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Abstract
Motivated by the construction based on topological suspension of a family of compact
non-Kähler complex manifolds with trivial canonical bundle given by Qin and Wang
(Geom Topol 22:2115–2144, 2018), we study toric suspensions of balanced mani-
folds by holomorphic automorphisms. In particular, we show that toric suspensions of
Calabi–Yau manifolds are balanced. We also prove that suspensions associated with
hyperbolic automorphisms of hyperkähler manifolds do not admit any pluriclosed,
astheno-Kähler or p-pluriclosed Hermitian metric. Moreover, we consider natural
extensions for hypercomplex manifolds, providing some explicit examples of com-
pact holomorphic symplectic and hypercomplex non-Kähler manifolds. We also show
that a modified suspension construction provides examples with pluriclosed metrics.
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1 Introduction

Finding examples of special non-Kähler metrics on compact complex manifolds has
become a question of increasing interest in recent years. It is partly due to developments
in Physics related to Hull–Strominger system [33, 43] and generalized geometry [29,
30, 32]. In [42] a new class of examples of non-Kähler manifolds with trivial canon-
ical bundle and nice topological properties have been introduced. It is based on the
topological suspension construction.

Given in general a smooth manifold M and a diffeomorphism f of M , the mapping
torus (or suspension) of f is defined to be the quotient M f of the product M × R by
the Z-action defined by

(p, t) → ( f −n(p), t + n).

As a consequencedt defines a nonsingular closed 1-formon M f tangent to the fibration

M f −→ S1 = R/Z.

Moreover, the vector field ∂
∂t on M ×R defines a vector field on M f , the suspension of

the diffeomorphism f . There is a natural correspondence between the orbits of f and
the trajectories of the vector field. Mapping tori have been used in [37] to construct
examples of co-symplectic and co-Kähler manifolds.

The suspension construction can be extended to complexmanifolds in the following
way. Given a complex manifold M , a set of commuting holomorphic automorphisms
f j , j = 1, . . . , 2k, of M and a lattice� ⊂ C

k of rank 2k, generated by ξ1, . . . , ξ2k , one
can define an action of Z

2k = 〈ξ1, . . . , ξ2k〉 on M × C
k via ϕ j (m, z) = ( f j (m), z +

ξ j ). The quotient of M × C
k by the action of Z

2k is called the toric suspension of
(M, f1, . . . , f2k). In particular, if f is an automorphism of a complex manifold M
and T 2 = C/Z

2 an elliptic curve, one can construct the complex suspension of f
as the toric suspension S( f ) of M associated with the pair ( f , IdM ). In the present
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paper we study the metric properties of the constructed manifolds, like the existence
of balanced metrics, that is, Hermitian metrics with co-closed fundamental form. We
also extend the construction to produce hypercomplex manifolds with special metric
properties.

Using a different construction related to automorphisms of 3-dimensional Sasakian
manifolds, we construct suspensions admitting pluriclosed metrics, that is, the Her-
mitian metrics with ∂∂-closed fundamental forms.

In Sects. 2 and 3we present the necessary information on hyperkählermanifolds and
toric suspension construction. In Sect. 4 we prove that the complex toric suspension of
a balanced manifold M by two commuting holomorphic diffeomorphisms preserving
a volume form is balanced. As a corollary we show that if M is a Calabi–Yau manifold
and f is an automorphism of M preserving the holomorphic volume form, then the
complex suspension S( f ) has trivial canonical bundle and admits a balanced metric.

In Sect. 5 we show that the balanced manifolds constructed using any hyperbolic
automorphism of hyperkähler manifolds do not admit any p-pluriclosed and locally
conformally Kähler (LCK) metric. In Sect. 6 we recover the construction in [42] as
toric suspension of a Kummer surface and we generalize it to suspension of the Hilbert
scheme of points on Kummer surfaces. In Sect. 7 we discuss the natural extensions
of toric suspensions on hypercomplex manifolds and their metric structures. As an
application we construct explicit examples of compact holomorphic symplectic and
hypercomplex non-Kähler manifolds. The examples are in fact pseudo-hyperkähler
and admit quaternionic balancedmetric, but no hyperkählerwith torsion (HKT)metric.

Finally in Sect. 8 we show how using automorphisms of Sasakian and Kähler
manifolds it is also possible to construct suspensions admitting pluriclosed metrics
recovering a recent example constructed in [19], as a compact 3-step solvmanifold.

2 Hyperkähler manifolds and their automorphisms

Here we introduce the necessary background materials on hyperkähler geometry. We
follow [3, 4, 6, 9, 34].

2.1 Hyperkähler manifolds and the BBF form

Definition 2.1 A hyperkähler manifold is a compact, Kähler, holomorphically sym-
plectic manifold.

Definition 2.2 A hyperkähler manifold M is called to be of maximal holonomy (also:
simple, or IHS) if π1(M) = 0 and H2,0(M) = C.

Theorem 2.3 (Bogomolov’s decomposition [7]) Any hyperkähler manifold admits a
finite covering which is a product of a torus and several hyperkähler manifolds of
maximal holonomy.

Remark 2.4 From now on all hyperkähler manifolds are assumed to be of maximal
holonomy.
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Theorem 2.5 (Fujiki [21]) Let M be a hyperkähler manifold, η ∈ H2(M, Z), and
n = dimC M

2 . Then
∫

M η2n = cq(η, η)n, where q is a primitive integer non-degenerate
quadratic form on H2(M, Z), and c > 0 is a rational number depending only on M.

