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Abstract

First, we introduce some basic facts of manifolds with constant curvature. In particular, we are inter-
ested in the geometry of the Anti-de-Sitter spacetime in 2+1 dimensions. Such a spacetime is a solution
to Einstein equations in vacuum with negative cosmological constant. Our proposal is that all physi-
cally acceptable AdS3 geometries are completely determined by their spacial slices, once the boundary
conditions are specified. Although this proposal seems to contradict the fact that the AdS is not global
hyperbolic, we simply assume it is correct for our case of 3D gravity. By studying the classification of
Möbius transformation groups acting as isometries on spacial slices of the global AdS3, we can, in princi-
ple, exhaust all possible solutions to Einstein equations in vacuum with negative cosmological constant.
In this thesis, however, we only focus on solutions whose spacial slices are quotients of Poincare disks
modulo cyclic discrete subgroups of Möbius groups, which enable us to find their moduli spaces. One
example of such a spacetime is the BTZ black hole in Lorentzian signature. Some attempts to visualize
these geometries are made in this thesis. To determine the coupling constant of three dimensional gravity,
we introduce an equivalent Chern-Simons formalism for the Einstein-Hilbert action. The gravitational
coupling constant is then a dimensionless parameter, which is quantized for topological reasons. Prelim-
inary materials about fiber bundles and Chern classes introduced in section 2.3 and section 2.4 pave the
way for introducing the Chern-Simons formalism for our discussions. Finally, we try to investigate the
dual CFT2 of 3D gravity. We compute its partition function and provide a possible model of its CFT2.
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1 Introduction

In three dimensions the Riemann tensor can be expressed in terms of metric and Ricci tensor.

Rαβγδ = gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ −
1

2
(gαγgβδ − gαδgβγ)R (1)

which is simply a consequence of the fact that in three dimensions, we have a natural isomorphism T ∗
p (M) ∼=∧2

T ∗
p (M) via the Hodge star duality. By solving the vacuum Einstein’s equations,

Rµν −
1

2
gµνR+ Λgµν = 0 (2)

we see that the on-shell Riemann tensor can be written as multiples of metric solutions.

Rαβγδ = Λ(gαγgβδ − gαδgβγ) (3)

In differential geometry, manifold satisfying this property are called space of constant curvature, which is
defined as follows

Definition: Metric gµν is called constant curvature metric if there exist a constant K such that

Rαβγδ = 2Kgγ[αgβ]δ (4)

The constant K is usually called the sectional curvature and one can easily check that it is proportional
to scalar curvature

R = Kn(n− 1) (5)

A worth mentioning property of manifolds with constant curvature is that if two such manifolds M and N
have the same dimensions, K value and the same signature, then they have the same local geometry [2].
Roughly speaking, two spacetimes (M, g) and (N,h) have the same local geometry if there is a local dif-
feomorphism ϕ whose pull-back satisfies ϕ∗(g) = h. Thus, for spacetimes of constant curvature, if we only
consider the local geometries and ignore the global topologies, there are in total three types in Lorentzian
signature and in Euclidean signature, respectively.

Three Lorentzian Spaces

1. de-Sitter spacetime dSn, who has positive constant curvature.

2. Minkowski spacetime R1,n−1, who has zero curvature.

3. Anti-de-Sitter spacetime AdSn, who has negative constant curvature.

Three Euclidean Spaces

1. Sphere Sn, who has positive constant curvature.

2. Euclidean space Rn, who has zero curvature.

3. Euclidean AdSn Space (Hyperbolic Space) Hn, who has negative constant curvature.

Moreover, one can show that a spacetime of constant curvature has maximal number of local symme-

tries [2]; In n dimensions, the local isometry of such an n-manifold is generated by
n(n+ 1)

2
local killing

vectors [2]. For R1,n−1, AdSn, S
n, Rn and Hn, if their corresponding local killing vectors are also globally

defined, we call them global R1,n−1, AdSn, S
n, Rn and Hn, respectively. dSn is a special one because it

has no global killing vectors. We call an n-manifold a local AdSn spacetime if it has the local geometry
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everywhere as a global AdS manifold. In what follows, AdS will always be referred to as the global AdS.
For hyperbolic spaces as well as AdS spacetimes, a well-known fact is that they do not have topological
boundaries; In many cases, they are not compact manifolds. This is easy to understand because spaces that
are maximally symmetric look the same everywhere from any perspective. In the AdS/CFT correspondence,
the boundary of an AdS that we refer to as is a comformal boundary, in the sense that it is a topological
boundary of the conformally compactified AdS spacetime. Roughly speaking, at the conformal boundary of
a manifold, we do not care about the length or the area but rather the angle between two vectors. Rescaling
any quantities defined on the boundary does not alter the conformal geometry and physics at the boundary.

Definition: Let M be a compact manifold whose boundary is ∂M and interior is M0. We say M0 is
conformally compact if we can find a smooth function χ on M satisfying χ ̸= 0 on M0 but χ = 0, dχ ̸= 0 on
∂M . If the interior M0 has a metric gab, then χgab is a metric on M . We call ∂M the conformal boundary
of M0 and compact manifold M the conformal compactification of M0.

Complete (Semi-)Riemannian manifolds of constant curvature are also homogenous spaces [2]. A manifold
M is called homogeneous if there exists a Lie group G acting on M continuously and transitively. Maxi-
mally symmetric spaces can always be written as a coset space of Lie groups because of the following theorem.

Theorem: If a group G acts on a topological spaceM transitively, and a subgroup H ⊂ G is the stablizer
of a point p ∈M , there is a one-to-one map λ: G/H 7→M defined by λ(gH) = gp where g ∈ G.

At first glance, this theory looks trivial, since all the classical solutions of the same value of curvature are
equivalent up to a local coordinate transformation. Fortunately, we are still allowed to do local identifications
to obtain some interesting global topologies. For example, in two dimensions in Euclidean signature, one can
easily imagine three types of flat solutions: a plane, a cylinder and a torus, whose fundamental groups
are [0], Z and Z⊕ Z, respectively.

In 1992, Máximo Bañados, Claudio Teitelboim and Jorge Zanelli showed that in three dimensions with
negative cosmological constant, there exists a black hole solution, which is an asymptotic AdS3 spacetime [43].
This black hole solution can be obtained by doing local identifications of a pure AdS3. In addition, J. D.
Brown and Marc Henneaux showed that for an asymptotic AdS3 spacetime, its asymptotic isometry is a
direct sum of two copies of virasoro algebra, which strongly suggests that this three dimensional gravity has
a CFT2 dual living on its conformal boundary [20]. This was the first evidence of the AdS/CFT conjecture
proposed by Juan Maldecena.

In n dimensional spacetime, gravitational fields have n(n− 3) degrees of freedom [2]. In four dimensions,
there are 4 degrees of freedom, in which two come from the two polarizations of gravitational waves and
the other two from their conjugate momenta. It is clear that in three dimensions, there are no gravitational
waves. In this sense, this theory is a topological field theory. It is well-known that the classical three di-
mensional gravity is actually equivalent to the Chern-Simons theory whose connection A is living in some
Lie algebra depending on the sign of consmological constant [16]. In this thesis, we will use the property of
second Chern-Class to show how it determines the possible values of gravitational coupling constant.

Quantum gravity is difficult because it is not renormalizable. For pure gravity in four dimensions,

I =
1

16πG

∫
M

d4x
√
− det g(R− 2Λ) (6)
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Setting h̄ = c = 1 means that length is inverse of mass; G has dimension of of length-squared (i.e. [G] = L2).
The only possible counter terms for one-loop correction to be expected are integrals of R2, RµνR

µν and
RαβµνR

αβµν . Therefore, one-loop counter term for the Einstein-Hilbert Lagrangian takes the form

∆L =
√
g(αR2 + βRabR

ab + γRabcdR
abcd) (7)

However, for pure gravity, we know that on the ‘mass-shell’, we have R = 0 and Rab = 0 because of Einsteins
equations. This implies that the first two terms can be re-written as

∆gab (EOM)
ab
, (8)

where ∆gab is some arbitrary function of gab and the above expression vanishes on-shell [39]. From this
expression we see that we can redefine the field gab → gab+∆gab so that the first two terms can be absorbed
into the original Lagrangian. Hence, we can call such terms unphysical counter terms. For the third term,
we know that for compact closed 4D manifold without boundary, the Euler characteristic∫

M

d4x
√
g(R2 − 4RabR

ab +RabcdR
abcd) (9)

is topological invariant. Then we can also absorb the last term into the original Lagrangian. Therefore, in four
dimensions, pure gravity is one-loop exact [39]. But adding such unphysical counter terms does not eliminate
divergences at higher-loop level. We would need an infinite number of counter terms to eliminate all diver-
gences at arbitrary order of loops. This means that in four dimension, pure gravity is non-renormalizable.
This theory should be studied as a sub-theory of a much larger theory. For example, in some supergravity
theories, we may have fewer divergences [44]. In string theory, we can see all the higher derivative terms,
whose coupling constants are determined by the string length [45]. Since in general relativity, we consider
physics at very large scale, those higher order terms are irrelevant operators that do not survive in long
distance. Einstein-Hilbert gravity is, therefore, a low energy effective field theory.

Because any gauge theory has self interactions, for pure gravity in three dimensions, we should also
concern its renormalizability, even though this theory seems trivial. Since h̄ = c = 1 implies that [G] =
L. One may also think that 3D gravity is non-renormalizable. This is, however, incorrect. The first
consideration is that in three dimensions, possible counter terms are the Riemann scalar tensor R and
the cosmological constant Λ because their integrals are the only possible dimensionless quantities we can
have in three dimensions. Since in three dimensions, the Riemann tensor is completely determined by the
metric, Ricci tensor and the scalar tensor, adding these counter terms is equivalent to redefining the metric
gµν → gµν +aRµν + bRgµν + · · · . Thus, 3D quantum gravity is finite. The renormalization of pure gravity in
three dimensions is equivalent to renormalization of cosmological constant itself. However, three dimensional
gravity, as a topological field theory, has a very special feature that is different from ordinary quantum field
theory such as ϕ4 theory. We will see that by redefining fields, the coupling constant appear in Lagrangian
is, in fact, a dimensionless constant l/G. We will see that it can only take discrete values due to topological
constraints and thus there is no running coupling constant for this quantum theory. The gravitational
coupling constant is determined by topological constraints. From the above analysis, it is hopeful to find a
3D quantum gravity theory.

2 Preliminary

2.1 Hyperbolic Geometry

On an Euclidean plane, the fifth postulate claims that there is exacly one geodesic through a given point
parallel with a given geodesic disjoint from that point. From nineteenth century it gradually became clear
that one can have a self-consistent theory of geometry where the original fifth postulate is not valid anymore.
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One of such geometries is called the hyperbolic geometry, which has negative constant Riemann scalar curva-
ture and Euclidean signature. In the following sections we will see that it is also the analytic continuation of
AdS geometry and has three well-known models called Poincare’s upper-half space, Poincare’s unit ball and
Lorentzian model, respectively. Essentially, the three different models describe the same geometric structure.
i.e. the Riemannian structure together with its conformal structure at boundary. From a geometric aspect,
they are simply the same topological manifold but one is different from another by a different embedding.

In Lorentzian model, a global hyperbolic space is a submanifoldM embedded in n+1Minkowski spacetime
with metric

ds2 = −dV 2 + (dX1)2 + · · ·+ (dXn)2 (10)

such that codim(M) = 1 and the embedding equation is given by

−V 2 + (X1)2 + · · ·+ (Xn)2 = −1 (11)

It’s orientation-preserving isometry group is SO(1, n), which is generated by
n(n− 1)

2
rotations Xi∂Xj −

Xj∂Xi in X-plane and n boosts V ∂Xi +Xi∂V .

In two dimensions, the Poincare’s upper-half plane is given by H2 = {z ∈ C : ℑz > 0}, with the metric

ds2 =
|dz|2

(ℑz)2
(12)

Another model is called Poincare’s unit disc. D2 = {z ∈ C : |z| < 1} with the metric

ds2 =
4|dz|2

1− |z|2
(13)

Conformal boundary of the upper-half plane is the real axis plus i∞, which is equivalent to the conformal
boundary circle of unit disc. In the upper-half plane model, geodesics are cicles centered at the conformal
boundary [8]. While in the disc model, geodesics are arcs of circles or diameters orthogonal to its conformal
boundary [8]. Each arc tending to its conformal boundary has infinte length. Suppose a free particle falling
in a hyperbolic space, it will never reach the boundary at infinity. It can be proved that the above two
models with the given metrics are both of constant negative curvature [8]. The two models are related with

Figure 1: Geodesics in Poincare’s Models

each other via a linear fractional transformation(
i 1
1 i

)
(z)=

iz + 1

z + i
(14)

This transformation has a natural extension mapping the conformal boundary from one to another. For this
reason, we do not distinguish the two models and simply denote a global two dimensional hyperbolic space

9



as H2, whose conformal boundary is denoted by S1 = ∂H2.

The isometry group of H2 is PSL(2,R), which is the real Möbius transformation. To see this, we first
consider how the Möbius transformations acts on the Poincare’s upper half plane. Let a, b, c, d ∈ R and
ad− bc = 1 then the Möbius transformation

z = x+ iy 7→ w =
az + b

cz + d
= u+ iv (15)

The inverse map is

z =
b− dw
−a+ cw

(16)

If we substitue the transformation into the metric

ds̃2 =
|dw|2

(ℑw)2
=
du2 + dv2

v2
, (17)

we get

ds̃2 =
du2 + dv2

v2
=

4|dw|2

|w − w̄|2
=

4(ad− bc)2|dz|2

|(az + b)(cz̄ + d)− (az̄ + b)(cz + d)|2

=
dx2 + dy2

y2
=

dz2

(ℑz)2
= ds2

(18)

In the above calculations, we didn’t use the condition ad − bc = 1. In fact, the transformation preserves
the metric for any ad − bc > 0. However, we can always rescale the matrix so that ad − bc = 1 holds. In

Lorentzian model, we associate each point (x, y, z) of H2 with a matrix

(
z − y x
x z + y

)
and consider an

action (
z − y x
x z + y

)
7−→ A

(
z − y x
x z + y

)
AT (19)

where A ∈ SL2(R), we can see that the isometry of this hyperboloid is SO(2, 1) = SL2(R)/Z2 = PSL2(R).
Therefore, the isometry group of H2 is indeed PSL2(R).
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It is useful to introduce the following coordinates for Poincare disc [25]. The first one is given by
X = sinhχ cosϕ

Y = sinhχ sinϕ

V = coshχ

(20)

with induced metric ds2 = dχ2 + sinh2 χdϕ2. By introducing sinhχ = r, we have

ds2 =
dr2

1 + r2
+ r2dθ2 (21)

Figure 2: Constant θ are geodesics. Constant r, for θ ∈ (0, 2π] are not geodesics but rather isometric. i.e.
∂

∂θ
is a killing vector field.

Another coordinate is given by 
X = sinh ρ

Y = cosh ρ sinhω

V = cosh ρ coshω

(22)

with
ds2 = dρ2 + cosh2 ρdω2. (23)

By setting cosh ρ = r, we have

ds2 =
dr2

r2 − 1
+ r2dω2 (24)

Figure 3: This coordinate describes r > 1 and ω ∈ (−∞,+∞).
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Finally, we introduce a special coordinate
X = e−σµ

Y = sinhσ + e−σ µ
2

2

V = coshσ + e−σ µ
2

2

(25)

with

ds2 = dσ2 + e−σ µ
2

2
. (26)

We define e−σ = r, then the metric becomes

ds2 =
dr2

r2
+ r2dµ2. (27)

Figure 4: Each µ =const are geodesics arcs tending to conformal infinity. Constant r curves are not geodesic
but isometric.

In three dimensions, we also have the Poincare’s upper-half-space model {(z, u) : z ∈ C, u > 0} with the
metric

ds2 =
|dz|2 + du2

u2
(28)

as well as the unit ball model {x ∈ R3 : |x|2 < 1} with the metric

ds2 =
4|dx|2

1− |x|2
(29)

Figure 5: Geodesics in 3D Models
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The conformal boundary of a global hyperbolic space is a two-sphere S2, which can be identified as CP1. In
the upper-half space model, its geodesics are hemi-circles centered at conformal boundary. In the Poincare’s
ball model, its geodesics are arcs of circles orthogonal to the boundary sphere. The picture depicts totally
geodesic surfaces in each model. Each geodesic connecting two end points on the conformal boundary has
infinite length. The isometry group is SO(3, 1), which is the same as SL(2,C)/Z2. To see how it acts on
H3, we write the hyperboloid as det(g) = 1 with

g =

(
U −X1 iV +X2

−iV +X2 U +X1

)
∈ SL(2,C)/SU(2) (30)

The metric is exactly the Killing-Cartan metric ds2 = Tr
(
g−1dgg−1dg

)
of the quotient Lie group [8]. The

action is

A

(
U −X1 iV +X2

−iV +X2 U +X1

)
A† (31)

where A ∈ PSL(2,C).

2.2 Uniformization of Riemann Surfaces

It is necessary to have a brief introduction to the uniformization of Riemann surfaces because it is closely
related with the geometry of BTZ black holes in Lorentzian signature. From uniformization theorem, every
simply connected Riemann surface is conformally equivalent to one of three types: a Riemann sphere
CP1, a complex plane C and a Poincare upper-half plane H2, corresponding to two-manifolds with
positive constant curvature, flat and negative constant curvature, respectively. More specifically, every Rie-
mann surface can be obtained as a quotient space of one of the three types of simply connected Riemann
surfaces C, CP1 or H2 by a discrete subgroup, which acts freely, of biholomorphic automorphisms of C,
CP1 or H2, respectively.

Definition: A group G of homeomorphic self-mapping of a manifold M is discontinuous if for any com-
pact subset U ⊂M , there are at most finitely many elements g ∈ G such that g(U) ∩ U ̸= ∅.

It is easy to see that the biholomorphic automorphisms of C, CP1 and H2 are given by

-when z ∈ C,
σ(z) = az + b, a ∈ C∗, b ∈ C (32)

-when z ∈ CP1,

σ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ PSL2(C), (33)

-when z ∈ H2,

σ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ PSL2(R), (34)

where in the last case, the group of biholomorphic automorphism is its isometry group. From Gauss-Bonnet
theorem ∫

X

R = 2π(2− 2g) (35)

where X is a compact closed two dimensional manifold with genus g, we see that there are restrictions to the
topology of the quotient space that we may construct. For example, we can only make a torus from complex
plane. This kind of Riemann surfaces are usually called elliptic curves. If constructing a compact closed
Riemann surface with genus higher than 1, we can only use H2, otherwise we would encounter singularities.

For example, we choose a discrete subgroup of isometry of C generated by two elements (a, b) such that
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Figure 6: Riemann surfaces of genus 1 and of genus 2

aba−1b−1 = id, i.e. < a, b >= Z ⊕ Z. Then the quotient space C/Z ⊕ Z is a torus. (The identity
aba−1b−1 = id is a consequence of the fact that the loop corresponding to this product is contractible.)
If we choose a discrete subgroup of PSL(2,C) that is generated by four elements (a, b, c, d) such that
aba−1b−1cdc−1d−1 = id, then the quotient space is H2/ < a, b, c, d >, which is a compact Riemann surface
of genus g = 2. It is easy to see that these discrete groups are exacly the first fundamental groups of
these Riemann surfaces. The fundamental domains are the regions in which no two points are in the same
orbit of isometries. In two dimensions, it is natural to choose the fundamental domains to be enclosed by
geodesics because geodesics are always mapped to geodesics by isometries. If we did not choose geodesics as
the boundary of the fundamental domain, then the quotient space would have singularities. For example,
in string theory, we learned that the fundamental domain of SL(2,Z) on the Poincare upper-half plane is
an orbifold with two conical singularities and a ‘cusp’ at infinity. Thus the quotient space H/SL(2,Z) is
not a compact Riemann surface with genus higher than 1. We are also interested in non-compact Riemann

Figure 7: Modular curve H2/SL(2,Z) = H2/ < S, T |S2 = id, (ST )
3 = id > is generated by two elements S

and T . It has a cusp point at i∞ and two conical singularities at points P and Q.

surfaces of constant negative curvature. Riemann surfaces of constant negative curvature are quotient spaces
of Poincare discs modulo discrete subgroups of Möbius transformations SL(2,R), which are usually called
the Fuchsian groups Γ. Since these quoient spaces can be non-compact, the fundamental domains may not
only enlosed by geodesics in the bulk, but also some conformal boundary components if the Riemann surface
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is non-compact. In three dimensions, we are also interested in non-compact 3-hyperbolic manifolds that have
comformal boundaries. Their associated discrete subgroups of isometries are called Kleinian groups. These
groups are very useful in the discussion of 3D Euclidean gravity in section 4. To begin with, let us review
some basic facts of Möbius transformations.

The elements of a Fuchsian group are categorized into four types:
0. trivial if and only if σ = ±1 ∈ Γ
1. elliptic if and only if |Tr(σ)| < 2
2. parabolic if and only if |Tr(σ)| = 2
3. hyperbolic if and only if |Tr(σ)| > 2
The elements of a Kleinian group are also classified in a similar way:
0. trivial if and only if σ = ±1 ∈ Γ
1. elliptic if and only if Tr(σ) is real and |Tr(σ)| < 2
2. parabolic if and only if Tr(σ) is real and |Tr(σ)| = 2
3. hyperbolic if and only if Tr(σ) is real and |Tr(σ)| > 2
4. loxodromic if and only if |Tr(σ)| ∈ C−R

The action of Fuchsian (Klein) group on CP1 and H2 are defined by

σ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ PSL2(C), for z ∈ CP1

σ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ PSL2(R), for z ∈ H2 (36)

The real Möbius transformations act on upper-half plane H2 as isometries. While the complex Möbius trans-
formations act on CP1 as biholomorphic self-mappings (or biholomorphic automorphisms, which are also
called conformal transformations). Previously we showed that complex Möbius transformations act on H3 as
isometries. i.e. we have the following isomorphisms Aut(S2) = Aut(∂(H3)) ≃ PSL(2,C) = Isom(H3). Any
isometry of the bulk has a correponding conformal map acting on the boundary. This is a trivial example
of the Euclidean version of AdS3/CFT2 correspondence. If a discrete subgroup of the isometry acts on the
bulk, then there is a one-to-one corresponding discrete subgroup of holomorphic map on the boundary. We
list some examples of different types of Kleinian groups in the following table, where L is a nonzero real
number, θ ∈ (0, 2π], a is an arbitrary complex number and λ is a complex number such that |λ| ̸= 1.

Transformation Representative Effect

Elliptic

(
eiθ/2 0
0 e−iθ/2

)
z 7→ eiθz

Parabolic

(
1 a
0 1

)
z 7→ z + a

Hyperbolic

(
eL 0
0 e−L

)
z 7→ e2Lz

Loxodromic

(
λ 0
0 λ−1

)
z 7→ λ2z

A Fuchsian group element acting on τ , the modular parameter of Poincare upper-half plane, is given by
(aτ + b)/(cτ + d). Infinitesimally, the matrix is given by(

a b
c d

)
=

(
1 0
0 1

)
+

(
α β
γ δ

)
(37)

with α+ δ + 0. Then, the fixed points of its action is given by the equation

aτ + b

cτ + d
= τ (38)
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or cτ2 + (d− a)τ − b = 0, from which we see that if it is parabolic, there is a single fixed point on the real
axis; if it is hyperbolic, then it has two fixed points on real axis; if it is elliptic, then it has a fixed point
inside H2. We should also extend the transformations at i∞. For example, the parabolic transformation in
the above table is a translation, which fixes i∞. To see how this classification is related with the trace, we
do an exponential map of the infinitesimal generator of Möbius transformation

Tr

[(
a b
c d

)]
= Tr

[
exp

(
α β
γ δ

)]
(39)

which is a sum of the exponential of the eigenvalues of the generator. It is easy to compute that the
eigenvalues are k = ±

√
αδ − βγ. So the trace formula is

Tr

[
exp

(
α β
γ δ

)]
= e

√
βγ−αδ + e−

√
βγ−αδ (40)

Infinitesimally, the discriminant of the quadratic equation (38) is given by ∆ = 4βγ − 4αδ. Hence, we have
the classification given by the trace formula shown as below

Tr

(
a b
c d

)
= e

√
∆/2 + e−

√
∆/2 (41)

with 
∆ > 0⇔ Tr(σ) > 2

∆ = 0⇔ Tr(σ) = 2

∆ < 0⇔ Tr(σ) < 2

(42)

Figure 8: Möbius transformations in upper-half plane
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In the Poincare’s unit disk model, those curves are illustrated in the following figure. The red lines are

Figure 9: Möbius transformations in Poincare discs

orbits of Möbius transformations acting on Poincare discs.

In section 3, we will see that the spacial slices of a AdS3 manifold are exactly Poincare discs. If the
quotient of the AdS3 is taken to be time-independent, then the discrete isometry group acting on AdS3

induces discrete a Möbius transformation acting on each Poincare disk. Our assumption is that once the
boundary condition of a physically possible local AdS3 manifold (which means that it cannot contain closed
timelike circle) is fixed, its geometry and global topology is totally determined by the geometry and topology
of a single spacial slice of it. However, we are not able to prove that our assumption is correct.

If we assume it is indeed correct, then we only need to study the geometry of those two dimensional
surfaces. If the Möbius transformation were generated by a hyperbolic element, then it would have two fixed
points on the boundary; If it were generated by an parobolic element, it would have a single fixed point
on the boundary; If it were generated by an elliptic element, then it would have a singular point in the
bulk. We are mainly interested in these cyclic Fuchsian groups denoted by < γ >, where γ is the generator,
because we will see that these Riemann surfaces are strongly related with BTZ black holes in Lorentzian
signature [26] [27] [28] [29] [31]. Quotient Spaces of form D2/ < γ > resemble the following shaded regions
followed by identifications along their boundary geodesics inside D2. The right most disk is D/ < 1 >.

Figure 10: Fundamental domains

Noting that any infinite cyclic group is isomorphic to the group of addition of integers Z; Any finite cyclic
group is isomorphic to Zn, the above quotient spaces are either D

2/Z or D2/Zn. A theorem from hyperbolic
geometry claims that all hyperbolic and parabolic cyclic subgroups of SL2(R) are Fuchsian; Any elliptic
cyclic subgroup is Fuchsian iff it is finite [9] [11]. Hence, a hyperbolic discrete subgroup that is isomorphic
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to integers must be of the following form

W =

{(
α 0
0 α−1

)
, · · ·

}
(43)

where we can choose α > 1 so that it is a cyclic discrete subgroup. A parabolic discrete subgroup that is
isomorphic to Z is the translation by integers. It is given by

Γ∞ =

{(
1 n
0 1

)}
n∈Z

(44)

An elliptic motion is of the form

Y =

{(
cos(2π/n) sin(2π/n)
− sin(2π/n) cos(−2π/n)

)
, · · ·

}
(45)

One question we need to answer is that how many parameter we have to use to parametrize these quotient
surfaces i.e. the dimension of their moduli space. Although we are only studying the cyclic cases for BTZ
black holes, it is still useful to elaborate what we mean by the moduli of Riemann surfaces. Instead of using
hard mathematics to show the dimension formula, we used very elementary method, which is worth knowning
to many people. First, we consider a generic Riemann surface D2/Γ of genus g > 1 with n cusps and m
boundary circles, where Γ is the corresponding discrete subgroup of PSL(2,R) which creates g handles, n
cusps as well asm boundaries. Such a group must be generated by 2g hyperbolic generators which correspond
to the 2g geodesic hemi-circles centered at ∂D2, n parabolic generators which correspond to n cusps on the
conformal boundary ∂D2, and m hyperbolic generators corresponding to m intervals on ∂D2. We denote
the 2g hyperbolic generators by {Ai, Bi} for i = 1, · · · , g, n parabolic generators by Cj for j = 1, · · · , n and
m hyperbolic generators for boundary intervals by Dk, for k = 1, · · · ,m. Since the loop is contractible, up
to a permutation of products of generators, they should satisfy the following identity [65] [23].

g∏
i=1

AiBiA
−1
i B−1

i

n∏
j=1

Cj

m∏
k=1

Dk = id (46)

Remark: When only considering the dimensionality of parameter space of a type of quotient surfaces, it is no
danger to change the order of products among [Ai, Bi], Cj and Dk. These generators of the discrete subgroup
of isometry generate the fundamental group of the Riemann surface. i.e. π1(Sg,n,m) =< A,B,C,D >. Since
each generator is in PSL(2,R), which is a three dimensional group manifold, 2g +m hyperbolic generators
have 6g + 3m degrees of freedom. The n parabolic generators have 2n degrees of freedoms since we have
n constraints from the trace condition for parabolic transformations. The identity above provides us with
three independent constraint equations. We also need to consider the fact that SL(2,R) manifold admits
a foliation by poincare discs, D2 = SL(2,R)/SO(2), which will be explained in later chapters. Using this
foliation, we have

D2/Γ = Γ\SL(2,R)/SO(2) (47)

Consider an arbitrary element γ ∈ PSL(2,R), we have

γΓγ−1\SL(2,R)/SO(2) = γΓ\SL(2,R)/SO(2) (48)

since PSL(2,R) is the isometry of Poincare disc. Noting that γΓ is simply Γ itself, we have an equivalence
class

γΓγ−1 ∼ Γ (49)

from which we can eliminate three degrees of freedom. Hence we need exacly 6g − 6 + 2n + 3m real
numbers to parametrize the set of isometry class of the quotient surfaces with genus g and n cusp punc-
tures together with m boundaries. We denote the moduli space by Mg,n,m. The dimension formula
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dimRMg,n,m = 6g − 6 + 2n+ 3m is valid only when g > 1.

For cyclic cases (i.e. Γ = Z or Zn), we can still define the ‘moduli’ as the isometry classes. For the
hyperbolic case, the ‘moduli space’ is given by the hyperbolic class of PSL(2,R). This class can be found by

observing Figure 3, where the metric is ds2 =
dr2

r2 − 1
+ r2dω2. Removing the two grey shaded regions, it is

apparent that gluing along two geodesics of constant-ω can be parametrized by the shortest distance between
the two constant-ω geodesics, which is a positive number. We call such a parameter the ‘mass parameter’
denoted by L, because we will see that it is related with the mass of a BTZ black hole. Hence, for hyperbolic

Figure 11: The shortest distance between constant ω and −ω geodesics is the length of the blue interval.

case, the moduli space can be identified as R>0. For parabolic case, the metric is ds2 =
dr2

r2
+r2dµ2. Suppose

we glue two geodesics µ = −πa and µ = πa, where a > 0. i.e. the fundamental domain is given by the
identification µ ∼ µ + 2πa. We can define aµ̃ = µ so that in terms of µ̃ coordinate, the periodicity is 2π.
This extra factor can again be absorbed by redefining r by r̃ = ar, rendering the metric invariant. i.e.

ds̃2 =
dr̃2

r̃2
+ r̃2dµ̃2. Therefore, there is no degree of freedom to make a cusp cone. Hence, the moduli space

in parabolic case is a single point. If we apply a similar rescaling procedure to the hyperbolic case, the metric
is not invariant. Under the transformation

ω → aω, r → r

a
(50)

the metric becomes ds2 =
dr2

r2 − a
+r2dω2. For the elliptic case, the isometry classes of cones is parametrized

by the deficit angle, which is 2π/n, n ∈ Z>0. We can also consider an m-sheeted branched cover of D2, from

which we may have a deficit angle 2π
m

n
, which runs in Q/Z. Therefore, the moduli space of D2/Zn with

one marked point (the fixed point, which is also the branching point) is given by Q/Z, which is dense in
circle S1. However, a cone can also be obtained by a local identification, whose corresponding deficit angle
is an irrational number. Such a cone is not obtained by taking quotient, but can be deemed as a limit of
a series of rational cones. For this reason, we claim that for elliptic case with a market point, the moduli
space is a circle S1.

The above results agree with the Iwasawa decomposition of SL(2,R), which claims that we have a
decomposition SL(2,R) = KAN , where

K =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣∣θ ∈ (0, 2π]

}
, A =

{(
eL 0
0 e−L

) ∣∣∣∣∣L > 0

}
, N =

{(
1 x
0 1

) ∣∣∣∣∣x ∈ R
}
.

(51)
For every g ∈ SL(2,R), there is a unique representation as g = kan, where k ∈ K, a ∈ A and n ∈ N . Using
this decomposition, it is easy to find representatives for conjugate classes of PSL(2,R):
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-elliptic class

[g] =

(
cos θ − sin θ
sin θ cos θ

)
, (52)

-hyperbolic class

[g] =

(
eL 0
0 e−L

)
, (53)

-parabolic class

[g] =

(
1 ±1
0 1

)
, (54)

from which we clearly see that for the elliptic case, the modulus is θ ∈ (0, 2π]; for the hyperbolic case, the
modulus is u > 0. This ‘mass’ parameter is related with the trace by

Tr(g) = 2 cosh(L) (55)

For the parabolic case, it seems that the moduli space contains two distinct points, which is a contradiction
with our previous result. Nevertheless, the matrix acting on z ∈ H2 is simply a shift z → z+1 or z → z− 1.
The fundamental domains are the same in both cases.

2.3 Basic Cohomology Theory

2.3.1 Simplicial Homology

We assume readers are familiar with free Abelian groups, homotopy groups and simplexes. The materials
contained in this section is mainly copied from [5]. We first introduce some basic concepts of homology group
of simplexes. Let p0, · · · , pr be points in Rn for n > r, an r-simplex σr =< p0 · · · pr > is expressed as

σr =

{
x ∈ Rn|x =

r∑
i=0

cipi, ci ≥ 0,
r∑

i=1

ci = 1

}
(56)

For 0 ≤ q ≤ r, then we can choose a q-simplex < pi0 , · · · , piq >, which is called a q-face of the original
r-simplex and we denote σq ≤ σr.

Definition: Let K be a number of simplexes in Rn. If they satisfy the following conditions, we say that
the set K is a simplicial complex.
(i) an arbitrary face of a simplex in K belongs to K.
(ii) if σ′ and σ are two simplexes in K, the intersection σ ∩ σ′ is either empty set of a common face of them.
the dimension of a simplicial complex is defined to be the largest dimension of simplexes in it.

For a topological space X, if there exists a simplicial complex K and a homeomorphism f : K 7→ X, we
say X is triangulable and the pair (K, f) is called its triangulation. For a manifold, it can be proved that it
is always possible to associate it with a triangulation, though this is not unique. In the following discussion,
we need simplexes to be oriented. In other words, we define

(pipjpkpl) = sgn(P )(p0p1p2p3) (57)

where we use (· · · ) to denote oriented simplexes. To extract topological information of a manifold, we first
associated it with a triangulation, then we can find topological invariant from the simplicial complex.
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Definition: Let Ir be the number of r-simplexes in K. The r-Chain group Cr(K) of a simplicial complex
K is a free Abelian group generated by oriented r-simplexes of K. In particular, if r ≥ dim(K), then Cr(K)
is defined to be 0. An element c in Cr(K) is called an r-chain, which is expressed as follows

c =

Ir∑
i=1

ciσr,i, ci ∈ Z (58)

From this expression, we see that the group structure is given by a sum

c+ c′ =
∑

(ci + c′i)σr,i (59)

Hence an r-chain group Cr(K) is a free Abelian group of rank Ir

Cr(K) = Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
Ir

(60)

The chain group has a subgroup which consists of simplexes that are boundary of some other simplexes. The
boundary operator is defined as follows.

Definition: Let σr = (p0 · · · pr) be an oriented r-simplex. The boundary operator ∂r acting on σr gives
an (r − 1)-chain defined by

∂rσr =

r∑
i=0

(−1)i(p0 · · · p̂i · · · pr) (61)

where the point p̂i is omitted. This operator is linear, in the sense that when it acts on a chain of Cr(K), it
acts summand-wise

∂rc =
∑
i

ci∂rσr,i (62)

Accordingly, ∂r is defined as a map
∂r : Cr(K) 7→ Cr−1(K) (63)

whose image is called the boundary of the preimage.

