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Abstract: We investigate the asymmetry in the mean free path of massive neutrinos prop-

agating through hot neutron matter under strong magnetic fields. The system is studied

at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where ρ0 is the

nuclear saturation density. Magnetic field strengths up to B = 1018 G are considered. We

analyze three different equations of state: one corresponding to a non-interacting Fermi

gas and two derived from Skyrme-type interactions. The impact of a finite neutrino mass

is assessed and found to be negligible within the energy range considered. The neutrino

mean free path is computed for various angles of incidence with respect to the magnetic

field direction, revealing a clear angular asymmetry. We show that quantum interference

terms contribute significantly to this asymmetry, enhancing neutrino emission in directions

perpendicular to the magnetic field at high densities. This result contrasts with previous

expectations and suggests a revised interpretation of neutrino transport in magnetized

nuclear matter.

Keywords: a Asymmetry in the neutrino mean free path; equation of state of stellar matter;

the pulsar kick problem; impact of neutrino oscillations

1. Introduction

Neutrino oscillation is a quantum mechanical phenomenon in which neutrinos change

their flavor (electron, muon, or tau) as they propagate through space. This behavior

demonstrates that neutrinos have mass, a fact that challenges the Standard Model of particle

physics, which initially assumed massless neutrinos. The discovery of neutrino oscillations

was first conclusively demonstrated through the observation of atmospheric neutrinos

by the Super–Kamiokande experiment. In 1998, the Super–Kamiokande collaboration

reported a deficit in the expected number of muon neutrinos arriving from the atmosphere,

depending on the distance traveled, providing strong evidence for oscillation and therefore

non-zero neutrino mass [1]. This groundbreaking result has profound implications: it

not only necessitates an extension of the Standard Model but also opens new avenues in

cosmology and particle physics, including the role of neutrinos in the evolution of the

universe and the search for CP violation in the lepton sector, among other areas.

The confirmation that neutrinos have mass and oscillate between flavors has signifi-

cantly deepened our understanding of their role in astrophysical environments, especially

in extreme conditions such as those found in neutron stars and magnetars. These ultra-

dense stellar remnants, particularly magnetars, whose magnetic fields can reach surface

intensities of 1014–1015 G and increase dramatically within their dense interiors [2], provide

natural laboratories for studying neutrino behavior under intense magnetic forces. In such
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environments, neutrino emission becomes a dominant cooling mechanism and influences

the star’s thermal and magnetic evolution [3]. Within the broader context of core-collapse

supernovae, the review by Burrows and Vartanyan [4] provides a comprehensive overview

of the problem, addressing not only neutrino physics but also the evolution of the su-

pernova remnant. Moreover, the strong magnetic fields in magnetars can affect neutrino

propagation and oscillation patterns, potentially leading to flavor conversions enhanced by

matter and magnetic effects [5–8]. Understanding neutrino interactions in these settings is

crucial not only for modeling supernovae and neutron star formation but also for probing

the physics of dense matter, magnetic field generation, and the potential existence of sterile

neutrinos or non-standard interactions beyond the Standard Model [9]. Thus, the study of

neutrino oscillations not only reshapes fundamental particle physics but also enriches our

comprehension of the most violent and enigmatic objects in the cosmos.

One particularly intriguing astrophysical phenomenon potentially linked to neutrino

behavior in highly magnetized neutron stars is the so-called pulsar kick: the observation

that many pulsars are born with high space velocities, often exceeding 1000 km/s, far

greater than those of their progenitor stars [10]. While several mechanisms have been

proposed, one compelling explanation involves anisotropic neutrino emission during the

proto-neutron star cooling phase, especially in the presence of ultra-strong magnetic fields.

These fields can polarize the medium, thus modifying the cross-sections for neutrino

interactions, resulting in asymmetric momentum transfer that imparts a net recoil to the

newly formed neutron star [11]. Magnetars, with their extreme field strengths, provide

a natural context in which such asymmetries could be amplified. Furthermore, certain

models suggest that parity-violating weak interactions in a magnetized medium could

generate directional neutrino fluxes aligned with the magnetic axis [12]. These processes

offer a viable channel for generating the observed natal kicks and connect large-scale

neutron star dynamics with microphysical processes occurring under extreme conditions,

thus linking compact object astrophysics with fundamental particle interactions.

In this work, we focus on the inelastic scattering of neutrinos with neutrons, a mecha-

nism responsible for the asymmetric emission of neutrinos. More specifically, we evaluate

the neutrino mean free path (defined as the inverse of the total neutrino cross section per

unit volume) in hot, dense matter under the influence of a strong magnetic field. The

neutrino mass is very small, mν ≲ 1 eV, and this non-zero mass allows for the presence of

a right-handed component in the neutrino state, although its contribution is expected to

be negligible. In the limiting case of massless neutrinos, only fully polarized left-handed

neutrinos exist. These represent the dominant contribution and are the main focus of this

work. Nevertheless, to gain some insight into the physics of right-handed neutrinos, we

also discuss this point.

It is worth mentioning that we have previously studied the mean free path of left-

handed neutrinos in Ref. [13], where a specific set of approximations was employed. In the

present work, we revisit these approximations, which leads to the emergence of quantum

interference terms that were not considered before.

The neutrino–neutron inelastic scattering cross section can be evaluated either in free

space or within a dense medium. However, the mean free path is physically meaningful

only in a dense medium, which must be characterized by an equation of state (EoS). In

this work, we explore three different equations of state. The first one assumes no strong

interaction among neutrons, whereas the remaining two are based on the Hartree–Fock

approximation employing the Skyrme interaction, commonly known as the Skyrme model.

The neutrino mean free path in the absence of a magnetic field has been studied by

many authors using various approximation schemes and models of the trapping environ-

ment (see, e.g., Refs. [14–27], and references therein). The behavior of neutrinos in dense
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matter under strong magnetic fields has also been explored in the literature [13,28–40].

However, the asymmetry in neutrino emission caused by the breaking of isotropy due to

the magnetic field has not been extensively discussed.

This paper is organized as follows: In Section 2, we briefly discuss neutrino polar-

ization. In Section 3, we present elements of the EoS and derive an analytical expression

for the neutrino cross section per unit volume for left-handed neutrinos. In Section 4, we

discuss our results, and finally, in Section 5, we present our conclusions.

2. Neutrino Polarization: A Brief Discussion

The existence of a nonzero neutrino mass has profound implications for the structure

of neutrino states. In the massless limit, neutrinos are purely left-handed and antineutrinos

are right-handed, as dictated by the Standard Model. However, once a mass term is

introduced, each neutrino state acquires both left- and right-helicity components due to the

Lorentz structure of the Dirac spinor. The right-helicity component of a neutrino (or left-

helicity component of an antineutrino) becomes nonzero, but its amplitude is suppressed

by a factor proportional to mν/Eν, where mν is the neutrino mass and Eν its energy. Given

the extremely small mass of the neutrino compared to typical energies involved, the

right-helicity component is extremely suppressed and often considered unobservable.