Definition 2.6 This primitive integral quadratic form q on H2(M, Z) is called
Bogomolov–Beauville–Fujiki form, or BBF form. It is defined by the Fujiki’s
relation uniquely, up to a sign. The sign is determined from the following formula
(Bogomolov, Beauville, see [4])

λq(η, η) =
∫

M
η ∧ η ∧ 	n−1 ∧ 	

n−1

− n − 1

n

(∫

M
η ∧ 	n−1 ∧ 	

n
)(∫

M
η ∧ 	n ∧ 	

n−1
)

,

where 	 is the holomorphic symplectic form on M and λ > 0.

Remark 2.7 TheBBF form q has signature (3, b2−3)when extended on H2(M, R). It
is negative definite on primitive forms, and positive definite on 〈	,	,ω〉, whereω is a

Kähler form.On (1,1)-forms η it can bewritten as q(η, η) = c
∫

M η∧η∧	n−1∧	
n−1

,
where c is a constant.

2.2 Classification of automorphisms of hyperkähler manifolds

Remark 2.8 The indefinite orthogonal group O(m, n), m, n > 0, is the Lie group of
all linear transformations of an l-dimensional real vector space that leave invariant
a nondegenerate, symmetric bilinear form q of signature (m, n), where l = m + n.
O(m, n) has 4 connected components. We denote the connected component of 1 by
SO+(m, n). We call a vector v positive if its square is positive, i.e. if q(v, v) > 0.

Definition 2.9 Let V be a real vector space of dimension n + 1 with a quadratic form
q of signature (1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P

+V
be the projectivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian
structure on P

+V (it is easy to see that g is unique up to a constant multiplier). Then
(P+V , g) is called hyperbolic space, and SO+(V ) the group of oriented hyperbolic
isometries.

Theorem 2.10 Let n > 0, and α ∈ SO+(1, n) be an isometry acting on V . Then one
and only one of the following three cases occurs

(i) α has an eigenvector x with q(x) > 0 (α is “elliptic isometry”);
(ii) α has two eigenvectors x and y such that q(x, x) = q(y, y) = 0 and real

eigenvalues λx and λy = λ−1
x satisfying |λx | > 1 and all other eigenval-

ues have absolute value one (α is “hyperbolic isometry”, or loxodromic
isometry);

(iii) α has a unique (up to a constant) eigenvector x with q(x, x) = 0 with eigen-
value 1, and no fixed points on P

+V (α is “parabolic isometry”).
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For a proof see for instance [34] or [25, Chapter 5].

Remark 2.11 All eigenvalues of elliptic and parabolic isometries have absolute value
1. Hyperbolic and elliptic isometries are semisimple (that is, diagonalizable over C).

Definition 2.12 Notice that any complex automorphism of a hyperkähler manifold
acts by isometry on the space H1,1(M, R) with the BBF metric which has signature
(1, b2−3). A complex automorphism f of a hyperkähler manifold M is called elliptic
(parabolic, hyperbolic) if the induced action f ∗ of f is elliptic (parabolic, hyperbolic)
on H1,1(M, R).

Further on we shall need the following lemma.

Lemma 2.13 Let M be a hyperkähler manifold, f : M −→ M a hyperbolic auto-
morphism, and η ∈ H1,1(M, R) a non-zero f ∗-invariant class. Then q(η, η) < 0.

Proof Let v+, v− be eigenvectors of f ∗ with the real eigenvalues λ > 1 and λ−1.
Then any invariant vector of f ∗ belongs to 〈v+, v−〉⊥. However, q is negative definite
on the space spanned by the other eigenvectors because signature of q on H1,1(M, R)

is (1, b2 − 3). 
�

3 Toric suspensions

3.1 Toric suspensions: definition and basic properties

Definition 3.1 Let M be a complex manifold, and f1, . . . , f2k ∈ Aut(M) a set of
commuting holomorphic automorphisms of M . Let � ⊂ C

k be a lattice of rank 2k,
generated by ξ1, . . . , ξ2k . Define an action of Z

2k = 〈ϕ1, . . . , ϕ2k〉 on M × C
k via

ϕ j (m, z) = ( f j (m), z+ξ j ). In otherwords,Z2k acts onC
k as a shift by the correspond-

ing element of � and on M as an automorphism obtained as an appropriate product of
fi . The quotient (M × C

k)/Z
2k is called the toric suspension of (M, f1, . . . , f2k).

Remark 3.2 The toric suspension is clearly complex analytic, holomorphically fibered
over the torus C

k/�, but not necessarily Kähler.

Theorem 3.3 Let S(M, f1, . . . , f2k) be a toric suspension, with M a compact Kähler
manifold. Then S(M, f1, . . . , f2k) is Kähler if and only if there is a Kähler class
[ω] ∈ H1,1(M) such that f ∗

i ([ω]) = [ω].
Proof See the proof of Theorem 3.4.1 in the paper [38]. 
�

3.2 Hyperbolic suspensions

The following definition is motivated by the classification of the automorphism groups
of hyperbolic manifolds, such as a K3 surface.

Definition 3.4 Let f : M −→ M be an automorphism of a compact complex man-
ifold of Kähler type (i.e. admitting a Kähler metric). We say that f is a hyperbolic
automorphism if the induced action of f on H1,1(M, R) has a unique (up to a con-
stant) eigenvector η with eigenvalue λ > 1.
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1104 A. Fino et al.

We list some immediate properties of hyperbolic automorphisms.

Proposition 3.5 Let f : M −→ M be a hyperbolic automorphism of a compact
complex manifold of Kähler type, and η ∈ H1,1(M) an eigenvector with an eigenvalue
f ∗η = λη such that λ > 1. Denote by Kah(M) ⊂ H1,1(M, R) the Kähler cone of
M. Then

(i) η belongs to the closure of the Kähler cone.
(ii)

∫
M ηn = 0, where n = dimC M. In particular, η /∈ Kah(M).

(iii) The action of f on Kah(M) has no fixed points.

