horizontal vector fields of this Ehresmann connection. Then the form Vj, is of
type (n, n), positive and closed. Since V}, vanishes on any horizontal vector, the form
7*(wg) AV, is of maximal degree and positive, so f ¢ T*wg AV > 0. To prove the
theorem by contradiction assume that 7*(wg) is Aeppli exact. However by Stokes
Theorem we would have f S m*wg A Vi = 0, which is impossible. O

5 Hyperbolic holomorphically symplectic suspensions
5.1 Hyperbolic holomorphically symplectic suspensions

Definition 5.1 Let M be a hyperkéhler manifold and f : M — M a hyperbolic
automorphism (as in Definition 3.4) preserving the holomorphic symplectic form.
Denote by S the corresponding hyperbolic suspension, fibered over T2 with fiber M.
Then S is called a hyperbolic holomorphically symplectic suspension.

Similarly, if M is a Calabi—Yau manifold and f is a hyperbolic automorphism of M
preserving the complex holomorphic volume form, we will call S(f) a Calabi-Yau
hyperbolic suspension.

Proposition 5.2 Let S be a hyperbolic holomorphically symplectic suspension or a
Calabi-Yau hyperbolic suspension. Then S is balanced and non-Kdhler Calabi—Yau.

Proof In both cases there exists an invariant non-vanishing holomorphic section ®
of the canonical bundle of M. Therefore, V := ® A ® is a f-invariant volume on
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1106 A.Fino et al.

M. By Theorem 4.2 S is balanced. By Remark 3.9 § is non-Kihler. Moreover, the
form (6 4+ +/—1ds) A ® (Remark 3.8) is a non-vanishing holomorphic section of the
canonical bundle of S. O

5.2 Balanced, pluriclosed and LCK Hermitian metrics

The study of special Hermitian metrics posed also the question of compatibility
between different structures of non-Kihler type. We recall the conjecture in [22]
according to which a compact complex manifold admitting both a pluriclosed, i.e.
whose Hermitian form w satisfies dd“w = 0, and a balanced metric is Kihler. This
has been already proven for specific cases in the papers [10, 18, 20, 22-24, 41, 46].
A similar question was posed in [44] (see also [14]) for a compact complex manifold
of complex dimension n admitting a balanced metric and an astheno-Kéhler metric,
i.e. whose Hermitian form satisfies ddw" > = 0. A negative answer to this question
was given in [17, 35]. For conjectures related to the existence of locally conformally
Kihler metrics - the ones that satisfies dw = 6 A w, see the book [40].

Based on the previous discussion one can formulate the following general conjec-
ture:

Conjecture 5.3 Let X be a compact complex manifold, n := dim¢c X > 2. Assume
that two of the following assumptions occur.

(i) X admits a Hermitian form w which is locally conformally Kéhler, that is, satisfies
do =60 N w.
(i1) X admits a Hermitian form « which is balanced.
(iii) X admits a Hermitian form @ which s p-pluriclosed, that s, satisfies dd(w?) = 0,
forp=1,2,...,n—=3ifn >3orforp=1ifn =3.

Then X admits a Kéhler structure.

In this section, we prove this conjecture when X is a suspension of a hyperkihler
manifold M associated with a hyperbolic automorphism of M. The non-existence of
locally, but not globally, conformally Kéhler metric on these examples follows from
Proposition 37.8 in [40].

5.3 Strongly positive and weakly positive (p, p)-currents

Here we recall that a (p, p)-current on a complex manifold X is an element of the
Frechet space dual to the space of (n — p,n — p) complex forms A"~P"~7(X). In
the compact case, the space of (p, p)-currents can be identified with the space of
(p, p)-forms with distribution coefficients and the duality is given by integration. So
for any (p, p)-current T and a form « of type (n — p, n — p) we have

(T,a):f T A .
X
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Special Hermitian structures on suspensions 1107

The operators d and d¢ can be extended to (p, p)-currents by using the duality induced
by the integration, i.e., dT and d°T are respectively defined via the relations

(dT,ﬂ):—/;(T/\d,B, (dCT,,B)z—/XT/\dC,B.