Let K be a simplicial complex of dimension n. We can find a sequence of free Abelian groups and
homomorphisms,

i ∂n ∂n−1 ∂2 ∂1 ∂0
0 → Cn(K) → Cn−1(K) → · · · → C2(K) → C1(K) → 0

(64)

where i : 0 ↪→ Cn(K) is an inclusion. This sequence is called a chain complex associated with K and is
denoted by C(K). We can easily check that neither the kernal nor the image of a boundary operator is
topological invariant. However, we can construct a quotien subgroup that is topological invaiant. To begin
with, we define the following subgroups.

Definition: If c ∈ Cr(K) satisfies ∂rc = 0 i.e. c ∈ ker(∂r), then c is called an r-cycle. In other words,
cycles are those who does not have boundaries. The set of r-cycles is denoted by Zr(K), which is a subgroup
of Cr(K).

Definition: If c ∈ Cr(K) is given by c = ∂r+1f for some f ∈ Cr+1(K), i.e. c ∈ im(∂r+1), we say c
is an r-boundary. The set of r-boundaries in Cr(K) is denoted by Br(K), which is also a subgroup of Cr(K).
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It is easy to see that ∂r ◦ ∂r+1 = 0. Hence we can define a quotient group

Hr(K) = Zr(K)/Br(K) (65)

called the rth homology group of simplicial complex K. Remark: It is necessary to impose that Hr(K) = 0
for r > dim(K) and r < 0. This group only depends on the topology of the simplicial complex. In particular,
if K is connected, then H0(K) = Z.

2.3.2 de Rham Cohomology

In this section, we study the cohomology theory of differential forms on manifolds. First, we define
r-chain, r-cycle and r-boundary in an n-dimensional manifold M . Let σr be an r-simplex in Rn and left
f : σr 7→ M be a smooth map. We denote the image of σr in M by sr and call it a singular r-simplex. Let
{sr,i} be the set of r-simplexes in M , we define r-chain in M by a sum with R-coefficients

c =
∑
i

aisr,i, ai ∈ R (66)

r-chains form a chain group Cr(M) of M . We requires that ∂sr = f(∂σr). It is a set of (r− 1)-simplexes in
M and is called the boundary of sr. We have

∂ : Cr(M) 7→ Cr−1(M) (67)

and ∂2 = ∂ ◦ ∂ = 0. In a similar way, we can define the cycle group Cr(M) and boundary group Br(M).
The singular homology group of M is defined by Hr(M) = Zr(M)/Br(M).

Theorem (Stoke): Let ω ∈ Ωr−1(M) and c ∈ Cr(M), then∫
c

dω =

∫
∂c

ω (68)

From this theorem, we can construct a duality between holomogy and cohomology.

Definition: Let M be an n-dimensional manifold. The set of closed r-forms is called the rth cocycle
group, denoted by Zr(M) = ker dr+1. The set of exact r-forms is called the rth coboundary group, denoted
by Br(M) = imdr. We call the following sequence

i d1 d2 dn−1 dn dn+1

0 → Ω0(M) → Ω1(M) → · · · → Ωn−1(M) → Ωn(M) → 0
(69)

a de Rham complex Ω∗(M).

Since d2 = d ◦ d = 0, we have Zr(M) ⊃ Br(M). Consequently, we can define the cohomology group of
M .

Hr(M ;R) = Zr(M)/Br(M) (70)

Remark: if r < 0 or r > dim(M), then we require the cohomology group to be trivial. We may also consider
de Rham cohomology with integer coefficients Hr(M ;Z).

Theorem: If M has m connected components, then its zeroth de Rham colomology is given by

H0(M ;R) = R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
m

(71)
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Hence it is specified by m real numbers.

Examples: For n-sphere, the de Rham cohomology is given by

Hk(Sn) =

{
R k = 0, n

0 k ̸= 0, n
(72)

For punctured Euclidean space we have

Hk(Rn\ {0}) =

{
R k = 0, n− 1

0 k ̸= 0, n− 1
= Hk(Sn−1) (73)

The above two examples are for non-contractible manifolds. For a contractible open subset of Rn, according
to Poincare lemma, any closed form on this open set is also exact. Hence if open subset U ⊂M is contracible,
we have

Hk(U) =

{
0 1 ≤ k ≤ dimM

R k = 0
(74)

In particular, we have Hr(Rn) = 0 and H0(Rn) = R.

Theorem: de Rham cohomology groups are diffeomorphism invariants.

Theorem: Let X and Y be smooth manifolds with Y smoothly contractible. Then Hk(X×Y ) = Hk(X)
for every k. Two manifolds of the same smooth homotopic type have the same de Rham cohomology groups.

Theorem: Let X be a compact, connected, oriented, closed n-manifold. Then Hn(X) = R. Further-
more, it can be proved that no compact, connected, closed orientable manifold is contractible.

Theorem: If M is a contractible manifold, then Hk(M) = 0 for all k ̸= 0.

The advantage of cohomology theory is that it in fact has a ring structure. If [ω] ∈ Hq(M) and [η] ∈
Hp(M), then we define a product of the two classes

[ω] ∧ [η] = [ω ∧ η] (75)

It is easy to check that such a product is well-defined and so we can define the de Rham cohomology ring as

H∗(M) =
∞
⊕
r=1

Hr(M) (76)

in which the wedge product ∧ : H∗(M)×H∗(M) 7→ H∗(M) is closed.

Let M be an m-dimensional manifold. Take c ∈ Cr(M) and ω ∈ Ωr(M), where 1 ≤ r ≤ m. We can
define the integral of differential forms on cycles as an inner-product Cr(M)× Ωr(M) 7→ R

c, ω 7→ (c, ω) =

∫
c

ω. (77)

Clearly, this inner-product is bilinear. i.e.

(c+ c′, ω) =

∫
c+c′

ω =

∫
c

ω +

∫
c′
ω = (c, ω) + (c′, ω) (78)
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(c, ω + ω′) =

∫
c

(ω + ω′) =

∫
c

ω +

∫
c

ω′ = (c, ω) + (cω′) (79)

for c, c′ ∈ Cr(M) and ω, ω′ ∈ Ωr(M). In other words, we can re-interpret Stoke’s theorem as

(c, dω) = (∂c, ω) (80)

In this sense, the de Rham differential is the adjoint operator of the boundary operator. From this, we can
establish a duality between homology and cohomology groups. This is called the de Rham theorem.

Definition: If M is a compact manifold, Hr(M) and Hr(M) are finitely generated. The map Hr(M)×
Hr(M) 7→ R is bilinear and non-degenerate.

We call the integral
∫
c
ω for a cycle c and a closed form ω a period. From Stoke’s theorem, this integral

vanishes when cycle c is a boundary or when ω is exact. We call the topological invariant dimHr(M ;R) =
dimHr(M ;R) the rth betti number, which is certainly an integer. We denote this integer by k. Then from
de Rham theorem, we can easily prove that for c1, c2,· · · , ck ∈ Zr(M) such that [ci] ̸= [cj ],
(1) a closed r-form ω is exact if and only if∫

ci

ω = 0 (1 ≤ i ≤ k) (81)

(2) we can always choose a set of dual basis {[ωj ]} of Hr(M) such that∫
ci

ωj = δij (82)

In other words, there always exists a closed r-form ω such that∫
ci

ω = bi (1 ≤ i ≤ k) (83)

for any set of real numbers b1, b2,· · · , bk.

Let X and Y be two closed, connected oriented m-dimensional manifolds, [c] being a homology class on
X, represented by an r-cycle c ∈ Zr(X) and [ω] being the de Rham cohomology class on Y , represented by
a closed r-form ω ∈ Zr(Y ). By definition, for a smooth map f : X 7→ Y , one has

(f∗[c], [ω]) = ([c], f∗[ω]) (84)

where f∗ and f∗ are induced maps on chains and forms. In particular, f∗[X] must be integral multiple of
[Y ]. This is because under the map f : X 7→ Y , the number of times that the push-forward of [X] wraps
around [Y ] can only be an integer. This is called the degree of mapping f or the winding number, which is
denoted by deg f . That is, we have

f∗[X] = deg f [Y ]. (85)

From this equation, we see that

deg f

∫
Y

ϕ =

∫
X

f∗ϕ (86)

for any m-form ϕ on Y .
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2.4 Fiber Bundle

2.4.1 Introduction

Most of the materials in this section are based on [1] [2] [3] [7] [13] [14]. One can find more details from
them.

Definition: Let B, M and F be smooth manifolds. Let G be a Lie group, which has a left action on F .
Let π: B 7→ M be a smooth projection. We call the structure (B,M, π, F ) a smooth fiber bundle over M
with structure group G if the following three conditions are satisfied

(a) There exists an open cover {Uα|α ∈ I} such that for each α ∈ I, there is a smooth diffeomorphism ϕα:
Uα × F 7→ π−1[Uα] satisfying

π ◦ ϕα(x, f) = x (87)

for ∀(x, f) ∈ Uα × F .

(b) For each x ∈ Uα and arbitrary f ∈ F , denote ϕα,x(f) = ϕα(x, f), then the map ϕα,x: F 7→ π−1[x] is a
smooth diffeomorphism, and when x ∈ Uα ∩ Uβ ̸= ∅, the smooth diffeomorphism ϕ−1

α,x ◦ ϕβ,x: F 7→ F is an
element of Lie group G, denoted by gαβ(x), acting on F .

ϕ−1
α,x ◦ ϕβ,x(f) = gαβ(x)f (88)

for ∀f ∈ F .

(c) When Uα ∩ Uβ ̸= ∅, the map gαβ : Uα ∩ Uβ 7→ G is smooth.

We call the manifold B as the total space, M as the base space, F as the typical fiber, π as the projection
and G as the structure group. We call the inverse map of ϕα, Tα: π

−1[Uα] 7→ Uα×F the local trivialization
of B, and function gαβ the transition function.

Theorem: Let M and F be two smooth manifolds. A Lie group G has left action on F . If there exist
an open cover {Uα|α ∈ I}, such that for arbitrary α, β ∈ I, when Uα ∩ Uβ ̸= ∅, we have a smooth function
gαβ : Uα ∩ Uβ 7→ G satisfying

(1) gαα(x) = e for ∀α ∈ I, ∀x ∈ Uα, where e is the identity element of G.

(2) ∀α,β,γ ∈ I, when Uα ∩ Uβ ∩ Uγ ̸= ∅,

gαβ(x)gβγ(x)gγα = e (89)

for ∀x ∈ Uα ∩ Uβ ∩ Uγ , then there exist a smooth fiber bundle structure (B,M, π,G), whose transition
function is given by gαβ .

Definition: Let (B,M, π, F ) be a smooth fiber bundle over M , U be an open subset of M . If there
exists a smooth map σ: U 7→ B satisfying π ◦ σ = id: U 7→ U , then σ is called a local smooth section of B
over U . The set of smooth sections over M is denoted by Γ(B).

Definition: Let (B,M, π, F ) and (B̃,M, π̃, F̃ ) be two smooth fiber bundles whose structure group are
both G. If they have the same transition function gαβ : Uα ∩ Uβ 7→ G, then we call B and B̃ two associated
fiber bundles.

Definition: Let E and M be two smooth manifolds, π: E 7→ M be smooth surjective map, and let V
be an q-dimensional vector space over a field R or C. If there exist an open cover {Uα|α ∈ I} and a set of
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maps {ϕα|α ∈ I} satisfying

(1) ϕα: Uα × V 7→ π−1[Uα] is a smooth diffeomorphism, and for ∀x ∈ Uα, v ∈ V , we have

π ◦ ϕα(x, v) = x; (90)

(2) For any x ∈ Uα, denoting ϕα,x(v) = ϕα(x, v), the map ϕα,x(v): V 7→ π−1[x] is diffeomorphism, and when
x ∈ Uα ∩ Uβ ̸= ∅, the function

gβα(x) = ϕ−1
β,x ◦ ϕα,x (91)

is an linear isomorphism V 7→ V , (i.e. gβα(x) ∈ GL(q)) and is smooth as a function gβα: Uα ∩Uβ 7→ GL(q),
we call the structure (E,M, π) a vector bundle of rank-q over M . The function gαβ is called its transition
function and its local trivialization is given by the inverse of ϕα, Tα : π−1[Uα] 7→ Uα× V . Similarly, its local
smooth section is defined by σ: U 7→ E, where U ⊂M is open in M , such that

π ◦ σ = id (92)

is an identity map U 7→ U . We denote the set of smooth sections of E over M by Γ(E), which is a C∞(M)-
module. But when Γ(E) is regarded as a vector space over R or C, it is infinite dimensional.

An example of vector bundle is the tangent bundle T (M) over manifold M , whose fiber at each point
x ∈ M is its tangent space Tx(M). The union of tangent spaces all over the base space M is its tangent
bundle. Another example that we will encounter is the complex line bundle L(M), whose typical fiber is C.
When viewing complex plane C as the representation of a circle group, the complex line bundle that has
U(1) structure group becomes the associated vector bundle of a U(1)-principal bundle, which is introduced
in the following definition.

Definition: Let M be a manifold and G a Lie group. A principal G-bundle over M consists of

(a) a Manifold P together with a free right action of G on P

G× P 7→ P, (p, g) 7→ Rg(p) = pg, p ∈ P, g ∈ G (93)

(b) a surjective map π: P 7→M which is G-invariant, (i.e. π(pg) = π(p) for all p ∈ P and g ∈ G) satisfying
local triviality condition: for each x ∈M , there exists an open neighborhood U of x and a diffeomorphism

TU : π−1[U ] 7→ U ×G, (94)

which locally is of form
TU (p) = (π(p), SU (p)) (95)

for ∀p ∈ π−1[U ], where map SU : π
−1[U ] 7→ G is G-equivariant, that is,

SU (pg) = SU (p)g (96)

for all p ∈ P and g ∈ G.

A principal G-bundle is a smooth manifold whose typical fiber is the same as its structure group G. For
each fixed p ∈ P , the right action R: P × G 7→ P induces a diffeomorphism which sends elements in G to
the orbit π−1[π(p)], i.e. Rp: G 7→ π−1[π(p)] ⊂ P . In other words, Rp: G 7→ P is an embedding, and each
fiber π−1[π(p)] can be regarded as a copy of the Lie group manifold G. The map Rp also brings the group
structure to each fiber π−1[π(p)]. But this group structure depends on the choice of point p ∈ P . Therefore,
we cannot say that each fiber over a point x ∈M is the same as the typical fiber G.
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Definition: Let TU : π
−1[U ] 7→ U ×G and TV : π

−1[V ] 7→ V ×G be two local trivializations of principal
bundle P (M,G), such that U ∩ V ̸= ∅. A map gUV : U ∩ V 7→ G is called transition function from TV to TU
if

gUV (x) = SU (p)SV (p)
−1 (97)

for any x ∈ U ∩ V and p satisfies π(p) = x.

Remark: the above definition is independent of the choice of point p in fiber π−1[x].

Theorem: Transition function gUV has the following properties

(a) gUU(x) = e, ∀x ∈ U ∩ V ;

(b) gV U(x) = gUV (x)
−1, ∀x ∈ U ∩ V ;

(c) gUV (x)gV W (x)gWU(x) = id, ∀x ∈ U ∩ V ∩W .

Definition: Let P (M,G) be a principal bundle, and U be an open subset of M . A C∞ map σ: U 7→ P
is a local smooth section if

π(σ(x)) = x (98)

for ∀x ∈ U .

Theorem: There is a one-to-one correspondence between local trivialization and local smooth section.

σV (x) = σU (x)gUV (x) (99)

when x ∈ U ∩ V .

Definition: Let M be an n-dimensional manifold, TxM be its tangent space at x ∈M . Let (U, ϕ) be a
local coordinate chart on M , with coordinate written as {xµ}. Let {eµ(x)} be a frame of TxM .

eµ(x) = eνµ(x)
∂

∂xν
(100)

such that det(e) ̸= 0. Denoting the set of frames on M by Fr(M), the set

F (M,GL(n)) = {(x, eµ)|x ∈M, eµ(x) ∈ Frx(M)} (101)

is called a frame bundle F (M) over M , whose local chart is given by local diffeomorphism

ϕ̃ : {(x, eµ) ∈ F (M)|x ∈ U, eµ(x) ∈ Frx(M)} 7→ Rn+n2

, (102)

The right action of GL(n,R) acting on F (M) is given by

g(x, eµ) = (x, eνg
ν
µ) (103)

where gνµ is an entry of g ∈ GL(n,R). It has a natural surjective projection π : F (M) 7→M such that

π(x, eµ) = x (104)

and has a local trivialization TU : π−1[U ] 7→ U × GL(n,R) by assigning TU (x, eµ) = (x, h), where h =
SU (x, eµ) ∈ GL(n,R) such that

hνµ
∂

∂xν
= eµ (105)
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Hence a frame bundle is a principal GL(n,R)-bundle, with structure group GL(n,R).

Definition: Let M and M̃ be two manifolds. Let B(M,G) and B̃(M̃), G̃) be principal bundles over
M and M̃ , respectively. If there exists a smooth map Φ: B 7→ B̃ together with a Lie group morphism ϕ:
G 7→ G̃ such that for ∀b ∈ B and g ∈ G, the following identity hold

Φ(bg) = Φ(b)ϕ(g), (106)

we call Φ: B 7→ B̃ a bundle morphism. In particular, if Φ is an embedding, ϕ is an injective Lie group
morphism, we call B a subbundle of B̃.

Definition: Let (B(M,G)) be a principal G-bundle over M and K ⊂ G be a Lie subgroup of G. If
there exist a principal K-bundle B̃(M,K) over M , and a bundle morphism Φ: B̃(M,K) 7→ B(M,G), which
induces a map Φb = π ◦ Φ ◦ π̃−1: M 7→ M as an identity map on M , we say that the bundle B̃ is the
reduction of bundle B.

For example, if manifold M admits a Lorentzian structure, we can talk about orthogonal tangent vectors
on M and their normalization. In three dimension, if M has a Lorentzian structure (−1,+1,+1), and we
denote the orthogonal normalized frame by {êµ}, then the frame bundle F (M) = {(x, êµ)|x ∈M} becomes
a principal SO(2, 1)-bundle over M .

Theorem: Let (B,M, π,G) be a principal G-bundle, F be a smooth manifold. G has a left action on
F . We define a quotient space

B̃ = B ×G F = (B × f)/ ∼ (107)

where the equivalence relation is such that for (b, f), (b̃, f̃) ∈ B×F , (b, f) ∼ (b̃, f̃) iff there exist g ∈ G such
that

b = b̃g, f = g−1f̃ . (108)

Denoting the equivalent class as [(b, f)], then (B̃,M, π̃, F ) is an associated bundle of (B,M, π,G), whose
projection π̃: B̃ 7→M is given by

π̃([(b, f)]) = π(b) (109)

When the typical fiber F is replaced by a vector space V , and ρ: G 7→ GL(V ) is a representation of G on
V , we define the equivalence relation as (b, v) ∼ (b̃, ṽ) iff ∃g ∈ G such that (b̃, ṽ) = (bg, ρ(g−1)v), and define
a projection ϕ̃: B ×ρ V 7→M , by

π̃([(b, v)]) = π(b) (110)

then the quotient space E = B×ρ V = B×V/ ∼ becomes an associated vector bundle of principal G-bundle
over M .

For instance, the associated vector bundle of a frame bundle F (M) is the tangent bundle T (M). When
there is a Lorentzian structure on the base spaceM , i.e. F (M) is an SO(2, 1)-principal bundle, then we have
an associated vector bundle over M whose transition functions are elements in SO(2, 1). Another example
is complex vector bundle E 7→ M , whose typical fiber is n-dimensional complex vector space Cn. It has
structure group GL(n,C). If we can consider a Hermtian structure on manifold M , the structure group is
then U(n). We have mentioned that a complex line bundle can be viewed as an associated vector bundle
of U(1)-principal bundle, which is a reduction bundle of GL(1,C)-principal bundle. A generic complex line
bundle has structure group GL(1,C) = C∗, which can be reduced to the circle bundle.
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By definition, for any principal bundle (P,M, π,G), we can always find a subspace of TpP defined by

Verp = {X ∈ TpP |π∗(X) = 0} , (111)

which is called a vertical subspace of TpP . Apparently, vertical subspace is a vector space consists of
vectors X ∈ TpP that are tangent to the fiber π−1[π(p)]. i.e. Verp = Tpπ

−1[π(p)]. Since each fiber is
diffeomorphic to the typical fiber, which for principal bundle is Lie group G, it is reasonable to believe that
the vertical subspace is isomorphic to the Lie algebra g of G.

Theorem: Let (P,M, π,G) be a principal bundle, Verp be a vertical subspace at point p ∈ P . Let g be
the Lie algebra of structure group G. Then there is an isomorphism Verp ≃ g. This isomorphism is exactly
the push-forward Rp∗.

Definition: For a fixed A ∈ g, at each point p ∈ P , we attach a vertical vector A∗
p defined by

A∗
p = Rp∗A (112)

for ∀p ∈ P . Hence each Lie algebra element A can generate a vertical vector field living in P , which is called
a fundamental vector field induced by A ∈ g.

Theorem: Let TU be a local trivialization, x ∈ U . The diffeomorphism SU : π
−1[x] 7→ G induces a

push-forward SU∗ which maps fundamental vector fields on π−1[x] to left-invariant vector fields on G.

SU∗A∗ = Ā (113)

where Ā is a left invariant vector field on G. Since the set of all left-invariant vector fields on a Lie group is
identified as its Lie algebra, this theorem shows that there is a one-to-one correspondence between the set of
all fundamental vector fields on the fiber over a point with the Lie algebra of the structure group. Although
a vertical vector generates a left-invariant vector field on G, itself is not invariant under the right action of
G

Theorem: Under the right action, a vertical vector field A∗ transforms in the following way

Rg∗A∗
p =

(
Adg−1A

)∗
pg

(114)

where ∀p ∈ P , g ∈ G and A ∈ g.

To further identify the set of fundamental vector fields on fiber π−1[π(p)] with Lie algebra g under the
isomorphism Rp∗: g 7→ Verp, we need to compute the commutators of two fundamental vector fields. The
result shows that

[A∗,B∗] = [A,B]∗ (115)

where [A∗,B∗] is the commutator of two vector fields A∗ and B∗ while [A,B] is the Lie bracket of A, B ∈ g.
Therefore, this is indeed a Lie-algebra isomorphism.

Definition a: Let (P,M, π,G) be a principal bundle with structure group G and canonical prejection
π : P →M . For each point p ∈ P , we define the subspace Verp of the tangent space TpP satisfying

Verp = {X ∈ TpP
∣∣ π∗(X) = 0} (116)

The connection on P is given by a subspace Horp ⊂ TpP such that
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(a) TpP = Horp ⊕Verp

(b) Rg∗ [Horp] = Horpg, where g ∈ G

(c) Horp is an n-dimensional smooth distribution on P

Definition b: A connection on a principal bundle (P,M, π,G) is a C∞(M) g-valued 1-form ω satisfying

(a) ωp(A∗
p) = A, ∀A ∈ g and ∀p ∈ P .

(b) ωpg(Rg∗X) = Adg−1ωp(X), ∀p ∈ P , g ∈ G and X ∈ TpP .

Definition c: Let (P,M, π,G) be a principal bundle with canonical projection π : P →M . Let {Ui}i∈I

be a collection of open subsets of M . For any two local trivializations

TU : π−1[U ]→ U ×G and TV : π−1[V ]→ V ×G

associated with local smooth sections σU and σV , with transition function gUV and U ∪ V ̸= ∅. if there exist
g-valued 1-form ω satisfying

ω|V = g−1
UV ω|UgUV + g−1

UV dgUV (117)

,where σ∗
Uω = ω|U . If (P,M, π,G) is a frame bundle with structure group G = SO(n, 1) over an n + 1

dimensional spacetime, we say σ∗ω defined above is the spin-connection on M .

It can be proved that the above three definitions are equivalent. A connection 1-form ω defined on
principal bundle (P,M, π,G) can always be defined as a 1-form on base space M by using pull-back induced
by a local section, σ∗ω, called local gauge potential, which is usually denoted as σ∗ω = A. Connection as
a horizontal smooth distribution on P is globally defined on fiber bundle, but once a connection as a Lie
algebra-valued 1-form descends onto base space M as A = σ∗ω, it is locally defined. In physics, choosing a
local smooth section is called a choice of local gauge. The transition functions form a group, G = Hom(M,G),
called gauge group. Furthermore, it can be shown that the equivalence between the above three definitions
of connection implies the following theorem.

Theorem: Let ω be the connection given by definition c, then the space Horp given by definition ais
simply

Horp = {X ∈ TpP
∣∣ ωp(X) = 0} (118)

for ∀p ∈ P .

Definition: Let (P,M, π,G) be a principal bundle with structure group G. It’s connection is given by
a g-valued 1-form ω. Let p ∈ P and v, w ∈ TpP . A curvature 2-form Ω is defined by

Ωp(v, w) = (dω)p ◦Hor(v, w) = (dω)p(v
H , wH) (119)

In differential geomtry, the differential operator given by dω ◦Hor is called the covariant exterior differential
and is denoted by d∇ω = dω ◦Hor.

Theorem (Cartan’s 1st Structure Equation):

Ω = dω + ω ∧ ω (120)

A curvature 2-form Ω is globally defined on principal bundle (P,M, π,G). If σ is a local smooth section,
then the pull-back σ∗Ω = F is a g-valued 2-form defined on base space M , which is called the local field
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strength. Once connection 1-form is descended on base space, we still have

F = dA+A ∧A (121)

i.e. the Cartan’s 1st structure equation still holds locally on M .

Theorem: Let Hor be a connection on a principal bundle (P,M, π,G), and x ∈M . Let γ: (−ϵ, ϵ) 7→M
be a smooth curve on base space M , such that γ(0) = x. Then for ∀p ∈ π−1[x], there exists a unique smooth

curve γ̃: (−ϵ, ϵ) 7→ P , such that γ̃(0) = p, π(γ̃(t)) = γ(t) and
d

dt
γ̃ ∈ Hor(γ(t)). We say γ̃(t) the horizontal

lift of curve γ(t), or parallel transport from point γ(0) to γ(t).

Connections, curvature form and horizontal lift on vector bundles can be defined in similar ways. The
only difference is to replace typical fiber by a vector space V , which is the representation space of structure
Lie group. A connection on a vector bundle is defined as follows.

Definition: Let (E,M, π) be a vector bundle over M , Γ(E) be the set of smooth sections and X is the
set of vector fields on M . A connection on E is a map ∇: Γ(E)×X (E) 7→ Γ(E), such that

(a) ∇X+fY ξ = ∇Xξ + f∇Y ξ

(b) ∇X(ξ + λη) = ∇X + λ∇Xη

(c) ∇X(fξ) = X(f)ξ + f∇Xξ

for ∀X,Y ∈ Γ(E), ξ,η ∈ X (M), λ ∈ R and f ∈ C∞(M).

Definition: Let (P,M, π,G) be a principal bundle with connection Hor, and connection 1-form ω. Let
V be a vector space and ρ: G 7→ GL(V ) be a representation of Lie group G. Then Hor induces a connection
∇ on associated vector bundle E = P ×ρ V . Let s be a local smooth section of E, γ(t) be a smooth curve
on M , who has horizontal lift γ̃ on P . Then s(t)|γ(t) = [(γ̃(t), v(t))] is the restriction of local section s on
γ(t). The induced connection on E is given by

∇γ̇s(t) = [(γ̃(t),
d

dt
v(t))] (122)

The geometric significance of the above formula is that we can think of the principal bundle P as a frame
bundle. A point in this bundle is a frame over a point in M . We choose the horizontal lift γ̃(t) in principal
bundle P as a parallel frame as a ‘reference’ over curve γ in M . Then time dependent vector v(t) ∈ V is
the ‘component’ of vector field s(t) in such a frame. Hence the covariant derivative of s(t) along γ is simply
the derivative of its component. Moreover, the representation ρ: G 7→ GL(V ) induces a push-forward ρ∗:
g 7→ gl(V ). If ω is the connection 1-form on principal bundle P , and σ is a local smooth section of P , then
we can define the connection 1-form on its associated vector bundle P ×ρ V in the following way.

ρ∗(σ
∗(ω)) = σ∗(ρ∗(ω)) (123)

The above 1-form defined on M is gl(V )-valued. Let {ea} be a basis of vector spce V . Local components of
the above 1-form satisfy

(ρ∗(ω))(ea) = ωb
aeb, (ρ∗(σ

∗(ω)))(ea) = ω̃b
aeb (124)

Let {s(t)a} be a local frame on associated vector bundle E ˜7→M , the induced covariant derivative is given by

∇s(t)a = ω̃b
a(t)sb(t) (125)
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If base space M has a Lorentzian structure, then we still call ω̃ a spin connection on M since the connection
1-form ω̃ on associated vector bundle E induced by ω on principal bundle are totally equivalent.

Definition (Cartan’s 2nd Structure Equation): Let (F,M, π,G) be a frame bundle over an n-
dimensional manifold M with structure group G and connection 1-form ω. Let {ea(x)} be a basis of T ∗

xM ,
where x ∈M . We define a Rn-valued 2-form, called torsion form, of F (M) by equation

Θ = de+ ω ∧ e. (126)

By using the same formula, we can define the torsion tensor on its associated vector bundle T (M). If there
is a smooth local section σ, and we denote T = σ∗(Θ) as the local torsion form on M , then we have

T = de+ ω ∧ e (127)

It is easy to see that the locally the curvature form and torsion form given by Cartan’s formulae on

associated vector bundle agree with the original definitions, i.e. F =
1

2
[∇a,∇b]dx

a ∧ dxb, T (X,Y ) =

∇XY −∇YX − [X,Y ] for X,Y ∈ X (M).

Theorem (Bianchi Identities): Let F (M) be a frame bundle over M , with connection 1-form ω. Let
{ea(x)} be a basis of T ∗

xM . We denote its curvature by Ω and denote its torsion by T , then they satisfy the
following identities.

d∇Ω = d∇ ◦ d∇ω = dΩ+ ω ∧ Ω− Ω ∧ ω = 0 (128)

dΘ+ ω ∧Θ = Ω ∧ e (129)

The above equations also hold for vector bundle T (M). If we have a local smooth section σ, denoting
σ∗Ω = F , σ∗Θ = T and σ∗ω = A, then we would have

d∇F = d∇ ◦ d∇A = dF +A ∧ F − F ∧A = 0 (130)

dT +A ∧ T = F ∧ e (131)

That is to say, the Bianchi identities also hold locally.

Theorem: Let Ω be the curvature form of a principal bundle (P,M, π,G) with structure group G that
has right action Rg for g ∈ G. Then we have the following identity

R∗
gΩ = Adg−1 ◦ Ω (132)

If Ui and Uj are two open subsets ofM such that Ui∩Uj ̸= ∅, with transition function gij : Ui∩Uj 7→ G, and
σi: Ui 7→ P is a smooth local section, denoting the local field strength as F = σ∗Ω, then the field strength
transforms under gauge transformation in the following way,

Fj = g−1
ij Figij . (133)

If (P,M, π,G) is a frame bundle which possesses torsion form Θ, under right action of G, the torsion form
transforms as

R∗
g(Θ) = g−1Θ, (134)

which means that under right action, the torsion form transforms equivariantly.
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Noting that definition of dreibeins gives rise of the concept of frame fields on tangent bundle T (M), we
can think of frames as some orthogonal basis of our tangent vectors on spacetime, i.e.

V (x) = V µ(x)∂µ = V a(x)ea(x) = V a(x)eµa(x)∂µ (135)

The spin-connection defined on F (M) induces a corresponding connection on its associated bundle T (M).
This is given by:

∇γ̇V (γ(t))|t=0 = ea(0)
d

dt

∣∣∣
t=0

V a(t) (136)

From the above equation, it can be proved that the covariant derivative given by the connection satisfies the
following equation

∇µea(γ(t)) = ωb
µaeb(γ(t)) (137)

We can derive the formula for covariant derivative corresponding to spin-connection acting on an arbitrary
vector field E(x). It is given by

∇µE(x) = (∂µE
a(x))ea(x) + ωa

µb(x)E
b(x)ea(x), (138)

If we impose a further requirement that the spin-connection must be compatible with flat metric and torsion-
free, then in principle, this covariant derivative should be equivalent with the covariant derivative of levi-civita
connection, i.e.

DµV (x) = (∂µV
α(x))∂α + Γρ

µβV
β(x)∂ρ = (∂µV

a(x))ea + ωa
µbV

b(x)ea (139)

From equation (135), we find the relations between spin-connection ω and levi-civita connection Γ:

Γν
µλ = eνa(∂µe

a
λ) + eνae

b
λω

a
µb (140)

ωa
µb = eaνe

λ
bΓ

ν
µλ − eλb (∂µeaλ) (141)

It is worth mentioning that we introduced two types of quantities on a vector bundle. The first one is
g-valued differential forms such as connection and curvature. The other one is torsion, which is just an or-
dinary differential form. Connection and curvature are called End(E)-valued differential forms while torsion
is called E-valued differential form. These notations will give us great advantages in many discussions.

Definition: Let E(M) be a vector bundle over manifold M equipped with connection D, we define
E-valued p-form ω to be a section of E⊗

∧p
T ∗M . i.e. ω ∈ Γ (E ⊗

∧p
T ∗M). If ρ is an ordinary differential

form on M , and s is a smooth section on E, then we define the covariant exterior differential by

dD (s⊗ ρ) = Ds ∧ ρ+ s⊗ dρ (142)

The E-valued differential form is well-defined iff we assume that (s⊗ ρ) ∧ µ = s ⊗ (ρ ∧ µ) for any ordinary
differential form µ.

Definition: We define the wedge product of an End(E)-valued form A ⊗ ρ and E-valued form s ⊗ λ,
and the wedge product of A⊗ ρ with another End(E)-valued form B ⊗ µ

(A⊗ ρ) ∧ (s⊗ λ) = A(s)⊗ (ρ ∧ λ) (143)

(A⊗ ρ) ∧ (B ⊗ µ) = AB ⊗ (ρ ∧ µ) (144)

It is easy to prove that using the above notations, we have for any E-valued form η,

d2Dη = F ∧ η (145)

where F = 1
2 [Dµ, Dν ]dx

µ∧dxν is the curvature of D. Then it is easy to see that the Bianchi identity is given
by dDF = 0. Physicists are interested in these mathematical formalism because it can be used to generalize
the Maxwell equations naturally to Yang-Mills equations
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dDF = 0 ⋆dD ⋆ F = J

The covariant exterior differential operator on vector bundle E(M) still satisfies the Leibniz law

dD (A ∧B) = dDA ∧B + (−1)pA ∧ dDB (146)

Noting that End(E) can be regarded as a matrix (or algebra element in some representation), we can define
the commutators between two End(E)-valued differential forms A = AaTa and B = BbJb, where A

a together
with Ba are ordinary differential forms; Ta and Ja are some matrices.

[A,B] = A ∧B − (−1)pqB ∧A = Aa ∧Bb[Ta, Jb] (147)

This commutator satisfies [A,B] = −(−1)pq[B,A].

Using the above conventions, we can simplify the covariant exterior differentials. For any E-valued form
ω and End(E)-valued form η, their covariant exterior differentials are given by

dDω = dω +A ∧ ω and dDη = dη + [A, η]

The latter formula is correct for any End(E)-valued differential form except connection 1-form. The
covariant exterior differential of 1-form A is given by dDA = dA+A∧A = dA+ 1

2 [A,A]. With the foregoing
introduction to covariant exterior differential operators, we can easily prove the following theorems that are
extremely important.