Proof Let S ⊂ H1,1(M, R) be the sum of all eigenspaces of f on H1,1(M, R)

with eigenvalues different from λ. Since λ is the biggest eigenvalue, for any v ∈
H1,1(M, R)\S, one has limi

( f ∗)i (v)

λi = cη where c is a nonzero constant. Since
Kah(M) is open, this is also true for general Kähler class ω. We obtained η as a limit
of Kähler forms. This proves (i).

To see (ii), we notice that
∫

M ηn = ∫
M f ∗(η)n = λn

∫
M ηn .

To obtain (iii), assume that f fixes a Kähler class ω on M . Then f is an elliptic
isometry on H1,1(M, R), but by Theorem 2.10 f can not be hyperbolic, giving a
contradiction. 
�

Remark 3.6 Since a hyperbolic automorphism of a hyperkähler manifold preserves its
Kähler cone, and the eigenvector x with |λx | > 1 sits on the boundary of the Kähler
cone (Proposition 3.5), the number λx is positive.

Definition 3.7 Let f : M −→ M be an automorphism of a compact complex man-
ifold of Kähler type, and T 2 = C/Z

2 an elliptic curve. Consider a toric suspension
S( f ) of M associated with the pair ( f , IdM ). This manifold is called a complex
suspension of f . We call S( f ) a hyperbolic suspension if f is hyperbolic.

Remark 3.8 The toric suspension S( f ) of M associated with the pair ( f , IdM ) can be
viewed as the product manifold M f × S1, where M f is the mapping torus of M by f
obtained as the quotient of M × R by the Z-action

(p, t) → ( f −n(p), t + n).

If (t, s) are local coordinates on R × S1, then ∂
∂t on M × R defines a vector field X f

on S( f ) called the suspension vector field of f (see [26]). Note that the vector field
X f − i ∂

∂s on S( f ) is holomorphic. Moreover the vector fields X f ,
∂
∂s provide a natural

splitting T S( f ) = Tvert S( f ) ⊕ π∗T E , which defines a flat Ehresmann connection
on S( f ), which we call the standard connection. We will denote by θ the associated
connection 1-form such θ + √−1 ds is a (1, 0)-form with respect to the complex
structure on S( f ).

Remark 3.9 ByProposition 3.5 (iii) and Theorem 3.3, a hyperbolic suspension is never
Kähler.
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Special Hermitian structures on suspensions 1105

4 Balancedmetrics on Calabi–Yau suspensions

Balanced metrics were introduced in [39]. For further properties and examples see
e.g. [1, 2] and [23].

Definition 4.1 Let (M, I , h) be a complex Hermitian manifold, dimC M = n, and ω

the fundamental (1, 1)-form associated to h. We say that h is balanced if ωn−1 is
closed.

The main result of the present Section is the following theorem.

Theorem 4.2 Let M be a balanced compact manifold of complex dimension n and
f1, f2 ∈ Aut(M) two commuting holomorphic automorphisms preserving a volume
form V . Denote by π : S → E the corresponding suspension over an elliptic curve
E. Assume that M is balanced. Then S is also balanced.

Proof Let ωE be a Kähler form on E . Recall that a smooth fibration π : S → E over
an elliptic curve is called essential [39] if π∗(ωE ) is not Aeppli exact, i.e. π∗(ωE )

cannot be equal to ∂α + ∂α, for any (1, 0)-form α. Michelsohn [39] proves that the
total space S of an essential fibration with balanced fibers over a complex curve is
balanced. To prove Theorem 4.2 it remains only to show that π∗(ωE ) is not Aeppli
exact.

Since V is f j -invariant, j = 1, 2, we may extend V to a form Vh on S vanishing
on horizontal vector fields of this Ehresmann connection. Then the form Vh is of
type (n, n), positive and closed. Since Vh vanishes on any horizontal vector, the form
π∗(ωE ) ∧ Vh is of maximal degree and positive, so

∫
S π∗ωE ∧ Vh > 0. To prove the

theorem by contradiction assume that π∗(ωE ) is Aeppli exact. However by Stokes
Theorem we would have

∫
S π∗ωE ∧ Vh = 0, which is impossible. 
�

5 Hyperbolic holomorphically symplectic suspensions

5.1 Hyperbolic holomorphically symplectic suspensions

Definition 5.1 Let M be a hyperkähler manifold and f : M −→ M a hyperbolic
automorphism (as in Definition 3.4) preserving the holomorphic symplectic form.
Denote by S the corresponding hyperbolic suspension, fibered over T 2 with fiber M .
Then S is called a hyperbolic holomorphically symplectic suspension.

Similarly, if M is a Calabi–Yau manifold and f is a hyperbolic automorphism of M
preserving the complex holomorphic volume form, we will call S( f ) a Calabi–Yau
hyperbolic suspension.

Proposition 5.2 Let S be a hyperbolic holomorphically symplectic suspension or a
Calabi–Yau hyperbolic suspension. Then S is balanced and non-Kähler Calabi–Yau.

Proof In both cases there exists an invariant non-vanishing holomorphic section 


of the canonical bundle of M . Therefore, V := 
 ∧ 
 is a f -invariant volume on
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1106 A. Fino et al.

M . By Theorem 4.2 S is balanced. By Remark 3.9 S is non-Kähler. Moreover, the
form (θ + √−1 ds) ∧ 
 (Remark 3.8) is a non-vanishing holomorphic section of the
canonical bundle of S. 
�

5.2 Balanced, pluriclosed and LCK Hermitianmetrics

The study of special Hermitian metrics posed also the question of compatibility
between different structures of non-Kähler type. We recall the conjecture in [22]
according to which a compact complex manifold admitting both a pluriclosed, i.e.
whose Hermitian form ω satisfies ddcω = 0, and a balanced metric is Kähler. This
has been already proven for specific cases in the papers [10, 18, 20, 22–24, 41, 46].
A similar question was posed in [44] (see also [14]) for a compact complex manifold
of complex dimension n admitting a balanced metric and an astheno-Kähler metric,
i.e. whose Hermitian form satisfies ddcωn−2 = 0. A negative answer to this question
was given in [17, 35]. For conjectures related to the existence of locally conformally
Kähler metrics - the ones that satisfies dω = θ ∧ ω, see the book [40].