Nonetheless, its existence is a direct consequence of neutrino mass and can, in principle, be

probed in precision experiments involving polarized sources or detectors.

In principle, the presence of both helicity components in a massive neutrino state opens

the possibility of helicity oscillations, especially when neutrinos propagate through external

fields or media. These transitions between left- and right-helicity states are suppressed in

vacuum due to the smallness of the mass, but can be enhanced in certain conditions, such

as in the presence of strong magnetic fields or dense matter through mechanisms involving

spin-flip processes or magnetic moment interactions [41–44]. Despite their tiny amplitude,

right-helicity neutrino components could have significant implications in astrophysical

environments, where long propagation distances and extreme conditions might lead to

cumulative effects. Moreover, if right-handed neutrinos are sterile, i.e., non-interacting

under the Standard Model forces, the conversion of active left-handed neutrinos into

sterile right-handed states could impact neutrino fluxes observed in experiments and

cosmological observables. Thus, even a seemingly negligible component may play a crucial

role in scenarios beyond the Standard Model.

Unfortunately, the interaction between right-handed neutrinos and neutrons is not

known. Within the framework of the Standard Model, such an interaction is strictly absent,

implying a vanishing cross section for right-handed neutrinos. However, as we shall

discuss below, the presence of a mass term leads to energy eigenstates that are admixtures

of left- and right-handed components. This mixing induces a small correction to the left-

handed component, even in states initially produced as purely left-handed. As a result, the

modified wave function can exhibit a suppressed but nonzero sensitivity to phenomena

that would otherwise involve only right-handed neutrinos. This subtle effect, though

minute, forms the basis for exploring possible deviations from Standard Model predictions

in neutrino scattering and propagation.

In a more specific way, if the mass of the neutrino is nonzero, then the energy eigen-

states are not eigenstates of chirality. The energy eigenstates can be written as a linear

combination of left- and right-chiral states through a unitary transformation:

|ν+⟩ = cos θ |νL⟩ − sin θ |νR⟩, (1)

|ν−⟩ = sin θ |νL⟩+ cos θ |νR⟩, (2)
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where |ν+ (−)⟩ is the positive (negative) energy eigenstate, and |νL (R)⟩ denotes the left-

(right-) chiral component of the neutrino.

In the limiting case of massless neutrinos, θ → 0, and we recover the following:

|ν+⟩ → |νL⟩,

as expected, since helicity and chirality coincide for massless fermions.

The mixing angle θ is given by the following:

sin θ =
mν

√

E2
ν + m2

ν

, cos θ =
Eν

√

E2
ν + m2

ν

. (3)

Let us focus on Equation (1). The right-chiral component corresponds to a sterile neutrino,

whose interactions with a neutron (or other Standard Model particles) are highly suppressed

or unknown. Therefore, when calculating the neutrino–neutron cross section, only the

left-chiral component contributes. However, due to the nonzero neutrino mass, the left-

chiral component is multiplied by a factor cos θ, reflecting the admixture of the sterile

(right-chiral) component. The importance of this correction depends directly on the energy

of the neutrino: the smaller the energy, the larger the deviation from a pure left-chiral state.

3. The Neutrino Mean Free Path for a Polarized System

In this section, we present analytical expressions for the mean free path (λ) of left-

handed neutrinos in the reaction,

ν + n → ν′ + n′, (4)

where ν (ν′) and n (n′) denote the initial (final) neutrino and neutron, respectively. Specifi-

cally, we compute the total cross section per unit volume (σ/V), from which the neutrino

mean free path is straightforwardly obtained as

λ = (σ/V)−1. (5)

First, we introduce some elements of the equation of state (EoS) employed in this work,

where the magnetic field induces spin polarization in the neutron medium. For clarity,

the reader is advised that the term “polarization” in Section 2 refers to neutrino helicity,

whereas in this section, it pertains to neutron spin polarization. This brief description of

the EoS sets the stage for the subsequent discussion, and then we derive the expressions for

the cross section per unit volume.

3.1. The EoS Model for Pure Hot Neutron Matter in a Strong Magnetic Field

Our system consists of pure hot neutron matter in a strong magnetic field. To describe

it, we employ an equation of state (EoS) derived from the Skyrme model. We also employ

a non-interacting Fermi gas EoS, which is simply obtained from the former by putting

the strong interaction equal to zero. Due to the presence of the magnetic field, the system

becomes polarized. A system of spin-polarized neutron matter consists of an infinite

collection of neutrons categorized into two groups based on their spin orientation: those

with spin-up and those with spin-down. Their respective number densities are denoted as

ρn, sn=+1 and ρn, sn=−1, where sn represents the spin projection. The total number density of

the system is then given by

ρn = ρn, sn=+1 + ρn, sn=−1 (6)
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The degree of spin polarization in the system is quantified by the spin asymmetry density,

defined as

Wn = ρn, sn=+1 − ρn, sn=−1. (7)

A system with Wn = 0 corresponds to an unpolarized neutron matter state, where spin-up

and spin-down neutrons are equally distributed. On the other hand, when Wn reaches

its extreme values of ρn or −ρn, all neutrons are aligned in the same direction, resulting

in a completely spin-polarized state: either all spin-up or all spin-down. Intermediate

cases, where Wn takes values between these two extreme values, represent states of partial

spin polarization.

The equation of state (EoS) is evaluated within the Skyrme model, which provides

an effective framework for describing nuclear interactions [45]. This model consists of

a two-body contact potential along with additional terms that explicitly depend on den-

sity, accounting for the effects of three-body and multi-body forces. By employing this

interaction within the Hartree–Fock approximation, one constructs an energy density func-

tional and subsequently the Helmholtz potential. Minimizing this potential determines

the physical state of the system. This approach captures the competition between the

magnetic field, which promotes alignment of spins along its axis, and the Pauli exclusion

principle, which drives the populations ρn, sn=+1 and ρn, sn=−1 toward equilibrium. The

resulting compromise leads to a state of partial spin polarization, quantified by Wn. The

corresponding single-particle spectrum can be written in a form where the interaction gives

rise to two distinct contributions: the effective mass and the residual potential energy.

To compute the equation of state (EoS), the required inputs are the total baryon density

ρn, the temperature T, and the strength of a uniform magnetic field aligned along the

z-axis. The resulting outputs are the chemical potential µn, the single-particle energy, and

the spin-resolved number densities ρn, sn . In our framework, the chemical potential is

spin-independent, while the number density varies with spin projection.