We recall now the definition of a positive (p, p)-form (see e.g. [12, Chapter 3]).

Definition 5.4 A weakly positive (strictly weakly positive) (p, p)-form onacomplex
manifold X is a real (p, p)-form n such that for any complex subspace V. C TM,
dim¢c V = p, the restriction 1 |y is a non-negative volume form (positive volume
form). Weakly positive condition is equivalent to

lpn(v]5vl7 v2752’ e Up,vp) 2 05

for every tangent vectors vy, ..., v, € Tx] OX . Areal (p, p)-form n is called strongly
positive (strictly strongly positive) if it can be locally expressed as a sum

— L. E £ . -
n=1 Z Njrojpbit NEjy Ao NE, /\g./p’
jl ----- jp

running over the set of p-tuples &j,,§j,,...,&;, of (1,0)-forms, with nj;_;, > 0
mjy...j, > 0).

All strongly positive forms are also weakly positive. The strongly positive and the
weakly positive forms form closed, convex cones in the space of real (p, p)-forms,
see for instance [12, Chapter 3]. These two cones are dual with respect to the natural
pairing

APP(X Ry x AYP"TP(X,R) > R.

For (1, 1)-forms and (n — 1, n — 1)-forms, the strong positivity is equivalent to weak
positivity. Finally, a product of a weakly positive form and a strongly positive one is
always weakly positive (however, a product of two weakly positive forms may be not
weakly positive). A product of strongly positive forms is still strongly positive.

A strongly/weakly positive (p, p)-current is a current taking non-negative values
on weakly/strongly positive compactly supported (n — p, n — p)-forms.

Definition 5.5 A (p, p)-current T is called weakly positive if
i"“’/ TAQEAOTA...0pp ANOy—p 20,
X

for every (1,0)-forms a1, ... a,—, with inequality being strict for at least one choice
of «;’s. The current T is called strongly positive if the inequality is strict for every
NON-Zero o] Ay A ...0y—p AN Upy—p.
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1108 A.Fino et al.

Definition 5.6 A (p, p)-current T is called strictly strongly positive (resp. strictly
weakly positive) if T > ew for a strictly strongly positive (resp. strictly weakly
positive) (p, p)-form w and a positive number &.

Claim 5.7 The cone of strongly positive (p, p)-currents is dual to the cone of strictly
weakly positive (p, p)-forms, the cone of weakly positive (p, p)-currents is dual to
the cone of strictly strongly positive (p, p)-forms.

The main result of this section is the following

Theorem 5.8 Let f € Aut(M) be a hyperbolic automorphism of a hyperkéhler man-
ifold, and denote by m : S — E the suspension S(f) of (M, f). Then S admits
a dd‘-exact, strongly positive (p, p)-current B for any p = 2,3,...,n — 1, where
n = dimc M.

We prove this theorem in Sect. 5.4. Theorem 5.8 immediately implies the following.

Corollary 5.9 Let S be a hyperbolic suspension over a hyperkdiihler manifold M, as in
Theorem 5.8. Then S does not admit a dd°-closed strictly weakly positive (n — p +
I,n—p+ 1)-form U for p =2,3,...,n — 1. In particular, S is not k-pluriclosed
foranyk =1,2,...,n— 1.

Proof Let B = dd“«a be a current introduced in Theorem 5.8. If U is dd“-closed
strictly weakly positive (n — p + 1,n — p + 1)-form U, we have 0 < fM UAB =
[y dd°U A« = 0, which is impossible. O

5.4 Hyperbolic automorphisms and Cantat-Dingh-Sibony currents

Let f be a hyperbolic automorphism of a hyperkéhler manifold M, dim¢ M = n, and
p=1,2,...,n— 1, and denote by A its unique eigenvalue which satisfies |1| > 1.