Based on the previous discussion one can formulate the following general conjec-
ture:

Conjecture 5.3 Let X be a compact complex manifold, n := dimC X > 2. Assume
that two of the following assumptions occur.

(i) X admits a Hermitian formω which is locally conformally Kähler, that is, satisfies
dω = θ ∧ ω.

(ii) X admits a Hermitian form ω which is balanced.
(iii) X admits aHermitian formωwhich is p-pluriclosed, that is, satisfies ddc(ωp) = 0,

for p = 1, 2, . . . , n − 3 if n > 3 or for p = 1 if n = 3.

Then X admits a Kähler structure.

In this section, we prove this conjecture when X is a suspension of a hyperkähler
manifold M associated with a hyperbolic automorphism of M . The non-existence of
locally, but not globally, conformally Kähler metric on these examples follows from
Proposition 37.8 in [40].

5.3 Strongly positive and weakly positive (p, p)-currents

Here we recall that a (p, p)-current on a complex manifold X is an element of the
Frechet space dual to the space of (n − p, n − p) complex forms �n−p,n−p(X). In
the compact case, the space of (p, p)-currents can be identified with the space of
(p, p)-forms with distribution coefficients and the duality is given by integration. So
for any (p, p)-current T and a form α of type (n − p, n − p) we have

〈T , α〉 =
∫

X
T ∧ α.
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The operators d and dc can be extended to (p, p)-currents by using the duality induced
by the integration, i.e., dT and dcT are respectively defined via the relations

〈dT , β〉 = −
∫

X
T ∧ dβ, 〈dcT , β〉 = −

∫

X
T ∧ dcβ.

We recall now the definition of a positive (p, p)-form (see e.g. [12, Chapter 3]).

Definition 5.4 Aweakly positive (strictly weakly positive) (p, p)-formon a complex
manifold X is a real (p, p)-form η such that for any complex subspace V ⊂ T M,

dimC V = p, the restriction η |V is a non-negative volume form (positive volume
form). Weakly positive condition is equivalent to

i pη(v1, v1, v2, v2, . . . vp, v p) � 0,

for every tangent vectors v1, . . . , vp ∈ T 1,0
x X . A real (p, p)-form η is called strongly

positive (strictly strongly positive) if it can be locally expressed as a sum

η = i p
∑

j1,..., jp

η j1... jpξ j1 ∧ ξ j1 ∧ . . . ∧ ξ jp ∧ ξ j p
,

running over the set of p-tuples ξ j1, ξ j2 , . . . , ξ jp of (1, 0)-forms, with η j1... jp � 0
(η j1... jp > 0).

All strongly positive forms are also weakly positive. The strongly positive and the
weakly positive forms form closed, convex cones in the space of real (p, p)-forms,
see for instance [12, Chapter 3]. These two cones are dual with respect to the natural
pairing

�
p,p
x (X , R) × �

n−p,n−p
x (X , R) → R.

For (1, 1)-forms and (n − 1, n − 1)-forms, the strong positivity is equivalent to weak
positivity. Finally, a product of a weakly positive form and a strongly positive one is
always weakly positive (however, a product of two weakly positive forms may be not
weakly positive). A product of strongly positive forms is still strongly positive.

A strongly/weakly positive (p, p)-current is a current taking non-negative values
on weakly/strongly positive compactly supported (n − p, n − p)-forms.

Definition 5.5 A (p, p)-current T is called weakly positive if

in−p
∫

X
T ∧ α1 ∧ α1 ∧ . . . αn−p ∧ αn−p � 0,

for every (1,0)-forms α1, . . . αn−p with inequality being strict for at least one choice
of αi ’s. The current T is called strongly positive if the inequality is strict for every
non-zero α1 ∧ α1 ∧ . . . αn−p ∧ αn−p.
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1108 A. Fino et al.

Definition 5.6 A (p, p)-current T is called strictly strongly positive (resp. strictly
weakly positive) if T > εω for a strictly strongly positive (resp. strictly weakly
positive) (p, p)-form ω and a positive number ε.

Claim 5.7 The cone of strongly positive (p, p)-currents is dual to the cone of strictly
weakly positive (p, p)-forms, the cone of weakly positive (p, p)-currents is dual to
the cone of strictly strongly positive (p, p)-forms.

The main result of this section is the following

Theorem 5.8 Let f ∈ Aut(M) be a hyperbolic automorphism of a hyperkähler man-
ifold, and denote by π : S → E the suspension S( f ) of (M, f ). Then S admits
a ddc-exact, strongly positive (p, p)-current β for any p = 2, 3, . . . , n − 1, where
n := dimC M.

Weprove this theorem in Sect. 5.4. Theorem 5.8 immediately implies the following.

Corollary 5.9 Let S be a hyperbolic suspension over a hyperkähler manifold M, as in
Theorem 5.8. Then S does not admit a ddc-closed strictly weakly positive (n − p +
1, n − p + 1)-form U for p = 2, 3, . . . , n − 1. In particular, S is not k-pluriclosed
for any k = 1, 2, . . . , n − 1.