We now introduce some definitions used throughout this work. First, the func-

tion fsn(En, T), which in the thermal equilibrium is given by the Fermi–Dirac particle

distribution function:

fsn(En, T) =
1

1 + exp[(En − µn)/T]
, (8)

where En is the neutron single-particle energy and µn its chemical potential. The expression

for the number density with a defined spin projection is

ρn, sn =
1

(2π)3

∫

dp⃗n f (Esn , T), (9)

where p⃗n, is the momentum carried by the neutron.

Before concluding this section, we introduce the expression for the spin asymmetry

parameter An,

An =
ρn, sn=+1 − ρn, sn=−1

ρn, sn=+1 + ρn, sn=−1
. (10)

This parameter quantifies the polarization level of the system and plays a key role in

specifying the initial wave function. For later convenience, we define the following

auxiliary quantities:

δsn↑ ≡ 1 + sn

2
, δsn↓ ≡

1 − sn

2
,

asn↑ ≡
√

1 + An

2

(

1 + sn

2

)

and asn↓ ≡
√

1 − An

2

(

1 − sn

2

)

, (11)
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An up arrow (down arrow) indicates spin up (down), that is, sn = +1 (sn = −1). A more

detailed treatment can be found in [46,47].

3.2. The Neutrino Cross Section for a Polarized System

In this section, we present expressions for the left-handed neutrino cross section

per unit volume in a polarized system for the inelastic neutrino–neutron reaction. This

derivation differs from the one in [13], where we analyzed the same reaction with some

approximations. In [13], we split the cross section into two contributions: one for an initial

neutron with spin up and the other with spin down. In the present work, we consider a

mixed initial neutron wave function, including both spin-up and spin-down components.

This wave function is constructed to match the polarization of the entire system. More

explicitly, using the initial neutron spin wave function from Equation (A3) in Appendix A,

we obtain

⟨Un|Ŝz|Un⟩ = An
h̄

2
, (12)

where the value of An is taken from the EoS.

The employment of this mixed spin wave function results in quantum interference

terms that were not considered in [13] and are discussed at the end of this section. Moreover,

we establish a self-consistent link between the evaluation of the EoS and the cross section.

Using the Fermi Golden Rule (see, e.g., [48]), we can write down the contribution of

the reaction (4), to the total cross section per unit volume simply as follows:

σ(pν)

V
=

∫

dp⃗ν′

(2π)3

∫

dp⃗n

(2π)3

∫

dp⃗n′

(2π)3
(2π)4δ(4)(pν + pn − pν′ − pn′)

× fsn(En, T)(1 − fsn′ (En′ , T))
⟨|Mν′n′ ,νn|2⟩
24EνEν′EnEn′

, (13)

where pi = (Ei, p⃗i) is the four-momentum of particle i, and Mν′n′ ,νn is the so-called Møller

invariant transition matrix, which we define below. The symbol ⟨ ⟩ denotes the sum over

final states and an average over the initial ones. An important aspect of our scheme is that

the use of Equations (A1) and (A6), for the initial neutron and neutrino, implies that we do

not perform any averaging over the initial neutrino state or over the initial spin state of the

neutron, as both are assumed to be known by hypothesis.

The two ingredients required to obtain the total neutrino cross section are the invariant

transition matrix Mν′n′ ,νn and a model for the equation of state (EoS) of neutron matter.

The former describes a two-body process mediated by the weak interaction, while the latter

characterizes the state of the strongly interacting neutron system, as previously discussed.

We now focus on the evaluation of the matrix Mν′n′ ,νn. Below, we outline the main steps in

its derivation; for further details, we refer the reader to [13].

Our starting point is the following Lagrangian density, written in terms of a current–

current interaction:

L =
1√
2

GF

(

ψ̄ν′γ
µ(1 − γ5)ψν

)(

ψ̄n′γµ(CV − CAγ5)ψn

)

. (14)

Here, GF ≃ 1.436 × 10−49 erg cm−3 is the Fermi coupling constant, and the coefficients

CV = −1/2 and CA = −1.23/2 are the vector and axial-vector couplings, respectively. This

expression can be employed only for left-handed neutrinos (or right-handed antineutrinos).

For simplicity, we neglect the weak magnetism term, as it is of order O(1/m) [24,49,50].
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The matrix element Mν′n′ ,νn can be derived from the Lagrangian density above

as follows:

Mν′n′ ,νn =
1√
2

GF

(

uν′γ
µ(1 − γ5)uν

)(

un′γµ(CV − CAγ5)un

)

. (15)

It is convenient to express the squared matrix element as a contraction between a leptonic

(lµα) and a hadronic (Hµα) rank-two tensor:

|Mν′n′ ,νn|2 =
1

2
G2

F lµαHµα , (16)

with

lµα =

(

uνγµ(1 − γ5)uν′

)(

uν′γ
α(1 − γ5)uν

)

, (17)

and

Hµα =

(

un(CV + CAγ5)γµun′

)(

un′γα(CV − CAγ5)un

)

. (18)

The analytical evaluation of Equation (16) is laborious but straightforward. In what

follows, we present its non-relativistic reduction, where we employ the spinors given in

Equations (A3), (A4), (A7), and (A9). First, we introduce the notation

⟨|Mν′n′ ,νn|2⟩ ≡ Trsn ,sn′ (θν, θν′ , φν′) + ∆Trsn ,sn′ (θν, θν′ , φν′), (19)

where θν (θν′ ) is the polar angle of the incoming (outgoing) neutrino measured with respect

to the direction of the magnetic field (taken along the ẑ-axis). Here, φν′ is the azimuthal

angle of the outgoing neutrino, and without loss of generality, we set φν = 0 for the

incoming neutrino. For left-handed neutrinos (or right-handed antineutrinos), we have

Tr L
sn ,sn′

(θν, θν′ , φν′) = 16EνEν′m
2
n {C2

V (1 + cos θν,ν′)(a2
sn↑δsn′↑ + a2

sn↓δsn′↓)

+ 2CVCA (cos θν + cos θν′)(a2
sn↑δsn′↑ − a2

sn↓δsn′↓)

+ C2
A [(1 + cos θν cos θν′ − sin θν sin θν′ cos φν′)(a2

sn↑δsn′↑ + a2
sn↓δsn′↓)

+ 2(1 − cos θν + cos θν′ − cos θν cos θν′)a2
sn↓δsn′↑

+ 2(1 + cos θν − cos θν′ − cos θν cos θν′)a2
sn↑δsn′↓)]} (20)

∆Tr L
sn ,sn′

(θν, θν′ , φν′) = 32EνEν′m
2
n asn↑asn↓ {CVCA

× [(sin θν(1 + cos θν′) + sin θν′(1 − cos θν) cos φν′)δsn′↑

+ (sin θν(1 − cos θν′) + sin θν′(1 + cos θν) cos φν′)δsn′↓ ]

+ C2
A [(sin θν(1 + cos θν′)− sin θν′(1 − cos θν) cos φν′)δsn′↑

+ (sin θν(1 − cos θν′)− sin θν′(1 + cos θν) cos φν′)δsn′↓ ]}, (21)

where

cos θν,ν′ = cos θν cos θν′ + sin θν sin θν′ cos φν′ . (22)

These expressions contain different kinds of quantum interference terms. In the first place,

the terms proportional to the product CVCA represent interference between the vector and

axial-vector components of the weak interaction. These terms vanish in the absence of a

magnetic field.