Theorem: Let E 7→M be a vector bundle over M . A is an End(E)-valued p-form and B is an End(E)-
valued q-form, then we have

Tr (A ∧B) = (−1)pqTr (B ∧A) (148)

which is called the graded cyclic property of trace. It further implies that Tr[A,B] = 0.

Theorem: Let D be the connection on vector bundle E 7→M and B be given above, then we have

Tr (dDB) = Tr (dB) = dTr (B) (149)

In other words, we can exchange the order of trace and exterior differential.

Theorem: If M is an oriented n dimensional manifold, A and B are the End(E)-valued forms given
above, with p+ q = n− 1, then∫

M

Tr (dDA ∧B) = (−1)p+1

∫
M

Tr (A ∧ dDB) (150)

and if M is (semi)-Riemannian, with p+ q = n, then∫
M

Tr (A ∧ ⋆B) =

∫
M

Tr (B ∧ ⋆A) (151)

From the definition of commutators, we can easily derive the following formula that is extremely important.
Let F = dA+A∧A, where A is the connection on E 7→M , if A is parametized by s, we have the variation
of curvature F given by

δF =
d

ds
(dAs +As ∧As)s=0 = dδA+ δA ∧A+A ∧ δA = dδA+ [A, δA] = dDδA (152)
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2.4.2 Hopf Fibration and Classifying Spaces

There are many examples of fiber bundles. For example, a cylinder is a bundle space whose typical fiber
is the R and its base space is a circle. We can cut throught two parallel straight lines in R2 and then glue the
two sides of the infinitely long strip together. This bundle is obviously trivial since it is globally a product
S1 ×R. Alternatively, we can construct a non-trivial bundle such as a Möbius strip. The difference is that
in this case, we have to twist the strip by nπ angle and then glue the two sides together. In other words, the
integer n meansures how far the bundle deviates from a trivial one. The very first example of a non-trivial
circle bundle over a 2-sphere is called Hopf fibration, discovered by Heinz Hopf in 1931, which shows that a
3-sphere has a principal bundle S3 7→ S2 structure, whose typical fiber is a circle S1. This fiber bundle is
definitely not trivial. To exhibit the principal fiber bundle structure of a 3-sphere, we use the embedding

a2 + b2 + c2 + d2 = 1 (153)

We define the projection map S3 7→ S2

x = a2 + b2 − c2 − d2, y = 2(ad+ bc), z = 2(bd− ac) (154)

From this projection we see that x2 + y2 + z2 = 1. If we denote u = a+ ib and v = c − id, then the above
embedding becomes |u|2+ |v|2 = 1, from which we can observe that any U(1)-action preserves the projection.
In other words, U(1) ↪→ S3 → S2 becomes a U(1)-principal bundle and is not trivial. Another important
fact about U(1) Hopf fibration is that the construction U(1) ↪→ S2n+1 7→ CPn is in fact the restriction of a
tautological line bundle over CPn to the unit sphere in Cn+1, which is very easy to see.

In general, we can consider the complex hopf fibration S2n+1 7→ CPn as a principal U(1)-bundle. From
this we can obtain a tower of hopf fibrations by two series of inclusions

S3 ⊂ S5 ⊂ S7 ⊂ · · ·
CP1 ⊂ CP2 ⊂ CP3 ⊂ · · ·

Taking the limit we get space S∞ as a principal U(1)-bundle over CP∞. We will see that this is closely
related with U(1)-gauge theory, i.e. electromagnetic fields. This space is essential for the discussion in Dirac
monopole and its quantization. It is a surprise that although CPn is topologically a hypersphere, it becomes
different in the limit n→∞. An infinite dimensional sphere S∞ is contractible, while CP∞ is not.

In the SU(2) case, we have a similar construction of towers of inclusions. This is obtained from quater-
nionic Hopf fibration S4n+3 7→ HPn, which is a principal SU(2)-bundle. By considering the towers

S7 ⊂ S11 ⊂ S15 ⊂ · · ·
HP1 ⊂ HP2 ⊂ HP3 ⊂ · · ·

we get a principal SU(2)-bundle S∞ 7→ HP∞. This case is used in Yang-Mills theory and the quantization
of SU(2)-instantons.

Definition: Let G be a Lie group. The classification of principal G-bundles over a manifold M is
achieved by the classifying spaces. A topological space Bk(G) is said to be k-classifying for G if the following
conditions hold:
1. There exists a contractible space Ek(G) on which G acts freely and Bk(G) is the quotient of Ek(G) under
this G-action such that

Ek(G) 7→ Bk(G) (155)

is a principal G-bundle.
2. Given a manifold M of dim(M) ≤ k and a principal bundle P (M,G), there exists a continuous map
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f : M 7→ Bk(G) such that the pull-back f∗(Ek(G)) to M is a principal bundle with structure group G that
is isomorphic to P .

Theorem: Let G be a Lie group with π0(G) <∞ and k a positive integer. Then there exists a principal
G-bundle Ek(Bk, G) with connection θk, which is k-universal for all principal G-bundles with connections.
i.e For any compact manifold M with dimM < k and a principal G-bundle P (M,G) with a connection A,
there exists a map f : M 7→ Bk, defined up to homotopy such that P is the pull-back of Ek to M by f .
Then we have the following commutative diagram:

P
f̂ //

π

��

Ek

πk

��
M

f
// Bk

where π and πk are bundle projections. Any principal bundle P with connection form A can be constructed
as an induced bundle P = f∗(Ek) with A = (f̂)∗θk. In practice, we usually take k → ∞ and denote the
large k limit of Ek(Bk, G) and Bk(G) by EG and BG, respectively. We call BG the classifying space of Lie
group G and EG the universal principal G-bundle. We can prove that for U(1) and SU(2) case, they are
precisely given by the towers of Hopf fibrations.

2.4.3 Dirac Quantization and Chern Class

In physics, the most important example of principal U(1)-bundle over a sphere (or a complex line bundle
over sphere) is the classical electrodynamics. In this theory, we denote the local gauge potential and local
field strength as

s∗ω = A, s∗Ω = F (156)

where s is a local smooth section, ω is the connection on principal U(1)-bundle P (M) and Ω is the curvature
form on this bundle. Let Ui and Uj be two open subset of M , si : Ui 7→ P and sj : Uj 7→ P be two local
smooth sections with Ui ∩ Uj ̸= ∅. We denote the transition function by gij . Since U(1) group is Abelian,
we have

Fj = g−1
ij Figij = Fi (157)

Let Λ be the generator of U(1) group, so we have gij(x) = eΛij(x). Consequently, g−1
ij dgij = dΛij and

Aj = Ai + dΛij (158)

Hence, for Abelian gauge theories, although gauge potentials do not agree on intersections, the corresponding
local field strength is in fact globally defined throughout spacetime. In physics, the field strength is usually
denoted as follows

(
Fαβ

)
=


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (159)

If we apply a hodge star operator, then we exchange electric field and magnetic field

(∗Fαβ) =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 (160)
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We consider a simple case, the Coulomb field. i.e. a static electric point charge which carries charge n localed
at origin in R1,3. From elementary physics, we learned that the field strength of the electric field is given by

F =
n

ρ3
(
x1dx1 + x2dx2 + x3dx3

)
∧ dx0, (161)

from which we can find an expression of the gauge potential, A = −n
ρ
dx0. Clearly, this gauge potential

happens to be globally defined on R1,3 −
{(
x0, 0, 0, 0

)}
. In other words, this principle U(1) bundle is trivial

and the class [F ] is a trivial element in the cohomology group of R1,3 −
{(
x0, 0, 0, 0

)}
. Since the charge

is static, it is relatively convenient to focus on spacial slice at a constant time. i.e. We only study the
cohomology group of S2. We have seen that it is given by

Hk(S2) =

{
R k = 0, 2

0 k = 1
(162)

Next we need to find out the non-trivial elements in this cohomology group. This is given by magnetic
charge. It is clear that for the above given field strength F , its dual field is given by

∗F =
n

ρ3
(
x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

)
(163)

If we restrict this field strength on a unit sphere enclosing the magnetic charge at the origin, the field strength
reduces to

∗F |S2 = n
(
x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

)
(164)

This is nothing but the standard volume form on S2, whose integral gives the area 4π. In conclusion, the

integral

∫
[F ] fails to detect the electric charge enclosed by the sphere but can detect the magnetic charge

in it. For this reason, only magnetic charge can be chosen as a candidate which may encode information
about the topology of the principal U(1)-bundle.

From the above analysis, we only need to consider a static magnetic charge g, whose field strengh is given
by

(∗Fαβ) =
g

ρ3


0 0 0 0
0 0 x3 −x2
0 −x3 0 x1

0 x2 −x1 0

 (165)

Thus,

∗F =
g

ρ3
(
x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

)
(166)

In accordance with notations in standard textbooks, we denote the dual field strength ∗F by F for magnetic
field strength, which plays a role as ∗F for a Coulomb field. Using spherical coordinate, the field strength is
given by

F = g sin θdθ ∧ dϕ (167)

Noticing that this expression is independent of ρ and x0, we can simply restrict our discussion on a unit
sphere ρ = 1 and take a constant time slice. i.e. We construct a principal U(1)-bundle over S2 = CP1.
Since the gauge potential of this field is not globally defined, we can choose two local gauge potential

AN = g(1− cos θ)dϕ, AS = −g(1 + cos θ)dϕ, (168)

each of which is well-defined on northern hemi-sphere or southern hemi-sphere. It is necessary that such
two local gauge potentials should be related with each other on the equator by a U(1)-gauge transformation,
denoted by gNS(ϕ) = eΛ(ϕ). (i.e. gNS : S

1 7→ R) Therefore we have

AN = g−1
NSASgNS + g−1

NSdgNS = AS + dΛ(ϕ). (169)
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From the expressions of gauge potentials, we also have AN −AS = 2gdϕ. Noticing that on the equator, the
transition function gNS is well-defined only if gNS(ϕ) = gNS(ϕ+ 2π), we have

Λ(2π)− Λ(0) =

∫ 2π

0

dΛ =

∫ 2π

0

2gdϕ = 4πg = 2inπ (170)

where n ∈ Z. The transition function is thus given by gNS = einϕ. In other words, the magnetic charge can

only take discrete values, −ig =
n

2
. When n = 0, the charge vanishes and the monopole bundle is trivial.

Therefore this integer measures how much this principal bundle U(1) ↪→ P 7→ S2 is twisted compared with a
trivial bundle. This is our first example of characterist class of a principal bundle. We call it the first Chern
class of a U(1) bundle, denoted by c1. Since it is closed, it is a representative of the cohomology class on
sphere. A simple calculation shows that∫

S2

c1 =
1

2π

∫
S2

iF = 2ig ∈ Z (171)

We call the integer n the Chern-number, which is topological invariant. When n = 0, the monopole bundle
is trivial. Furthermore, from the expression of the transition function, we can prove that when n = ±1,
the monopole bundle is Hopf fibration. i.e. The total space is S3. By a similar computation, we find that
for SU(2)-gauge theory, the instanton is also quanzied. We can pick up a four dimensional sphere S4 and
define two local gauge potentials AN on the northern hemi-sphere and AS on the southern hemi-sphere,
respectively. On the equator S3, the SU(2)-transition function gives a map S3 7→ SU(2), which is the
third homotopy group π3 (SU(2)) = Z. This winding number again is associated with a topological charge
which is called SU(2)-instanton. This integer measures the non-triviality of a principal SU(2)-bundle over
S4. Its corresponding cohomology class is given by Tr (F ∧ F ). This is an example of the second Chern class.

Before giving the definition of Chern class, we first introduce the invariant polynomials. Let M(k,C) be
the set of complex k× k matrices. Let Sr(M(k,C)) denote the vector space of symmetric r-linear C-valued
functions on M(k,C). That is,

P̃ : M(k,C)× · · · ×M(M,C)︸ ︷︷ ︸
r

7→ C (172)

is an element in Sr if it satisfies

P̃ (a1, · · · , ai, · · · , aj , · · · , ar) = P̃ (a1, · · · , aj , · · · , aj , · · · , ar) (173)

where ai ∈M(k,C). By defining a product of P̃ ∈ Sp and Q̃ ∈ Sq,

P̃ Q̃(a1, · · · , ap+q) =
1

(p+ q)!

∑
σ

P̃
(
aσ(1), · · · , aσ(p)

)
Q̃
(
aσ(p+1), · · · , aσ(p+q)

)
(174)

the formal sum S∗(M(k,C)) =
∞
⊕
r=0

Sr (M(k,C)) becomes an algebra. When we restrict our discussion on

Lie algebras, an element in S∗(g) is said to be invariant if for any g ∈ G and Ai ∈ g, P̃ satisfies

P̃ (AdgA1, · · · ,AdgAr) = P̃ (A1, · · · , Ar) (175)

For instance, we may take P̃ to be symmetrized trace

P̃ (A1, · · · , Ar) = πSTr (A1, · · · , Ar) (176)

If we denote the set of G-invariant members of Sr(g) by Ir(G), then we have a subalgebra I∗(G) =
∞
⊕
r=0

Ir(G).
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Next, we extend the definition of invariant polynomials on principal bundles. Let P (M,G) be a principal
G-bundle over M . We define the invariant polynomial of Lie algebra valued differential forms

P̃ (A1η1, · · · , Arηr) = η1 ∧ · · · ∧ ηrP̃ (A1, · · · , Ar) , (177)

where Ai ∈ g and ηi ∈ Ωpi(M).

Theorem (Chern-Weil): Let P̃ be an G-invariant polynomial. Let P (M,G) be a principal bundle.
We denote its curvature forms corresponding to connections A and A′ by F and F ′, respectively. Then we
have
(a) dP̃ (F ) = 0
(b) P̃ (F ′)− P̃ (F ) is exact.

That is to say, invariant polynomials of curvature form are elements in de Rham cohomology. In fact,
the map I∗(G) 7→ H∗(M) is a homomorphism, which is called Weil homomorphism.

Definition: Let P (M,G) be a principal G-bundle. Let A be the connection 1-form and F is its corre-
sponding curvature form. The total Chern class is defined by

c(F ) = det

(
I +

iF

2π

)
(178)

If we are interested in a complex vector bundle E 7→ M , we only need to replace A and F from the above
definition by corresponding connection and curvature on the associated bundle.

One can check that the above expression is indeed a sum of invariant polynomials. To see this, we notice
that F is a two form, therefore c(F ) is a direct sum of forms of even degrees.

c(F ) = 1 + c1(F ) + c2(F ) + · · · (179)

For example, an easy computation shows that
c0(F ) = 1

c1(F ) =
i

2π
Tr(F )

c2(F ) =
1

2
(i/2π)

2 {Tr(F ) ∧ Tr(F )− Tr(F ∧ F )}

(180)

We call ci the ith Chern class. Remark: For a complex vector bundle E 7→M with structure group GL(n,C),
we have mentioned that this can be reduced to a U(n)-bundle. We see that we only need to consider the
Chern class of U(n)-bundle since any E 7→ M is isomorphic to some U(n)-bundle. If our gauge group is
U(1), then it is clear that the only non-trivial class is the first Chern class. Hence if we are talking about
a complex line bundle, it has only first Chern class. If we are interested in SU(n) gauge group, then we
have Tr(F ) = 0, therefore in that case, the expression of higher order Chern classes can take very simply
expressions. For example, for SU(2) gauge theory, we have

c0(F ) = 1

c1(F ) = 0

c2(F ) =
1

2
(i/2π)

2
Tr(F ∧ F )

(181)

We have seen that the Chern class of a principal bundle P (M,G) lives in the de Rham cohomologyH∗(M ;C).
In what follows, we will show that Chern class of a complex line bundle (or a U(1)-principal bundle) belongs
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to integral cohomology H∗(M ;Z).

We consider a compact manifold M . If M is contractible, then its cohomology class is trivial except
H0(M). Hence we restrict our discussion on compact closed manifold. To begin with, let us consider a two
dimensional compact closed manifold X and its U(1) principal bundle P , whose curvature is denoted by F ′.
Let us consider the following integral,

1

2π

∫
X

F ′. (182)

From classification theorem of U(1)-bundles, we can work in its classying space CP∞, whose total space is
an infinitely dimensional sphere. The principal bundle P is given by the pull-back of a map f : X 7→ CPN

up to homotopy, for a large enough positive integer N . Now we turn to work in a 2-cycle in CP∞. It is
convenient to choose it to be CP1, which is topologically a unit sphere. We denote the curvature of this
Hopf fibration by F . Then F ′ defined on P is the pull-back of F . i.e. F ′ = f∗F . The integral can thus be
written as

1

2π

∫
X

f∗F =
deg f

2π

∫
CP1

F. (183)

We have already shown that on the right hand side the integral associated with a Hopf fibration corresponds
to a unit magnetic charge. Also notice that the degree of mapping is an integer. Therefore the integral

1

2π

∫
X

F ′. (184)

can only take integer values. In general, this manifoldX can be a 2-cycle of an arbitrary compact manifoldM .

In higher dimensions, the computation is similar. For example, if we consider a four dimensional manifold
M and curvature form denoted by F , the integrand of

1

4π2

∫
M

F ∧ F (185)

is square of first Chern class c1(L)2 (second Chern class and higher order Chern classes of a complex line
bundle vanish.). From the above computation, we see that c1(L)2 = −1/4π2[F ]2 ∈ H(M,Z) is integral
cohomology class; The above integral over a 4-manifold can only be integer-valued.

There is another approach to show that the Chern class of complex line bundle is integral cohomology.
This is given by the axiom of Chern classes.

Axiom 1. For each complex vector bundle E over M and for each integer i ≥ 0, the i-th Chern class
ci(E) ∈ H2i(M,R) is given, and c0(E) = 1.

Axiom 2(Naturality). Let E be a complex vector bundle over M and f : N →M a differentiable map.
Then

c(f−1E) = f∗(c(E)) ∈ H∗(N,R) (186)

where f−1(E) is the complex vector bundle over N induced by f from E.

Axiom 3. Let E1, · · · , En be complex line bundles over M , i.e., complex vector bundles with fiber C.
Let E1 ⊕ · · · ⊕ En be their Witney sum, i.e.,

E1 ⊕ · · · ⊕ En = d−1(E1 × · · · × En) (187)
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where d : M 7→M × · · · ×M . Then we have

c(E1 ⊕ · · · ⊕ En) = c(E1) ∧ · · · ∧ c(En). (188)

This is often called the Witney sum formula.

Axiom 4(Normalization). c1(E1) is the generator of H
2(CP1,Z). i.e., the integral of c1(E1) over 2-cycle

CP1 equals 1.

One can check that the definition c(E) = det(I +
iF

2π
) satisfies the above axioms. In particular, to see

it satisfies the third axiom, we denote P1, · · · , Pn the associated C∗-principal bundles of E1, · · · , En. For
each index i, let Ai and Fi be connection form and curvature form on Pi. P1 × · · · × Pn is a principal
bundle over M × · · · ×M with structure group C∗ × · · · ×C∗. The map d : M 7→ M × · · · ×M induces a
principal bundle P = d−1(P1 × · · · × Pn) over M with structure group C∗ × · · · ×C∗, which is a subgroup
of GL(n,C) consisting of diagonal matrices. We denote the corresponding principal bundle of Witney sum
E = E1⊕· · ·⊕En by Q. Then principal bundle Q has structure group GL(n,C) because the Witney sum E
has typical fiber Cn. It is clear that Q contains P as a subbundle. We denote the connection and curvature
on P by A and F , respectively, and let pi : P 7→ Pi be the projection, then we have

A = A∗
1 + · · ·+A∗

n, F = F ∗
1 + · · ·+ F ∗

n (189)

where A∗
i = p∗i (Ai) and F ∗

i = p∗i (Fi). Let ω and Ω be the connection and curvature on Q. Then the
restriction of

det

(
I +

iΩ

2π

)
(190)

to P is equal to (
1 +

iF ∗
1

2π

)
∧ · · · ∧

(
1 +

iF ∗
2

2π

)
, (191)

which establishes the Witney sum formula. To show that the normalization, we use tautological bundle
C2 − {0}, which is a C∗-principal bundle over CP1. It has a natural associated complex line bundle E1

over sphere. Since Chern class is independent of the choice of connection, we may choose connection form
on C2 − {0} as

A =
z̄0dz0 + z̄1dz1

z̄0z0 + z̄1z1
(192)

Then the curature is given by

F = dA =
(z̄0z0 + z̄1z1)(dz̄0 ∧ dz0 + dz̄1 ∧ dz1)− (z̄0dz0 + z̄1dz1) ∧ (z̄0dz0 + z̄1dz1)

(z̄0z0 + z̄1z1)2
(193)

Working on a local chart z0 ̸= 0, if we set w = z1/z0, we obtain

F =
dw̄ ∧ dw
(1 + ww̄)2

(194)

so the local expression of first Chern class is

c1(E1) =
i

2π

dw̄ ∧ dw
(1 + ww̄)2

(195)

From this expression, the normalization of Chern class is manifest.
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2.4.4 Chern-Simon Theory

Chern-Simons theory is a three-dimensional topological quantum field theory whose action is given by
Chern-Simons 3-form. Given a manifold M in odd dimensions, with a Lie algebra valued 1-form A = AaTa
over it, we can define a family of Lie algebra valued forms, called Chern-Simons form. We also define the
curvature 2-form corresponding to A by F = dA+A ∧A.

In one dimension, a Chern-Simons form is given by

ω1 = Tr (A) (196)

In three dimensions, it is given by

ω3 = Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
= Tr

(
F ∧A− 1

3
A ∧A ∧A

)
(197)

In five dimensions, it is given by

ω5 = Tr

(
F ∧ F ∧A− 1

2
F ∧A ∧A ∧A+

1

10
A ∧A ∧A ∧A ∧A

)
(198)

In general, for a 2k − 1 dimensional manifold with 1-form A, a Chern-Simons form is defined by

dω2k−1 = Tr

 k︷ ︸︸ ︷
F ∧ · · · ∧ F

 = Tr
(
F k
)

(199)

where the term [Tr
(
F k
)
] is the kth Chern class. For example, in three dimensions, Chern-Simons 3-form is

defined as dω3 = Tr (F ∧ F ). This can be checked by using the identity (149).

dTr

(
A ∧ dA+

2

3
A ∧A ∧A

)
= Tr

(
d

(
A ∧ dA+

2

3
A ∧A ∧A

))
= Tr

(
d

(
A ∧ dA+

2

3
A ∧A ∧A

))
= Tr (dA ∧ dA+ 2A ∧A ∧ dA) (200)

But because of the cyclic property of trace, Tr (A ∧A ∧A ∧A) = 0,

dTr

(
A ∧ dA+

2

3
A ∧A ∧A

)
= Tr {(dA+A ∧A) ∧ (dA+A ∧A)}

= Tr (F ∧ F ) (201)

The following calculation shows that the equation of motion of Chern-Simons action implies that its
solution is a flat connection.

δI = δ

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=

∫
M

Tr

(
δA ∧ dA+A ∧ dδA+

2

3
(δA ∧A ∧A+A ∧ δA ∧A+A ∧A ∧ δA)

)
=

∫
M

Tr (δA ∧ dA+ dA ∧ δA− d(A ∧ δA) + 2δA ∧A ∧A)

=

∫
M

Tr (2δA ∧ (dA+A ∧A))−
∫
∂M

Tr (A ∧ δA) (202)

In the third line, we have used integration by parts and stokes theorem. In the last line, we used cyclic

property of trace. If M has no boundary, then
δI

δA
= dA+A ∧A = 0.
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The Chern-Simons action is well-defined in the sense that it is invariant under orientation-preserving
diffeomorphisms of M . This can easily been seen since it is defined in a coordinate independent way. But
a physically well-defined theory also requires that its action is invariant under gauge transformation. For
Chern-Simons theory, it is invariant under small gauge transformation. Suppose A is a connection defined
on a bundle space over M , whose local transition function is given by g. i.e. under a gauge transformation
g, the potential A transforms into B = g−1Ag + g−1dg. Suppose this gauge transformation is parametrized
by parameter s. i.e. g = gs, then, infinitesimally,

δA =
d

ds

∣∣∣
s=0

B =
d

ds

(
g−1
s Ags + g−1

s dgs
)
s=0

(203)

Noting that
d

ds

(
g−1
s gs

)
= 0, we have δg−1 = −δg = −T , where T is some element of the Lie algebra of the

gauge group, we have
δA = dT + [A, T ] (204)

and

δI =
d

ds

∣∣∣
s=0

I[B] = 0 (205)

However, it is not invariant under large gauge transformation. The special thing about Chern-Simons theory
is that it can be gauge invariant quantum mechanically. Under a large gauge transformation given by
B = g−1Ag + g−1dg, the Chern-Simons action transforms into

I[B] =

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
−
∫
∂M

Tr
(
dgg−1 ∧A

)
− 1

3

∫
M

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
(206)

If M has no boundary, then we can get rid of the second term. The last term is called Wess-Zumino-
Witten term. We will see that for some Lie algebras, this term is a winding number for topological reasons.
Once we naively quantize the Chern-Simons action

Z =

∫
A/G
DA exp

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(207)

it is clear that this partition function is indeed invariant under gauge transformation.

Consider the case when M has a boundary, the functional derivative of Chern-Simons action is not
well-defined due to the boundary term

∫
∂M

Tr (A ∧ δA). For example, we can consider the conformally

compactified ÃdS3, whose topological boundary is a cylinder. If we impose a boundary condition such that
the gauge field A vanishes at innfinity, then it leads to a trivial theory. To address this problem, we should
modify the Chern-Simons action so that it has well-defined functional derivative. We can choose a complex
structure on ∂M and consider a counter term

Ibdry =
k

4π

∫
∂M

Tr (AzAz̄) dz ∧ dz̄ (208)

with a weaker boundary condition δAz = 0. Then our modified Chern-Simons action will be

I[A] =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

k

4π

∫
∂M

Tr (AzAz̄) dz ∧ dz̄ (209)
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Under a large gauge transformation B = g−1dg + g−1Ag, the boundary terms becomes

Ibdry[B] =
k

4π

∫
∂M

Tr (AzAz̄) dz ∧ dz̄ +
k

4π

∫
∂M

Tr
(
∂gg−1 ∧ ∂̄gg−1 + ∂gg−1 ∧Az̄dz̄ − ∂̄gg−1 ∧Azdz

)
= Ibdry[A] +

k

4π

∫
∂M

Tr
(
∂gg−1 ∧ ∂̄gg−1 + ∂gg−1 ∧Az̄dz̄ − ∂̄gg−1 ∧Azdz

)
(210)

where the differential operators ∂ and ∂̄ defined on the boundary Riemann surface satisfying d = ∂ + ∂̄.
Combining with equation (206), we find that under a large gauge transformation, the modified Chern-Simons
action transforms as

I[B] = I[A] +
k

4π

∫
∂M

Tr
(
g−1∂g ∧ g−1∂̄g + 2g−1∂̄g ∧Azdz

)
+

k

12π

∫
M

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= I[A] + IWZW [g,Az] (211)

The second term is called Wess-Zumino-Witten term.

2.5 Dirac’s Constraint System

This section is mainly based on [2]. One can find more interesting discussions on the internet.

2.5.1 Introduction

It was Dirac who first introduced a theory to deal with the quantization of system with constraints and
gauge symmetry. To learn the Hamiltonian approach to gravity, first we have to fully understand Dirac’s
constrained system. In classical mechanics, the bridge from Lagrangian mechanics to Hamiltonian mechanics
is Legendre transformation given by

p =
∂L

∂q̇
(212)

from which we can solve q̇ in terms of q and p by theorem of implicit function. This can be done if and only
if

det

(
∂2L

∂q̇aq̇b

)
̸= 0 (213)

where a and b run from 1 to N = dim(M). But if the lagrangian is singular

det

(
∂2L

∂q̇a∂q̇b

)
= 0 (214)

then the Hamiltonian cannot be obtained via a Legendre transformation. This kind of lagrangians are usually
associated with gauge theory. For example,

L =
1

2

((
Ẋ − Z

)2
+
(
Ẏ − Z

)2)
(215)

we have
PX = Ẋ − Z PY = Ẏ − Z PZ = 0 (216)

The system is unaffected by a gauge transformation

X → X + ϵ Y → Y + ϵ Z → Z + ϵ̇ (217)

for some arbitrary function ϵ(t). Dirac’s idea was that, from equation (214), in principle, we can still find
an invertible block that has largest rank from the Hessian matrix

Hess(L) =
∂2L

∂q̇a∂q̇b
(218)

44



Let’s denote this invertible block by

Λ =

(
∂2L

∂q̇i∂q̇j

)
(219)

where i and j run from 1 ≤ I to J ≤ N . Since Λ is invertible, we can solve q̇i as a function of qa and pb,
where a and b run from 1 to N . Then if we plug the solutions back into the equation

pk =
∂L

∂q̇k
(220)

for k ̸= I · · · J , q̇ks are killed. In principle, if we locally solve Z q̇is out of N q̇as, the ultimate equations we
find are M = N − Z constraints

ϕm(q, p) = 0, m = 1, . . . ,M (221)

That is to say, the phase space is constrained and conjugate variables are not independent. To describe the
time evolution of a particle on this constrained surface embedded in phase space, we need to modify our
Hamiltonian equations. These equations are as follows

q̇a =
∂H

∂pa
+ λm(t)

∂ϕm
∂pa

ṗa = −∂H
∂qa
− λm(t)

∂ϕm
∂qa

(222)

where the functions λm(t) are called Lagrangian multipliers.

We have 2N unknown p and q to be solved, withM Lagrangian multipliers to be determined. In principle,
with the above 2N equations of time evolution and M constraints equations, we can solve all the funtions
p(t), q(t) and λ(t).

2.5.2 General Theory

Starting with a theory with a singular Lagrangian L(q, q̇), there are M irreducible constraints

ϕm(q, p), m = 1, . . . ,M (223)

that are due to their lagrangian. We denote Π = {ϕm(q, p)|m = 1, . . . ,M}. These constraints are called
primary constraints. They are stemmed from the property of Lagrangian in a natural way without using
equations of motion. Once equations of motion hold, these primary constraints should always be satisfied at
any time so that our theory is self-consistent, so we have

ϕ̇m = {ϕm,H}+ {ϕm, ϕn}λn = 0 (224)

These conditions may or may not imply some further restrictions on the canonical variables or conditions
on λm. If they indeed give us further restrictions on the undertermined variables, then clearly, these new
constraints hold if and only if the equations of motion are satisfied. We call these new constraints secondary
constraints because they are not directly inherited from the Langrangian function itself, but rather from
the time evolution of primary constraints. Once secondary constraints are imposed, we still need to check the
consistency of these new constraints. Repeating the steps for a finite number of times, we will end up with a
certain number of secondary constraints, which are denoted by Σ = {ϕk(q, p) = 0|k =M + 1, . . . ,M +K}.
Having a complete set of constraints, Γ = {ϕc(q, p) = 0|c = 1, . . . ,M, . . . ,M +K} including primary and
secondary constraints, that is, Γ = Π ∪ Σ, the equation

{ϕc,H}+ λm {ϕc, ϕm} = 0 (225)
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hold universally for any constraint ϕc which can either be primary or secondary, and with any primary
constraint ϕm. The above equations is a set of inhomogeneous linear equations of λm. Now we hope that
we can solve these equations. Suppose that these multipliers are solved completely, then plugging these
solutions back into modified Hamiltonian equations, we have

q̇a =
∂H

∂pa
+ λm(t)

∂ϕm
∂pa

= F a(q(t), p(t))

ṗa = −∂H
∂qa
− λm(t)

∂ϕm
∂qa

= Ga(q(t), p(t))

(226)

where F and G are some functions on phase space. We have 2N independent first order ordinary differential
equations with 2N variables, which can be solved exacly. Whether the set of inhomogeneous linear equations
() have solutions only depends on the invertiblity of the matrix formed by Ωcm = {ϕc, ϕm}. But obviously,
there is no guarantee that the matrix is invertible. Even though, we can still find an invertible block that
has the largest rank. To this end, we classify the constraints into two kinds. First, if the Poisson bracket
of a constraint denoted by γd ∈ Γ with all constraints ϕc vanish on-shell, then this constraint γd is called
first class constraints. Otherwise, a constraint denoted by χα ∈ Γ is second class constraint, that is,
if there exist at least one constraint, say ϕn ∈ Γ, such that {χα, ϕn} ̸= 0. Then all the entries of the matrix
Ωcd = {ϕc, ϕd} can be expressed in the following way

{γc, γd} = 0, {γc, χα} = 0, {χα, χβ} = Ωαβ (227)

The above commutations partition the set Γ into two parts, the first class constraints A and second class
constraints B, such that Γ = A∪B. A crucial property of first class constraints is that they are closed under
Poisson bracket. i.e. they themselves form a Lie algebra that leaves the constraint surface invariant.

{γc, γd} = Cecdγe = 0|on shell (228)

where Cecd is the structure constant of the Lie algebra generated by first class constraints. In some cases,
linear combination of a set of second class constraints can turn out to be a first class constraint. If some
primary constraints ϕ(q, p) are also in first class, then from the modified Hamiltonian equation, we see that

δp = −δλ∂ϕ
∂q

= δλ {ϕ, p} δq = δλ
∂ϕ

∂p
= δλ {ϕ, q} (229)

Clearly, first class primary constraints are the generators of gauge symmetries. In many cases, all first
class constraints are shown to be the generators of gauge symmetries. Hence the Lie algebra {γc, γd} = Cecdγe
is isomorphic to the Lie algebra of Gauge group. This is called the ‘Dirac’ conjecture, which has been proved
to be wrong. For example, in general relativity, first class constraints can ‘intertwine’ the gauge symmetry
and dynamics. In quantum mechanics, the second class constraints will be troublesome because their non-
commutativity leads to inconsistency of measurement. The fact that anti-symmetric matrices have inverse
iff it is in even dimensional implies that the set of constraints Γ always contains an even number of second
class constraints. Let’s now denote the number of second class constraints in Γ by 2s = |B|. Then we have
M +K − 2s first class constraints together with 2s second class constraints. With the intertible block, we
still can solve as many q and p as possible. But some undetermined variables, say λj , will certainly appear
in the solutions. This clearly cannot be the untimate result. Those redundant degrees of freedom are often
associated with gauge symmetries, which should be fixed by a choice of gauge condition. Secondly, the
algebra of classical observables relies on the symplectic structure on phase space. i.e. the phase space can
only be even dimensional. Starting from 2N +M variables, we ended up with M +K constraints. Let us
denote this reduced constriant surface, which is embedded into the original phase space, as S. From the
above information, it is not yet enough to claim that the dimension of this constraint surface must be even.
Geometrically, the gauge symmetries define a fibration on the constraint surface S ⊂ T ∗M . Each point (q, p)
on S is equivalent to any point on an orbit passing through (q, p). Therefore, the set of physical points is
actually S/ ∼. A gauge fixing condition g(q, p) = 0 should cut each gauge orbit once and only once. Thus
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it is reasonable to require that {g, ϕ} ̸= 0 for any ϕ(q, p) ∈ A, since otherwise g(q, p) will also generate the
gauge symmetry. This requirement implies that the gauge fixing conditions together with all the fist class
constraints form second class constraints. Consequently, once gauge fixing are imposed, all the first class
constraints are eliminated. On this final constraint surface, which is usually called reduced phase space,
we can introduce the Dirac bracket

{F (q, p), G(q, p)}D = {F,G}PB − {F, χα}PB Ωαβ {χβ , G}PB (230)

It fulfills all the requirements antisymmetry, Leibniz law and Jacobi identity. It is easy to see that the
Dirac bracket of anything with any second class constraint is zero; Dirac bracket of any two first class
functions (i.e. gauge invariant functions) coincide with their Poisson bracket. For these reasons, there will
be no obstacles for quantization constrainted systems by replacing Dirac bracket with quantum commutators.