Recall that the mass of a positive (p, p)-current v on a Kihler manifold M is
/ VA 0"P. Since f preserves the Kéhler cone, it preserves the positive cone of M,
hence A > 1.The action of f* on H>? (M) has A” as the maximal eigenvalue [8], hence
the mass of ﬁ( F*)*wP is bounded. Moreover, the set of positive (p, p)-currents of
bounded mass is compact [12, Chapter 3].

Therefore the sequence {#( f )k P }k=1,....00 has a limit point. The eigenspace
corresponding to A” in H”-P (M) has multiplicity 1, as shown in [8]. By [13, Theorem
4.3.1], the limit of a subsequence limy )L]W (f*)*w? is a unique positive (p, p)-current
o which satisfies f*o = Ao. We call it the Cantat-Dingh—Sibony current (Cantat
prove this result for (1,1)-currents on a K3 surface [9], and Dingh-Sibony for all
dimensions).

Using the decomposition TS = Ty S @ 7*T E induced by the flat Ehresmann
connection on S, we can consider the bundle D := D2?(S) of fiberwise currents as a
local system on E; the monodromy of this local system is given by the map v — f*v.
Identifying local systems and flat bundles, we can consider D as a bundle with flat
connection.

Consider areal line bundle L C ID spanned by the Cantat-Dingh—Sibony current .
This line bundle is preserved by the natural flat connection on ID, and its monodromy
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Special Hermitian structures on suspensions 1109

map is multiplication by A. Choose a trivialization of L such that the corresponding
connection 1-form 6 satisfies d6 = 0 and d(/160) = 0. Using the decomposition
TS = Tyers S®7*T E, we can embed the sections of D into the space of (p, p)-currents
on S. Let o be the current on S associated with the section of L C ID constructed
above. Since o is a limit of closed currents, do = 0 and we have do = o A 0, and
B :=dd‘a =a A6 A 10. The current 8 is dd“-exact. Since f is a limit of the wedge
power of strongly positive (1,1)-forms, it is strongly positive. This proves Theorem 5.8.

6 Examples of suspensions of hyperkdhler manifolds

We briefly recall the examples of suspensions of Kummer K3 surfaces from [42] first.

Take the complex 2-torus T given by the quotient of C2 by the standard lattice
generated by the unit vectors (1, 0), (i, 0), (0, 1), (0, 7). Consider the involution of C?
given by multiplication by —1, i.e. (z1, 22) — (—2z1, —z2). The involution descends
to an involution o of the torus T with 16 fixed points pj, ..., pi¢. The quotient
space T/(1, o) has 16 double points. The singularities can be resolved by blowing the
singularities up, yieldings a smooth compact surface containing 16 mutually disjoint
smooth rational curves C;. This is the Kummer surface Km associated to T. There is
an alternative description of the Kummer surface. Let X denote the surface obtaining
by blowing up T at each of the points py, ..., pis. Let E; = P! be the exceptional
divisor over p;. The involution ¢ of T lifts to an involution t of X with the fixed
set E = E1 U...U Ej6. The eingevalues of the differential of t at every points of
E are +1. So the quotient X /(1, 7) is smooth and contains 16 rational (—2)-curves
C; = ]P’l, the images of the rational (—1)-curves E; in X. The quotient is a Kummer

surface Km. Let C2 be the surface obtained by blowing up C? at every point of the
discrete set n’l({pl, ..., Dl6}), Where 7 : C? — Tis the quotient map, we have the
following diagram

A

C? X Km

T

C? T — T/(1,0)

By the Lefschetz Theorem on (1, 1)-forms we have that the Picard group of Km is
isomorphic to H 2(Km, Z) N H1(Km), so the rank of the Picard group of Km is 20.
Moreover, the Picard group of Km is generated by the 16 exceptional divisors E; and
by the pull-back by 7 of divisors on T/(1, o).