Our choice of the initial neutron wave function leads to two kinds of quantum inter-

ference terms from the hadron system: those proportional to a2
sn↓δsn′↑ or a2

sn↑δsn′↓, which

we consider in this work; and those proportional to asn↑asn↓. The latter cancel out within

our scheme but yield a non-zero contribution when correlations beyond the mean field are
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taken into account. In our case, the strong interaction has been included at the mean-field

level within the Hartree–Fock approximation in the equation of state (EoS). The imple-

mentation of higher-order correlations, such as the ring approximation (see, e.g., [50,51]),

requires the inclusion of these terms.

We now return to Equation (13). Using momentum conservation, we performed the

integration over p⃗n′ and after some algebra we have

σ(pν)

V
= G2

F

∫

dp⃗ν′

(2π)3 ∑
sn ,sn′=±1

Trsn ,sn′ (θν, θν′ , φν′) S0
sn ,sn′

(q0, q⃗, T), (23)

where q0 = Eν − Eν′ and q⃗ = p⃗ν − p⃗ν′ . The structure function S0
s1,s2

(q0, q⃗, T), is defined by

S0
sn ,sn′

(q0, q⃗, T) =
1

(2π)2

∫

dp⃗n δ(q0 + En − En′) fsn(En, T) [1 − fsn′ (En′ , T)]. (24)

An analytical expression for this function is given in the Appendix B. As we are considering

massless neutrinos, Eν = | p⃗ν|.
Before concluding this section, we note that the limiting case B → 0 is easily obtained

from Equation (23) by setting An = 0, which leads to a2
sn↑ = a2

sn↓ = 1/2, and performing the

spin summation. In this limit, the neutron single-particle energy becomes spin-independent.

Consequently, the structure function is also spin-independent, and the spin summations in

Equations (20) can be carried out straightforwardly.

4. Results and Discussion

In this section, we present our results for the neutrino and antineutrino mean free

paths in hot, dense neutron matter under a strong magnetic field. We analyze a density

range of 0.05 ≤ ρ ≤ 0.4 fm−3, several temperatures up to T = 30 MeV, and various

magnetic field intensities ranging from B = 0 to B = 1018 G. To describe the medium, we

employ different models for the Equation of State (EoS) in order to assess the sensitivity

of the mean free path to the properties of the medium. Most of the results are obtained

using the LNS Skyrme interaction developed by Cao et al. [52], which we adopt because

its particular density dependence of the effective mass makes it especially suitable for our

framework. Unless otherwise specified, the equation of state just detailed is to be taken as

the default model.

In all cases, neutrinos and antineutrinos are assumed to be massless and not trapped

in the medium, so their chemical potential vanishes (µν = 0). They are described by the

standard Fermi–Dirac distribution,

fν,ν̄(Eν,ν̄) =
1

eEν,ν̄/T + 1
, (25)

with energy Eν,ν̄ = | p⃗ν,ν̄|. Since µν = 0, neutrinos and antineutrinos share the same

distribution and energy for a given momentum. A representative value for their energy in

a thermal medium is the average,

⟨Eν,ν̄⟩ =
∫ ∞

0 E3/(eE/T + 1) dE
∫ ∞

0 E2/(eE/T + 1) dE
=

7π4

180 ζ(3)
T ≈ 3.15 T, (26)

which corresponds to the thermal average energy of a relativistic fermion in equilibrium.

However, for the sake of practicality and in line with common choices in the literature,

we adopt the approximate value Eν,ν̄ = 3T in the following calculations. An immediate

consequence of this approximation, considering that we explore temperatures starting from

T = 5 MeV, is that the effect of the neutrino mass is negligible: the ratio mν/Eν ≲ 6 × 10−8.
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It is worth noting that it is also possible to work at T = 0, but in that case, the neutrino

energy must be modeled according to the emission mechanism. This conclusion is indepen-

dent of the EoS, as it concerns the neutrino wave function, which does not enter into the

EoS description.

Before discussing our results, it is worth noting that, for trapped neutrinos and an-

tineutrinos, their distribution functions differ as follows:

fν(Eν) =
1

e(Eν−µν)/T + 1
, fν̄(Eν̄) =

1

e(Eν̄+µν̄)/T + 1
. (27)

This implies that ⟨Eν⟩ ̸= ⟨Eν̄⟩, which would in turn lead to different mean free paths for

neutrinos and antineutrinos. In addition, due to the definition of helicity, left-handed

neutrinos and right-handed antineutrinos share the same analytical expression for the

spinor (see Equations (A7) and (A9), respectively). Therefore, within our model, neutrinos

and antineutrinos have identical mean free paths.

To begin the discussion of our results, we compare them with those previously ob-

tained in Ref. [13], where certain approximations were made. Specifically, the neutron in

the initial state was assumed to have either spin up or spin down. Furthermore, it was

also assumed that the neutron’s final state always retained the same spin orientation as the

initial state. In our current model, the initial neutron spin state, given in Equation (A4),

is a mixed state in which each spin component is weighted by a factor. These factors are

chosen based on the results of the equation of state, so as to match the mean-field spin

projection with the system’s polarization. The use of such a wave function introduces

quantum interference terms that allow for the initial and final neutron spin states to differ.

In Figure 1, we show the previous results (dashed lines) and compare them with those

obtained using our improved scheme (solid lines). We recall that the ẑ-axis is defined

along the direction of the constant magnetic field, thereby establishing a preferred spatial

direction. In the absence of a magnetic field, the only relevant angle is the relative angle

between the incoming and outgoing neutrino. In the presence of the field, however, we

must consider the angle θν between the initial neutrino direction and the magnetic field, the

corresponding θν′ for the outgoing neutrino, and the azimuthal angle φν′ of the outgoing

neutrino. The weak interaction dynamics lead to different values for the neutrino mean

free path depending on θν, as shown in Figure 1. This asymmetry in the mean free path

suggests that, due to the scattering process, a higher number of neutrinos are expected to

travel in the direction of the magnetic field, where the mean free path is longer.