In classical field theory, the treatment of constraints are a bit subtle since we have infinite degrees of
freedom. From the Lagrangian density of classical fields, the primary constraints usually appear as some
functions C (x⃗) defined on spacial slice Σt. But in Dirac’s algorithm, constraints should be functions defined
on phase space P = T ∗M . i.e.

ϕm(q, p) : Pq,p 7→ R (231)

Thus, for classical field theory with Hamiltonian H
(
φI (x⃗) , π

I (x⃗)
)
, which has infinite degrees of freedom,

our definition of constraints should be replaced by a functional

Cξ

[
φI , π

I
]
: Pφ,π 7→ R (232)

where ξ is an arbitrary scalar field, called test function or smearing function, defined on Σt which
satisfying appropriate boundary conditions and the phase space is infinite dimensional, dimPφ,π = ∞2.
Specifically, contraint functional for classical field theory is defined as

Cξ =

∫
Σt

ξC (x⃗) (233)

For first class constraints, if they generate gauge symmetry, say G, then, in principle, they should be
isomorphic to the Lie algebra g of gauge group. Suppose we have a set of test functions {ξ, ζ · · · } that are
g-valued, with a Lie bracket [ξ, ζ]. Then the functional Poisson brackets of the first class constraints should
satisfy

{Cξ, Cζ} = C ([ξ, ζ]) (234)

That is, if the test functions are spanned by Lie algebra elements Xi, then we have first class constraints
Ci =

∫
Σt
XiC (x⃗) satisfying

{Ci, Cj} = CkijCk (235)

From the preceding equations, we see that first class constraints who generate gauge symmetry are represen-
tations of the Lie algebra g of the gauge group G. From a mathematical aspect, these constraints functionals
can be regarded as a momentum map ξ 7→ Cξ. In gauge theory, this algebra is often called smeared algebra.

An interesting property of the smeared algebra is that in two dimensions, it becomes a vanishing central
extension of g. Suppose that spacetime is a two dimensional manifold without boundary, then it’s spacial
slice is a topological circle. Thus, we need to impose a periodic boundary condition on constraints C(ϕ) and
test function ξ(ϕ). The first class constraints are then written as

C[ξ] =

∮
S1

Tr(ξ(ϕ)C(ϕ)) =

∮
S1

ξa(ϕ)Ca(ϕ) (236)
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We can write this integral by using Fourier series

ξa =

+∞∑
r=−∞

ξar e
irϕ (237)

and

Ca =
+∞∑

n=−∞
Cn

a e
inϕ (238)

Then it is easy to see that the integral becomes

C[ξ] =
∑
n

ξ−n
a Ca

n (239)

We see that the smeared algebra becomes {
Ca

n, C
b
m

}
= Cabc Cc

m+n, (240)

which is an affine extension of g with vanishing central charge. It is not clear whether this form of smeared
algebra has any physical significance. In three dimension, the smeared algebra becomes more interesting.
Suppose that the spacetime is a three dimensional manifold with a boundary cylinder. The smeared integral
may not be functional differentiable because of boundary terms. We can improve the definition in the
following way

C[ξ] =

∫
Σ

ξa(ϕ)Ca(ϕ) +Q[ξ] (241)

where the term Q is added to cancel boundary terms produced from variation of the bulk term. Since this
boundary term is defined up to a constant, we are doing a projective representation of Lie algebra g. The
Poisson bracket should, in general, take the following form

{C[ξ], C[η]} = C[σ(ξ, η)] +K[ξ, η] (242)

where the last term is a central term. The expression of σ(ξ, η) depend on the boundary conditions we
impose. After gauge fixing, all first class constraints are eliminated. We usually find that the boundary
terms form the algebra

{Q[ξ], Q[η]} = Q[σ(ξ, η)] +K[ξ, η] (243)

This is called the surface algebra, which is the key idea of many discussions on AdS3/CFT2 correspondence
and Chern-Simons theory. For a Chern-Simons theory, the surface charge is realized as Kac-Moody algebra,
which is its affine extension [47]. To see this, suppose the topology of spacetime is a product D×R. Then
we can write the Chern-Simons action in the following way

I =

∫
dt

∫
Σ

d2xϵijTr
(
ȦiAj +A0Fij

)
+B(∂Σ×R). (244)

Clearly, Aa
0 is a Lagrangian multiplier and Aa

i are dynamical fields. Furthermore, it is easy to see that Ai is
both dynamical field and its conjugate momentum field, satisfying Poisson bracket{

Aa
i (x), A

b
j(y)

}
=

1

2
gabϵijδ(x, y) (245)

Hence, a generic Poisson bracket of two arbitrary functional is

{G,H} =
∑
ij

1

4

∫
ϵijTr

(
δG

δAi

δH

δAj
− δG

δAj

δH

δAi

)
(246)
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The primary constraint is given by
Ca = ϵijF a

ij = 0, (247)

which is an analogue of Gauss law in electrodynamics, satisfying the algebra

{Ca(x), Cb(y)} = f cabCc(x)δ(x, y) (248)

Defining the smeared algebra by

C[ξ] =

∫
Σ

ξaCa +Q[ξ] (249)

so we have

δC =

∫
Σ

ϵijξa((dA)iδA
a
j ) + δQ = −

∫
Σ

ϵij((dA)iξa)δA
a
j +

∫
∂Σ

ξaδA
a + δQ (250)

where we have used (152), (149) and integrated by parts, and we have

δQ = −
∫
∂Σ

ξaδA
a (251)

From the above expressions, we can find that the smeared algebra is

{C[η], C[λ]} = 2

∫
Σ

(dAηa) ∧ (dAλ
a) =

∫
Σ

[η, λ]aCa + 2

∫
∂Σ

ηa(dAλ
a) (252)

where we used (246) and (145). If we suppose that the surface charge is integrable. i.e.,

Q = −
∫
∂Σ

ξaA
a (253)

Then the boundary integral becomes∫
∂Σ

ηa(dAλ
a) =

∫
∂Σ

ηadλ
a +

∫
∂Σ

ηa[A, λ]
a =

∫
∂Σ

ηadλ
a +Q[[η, λ]]. (254)

Bañados claims that after gauge fixing, the algebra of surface charge satisfies the algebra [47]

{Q[η], Q[λ]}D = Q[[η, λ]] + 2

∫
ηadλ

a (255)

, which I do not understand at all. The interpretation of the above equation is that the gauge fixed surface
charges are the generators of residual gauge symmetries, which seems similar to Brown and Henneaux’s
computation of asymptotic symmetry of AdS3 [20]. From my perspective, this should be a hypothesis. It is
worth mentioning that there are alternative ways to show that the algebra of surface charges is indeed given
by (255) [66]. In [66], the surface charges are the Noether charges associated with gauge transformations at
the boundary when gauge fields are pure gauges. Using the same trick of Fourier series as we did in two
dimensional case,

Aa(ϕ) =
∑
n

T a
ne

inϕ, ξa(ϕ) =
∑
r

ξrae
irϕ (256)

surprising thing happens. It turns out that this algebra is an exact affine central extension [47]{
T a
n , T

b
m

}
D

= −fabc T c
n+m + ingabδ0,n+m (257)

This suggests that the boundary dynamics of Chern-Simons theory is a two dimensional conformal field
theory.
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2.5.3 Canonical Quantization

There are two equivalent approaches to quantize the constrained systems. First one is to find all the
constraints and gauge fixing conditions and get the reduced phase space. Then, the quantum observables
are promoted as operators from those who are gauge invariant functions defined on the reduced phase space.
Another way is to directly replace the Dirac bracket of two classical observables {F,G}D by ih̄[F̂ , D̂]+o(h̄2).
The second class constraints are enforced as operator identities. Since their Dirac brackets vanish globally,
they will not bring any difficulties. However, the first class constraints are implemented as ‘weak identities’,
that is, imposed on quantum states. The quantum constraint γ̂d|ψ⟩ = 0 defines the physical states. In other
words, we define our Hilbert space as the kernel of first class constraints operators H = kerÂ. Unphysical
states should be excluded out of Hilbert space in quantum mechanics.

From mathematical aspect, the quantization of classical mechanics with some Lie groupG as its symmetry,
is an unitary projective representation PGL(V ). This projective can be lifted to a linear representation of
the central extension of G. As a result, the quantization is often accompanied with central charge.

3 AdS3 Spacetime

3.1 AdS Geometry

A global Lorentzian AdS spacetime is defined as an submanifold M of codimension 1 given by

−U2 − V 2 + (X1)2 + · · ·+ (Xn−1)2 = −l2, (258)

embedded in an n+ 1 dimensional flat manifold R2,n−1 with the metric given by

ds2 = −(dU)2 − (dV )2 + (dX1)2 + · · ·+ (dXn−1)2 (259)

It has negative Riemann scalar curvature, whose metric is the induced metric from E2,n−1. The parameter
l is some positive number called AdS radius. If we plug the induced metric into Einstein’s equations, then

it shows that the cosmological constant should be Λ = − (n− 1)(n− 2)l−2

2
. In particular, for AdS3, the

cosmological constant is related to the AdS radius via Λ = −1/l2.

In the following discussion, we will take l = 1. The embedding equation becomes

−U2 − V 2 + (X1)2 + · · ·+ (Xn−1)2 = −1, (260)

from which we see that M has a killing vector U∂V − V ∂U generating the rotation in U − V plane; 2(n− 1)
killing vectors U∂Xi +Xi∂U and V ∂Xi +Xi∂V generating the boosts in X directions; (n−2)(n−1)/2 killing
vectors Xi∂Xj − Xj∂Xi generating the rotations in n − 1 dimensional X plane. Therefore, The isometry
group for global AdSn is just SO(2, n− 1). From the embedding equation, fixing each Xi, U2 + V 2 is given
by a positive constant. In other words, AdSn has a topology S1×Rn−1. If we choose a point p ∈ AdSn that
is invariant under boosts in U −X plane, i.e. It’ stabilizer is given by SO(1, n − 1), then AdSn is a coset
SO(2, n− 1)/SO(1, n− 1).

For an AdS3, a solution of embedding

−U2 − V 2 +X2 + Y 2 = −1 (261)
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is given by 
U = cosh ρ cos t′

V = cosh ρ sin t′

X = sinh ρ cos θ

Y = sinh ρ sin θ

(262)

where ρ ∈ (0,∞) and θ ∈ (0, 2π]. This coordinate patch covers the whole the AdS3 spacetime and is usually
called the global AdS3 coordinate. It is clear that the time coordinate t′ is in fact periodic, winding around

the S1 circle, which violates the causality. Instead, we usually use its universal covering space ÃdS3 in which
the t′ coordinate is unwrapped. Its topology then becomes R3. In my thesis, we will explicitly distinguish

AdS3 and its universal cover ÃdS3.

An AdS3 spacetime as a coset space SO(2, 2)/SO(1, 2) is isomorphic to the group manifold SL(2,R).
This can be easily seen if we associate the column in R2,2 with a real matrix in the following way [15]:

U
V
X
Y

←→ (
U −X Y − V
Y + V U +X

)
(263)

such that

(
U −X Y − V
Y + V U +X

)
∈ SL2(R). The metric on this group manifold is given by the Killing-Cartan

metric

ds2 =
1

2
Tr(g−1dgg−1dg), (264)

The Killing-Cartan metric is invariant under two independent global right and left actions g → hg, g → gh,
where h ∈ SL2(R). In other words, viewing the AdS3 spacetime as a group manifold of SL2(R), whose
fundamental group is π1 (SL(2,R)) = Z, its geometry is invariant under an the action by the group
SL2(R) × SL2(R). One should keep in mind that the group SL2(R) × SL2(R) has a center Z2, which
acts on the AdS3 trivially. Thus, the isometry group of AdS3 is (SL2(R)× SL2(R))/Z2 = SO(2, 2).

The conformal boundary of an AdS3 is a limit set where the metric blows up. i.e. ρ →∞. To find this
conformal boundary, let us see what happens to the embedding equation at the conformal boundary. From
embedding, if we rescale all the components

X = λX̃, Y = λỸ , U = λŨ, V = λṼ (265)

then the embedding equation becomes−Ũ2−Ṽ 2+X̃2+Ỹ 2 = − 1

λ2
. We denote the metric diag(−1,−1,+1,+1)

by ηab and (U, V,X, Y ) by Xa, then as long as we approaches to infinity, i.e. λ→∞, the embedding equation
becomes ηabX̃

aX̃b = 0. Therefore, the conformal boundary is given by the quotient{
ηabX̃

aX̃b = 0
}
/ ∼ (266)

where ∼ is the equivalence relation X̃ ∼ λX̃. For example, the conformal boundary of a global AdS2 is a
circle. Any two points along a ray passing through the center of the cone are to be identified due to the
equivalence relation. Hence the conformal boundary can be deemed as the black circle depicted in the above
picture. The conformal boundary of AdS3 is a torus because the equivalence relation gives a product of two
independent circles. This can also be seen from metric of global AdS3 spacetime, which is introduced as
follows.
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Figure 12: AdS2 can be viewed as a hyperboloid embedded in a three dimensional space, which is the yellow
outer surface in the above figure. The cone inside approaches to the hyperboloid at infinity.

Plugging the above solution to the metric ds2 = −dU2 − dV 2 + dX2 + dY 2, we have the induced metric
for a global AdS3.

ds2 = − cosh2 ρdt′2 + sinh2 ρdθ2 + dρ2. (267)

Setting dt′ to be 0, the metric is a Poincare disc, from which we see that an AdS3 manifold admits a foliation
H2 × S. i.e. There is a foliation for an AdS3 such that each of its equal time spacial slice is a hyperbolic

disc. In addition, this hyperbolic slice is a totally geodesic submanifold. Setting cosh ρ =
1

cos ξ
, we find that

the metric becomes

ds2 =
1

cos2 ξ

(
−dt2 + dξ2 + sin2 ξdθ2

)
(268)

Then we define t̂± ξ̂ = tan
t+ ξ

2
, the metric is finally in the form [23]

ds2 =
4 cos2

t+ ξ

2
cos2

t− ξ
2

cos2 ξ

(
−dt̂2 + dξ̂2 + ξ̂2dθ2

)
(269)

from which we recognize that the conformally compactified global ÃdS3 is indeed a topological solid cylinder,

whose conformal boundary is ξ =
π

2
, or equivalently, ρ→∞.

By defining sinh ρ = r, the metric of a global AdS3 becomes

ds2 = −
(
1 + r2

)
dt′2 +

dr2

1 + r2
+ r2dθ2 (270)

If we consider a radially moving particle, whose effective Lagrangian is given by

L =
1

2

[
−(1 + r2)ṫ′2 +

ṙ2

1 + r2

]
, (271)

from which we see that its energy is a constant of motion.

E =
∂L

∂ṫ′
= −(1 + r2)ṫ′ (272)
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Consequently, the condition vµvµ = 1, 0 and −1 for 4-velocity v =
∂

∂τ
implies that


vµvµ = −1, r = ±

√
E2 + 1 sin(τ − τ0)

vµvµ = 0, r = ±|E|(τ − τ0)

vµvµ = 1, r = ±
√
E2 − 1 sinh(τ − τ0)

(273)

The first equation tells us that free massive particles in an AdS3 always oscillate in the bulk and will never
reach the conformal boundary. Nevertheless, photons will reach the conformal boundary at a finite time.

Another useful coordinate called Poincare patch, which is related with the ambient space {U, V,X, Y }
via [23]

x =
Y

U +X
, y =

V

U +X
, z =

1

U +X
. (274)

Plugging the above expressions into the metric ds2 = −dU2 − dV 2 + dX2 + dY 2, we obtain the induced
metric in Poincare patch

ds2 =
1

z2
(
dx2 − dy2 + dz2

)
, (275)

from which we can recognize that the Lorentzian Poincare patch is simply the Poincare’s upper-half space
model in Lorentzian signature H2,1. Such a coordinate patch covers only a part of a global AdS (which is
usually dipicted as Poincare wedge). It’s conformal boundary is z = 0 slice.

An important feature of the AdS spacetime is that it is not globally hyperbolic. i.e. The spacial slices
from the above foliation are not Cauchy hypersurfaces. We can see this from the embedding equation of
AdS3,

−U2 − V 2 +X2 + Y 2 = −1. (276)

Consider an initial surface t′ = 0, i.e. V = 0, the embedding becomes

−U2 +X2 + Y 2 = −1, (277)

which is a hyperboloid embedded in a Lorentzian space with a metric

ds2 = −dU2 + dX2 + dY 2 (278)

This is a Lorentzian model for a global hyperbolic 2-manifold, which can be identified as a Poincare disc. It
has constant negative curvature and Euclidean metric. Let us call it a ‘Cauchy surface’ of AdS3 spacetime,
and see how it evolves in time. As time passes, this hypersurface is determined by the embedding

−U2 +X2 + Y 2 = −1 + V 2. (279)

As a result, its ‘Cauchy development’ breaks down at t′ = π/2 in the future, where the embedding hyperboloid
becomes a lightcone. In order to give readers some intuition, we forget the θ-direction, suppressing this
dimension, then the manifold is reduced to AdS2, whose embedding equation is given by

−U2 − V 2 +X2 = −1 (280)

Consider an initial surface t′ = 0, i.e. V = 0, the embedding becomes

−U2 +X2 = −1, (281)

This hyperboloid is the ‘Cauchy surface’ of AdS2. It’s time evolution is illustrated in the following graph.
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Figure 13: AdS2

In the figure, the hyperbolic slices at t′ = 0, π/2 and π are red lines; Two black straight lines represent
the lightlike hypersurface where the ‘Cauchy development’ breaks down; The yellow lines represent timelike
geodesics that meet the lightlike hypersurface at spacial infinity; The green lines are spacelike geodesics that
intersect with each other at X = 0. At t′ = 0, the initial slice is given by V = 0, denoted by the bottom
red line. It’s time evolution is represented by the blue lines, which finally coincide with lightlike black lines
when t′ = π/2. Since the AdS spacetime is conformally flat, we can draw its Penrose diagram. From the

Figure 14: Penrose Diagram of AdS Spacetime

Penrose diagram, we see that information initialized at time t′ = 0 cannot fully determine the hypersurface
at t′ = π. In contrast, for globally hyperbolic spacetimes such as Minkowski spacetime, the evolution of
spacial slice can be fully determined by its past. For AdS spacetime, we need to specify boundary conditions
to determine the time evolution.

3.2 Lorentzian BTZ Black Hole

It is a surprise that even there are no gravitons in three dimensions, there do exist black hole solutions
when cosmological constant is negative. If consmological constant is 0 or positive, there are no black hole
solutions [26] [27] [28] [29] [31]. The most obvious reason is that, in the AdS spacetime, timelike geodesics
are oscillating in the bulk. In other words, the negative cosmological constant can ‘create’ an attractive force.
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On the other hand, we mentined at the beginning that scalar curvature is a constant in three dimensions,
one may wonder how BTZ black holes can be real black holes. It is true that in three dimensions, scalar
curvature of any solutions to Einstein equations should be constant. That is to say, there is no curvature
singularity in the BTZ solution. We call such solutions black holes in the sense that there are typical causal
structures resemble the cases in higher dimensions. i.e. They have event horizons, which are null surfaces
that are the boundaries of the past of asymptotic infinities. Once a particle enters the region enclosed by the
even horizon, it can never escape to asymptotic infinity. These solutions also have spacetime singularities.
As mentioned before, these singularities are not curvature singularities, but are of Misner-type [48]. i.e.
They are the end of the spacetime. Particles approaching a Misner singularity inside horizon will finally
reach it and stay there forever; It will have nowhere else to go. To avoid extremal black hole solutions, we
also need singularities hidden behind event horizons.

Since in three dimensions, solutions can only be constructed by doing local identifications of the AdS3,
BTZ black holes should also be obtained by doing identification in the bulk along integral curves of killing
vectors, say ξ. To avoid possibility of time-travel, we should not conider the case when killing vector ξ is
timelike. If we glue two points along a timelike direction together, there will be a closed timelike circle.
Therefore, if BTZ black holes are quotient spaces of the AdS3 modulo some discrete subgroups of isometry
SO(2, 2), then the BTZ group can only be generated by spacelike killing vectors. Since an AdS3 manifold
is the Lie group SL(2,R), the generators must be some elements in Lie algebra sl(2,R) as well.

We can consider a hypersurface defined by constant norm of killing vector ξ, i.e. f(x) = ξµξµ = C, where
C ∈ R [49].

∇αf(x) = ∇α (ξµξ
µ) = 2ξµ∇αξµ (282)

From the above equation, we have
ξα∇αf(x) = 0 (283)

because ξ is a killing vector. We see that the killing vectors that ‘create’ a black hole should always tangent
to the hypersurface f(x) = C. In other words, killing vectors that we are interested in always map this
hypersurface to itself. In particular, its isometry should also leave singularities invariant. Hence we should
define the singularities of BTZ black hole as follows:

Definition: Singularity S of a BTZ black hole is a subspace of AdS3 where a spacelike killing vector ξ
vanishes.

From the above definition, we can see that there is another constraint to the killing vector. If S tends
to asymptotic infinity, then the killing vector at infinity must either tangent to the boundary cylinder if S
is timelike or vanishes if S is spacelike so that it preserves the boundary condition.

In this section, we set l = 8G = h̄ = c = 1 except when restoring units is necessary. In Schwarzschild-like
coordinates, the BTZ metric is given by

ds2 = −
(
r2 − r2+

) (
r2 − r2−

)
r2

dt2 +
r2(

r2 − r2+
) (
r2 − r2−

)dr2 + r2
(
dϕ+

r+r−
r2

dt
)2

(284)

where −π < ϕ < π and 0 < r < r+ describes the interior the black hole and r > r+ describes the exterior

black hole. It also has an interior horizon at r = r− and an ergosurface reg =
(
r2+ + r2−

)1/2
, where the g00

component vanishes closely analoguos to Kerr solution in 3+1 dimensions. As mentioned earlier, singularity
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r = 0 at the center of a BTZ black hole is not curvature singularity, but rather inextendible singularity. If
we define

M = r2+ + r2−, J = 2r+r− (285)

then the metric becomes

ds2 = −
(
−M + r2 +

J2

4r2

)
dt2 +

dr2

−M + r2 +
J2

4r2

+ r2
(
dϕ+

J

2r2
dt

)2

(286)

Setting h̄ = c = 1 means that G has dimension of of length (i.e. [G] = L) and angular momentum J is
dimensionless. If we write l and G explicitly, the metric takes the form

ds2 = −
(
−8GM +

r2

l2
+

16G2J2

r2

)
dt2 +

dr2

−8GM +
r2

l2
+

16G2J2

r2

+ r2
(
dϕ+

4GJ

r2
dt

)2

(287)

The even horizon and inner horizon are given by

r2± = 4GMl2

1±

[
1−

(
J

Ml

)2
]1/2 (288)

or

M =
r2+ + r2−
8Gl2

, J =
r+r−
4Gl

(289)

We conclude that BTZ black holes are totally determined by two parameters mass M and angular mo-
mentum J , which agrees with No-Hair theorem. In order to find all classical contributions to the quantum
gravity of the AdS3, we need to answer if pure AdS3 and BTZ black holes are the only physical solutions.
Since we are working in three dimensions, the answer to the above question relies only on boundary condition
and how the discrete isometry acts on pure the AdS3.

We mentioned that a pure AdS3 as a group manifold SL(2,R) admits a foliation H2 × S1. Using the

global coordinate, the metric for ÃdS3 is

ds2 = − cosh2 ρdt′2 + sinh2 ρdθ2 + dρ2. (290)

Each constant t′ slice is a hyperbolic surface, which can be reckoned as a Poincare disc. We can consider an
isometric action,

hL

(
U −X Y − V
Y + V U +X

)
hR ∼

(
U −X Y − V
Y + V U +X

)
(291)

where hL and hR are two generators of hyperbolic discrete subgroups of SL(2,R). Up to two independent
conjugate transformations, we can write

hL =

(
eu 0
0 e−u

)
, hR =

(
ev 0
0 e−v

)
(292)

for some u > 0 and v > 0. The isometric identification becomes(
eu+v(U −X) eu−v(Y − V )
ev−u(Y + V ) e−u−v(U +X)

)
∼
(
U −X Y − V
Y + V U +X

)
(293)

Noting that in global AdS3 coordinate U and V are time dependent, in general, the above isometric identi-
fication may create a closed timelike circle, which inevitably violates causality. This indicates that we have
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only a limited number of possible quotient spaces to be considered.

The simplest case is when hL = hR = h. Since h is a diagonal matrix, it satisfies h = hT . At t′ = 0, the
above identification is

h

(
U −X Y
Y U +X

)
hT ∼

(
U −X Y
Y U +X

)
, (294)

which is exactly an isometric identification on the hyperbolic surface in Lorentzian model. The same is true
if we set t′ = t′0 for some arbitrary constant t′0. Hence in such a case our problem of seeking for possible
quotient spaces of the AdS3 is significantly reduced to a smaller problem in two dimensions. Once we fix our
boundary condition and determine the fundamental domain in a hyperbolic inital spacial slice, the complete
three dimensional fundamental domain of this group action in a pure AdS3 is totally determined by timelike
geodesics starting from this initial slice. The fundamental domain can therefore be visualized as a flash of
the evolution of the inital slice. We use two sets of local coordinates

U = r coshϕ

V =
√
r2 − 1 sinh t

X = r sinhϕ

Y =
√
r2 − 1 cosh t

(295)

for r > 1, t and ϕ ∈ R, as well as 
U = r coshϕ

V =
√
−r2 + 1 cosh t

X = r sinhϕ

Y =
√
−r2 + 1 sinh t

(296)

for 0 < r < 1 and ϕ ∈ R.

The above two coordinates cover the whole pure AdS3 and the metric is

ds2 = −
(
r2 − 1

)
dt2 +

1

r2 − 1
dr2 + r2dϕ2 (297)

This metric looks almost the same as a BTZ black hole of unit mass M = 1 except that the range of ϕ
is (−∞,+∞). The way we write these coordinates for a pure AdS3 may give a false impression that it is
angular coordinate for BTZ black hole. To obtain the true black hole solution, one needs one more step:

ϕ ∼ ϕ+ 2π. (298)

This local identification is generated by
∂

∂ϕ
, which equals to X∂U +U∂X . It is clear that this killing vector

is hyperbolic. For this unit mass BTZ black hole, since its coordinate is not well-defined along the spacial
geodesic r = 1, we should compute the horizon length by using new coordinates cosh ρ = r. Then the metric
along this geodesic takes the form

dl2 = cosh2 ρdϕ2, (299)

from which we see that the horizon length is 2π. We can also consider a general identification,

ϕ ∼ ϕ+ L (300)

It is no danger to set this new parameter satisfying L = 2πa, for a ∈ (0, 1) or a > 1. By performing a
rescaling transformation ϕ→ aϕ, r → r/a and t→ at, and setting M = 1/a2, i.e.

ϕ→
√

1

M
ϕ, r →

√
Mr, t→

√
1

M
t, (301)
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the new ϕ-coordinate has the usual periodicity 2π again. The metric in terms of the new coordinates becomes

ds2 = −
(
r2 −M

)
dt2 +

dr2

r2 −M
+ r2dϕ2, (302)

The mass parameter is restored. The horizon after this rescaling is now at r =
√
M , which has length

2π
√
M . To have a BTZ black hole with angular momentum, we perform a coordinate transformation [26]

r2 =
r′2 − r2−
r2+ − r2−

,

(
t
ϕ

)
=

(
r+ r−
r− r+

)(
t′

ϕ′

)
(303)

for r2 ≥ r2+ and 0 < r− < r+ <∞ are two positive real numbers. Dropping the ‘prime’ from new coordinate,
the metric becomes

ds2 = −
(
r2 − r2+

) (
r2 − r2−

)
r2

dt2 +
r2(

r2 − r2+
) (
r2 − r2−

)dr2 + r2
(
dϕ+

r+r−
r2

dt
)2
, (304)

which equals to

ds2 = −
(
−M + r2 +

J2

4r2

)
dt2 +

dr2

−M + r2 +
J2

4r2

+ r2
(
dϕ+

J

2r2
dt

)2

(305)

We see that a BTZ black hole with angular momentum can be constructed by taking the same quotient,
after which we introduce an extra parameter r− as a compensation. In terms of new coordinates, the ambient
space {U, V,X, Y } has three solutions, each of which represents a region of black hole spacetime [15]. From
our assumption, which says that any other time-dependent quotients of the AdS3 allow closed timelike
circles, and the fact that parabolic and elliptic Möbius transformations create singularities, we believe that
BTZ black holes are the only physically possible quotients for 3D pure gravity, whose corresponding discrete
subgroup of SO(2, 2) are cyclic.

r ≥ r+

U =

√
r2 − r2−
r2+ − r2−

cosh(r+ϕ+ r−t), V =

√
r2 − r2+
r2+ − r2−

sinh(r+t+ r−ϕ)

X =

√
r2 − r2−
r2+ − r2−

sinh(r+ϕ+ r−t), Y =

√
r2 − r2+
r2+ − r2−

cosh(r+t+ r−ϕ)

(306)

r− ≤ r < r+

U =

√
r2 − r2−
r2+ − r2−

cosh(r+ϕ+ r−t), V = −

√
−r2 + r2+
r2+ − r2−

sinh(r+t+ r−ϕ)

X =

√
r2 − r2−
r2+ − r2−

sinh(r+ϕ+ r−t), Y = −

√
−r2 + r2+
r2+ − r2−

cosh(r+t+ r−ϕ)

(307)

0 ≤ r < r−

U =

√
−r2 + r2−
r2+ − r2−

cosh(r+ϕ+ r−t), V = −

√
−r2 + r2+
r2+ − r2−

sinh(r+t+ r−ϕ)

X =

√
−r2 + r2−
r2+ − r2−

sinh(r+ϕ+ r−t), Y = −

√
−r2 + r2+
r2+ − r2−

cosh(r+t+ r−ϕ)

(308)

It is easy to see that identification ϕ ∼ ϕ+ 2π is equivalent to

ρL

(
U −X Y − V
Y + V U +X

)
ρR ∼

(
U −X Y − V
Y + V U +X

)
, (309)
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where the left action and right action are given by

ρL =

(
eπ(r+−r−) 0

0 e−π(r+−r−)

)
, ρR =

(
eπ(r++r−) 0

0 e−π(r++r−)

)
(310)

Therefore, a rotating BTZ black hole can be viewed as a quotien space ÃdS3/ < (ρL, ρR) >. The discrete
subgroup < (ρL, ρR) > is hyperbolic, which is generated by a single generator (ρL, ρR). Hence it is isomor-
phic to integers Z. The group Z ⊂ SL(2,R) × SL(2,R) (which is called BTZ group) is not a subgroup of
only one factor or the other, but a subgroup of the whole product group. It is very subtle when we are saying
that a BTZ black hole is a quotient space of a pure AdS3. Strictly speaking, it is not a quotient space of an
AdS3. The reason is that we want the discrete isometry of an AdS3 to act on it freely and discontinuously.
In our case, the problem is that the killing vector that ‘creates’ this black hole geometry leaves r = 0 fixed.
But if we exclude the singularity, then the BTZ black hole can be regarded as a quotient space of an AdS3/Z.

A different representation of the exterior region r > r+ of this quotient geometry is the Lorentzian
upper-half space H2,1. Using (274), we obtain

x =

√
r2 − r2+
r2 − r2−

cosh(r+t+ r−ϕ) exp {−r+ϕ− r−t}

y =

√
r2 − r2+
r2 − r2−

sinh(r+t+ r−ϕ) exp {−r+ϕ− r−t}

z =

√
r2+ − r2−
r2 − r2−

exp {−r+ϕ− r−t}

(311)

that transforms the rotating BTZ metric into the form

ds2 =
1

z2
(
dx2 − dy2 + dz2

)
(312)

The identification in the rotating BTZ coordinate ϕ ∼ ϕ+ 2π requires that

(x, y, z) ∼
(
e−2πr+(x cosh 2πr− + y sinh 2πr−), e

−2πr+(y cosh 2πr− + x sinh 2πr−), e
−2πr+z

)
, (313)

from which we see that when r− = 0, the change ϕ→ ϕ+ 2π on H2,1 is simply a dilation. Each constant-y

slice is a Poincare’s upper-half plane, with the metric ds2 =
1

z2
(dx2+dz2). We see that this dilation induces

a hyperbolic transformation ρ on each constant-y slice. This matrix takes the form

ρ =

(
eπr+ 0
0 e−πr+

)
, (314)

which fixes two points (x, z) = (0, 0) and ∞. For a rotating black hole, whose r− ̸= 0, we have a Lorentzian
boost on x− y plane.

Since the metric is singular at horizon r = r+, we cannot calculate the length of horizon in BTZ
coordinates. We start from metric

ds2 = −
(
r2 −m

)
dt2 +

(
r2 −m

)−1
dr2 + r2dϕ2, (315)

which is a BTZ black hole of mass m. From previous discussion we know that its horizon is at r =
√
m,

whose length is L = 2π
√
m. Then we introduce new coordinates {T, φ,R} [26],

t = T +

(
J

2m

)
φ, ϕ = φ+

(
J

2m

)
T, R2 = r2

(
1− J2

4m2

)
+
J2

4m
, (316)
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Figure 15: Identification ϕ ∼ ϕ+ 2π on Lorentzian upper-half space

where J < 2m is a constant. We defining another constant

M = m+
J2

4m
. (317)

In terms of this new coordinate, the non-rotating BTZ black hole metric of mass m can be written as

ds2 = −

(
R2 −M +

(
J

2R

)2
)
dT 2 +

dR2

R2 −M +
(

J
2R

)2 +R2

(
dφ+

JdT

2R2

)2

(318)

which is exactly the metric of a rotating BTZ black hole with charges M and J . Horizon at r =
√
m in

terms of new coordinates is given by

R2|r=√
m = m =

M

2

(
1±

√
1− J2

M2

)
(319)

The above two solutions of m are precisely r±. Since horizon length should be independent of choice of
coordinate, the horizon length of a rotating BTZ black hole with charges M = r2+ + r2− and J = 2r+r− is
apparently L = 2πr+. It is useful to write G and l explicitly. Remembering that previously we set 8G = 1
(but now [G] = [l] = [M ]−1) it is easy to solve r± in terms of M and J

r+ − r−√
8Gl

=
√
lM + J,

r+ + r−√
8Gl

=
√
lM − J. (320)

The explicit formula of the length of the horizon with G and l restored is

L = 2πr+ = π
(√

8Gl (lM + J) +
√

8Gl (lM − J)
)

(321)

From a geometric point of view, a BTZ black hole is a quotient space of a pure AdS3, but physically, it was
shown by Carlip that a BTZ black hole is formed from collapse of matter in three dimensional spacetime,
which carries entropy. On the other hand, for an observer far away from the black hole, information of
the interior of the black hole is not unveiled by the entropy of that matter because black holes have event
horizons. This ‘paradox’ is resolved by associating entropy with event horizons. From the No-Hair theorem,
a stationary black hole in gravitational vacuum is parametrized by its mass M and angular momentum
J . For fixed values of M and J , we may still have many different internal microstates of the black hole
formation. Therefore, we can imagine that there may have a large amount of information of that black hole
blocked by its event horizon, except its mass and angular momentum. For an outside observer, the measure
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of the missing information hidden behind the horizon can only be accounted for the black hole’s entropy.
From the dual CFT2 aspect, we have to associated a BTZ black hole with a mixed state. So far, we are not
able to provide further information about such a black hole state. To formulate the black hole entropy, we
should first introduce the four laws of black hole mechanics.

Zeroth Law

The horizon has constant surface gravity for a stationary black hole.

First Law

For a black hole near macro-stationary state (thermal equilibrium), the increment of its energy is related to
change of its area of horizon A, angular momentum J and other internal charges Q by

dM =
κ

8π
dA+ΩdJ +ΦdQ (322)

where κ is its surface gravity, Ω is its angular velocity and Φ is the potential of gauge fields.