Proof Let β = ddcα be a current introduced in Theorem 5.8. If U is ddc-closed
strictly weakly positive (n − p + 1, n − p + 1)-form U , we have 0 <

∫
M U ∧ β =∫

M ddcU ∧ α = 0, which is impossible. 
�

5.4 Hyperbolic automorphisms and Cantat–Dingh–Sibony currents

Let f be a hyperbolic automorphism of a hyperkähler manifold M , dimC M = n, and
p = 1, 2, . . . , n − 1, and denote by λ its unique eigenvalue which satisfies |λ| > 1.

Recall that the mass of a positive (p, p)-current v on a Kähler manifold M is∫
M v ∧ ωn−p. Since f preserves the Kähler cone, it preserves the positive cone of M ,

henceλ > 1. The action of f ∗ on H2p(M) hasλp as themaximal eigenvalue [8], hence
the mass of 1

λpk ( f ∗)kωp is bounded. Moreover, the set of positive (p, p)-currents of
bounded mass is compact [12, Chapter 3].

Therefore the sequence { 1
λpk ( f ∗)kωp}k=1,...,∞ has a limit point. The eigenspace

corresponding to λp in H p,p(M) has multiplicity 1, as shown in [8]. By [13, Theorem
4.3.1], the limit of a subsequence limk

1
λpk ( f ∗)kωp is a unique positive (p, p)-current

σ which satisfies f ∗σ = λσ . We call it the Cantat–Dingh–Sibony current (Cantat
prove this result for (1,1)-currents on a K3 surface [9], and Dingh-Sibony for all
dimensions).

Using the decomposition T S = Tvert S ⊕ π∗T E induced by the flat Ehresmann
connection on S, we can consider the bundle D := D p,p

π (S) of fiberwise currents as a
local system on E ; the monodromy of this local system is given by the map v �→ f ∗v.
Identifying local systems and flat bundles, we can consider D as a bundle with flat
connection.

Consider a real line bundle L ⊂ D spanned by the Cantat–Dingh–Sibony current σ .
This line bundle is preserved by the natural flat connection on D, and its monodromy
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Special Hermitian structures on suspensions 1109

map is multiplication by λ. Choose a trivialization of L such that the corresponding
connection 1-form θ satisfies dθ = 0 and d(Iθ) = 0. Using the decomposition
T S = Tvert S⊕π∗T E , we can embed the sections ofD into the space of (p, p)-currents
on S. Let α be the current on S associated with the section of L ⊂ D constructed
above. Since σ is a limit of closed currents, dσ = 0 and we have dα = α ∧ θ , and
β := ddcα = α ∧ θ ∧ Iθ . The current β is ddc-exact. Since β is a limit of the wedge
power of strongly positive (1,1)-forms, it is strongly positive. This proves Theorem5.8.

6 Examples of suspensions of hyperkähler manifolds

We briefly recall the examples of suspensions of Kummer K3 surfaces from [42] first.
Take the complex 2-torus T given by the quotient of C

2 by the standard lattice
generated by the unit vectors (1, 0), (i, 0), (0, 1), (0, i). Consider the involution ofC

2

given by multiplication by −1, i.e. (z1, z2) → (−z1,−z2). The involution descends
to an involution σ of the torus T with 16 fixed points p1, . . . , p16. The quotient
space T/〈1, σ 〉 has 16 double points. The singularities can be resolved by blowing the
singularities up, yieldings a smooth compact surface containing 16 mutually disjoint
smooth rational curves C j . This is the Kummer surface Km associated to T. There is
an alternative description of the Kummer surface. Let X denote the surface obtaining
by blowing up T at each of the points p1, . . . , p16. Let E j ∼= P

1 be the exceptional
divisor over p j . The involution σ of T lifts to an involution τ of X with the fixed
set E = E1 ∪ . . . ∪ E16. The eingevalues of the differential of τ at every points of
E are ±1. So the quotient X/〈1, τ 〉 is smooth and contains 16 rational (−2)-curves
C j ∼= P

1, the images of the rational (−1)-curves E j in X . The quotient is a Kummer

surface Km. Let Ĉ2 be the surface obtained by blowing up C
2 at every point of the

discrete set π−1({p1, . . . , p16}), where π : C
2 → T is the quotient map, we have the

following diagram

Ĉ
2 X Km

C
2 T T/〈1, σ 〉

�

� �

�

� �
π̃

�π �

By the Lefschetz Theorem on (1, 1)-forms we have that the Picard group of Km is
isomorphic to H2(Km, Z) ∩ H1,1(Km), so the rank of the Picard group of Km is 20.
Moreover, the Picard group of Km is generated by the 16 exceptional divisors Ei and
by the pull-back by π̃ of divisors on T/〈1, σ 〉.

The canonical (2, 0)-form dz1∧dz2 onC
2 induces a nowhere vanishing (2, 0)-form

on T. Therefore, the pullback of this form on X induces a holomorphic (2, 0)-form
on the Kummer surface.

Let A ∈ SL(2, Z+√−1Z) be amatrix with |tr(A)| > 2, so that it is diagonalizable
with eigenvalues λ, λ−1. Let dv1, dv2 be respectively the associated eigenvectors of
the induced map on H1(T, C) ∼= �1(R4). Denote by A also the induced map on
�k(R4). Then A preserves the holomorphic (2,0)-form dv1∧dv2 on T and the divisor
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1110 A. Fino et al.

D = ∑16
i=1 Ei . So it defines a holomorphic transformation ϕA on Km preserving the

induced holomorphic (2, 0)-form. In particular the Z-action on T× R× S1 generated
by

f : (p, x, y) → (A(p), x + 1, y) (6.1)

extends to an action on Km × R × S1, generated by the hyperbolic automorphism f .
The quotient is a compact complex manifold S(Km, f) with trivial canonical bundle
and satisfying the hard Lefschetz property, such that its real homotopy type is formal
as shown in [42].