The canonical (2, 0)-form dz; Adz» on C2 induces a nowhere vanishing (2, 0)-form
on T. Therefore, the pullback of this form on X induces a holomorphic (2, 0)-form
on the Kummer surface.

Let A € SL(2, Z++/—17Z) be amatrix with |7 (A)| > 2, so that it is diagonalizable
with eigenvalues A, A~!. Let dvy, dv, be respectively the associated eigenvectors of
the induced map on H'(T,C) = A'(R*). Denote by A also the induced map on
A¥(R*). Then A preserves the holomorphic (2,0)-form dvi Adv, on T and the divisor
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D= lei 1 Ei. So it defines a holomorphic transformation ¢4 on Km preserving the
induced holomorphic (2, 0)-form. In particular the Z-action on T x R x S! generated
by

filp,x,y) = (A(p),x + 1, y) (6.1

extends to an action on Km x R x S, generated by the hyperbolic automorphism f.
The quotient is a compact complex manifold S(Km, f) with trivial canonical bundle
and satisfying the hard Lefschetz property, such that its real homotopy type is formal
as shown in [42].

In a similar way we can construct hyperbolic automorphisms preserving the holo-
morphic symplectic form on higher-dimensional hyperkéihler manifolds arising as
Hilbert scheme of points on Km. More precisely, f : Km — Km extends to
£ Km™ — Km!"! on the Hilbert scheme of order n of Km in a natural way:
to a zero-dimensional subscheme Z C Km we assign f(Z). According to Beauville
(and PhD thesis by P. Beri [5]), "] preserves the holomorphic symplectic form if
and only if f does. Now we can construct the suspension S(Km!"!, ") ysing £
and obtain:

Theorem 6.1 The space S(Km!"™ | fU"1y for n > 1 is a non-Kéhler compact complex
manifold with trivial canonical bundle which admits a balanced metric and it is not
k-pluriclosed forany k = 1,2,...,2n — 1.

Proof The fact that it is balanced follows from Proposition 5.2 and Corollary 5.9. O

The metric in the examples above is not explicit. But if we consider the suspension
over the real 4-torus T* we can define such metric explicitly. Denote by vy and v, the
eigenforms of the map A on H'(T#, C) induced by the matrix A as above and by x
and y respectively coordinates on R and § I Then A(dvy Adv)) = |A|2d v Adv; and
A(dvy Advy) = |k|_2d v2 Adv,. Consider the differential forms on T4 x R x 1 given
byoa; = |A|_2xdv1 Adviand oy = |A|2xdv2 Advsy. The forms «; and «y are invariant
under the action in (6.1). Moreover o + a, descends to a weakly positive definite
(2, 2)-form on the suspension S(T*, f) of the 4-torus defined by this action. By the
observation of Michelson [39] S(T?, f) admits a balanced metric. We can directly
check that

o = |\ 7 dv; AdT + AP dvy AdT; +dx Ady

is invariant and satisfies dw? = 0. Hence it defines a balanced metric.

Remark 6.2 We restrict ourselves here to the more explicitly described examples, but
many of the known compact hyperkihler manifolds admit hyperbolic automorphisms.
We expect that the topological properties of S(Km, f) from [42] are also valid for
S(Km™ | £?1) Note that the manifold A(T*) can be also described as the almost
abelian solvmanifold M®(c) in [11] (see also Section 3 in [15]). By Theorem 4.1
in [18] the associated almost abelian Lie algebra, which is isomorphic to bg in the
notation of [11], admits a balanced metric.
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7 Holomorphically symplectic and hypercomplex structures on toric
suspensions with 4-dimensional base

In this section we show how the toric suspensions could be used to construct examples
of compact holomorphic symplectic and hypercomplex non-Kihler manifolds. The
examples are in fact pseudo-hyperkihler. We also discuss their metric structure.