Second Law

The area of horizon is non-decreasing in time evolution.

dA

dt
≥ 0 (323)

This law is violated by the discovery of Hawking radiation, which causes decrease of mass and area in the
process of evaporation. Hawking radiation is a result of the quantum fluctuation of the vacuum near the
event horizon.

Third Law

A black hole with vanishing surface gravity is not possible.

Comparing the above laws of black holes with the laws of thermodynamics, we find that the black hole
entropy should be proportional to its event horizon area. The non-decreasing of horizon area in classical
gravity is an analogue of non-decreasing law in ordinary thermal dynamics. When quantum effect near

horizon is taken into consideration, the black hole radiates at temperature T =
κ

2π
[50]. The entropy is

given by Hawking-Bekenstein formula

SBH =
kBA

4ℓ2P
(324)

where kB is the Boltzmanns constant and ℓP is planck scale, which is given by
√
Gh̄/c3. We set kB = 1

throughout this thesis. In three dimensions, the event horizon of a BTZ black hole is one-dimensional and
so the horizon area should be replaced by horizon length, denoted by L.

To cope with the difficulties from the second law of black hole mechanics, we introduce a generalized
second law.

Generalized Second Law

The sum of matter entropy outside a black hole and the black hole entropy never decreases in a spontaneous
process. In equations

δSo + δSBH ≥ 0 (325)

In the radiation process, the generalized second law indicates that the emergent Hawking radiation entropy
outstrips the decrement of the black hole entropy.
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In this section, we are only interested in the classical geometry of BTZ black holes so the length of horizon
must be a constant in time evolution that depends on its mass M and angular momentum J . Since a black
hole with mass M and angular momentum J can be transformed to a static black hole of unit mass, we only
need to study the metric (297). In terms of global AdS3 coordinate, the singularity r = 0, or U = X = 0,
is given by θ = 0 and t′ = π/2. The horizon r = 1 at t = 0, or V = Y = 0, is given by t′ = 0, θ = π/2.
The initial slice and future (past) singularities are depicted in the graph [26] [27] [28] [29] [31]. At t′ = 0,

Figure 16: Fundamental domain of Lorentzian BTZ black hole in AdS3

the fundamental domain on spacial slice is the shaded region, enclosed by two hemi-circles geodesics ϕ = 0.
The red line is the inital horizon r = 1. The evolution of this initial slice is totally determined by geodesics
starting from the shaded region. Finally these geodesics will collapse at singularity because in AdS3, timelike
geodesics are attractive and meet each other at t′ = π/2. On the initial slice, there are two asymptotic AdS3

Figure 17: Initial Slice

regions isolated by the event horizon. The fundamental region is the shaded region followed by identifying
hemi-circles ϕ = −π and ϕ = π. Topologically, it is a cylinder. To see how this hyperbolic surface evolve
in time, we can find the coordinate transformation between the global AdS3 coordinates and the black hole
coordinates. From (262) and (295), we have

U2 −X2 = r2 = cosh2 ρ cos2 t′ − sinh2 ρ sin2 θ (326)

tanhϕ = tanh ρ
sin θ

cos t′
(327)
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and

tanh t = coth ρ
sin t′

cos θ
(328)

The fundamental domain of the BTZ group should be bounded by ϕ = π and ϕ = −π surfaces embedded
in the global AdS3 in time direction. Two surfaces ϕ = π and ϕ = −π finally meet each other at the

singularity, where the killing vector
∂

∂ϕ
vanishes. The spacial cylinder started from past singularity, followed

by expansion from t′ = −π/2 to t′ = 0 and finally shrinked to singularity at future. For any stationary black
hole, its event horizon is a null hypersurface, which is a lightlike totally geodesic submanifold. For an AdS3

manifold, we have mentioned that each constant time slice H2 is a totally geodesic submanifold. It can be
proved that the intersection of any two totally geodesic submanifolds is itself a totally geodesic submanifold.
Therefore, spacial slices of event horizon of a BTZ black should also be a totally geodesic subspace. But
since it is a codimensional 2 subspace, it is a spacelike geodesic in the global AdS3. The evolution of the
initial spacial slice of the horizon is determined by lightlike geodesics starting from the spacial geodesic circle
r = 1, whose ‘world sheet’ is the event horizon of the BTZ black hole. Using Hawking entropy formula,

S =
L

4G
= 2π

(√
l

8G
(lM + J) +

√
l

8G
(lM − J)

)
(329)

For a non-rotating BTZ black hole, the entropy is

S = 4π

√
l2M

8G
(330)

we see that the entropy is related with its mass M and the length of its initial horizon, which is a constant.
In our case, since we are studying a black hole of unit mass, we takeM = 1. To maintain L being a constant,
the horizon splits into two circles from t′ = 0 to t′ = π/2 and will finally meet the singularity at asymptotic
infinity.

Figure 18: Time evolution of horizon r = 1

In the above picture, the solid cylinder is AdS3 background. Each constant time slice is a Poincare disk. The
grey shaded regions should be removed. There are two red surfaces intersecting with each other at t′ = 0.
These two null surfaces are the event horizons of the BTZ black hole. There are several red lines denoting
its event horizon at different times. At time t′ = 0, event horizon is the minimal geodesic (which looks like
a straight interval) connecting the two shaded grey regions. It splits into two in time evolution. Finally, in
the future horizons collapse into singularity at the asymptotic infinity. If we supress the ϕ-dimension, the
fundamental domain gives us the Penrose diagram of the BTZ black hole.
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It is easy to see that timelike geodesics outside the horizon finally intersect with the singularity at the
asymptotic infinity at AdS-coordinates time t′ = π/2. In contrast, timelike geodesics will ultimately reach
at the singularity within a finite AdS-coordinates time. But in the BTZ coordinates, free massive particles
outside the horizon will never reach the singularity. Fundamental domain of a BTZ black hole is divided by

Figure 19: Penrose diagram of BTZ black hole

horizons into four isolated regions I, II, III and IV.

Finally, we consider a very special non-rotating BTZ black hole whose mass M = 0.

ds2 = −r2dt2 + dr2

r2
+ r2dϕ2 (331)

If we do a coordinate transformation ρ = 1/r, then the metric becomes

ds2 =
1

ρ2
(
−dt2 + dρ2 + dϕ2

)
(332)

From the above metric, we clearly see that this new coordinate patch is locally a Poincare patch, which
covers a part of the Lorentzian AdS3. Clearly, a massless BTZ black hole cannot be the a pure AdS since
we still have a nontrivial identification ϕ ∼ ϕ+ 2π on the Poincare patch. The black hole metric (315) goes
back to the pure AdS3 when M = −1. Furthermore, on each constant time slice, the induced metric is

ds2 =
1

ρ2
(dρ2 + dϕ2), (333)

which is locally a Poincare’s upper-half plane model. The identification ϕ ∼ ϕ + 2π generated by
∂

∂ϕ
is

clearly parabolic, which has a single fixed point at ρ = ∞, or r = 0. It’s fundamental domain contains
cusp point at infinity. Thus massless BTZ black hole should be excluded in our discussion. For a massive
extremal BTZ black hole, we can use the same trick, relating it to a quotient of H2,1 to show that it has cusp
points. However, coordinates transformation (311) is singular when r+ = r−. The following transformation
can relate extremal BTZ metric to a Lorentzian Poincare form [30]

x =
1

2

(
ϕ+ t− r0

r2 − r20
+

1

2r0
e2r0(ϕ−t)

)
y =

1

2

(
ϕ+ t− r0

r2 − r20
− 1

2r0
e2r0(ϕ−t)

)
z =

1√
r2 − r20

er0(ϕ−t)

(334)

It is easy to see that under the translation ϕ→ ϕ+ 2π, the transformation on constant-y slice is a mixture
of a hyperbolic transformation and a parabolic transformation, which give rise to cusp singularities as a
massless black hole has.
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From previous discussion, the geometry of an AdS3 manifold is completely determined by its spacial slice,
thus the moduli space of non-rotating BTZ black holes is the same as the moduli space of D2/ < γ >. From
the introduction to uniformization of Riemann surfaces, we know that if γ is hyperbolic, then the moduli
space is R>0; If it is elliptic, then the moduli space is R/Z. We have mentioned that in elliptic case, the
isomorphic classes of cones is R/Z only if we fix the invariant point in Poincare disc, while if we unleash
that point, we only need to introduce one more parameter. In terms of the AdS3 geometry, such an orbifold
correponds to a particle moving in AdS3 spacetime. If the invariant point in each spacial slice is fixed, then
that particle has no angular momentum. But if we apply a ‘boost’, then the particle in the AdS3 can bounce
back and forth. The extra parameter can only be the angular momentum of an elliptic BTZ black hole,
which runs in R. Clearly, if our assumption is correct, we have exhausted all possible solutions corresponding
to cyclic discrete Möbius groups. We find that there are only BTZ black holes with Misner singularities in
pure 3D gravity. Our conclusion is that then moduli spaces listed above shows that the AdS3 spectrum has
a mass gap and is bounded from below. Correspondingly, we expect a CFT2 that has such a mass gap.

Figure 20: Spectrum of BTZ black holes

From the above analysis, we may conclude that if −1 < M < 0, the quotients are generated by elliptic
motions; if M > 0, they are generated by hyperbolic motions satisfying |Tr(σ)| > 2. BTZ black holes of
mass M = 0 and M = −1 corresponds to the Möbius transformations of type |Tr(σ)| = 2. The trace is
related with the mass of BTZ black hole via the following formula.

Theorem: If h is a hyperbolic element, the translation length L of its action in the upper half-plane is
related to the trace of h by

|Tr(h)| = |2 cosh L
2
| (335)

The translation length is exactly the circumference of the event horizon of a BTZ black hole.

We have already proved the above theorem in the discussion of Iwasawa decomposition of SL(2,R).
Similarly, when h is elliptic, its trace is related with the deficit angle θ via

|Tr(h)| = |2 cos θ| (336)

Clearly, for the unipotent class, which corresponds to parabolic transformations, the trace is 2. This critical
value of mass is a phase transition point through which global AdS3 geometry becomes BTZ black hole
geometry. Since the isomorphism class of D2/ < γ > is either R>0 when M > 0 or R/Z when −1 < M < 0,
and the BTZ metric becomes a pure AdS3 when M = −1, it is not possible to have BTZ black holes of
M < −1. From CFT2 perspective, if M < −1, the corresponding CFT2 is not in unitary representation.
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In pure AdS3, more complicated quotient spaces can be constructed [23] [27] [28] [29]. For instance,
we may consider the evolution of a Riemann surface of type (g, n,m) introduced in preliminaries. A 2 + 1
dimensional AdS space with such a Riemann surface as its spacial slice is a wormhole. We may also consider
a compact universe, whose spacial slice is a Riemann surface of type (g, 0, 0). In general, these different
types of AdS3 universes all start from singularity at past infinity, followed by expansion and finally collapse
to singularity at future. In this thesis, we omitted discussion about three dimensional worm holes which are

Figure 21: On the left is a three dimensional wormhole of genus 2 with two asymptotic AdS3 regions, the
left one is a BTZ black hole

generated by more than one hyperbolic motions.

3.3 Analytic Continuation

For an ÃdS3 spacetime, it is clear that after wick rotation t→ it, the embedding equations become
U = cosh ρ cosh t′

V = i cosh ρ sinh t′

X1 = sinh ρ cosϕ

X2 = sinh ρ sinϕ

(337)

If we define a new coordinate patch 
U ′ = cosh ρ cosh t′

V ′ = cosh ρ sinh t′

X ′1 = sinh ρ cosϕ

X ′2 = sinh ρ sinϕ

(338)

then we obtain a hyperboloid −(U ′)2 + (V ′)2 + (X ′1)2 + (X ′2)2 = −1 embedded in an Euclidean spacetime,
which is a hyperbolic space, whose isometry is SO(1, 3). It is important that although the Poincare patch

in Lorentzian signature covers a part of the whole an ÃdS3 manifold, its Euclidean counter part covers the
whole Euclidean spacetime. This is analogous to the fact that Rindler coordinate only covers less than 1/4
of the whole Minkowski spacetime while it covers whole R2 in Euclidean signature.

Another important analytic continuation is that if we do the following coordinate transformations, t′ 7→ it,
r 7→ ir and θ 7→ iϕ, we see that the pure AdS3 metric becomes a non-rotating BTZ metric. Although this
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coordinate transformation is mysterious from a physical aspect, it is very useful in computations of killing
vectors of AdS3 manifolds.

4 Euclidean Saddle Points

4.1 Introduction

In Lorentzian signature, the ÃdS3 is a universal covering space, from which all black hole and wormhole
solutions can be constructed by making quotient, modding out some discrete subgroups of isometry SO(2, 2).
In Euclidean signature, the universal covering space can either be Poincare’s upper-half space or Poincare’s
unit ball. Our convention for upper-half space is that

ds2 =
1

z2
(dx2 + dy2 + dz2). (339)

It conformal boundary is z = 0 slice plus ∞, which is Riemann sphere CP1. On z = 0 slice, there is a
natural complex structure w = x+ iy and w̄ = x− iy. The 4-dimensional ambient space {U, V,X, Y } is still
related with this metric via

x =
Y

U +X
, y =

V

U +X
, z =

1

U +X
(340)

The isometry group is PSL(2,C). The group SL(2,C) also has a Iwasawa decomposition

SL(2,C) = KAN, (341)

where K = SU(2), A =

(
et 0
0 e−t

)
, for t ∈ R, and N =

(
1 w
0 1

)
, for w ∈ C. By definition, subgroup N

is clearly parabolic, whose cyclic discrete subgroup generates a one dimensional lattice Λ on each constant-z
slice. Apparently, a quotient space H3/Λ has topology of a solid cylinder, but with its center circle removed.
This center circle corresponds to z →∞ in the upper-half space, where the metric vanishes. i.e. the quotient
space contains a cusp line, which is analogues to the cusp point of modular curve. From a physical aspect,
if we regard this solid torus as an Euclidean 3D universe, on the one hand, it has one end at its conformal
boundary z = 0; on the other hand it has another end at the cusp circle. While in physics, we want our
spacetime to have only one end at asymptotic infinity, therefore, we should never consider such a quotient
space [18].

Geometries of different kinds of hyperbolic three-spaces have been well-known to physicists, due to
Thurston [46]. The following theorem, due to Curt McMullen implies that seeking for quotient spaces of
H3 can be completely determined by conformal structure on their conformal boundaries [51]. Therefore, we
only need to investigate different types Kleinian groups acting on CP1.

Theorem: Let M be a topological 3-manifold. Let GF (M) denote the space of hyperbolic 3-manifold
that are homeomorphic to M . As long as M admits at least one hyperbolic realization, there is a one-to-one
correspondence between hyperbolic structures on M and conformal structures on ∂M . i.e.

GF (M) ≃ Teich(∂M) (342)

where Teich(∂M) is the Teichmüller space of ∂M , which is the universal covering space of the moduli space
of ∂M .

4.2 Schottky Uniformization

Let us first investigate the Poincare’s upper-half space model. When the Kleinian group is generated
by loxodromic motions, the quotient spaces become handlebodies whose conformal boundaries are annuli in
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the z = 0 slice. Using the complex structure, this slice is complex plane C. In the following pictures, the
upper hemi-spheres in the Poincare’s upper half space are totally geodesic surfaces. Gluing two hemi-spheres
together is to make a quotient space of H3 modulo an action generated by a loxodromic element [23] [31].
The identification in the first figure is given by an action of a cyclic Kleinian group. While in the second
figure, there are two loxodromic generators. It would be abstruse if we view the above pictures as handle

Figure 22: Fundamental domains in three dimensions

bodies. To help readers visualize them, we use the Poincare’s unit ball model. The procedure of identification
is illustrated in the following picture.

Figure 23

In the above picture, we identify the two shaded discs inside H3, whose boundaries are closed curves α and
β on the conformal boundary CP1. The generator of the corresponding Möbius transformation sends the
one shaded disc to another. The result curve α ∼ β is a contractible cycle of the solid torus on the right
hand side.
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Handlebodies with higher genus are created by more than one loxodromic elements. These manifolds are
three dimensional Euclidean wormholes, which are out of the range covered in my thesis. A more generic

Figure 24: The first loxodromic generator sends the shaded disc enclosed by α to the one enclosed by β
and the second loxodromic generator sends the shaded disc enclosed by γ to the one enclosed by δ. The
fundamental domain of such a group action is a handlebody of genu g = 2.

case is when the fundamental domain has genus g, whose corresponding group action is generated by g
loxodromic generators. Such a finitely generated free group is called Schottky group [31] [52]. This group
can be defined in the following way.

Definition: For some fixed point p ∈ CP1, each Jordan curve not passing through p divides the Riemann
sphere into two pieces, and we call the piece containing p the exterior of the curve, and the other piece its
interior. Assume we have 2g disjoint Jordan curves C1, C̃1, ... Cg, C̃g inCP

1 with disjoint interiors. A Schot-

tky group is a Kleinian group generated by transformations γi taking the exterior of Ci onto the interior of C̃i.

The quotient space constructed in the above way is H3/ < γi >, whose conformal boundary in CP1 is
the region which is exterior to all Jordan curves. The main result of Schottky uniformization of compact
Riemann surfaces is that every compact Riemann surface can be built as a quotient surface of CP1 by actions
of a Schottky group, which is proved by Koebe [53]. From the AdS/CFT ’s perspective, we believe that the
bulk geometry of hyperbolic 3-spaces should be completely determined by the conformal structures on their
conformal boundaries. Therefore we can roughly regard the degrees of freedom of the conformal structure
on the boundary as the degrees of freedom of gravity in the bulk. For each compact Riemann surface, we
may associate it with an Euclidean AdS3 gravity. As we already know that such Riemann surfaces can
be constructed as quotient spaces via some action of Schottky group. We call the space of elements that
generate the Schottky group (up to Möbius transformations) the Schottky space. We may therefore relate
the Schottky space with the space of Euclidean bulk geometries, and with the moduli space of conformal
boundaries. It can be proved that the dimension of Schottky space is 6g−6. One may naively think that this
space is the moduli space of the boundary Riemann surfaces. However, there is a subtlety here. Although
they have the same dimensions, it can be proved that the Schottky space is actually the universal cover of
Mg. i.e. The Schottky space is the Teichmüller space of compact Riemann surfaces of genus g. This is
precisely the result from the theorem given by Curt McMullen.

4.3 Euclidean BTZ Black Hole and Thermal AdS3

Computations in this section is mainly based on [18] [15] [6]. In my thesis, we are only interested in
conformal field theory living on a torus, which has a finite temperature. Topologically, a torus can be made
by removing two non-intersecting closed curves α and β on CP1, followed by an identification α ∼ β. From
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Brouwer’s fixed-point theorem, Mobiös transformation on CP1 always have fixed points on it. For a discrete
subgroup Γ, we define the limit set Λ(Γ) ⊂ CP1, which is the set of fixed points of non-trivial elements of
Γ on CP1. If H3/Γ is not compact, we define an open set Ω(Γ) = CP1 − Λ(Γ). The conformal boundary
of the spacetime that we are interested in is the quotient space Ω(Γ)/Γ. If Γ does not contain any elliptic
elements, then Γ acts on H3 fixed-point freely and is called torsion-free Klein group.

Let us denote the quotient space as Σ = Ω(Γ)/Γ, whose fundamental group is π1(Σ) = Z ⊕ Z. This
implies that the fundamental group of Ω(Γ)is a subgroup of the fundamental group of Σ. Possible subgroups
of Z⊕ Z are listed below:

1. π1(Ω(Γ)) is a infinite subgroup of finite index, which is isomorphic to Z⊕ Z.
2. π1(Ω(Γ)) is isomorphic to either Z or Z× Zn.
3. π1(Ω(Γ)) is an trivial subgroup.

The first case should not be considered here because Ω(Γ) is a finite cover of Σ and so is itself still a
Riemann surface with genus 1. But a torus can never be a subset of a Riemann sphere. In case 3, Ω(Γ) is
the universal covering space of Σ, thus it is isomorphic to C. In other words, it is the completment of ∞ in
the Riemann sphere. Γ is therefore, a discrete subgroup which fixes the ∞. For this reason, in case 3, any
element in Γ must be in the form of upper triangular matrices.(

λ w
0 λ−1

)
(343)

Furthermore, since Ω(Γ) is simply-connected, π1(Ω(Γ)) = 0. From the identity π1(Ω(Γ)/Γ) = π0(Γ) = Γ, we
conclude that in this case, Γ is isomorphic to Z ⊕ Z, which is generated by the following two independent
matrices (

1 a
0 1

)
,

(
1 b
0 1

)
We may reduce the label of this group by the ratio b/a = ν for ℑν > 0. Then the equivalent relation given
by the group action is

w ∼ w +m+ nν (344)

where w is the complex coordinated on the conformal boundary and m,n ∈ Z. The quotient space is a torus.
But this is not what we want since the group is generated by parabolic elements. Hence we have the ‘cusp’
line at the center circle of the solid torus. The last one left is case 2. In the case that the fundamental group
of Ω(Γ) is Z, it is a topological cylinder R × S. It’s conformal structure is determined by the punctured
complex plane (which is the z = 0 slice of upper-half space) with complex structure w = x+ iy. This surface
can be regarded as a Riemann sphere without its south and north poles. (i.e. Γ fixes two points (w = 0 and
w =∞) on the conformal boundary). Therefore, this group, which is isomorphic to Z, is generated by

W =

(
α 0
0 α−1

)
(345)

where α is some complex number such that |α| > 1. We set α to be eiπτ . It acts on H3 freely and
discontinuously except the origin point {x = 0, y = 0, z = 0}. The quotient space Σ is a punctured complex
plane modulo the group generated by W . On a punctured complex plane, it is more convenient if we apply
a new coordinate w = e2πiµ. We can see that the modulo is given by the following two identifications

µ ∼ µ+ 1 and the one given by W : µ ∼ µ+
logα

πi

This is a torus that we are interested in.
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When the fundamental group of Ω(Γ) is Z× Zn, the conformal boundary of the corresponding quotient
space is still the torus as the one from last case. This can be seen if we use the isometric action (31), for
A = kW , where

k =

(
e

2πi
n 0

0 e−
2πi
n

)
(346)

with some integer n. The matrix k generates the group Zn, which is clearly a discrete subgroup of SU(2)
from the Iwasawa decomposition of SL(2,C). The isometric action is

kW

(
U −X iV + Y
−iV + Y U +X

)
(kW )† (347)

Since the action of W is isometric, we may denote

W

(
U −X iV + Y
−iV + Y U +X

)
W † =

(
Ũ − X̃ iṼ + Ỹ

−iṼ + Ỹ Ũ + X̃

)
(348)

The identification

W

(
U −X iV + Y
−iV + Y U +X

)
W † ∼

(
U −X iV + Y
−iV + Y U +X

)
(349)

gives us the boundary torus mentioned above. We define complex structure w = x+ iy on each constant-z
slice, from the subsequent action

k

(
U −X iV + Y
−iV + Y U +X

)
k† =

(
e

2πi
n 0

0 e−
2πi
n

)(
U −X iV + Y
−iV + Y U +X

)(
e

2πi
n 0

0 e−
2πi
n

)†

=

(
U −X e

4πi
n (iV + Y )

e−
4πi
n (−iV + Y ) U +X

)
∼
(

U −X iV + Y
−iV + Y U +X

)
,

(350)

we see that this is equivalent to identifications

w = x+ iy =
Y + iV

U +X
∼ e 4πi

n
Y + iV

U +X
= e

4πi
n w (351)

and

w̄ = x− iy =
Y − iV
U +X

∼ e
−4πi

n
Y − iV
U +X

= e
−4πi

n w̄ (352)

which leaves z-coordinate invariant. Consequently, the conformal boundary is still the same torus created by
action of W . However, the identifications on each constant-z plane produces a deficit angle θ = 2π(1− 1

n ) at
x = y = 0. Thus, the quotient space H3/Z×Zn is a solid torus whose center circle has conical singularities.
It is well-known that at classical level, conical singularity of codimensional 2 for 3D gravity represents orbit
of a massive particle. Therefore, such quotient space does not correspond to solutions of pure gravity.

From the above analysis, we see that in Euclidean signature, only loxodromic motion and hyperbolic
motions are possible to make a torus to be the conformal boundary of pure three dimensional gravity.
Hence, on the bulk side, Euclidean three dimensional gravity is simply (H3)∗/Z. As mentiened previously,
its conformal boundary is Riemann surface with genus 1. We defined a complex modulus µ of this surface
by w = e2πiµ. Then, any other good boundary Riemann surfaces can be obtained by an SL(2,Z) action,
µ 7→ (aµ + b)/(cµ + d) with integers ad − bc = 1. From Bezout’s lemma, for any given pair (c, d), the pair
(a, b) is uniquely determined up to an equivalent relation (a, b) ∼ (a, b)+Z(c, d). A further deduction shows
that the equation ad − bc = 1 for given a pair of integers (c, d) has integer solution if and only if (c, d)
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are coprime. Thus all the saddle points of pure three dimensional gravity are labeled by a pair of coprime
integers, denoted by Mc,d. From the equivalent relation(

a b
c d

)
∼
(
a+ nc b+ nd
c d

)
=

(
1 n
0 1

)(
a b
c d

)
, (353)

we see that the set of saddle points are actually the quotient group Γ∞\SL(2,Z), where Γ∞ is translation
group. Hence it is isomorphic to SL(2,Z)/Z. In particular, we will see that thermal AdS3 is M0,1 while the
BTZ black hole is M1,0.

To understand the geometric difference between these different solid tori, we can pick up a pair of 1-cycles
given by (α, β) as the canonical homology basis of a torus. Here, the symbol (α, β) is antisymmetric, which
represent whether the two cycles intersect with each other or not. If they do not intersect, then we claim
that (α, β) = 0 and if they do intersect, we set (α, β) = ±1. This product of 1-cycles form a matrix{

(α, α) = (β, β) = 0

(α, β) = −(β, α) = 1
↔
(

0 1
−1 0

)
(354)

Apparently, transformations that leave this matrix invariant is Sp(2,Z), called the symplectic group of
integers. This group has two generators which geometrically correspond to dehn twists on the torus. For
example, we can consider a dehn twist Dα created by slicing the torus along α-cycle, then we twist the edge
on the one side by 2π, and then glue along the two sides back together. Under such a dehn twist, the original
β becomes sum of α and β. i.e.

Dα(α) = α, Dα(β) = α+ β (355)

In terms of matrix realizations, they are

Dα =

(
1 0
1 1

)
, Dβ =

(
1 1
0 1

)
(356)

In general, if we pick up an Euclidean saddle point with given two 1-cycles (α, β) satisfying (), and we can

Figure 25: Two 1-cycles of a torus

choose another pair of 1-cycles (A,B) as a new basis

(A,B) = 1, (A,A) = (B,B) = 0 (357)

such that A is chosen to be a primitive contractible 1-cycle. For convenience, we set A = cα+ dβ for (c, d)
coprime integers. Then (A,B) = 1 is determined by B = aα+ bβ only when ad− bc = 1, for a, b integers. In
other words, we pick up a fixed boundary torus, these saddle points represent different ways to fill in the bulk.
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From the Lorentzian BTZ black hole

ds2 = −
(
r2 − (r2+ + r2−) +

(2r+r−)
2

4r2

)
dt2 +

dr2

r2 − (r2+ + r2−) +
(2r+r−)2

4r2

+ r2
(
dϕ+

2r+r−
2r2

dt

)2

, (358)

with identification ϕ ∼ ϕ + 2π, the wick rotation t → itE automatically requires an analytic continuation
r− → ir−E in order to let the Euclidean metric be real valued. The Euclidean black hole metric is

ds2 =

(
r2 − (r2+ − (r−E)

2)−
(2r+r

−
E)

2

4r2

)
dt2E+

dr2

r2 − (r2+ − (r−E)
2)− (2r+r−E )2

4r2

+r2
(
dϕ−

2r+r
−
E

2r2
dtE

)2

, (359)

with ϕ ∼ ϕ + 2π. In Euclidean signature, we have M = (r+)2 − (r−E)
2 and JE = 2r−Er

+. This metric can
also be obtained via an appropriate coordinate transformation from a static Euclidean black hole with unit
mass. Using the analytic continuation (338), it is easy to see that an Euclidean static BTZ blakc hole of
unit mass is given by 

U = r coshϕ

V =
√
r2 − 1 sin t

X = r sinhϕ

Y =
√
r2 − 1 cos t

(360)

Remark: In Euclidean signature, it does not make any sense to talk about interior of black holes. By per-
forming a corresponding coordinate transformation, the rotating Euclidean black hole is given by equations

U =

√
r2 + (r−E)

2

r2+ + (r−E)
2
cosh(r+ϕ− r−E tE)

V =

√
r2 + r2+

r2+ + (r−E)
2
sin(r+tE + r−Eϕ)

X =

√
r2 + (r−E)

2

r2+ + (r−E)
2
sinh(r+ϕ− r−E tE)

Y =

√
r2 + r2+

r2+ + (r−E)
2
cos(r+tE + r−Eϕ)

(361)

It is related with upper-half space model ds2 =
1

z2
(dx2 + dy2 + dz2) via

x =

√
r2 − r2+
r2 + (r−E)

2
cos(r+tE + r−Eϕ) exp

{
−r+ϕ+ r−E tE

}
y =

√
r2 − r2+
r2 + (r−E)

2
sin(r+tE + r−Eϕ) exp

{
−r+ϕ+ r−E tE

}
z =

√
r2+ + (r−E)

2

r2 + (r−E)
2
exp

{
−r+ϕ+ r−E tE

}
(362)

It is easy to see that the identification ϕ ∼ ϕ+ 2π is equivalent to

γ

(
U −X iV + Y
−iV + Y U +X

)
γ† ∼

(
U −X iV + Y
−iV + Y U +X

)
, (363)

where

γ =

(
eπ(r++ir−E ) 0

0 e−π(r++ir−E )

)
. (364)
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Therefore, the Euclidean BTZ black hole is indeed a quotient space of H3 modding out a cyclic discrete
subgroup generated by a loxodromic Möbius transformation. However, this is not the whole story. We have
mentioned that in Lorentzian signature, under the translation ϕ → ϕ + 2π, (x, y, z) ∈ H2,1 undergoes a
dilation, followed by a Lorentzian boost in x− y plane which produces no singularities. While in Euclidean
signature, x− y plane has positive signature. Under the action ϕ ∼ ϕ+ 2π, (x, y, z) ∈ H3 should have

(x, y, z) ∼ e2πr+
(
x cos(2πr−E) + y sin(2πr−E), y cos(2πr

−
E)− x sin(2πr

−
E), z

)
(365)

i.e. the identification is a dilation followed by a rotation in x−y plane, which may produce conical singularity
on z-axis. To avoid having singularity at x = y = 0, we first perform another coordinate transformation

(x, y, z) = (R cos θ cosχ,R sin θ cosχ,R sinχ) (366)

The identification ϕ ∼ ϕ+ 2π is
(R, θ, χ) ∼ (Re2πr+ , θ + 2πr−E , χ) (367)

From the above identification, we see that the fundamental domain of Euclidean BTZ black hole in H3

is the region between two hemispheres R = 1 and R = e2πr+ . The identification is performed by a 2πr−E
rotation, followed by gluing the two hemispheres. The new coordinate transformation is smooth at z-axis
only if θ ∼ θ + 2π. This is equivalent to the identification

(−ϕ, tE) ∼ (−ϕ+Θ, tE + β) (368)

where

Θ =
−2πr−E

r2+ + (r−E)
2
, β =

2πr+

r2+ + (r−E)
2

(369)

In other words, the smoothness of Euclidean BTZ black hole requires that it has temperature

T =
r2+ + (r−E)

2

2πr+
(370)

From the complex structure on each constant-z slice of H, we see that for

w =

√
r2 − r2+
r2 + (r−+)

2
exp

{
(r+ − ir−+)(−ϕ+ itE)

}
, (371)

the identification

−ϕ+ itE ∼ (−ϕ+ itE) + (Θ + iβ) = −ϕ+ itE +
2πi

r+ − ir−E
(372)

reflects a trivial fact that w = e2πiw. −ϕ + itE is the complex structure on the conformal boundary of
Euclidean BTZ black hole. We define

Θ + iβ = 2πτ. (373)

i.e. τ =
i

r+ − ir−E
. This parameter τ is the modular parameter of the boundary torus of Euclidean black hole.

Thermal AdS3 is

ds2E =
(
1 + r̃2

)
dt̃2E + r̃2dϕ̃2 +

dr̃2

1 + r̃2
(374)

where we have ϕ̃ ∈ (0, 2π]. Each Euclidean saddle point is related with another by a global diffeomorphism.
We, therefore, can transform a thermal AdS3 metric to an Euclidean rotating BTZ metric with parameters
r+ and r−E via the following transformation

t̃E = r−E tE − r+ϕ
ϕ̃ = −r+tE + r−Eϕ

r̃2 =
r2 − r2+

r2+ + (r−E)
2

(375)
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Then it is easy to see that the identification (363) of Euclidean BTZ black hole implies that ϕ̃ ∼ ϕ̃+ 2π for
thermal AdS3, which agrees with the metric (374). The identification ϕ ∼ ϕ− 2π implies that

−ϕ̃ ∼ −ϕ̃+ 2πr−E , it̃E ∼ it̃E + 2πr+ (376)

or
it̃E − ϕ̃ ∼ it̃E − ϕ̃+ 2π(ir+ + r−E). (377)

We define the modular parameter of thermal AdS3 as

τ̃ = ir+ + r−E (378)

It is clear that modular paramters of Euclidean BTZ black hole and thermal AdS3 is related with each other
via

τ =
−1
τ̃

(379)

Therefore the conformal boundaries of thermal AdS3 and BTZ black hole are related via S-transformation.

Each point in the black strip |τ | > 1,
−1
2
< ℜτ < 1

2
represents the conformal boundary of an Euclidean BTZ

Figure 26: Tessellation (Picture Copied from Book ‘Outer Circles, An Introduction to Hyperbolic 3-
Manifolds, Albert Marden)

black hole, which is sent to a point in the white ‘triangle’, which is a thermal AdS3. Points from other pieces
represent conformal boundaries of other Euclidean saddle points. These infinitely many regions in upper-half
plane related one from another via modular tranformation all together form a tesselation of the infinite strip
−1
2

< ℜτ < 1

2
. Other parts of the upper-half plane are related with this strip by T -transformation, which

should be modded out to avoid overcounting.

5 Lagrangian Formalism

5.1 Splitting of Spacetime and Extrinsic Curvature

Most of the calculations in this chapter are copied from the book [2] [1]. One can find similar introduc-
tions in any advanced textbook on general relativity. For any 3-manifold M , the 2+1 splitting requires that
there exist a smooth function t : M 7→ R such that each t = constant defines a spacelike hypersurface Σt.
On the spacial hypersurface Σt, we have a conormal 1-form (dt)a. We call it conormal because for any vector
wb that is tangent to Σt, we have (dt)aw

a = 0, that is, at any point p ∈M , the 1-form (dt)a is normal to any
tangent vector in TpΣt. This is true without the existence of metric on M . If we can find any two conormal
1-forms na and ma on Σt, it is not hard to see that na = λma, where λ is some constant number. But if we
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have defined metric gab on M , then we can always find a vector na that is normal to the hypersurface Σt by
means of the metric. It is easy to see that for any conormal 1-form na, the corresponding vector na = gabnb
is normal.

In general relativity, the splitting of spacetime will make sense if and only if we can chose a proper
reference frame. A reference frame can be defined as a smooth time-like future-directed vector field, whose
each integral curve γ(s) intersects with Σt once and only once. These integral curves are the worldlines of a

set of observers in M . Suppose these integral curves are generated by vector field ta =
(
dxµ

ds

)a
on M . The

definition of reference frame requires that ta(dt)a ̸= 0. For simplicity, we can set ta(dt)a = 1. As a result,
t = s, so the worldlines of observers are parametrized by t, which is identified as coordinate-time.