In a similar way we can construct hyperbolic automorphisms preserving the holo-
morphic symplectic form on higher-dimensional hyperkähler manifolds arising as
Hilbert scheme of points on Km. More precisely, f : Km → Km extends to
f [n] : Km[n] → Km[n] on the Hilbert scheme of order n of Km in a natural way:
to a zero-dimensional subscheme Z ⊂ Km we assign f (Z). According to Beauville
(and PhD thesis by P. Beri [5]), f [n] preserves the holomorphic symplectic form if
and only if f does. Now we can construct the suspension S(Km[n], f [n]) using f [n]
and obtain:

Theorem 6.1 The space S(Km[n], f [n]) for n � 1 is a non-Kähler compact complex
manifold with trivial canonical bundle which admits a balanced metric and it is not
k-pluriclosed for any k = 1, 2, . . . , 2n − 1.

Proof The fact that it is balanced follows from Proposition 5.2 and Corollary 5.9. 
�
The metric in the examples above is not explicit. But if we consider the suspension

over the real 4-torus T
4 we can define such metric explicitly. Denote by v1 and v2 the

eigenforms of the map A on H1(T4, C) induced by the matrix A as above and by x
and y respectively coordinates on R and S1. Then A(dv1 ∧ dv1) = |λ|2dv1 ∧ dv1 and
A(dv2∧dv2) = |λ|−2dv2∧dv2. Consider the differential forms onT

4×R× S1 given
by α1 = |λ|−2x dv1∧dv1 and α2 = |λ|2x dv2∧dv2. The forms α1 and α2 are invariant
under the action in (6.1). Moreover α1 + α2 descends to a weakly positive definite
(2, 2)-form on the suspension S(T4, f ) of the 4-torus defined by this action. By the
observation of Michelson [39] S(T4, f ) admits a balanced metric. We can directly
check that

ω = |λ|−2x dv1 ∧ dv1 + |λ|2x dv2 ∧ dv2 + dx ∧ dy

is invariant and satisfies dω2 = 0. Hence it defines a balanced metric.

Remark 6.2 We restrict ourselves here to the more explicitly described examples, but
many of the known compact hyperkähler manifolds admit hyperbolic automorphisms.
We expect that the topological properties of S(Km, f) from [42] are also valid for
S(Km[n], f [n]). Note that the manifold A(T4) can be also described as the almost
abelian solvmanifold M6(c) in [11] (see also Section 3 in [15]). By Theorem 4.1
in [18] the associated almost abelian Lie algebra, which is isomorphic to b6 in the
notation of [11], admits a balanced metric.
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7 Holomorphically symplectic and hypercomplex structures on toric
suspensions with 4-dimensional base

In this section we show how the toric suspensions could be used to construct examples
of compact holomorphic symplectic and hypercomplex non-Kähler manifolds. The
examples are in fact pseudo-hyperkähler. We also discuss their metric structure.

7.1 General construction and example

Weconsider a toric suspension of M , where M is a real 8-torus, over a real 4-torus base.
More precisely we consider S = S(T 8, f , id, id, id), where f is a diffeomorphism
of T 8 defined by a matrix A ∈ SL(8, R). We choose A as in the following Lemma:

Lemma 7.1 Consider on R
8 the hypercomplex structure (I , J , K ) defined, in terms of

the standard basis (e1, . . . , e8), by

I e1 = e3, I e2 = e4, I e5 = −e7, I e6 = −e8,
Je1 = −e5, Je2 = −e6, Je3 = −e7 Je4 = −e8,

and the pseudo hyperhermitian metric

h = (e1)2 − (e2)2 + (e3)2 − (e4)2 + (e5)2 − (e6)2 + (e7)2 − (e8)2.

Then there exists an integer matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 −1 −1 0 1
0 −1 0 −1 −1 0 1 1

−1 0 1 0 0 1 1 1
0 1 0 −1 1 1 1 0
1 1 0 −1 1 0 1 0
1 0 −1 −1 0 −1 0 −1
0 −1 −1 −1 −1 0 1 0

−1 −1 −1 0 0 1 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ SL(8, Z)

preserving the pseudo hyperhermitian structure (I , J , K , h) and such Ak �= I d, for
every k > 1.

Proof Since A commutes with the matrices associated to I and J with respect to the
standard basis (e1, . . . , e8) and At H A = H , where H is the matrix associated to h,
we have that A preserves the pseudo hyperhermitian structure (I , J , K , h). Moreover,
Ak �= I d, for every k > 1, since A has eigenvalues ±i(1 + √

2) and ±i(
√
2 − 1) of

multiplicity two. 
�
Recall that an indefinite or pseudo hyperhermitian metric is called pseudo-

hyperkähler if the corresponding fundamental forms are closed. In particular, the
Lemma claims that A preserves the pseudo-hyperkähler structure on R

8 and the lat-
tice generated by e1, .., e8. Such a matrix defines a hyperbolic diffeomorphism f A of
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1112 A. Fino et al.

T 8 which preserves the pseudo-hyperkahler structure and in particular both the hyper-
complex structure and the holomorphic symplectic form.We note that any suchmatrix
which preserves a positive-definite metric, has all eigenvalues on the unit circle so can-
not be hyperbolic. To formulate the next Theorem, recall that for every hypercomplex
manifold there exists a unique torsion free connection preserving the hypercomplex
structure, which is called the Obata connection.

Theorem 7.2 Let f A be the diffeomorphism of T 8 defined by the matrix A and
S = S(T 8, f A, id, id, id) the hyperbolic toric suspension, where T 8 denotes the
8-dimensional real torus obtained as a quotient of R

8 by the standard lattice. Then
S admits a pseudo-hyperkähler structure (I , J , K , h). In particular for the complex
structure I , S carries both hypercomplex and holomorphic symplectic structures, but
no Kähler metrics. Moreover, the Obata connection of the hypercomplex structure is
flat.