0.1 0.2 0.3 0.4
5

10

15

20

 
[m

]

[fm-3]

=0

=  

 

B=1018G, T=15MeV

=

Figure 1. The Neutrino mean free path for two different models. The dashed lines correspond to

the scheme in [13], while the solid lines represent the results of the present work. Both models were

evaluated using the LNS Skyrme interaction [52].
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Continuing with the discussion of Figure 1, we observe good consistency between both

approximations. At low densities, the results for θν = π/2 are very similar. For θν = 0 and

π, our present model shows a reduction in the asymmetry. The situation changes at higher

densities: for all angles, the mean free path is longer in the present model. In any case,

the differences between both models are noticeable. Two points should be emphasized:

first, in Ref. [13], we noted that the results for θν = π/2 were nearly identical for B = 0

and B ̸= 0. This agreement remains valid in our improved model at low densities, but

it no longer holds at high densities, where the mean free path increases compared to the

previous model. Second, in this figure we have chosen a temperature of T = 15 MeV.

This temperature smooths the results. We will later discuss the case of T = 5 MeV, which

requires a more detailed analysis.

To enable a more quantitative analysis of these results, we define the function

ζ = 100 × λ − λprev

λprev , (28)

where λprev denotes the neutrino mean free path obtained using the previous approxima-

tions from Ref. [13], and λ corresponds to the result from our improved model. Note that

the mean free path depends functionally on ρ, T, B, and θν, i.e., λ = λ(ρ, T, B, θν), although

this dependence is omitted for brevity.

Table 1 presents the values of the function ζ for several densities and neutrino incident

angles. This table supports the qualitative discussion given in Figure 1. Beyond the

consistency between the two approximations, the differences introduced by the improved

model are significant enough to justify its implementation. In particular, the value ζ = 9.65

for ρ/ρ0 = 2.5 and θν = π/2 stands out. This result has important implications within our

framework, although a detailed discussion is deferred to a later stage, specifically when

analyzing the case of temperature T = 5 MeV. It is well understood that all models are

approximations and inherently include some form of quantum interference terms. While

our proposed model provides a more accurate treatment of certain quantum interference

effects, direct comparisons between models remain challenging. Throughout this work,

we somewhat arbitrarily use the term “interference term” as a shorthand to refer to our

specific treatment of these terms.

Table 1. Values of the function ζ from Equation (28) for different densities and neutrino incident

angles. The density is given in units of the saturation density, ρ0 = 0.16 fm−3. The EoS, temperature,

and magnetic field strength are the same as in Figure 1.

ρ/ρ0 θν = 0 θν = π/2 θν = π

0.5 −2.97 1.81 6.01
1.0 −0.44 2.09 3.85
1.5 1.50 3.04 3.07
2.0 3.23 4.92 3.46
2.5 5.88 9.65 5.50

In what follows, we study the behavior of the neutrino mean free path as a function of

the magnetic field strength, temperature, and the equation of state. We begin in Figure 2,

showing results for different magnetic field strengths ranging from B = 1015 G up to

B = 1018 G. For θν = π/2 and at low densities, the results are nearly identical for all values

of B (including B = 0). At high densities, we observe the previously mentioned increase

in the mean free path for B = 1018 G, which decreases with lower values of B and almost

vanishes at B = 1015 G. The asymmetry in the neutrino mean free path is significant for

B = 1018 G, barely noticeable for B = 1017 G, and very small for the remaining values.
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Figure 2. The Neutrino mean free path for different values of the magnetic field and for T = 15 MeV.

The model interaction is the same as in Figure 1.

Next, in Figure 3, we analyze the effect of temperature on the neutrino mean free

path. Recall that we evaluate the mean free path as the inverse of the total cross section

per unit volume, as given by Equation (23). The available phase space is determined by

the distribution functions fsn(En, T) (see Equation (8)). As the temperature increases, these

distribution functions allow access to a larger phase space, leading to an increase in the cross

section and, consequently, a decrease in the mean free path, as shown in Figure 3. Regarding

the asymmetry in the mean free path, it also decreases with increasing temperature (note

the logarithmic scale in the figure). This is due to the reduction in spin polarization of the

system at higher temperatures, which in turn leads to a reduced asymmetry in the mean

free path. Thermal disorder tends to suppress spin alignment. Beyond these considerations,

note the crossing of the mean free paths for θν = π/2 and θν = 0 at T = 5 MeV. This

curious result is discussed in detail at the end of this section.

We now turn to the analysis of the dependence of the neutrino mean free path on

different models for the equation of state (EoS). This study is performed using three EoS

models: one that includes no strong interactions between neutrons, and two based on

different parameterizations of the Skyrme-type effective interaction. The first is the LNS

Skyrme model, and the second is the SLy4 model developed by Douchin et al. [53]. The

Skyrme framework incorporates strong interactions at the mean-field level. In the absence

of strong interactions, the EoS is determined solely by phase-space considerations arising

from the Pauli exclusion principle. These three EoS models have been selected for the

following reasons. The parameters of the LNS Skyrme model were fitted to reproduce

the nuclear matter EoS obtained in the non-relativistic Brueckner–Hartree–Fock (BHF)

approach using the Argonne V18 [54] nucleon–nucleon potential, supplemented with the

Urbana IX [55] three-nucleon force. This model yields neutron effective masses that do
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not deviate significantly from the bare mass; however, it exhibits a so-called ferromagnetic

instability at high densities. In contrast, the SLy4 model does not present this issue, but it

predicts small effective masses, which, as we will show, leads to an unexpected increase in

the neutrino mean free path. Finally, the inclusion of an EoS without strong interactions

serves to isolate and highlight the role of strong interactions in determining the neutrino

mean free path. A similar analysis for charge-exchange reactions was presented in [56].

0.1 0.2 0.3 0.4

1

10

100

T=30MeV

T=15MeV

  = 0
  = /2
  = 

 
[m

]

[fm-3]
 

 B=1018G

T=5MeV

Figure 3. The Neutrino mean free path for different temperatures and for B = 1018 G. The model

interaction is the same as in Figure 1.

For convenience, we discuss this topic using two figures, Figures 4 and 5, correspond-

ing to T = 15 MeV and T = 5 MeV, respectively. In both figures, panel (a) corresponds

to the free (non-interacting) EoS, panel (b) to the LNS Skyrme model, and panel (c) to the

Douchin parameterization of the strong interaction. From both figures, our first conclusion

is that the neutrino mean free path shows a strong dependence on the EoS, as the results

differ significantly across the various models. We emphasize this point, as our calculation is

fully self-consistent: we compute the EoS, and from it, determine the spin asymmetry, the

chemical potential, and the single-particle energies, which are then used in the calculation

of the neutrino mean free path. To the best of our knowledge, there is no universally

preferred set of EoS parameters. As a result, the predictions for the neutrino mean free path

remain model-dependent, pending observational data that could provide constraints to

select the most appropriate EoS.

We now examine the behavior of the neutrino mean free path in each panel individually.