In general, ta is not normal to spacial slice Σt. We can decompose this vector field in the following way

ta = Nna +Na (380)

where na is the normal vector of Σt with unit length and N is some scalar field on M . The condition
ta(dt)a = 1 implies that na = −N∂at. By setting x0 = t, we have N0 = 0. In other words, the decomposition
is

ta = Nna + N⃗ (381)

The above equations has a strong geometric interpretation. The scalar function N generates the evolution
in time direction, called lapse, while the spacial vector N⃗ generates the deformation in spacial directions,
called shift. Let N i = Na(dxi)a, where the indix i runs in spacial indices 1 and 2, Na = gabN

b, then the
metric

gab = gµνdx
µ ⊗ dxν = gµν(dx

µ)a(dx
ν)b (382)

can be written in the following way

ds2 = −N2dt2 + gij
(
N idt+ dxi

) (
N jdt+ dxj

)
(383)

The induced metric on hypersurface Σt is hab = gab + nanb. Plugging the above formula for gab, we have√
|g| = N

√
h (384)

Under this decomposition, any vector va ∈ TpM can be decomposed into a component tangent to Σt and a
normal component that is proportional to na.

va =
(
−gbcvcnbna

)
+
(
va + gcbv

cnbna
)

(385)

or
v = −g(v, n)n+ (v + g(v, n)n) (386)

In particular, for any two arbitrary vector fields v and u defined on Σt, we can decompose the ∇uv into a
normal part and a tangent part.

∇uv = −g (∇uv, n)n+ (∇uv + g (∇uv, n)n) (387)

The first term measures how much a vector fails to tangent to Σt after we parallel translate in some direction,
that is, how much the hypersurface Σt is bended in M . We call the first term

−g (∇uv, n)n = K(u, v)n (388)

the extrinsic curvature of Σt in M . The second term is often written as

∇uv + g (∇uv, n)n = 2∇uv = Duv (389)
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because the operator D turns our to be the Levi-Civita connection on spacial slice Σt with respect to the
induced metric hab = gab + nanb on Σt. We can easily check that Duv is C∞ (Σt)-linear with respect to
vector field u and R-linear with respect to v. In addition, it satisfies the Leibniz law

Dv (fw) = ∇v (fw) + g (n,∇v (fw))n = v (f)w + fDvw (390)

for any f ∈ C∞ (Σt) and any v, w ∈ Vect (Σt). We can check that it is metric preserving

u (g (v, w)) = g (∇uv, w) + g (v,∇uw) = g (Duv, w) + g (v,Duw) (391)

for any u, v and w ∈ Vect (Σt) since g (n, v) = g (w, n) = 0. Finally, it is clear that the operator D is torsion
free because

Duv −Dvu = [u, v] (392)

for any u and v ∈ Vect (Σt).

From the definition of extrinsic curvature, we can easily see that it is symmetric and can be expressed in
an alternative way

K (u, v) = −g (∇uv, n) = g (∇un, v) (393)

This alternative expression gives us another way of looking at extrinsic curvature; it measures how much a
unit normal vector n rotates in the direction of v when being parallel translated in the direction of u. It is
not hard to show that extrinsic tensor Kab has the following properties

Kab = hcah
d
b∇cnd = hca∇cnb (394)

and

Kab =
1

2
Lnhab (395)

where hab = gachcb = gac (gcb + ncnd) = δab + nanb is the projection tensor. It maps the tensor ∇cnd to
its spacial component on Σt. This projection is necessary because ∇cnd is defined on M but Kab should
be defined only on Σt. Consequently, for any normal vector na on Σt, we have Kabn

b = 0. Obviously, the
induced metric on Σt also has a similar property, habn

b = 0. In general, we call a tensor T a
b a spacial tensor

if it satisfies one of the following conditions

(a) naT
a
b = 0, nbT a

b = 0

(b) T a
b = hach

d
bT

c
d

For spacial tensors, since they are defined on spacial slices, it makes sense only if we use hab and h
ab to lower

or raise indices. Clearly, both the induced metric hab and extrinsic curvature Kab are defined on spacial slice
Σt and are spacial tensors. It can be proved that hab and Kab also satisfy the second condition. By using
projection tensor, we can re-write the definition of the operator D as

DcT
a
b = hadh

e
bh

f
c∇fT

d
e (396)

for any spacial tensor T a
b . It is easy to show that this new definition indeed agrees with (). Now this operator

D gives the intrinsic Riemann curvature of the spacial slice 2R
d
abcωd = 2D[aDb]ωc, for any spacial 1-form

ωc ∈ Ω1 (Σt). It turns out that the intrinsic Riemann tensor of Σt is related with its extrinsic curvature Kab

and the spacial components of the instrinsic Riemann tensor Ra
bcd

∣∣∣
Σt

via Gauss-Codazzi equations

2R
d
abc = heah

f
bh

l
ch

d
mR

m
efl − 2Kc[aK

d
b] (397)

The proof is extremely tedious and thus is omitted. Readers who are interested in can have a try by self or

find answer from google. From the above equations, we see that 2R
d
abc = heah

f
bh

l
ch

d
mR

m
efl when the extrinsic
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curvature vanishes everywhere.

Given a spacial slice Σt embedded in spacetime M , if we know the induced metric hab, which gives us
the local geometry of Σt, and the extrinsic curvature Kab, which tells us how Σt is bended as a hypersurface
in M , then have enough information about this surface Σt. To study the whole manifold M , we also need
to know the evolution of this spacial slice. We hope to find the differential equation of the time derivative
of hab and Kab that agree with Einstein’s equations. With given initial data of hab and Kab (the Cauchy
data), we will be able to know the history of our universe.

The time derivative of a spacial vector wa ∈ Vect (Σt) is defined as a Lie derivative in ta direction.

ẇa = Ltw
a (398)

This definition is natural because the pull-back γ∗ (wa), where the flow γ is generated by ta, is still a tangent
vector field on Σt. But for a unit normal na on Σt, its pull-back γ∗ (na) is not necessarily still a normal
vector for obvious reasons. In other word, if we naively define the time derivative of a 1-form wa, which is
dual to the tangent vector wa, as Ltwa, then we see that

naLtwa = Lt (n
awa)− (Ltn

a)wa = Ltg (n,w)− (Ltn
a)wa = − (Ltn

a)wa ̸= 0 (399)

where we used the fact that na is normal to tangent vector wa and so g (n,w) = 0, that is Ltwa is no longer
a spacial 1-form. For this reason, we have to project this derivative onto the spacial slice and define the time
derivative of a spacial 1-form as

ẇa = hbaLtwb (400)

From now on, whenever we say the time derivative of a spacial tensor T a
b , we always need a projection tensor

and denote
L̃tT

a
b = hach

d
bLtT

c
d (401)

Using the decomposition ta = Nna +Na, we have

L̃t = NL̃n + L̃N⃗ (402)

So the time derivative of metric hab is given by

ḣab = L̃thab = N L̃nhab + L̃N⃗hab = 2NKab + L̃N⃗hab

= 2NKab + 2D(aNb) (403)

where we have used killing equation and the fact that D is compactible with hab in the last line. We use the
above formula to calculate the time derivative of Kab and it works out to be

K̇ab = Nhcah
d
bRcd − 2RabN + 2NKc

aKcb −NKKab +DaDbN + L̃N⃗Kab (404)

where we denote K as the trace of Kab, i.e. K = Tr (K) = habKab, and
2Rab is the intrinsic Ricci tensor

on spacial slice Σt. But since the procedure of the calculation is extremely tedious, we omit here. The
time evolution is fully determined by equation (403) and (404). Note that these two equations hold without
Gab = 0, the Einstein’s equations. For gravity in vacuum, Gab = 0 implies Rab = 0. So the equations of
time evolution are given by{

ḣab = 2NKab + 2D(aNb)

K̇ab = −2RabN + 2NKc
aKcb −NKKab +DaDbN + L̃N⃗Kab

(405)

It is not hard to see that the above equations agrees with the spacial parts of Einstein’s equations Gabh
a
ch

b
d =

0. From the Gauss-Codazzi equations, we can prove the following identity. Since the proof is very long, we
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will not show it here.

Lemma : The time components of Einstein tensor is related with extrinsic curvature Kab and intrinsic
Riemann scalar of Σt via the following identity

2Gabn
anb = 2R−KabK

ab +K2 (406)

From this identity, using the equation Gab = Rab −Rgab/2, we see that

R = 2
(
Gabn

anb −Rabn
anb
)
=
(
2R−KabK

ab +K2
)
− 2Rabn

anb (407)

The last term on the RHS of the above equation is

Rabn
anb = naRc

acbn
b = −na (∇a∇c −∇c∇a)n

c

= −∇a (n
a∇cn

c) + (∇an
a)∇cn

c +∇c (n
a∇an

c)− (∇cn
a)∇an

c

= K2 −KacK
ac −∇a (n

a∇cn
c) +∇c (n

a∇an
c) (408)

In the last step, we have used the identity (∇cna)n
a = 0, due to the fact that vector na has unit length,

and so

(∇and)∇dna = (∇and)∇dna + nanc (∇cnd)∇dna + nbnd (∇anb)∇dna + nanbncnd (∇cnb)∇dna

= (δac + nanc)
(
δbd + nbnd

)
(∇cnb)∇dna

= hach
b
d (∇cnb)∇dna = Ka

bK
b
a = KabKab (409)

Using the lemma () and equation (), we conclude that the Lagrangian of Einstein-Hilbert action is given by

L =
√
hN

{
2R+KabK

ab −K2 − 2Λ + 2 [∇a (n
a∇cn

c)−∇c (n
a∇an

c)]
}

(410)

We denote the quantity 2R+KabK
ab−K2 = C. It can be regarded as a spacial function defined on spacial

slice Σt. But once we consider the time evolution of hab, this spacial function C depends on ḣab explicitly
via Kab. From the Lagrangian, we also find that

∂L
∂Ṅ

= 0,
∂L

∂
˙⃗
N

= 0 (411)

Therefore, Na cannot be dynamical variables for gravity. We claim that the dynamical variables of gravity
are given by hab and Kab. Now we only need to re-express the other parts of Einstein’s equations in terms
of hab, ḣab and Kab, K̇ab.

5.2 Boundary Terms

For a topological field theory, there is no dynamic in the bulk but the gauge transformations on the
conformal boundary become dynamical. In Hamiltonian formalism of gravity theory, boundary terms such
as ADM charges carry important physics. In Lagrangian formalism, we also have boundary terms and have
to add some conter terms to cancel the those boundary terms so that the action has well-defined functional
derivative. The Lagrangian of gravity is given by

L =
√
ggabRab (412)

the variation is

δL =
dL
dϵ

∣∣∣
ϵ=0

=

(
√
ggab

dRab

dϵ
+R

d
√
g

dϵ
+
√
gRab

dgab

dϵ

)
ϵ=0

(413)

If we assume that spacetime has no topological boundary, or gravitational fields vanish at the boundary, we
can drop all the boundary terms, the above variation will give us the Einstein equations. Now let’s see what
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happens if spacetime has a boundary and we keep all the boundary terms.

Theorem 1: Let ∇1 and ∇2 be two linear connections on manifoldM . The difference between them defines
a (2, 1) tensor field A such that

A(X,Y ) = ∇2
XY −∇1

XY (414)

for any two vector fields X and Y on M . If ∇1 and ∇2 are torsion free, then the tensor A is symmetric with
respect to the two lower indices.

Theorem 2: For any two given metric fields gab and g̃ab defined on manifold M , if ∇ and ∇̃ are linear
connections on M that are compatable with gab and g̃ab, respectively, then from theorem 1, there exists a
tensor Cc

ab such that

∇̃aωb = ∇aωb − Cc
abωc (415)

for any 1-form ωa. The tensor Cc
ab satisfies

Cc
ab =

1

2
g̃cd (∇ag̃bd +∇bg̃ad −∇dg̃ab) (416)

From the above two theorems, we can compute the Riemann tensors with respect to the two different metric

∇̃[a∇̃b]ωc =
1

2
R̃d

abcωd (417)

∇[a∇b]ωc =
1

2
Rd

abcωd (418)

From (), we have

∇̃a

(
∇̃bωc

)
= ∇a

(
∇̃bωc

)
− Ce

ab∇̃eωc − Ce
ac∇̃bωe

= ∇a

(
∇bωc − Cd

bcωd

)
− Ce

ab∇̃eωc − Ce
ac

(
∇bωe − Cd

beωd

)
=
(
∇a∇bωc − ωd∇aC

d
bc − Cd

bc∇aωd

)
− Ce

ab∇̃eωc − Ce
ac∇bωe + Ce

acC
d
beωd (419)

Using the defination of Riemann tensor, we have

R̃d
abcωd = Rd

abcωd − 2ωd∇[dC
d
b]c − 2Cd

c[b∇a]ωd − 2Ce
c[a∇b]ωe + 2Ce

c[aC
d
b]eωd

= Rd
abcωd − 2ωd∇[aC

d
b]c + 2Ce

c[aC
d
b]eωd, ∀ωd ∈ Ω1(M)

⇒ R̃d
abc = Rd

abc − 2∇[aC
d
b]c + 2Ce

c[aC
d
b]e (420)

Now we set g̃ab = gab(ϵ) with associated connection ∇̃, we have(
∇a − ∇̃a

)
ωb = Cc

ab(ϵ)ωc (421)

and
Cc

ab(0) = 0 (422)

Plugging into the formula for Riemann tensor (420), we have

Rd
abc(ϵ) = Rd

abc − 2∇[aC
d
b]c(ϵ) + 2Ce

c[a(ϵ)C
d
b]e(ϵ)

⇒ Rac(ϵ) = Rac − 2∇[aC
b
b]c(ϵ) + 2Ce

c[a(ϵ)C
b
b]e(ϵ) (423)

Since Ca
ab(0) = 0, we have

d

dϵ

∣∣∣
ϵ=0

(
Ce

c[a(ϵ)C
d
b]e(ϵ)

)
= 0 (424)
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and so δRac = −2∇[aδC
b
b]c.

By theorem 2,

Cb
ac(ϵ) =

1

2
gbd(ϵ)[∇agcd(ϵ) +∇cgad(ϵ)−∇dgac(ϵ)] (425)

, where ∇agbc = ∇agbc(0) = 0, we have the variation

δCb
ac =

1

2

{
gbd(ϵ)

(
∇a

dgcd(ϵ)

dϵ
+∇c

dgad(ϵ)

dϵ
−∇d

dgac(ϵ)

dϵ

)}
ϵ=0

=
1

2
gbd (∇aδgcd +∇cδgad −∇dδgac) (426)

and

δCb
bc =

1

2
gbd
(
∇cδgbd + 2∇[bδgd]c

)
=

1

2
gbd∇cδgbd (427)

Therefore, we obtain

δRac =
1

2
gbd (∇b∇aδgcd +∇b∇cδgad −∇b∇dδgac −∇a∇cδgbd)

⇒ gacδRac =
1

2

(
∇d∇cδgcd +∇d∇aδgad − gac∇d∇dδgac − gbd∇c∇cδgbd

)
= ∇a

(
∇bδgab − gbc∇aδgbc

)
(428)

This is the boundary term for Einstein-Hilbert action that we often dropped in general relativity. We denote
this boundary term as

va = ∇bδgab − gbc∇aδgbc (429)

Then, the variation of Einstein-Hilbert action is

δI =

∫
M

d3x
(√
g∇ava +

√
gGabδg

ab
)

(430)

By the Gauss-theorem, ∫
M

∇ava =

∮
∂M

ñava (431)

where the vector ña is unit normal to the topological boundary hypersurface ∂M . Here we assumed that
M is a compact manifold with a boundary. For AdS spacetime, it is not compact. To obtain meaningful
physics, we usually take M as the conformally compactified AdS manifold. But since the metric blows up at
this conformal boundary, the surface integral above does not make sense. Before eliciting renormalization, let
us pretend that we have a metric (which should be understood as a process of limitation) on this boundary
∂M . It is natural to assume that the variation of metric δgab vanishes on this boundary, where the induced
metric is

h̃ab = gab + ñañb (432)

Then the boundary term is

vañ
a = ñagbc (∇cδgab −∇aδgbc) = ña

(
h̃bc + ñbñc

)
(∇cδgab −∇aδgbc)

= ñah̃bc (∇cδgab −∇aδgbc) + ñañbñc (∇cδgab −∇aδgbc)

= ñah̃bc (∇cδgab −∇aδgbc) + 2ñbñ(añc)∇[cδga]b

= ñah̃bc (∇cδgab −∇aδgbc)

= −h̃bcña∇aδgbc (433)
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The term h̃bc∇cδgab vanishes because we assumed that δgab|∂M = 0 but the derivative h̃bc∇c is along the
tangent direction of ∂M . From (394), the extrinsic curvature on ∂M is K̃ab = h̃ca∇cñb, K̃ = h̃abK̃ab =
h̃cb∇cñ

b, so we have

K̃(ϵ) = h̃ab(ϵ)K̃ab(ϵ) = h̃ab(ϵ)∇̃añ
b(ϵ)

= h̃ab(ϵ)
(
∇añ

b(ϵ) + Cb
ac(ϵ)ñ

c(ϵ)
)

(434)

But on the boundary we assumed that δgab = 0, so h̃ab(ϵ) = h̃ab. ña is only defined on ∂M , so it should not
depend on parameter ϵ.

K̃(ϵ) = h̃abK̃ab(ϵ) = h̃ab∇̃añ
b

= h̃ab
(
∇añ

b + Cb
ac(ϵ)ñ

c
)

(435)

Then the variation of extrinsic curvature is

δK̃(ϵ) = h̃ab
(
δCb

ac

)
ñc

=
1

2
ñch̃abg

bd (∇aδgcd −∇dδgac +∇cδgad)

=
1

2
ñch̃abg

bd
(
2∇[aδgd]c +∇cδgad

)
=

1

2
ñch̃ad∇cδgad (436)

We see that the variation of the extrinsic curvature on the boundary is just the boundary term (433). In
conclusion, by a reasonable boundary condition, the variation of Einstein-Hilbert action is

δI = −2
∮
∂M

δK̃ +

∫
M

d3x
√
gGabδg

ab (437)

For this reason, the Einstein-Hilbert action will have a functional derivative if we modify the action in the
following way

IEH =
1

16πG

∫
M

(R− 2Λ) +
1

8πG

∮
∂M

K̃ (438)

The second term is called Hawking-Gibbons term. It appears as a surface charge which plays an important
role for the theory of quasi-local energy-momentum tensor from Brown and York.

T ij =
2√
h

δIEH

δhij
(439)

For AdS3 spacetime, this energy-momentum tensor can be regarded as the energy-momentum tensor for
our CFT2 dual living at infitiny. As we already know that the metric diverges on ∂ (AdS). A direct
consequence is that the Brown-York tensor (439) also diverges. Therefore, we need to find the counter terms
for renormalization. This is called the holographic renormalization. In the previous section, the Lagrangian
of Einstein-Hilbert action can be expressed in terms of 2R and extrinsic curvature Kab on Σt, together with
a unit vector na normal to Σt, if we have a foliation of spacetime M

L =
√
hN

{
2R+KabK

ab −K2 − 2Λ + 2 [∇a (n
a∇cn

c)−∇c (n
a∇an

c)]
}

(440)

the last term is a total divergence and thus is a boundary term in the action

I =

∫
M

(
2R+KabK

ab −K2 − 2Λ
)
+ 2

∫
M

∇a

(
na∇bn

b − nb∇bn
a
)

=

∫
M

(
2R+KabK

ab −K2 − 2Λ
)
+ 2

∮
∂M

ña
(
na∇bn

b − nb∇bn
a
)

(441)
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But from the equation K̃ = h̃cb∇cñ
b = (δcb + ñcñb)∇cñ

b, we see that the Hawking-Gibbons term is

2

∮
∂M

(
∇bñ

b + ñañ
b∇bñ

a
)

(442)

Thus if M has no boundary, the we won’t have any trouble with these boundary terms at all. For example,
for asymptotic flat spacetime, the modified Lagrangian density is simply L = 2R + KabK

ab − K2. If the
boundary is so special that it is spacelike and ña = na on ∂M , then the boundary term in (441) and the
Hawking-Gibbons term cancel with each other. Such a universe has compact closed spacial slices that are
sandwiched by two spacial slices which correspond to the initial space and final space. But for comformally

compactified ÃdS3, with a boundary cylinder at infinity, the Hawking-Gibbons term and the boundary term
do not cancel with each other.

To get out of this dilemma, we use a new foliation of ÃdS3 manifold, which is not foliated by constant
time slices of the 2 + 1 splitting, but constant radius slices. It is well-known that for any spacetime, its
metric can always be recasted into the form (Gaussian normal coordinates)

ds2 = dρ2 + hij(x, ρ)dx
idxj (443)

by some coordinate transformation. In this coordinate, our convention is that ρ is unbounded and the

conformal boundary is at ρ = −∞. The center line in ÃdS3 is at ρ = +∞. The extrinsic curvature of
constant ρ-slice is

Kij =
1

2
∂ρhij (444)

and indices of tensors defined on constant ρ-slices are raised and lowered by hij as we we have seen previously.
In what follows, we use the symbol 2R to denote the intrinsic curvature of constant ρ-slice, instead of the
one of constant time slice. In such a foliation, it is not hard to see that at conformal infinity, ña = −na.
This is true both in Lorentzian signature and in Euclidean signature. Then we see that the first term in the
integrand of the boundary term of Lagrangian cancels with the first term in Hawking-Gibbons term. For
the second term, since we have

nan
b (∇bn

a) =
1

2
nb∇b (nan

a) = 0 (445)

Hence in such a foliation, we can get rid of the boundary term by adding Hawking-Gibbons term. The
modified Lagrangian has a well-defined functional derivative and is given by a simple form

I =
1

16πG

∫
M

d2xdρ
√
g
(
2R+KabK

ab −K2 − 2Λ
)

(446)

We say that this action has a well-defined functional derivative meaning that its variation with respect to
the total metric gab produces no boundary terms. Although we derived such a simple expression by using
Gaussian normal coordinate, it is valid in all coordinates because the expression is coordinate independent.
To derive the Brown-York tensor, we consider the variation of this action with respect to hij . This functional
derivative produces a boundary term. Once the equations of motion are satisfied, the bulk term vanishes.
The variation gives

δI = − 1

16πG

∫
∂M

d2x
√
h
(
Kij −Khij

)
δhij (447)

The term in the parenthesis is the Brown-York tensor, which corresponds to the stress-energy tensor of its
dual CFT2. To fit with the standard conventions, we define the Brown-York tensor as

T ij = − 1

8πG

(
Kij −Khij

)
(448)

As we mentioned before, this tensor has to be renormalized by adding counter terms. It’s divergence comes
from large ρ limit.
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6 Hamiltonian Formalism

6.1 ADM Formalism

The Hamiltonian formalism of gravity is also called ADM formalism. Calculations on ADM formalism
in this section are mainly copied from [2] [1]. One can also find good introductions on ADM formalism
from ‘General Relativity’ written by Wald. ADM formalism of gravity is also called ADM formalism, whose
Hamiltonian is given by

H =
1

16πG

∫
Σt

(
NC +NbC

b
)
+

1

6πG

∫
Σt

NΛ + (· · · ) (449)

where · · · denoted some counter terms so that it has well-defined functional derivatives. For asymptotic flat
spacetime, it is possible that the boundary terms vanish at spacial infinity. For example, it is true for a
Minkowski spacetime. But for AdS spacetime, this is not possible in time-space splitting. Let us first see
the ADM formalism without boundary terms and without the contribution from cosmological constant. The
Hamiltonian is given by

H =
1

16πG

∫
Σt

(
NC +NbC

b
)

(450)

where the constraints are given by

C = −2R+ h−1

(
πabπab −

1

2
π2

)
, Cb = −2Da

(
h−1/2πab

)
(451)

They are all first class constraints and have no secondary constraints. Clearly, the first term of Hamiltonian
of gravity vanishes on-shell if we ignore boundary terms. As a result, we would end up with a canonical
theory of gravity that has no dynamics. This is true not only in three dimensions, but in any dimensions.
The expression of Hamiltonian shows that the lapse N and shift N⃗ are the test functions for the constraints

CN =

∫
Σt

NC and CN⃗ =

∫
Σt

N iCi, (452)

respectively, where we use ‘i’ to denote spacial index. We can compute the Poisson brackets of these
constraints for any two sets of test functions N , N⃗ with N ′ and N⃗ ′. The results are

{C(N⃗), C(N⃗ ′)} = C([N⃗ , N⃗ ′])

{C(N⃗), C(N ′} = C(N⃗N ′)

{C(N), C(N ′)} = C(
(
N∂iN ′ −N ′∂iN

)
∂i)

(453)

They are called Dirac-Bergmann algebra. The ‘structure’ inside the bracket ( ) of C is called surface
deformation algebra, from which we recognize that the first identity corresponds to gauge symmetry
of gravitational fields. The Lie bracket of vector fields [N⃗ , N⃗ ′] is the commutator of the Lie algebra of
diffeomorphisms on spacial slice Σt. Hence, the vector constraints CN⃗ are the generators of gauge symmetry
Diff (Σt). But clearly, in some arbitrary dimensions, gravitational fields have more than just gauge symmetry.
This is one of the biggest difficulties that we have to tackle with in quantum gravity. For many reasons, it
is more convenient to consider a more general theory. Suppose we have a general foliation of M given by a
vector field ξ such that the ‘lapse’ and ‘shift’ are given by ξ̃ and ξ̃i. That is, we have the folloing projections

ξ̃ = Nξt, ξ̃i = ξi +N iξt (454)

The corresponding constraints are denoted by H0 = H and Hi. The total constraint is then given by

C[ξ̃; ξ̃i] =

∫
Σt

(
ξ̃H+ ξ̃iHi

)
=

∫
Σt

ξ̃µHµ (455)
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For any two constraints C[ξ̃; ξ̃i] and C[ζ̃; ζ̃i], their Poisson bracket of the two is given by

{C[ξ̃; ξ̃i], C[ζ̃; ζ̃i]} = C[η̃; η̃i] (456)

where η̃ = ξ̃i∂iζ̃ − ζ̃i∂iξ̃ and η̃k = ξ̃i∂iζ̃
k − ζ̃i∂iξ̃k + (ξ̃∂k ζ̃ − ζ̃∂k ξ̃).

If spacetime has a boundary and we do not add counter terms to the Hamiltonian, the functional deriva-
tives of Hamiltonian also give us boundary terms

1

16πG
δQ[N ;N i] =

1

16πG

∮
∂Σt

slG
ijkl (N∇kδhij − (∇kN) δhij)+

+
1

16πG

∮
∂Σt

sl
[
2Nkδπ

kl +
(
2Nkπjl −N lπjk

)
δhjk

]
(457)

where Gabcd = hc(ahb)d − habhcd is often called the ‘supermetric’, and sl is the unit normal vector of spacial
boundary ∂Σt. The notation used above would cause confusions because we denote the surface charge as
a functional of Nµ. One should, therefore, keep in mind that the functional derivatives are with respect to
canonical variables hij and πij . For three dimensional gravity, it is just a circle. Adding all the contributions
from boundary terms and counter terms Q, the total Hamiltonian of gravity will be

H =
1

16πG

∫
Σt

(
NC +N iCi

)
+

1

8πG

∫
Σt

NΛ +
1

16πG
Q[N ;N i] (458)

The term Q is called the ADM charge of gravity. For black hole geometries, ADM charges are their mass
M and angular momentum J , which agree with Komar integrals in ordinary general relativity theory. For
three dimensional gravity, ADM charge gives us non-trivial dynamics of AdS3.

Under the spacetime decomposition ta = Nna + Na, the time evolution of dynamical variable is given
by the equation

ḣab = L̃thab =
{
hab,H[N ; N⃗ ]

}
PB

(459)

where we define

H[N ; N⃗ ] =

∫
Σt

(
NC +N iCi

)
+Q[N ;N i] (460)

The variation δQ cancels the boundary terms of δH[N ; N⃗ ]. The physics of the above expression is that the
surface charge gives a non-trivial dynamics of gravity. Without such boundary terms, the energy vanishes
on-shell. For example, if we take N = 1 for BTZ black hole metric with mass M and angular momentum
J , we should find that H[1, 0] = Q[1, 0] =M . If we take Nϕ = 1, then it should be that H[0, 1] = Q[0, 1] = J .

Consider a more general space-time vector ξ, which generated the diffeomorphism via the Lie derivative
δhab = Lξhab. In the Hamilton’s canonical approach, the associated canonical generator which generate the
same evolution δhab = {hab,H[ξ]} is given by

H[ξ] =

∫
Σt

ξ̃µHµ +Q[ξ] (461)

where the term Q[ξ] is a surface term whose variation precisely cancels the boundary terms produced by the
integral of bulk constraints. By a similar calculation, we find that

δQ[ξ] =

∮
∂Σt

slG
ijkl
(
ξ̃∇kδhij −

(
∇k ξ̃

)
δhij

)
+

∮
Σt

sl

[
2ξ̃kδπ

kl +
(
2ξ̃kπij − ξ̃lπjk

)
δhjk

]
(462)
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6.2 Asymptotic Symmetry Group

An important property of BTZ blackhole is that it is an asymptotic pure AdS3. Brown and Henneaux
found that for any asymptotic AdS3 gravity, its classical asymptotic symmetry is the conformal group in two
dimensions. Furthermore, the Dirac algebra associated with the asymptotic conformal killing vectors is an
central extension of the conformal algebra, with central charge 3l/2G. The asymptotic boundary condition
given by Brown and Henneaux is 

gtt = −
r2

l2
+ o(1)

gtr = o

(
1

r3

)
gtϕ = o(1)

grr =
l2

r2
+ o

(
1

r4

)
grϕ = o

(
1

r3

)
gϕϕ = r2 + o(1)

(463)

and so

N =
r

l
+ o

(
1

r

)
, Nr = o

(
1

r

)
, Nϕ = o

(
1

r2

)
(464)

The boundary conditions for asymptotic AdS3 can be seen from the asymptotic behaviour of AdS3 or
BTZ black hole metrics. It is definitely not unique, but their corresponding asymptotic symmetries must
be the same up to adding some subleading terms. The asymptotic symmetry is given by a vector fields ξ
satisfying 

Lξgtt = o(1), Lξgtr = o

(
1

r3

)
, Lξgtϕ = o(1)

Lξgrr = o

(
1

r4

)
, Lξgrϕ = o

(
1

r3

)
, Lξgϕϕ = o(1)

(465)

In general, subleading terms may also depend on t and ϕ. We can always factor out an arbitrary function
fµν(t, ϕ) from the above subleading terms. i.e.

δξgtt = ftt(t, ϕ), δξgtr =
ftr(t, ϕ)

r3
, δξgtϕ = ftϕ(t, ϕ)

δξgrr =
frr(t, ϕ)

r4
, δξgrϕ =

frϕ(t, ϕ)

r3
, δξgϕϕ = fϕϕ(t, ϕ)

(466)

These equations tell us how the asymptotic AdS3 metrics change under asymptotic symmetry vectors. The
above equations should be understood as asymptotic conformal killing equations. They are conformal because
of the ambiguity of rescaling a factor on the right hand side. The solutions to these equations are given by

ξt = l
(
T + T̄

)
+

l3

2r2
(
∂2zT + ∂2z̄ T̄

)
+ o

(
1

r4

)
ξr = −r

(
∂zT + ∂z̄T̄

)
+ o

(
1

r

)
ξϕ = T − T̄ − l2

2r2
(
∂2zT − ∂2z̄ T̄

)
+ o

(
1

r4

) (467)

where we use the notation

∂z =
1

2
(l∂t + ∂ϕ) , ∂z̄ =

1

2
(l∂t − ∂ϕ)

T = T

(
t

l
+ ϕ

)
, T̄ = T̄

(
t

l
− ϕ

)
(468)
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These equations show that there is clearly a periodicity in function T and T̄ so we can do the Fourier
expansions T = 1

2

∑
n Tne

inz and T̄ = 1
2

∑
n T̄ne

inz̄. The vector field ξ = ξµ∂µ can be decomposed as a sum
of two terms

ξ = ξµ∂µ = ξt∂t + ξϕ∂ϕ + ξr∂r

=

(
2T +

l2

r2
∂2zT

)
∂z − r (∂zT ) ∂r +

(
2T̄ +

l2

r2
∂2z̄ T̄

)
∂z̄ − r

(
∂z̄T̄

)
∂r + (subleading terms) (469)

where the first term depends only on T while the second term depends only on T̄ . We define the Fourier
expansion of vector field ξ as

ξ = ξµ∂µ =
∑
n

einzξn +
∑
m

eimz̄ ξ̄m =
∑
n

Tnln +
∑
m

T̄m l̄m + · · ·

=
∑
n

Tne
inz

(
∂z −

l2n2

2r2
∂z −

inr

2
∂r

)
+
∑
m

T̄me
imz̄

(
∂z̄ −

l2m2

2r2
∂z̄ −

imr

2
∂r

)
+ · · · (470)

where the · · · is the subleading terms and we denote

ln = einz
(
∂z −

l2n2

2r2
∂z −

inr

2
∂r

)
, l̄m = eimz̄

(
∂z̄ −

l2m2

2r2
∂z̄ −

imr

2
∂r

)
(471)

It is easy to see that the above two differential operators form two copies of de Witt algebra

[lm, ln] = i(m− n)lm+n,
[
l̄m, l̄n

]
= i(m− n)l̄m+n,

[
lm, l̄n

]
= 0 (472)

In other words, the asymptotic symmetry of asymptotic AdS3 is given by conformal group in two diemen-
sions, which is generated by holomorphic and anti-holomorphic de Witt algebras, diff(S1).

For the Dirac algebra regarding the asymptotic conformal killing vectors that vanish very rapidly along
with the growth of radius r (i.e. the subleading terms in (467)), say ξ and η, the surface charge vanishes
asymptotically because integrating equation (462) leads to Q[ξ] = 0 asymptotically. i.e. They correspond to
trivial gauges. The strategy is that first we want to shown that for pure gauges, the Poisson bracket is [20]{∫

Σt

ξ̃µHµ,

∫
Σt

η̃νHν

}
=

∫
d2x

[
[ξ, η]µSD + δηξ

µ − δξηµ −
∫
d2y {ξµ(x), ην(y)}Hν(y)

]
Hµ(x) (473)

which equals to
∫
Σt
[ξ̃, η̃]µSDHµ asymptotically for pure gauges, where the commutator of surface deformation

algebra [ξ̃, η̃]SD is given by (453) and the projection (454). More specifically, we have

[ξ̃, η̃]tSD =
(
ξ̃i +N iξ̃t

)
∂iξ̃

t +
∂iN

N
ξ̃iη̃t − (ξ̃ ↔ η̃)

[ξ̃, η̃]iSD = N2ξ̃t∂iηt +

(
∂jN

j − N i∂jN

N

)
ξ̃j η̃t +

(
ξ̃j +N j ξ̃t

)
∂j η̃

j − (ξ̃ ↔ η̃) (474)

The result shows that
∫
Σt
ξ̃µHµ is a representation of the surface deformation algebra for asymptotic sym-

metry generated by trivial gauges. We can use the asymptotic condition (464) for lapse N , shift N i and
the full asymptotic conformal killing vectors in (467) to further calculate the above commutations. i.e. the
commutations for generic ξ and η satisfying (467). It turns out that we again end up with the test vector
field

ζµ(x) = [ξ, η]µSD(x) + δηξ
µ(x)− δξηµ(x)−

∫
d2y {ξµ(x), ην(y)}Hν(y)

as already shown in (473) for pure gauges. The last three terms in (473) for general ξ and η still only
contribute to higher orders of 1/r that vanishes rapidly. i.e. they are not the leading terms. The reason is
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simply that their Poisson commutators as well as their derivatives decrease much faster than the first term
of (473) for generic vectors satisfying (467). The final step is to show that the surface deformation algebra
for general gauges ξ and η (the full conformal algebra of (467)) equals to the Lie bracket asymptotically to
leading order of 1/r. The calculation is indeed surprisingly simplified by the asymptotic conditions (467).
The surface deformation algebra [ξ, η]SD for generic gauges turns out to coincide with an exact conformal
algebra [ξ, η], which is the Lie bracket of two vectors, to the leading order of 1/r. That is to say, for generic
asymptotic killing vectors ξ and η, we have{∫

Σt

ξ̃µHµ,

∫
Σt

η̃νHν

}
=

∫
Σt

[ξ̃, η̃]µHµ (475)

or, in terms of Fourier modes, {
C[l±m], C[l±n ]]

}
PB

= i(m− n)C[l±m+n] (476)

where we use ± to denote the holomorphic and anti-holomorphic sectors.