7.1 General construction and example

We consider a toric suspension of M, where M is areal 8-torus, over a real 4-torus base.
More precisely we consider S = S(Tg, f.id,id,id), where f is a diffeomorphism
of T8 defined by a matrix A € SL(8, R). We choose A as in the following Lemma:

Lemma 7.1 Consider on R® the hypercomplex structure (I, J, K) defined, in terms of
the standard basis (e, . .., eg), by

Tey =e3, lex=-ey4, Ies= —e7, Ieg = —eg,
Jey = —es, Jep = —eg, Jez = —e7 Jeq = —eg,

and the pseudo hyperhermitian metric

Then there exists an integer matrix

1 0 1 0 -1 -1 0 1
0 -1 0 -1 -1 0 1 1
10 1 0 0 1 1 1
0O 1 0 -1 1 1 1 0

A=y 1 0 -1 1 0 1 o |€5EBD
1 0 —1 -1 0 -1 0 -1
0 —1 -1 -1 -1 0 1 0
121 -1 0 0 1 0 -1

preserving the pseudo hyperhermitian structure (I, J, K, h) and such A* # Id, for
everyk > 1.

Proof Since A commutes with the matrices associated to 7 and J with respect to the
standard basis (eq, ..., eg) and A’HA = H, where H is the matrix associated to &,
we have that A preserves the pseudo hyperhermitian structure (1, J, K, h). Moreover,
Ak £ Id, for every k > 1, since A has eigenvalues =i (1 4+ +/2) and =i (+/2 — 1) of
multiplicity two. O

Recall that an indefinite or pseudo hyperhermitian metric is called pseudo-
hyperkéhler if the corresponding fundamental forms are closed. In particular, the
Lemma claims that A preserves the pseudo-hyperkihler structure on R® and the lat-
tice generated by ey, .., eg. Such a matrix defines a hyperbolic diffeomorphism f4 of
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T8 which preserves the pseudo-hyperkahler structure and in particular both the hyper-
complex structure and the holomorphic symplectic form. We note that any such matrix
which preserves a positive-definite metric, has all eigenvalues on the unit circle so can-
not be hyperbolic. To formulate the next Theorem, recall that for every hypercomplex
manifold there exists a unique torsion free connection preserving the hypercomplex
structure, which is called the Obata connection.

Theorem 7.2 Let f4 be the diffeomorphism of T® defined by the matrix A and
S = S(TS, fa,id,id,id) the hyperbolic toric suspension, where T8 denotes the
8-dimensional real torus obtained as a quotient of R® by the standard lattice. Then
S admits a pseudo-hyperkdihler structure (I, J, K, h). In particular for the complex
structure I, S carries both hypercomplex and holomorphic symplectic structures, but
no Kdhler metrics. Moreover, the Obata connection of the hypercomplex structure is

flat.

Proof Since f4 preserves both the standard hypercomplex and holomorphic sym-
plectic structures on R3, the previous structures descend to T8. Then the action
(p.1) = (fy"(p),t +n) of Z on T® x R* preserves the induced natural struc-
tures obtained as product of the ones on 7% and the canonical hyperkihler structure
on R*. Moreover, the hypercomplex structure on 7’8 x R* is clearly compatible with
flat Obata connection. As a consequence all structures descend to the quotient S. The
fact that S is non-Kéihler follows from Theorem 3.3, because f4 does not preserve any
Kihler class. O

Remark 7.3 Note that pseudo-hyperkihler structures on 12-dimensional compact
solvmanifolds are constructed in [47] and are associated to the almost abelian Lie
algebras

W (W (@) = spang{U{, UT, U, UL, VL V) VE VR VL V3, VL V)
with Lie bracket
U], VI1=c;Vl +c;V), j=12 h=1234,
and hypercomplex structure (/, J, K) defined by

10} =02, 1V =V2, 1V} =V, 1U} = U}, 1V} = V3, 1V = V5,
Jul =0, v =v3, av) =V Jut = U, 1vE =V 1vE = v