For simplicity, we focus on Figure 4 (the discussion for Figure 5 is very similar). The results

for the free EoS shown in panel (a) illustrate the basic concepts of the problem: as the

density increases, the probability of scattering events increases, and thus the mean free path

decreases. Regarding the system’s spin asymmetry, increasing the baryon density enhances

the effect of the Pauli exclusion principle, favoring a more symmetric configuration with

equal numbers of spin-up and spin-down particles. A direct consequence of this reduced

spin asymmetry is a decrease in the asymmetry of the neutrino mean free path, as seen

in panel (a).
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Figure 4. The Neutrino mean free path for different equations of state (EoSs), at T = 15 MeV and

B = 1018 G. In panel (a), the free interaction EoS is employed. Panels (b,c) use the Hartree–Fock

approximation with Skyrme interactions. Specifically, panel (b) employs the LNS Skyrme interac-

tion [52], while panel (c) uses the parameterization developed by Douchin et al. [53].
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Figure 5. The The same as in Figure 4, but for T = 5 MeV. The meaning of each panel is the same as

in Figure 4.
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Panels (b) and (c) include the effects of the strong interaction, leading to a more

complex behavior. At low densities, the (short-range) strong interaction plays a minor role,

and the behavior resembles that of panel (a), albeit with a slightly reduced asymmetry in

the mean free path. At higher densities, the strong interaction becomes more significant,

and an increase in the mean free path with density is observed. This increase arises from

two different effects. In particular, in panel (b), there is a non-physical magnetization of the

system induced by the Skyrme interaction. Additionally, at high densities, a pronounced

reduction in the neutron effective mass contributes to the increased mean free path; this

effect is especially important in panel (c).

In both Figures 4 and 5, we observe an increase in the neutrino mean free path for

θν = π/2 relative to the two remaining angles. This effect is subtle at T = 15 MeV but

becomes very pronounced at T = 5 MeV, where, in all panels, a crossing occurs with the

result for θν = 0. The origin of this behavior will be discussed in detail in the remainder

of this section. From these figures, our first conclusion is that this feature is unlikely to be

directly related to the EoS, as it appears consistently across all models considered.

The origin of the crossing of the mean free paths discussed above is subtle and

involves several elements. It arises from quantum interference terms, which, to the best

of our knowledge, are analyzed for the first time in the present work. These terms result

from the dynamics of the weak interaction. At this stage, and for the purpose of gaining

insight into the underlying mechanism, it is more convenient to consider the total cross

section per unit volume rather than the mean free path. For simplicity, we focus on the

free interaction EoS at T = 5 MeV. The total cross section is given in Equation (23) and can

be naturally decomposed into four terms according to the spin projections of the initial

and final neutron states: uu, ud, du, and dd. For instance, the ud term corresponds to an

initial neutron with spin up and a final neutron with spin down. This decomposition is

shown in Figure 6. All curves in panels (a) and (b) exhibit the expected behavior, namely

a monotonic increase with density. What ultimately determines the behavior of the total

cross section is the relative contribution of each term.

Panel (a) shows the sum of the direct contributions (uu + dd) and the interference

terms (ud + du) for two relevant neutrino angles. All contributions increase monotonically

with density. The direct terms converge at high densities, with uu + dd taking consistently

lower values for θν = 0. The interference terms, on the other hand, behave differently:

ud + du is larger for θν = 0 than for θν = π/2, and the difference between the two remains

approximately constant at medium and high densities. This panel reveals that the total

contribution (uu + dd + ud + du) exhibits a crossing between the results for the two angles.

This identifies the origin of the nontrivial behavior, though it does not yet constitute a full

explanation. It is now clear that the interference terms are responsible for the observed

feature. As already mentioned, to the best of our knowledge, these contributions are

accounted for explicitly here for the first time.

We now turn to the trace function Tr L
sn ,sn′

(θν, θν′ , φν′) in Equation (20). From this

expression, we define two functions associated with the interference contributions:

Θud(θν, θν′) = 1 + cos θν − cos θν′ − cos θν cos θν′ , (29)

Θdu(θν, θν′) = 1 − cos θν + cos θν′ − cos θν cos θν′ , (30)

Inspection of Equation (20) shows that Θud(θν, θν′) and Θdu(θν, θν′) are associated with the

ud and du contributions, respectively.
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Figure 6. Different Contributions to the cross section per unit volume. The magnetic field intensity

is B = 1018 G and the temperature T = 5 MeV. Panel (a) shows the sum of the interference terms,

while panel (b) displays the individual contribution of each term. Further details are provided in the

main text.

Panel (b) of Figure 6 shows the individual interference terms. It is useful to keep in

mind the expressions for Θud and Θdu, and their values for θν = 0 and θν = π/2, listed in

Table 2. From this panel, one finds that

ud(θν = 0) ∼= 2 ud(θν = π/2),

du(θν = 0) = 0,

which can be directly understood from Table 2.

Table 2. Particular values for the functions Θud(θν, θν′ ) and Θdu(θν, θν′ ), as defined in Equations (29)

and (30), respectively.

θν = 0 θν = π/2 θν = π

Θud(θν, θν′) 2 (1 − cos θν′) 1 − cos θν′ 0
Θdu(θν, θν′) 0 1 + cos θν′ 2 (1 + cos θν′)

It remains to understand why ud(θν = π/2) > du(θν = π/2). This result is somewhat

counterintuitive, given that the system’s polarization favors neutrons with spin down. In

Equation (20), we observe that the ud contribution is weighted by the factor a2
sn↑, while the

corresponding factor for du is a2
sn↓, with a2

sn↑ < a2
sn↓. This inequality in the cross section can

be understood in terms of the structure function S0
s1,s2

(q0, q⃗, T), defined in Equation (24).

Figure 7 shows the structure function as a function of q0 for a representative value of |⃗q|,
selected from the numerical analysis.
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Figure 7. Energy Energy dependence of the structure function S0
si ,s f

(q0, q, T), shown in units of

10−3 MeV−1fm−3. The results correspond to a baryon density of ρ/ρ0 = 2.5, where ρ0 = 0.16 fm−3.

The spin projections si and s f take the values u and d, corresponding to s = 1 and s = −1, respectively.

The magnetic field strength is B = 1018 G, and the temperature is fixed at T = 5 MeV. Panel (a) shows

all the terms of the structure function, while panel (b) provides a detailed view of the interference

terms of the same function.

Under the conditions of Figure 7 (q = 30 MeV), the cross section receives contributions

from values of q0 within the approximate range ∼ (−10, 5) MeV. These values are schematic

in nature and are presented solely for illustrative purposes, to highlight the features of our

results. Notably, over the entire range of q0, S0
du dominates over S0

ud. However, due to the

fixed neutrino energy Eν = 3T, the kinematics restrict the range of accessible q0 values, as

discussed above. This restriction accounts for the observed hierarchy between ud and du

and also explains why the effect becomes less pronounced at higher temperatures.