Finally, we assume that if we consider non-vanishing surface term (461), the Dirac algebra for the total
asymptotic symmetry is generalized into the form

{H[ξ], H[η]} = H[ζ] +K[ξ, η] (477)

with H[ξ] = C[ξ] +Q[ξ]. Obviously, we do not need to consider the commutator of surface charge with the
bulk constraint. The equation (475) implies that the commutator remains to be{

H[l±m], H[l±n ]]
}
PB

= i(m− n)H[l±m+n] +K[l±m, l
±
n ] (478)

This suggests that H[ξ] is regarded as a projective representation for the asymptotic symmetry. Quite
obviously, the equation (475) also implies that

{Q[ξ], Q[η]}PB = Q[[ξ, η]] +K[ξ, η], or δηQ[ξ] = Q[[ξ, η]] +K[ξ, η]. (479)

This means that the surface charges are not only a projective representation of the asymptotic symmetry
of the AdS3, but the generators of the residual gauge symmetry, which gives non-trivial dynamics at the
asymptotic boundary, after the gauge fixing conditions are imposed. Furthermore, for any surface charge,
say Q[ξ], it is clear that δηQ[ξ] = [Q[ξ], Q[η]] = 0 for any trivial gauge η. i.e. the Lie algebra (denoted by
h) of pure gauge symmetry H looks like an ideal of the Lie algebra (denoted by g) of the residual of allowed
symmetry G; The asymptotic symmetry group ASG of AdS3, which is deemed as the symmetry group of
the dual CFT2 is, therefore, a quotient group G/H. Using this result we conclude that when imposing
constraints C[ξ] = 0, we have the following identity hold on-shell{

Q[l±m], Q[l±n ]]
}
PB

= i(m− n)Q[l±m+n] +K[l±m, l
±
n ] (480)

Since Q[ξ] is defined up to a constant, we can always shift its value to Q = 0 at t = 0 in the AdS3 coordinate.
Then on the t = 0 slice, we have

K[l±m, l
±
n ] =

{
Q[l±m], Q[l±n ]

}
PB

= δl±nQ[l±m] =
{
Q[l±m], Q[l±n ]

}
D

(481)

where we used the property of Dirac bracket that it concides with Poisson bracket for first class constraints.
Using the formula (462), we can compute this central charge by doing the integral. The result is

K[l±m, l
±
n ] = 2πiln(n2 − 1)δm+n,0 (482)

To find out the true value of the central charge for the asymptotic symmetry of AdS3 gravity generated by
the total Hamiltonian we still need to restore the factor 1/16πG that we had dropped. We simply re-scale
the generator H[ξ] and so

1

16πG
K[l±m, l

±
n ] =

l

8G
in(n2 − 1)δm+n,0 (483)
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The quantization is by passing from Dirac bracket { , }D to the quantum commutator −i[ , ], we would
get the quantum Virasoro algebra

[L±
m, L

±
n ] = (m− n)L±

m+n +
c

12
m(m2 − 1)δm+n,0, [L±

m, L
∓
n ] = 0 (484)

where we denote L±
m = Q[l±m]. From the above commutators, we find the famous central charge

c =
3l

2G
(485)

In three dimensions, there are no local degrees of freedom, thereby having no propagating gravitons.
However, in quantum AdS3, we have to sum over ‘small fluctuations’ around classical AdS3, under the given
boundary condition, say Dirichlet boundary condition. From Brown and Henneaux’s computation, these
small fluctuations should be understood via a two dimensional conformal field theory. The exactly global
symmetry of AdS3 is SO(2, 2), which locally splits into SL(2,R)× SL(2,R). This symmetry is exactly the
symmetry generated by {L−1, L0, L1} and

{
L̄−1, L̄0, L̄1

}
that leave the CFT2 vacuum invariant. To see this,

we first compute the six independent killing vector fields for pure AdS3. We start from the six global killing
vectors given in {U, V, Z, Y } coordinate, plugging the solutions of embedding equations for pure AdS3, we
find that for pure AdS3, there are the following global killing vectors

ξ1 = ∂t

ξ2 = ∂ϕ

ξ3 =
−r sin t cosϕ√

1 + r2
∂t +

√
1 + r2 cos t cosϕ∂r +

√
1 + r2

r
sin t sinϕ∂ϕ

ξ4 =
−r sin t sinϕ√

1 + r2
∂t +

√
1 + r2 cos t sinϕ∂r +

√
1 + r2

r
sin t cosϕ∂ϕ

ξ5 = · · ·
ξ6 = · · ·

(486)

whose linear combinations give {l0, l±1} and
{
l̄0, l̄±1

}
up to some subleading terms. i.e. vectors ξ at large

r limit are equivalent to the {l0, l±1} and
{
l̄0, l̄±1

}
. This asymptotic equivalence is, in fact, a Lie algebra

isomorphism. For BTZ black hole, we can also do a similar computation by using the embedding equations.
However, the difference is that there are two embeddings, one of which is the interior geometry while the
other is the exterior geometry. For this reason, we may still obtain six killing vectors in BTZ coordinates
but only two of them are global killing vectors. These two vectors are ∂t and ∂ϕ. The reason is that a BTZ
black hole as a quotient of the pure AdS3 has a different topology, which inherits only parts of the global
symmetry from the pure AdS3. For example, a torus as a quotient space of a complex plane has fundamental
group π1

(
T2
)
= Z⊕Z. The two global translational symmetries ∂x and ∂y on complex plane becomes two

independent rotational symmetries on that torus, while the global rotational symmetry x∂y − y∂x is locally
preserved but globally broken on the torus since the two local identifications on complex plane breaks the
periodicity of the original rotation killing vector field on complex plane. In this sense, doing local identifica-
tions will eliminate a certain number of global symmetries.

Since classically a pure AdS3 has the largest number of global symmetries and has the lowest energy
(because it has energy M = −1), the corresponding quantum state of the pure AdS3 is reckoned to be the
ground state of the quantum AdS3 gravity. To find such a CFT2 dual to the quantum gravity, we need
to specify the representation of the Virasoro algebra given by Brown and Henneaux. In highest weight
representations, the Virasoro operators Ln in holomorphic sector and L̄n in anti-holomorphic sector for
n > 0 annihilate heighest states |h, h̄⟩. In particular, the ground state |Ω⟩, which has the lowest energy
and should be killed by the largest number of Virasoso operators, is annihilated by Ln for n ≥ −1. We
have mentioned that the three generators {L−1, L0, L+1} form a Lie subalgebra sl(2,R). In other words,
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the vacuum of CFT2 has a stabilizer SL(2,R)× SL(2,R), which agrees with the classical limit. We should
notice that the asymptotic symmetry computed by Brown and Henneaux is purely classical. Although we
see that the asymptotic symmetry of the AdS3 has a central term, this virasoro algebra has not yet been
quantized. But we already see that vectors ξ act on the space of all asymptotic AdS3 metrics transitively.

Consequently, the classical asymptotic symmetry group D̂iff(S1) × D̂iff(S1) generated by classical surface
charges L±

n = Q[l±n ] acts on the classical phase space of asymptotic AdS3 gravity transitively and has a Lie
subalgebra sl(2,R)⊕sl(2,R) that leaves the metric invariant, we therefore claim that there is a fixed point in
the classical phase space of the asymptotic AdS3 whose stablizer is SL(2,R)×SL(2,R). Hence, we identify

the classical phase space as a homogeneous space D̂iff(S1)× D̂iff(S1)/SL(2,R)× SL(2,R). i.e.

P ≃
(
D̂iff(S1)/SL(2,R)

)
×
(
D̂iff(S1)/SL(2,R)

)
(487)

Such a phase space is exactly what we expected since this phase space splits into a product and thereby has a
structure of a trivial cotangent bundle, whose typical fiber is the same as its base space. In this phase space,
momentum space and position space are canonically the same. This can be seen from the Chern-Simons
formulation of three dimensional gravity. In ordinary quantum mechanics, momentum is roughly the time
derivative of position, while in Chern-Simons theory, the canonical momentum of gauge potential A is itself.

To specify the unitary representation of the CFT2, the first question we must address is whether this
representation is irreducible or reducible. Since a BTZ black hole as a quotient of the pure AdS3 has higher
energy, one may guess that a BTZ black hole is an thermal ensemble of descendant states of vacuum |Ω⟩.
If that is true, the theory must be a single irreducible representation. In fact, we will show that this is
impossible because the Verma module of vacuum cannot explain the entropy of a BTZ black hole. Another
possibility is that the CFT2 is in reducible representation, which contains more than one highest weight
states. In such as theory, the BTZ black hole can be explained by all highest weight states |h, h̄⟩ including
the vacuum and their descendant states.

7 Gravitational Action

In the general relativity, metric gµν on base manifold M plays a fundamental role and the levi-civita
connection Γγ

µν is determined by the metric. In sloppy language, the connection on tangent bundle T (M)
descending on M defines an affine connection on M . While in gauge field theory, connection A, which is
defined on pincipal bundle P (M) over M , plays a fundamental role. Palatini action is simply a formalism
of Einstein-Hilbert action in terms of dreibein(or frame) e and connection A defined on the frame bundle
F (M), which is a principal bundle, where both dreibein and connection play fundamental roles. For this
reason, gravity can be regarded as a gauge theory on frame bundle. In this theory, each fiber over a point
{xµ} is a collection of dreibeins eµa(x) such that

gµν(x) = eµa(x)e
ν
b (x)η

ab (488)

and we use the ‘internal metric’ ηab to raise and lower Latin indices. And we define co-frames via the
following equations

eaµe
µ
b = δab eaµe

ν
a = δνµ (489)

The definitation of a dreibein has ambiguity since it is defined up to a local Lorentz transformation.
Therefore, the Latin index a naturally carries a representation of Lorentz group SO(2, 1). That is to say, the
structure group of F (M) is SO(2, 1). In what follows, we will use the equivalence between Einstein-Hilbert
action and Palatini action. The proof of this equivalence and the details of calculations are given in appendix.

90



7.1 Chern-Simons Actions for 3D Gravity

All the calculations in this section are based on [16] [17]. Consider the case when cosmologival constant
is 0, whose action is

I = ϵabc

∫
M

ea ∧ F bc, (490)

Its equations of motion are given by variation of the above action.

δI = ϵabc

∫
M

δea ∧
(
dωbc + ωb

d ∧ ωdc
)
+

∫
M

{
ϵabcde

aδbe + 2ϵabcea ∧ ωbdδ
d
e

}
∧ δωec (491)

Details of this variation can be found in appendix. Since variation δω and δe are arbitrary, δI = 0 implies
that F bc = 0 and ϵcaede

a + 2ϵcabe
a ∧ ωb

e = 0. Then, using the identity

ϵa1···apap+1···anϵa1···apbp+1···bn = (−1)s(n− p)!p!δ[ap+1

bp+1
· · · δan]

bn
, (492)

where s is the signature of metric, which in our case is 1, we have the equations of motion:

dω + ω ∧ ω = 0 or dωa
b + ωa

c ∧ ωc
b = 0 (493)

de+ ω ∧ e = 0 or dea + ωa
c ∧ ec = 0 (494)

The first one shows that the ω is a flat soR(2, 1)-connection. The second one is saying that our theory is
torsion-free. If we put dreibein e and spin-connection ω together into a matrix(

ω e
0 0

)
, (495)

where the ω fills out the first 3×3 block and e occupies the last column, then the two solutions together imply
that pair (e, ω) is a flat isoR(2, 1)-connection, where isoR(2, 1) is the Poincare algebra in three dimension
and e generates the space-time translations.

d

(
ω e
0 0

)
+

(
ω e
0 0

)
∧
(
ω e
0 0

)
= 0 (496)

This is perhaps the very first observation that led to Witten’s shocking discovery in 1989, which will be
introduced. From the above discussion, we can even promote the Palatini action into a more elegant form.
First, we introduce a Lie-algebra valued quantity. We define e = eaPa, where Pa is the generator of spacetime
translation, whose fundamental representation is given by the following matrices

P0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 P1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 P2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Similarty, the the spin connection ω = 1

2ω
a
bJ

b
a = 1

2ω
abJab =

1
2ϵ

bc
a ωa

bJc. The fundamental representation
of Lorentz generators Ja are given by

J0 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 J1 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 J2 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


A small computation shows the commutation relations

[Ja, Jb] = ϵcabJc [Ja, Pb] = ϵcabPc [Pa, Pb] = 0 (497)
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One might think think that the Casimir element is JaJ
a +PaP

a. But this cannot be correct. Casimir is
only defined for semi-simple Lie algebra. In our case, we hope to find a generalized Casimir element from the
universal enveloping algebra U(isoR(2, 1)) that commutes with every generator of isoR(2, 1). The element
JaJ

a + PaP
a fails this basic requirement of being a Casimir element. However, from the commutation

relations of isoR(2, 1), we have

[P aJa, Pb] = 0

[P aJa, Jb] = 0 (498)

This strongly suggest that the element P aJa can be a candidate of our Casimir element of isoR(2, 1). A
special feature of the algebra isoR(2, 1) is that in three dimensions, the subalgebra of translations has three
dimensions, the same as the one of Lorentz rotations. Together with the Casimir element, it implies that
there is a ‘inner-product’ ⟨Ja, Pb⟩ = δab. The pair (e, ω) can thus be written as ωaJa + eaPa = ω + e. If we
denote the hodge star dual of F by ϵabcF

bc = F a, and F = F aJa, then the Palatini action is given by

I = ϵabc

∫
M

ea ∧ F bc =

∫
M

⟨e ∧ F⟩ (499)

As mentioned earlier, we will see that this action is actually a Chern-Simons action∫
M

⟨A ∧ dA+
2

3
A ∧A ∧A⟩ (500)

where the connection is exacly A = ωaJa + eaPa in Lorentzian signature, or iso(3,R)-valued in Euclidean
signature. The symbol ⟨, ⟩ here can be viewed as an inner-product, or ‘killing form’ of the Poincare algebra,
which is assumed to be bilinear and symmetric.

⟨Ja, Pa⟩ = δab, ⟨Ja, Jb⟩ = ⟨Pa, Pb⟩ = 0 (501)

However, this ‘killing form’ seems quite awkward since the Poincare algebra has a nontrivial radical and
thus has no non-degenerate killing form. Therefore, we should ask whether this inner product is indeed
non-degenerate and invariant so that it can give us the correct kinetic energy of gauge fields. Furthermore,
one can easily check that this set of inner-product cannot be the killing form in the common sense because
Tr(JaJb) = 2ηab and Tr(JaPb) = Tr(PaPb) = 0. Luckily, using the commutation relations, we can see that
the inner-product is indeed invariant.

⟨[Ja, Jb], Pc⟩ = ⟨Ja, [Jb, Pc]⟩, ⟨[Ja, Pb], Pc⟩ = ⟨Ja, [Pb, Pc]⟩

⟨[Ja, Pb], Jc⟩ = ⟨Ja, [Pb, Jc]⟩, ⟨[Pa, Jb], Pc⟩ = ⟨Pa, [Jb, Pc]⟩

As a result, the new form of Palatini action is indeed valid. In fact, there is an exact expression for the above
‘inner-product’, which is given by ⟨A,B⟩ = Tr(A ⋆ B) = (A)j i(⋆B)ij , where ⋆ is the hodge star operator

acting on B entry-wise. Specifically, we have (⋆B)i j = 1
2ϵ

i l
jk Bk

l. This ‘killing form’ is indeed symmetric
and satisfies all the equations given above. By using the generalized ‘inner-product’, we can generalize the
Chern-Simons action.

I =
k

4π

∫
M

⟨A ∧ dA+
2

3
A ∧A ∧A⟩

=
k

4π

∫
M

{
Aa ∧ dAb⟨TaTb⟩+

1

3
ϵ d
ab A

a ∧Ab ∧Ac⟨TdTc⟩
}

=
k

4π

∫
M

{
Aa ∧ dAa +

1

3
ϵabcA

a ∧Ab ∧Ac

}
(502)

Taking k =
1

4G
, where G is the gravitational constant, and A = ωaJa+ e

aPa, with ⟨Ja, Pb⟩ = δab, ⟨Ja, Jb⟩ =
⟨Pa, Pb⟩ = 0, then

I =
k

4π

∫
M

⟨A ∧ dA+
2

3
A ∧A ∧A⟩ = 1

16πG

∫
M

ea ∧ Fa (503)
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For the theory with non-vanishing cosmological constant, we use the identity det(g) = − det2(e−1), we have∫
M

√
gd3x =

1

3!
ϵabc

∫
ea ∧ eb ∧ ec (504)

Plugging into the Einstein-Hilbert action with cosmological constant, we have the following Palatini-action∫
M

d3x
√
g (R− 2Λ) = ϵabc

(∫
M

ea ∧ F bc − Λ

3

∫
M

ea ∧ eb ∧ ec
)

(505)

The equations of motion for this action are

dω + ω ∧ ω = Λe ∧ e (506)

de+ ω ∧ e = 0 (507)

This action can also be expressed in a more compact form by employing some Lie algebras. To begin
with, we generalize the commutation relations (497) to

[Ja, Jb] = ϵcabJc [Ja, Pb] = ϵcabPc [Pa, Pb] = ϵcabJc (508)

This is in fact the soR(2, 2) algebra with the following generators

P0 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 P1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 P2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


and

J0 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 J1 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 J2 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


along with Tr(JaJb) = −2ηab, Tr(JaPb) = 0 and Tr(PaPb) = −2ηab. The commutation relations also show
that

[P aJa, Pb] = 0

[P aJa, Jb] = 0 (509)

This suggests that for soR(2, 2), we have a set of ‘inner-products’

⟨Ja, Pb⟩ = 2ηab, ⟨Ja, Jb⟩ = ⟨Pa, Pb⟩ = 0 (510)

Just like the case for Poincare algebra, the explicit expression for this ‘inner-product’ is given by ⟨A,B⟩ =
(A)

i
k (⋆B)

k
i. In Euclidean signature, soR(2, 2) is replaced by so(3, 1)C ≃ su(2)C ⊕ su(2)C. The generators

are given by

P0 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 P1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 P2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


and

J0 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 J1 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 J2 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


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The ‘inner-products’ in Enclidean signature is still the same. But we should be careful that unlike in
Lorentzian signature the indices of entries in the matrices are lowered or raised by the metric diag(−1,−1,+1,+1),
in Euclidean signature, they are lowered or raised by metric diag(−1,−1,−1,+1). Using the above Lie
algebra-valued 1-forms, the Palatini action (505) is

I =
1

2

∫
M

⟨e ∧ F ⟩ − Λ

3

∫
M

⟨e ∧ e ∧ e⟩ (511)

By setting

A =


0 ω0

1 ω0
2 e0

−ω0
1 0 ω1

2 e1

ω0
2 ω1

2 0 e2

e0 e1 −e2 0


or setting

A =


0 ω0

1 ω0
2 e0

ω0
1 0 ω1

2 e1

ω0
2 −ω1

2 0 e2

e0 −e1 −e2 0


in Euclidean signature, it is easy to show that the equations of motion (506) and (507) are equivalent to the
following equation

dA+A ∧A = 0 (512)

It implies that AdS3 gravity can still be reformulated as an action whose equation of motion is saying that
connection A is flat. It is reasonable to hope that the Palatini action for AdS3 gravity turns out to be

equivalent to a Chern-Simons action. Indeed, choosing connection A = ω +
1

l
e and the ‘inner-product’

(510), with k =
l

4G
. Then the Chern-Simons action becomes

I =
1

8πG

∫
M

{
⟨e ∧ F ⟩ − 1

2
d⟨ω ∧ e⟩+ 1

3l2
⟨e ∧ e ∧ e⟩

}
=

1

16πG

∫
M

d3x
√
g

(
R+

2

l2

)
+

1

8πG

∮
∂M

K̃ (513)

If we chose the ‘inner-product’ of so(2, 2) as its trace, an explicit calculation shows

I =

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=

∫
M

Tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω +

1

l2
e ∧ T

)
(514)

Therefore, adding a Chern-Simons action
∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
to Palatini action will leads to mas-

sive topological gravity.

We should be careful that in many cases this action does not make any sense since the integration does
not converge. The Einstein-Hilbert action for AdS spacetime is an integral of constant curvature over a
non-compact manifold whose volume is not finite. In Euclidean signature, the manifold is a non-compact
hyperbolic manifold. In section (8), we will introduce the holographic renormalization for AdS action that
is developed by Graham, Fefferman and Skenderis. We will find the counter term for AdS action by using
the Fefferman-Graham expansion. In what follows, whenever we use the Einstein-Hilbert action for AdS
spacetime, we refer to as the finite part of the Einstein-Hilbert action.

I = FPϵ→0

∫
AdS

R = FPϵ→0

∫
AdS

⟨A ∧ dA+
2

3
A ∧A ∧A⟩ (515)
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7.2 Further Identification

Under a small gauge transformation, δA = dT+[A, T ], where T = ρaPa+τ
aJa for some real parameters ρ

and τ is some element in the Lie algebra soR(2, 2), the Chern-Simons action has been shown to be invariant.
Under such a infinitesimal gauge transformation, we can compute how the Einstein-Hilbert action transforms.
From the equation of small gauge transformation, we can identify the following formulae as the infinitesimal
transformation of fields e and ω.

δωa = −
(
dτa + ϵabcω

bτ c +
1

l2
ϵabce

bρc
)

(516)

δea = −
(
dρa + ϵabcω

bρc + ϵabce
bτ c
)

(517)

Plugging them into the variation of Einstein-Hilbert action, we find that the Einstein-Hilbert action is
indeed invariant under such small gauge transformations. In other words, from a physical point of view, it is
reasonable to add the above topological interation term to the action for pure gravity to have a more general
theory. This invariance is still not enough to fully identify the classical AdS3 gravity as a Chern-Simons
action. At the moment, the physical significance of this small gauge transformation in Einstein-Hilbert
action is still not clear. It is very important that Einstein-Hilbert action is invariant under diffeomorphism.
Under a local Lorentz transformation acting on dreibein e and ω, the Palatini action should be invariant,
but the Chern-Simons action is defined in a coordinate independent way. Thus, we may hope that the
small gauge transformation is ultimately related with diffeomorphism or local Lorentzian transformations.
Using the Cartan’s identity of Lie derivative Lv = iv ◦ d + d ◦ iv, where v is a vector field and Lv is a Lie
derivative along v direction (or variation in v direction in physicists’ language), we can find that the small
gauge transformations given above are equivalent to diffeomorphisms and local Lorentzian transformations
iff the field equations F = Λe ∧ e and T = 0 hold. For example, under a diffeomorphism generated by a
vector field vα∂α, the field e and ω transform to

δ̃ωa
µ = Lvω

a
µ = −vα

(
∂αω

a
µ − ∂µωa

α

)
− ∂µ (vαωa

α) (518)

δ̃eaµ = Lve
a
µ = −vα

(
∂αe

a
µ − ∂µeaα

)
− ∂µ (vαeaα) (519)

Then taking subtraction of the two variations, we have

δ̃ω − δω = #T + · · · (520)

and
δ̃e− δe = #(F − Λe ∧ e) + · · · (521)

where we use the symbol # denotes some factor and · · · represents terms of diffeomorphisms and local
Lorentzian transformations. Our conclusion is that the classical three dimensional gravity is equivalent with
a Chern-Simons gauge theory at this stage.

7.3 Coupling Constant

Zamolodchikov c-theorem concludes that in a continuous family of CFT2s, the central charge is a con-
stant [17] [54]. From Brown and Henneaux’s computation, the ratio l/G fully determines the value central
charge c. The paramter l/G can only take some specific values, provided that there exists a CFT2 dual
of pure AdS3 gravity. To this end, we introduce an alternative expression for gravitational Chern-Simons
action found by Witten.

The fact that in Lorentzian signature, the gauge group SO(2, 2) locally splits into SO(2, 1) × SO(2, 1),
or in Euclidean signature, however, the correct gauge group should not be SO(3, 1), but SL(2,C). The Lie
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algebra so(3, 1)C ≃ sl(2,C)C ≃ sl(2,C)⊕sl(2,C) is also isomorphic to su(2)C⊕su(2)C. These isomorphsims
imply that for negative cosmological constant Λ = −1/l2 < 0, we can define the following connections,

Aa
L = ωa − 1

l
ea and Aa

R = ωa +
1

l
ea (522)

with two new Lie algebras

(JL)a =
1

2
(Ja − Pa) and (JR)a =

1

2
(Ja + Pa) (523)

or by setting
Aa

− = ωa − i
√
Λea and Aa

+ = ωa + i
√
Λea (524)

with Lie algebra

(J−)a =
1

2
(Ja − iPa) and (J+)a =

1

2
(Ja + iPa) (525)

in Euclidean signature, then the following commutation relations show that JL and JR form a direct sum of
two real Lie algebras soR(2, 1), or su(2)C ⊕ su(2)C with complex gauge potential in Euclidean signature.

[(JL)a , (JL)b] = ϵcab (JL)c [(JR)a , (JL)b] = ϵcab (JL)c [(JL)a , (JR)b] = 0 (526)

The ‘inner-product’ is just the trace (i.e. the standard killing form), which will be easy to handle. In the
latter case the Euclidean gauge potential is sl(2,C)-valued, it is also the one for dS3 action in Lorentzian
signature whose isometry is SO(3, 1). A general theory with soR(2, 1)⊕ soR(2, 1) gauge symmetry is in the
following form

I = kLIL + kRIR

=
kL
4π

∫
M

Tr

(
AL ∧ dAL +

2

3
AL ∧AL ∧AL

)
+
kR
4π

∫
M

Tr

(
AR ∧ dAR +

2

3
AR ∧AR ∧AR

)
(527)

in which both AL and AR are soR(2, 1)-valued. The magic of three dimensional gravity is that if we
decompose the above action into the following form,

kL + kR
2

(IL − IR) +
kL − kR

2
(IL + IR) (528)

then the first term is equal to Einstein-Hilbert action precisely if

kL + kR =
l

8G
(529)

and the last term is proportional to the topological interaction term that we discussed in the last section. The
coupling constants for Einstein-Hilbert action and topological interation term are proportional to kL + kR
and kL − kR, respectively. They are in general, independent. But pure three dimensional gravity requires
that the last term must vanish. i.e. kL = kR. For this reason, we set k = l/16G. In other words, the value
of central charge is c = 24k.

In Euclidean signature, it is quite easy to determine the value of k since the real Lie group SU(2) is
the compact real form of SL(2,C). When we do the Dirac quantization, we expect to use the fact that
SL(2,C) is contractible onto SU(2). Because π3 (SU(2)× SU(2)) = Z × Z, we may hope that the Dirac
quantization works for for SU(2) Chern-Simons theory. Using the fact that complement of a solid torus
in 3-sphere is another solid torus, we take a conformally compactified spacetime T2, denoted by X, and
another T2, denoted by Y . Gluing them together with their boundaries identified in opposite orientation,
then we have a 3-sphere S3 = X ⊔T2 Y , which is a compact and closed manifold. This 3-sphere has a
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natural extension to be the boundary of a 4-ball, which can be deemed as a four dimensional hemi-sphere.
i.e. ∂D4 = S3. Then we glue the two hemi-four-sphere together to make a four dimensional compact closed
manifold. The boundary terms introduced in previous section will not be problematic for the following
reasons. The modified Chern-Simons actions on the two solid toruses are given by

IX =
k

4π

∫
X

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

k

4π

∮
∂X

Tr (AzAz̄) dz ∧ dz̄ (530)

IY =
k

4π

∫
Y

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

k

4π

∮
∂Y

Tr (AzAz̄) dz̄ ∧ dz (531)

the two boundary terms cancel with each other because we glue X and Y together with their boundary
identified in opposite orientation. So we end up with a well-defined Chern-Simons action

ICS [A] =
k

4π

∫
S3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(532)

on a three dimensional sphere S3, without boundary term. Since π3 (SU(2)) = Z, the second Chern class
[Tr (F ∧ F )] of an SU(2)-principal bundle over S4 is integral cohomology. Hence k is quantized in Euclidean
signature.

We expect that k is still quantized for similar reasons in Lorentzian signature. The gauge group
SO(2, 2) locally splits into SO(2, 1) × SO(2, 1). Although the third homotopy of SO(2, 1) is trivial. i.e.
π3 (SO(2, 1)) = π3 (U(1)) = 0, the non-compact group SO(2, 1) has its maximal compact subgroup SO(2),
which is ismorphic to a circle U(1). Noticing that we can regard a U(1)-bundle as the reduction of an
SO(2, 1)-bundle. We may define the Chern class of SO(2, 1)-bundle as the pull-back of U(1)-bundle. Since
the Lie algebra soR(2, 1) is traceless (i.e. TrF = 0) and Chern classes of U(1)-bundle of degree higher
than 1 vanish, we define the second Chern class of this SO(2, 1)-bundle as the square of the first Chern
class of U(1)-bundle. Therefore the quantization of coupling can be deduced from the one for U(1) gauge

theory. We already know that the square of the first Chern class c1 (L)2 of a line bundle over S4 is integral

cohomology. In Lorentzian signature, all solutions are quotient spaces of universal covering space ÃdS3.
This manifold is an solid Lorentzian cylinder, which can be regarded as a solid torus whose non-contractible

1-cycle has ‘infinitely large radius’. We can do a similar surgery, gluing two ÃdS3 manifolds together with
their boundaries identified in opposite orientations. This gives us a manifold with topology R4. After a one
point compactification, we obtain a base space S4.

If we only consider local expressions of gauge potentials, then there is no difference whether we are doing
an SL(2,R) theory or a SO(2, 1) theory since their Lie algebras are isomorphic, sl(2,R) ≃ soR(2, 1). One
may consider the Pontrjagin class by constructing a real vector bundle over a 4-manifold whose typical fiber
is given by the fundamental representation of SL(2,R). However, since SL(2,R) is the double cover of
SO(2, 1), such a gauge group provides the theory with a spin structure. Hence it does not correspond to
pure gravity. Concerning the fact that we already reduced the quantization condition for coupling constant
to the one for U(1) charge, replacing the gauge group SO(2, 1) by its n-fold cover means that the magnetic
charge takes values in nZ. Hence on the compact closed 4-manifold, the integral becomes

1

4π2

∫
Tr (F ∧ F ) ∈ n2Z, (533)

where we have to multiply it with an extra 2 factor due to the embedding U(1) ↪→ SO(2, 1), whose Killing
form gives a factor of 2. This implies that the quantization condition of coupling constant k would be

k ∈ Z
n2

(534)
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For three dimensional gravity, we are working in SO(2, 1)×SO(2, 1) gauge theory. We consider U(1)×U(1)
gauge theory with two independent potentials A and B and a Chern-Simons action

I[M ] =
kL
2π

∫
M

A ∧ dA− kR
2π

∫
M

B ∧ dB, (535)

or extending the field and define

I[S4] =

∫
S4

(
kL
2π
FA ∧ FA −

kR
2π
FB ∧ FB

)
(536)

In this theory, the integral cohomology classes [x] =

[
FA

2π

]
and [y] =

[
FB

2π

]
generated a two dimensional

charge lattice. We denote the generator corresponding to [x] by (1, 0) and the other one by (0, 1). If we
consider a diagonal cover, meaning that the magnetic charges corresponding to A field and B field both take

vlues in nZ, then we need to add a vector (
1

n
,
1

n
) into the charge lattice. As a result, in diagonal cover, there

exists an integral cohomology class [z] such that [x]− [y] = n[z] for some integer n. We have [17]

I[S4] = 2π (kL − kR)
∫
S4

y2 + 2πkL

∫
S4

(
n2z2 + 2nyz

)
(537)

The quantization condition becomes

kL ∈

{
Z/n, n is odd

Z/(2n), n is even
(538)

kL − kR ∈ Z (539)

In our discussion, the correct gauge group for pure gravity should be SO(2, 1) × SO(2, 1) and thereby
kL = kR ∈ Z.

8 Holography

8.1 Holographic Renormalization

Calculations in this section is mainly based on [21] [22] [24]. In [21], Kostas Skenderis used a theorem due
to Charles Fefferman and Robin Graham [55] obtained an expansion of asymptotic AdS spacetime metric.
The main result of Fefferman and Graham is that in a finite neighborhood of the conformal boundary, the
metric of asymptotic local AdSn+1 spacetime has the form

ds2 = z−2
(
dz2 + gijdx

idxj
)

(540)

where the conformal boundary is localed at z = 0 and gij is regular on the boundary. For odd n, one has

g(x, z) = g0 + z2g2 + · · ·+ zn−1gn−1 + · · ·
+ zngn + zn+1gn+1 + · · · (541)

The expansion is in even powers of z up to order n− 1.

For even n, one has

g(x, z) = g0 + z2g2 + · · ·+ zn−2gn−2 + · · ·
+ zngn + znh log z + zn+1gn+1 + · · · (542)
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The expansion is even powers of z up to order n−2 and the log term is related with conformal anomaly. But
for AdS3, i.e. n = 2, we do not have logarithm term because the conformal anomaly is the Euler characteristic
of conformal boundary. In general, the Einstein-Hilbert action for AdS1+n manifold is divergent because it
is integral of a negative constant function over a non-compact manifold whose volume is not finite.

1

16πG

∫
M

(R− 2Λ)− 1

8πG

∫
∂M

K̃ (543)

Using the above expansions and take regularization z → ϵ, we have

1

16πG

∫
M

√
det g0

(
P (ϵ−1)− a log ϵ

)
(544)

where P (ϵ−1) is a polynomial of ϵ−1 and a can be computed from g0. We remove this infinities by adding
counter terms.

For AdS3, the Fefferman-Graham expansion is

ds2 = z−2
(
dz2 + g(0)ijdx

idxj + z2g(2)ijdx
idxj + z4g(4)ijdx

idxj
)

(545)

where the fourth order term can be solved in terms of g0 and g2 by using Einstein’s equations. In order to

match conventions we used for AdS3 geometries, we perform a coordinate transformation z =
1

r
so that the

conformal boundary is at r → +∞. Then the Fefferman-Graham expansion takes the form

ds2 =
dr2

r2
+ hijdx

idxj . (546)

Comparing this expression with the metrics of pure AdS3 and BTZ black hole, we see that both pure AdS3

metric and BTZ metric take this form in large r limit. In large r limit, the metric of pure AdS3 as well as
the one of BTZ black hole grow as r2. To fit with the coordinate we used in the discussion of Lagrangian

density of ÃdS3, we recover the AdS-radius l and perform a further coordinate transformation r = eσ/l, and
write the Fefferman-Graham expansion of hij in the following way

hij = e2σ/lh
(0)
ij + h

(2)
ij + o

(
e−2σ/l

)
(547)

In the large r limit near conformal infinity, we can omit the subleading terms in the above expansion.