So in particular the associated solvable Lie group is a semidirect product of the form
(R x R®) x R3. In the notation of [47] g = a x b, with a = spang{U]} and
b = spanp|{ Vll, Vzl } and by Theorem 6.6 in [47] if b has a non-degenerate 2-form which
is closed on g, then (W;(W;(g)), I, J, K) admits a compatible pseudo-hyperkéhler
structure. The previous condition is satisfied if c}l = —c%z. The hyperbolic toric
suspension S = S(T%, fa,id, id, id) corresponds to the compact solvmanifold con-
structed as a quotient of the solvable Lie group H whose Lie algebrais h := W; (W, (g))
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with Cldull = diag(l, —1, 1, —1, 1, —1, 1, —1). If we consider the basis

fi=Vh A=V} B=VE fa=Vi f5=V7, fo=V5,
fi=Vi fs=Vy fo=Ul fiu=U} fu=U}, fiu=U}

the structure equations of h are

dft = finf2 i=1,3,57 dfi=—fInf° j=24.6,1,

dff =0,k=9,...12. (7.1)

The pseudo-hyperkihler structure on b is given by (I, J, K, oy, w;, wk ), where

wr =2—=f'A = PN LA TN OO = A1),
01 =2 AL AL = AT = AL A fI 4 FIOA f12),
wK:2(f1/\fﬁ_f4/\f7_szf5+f3/\fg_f9/\f12+f10/\f”)-
With respect to the basis of (1, 0)-forms with respect to 1

m=f+if? m=24ift = —if, .2
na=f0—iff ns =10 +if"% ne =" "

we have
Jm=mn3, IJm =14, I3 = =01, Jna = =1, Jns =7, Jne = —T)5  (7.3)
and the associated (2, 0)-form wy + iwg is given by
wy +iwx =25 A6+ in1 Ans—in2 A13).
Note that
J(wy +iwg) =205 N1 — i1 A4+ iT02 AT3)

and that the two (4, 0)-forms n; A n3 Ans A ng and n2 A na A ns A ng are both d-exact.

7.2 Compatible metric structures

On a hypercomplex manifold (M, I, J, K) we always have a hyper-Hermitian
(positive-definite) metric, that is a metric compatible with the complex structures
I, J, K. When the fundamental forms w;, @, wk are closed the metric is hyperkéhler,
but in the example constructed in Theorem 7.2 such metric doesn’t exist. A generaliza-
tion of hyperkihler condition is the condition 2 = 0, where 2 = w; +iwg, in which
case the metric is called hyperkihler with torsion (shortly HKT) [28]. In fact one can
characterize the HKT condition in terms of Q: if there is a (2, 0) form €2 with respect
tol,suchthat 0Q =0, Q(JX,JY) =—-Q(JX,JY), and Q(X, JY) > 0 for every
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non-zero (1, 0) vector field X, then the metric defined by g(X, Y) = ReQ2(X, JY) is
HKT. The HKT metric is a good candidate for a quaternionic analog of Kéhler metrics
in complex geometry - it arises from a local quaternionic-subharmonic potential and
gives rise to a Hodge theory (see [28] and [45]). The existence or non-existence of
HKT metrics, in 8-dimensional case depends on purely holomorphic data (see [27]). In
hypercomplex geometry the analog of the balanced condition is called quaternionic
balanced (see [36]) and such metric satisfies 8(9”’1) = 0, where 2n is the complex
dimension of the manifold. We have the following:

Theorem 7.4 The hypercomplex manifold S = S(T®, fa,id,id,id) from Theo-
rem 7.2 admits a quaternionic balanced metric, but admits no HKT metrics.