In summary, the peculiar behavior originates in the weak interaction dynamics, en-

coded in the functions Θud(θν, θν′) and Θdu(θν, θν′). As a final point, in Figure 8, we present

the neutrino mean free path as a function of the incoming neutrino angle θν for two different

baryon densities. At low density, the result is as expected: neutrinos are preferentially

emitted parallel to the magnetic field. However, at high density, the maximum occurs near

θν ≲ π/2. This outcome significantly alters the prevailing paradigm regarding asymmetric

neutrino emission due to neutrino–neutron scattering. It indicates that at high densities

and low temperatures, neutrinos are predominantly emitted perpendicular to the magnetic

field. As discussed, this result is independent of the equation of state.
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Figure 8. Neutrino Neutrino mean free path plotted as a function of the incoming neutrino angle θν,

over the interval θν ∈ [0, π], for two different baryon densities: ρ/ρ0 = 0.7 in panel (a) and ρ/ρ0 = 2.5

in panel (b). The magnetic field strength is B = 1018 G, and the temperature is fixed at T = 5 MeV.

Before concluding this section, it is worth noting that, due to the scale of the reaction

under consideration, the density, temperature, and magnetic field are treated as locally

constant. In a realistic neutron star model, these quantities vary with position inside the

star. To implement such a model, it is necessary to know the cross section (or, equivalently,

the mean free path) for the reaction of interest, among other inputs; this is the focus of the

present contribution. In a recent work [56], we addressed charge-exchange reactions under

the same level of approximation. Unfortunately, our non-relativistic model is not suitable

for describing the dense stellar core; a relativistic treatment is necessary. Together with the

inclusion of nuclear correlations beyond the mean-field level, we consider the development

of a relativistic model a possible direction for future work, although it lies beyond the scope

of the present study. Under the conditions considered here, a fully relativistic model should

reproduce our results in the appropriate limit. This highlights the role of the non-relativistic

result as a guiding reference for the more comprehensive relativistic treatment.

Regarding the pulsar kick problem, our present results disfavor asymmetric neutrino

emission as its explanation. This stands in contrast to the findings for charge-exchange

reactions discussed in Ref. [56]. Ultimately, incorporating all relevant reactions into a

realistic neutron star model would be necessary to resolve this issue conclusively. For a

recent review of the pulsar kick problem, we refer the reader to the work of Lambiase and

Poddar [57], where several possible explanations are briefly discussed.

5. Summary and Conclusions

In this work, we have analyzed the neutrino–neutron scattering reaction ν + n →
ν′+ n′, in neutron matter at finite temperature and in the presence of a strong magnetic field.

Particular attention was given to the issue of the neutrino mass, which remains an open
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problem with far-reaching implications. Although our analysis shows that the inclusion of

a finite neutrino mass does not affect the results presented here, this conclusion is nontrivial

and, as such, warrants a dedicated discussion. The core of this study focused on the

development and application of a formalism that explicitly includes quantum interference

terms, which, to the best of our knowledge, had not been previously considered in this

context. These interference terms were found to have a significant impact on the neutrino

scattering process and, consequently, on the mean free path.

We performed a fully self-consistent calculation where the neutrino mean free path

was computed using the same theoretical model as the equation of state (EoS), evaluated

under identical conditions of density, temperature, and magnetic field. To assess the model

dependence of the reaction rates, we also considered different EoSs. Our results show

that the mean free path exhibits a strong sensitivity to the choice of EoS, underlining the

relevance of adopting a self-consistent approach. The presence of the magnetic field in-

troduces an angular asymmetry in the mean free path, which we have analyzed in detail.

Remarkably, we find that the inclusion of quantum interference terms significantly alters

the behavior of this asymmetry, modifying the prevailing paradigm that has governed our

understanding of neutrino–neutron scattering in magnetized matter up to now. Further-

more, we observe that for low and intermediate densities, the neutrino flux is enhanced

for neutrinos propagating parallel to the magnetic field. In contrast, at high densities, the

dominant contribution to the flux arises from neutrinos moving perpendicular to the field.

Assuming that the magnetic field of the star possesses cylindrical symmetry, the emission

of neutrinos in the direction perpendicular to the field results in a significant suppression of

the relative weight of this contribution to the explanation of the pulsar kick phenomenon.

As discussed in the previous paragraph, quantum interference terms play a crucial role

not so much in determining the mean free path itself, but rather in modifying its angular

dependence. These terms are included for the first time in this work and originate from

a dynamical effect of the weak interaction. Remarkably, we find that this effect persists

across all the EoS models considered. The strong interaction is treated at the mean-field

level throughout our analysis. However, we also show that going beyond the mean-field

approximation leads to the emergence of a new set of interference terms, which have not

been previously explored. In this work, we provide the analytical expressions for these

additional contributions. Their impact could be further investigated by incorporating

correlations of the ring type, which offers a promising direction for future studies.
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Appendix A. Wave Function for Neutrons, Neutrinos, and Antineutrinos

This appendix is devoted to the description of the wave functions for the neutron and

the neutrino. All wave functions are normalized within a reference volume V, introduced

for convenience. It is important to note that the final expressions for the cross section per

unit volume do not depend on the specific choice of V. We assume a uniform magnetic
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field oriented along the z-axis, B = Bk̂. Furthermore, as noted in the main body of the text,

a distinction is made between wave functions corresponding to the initial and final states.

Appendix A.1. The Neutron

We employ a non-relativistic wave function for the neutron, given by

Ψn (⃗r, t) = (V)−1/2ei( p⃗n ·⃗r−Ent) Un, (A1)

where

En = mn +
p2

n

2m∗
sn

+
vsn

8
− snµBnB, (A2)

with µBn = −1.913µN . In this expression, m∗
sn

represents the effective mass, and vsn denotes

the single-particle energy potential. Both quantities depend on spin, and their analytical

expressions within the Skyrme model can be found in [46,58]. For the non-interacting

model, we have m∗
sn

→ mn and vsn → 0.

For the spin part of the wave function, we distinguish between the neutron being in

the initial or final state:

i. Neutron in the initial state: The spin component of the wave function is given by

Un = (an↑)











1

0

0

0











+ (an↓)











0

1

0

0











. (A3)

ii. Neutron in the final state: We have two spinors

Usn′ =











δsn′↑
δsn′↓

0

0











, (A4)

and we must sum up over sn = +/ − 1, for spin up or down, respectively. Finally, at

this point, it is convenient to include

∫

dΠn = ∑
sn=±1

1

(2π)3

∫

d3 pn. (A5)

Appendix A.2. The Neutrino

We are considering massless neutrinos which are left-handed (or polarized). In this

case, for a neutrino with momentum p⃗ν, its energy is | p⃗ν | and the wave function is

given by

ΨL
ν (⃗r, t) = V−1/2ei( p⃗ν ·⃗r−| p⃗ν |t) UL

ν (θν, φν), (A6)

where

UL
ν (θν, φν) =

1√
2











−
√

1 − cos(θν) e−iφν

√

1 + cos(θν)
√

1 − cos(θν) e−iφν

−
√

1 + cos(θν)











, (A7)
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where θν is the polar angle for p⃗ν and φν is its azimuthal angle. As we are considering a

single neutrino with its wave function given by Equation (A6), no summation over the

neutrino initial state is needed.