The leading contribution is from the first term e2σ/lh
(0)
ij . This piece of metric is determined up to a Weyl

transformation since we always have freedom to redefine σ. Hence this metric h
(0)
ij should be identified with

the metric of the dual CFT2. Upon a Weyl transformation, this metric is held fixed in order to make sense
of the boundary CFT , while we allow the subleading terms in the expansion to vary. Consequently, we fix
the temperature of our CFT . We let subleading terms vary meaning that we allow energy fluctuation. In
other words, an Euclidean BTZ black hole can be regarded as a canonical ensemble. It’s mass should be
given by

M(β) =
Tr
(
Ĥe−βĤ

)
Tr
(
e−βĤ

) (548)

However, this is already awkward if we recall the definition of Brown-York tensor, which we claimed as the
stress-energy tensor for the dual CFT2. From (547), we see that the variation of modified Lagrangian always
contain the variation of subleading terms. But we hope to have a variation only with respect to h(0) term.
This problem can be solved once we renormalize the gravitational action.
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8.2 Renormalization of AdS3 Actions

In three dimensions, computations shows that the second order term satisfies a simple relation

Tr
(
h(2)

)
=
l2

2
R(0) (549)

where R(0) is the curvature corresponds to h
(0)
ij on the conformal boundary and indices are raised and

lowered with h(0). If we do the computation in Euclidean signature and work it out in Poincare’s upper-half
space model ds2 =

(
dx2 + dy2 + dz2

)
/z2, we can see that the divergence comes from the limit z → 0; The

divergence is roughly the ‘area’ of the boundary. The counterterm is therefore

Ict = −
1

8πGl

∫
∂M

d2x
√
h (550)

After adding this counterterm, the renormalized 3D action has a well-behaved functional derivative with
respect to h(0). The variation is [24]

δ (I + Ict) =
1

16πGl

∫
∂M

√
h(0)

(
h
(2)
ij − Tr

(
h(2)

)
h
(0)
ij

)
δhij(0). (551)

We define the renormalized Brown-York tensor as

Tij =
1

8πGl

(
h
(2)
ij − Tr

(
h(2)

)
h
(0)
ij

)
, (552)

from which we can find that it is not traceless.

Tr(T ) = − 1

8πGl
Tr
(
h(2)

)
= − l

16πG
R(0) (553)

This is exactly the Weyl anomaly for CFT2 (i.e. Tr(T ) = − c

24π
R for c =

3l

2G
given by Brown and

Henneaux’s computation.), given by a topological number of the conformal boundary. The presence of this
anomaly implies that we need to fix and specify an h(0) as the ‘representative’ of the boundary metric. To
simplify formulations, we choose this boundary metric to be a flat metric and work in Euclidean signature
after performing a wick rotation u = ϕ+ tE/l.

h
(0)
ij dx

idxj = dudū (554)

with u ∼ u + 2π ∼ u + 2πτ , where τ is defined as the parameter of loxodromic subgroups generating a
thermal AdS3 or an Euclidean BTZ black hole. The stress-energy tensor is therefore given by

Tuu =
1

8πGl
h(2)uu , Tūū =

1

8πGl
h
(2)
ūū (555)

Remark: When we are working on an infinite cylinder or a torus, we should also shift L0 and L̄0 of Brown

and Henneaux by
c

24
. The Virasoro generators of our CFT2 are

Ln −
c

24
δn,0 =

∮
due−inuTuu, L̄n −

c

24
δn,0 =

∮
dūeinūTūū (556)

For an AdS3 black hole, its angular momentum and mass are related with the eigenvalues of L0 and L̄0 via

L0 −
c

24
=

1

2
(Ml − J) , L̄0 −

c

24
=

1

2
(Ml + J) (557)
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To compute the vacuum energy (M = −1 for unit mass BTZ black hole), we take L0 = L̄0 = 0. We see

that vacuum energy is M =
−1
8G

, which is negative, as a result of negative cosmological constant.

To evaluate the renormalized gravitational action, we need to somehow ‘integrate’ the variation. To this
end we introduce a new coordinate,

v =
i− τ̄
τ − τ̄

u− i− τ
τ − τ̄

ū (558)

This new coordinate has period v ∼ v + 2π ∼ v + 2πi [24]. The metric ds2 = dudū becomes

ds2 =
∣∣∣1− iτ

2
dv +

1 + iτ

2
dv̄
∣∣∣2 (559)

In this coordinate, under the variation of the parameter τ , the variation of action is [24]

δ (I + Ict) = 4iπ2 (Tūūδτ̄ − Tuuδτ) (560)

For thermal AdS3 (i.e. L0 = L̄0 = 0), we have Tuu = Tūū =
−c
48π

. Integrating the above differential equation,

we get

Ithermal =
iπ

12
(cτ − cτ̄) (561)

After an S-transformation, the renormalized action for BTZ black hole is

IBTZ = − iπ
12

( c
τ
− c

τ̄

)
(562)

For a CFT2 at finite temperature, the period of time circle is roughly the inserve of temperature, which is
ℑ (τ). Taking ℑ (τ)→ 0, i.e. very high temperature, from the above expression we see that the BTZ black
hole dominate the partition function.

9 Conformal Field Theory

9.1 Partition Function

From holographic principle, we believe that there is a kind of duality between an n dimensional CFT and
a quantum gravity in n+1 dimensions. On the gravitional side, the Euclidean path integral of the quantum
gravity should be in the following form∫

∂M=T 2

Dge−S[g] =
∑
M

exp
{
−kS0 + S1 + k−1S2 + · · ·

}
(563)

The boundary torus indicates that we are working at a finite temperature. The first time on the right hand
side is sum of exponential of Euclidean actions. This is roughly speaking, the semi-classical approximation of
the Euclidean path integral. In Chern-Simons theory, the level 1/k plays a role of h̄ in quantum mechanics.
The subsequent terms on the right hand side are loop corrections to the Hilbert-Einstein action. One may
ask if this expansion series is exact. The answer is negative in general. Hawking showed that on the left
hand side, the Euclidean action can be made arbitrarily negative [56]. Therefore the left hand side can not
be convergent. The correct way to understand gravitational path integral is to consider the contribution
from classical actions as well as small perturbations around classical actions.
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We have seen the renormalized actions for a thermal AdS3 as well as for a BTZ black hole. In general, we
should consider contributions coming from all Euclidean saddle points related with each other via modular
transformations.

I(τ, τ̄) =
iπ

12

[
cL,R

aτ + b

cτ + d
− cL,R

aτ̄ + b

cτ̄ + d

]
(564)

where a, b, c and d are integers satisfying ad− bc = 1 and we denote the central charge by cL,R in order to
distinguish it from the parameter of modular group. Hence one may expect that the partition function of
quantum gravity of AdS3 should at least contain the sum∑

Γ∞\SL(2,Z)

exp

[
− iπcL,R

12

aτ + b

cτ + d
+
iπcL,R

12

aτ̄ + b

cτ̄ + d

]
(565)

However, even if we ignore the fact that this summation does not converge, this expression is already
physically unacceptable because there is no obvious reason why the above summation can be taken into an
expansion of the form ∑

Nnmq
nq̄m (566)

On the CFT side, a generic partition function should take the form∑
hh̄

qhq̄h̄
∏
n>0

1

(1− qn) (1− q̄n)
(567)

where we sum over all highest weight states |h, h̄⟩. In particular, the ground state |Ω⟩ must be annihilated
by all Ln>−2 and L̄n>−2. In fact, there is another problem that we should concern. The partition function
of CFT , denoted by ZC is therefore related with the Euclidean path integral of the quantum gravity ZG.
i.e.

ZC ∼ ZG (568)

However, we don’t know whether the two functions on the two sides are precisely equal or they are related
via some transformations. It is essential to understand the exact relationship between the two partition
functions. This question was first considered by Robbert Dijkgraaf, Juan Maldacena, Gregory Moore and
Erik Verlinde in [19] in D1/D5 system, where they focused on the duality between IIB string theory on
AdS3×S3×K3 and the dual conformal field theory. Their idea was inherited by Jan Manschot in [32]. The
exact relationship between the partition functions on the two sides is called the Fareytail transformation.
We will come back to this point in the last section.

9.2 Verma Module of 1̂

Our first possibility is that the dual CFT2 is in a irreducible representation. Our computations in this
case are based on [18]. In this theory, we only need to compute the Verma module of vacuum, which is given
by

Z0,1(τ, τ̄) = |q̄q|−k 1
∞∏

n=2
|1− qn|2

(569)

This is not a modular invariant expression and so can not be the partition function of the whole theory. A
complete partition function should also contain contributions from other saddle points that are related with
Z0,1 by modular transformations. In Euclidean signature, free energy generating the connected diagram is
related with partition function via

W (τ, τ̄) = −1

k
ln(Z(τ, τ̄)) (570)

This free energy is regarded as the effective action that includes contributions from classical action as well
as quantum corrections from loop diagrams. We should keep in mind that this is only a heuristic quantum
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field theory because in three dimensions, there are no propagating degree of freedom and thus we don’t have
Feynman propagators. In general, an effective action should be in the form

W (τ, τ̄) = I +
∞∑
l=1

Wl(τ, τ̄)

kl
(571)

For the contribution from Z0,1, we have

W (τ, τ̄) = − ln |qq̄| − 1

k

∞∑
n=2

ln(|1− qn|2), (572)

from which we find that this theory is in fact 1-loop exact since there is no higher order of 1/k appearing in
the above expression.

In section (4), we saw that saddle points are labelled by a pair of coprime integers (c, d). All manifold
Mc,d are diffeomorphic to each other. We can calculate the associated partition function for every Euclidean
saddle points

Zc,d(τ, τ̄) = Z0,1

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
(573)

where integers a and b satisfy ad− bc = 1. The partition function from all contributions should be

Z(τ, τ̄) =
∑
c,d

Zc,d(τ, τ̄) =
∑
c,d

Z0,1

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
(574)

where (c, d) are coprime integers and we choose c ≥ 0 because the modular transformations are projective.

To avoid duplication, in what follows, we will omit the anti-holomorphic sector in the expression of
partition function and simply write it as

Z(τ) =
∑
c,d

Z0,1(γτ) (575)

where γ ∈ Γ∞\PSL(2,Z). For convenience, we introduce the Dedekind η-function defined as

η(τ) = q1/24
∞∏

n=1

(1− qn) (576)

The partition function can be written as

Z0,1(τ) =
|qq̄|−(k−1/24)|1− q|2

|η(τ)|2
(577)

This expression is easier to handle because of the well-known fact that (ℑ(τ))1/2|η(τ)|2 is modular invariant.
Modular invariant factor in the summand can be factored out of parentheses. To this end we write

Z(τ) =
1√

ℑτ |η(τ)|2
∑
c,d

(√
ℑτ |qq̄| 1

24−k|1− q|2
) ∣∣∣

γ
(578)

where (· · · )|γ denotes the modular transformation of the expression (· · · ) in the parentheses. Expanding the
above expression, we have

Z(τ) =
1√

ℑτ |η(τ)|2
∑
c,d

{√
ℑτ
(
|qq̄|−k+ 1

24 − q̄−k+ 1
24 q−k+ 25

24 − q−k+ 1
24 q̄−k+ 25

24 + q̄−k+ 25
24 q−k+ 25

24

)} ∣∣∣
γ

(579)
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Each term in the above summation is of the form

E(τ ;n,m) =
∑
c,d

(√
ℑτ 1

qn
1

q̄m

) ∣∣∣
γ

(580)

with n−m equals to either 0 or ±1 and q = e2πiτ . We set κ = n+m and µ = m− n, and use the identity

ℑ(γτ) = ℑτ
|cτ + d|2

, then each term in the summand can be written as

E(τ ;κ, µ) =
√
ℑτ
∑
c,d

|cτ + d|−1 exp {2πκℑγτ + 2πiµℜγτ} (581)

The term E(τ ;κ, µ) is the well-known Poincare series. The total partition function is

Z(τ) =
1√

ℑτ |η(τ)|2

(
E(τ ; 2k − 1

12
, 0) + E(τ ; 2k + 2− 1

12
, 0)− E(τ ; 2K + 1− 1

12
, 1)− E(τ ; 2k + 1− 1

12
,−1)

)
(582)

Each term in this summation does not converge because for large c, d summand goes to a non-zero constant.
The trick is to use Riemann-ζ-regularizaion. We do an analytic continuation that let the Poincare series
depends on an extra parameter s

E(τ ;n,m; s) =
∑
c,d

((√
ℑτ
)s 1

qn
1

q̄m

) ∣∣∣
γ

(583)

This new series converges for ℜs > 1, hence our original series concerning the case s = 1/2 converges.

We expect that the partition function should be

Z = Tre−βĤ−iξĴ (584)

Since angular momentum is a unitary representation of u(1)-algebra, its eigenvalues must be integers. There-
fore the expected partition function should be

Z =
∑
n∈Z

einξTrHn

(
e−βĤ

)
(585)

where we take trace over the eigenpace Hn of Ĵ , on which Ĵ acts with eigenvalue n. More precisely, the
partition function is the trace of exponential of the operator −βĤ ⊗ 1̂J − iξ1̂H ⊗ Ĵ . To have a convergent

partition function, in each subspace Tre−βĤ should be convergent, provided that for each eigenvalue E,
states of energy no greater than E must be finitely many. Let E∗ be an arbitrary energy level. Energy states
lower than E∗ are finitely many and are denoted by E1, ... , Em. Then the partition function would look
like

Z =
∑
n∈Z

einξ


m∑
j=1

e−βEj + o
(
e−βE∗

) (586)

Unfortunately, the computation of Poincare series shows that the partition function is

Z = Z0,1 +
1

|η|2

(
−6 + (π3 − 6π)(11 + 24k)

9ζ(3)
y−1

+
5(53π6 − 882π2) + 528(π6 − 90π2)k + 576(π6 − 90π2)k2

2430ζ(5)
y−2 + o(y−3)

)
(587)

where we set τ = x+ iy [18]. This shows that the dual CFT cannot be in a single irreducible representation
and there are other contributions that we excluded in the above sum.
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9.3 Kleins j-invariant and ECFT

From calculations in last section, we conclude that the dual CFT2 must be in reducible representation.
Witten first suggested that the dual CFT2 for c = 24 should be holomorphic factorized and is given by
the Frenkel Lepowsky Meurman construction [17] [37] [38] [41]. It is now known as the Monstrous Moon-
shine conjecture that there is a certain conformal field theory on torus which has the Monster group as
its symmetry; In particular, in holomorphic sector, its partition function is given by the Klein J-invariant.
Any two complex tori C/Λ1 and C/Λ2 are isomorphic to each other if and only if there exists a nonzero
complex number c such that the two lattices satisfy Λ2 = cΛ1. Roughly speaking, the set of all elliptic
curves modulo the isomophism is the moduli space of elliptic curves. The moduli space of elliptic curves is
therefore characterized by lattices in C. Since distinct lattices are different from each other by an SL(2,Z)
transformation, it turns out that the set of isomorphism classes of complex tori is a quotient H2/SL(2,Z).
Topologically, this quotient space is a punctured Riemann sphere (it also has two conical singularities). The
Klein J-invariant is a modular function defined as

j =
1728E3

4

E3
4 − E2

6

(588)

where the series E2k(τ) =
∑
(m,n)

1

(mτ + n)2k
for coprime integers (m,n) absolutely converges to a holomorphic

function of τ in the upper-half plane. This sum E2k is called the Eisenstein series. Under an SL(2,Z) action,
it transforms as

E2k(γτ) = (cτ + d)2kE2k(τ) (589)

where γτ = (aτ + b)/(cτ + d) for

(
a b
c d

)
∈ SL(2,Z), and we call the even number 2k the weight of

Eisenstein series. It can be proved that the function j(τ) is of weight 0 and is modular invariant, i.e.

j(γτ) = j(τ) (590)

for τ ∈ H2 and the j-function is holomorphic on H2 but has a pole of first order at the cusp infinity ∞. In
addition, j(τ) is bijective from moduli space of elliptic curves over C to complex numbers. In other words,
for every complex number z ∈ C, there is a unique τ in the fundamental region, which corresponds to an
isomorphism class of elliptic curves, such that z = j(τ). The most remarkable feature of this function is its
Laurent series in terms of q = exp(2πiτ), which is

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + · · · (591)

It diverges at q = 0. It is more convenient to use the J-function

J(q) = j − 744 =
1

q
+ 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + · · · (592)

instead of j-function.

Theorem: If a meromorphic function f only has a pole at ∞, then it must be a polynomial.

Proof: Locally the function f can be written as an expansion

f = · · ·+ a1z + · · ·+ anz
n (593)

Consider the function g = f − anzn − · · · − a1z, it is holomorphic on CP1. From Liouville’s theorem, the
function g must be a constant. Hence, f is a polynomial.
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The above theorem implies that the partition function under the Frenkel Lepowsky Meurman construction
is a polynomial of Klein’s J-function. The reason goes as follows. Any modular invariant function f(z) =

f(γz) induces a funtion f̂ on the fundamental domain H2/SL(2,Z). By comparing the poles of J-function
and of partition function Z(q), we see that the partition function can be constructed by using the following
commutative diagram

H2/SL(2,Z)
f̂ //

J

��

C

C

f

;;wwwwwwwwwwwwwwwwwwww

where f = f̂ ◦ J−1. The partition function Z(q) as a polynomial of Klein’s J-function should therefore have
a pole J = ∞. Witten claimed that the partition function should have a pole at q = 0 of order k that
corresponding to J =∞, which implies that Z(q) must be a polynomial in J of degree k.

Z(q) =
k∑

r=0

frJ
r (594)

For example, for k = 2, we have

Z2(q) = J(q)2 − 393767 = q−2 + 1 + 42987520q + 40491909396q2 + · · · (595)

where the coefficients 1 and −393767 are easily determined by the requirement that Z(q) should have an

expansion of the form q−k
∞∏

n=2

1

1− qn
+ o(q). We can recognize that the first term is simply the holomorphic

sector of descendants of vacuum, which corresponds to pure AdS3. While the second term is the contribution
from a BTZ black hole. Similarly, for k = 4, we have

Z4(q) = q−4 + q−2 + q−1 + 2 + 81026609428q + 1604671292452452276q2 (596)

For c = 24, i.e. k = 1, the partition function is exactly given by Z(q) = J(q). The most fascinating fact about
this function is that all the magics are hidden behind its horrible looking coefficients. The first nontrivial
coefficient 196884 equals to 1 + 196883. The number 196883 is exact the smallest dimension of a nontrivial
representation of the Monster group M. To be more specific, the theory is constructed such that there is a
commutative algebra (called Griess algebra) structure on an 196884 dimensional vector space over R, whose
automorphsim group is given by M. In this theory, the Monster group fixes an one dimensional subspace
and acts irreducibly on the 196883 dimensional complement [37] [38] [41]. The finite simple groups are
completely classified into 18 countable infinite families together with 26 exceptional groups, called sporadic
groups [38] [57]. The Monster group is the largest one of these sporadic groups [38] [57]. It has order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 (597)

In sloppy language, finite simple groups are to finite groups what semi-simple Lie algebra are to Lie algebras.
The Monster group plays a similar role in finite simple group theory that Lie groups of E8(C) type do in
Lie group theory. In 1978, MacKay observed an intriguing phenomenon, which is that

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1
(598)

106



The numbers 1, 196883, 21296876 and 842609326 are the dimensions of irreducible representations of M.
i.e. The coefficients of the q-expansion of J function are related with irreducible representations of Monster
group [38]. This led to the Monstrous moonshine conjecture made by John Conway and Simon P. Norton in
1979 [38]. Let ρ0, ρ1,· · · be irreducible representations of M, ordered by dimension. Then the q-expansion
of J function is really hinting that there is an infinite dimensional graded M-module

V ♯ = V−1 ⊕ V1 ⊕ V2 ⊕ · · · = ρ0 ⊕ (ρ1 ⊕ ρ0)⊕ (ρ2 ⊕ ρ1 ⊕ ρ0)⊕ · · · (599)

and J function is given by

J(q) = dim(V−1)q
−1 +

∞∑
i=1

dim(Vi)q
i = chV−1(g)q

−1 +

∞∑
i=1

chVi(g)q
i (600)

for each element g ∈ M. The right hand side is called MacKay-Thompson series [38]. Igor Frenkel, James
Lepowsky and Arne Meurman explicitly constructed such a graded module and showed that the vector space
they constructed, called Moonshine module V ♯, has additional algebraic structure, which is Vertex Operator
Algebra (VOA) in conformal field theory [38]. This modle V ♯ = ⊕Vn gives bilinear maps from Vi×Vj to Vk.
The special case is maps from V2 × V2 to V2, which is called the Griess product [38] [37] [41] [58]. We say
that Monter group is the automorphism group in the sense that its action preserves the Griess product. In
bosonic string theory, this algebra can be constructed as a conformal field theory describing 24 compactified
bosons [38].

In FLM interpretation, the CFT has an identity operator 1, which corresponds to its unique vacuum
|Ω⟩. It has 196884 operators of dimension 2, one of which is an stress tensor, which is a 2nd order secondary
operator of identity 1, while they others are primary fields transforming in the representation of M. We de-
note their associated highest weight states by |II⟩i, for i = 1, · · · , 196883. It has infinitely many consecutive
primary operators, whose highest weight states are denoted by |III⟩j , |IV ⟩k, |V ⟩l,· · · , where the ranges of
indices i, j, k, l, · · · are given by dimensional of irreducible representations of the Monster group. In a broader
sense, the Moonshine module is a bridge connecting algebraic structures with theory of modular invariant.
Witten suggested that in AdS3/CFT2 correspondence, the 196883 primaries are deemed as the generators of
a BTZ black hole, the one operator left corresponds the boundary gravitons. The FLM construction yields a
duality between AdS3 quantum gravity and extremal holomorphic CFT , which was introduced by G. Höhn.
We call it extremal CFT for lacking of primaries in low energy. In this conformal field theory, the lowest
dimensional highest weight state above vacuum has conformal dimension k+ 1 with central charge c = 24k,
k ∈ Z>0. In the theory of holomorphic VOA, it is known that for c ≤ 16, we have three theories [41]:

(1) c = 0 and V = C1.

(2) c = 8 and V = VE8 is the E8-lattice theory.

(3) c = 16 and V is VE8⊥E8 -lattice theory.

For c = 24k, it is not known whether such theories exist except when k = 1. It was conjectured that
there are in total 71 holomorphic VOAs with c = 24, from which 39 are known to exist [17] [34]. In
Schellekens’ classification, among the 71 CFTs, 70 have current algebras. For pure AdS3/CFT2, we want a
CFT that contains no current algebra. The unique theory satisfying this feature is the FLM construction.
In Monstrous moonshine, J-function is usually written in terms of M characters as shown above. While in
FLM’s construction, J-function as a partition function of CFT2 should be expressed in terms of Virasoro
characters. i.e. the coefficients of its q-expansion should be decomposed by dimensions of (irreducible) Verma
modules of |Ω⟩, |II⟩, |III⟩, |IV ⟩, |V ⟩,· · · The moonshine module shouled be of the form [59]

V ♯ =
∞⊕

n=0

(Vn ⊗W (24, h)) (601)
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where each Vn is a represenation of the Monster group, while W (24, h) is the irreducible Virasoro represen-
tation with conformal weight h and central charge 24. The best way to calculate the numbers of independent
states in Verma modules W (24, h) is to use Young Tableaux. For highest weight states above vacuum, the

number of independent states at energy level n is given by partition p(n). However, for the vacuum state,
since it is annihilated by L−1, the number of independent states is given by partition which does not contain
1, which are those red ones in the above table. From the Virasoro charaters

J(q) =
∑
n

dnχn(q) (602)

we can solve the first few terms, which are given by d0 = 1 = dim ρ0, d2 = 196883 = dim ρ1, d3 = dim ρ2,
d4 = dim ρ3, dn≥5 ≥ dim ρn−1, where di is the dimension of Verma module of Virasoro algebra.

This dual CFT can also explain the entropy of BTZ black holes. We can use the entropy formula (329),
which can be written as

S = π(l/2G)1/2(
√
Ml − J +

√
Ml + J) = 4π

√
k(
√
L0 +

√
L̄0), (603)

where we used l/G = 16k. In quantum mechanics, the entropy measures the microscopic degeneracy of a
macroscopic state. In our case, the degeneracy of 196883 highest weight states (or 196883 primary fields)
give an entropy ln 196883 ≃ 12.19. On the gravitational side, we take k = 1 and L0 = 1, the Bekenstein-
Hawking entropy is approximately 12.57. For k = 4, taking L0 = 1, the entropy computed from extremal
CFT is ln 81026609426 ≃ 25.12. The Bekenstein-Hawking entropy is about 25.13. In semi-classical limit
k → ∞, the two computations coincide with each other because Bekenstein-Hawking entropy is derived in
semi-classical approximation. We interpret 196883 primaries for k = 1 as the generators of one BTZ black
hole; the following numbers 21493759,· · · corresponding to L0 > 1 are the degeneracy of many BTZ black
holes. If this is really the CFT2 dual of AdS3 pure gravity, then three dimensional gravity would surprisingly
have a discrete symmetry M.

To match this partition function with the Euclidean path integral of AdS3, we utilize the Rademacher
expansion of J function [32],

J(q) = −12 + lim
K→∞

1

2

∑
|c|≤K

∑
|d|≤K
(c,d)=1

exp 2πi

(
−aτ + b

cτ + d

)
− exp

(
−2πia

c

)
(1− δc,0), ad− bc = 1 (604)

The first term is the summation can be interpreted as the contribution from classical Euclidean actions
in holomorphic sector. The last term exp

(
−2πiac

)
(1 − δc,0) is necessary for convergence, but hard to be
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interpreted from gravitational aspect. The way to relate this expansion to the Euclidean path integral of
quantum gravity is relied on Fareytail transform, which was pointed out by Jan Manschot. First of all, it is
necessary to introduce what modular form is.

Definition: A modular form of weight k for the modular group SL(2,Z) is a complex-valued function
f on the upper-half plane H2 satisfying three conditions:

(1) f is holomorphic on H2.

(2) For any τ ∈ H2, the equation

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) (605)

holds, where

(
a b
c d

)
∈ SL(2,Z).

(3) f is required to be holomorphic at the cusp τ → i∞.

We see that an Eisenstein series E2k(τ) is a modular forms of weight 2k. If we forget the third condition
and allow f to be a meromorphic function which is not holomorphic at cusp, we call such a function f
non-entire modular form. For example, for c = 24, the CFT partition function is given by J-invariant,
which is a non-entire modular form of weight 0 and has a pole at i∞. For a given (non-entire) modular form
f of weight w, the Fareytail transform is defined as [19] [12]

DF (f) =

(
q
∂

∂q

)1−w

f (606)

For (non-entire) modular forms of weight zero, the Fareytail transform is given by its derivative.

D =
1

2πi

d

dτ
(607)

Hence the inverse Fareytail transform gives back J(q) up to a constant term. It can be shown that after the
Fareytail transformation, we have [32]

DJ(τ) =
−1
2

∑
Γ∞\SL(2,Z)

exp 2πi
(
−aτ+b

cτ+d

)
(cτ + d)

2 (608)

By defining M(cτ + d) =
−1
2

(cτ + d)2, we can express the above partition function as

ZG(τ) =
∑
Mc,d

e−S = DJ(τ) =
∑

Γ∞\SL(2,Z)

M(cτ + d) exp 2πi

(
−aτ + b

cτ + d

)
(609)

where M(cτ + d) is some measure factor. This summation is of form of a Poincare series and can be
interpreted as a sum over geometries in the holomorphic sector. It is a semi-classical approximation that we
have already seen. Since we assumed that the extremal CFT is holomorphically factorized, the full partition
function of quantum AdS3 gravity would be

ZG(τ, τ̄) =

 ∑
Γ∞\SL(2,Z)

M(cτ + d) exp 2πi

(
−aτ + b

cτ + d

) ∑
Γ∞\SL(2,Z)

M(c̃τ̄ + d̃) exp 2πi

(
− ãτ̄ + b̃

c̃τ̄ + d̃

) ,

(610)
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from which we see that if this were the correct partition function for quantum gravity, we would have complex
saddle points because only when (c, d) = (c̃, d̃) we would have real-valued Euclidean saddle points. Moreover,
from a more physical aspect, this cannot be the dual CFT2. First, it was shown that the Monster symmetry
is killed at larger value of k [61]. Secondly, it was shown that for k ≥ 42, such theories cannot exist [62].
We have seen that when k = 1, the gravitational action in Lorentzian signature correspond to a magnetic
monopole of unit strength. For a magnetic charge with strength n > 1, the corresponding circle bundle over
S2 is not a Hopf fibration anymore. Its total space has structure of lense space, S3/Zn. The gap of the
spectrum requires that there are no primary fields of weight in the interval 0 < h < k + 1, which seems to
be very hard to be satisfied in the semi-classical limit k →∞.

Although we have successfully explained the entropy of BTZ black holes in extremal CFT , this theory
of quantum AdS3 itself is still speculative. We are still not able to find a reliable theory of three dimensional
quantum gravity. One possibility is that perhaps for some unknown reasons, complex geometries should be
included in our theory. The most obvious way to make such a generalization is to complexify the equation
of motion Rab = −Λgab. However, Witten and Maloney have not found any solutions that depend on the
pair of modular parameters in the above product of sums [18]. A pessimistic aspect is that there is no CFT2
dual for pure AdS3 at all.

10 Outlook

A natural generalization of three dimensional pure gravity is massive topological gravity, whose interaction
term is given by a Chern-Simons action. It was shown by Witten that 3D topological field theories are
intimately related with CFT s in two dimensions. Since we have not found a candidate CFT dual to pure
AdS3 quantum gravity, one may hope that there exist dualities between CFT s and quantum versions of
various massive topological gravity. After decades of investigations, research in this topic has flourished and
become fruitful. The most well-known theory is called chiral gravity introduced by Wei Li, Wei Song and
Andrew Strominger [63] [64]. It is chiral, in the sense that it has only one copy of Virasoro algebra [63] [64].
We consider a massive topological gravity whose action is

I =
1

16πG

[∫
d3x
√
g

(
R+

2

l2
+

1

µ
ICS

)]
, (611)

where ICS is a gravitational Chern-Simons action

ICS =
1

2

∫
d3x
√
gϵabcΓd

ae

(
∂bΓ

e
dc +

2

3
Γe
bfΓ

f
cd

)
. (612)

By doing variation, we find that [63]

Rab −
1

2
Rgab −

1

l2
gab +

1

µ
Cab = 0, (613)

Cab is the Cotton tensor. Since the Chern-Simons interaction term is not invariant under parity transfor-
mation, one should expect that in such a theory, the central charges of left moving and right moving sectors
are not equal, while still satisfying cR + cL = 3l/G. It can be proved that [63]

cL =
3l

2G
(1− 1

µl
) cR =

3l

2G
(1 +

1

µl
) (614)

Chiral gravity is defined by taking the limit µl→ 1 while keeping the Brown Henneaux’s boundary conditions.
This implies that

cL = 0 cR =
3l

G
(615)
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Hence we only have right-moving excitations.

To compute the partition function, we need to wick rotate the classical action and determine the Euclidean
saddle points. We fix the conformal boundary to be a torus. The Euclidean bulk action is

I =
1

16πG

∫
d3x
√
g

(
R+

2

l2

)
+

il

16πG

∫
d3x
√
gϵabcΓd

ae

(
∂bΓ

e
dc +

2

3
Γe
bfΓ

f
cd

)
. (616)

Remark: In Euclidean path integral, this extra factor i is exactly what we should expect because otherwise
the Euclidean action is not invariant under large gauge transformations. This is analogous to WZW theory.
We can construct a compact closed 4-manifold. The Chern-Simons term is extended to∫

RabcdR
abcd (617)

which is a topological term. The equation of motion is [64]

Rab −
1

2
Rgab −

1

l2
gab + ilCab = 0 (618)

Since we require that Euclidean saddle points are real metric, Euclidean saddle points satisfy the above
equation should obey

Rab −
1

2
Rgab −

1

l2
gab = 0 (619)

Hence Euclidean saddle points of chiral gravity are the same as those of pure 3D gravity. But since in this
theory, we turned off the anti-holomorphic sector, the partition function of the dual CFT should be given
by J-invariant.

Z(τ) = TrHq
L0 = q−1 + 196884q + · · · (620)

The Hilbert space is spanned by eigenstates of L0, containing vacuum |Ω⟩ and other highest weights |h⟩,
together with their descendants L−n1 · · ·L−nk

|Ω⟩ and L−n1 · · ·L−nk
|h⟩. Since in this theory, we have only

holomorphic sector, the level of quantum state is the eigenvalue of the sum of mass and angular momentum.
Denoting the degeneracy of a given level En by N(En), then a partition funtion of a conformal field theory
should take the form

Z(τ) =
∑
n∈Z

N(En)q
En . (621)

We have already seen that this indeed agrees with the expression of partition function of extremal CFT .
The non-trivial coefficients of the q-expansion of Klein’s J-invariant are the microscopic degeneracy of BTZ
black holes plus boundary gravitons in holomorphic sector. In last section, we have shown that for k = 1,
logarithm of N(E)− 1 is approximately the Bekenstein-Hawking entropy S = 4π

√
M = 4π

√
L0. i.e.

N(E)− 1 ∼ e4π
√
kE (622)

In fact, there is an exact formula from technique of Rademacher expansion, including all the quantum
corrections to Bekenstein-Hawking entropy [32]. This is

J(τ) = q−1 +

∞∑
n=1

c(n)qn, (623)

where the Fourier coecient c(n) is given by

c(n) =
2π√
n

∞∑
n=1

Km(n)

m
I1

(
4π
√
n

m

)
. (624)
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Km(n) is the Kloomsterman sum

Km(n) =
∑

d∈(Z/nZ)∗

exp

(
2πi(nd+ d̄)

m

)
, dd̄ = 1 mod m. (625)

and Iν(z) is

Iν(z) =
(z/2)ν

2πi

∫ c+i∞

c−i∞
t−ν−1et+

z2

4t dt, c > 0, ℜ(v) > 0 (626)

which is the Bessel function.

There are many other research areas that I should have investigated in my thesis if I had had much more
time, including higher spin theory and three dimensional supergravity. Higher spin theory is a generalization
of gravitational Chern-Simons action whose gauge group is replaced by SL(N,R)×SL(N,R). Such a theory
contains three dimensional gravity and higher spin fields. Another interesting aspect of three dimensional
gravity is new boundary condition of asymptotic AdS3 [40], which has raised attention from many researchers.

11 Appendix

Proof: We have identity
1

3!
ϵαβγϵ

abceαae
β
b e

γ
c = det(e) (627)

Multiplying a factor ϵµνρ on both sides of the above equation, we have

ϵµνρ det(e) =
1

3!
ϵµνρϵαβγϵ
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γ
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ν
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ρ]
γ ϵ
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c
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ν
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ρ
c (628)

Concerning that ϵ tensor is fully antisymmetric, the above equation implies that
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c (629)

and
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j
ν (630)

so
ϵijceρc = ϵµνρ det(e)eiµe

j
ν (631)

or
ϵijce

c
ρ = ϵµνρ det(e

−1)eµi e
ν
j (632)

For any given anti-symmetric tensor F ab = 1
2F

ab
µνdx

µ∧dxν , applying the above results, we have the following
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a
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1

2
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b e
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γ
bF

bc
βγ (633)

From the definition of spin-connection, it can easily be proved that
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det(g) = −det2(e−1), F ab
µν = eaρebσRµνρσ

Plugging these two identities into Einstein-Hilbert action. we have∫
M

d3x
√
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∫
M
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√
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Variation:

δI = δ

{
ϵabc

∫
M

ea ∧ F bc

}
= ϵabcδ
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(635)

Using integration by parts, together with stokes theorem on the second term above, and assuming that the
field e and ω vanishes at infinity, we have

δI = ϵabc
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(636)

The fact that spin connection ω is so(2, 1)-valued implies that its component ωa
b is pseudo-antisymmetric.

i.e. ηacω
a
b = ωcb = −ηbdωd

c = −ωbc. So we have
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