Proof Since f A preserves both the standard hypercomplex and holomorphic sym-
plectic structures on R

8, the previous structures descend to T 8. Then the action
(p, t) → ( f −n

A (p), t + n) of Z on T 8 × R
4 preserves the induced natural struc-

tures obtained as product of the ones on T 8 and the canonical hyperkähler structure
on R

4. Moreover, the hypercomplex structure on T 8 × R
4 is clearly compatible with

flat Obata connection. As a consequence all structures descend to the quotient S. The
fact that S is non-Kähler follows from Theorem 3.3, because f A does not preserve any
Kähler class. 
�
Remark 7.3 Note that pseudo-hyperkähler structures on 12-dimensional compact
solvmanifolds are constructed in [47] and are associated to the almost abelian Lie
algebras

�I (�J (g)) = spanR{U 1
1 , U 2

1 , U 3
1 , U 4

1 , V 1
1 , V 1

2 , V 2
1 , V 2

2 , V 3
1 , V 3

2 , V 4
1 , V 4

2 }

with Lie bracket

[U 1
1 , V h

j ] = c11 j V h
1 + c21 j V h

2 , j = 1, 2, h = 1, 2, 3, 4,

and hypercomplex structure (I , J , K ) defined by

IU 1
1 = U 2

1 , I V 1
1 = V 2

1 , I V 1
2 = V 2

2 , IU 4
1 = U 3

1 , I V 4
1 = V 3

1 , I V 4
2 = V 3

2 ,

JU 1
1 = U 3

1 , J V 1
1 = V 3

1 , J V 1
2 = V 3

2 , JU 2
1 = U 4

1 , I V 2
1 = V 4

1 , I V 2
2 = V 4

2 .

So in particular the associated solvable Lie group is a semidirect product of the form
(R � R

8) × R
3. In the notation of [47] g = a � b, with a = spanR{U 1

1 } and
b = spanR{V 1

1 , V 1
2 } andbyTheorem6.6 in [47] ifbhas a non-degenerate 2-formwhich

is closed on g, then (�I (�J (g)), I , J , K ) admits a compatible pseudo-hyperkähler
structure. The previous condition is satisfied if c111 = −c212. The hyperbolic toric
suspension S = S(T 8, f A, id, id, id) corresponds to the compact solvmanifold con-
structed as a quotient of the solvableLie group H whoseLie algebra ish := �I (�J (g))
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Special Hermitian structures on suspensions 1113

with adU1
1

= diag(1,−1, 1,−1, 1,−1, 1,−1). If we consider the basis

f1 = V 1
1 , f2 = V 1

2 f3 = V 2
1 , f4 = V 2

2 , f5 = V 3
1 , f6 = V 3

2 ,

f7 = V 4
1 , f8 = V 4

2 , f9 = U 1
1 , f10 = U 2

1 , f11 = U 3
1 , f12 = U 4

1 ,

the structure equations of h are

d f i = f i ∧ f 9, i = 1, 3, 5, 7, d f j = − f j ∧ f 9, j = 2, 4, 6, 7,
d f k = 0, k = 9, . . . 12.

(7.1)

The pseudo-hyperkähler structure on h is given by (I , J , K , ωI , ωJ , ωK ), where

ωI = 2(− f 1 ∧ f 2 − f 3 ∧ f 4 + f 5 ∧ f 6 + f 7 ∧ f 8 + f 9 ∧ f 10 − f 11 ∧ f 12),
ωJ = 2( f 1 ∧ f 8 + f 4 ∧ f 5 − f 2 ∧ f 7 − f 3 ∧ f 6 + f 9 ∧ f 11 + f 10 ∧ f 12),
ωK = 2( f 1 ∧ f 6 − f 4 ∧ f 7 − f 2 ∧ f 5 + f 3 ∧ f 8 − f 9 ∧ f 12 + f 10 ∧ f 11).

With respect to the basis of (1, 0)-forms with respect to I

η1 = f 1 + i f 3, η2 = f 2 + i f 4, η3 = f 5 − i f 7,
η4 = f 6 − i f 8, η5 = f 9 + i f 10, η6 = f 11 − f 12

(7.2)

we have

Jη1 = η3, Jη2 = η4, Jη3 = −η1, Jη4 = −η2, Jη5 = η6, Jη6 = −η5 (7.3)

and the associated (2, 0)-form ωJ + iωK is given by

ωJ + iωK = 2(η5 ∧ η6 + iη1 ∧ η4 − iη2 ∧ η3).

Note that

J (ωJ + iωK ) = 2(η5 ∧ η6 − iη1 ∧ η4 + iη2 ∧ η3)

and that the two (4, 0)-forms η1 ∧η3 ∧η5 ∧η6 and η2 ∧η4 ∧η5 ∧η6 are both ∂-exact.

7.2 Compatible metric structures

On a hypercomplex manifold (M, I , J , K ) we always have a hyper-Hermitian
(positive-definite) metric, that is a metric compatible with the complex structures
I , J , K .When the fundamental formsωI , ωJ , ωK are closed themetric is hyperkähler,
but in the example constructed in Theorem 7.2 suchmetric doesn’t exist. A generaliza-
tion of hyperkähler condition is the condition ∂	 = 0, where	 = ωJ +iωK , in which
case the metric is called hyperkähler with torsion (shortly HKT) [28]. In fact one can
characterize the HKT condition in terms of 	: if there is a (2, 0) form 	 with respect
to I , such that ∂	 = 0, 	(J X , JY ) = −	(J X , JY ), and 	(X , J X) > 0 for every
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non-zero (1, 0) vector field X , then the metric defined by g(X , Y ) = Re	(X , JY ) is
HKT. The HKTmetric is a good candidate for a quaternionic analog of Kähler metrics
in complex geometry - it arises from a local quaternionic-subharmonic potential and
gives rise to a Hodge theory (see [28] and [45]). The existence or non-existence of
HKTmetrics, in 8-dimensional case depends on purely holomorphic data (see [27]). In
hypercomplex geometry the analog of the balanced condition is called quaternionic
balanced (see [36]) and such metric satisfies ∂(	n−1) = 0, where 2n is the complex
dimension of the manifold. We have the following:

Theorem 7.4 The hypercomplex manifold S = S(T 8, f A, id, id, id) from Theo-
rem 7.2 admits a quaternionic balanced metric, but admits no HKT metrics.