Appendix A.3. The Antineutrino

The massless antineutrinos are right-handed. The wave function is given by

Ψν̄(ρ, φν̄, z, t) = V−1/2e−i( p⃗ν̄ ·⃗r−| p⃗ν̄ |t) Uν̄(θν̄, φν̄), (A8)

where p⃗ν̄ is the momentum, | p⃗ν̄ | its energy, and

Uν̄(θν̄, φν̄) =
1√
2











−
√

1 − cos(θν̄) e−iφν̄

√

1 + cos(θν̄)
√

1 − cos(θν̄) e−iφν̄

−
√

1 + cos(θν̄)











, (A9)

is the antineutrino spinor, where θν̄ is the polar angle of p⃗ν̄, and φν̄ is its azimuthal angle.

Note that massless neutrinos are left-handed, while antineutrinos are right-handed. The

helicity operator differs in sign due to the momentum of these particles, which explains

why Equations (A7) and (A9) are identical. Additionally, since massless neutrinos and

antineutrinos have only one possible state, there is no need to distinguish between initial

and final states.

Appendix B. Evaluation of the Structure Function S
0

In this Appendix, we derive an analytical expression for the structure function of

a system of neutral particles in a strong magnetic field. A similar derivation, but for

unpolarized particles, can be found in [23]. We provide the most general expression for

this structure function. The structure function is given by the following expression:

S0
s1,s2

(q0, q⃗, T) =
1

(2π)2

∫

dp⃗1 δ(q0 + E1 − E2) f1(E1, T) [1 − f2(E2, T)], (A10)

where p⃗1 is the momentum of the hadron in the initial state. For the final state, we have

p⃗2 = p⃗1 + q⃗. The distribution function is given by

fsi
(Ei, T) =

1

1 + e(Ei−µi)/T
. (A11)

For neutral particles within the Skyrme model, the single-particle energy is given by

the following:

E1 = mN +
p2

1

2m∗
s1

+
vs1

8
− s1µBnB, (A12)

E2 = mN +
( p⃗1 + q⃗)2

2m∗
s2

+
vs2

8
− s2µBnB, (A13)

where mN is the nucleon mass. In this expression, the effective mass (m∗
si

), together with

the single particle potential energy (vsi
), depend on the density of the system, and explicit

expressions are found in [46,58]. To solve the integral in Equation (A10), we start analyzing

the energy coacervation:

q0 + E1 − E2 = 0, (A14)

where we now employ the expressions for E1 and E2 given in Equations (A12) and (A13),

respectively. After some algebra, we found
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κ0 =
m∗

s2

p1q

(

∆M p2
1 + ω0 −

q2

2m∗
s2

)

, (A15)

with the following definitions:

κ =
p⃗1 · q⃗

p1q
,

ω0 = q0 +
1

8
(vs1

− vs2) + (s2 − s1)µBnB,

∆M =
1

2

(

1

m∗
s1

− 1

m∗
s2

)

. (A16)

Now the energy conservation is rewritten as

δ(q0 + E1 − E2) =
m∗

s2

p1q
δ(κ − κ0). (A17)

Considering that
∫

dp⃗1 =
∫ 2π

0
dφ

∫ 1

−1
dκ

∫ ∞

0
dp1 p2

1, (A18)

and using the energy conservation, Equation (A10) is now

S0
s1,s2

(q0, q⃗, T) =
1

2π

m∗
s2

q

∫

|κ0|≤1
dp1 p1 f1(E1, T) [1 − f2(E1 + q0, T)]. (A19)

To solve this integral, we define

ξ =
E1 − µ1

T

ζ =
q0 + µ1 − µ2

T
, (A20)

we have dp1 p1 = Tm∗
s1

dξ. After some algebra, we rewrite Equation (A19) as

S0
s1,s2

(q0, q⃗, T) =
1

2π

m∗
s1

m∗
s2

T

q

∫

dξ
1

1 + e ξ

1

1 + e−ξ−ζ
,

=
1

2π
(−1)

m∗
s1

m∗
s2

T

q

1

1 − e−ζ
ln

1 + e ξ

e−ζ + e ξ

∣

∣

∣

∣

(p1)max

(p1)min

. (A21)

This is the final expression for the structure function after fixing the integration limits,

(p1)min and (p1)max. These values are determined by the condition |κ0| ≤ 1, and after

squaring Equation (A15), we obtain the following:

f (x) ≡ α x2 + β x + γ ≤ 0, (A22)

where

x = p2
1,

α = ∆2
M,

β = 2∆M

(

ω0 −
q2

2m∗
s2

)

−
(

q

m∗
s2

)2

,

γ =

(

ω0 −
q2

2m∗
s2

)2

. (A23)
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The roots of Equation (A22), together with the condition f (x) ≤ 0, determine the range of

integration. In the following, we analyze the two possible cases according to the relative

values of the masses.

Appendix B.1. When m∗
s1
̸= m∗

s2

This situation take place when s1 ̸= s2, and also when we have two different kind of

particles. Note that by construction, α ≥ 0. The range of integration is obtain by the roots of

f (x) = 0. Let us call these roots xmin and xmax, with xmin ≤ xmax. To analyze the different

possibilities, we introduce

disc ≡ β2 − 4 α γ.

Having in mind the condition f (x) ≤ 0, we have

• If disc < 0, then S0(q0, q⃗, T) = 0, because the condition f (x) ≤ 0 can not be fulfilled.

• If disc = 0, then S0(q0, q⃗, T) = 0 because there is only one point where the condition

f (x) ≤ 0 is fulfilled.

• If disc > 0 and xmax ≤ 0, then S0(q0, q⃗, T) = 0 because there are no real values for p1.

• If disc > 0 and xmin ≤ 0, but xmax > 0, then the integration over p1 has the range

p1 ∈ [0,
√

xmax].

• If disc > 0 and xmin ≥ 0, then the integration over p1 has the range p1 ∈ [
√

xmin,
√

xmax].

Appendix B.2. When m∗
s1
= m∗

s2

In this case, ∆M = 0, and Equation (A22) reduces to

β x + γ ≤ 0, (A24)

therefore, the limits of integration are

(p1)min =
m∗

s2
ω0

q
− q

2
,

(p1)max → ∞, (A25)
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