Proof We consider the solvmanifold model of S from Remark 7.3. We use the same
(1, 0)-forms n;, 1 < i < 6, and complex structure J as in (7.2) and (7.3). Note that
the hypercomplex structure has Obata holonomy in SL(n, H), since it has a closed
and real (6, 0)-form. From the structure equations (7.1) we see that the (2, 0)-form
form Q = n1 A 13+ n2 A na+ n5 A ne satisfies the condition

Q2 =3 A3 ANs Alg+ 12 ANa ATs A e+ 1M1 A Az Ang) =0,

but Q2 # 0, so 2 defines a quaternionic-balanced metric. On the other side, by
averaging argument (see [16]), if there is any HKT metric, then there exists an invariant
one. Working by contradiction, we assume that there is a (2, 0)-form Q with 9 (fZ) =0
which is J-anti-invariant and positive, so defines an HKT metric. Then Q has the form

Q= Zaag Na N J7g,
ap

where a o is a Hermitian and positive definite matrix. Now we can adapt the Harvey—
Lawson property for SL(n, H) manifolds from [27] and use it explicitly. Since the
4, 0)-form o = n; An3 Ans Ane+ n2 Ang Ans Angis d-exact and the (6, 0)-form
B =mn1 Ana An3 Ang A ns A ng is closed, then we have

f QAaAB=0
M

by integration by parts. On the other side vol = BA B is a volume formand QAaAB =
(a7 + ay3)vol > 0, so

/ QAaAB>0
M
and we get a contradiction. O
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8 Pluriclosed metrics from suspensions

We recall the following

Definition 8.1 Let (M, I) be a complex manifold. We say that an /-Hermitian metric
h is pluriclosed (or SKT) if its fundamental form is d9-closed.

Using automorphisms of Kihler manifolds it is also possible to construct suspen-
sions admitting pluriclosed metrics in the following way.

Let (X3, &, n, ¢, ®) be a 3-dimensional Sasakian manifold and (YZ", 1,g,w)bea
Kihler manifold of complex dimension 7.

On the product X3 x Y?* x R we can define a complex structure I such that
[(§) = 3%, where 7 is the coordinate on R and / = I on Y?". The 2-form

o=nAdt+dn+ o

is then a positive (1, 1)-form on (X3 x Y x R, I). Since dn = @, by a direct
computation we obtain
do = ® Adt

and y
dT8 = d(Id®) = —d(® A1) =0,

where T8 = [d@ is the so-called Bismut torsion form. Note that ® A 7 is closed
since it is a 3-form on X3. Therefore we have the following

Theorem 8.2 Let (X3, £, 1, ¢, ®) be a Sasakian 3-dimensional manifold, (Y*", I, g, w)
a Kéhler manifold and f = (f1, f>) a diffeomorphism of X x Y*" such that f| is
a diffeomorphism of X3 preserving the Sasakian structure (&, n, ¢, ®) and f> is a
diffeomorphism of Y*" preserving the Kéihler structure (I, g, ). Then the suspension
of X3 x Y by f is non-Kihler and has a pluriclosed metric.

To prove that the suspension of (X 3, &, 1,9, ®) by f is non-Kihler we can use the
Harvey—Lawson characterization of non-Kihler manifolds [31] and the observation
that dn = @ is a non-zero (weakly) positive and exact (1, 1)-form.

Example 8.3 An application of the previous construction gives the example of compact
solvmanifold constructed in [19]. More precisely, let G be the simply connected 3-step
solvable Lie group with structure equations

de! = e* A3,
de? = —e> neB,
de’ = e ned,

de* =bed A 8,

de’ = —be* A éb,
de® =be’ A eb
de’ = —b el A eb,
de® =0,
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with b = By [19] G has the left-invariant complex structure

21
log2++/3) "
ley = —ey, Ie3 = ey, ey = es5, Ieg = e7,

and admits a compact quotient by a lattice I". The /-Hermitian metric g = Z?:l (e')?
is pluriclosed since the Bismut torsion 3-form 78 = Idw is the closed 3-form —e! A
¢ Ae3. The compact solvmanifold I'\ G can be obtained as a suspension of the product
of the 3-Sasakian manifold given by the compact quotient of the real 3-dimensional
Heisenberg group by a lattice and the standard torus 7#. Moreover, the compact
solvmanifold can be viewed also as the total space of a bundle over a circle with fibre
a circle bundle over a 6-torus.
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