Proof We consider the solvmanifold model of S from Remark 7.3. We use the same
(1, 0)-forms ηi , 1 � i � 6, and complex structure J as in (7.2) and (7.3). Note that
the hypercomplex structure has Obata holonomy in SL(n, H), since it has a closed
and real (6, 0)-form. From the structure equations (7.1) we see that the (2, 0)-form
form 	 = η1 ∧ η3 + η2 ∧ η4 + η5 ∧ η6 satisfies the condition

∂	2 = ∂(η1 ∧ η3 ∧ η5 ∧ η6 + η2 ∧ η4 ∧ η5 ∧ η6 + η1 ∧ η2 ∧ η3 ∧ η4) = 0,

but ∂	 �= 0, so 	 defines a quaternionic-balanced metric. On the other side, by
averaging argument (see [16]), if there is anyHKTmetric, then there exists an invariant
one.Working by contradiction, we assume that there is a (2, 0)-form 	̃with ∂(	̃) = 0
which is J -anti-invariant and positive, so defines an HKTmetric. Then 	̃ has the form

	̃ =
∑

α,β

aαβ ηα ∧ Jηβ,

where aαβ is a Hermitian and positive definite matrix. Now we can adapt the Harvey–
Lawson property for SL(n, H) manifolds from [27] and use it explicitly. Since the
(4, 0)-form α = η1 ∧ η3 ∧ η5 ∧ η6 + η2 ∧ η4 ∧ η5 ∧ η6 is ∂-exact and the (6, 0)-form
β = η1 ∧ η2 ∧ η3 ∧ η4 ∧ η5 ∧ η6 is closed, then we have

∫

M
	̃ ∧ α ∧ β = 0

by integration by parts. On the other side vol = β∧β is a volume form and 	̃∧α∧β =
(a11 + a22)vol > 0, so

∫

M
	̃ ∧ α ∧ β > 0

and we get a contradiction. 
�
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8 Pluriclosedmetrics from suspensions

We recall the following

Definition 8.1 Let (M, I ) be a complex manifold. We say that an I -Hermitian metric
h is pluriclosed (or SKT) if its fundamental form is ∂∂-closed.

Using automorphisms of Kähler manifolds it is also possible to construct suspen-
sions admitting pluriclosed metrics in the following way.

Let (X3, ξ, η, ϕ,�) be a 3-dimensional Sasakian manifold and (Y 2n, I , g, ω) be a
Kähler manifold of complex dimension n.

On the product X3 × Y 2n × R we can define a complex structure Ĩ such that
Ĩ (ξ) = ∂

∂t
, where t is the coordinate on R and Ĩ = I on Y 2n . The 2-form

ω̃ = η ∧ dt + dη + ω

is then a positive (1, 1)-form on (X3 × Y 2n × R, Ĩ ). Since dη = �, by a direct
computation we obtain

dω̃ = � ∧ dt

and
dT B = d( Ĩ dω̃) = −d(� ∧ η) = 0,

where T B = Ĩ dω̃ is the so-called Bismut torsion form. Note that � ∧ η is closed
since it is a 3-form on X3. Therefore we have the following

Theorem 8.2 Let (X3, ξ, η, ϕ,�)be a Sasakian 3-dimensional manifold, (Y 2n, I , g, ω)

a Kähler manifold and f = ( f1, f2) a diffeomorphism of X3 × Y 2n such that f1 is
a diffeomorphism of X3 preserving the Sasakian structure (ξ, η, ϕ,�) and f2 is a
diffeomorphism of Y 2n preserving the Kähler structure (I , g, ω). Then the suspension
of X3 × Y 2n by f is non-Kähler and has a pluriclosed metric.

To prove that the suspension of (X3, ξ, η, ϕ,�) by f is non-Kähler we can use the
Harvey–Lawson characterization of non-Kähler manifolds [31] and the observation
that dη = � is a non-zero (weakly) positive and exact (1, 1)-form.

Example 8.3 An application of the previous construction gives the example of compact
solvmanifold constructed in [19].More precisely, let G be the simply connected 3-step
solvable Lie group with structure equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = e2 ∧ e3,
de2 = −e2 ∧ e8,
de3 = e3 ∧ e8,
de4 = b e5 ∧ e8,
de5 = −b e4 ∧ e8,
de6 = b e7 ∧ e8

de7 = −b e6 ∧ e8,
de8 = 0,
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1116 A. Fino et al.

with b = 2π
log(2+√

3)
. By [19] G has the left-invariant complex structure

I e1 = −e2, I e3 = e8, I e4 = e5, I e6 = e7,

and admits a compact quotient by a lattice �. The I -Hermitian metric g = ∑8
i=1(e

i )2

is pluriclosed since the Bismut torsion 3-form T B = I dω is the closed 3-form −e1 ∧
e2∧e3. The compact solvmanifold�\G can be obtained as a suspension of the product
of the 3-Sasakian manifold given by the compact quotient of the real 3-dimensional
Heisenberg group by a lattice and the standard torus T 4. Moreover, the compact
solvmanifold can be viewed also as the total space of a bundle over a circle with fibre
a circle bundle over a 6-torus.
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