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Abstract: We investigate the asymmetry in the mean free path of massive neutrinos prop-
agating through hot neutron matter under strong magnetic fields. The system is studied
at temperatures up to 30 MeV and baryon densities up to p/py = 2.5, where py is the
nuclear saturation density. Magnetic field strengths up to B = 10'® G are considered. We
analyze three different equations of state: one corresponding to a non-interacting Fermi
gas and two derived from Skyrme-type interactions. The impact of a finite neutrino mass
is assessed and found to be negligible within the energy range considered. The neutrino
mean free path is computed for various angles of incidence with respect to the magnetic
field direction, revealing a clear angular asymmetry. We show that quantum interference
terms contribute significantly to this asymmetry, enhancing neutrino emission in directions
perpendicular to the magnetic field at high densities. This result contrasts with previous
expectations and suggests a revised interpretation of neutrino transport in magnetized
nuclear matter.

Keywords: a Asymmetry in the neutrino mean free path; equation of state of stellar matter;
the pulsar kick problem; impact of neutrino oscillations

1. Introduction

Neutrino oscillation is a quantum mechanical phenomenon in which neutrinos change
their flavor (electron, muon, or tau) as they propagate through space. This behavior
demonstrates that neutrinos have mass, a fact that challenges the Standard Model of particle
physics, which initially assumed massless neutrinos. The discovery of neutrino oscillations
was first conclusively demonstrated through the observation of atmospheric neutrinos
by the Super-Kamiokande experiment. In 1998, the Super—-Kamiokande collaboration
reported a deficit in the expected number of muon neutrinos arriving from the atmosphere,
depending on the distance traveled, providing strong evidence for oscillation and therefore
non-zero neutrino mass [1]. This groundbreaking result has profound implications: it
not only necessitates an extension of the Standard Model but also opens new avenues in
cosmology and particle physics, including the role of neutrinos in the evolution of the
universe and the search for CP violation in the lepton sector, among other areas.

The confirmation that neutrinos have mass and oscillate between flavors has signifi-
cantly deepened our understanding of their role in astrophysical environments, especially
in extreme conditions such as those found in neutron stars and magnetars. These ultra-
dense stellar remnants, particularly magnetars, whose magnetic fields can reach surface
intensities of 1014-10'° G and increase dramatically within their dense interiors [2], provide
natural laboratories for studying neutrino behavior under intense magnetic forces. In such
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environments, neutrino emission becomes a dominant cooling mechanism and influences
the star’s thermal and magnetic evolution [3]. Within the broader context of core-collapse
supernovae, the review by Burrows and Vartanyan [4] provides a comprehensive overview
of the problem, addressing not only neutrino physics but also the evolution of the su-
pernova remnant. Moreover, the strong magnetic fields in magnetars can affect neutrino
propagation and oscillation patterns, potentially leading to flavor conversions enhanced by
matter and magnetic effects [5-8]. Understanding neutrino interactions in these settings is
crucial not only for modeling supernovae and neutron star formation but also for probing
the physics of dense matter, magnetic field generation, and the potential existence of sterile
neutrinos or non-standard interactions beyond the Standard Model [9]. Thus, the study of
neutrino oscillations not only reshapes fundamental particle physics but also enriches our
comprehension of the most violent and enigmatic objects in the cosmos.

One particularly intriguing astrophysical phenomenon potentially linked to neutrino
behavior in highly magnetized neutron stars is the so-called pulsar kick: the observation
that many pulsars are born with high space velocities, often exceeding 1000 km/s, far
greater than those of their progenitor stars [10]. While several mechanisms have been
proposed, one compelling explanation involves anisotropic neutrino emission during the
proto-neutron star cooling phase, especially in the presence of ultra-strong magnetic fields.
These fields can polarize the medium, thus modifying the cross-sections for neutrino
interactions, resulting in asymmetric momentum transfer that imparts a net recoil to the
newly formed neutron star [11]. Magnetars, with their extreme field strengths, provide
a natural context in which such asymmetries could be amplified. Furthermore, certain
models suggest that parity-violating weak interactions in a magnetized medium could
generate directional neutrino fluxes aligned with the magnetic axis [12]. These processes
offer a viable channel for generating the observed natal kicks and connect large-scale
neutron star dynamics with microphysical processes occurring under extreme conditions,
thus linking compact object astrophysics with fundamental particle interactions.

In this work, we focus on the inelastic scattering of neutrinos with neutrons, a mecha-
nism responsible for the asymmetric emission of neutrinos. More specifically, we evaluate
the neutrino mean free path (defined as the inverse of the total neutrino cross section per
unit volume) in hot, dense matter under the influence of a strong magnetic field. The

neutrino mass is very small, m, < 1 eV, and this non-zero mass allows for the presence of

a right-handed component in the neutrino state, although its contribution is expected to
be negligible. In the limiting case of massless neutrinos, only fully polarized left-handed
neutrinos exist. These represent the dominant contribution and are the main focus of this
work. Nevertheless, to gain some insight into the physics of right-handed neutrinos, we
also discuss this point.

It is worth mentioning that we have previously studied the mean free path of left-
handed neutrinos in Ref. [13], where a specific set of approximations was employed. In the
present work, we revisit these approximations, which leads to the emergence of quantum
interference terms that were not considered before.

The neutrino—neutron inelastic scattering cross section can be evaluated either in free
space or within a dense medium. However, the mean free path is physically meaningful
only in a dense medium, which must be characterized by an equation of state (EoS). In
this work, we explore three different equations of state. The first one assumes no strong
interaction among neutrons, whereas the remaining two are based on the Hartree-Fock
approximation employing the Skyrme interaction, commonly known as the Skyrme model.

The neutrino mean free path in the absence of a magnetic field has been studied by
many authors using various approximation schemes and models of the trapping environ-
ment (see, e.g., Refs. [14-27], and references therein). The behavior of neutrinos in dense
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matter under strong magnetic fields has also been explored in the literature [13,28-40].
However, the asymmetry in neutrino emission caused by the breaking of isotropy due to
the magnetic field has not been extensively discussed.

This paper is organized as follows: In Section 2, we briefly discuss neutrino polar-
ization. In Section 3, we present elements of the EoS and derive an analytical expression
for the neutrino cross section per unit volume for left-handed neutrinos. In Section 4, we
discuss our results, and finally, in Section 5, we present our conclusions.

2. Neutrino Polarization: A Brief Discussion

The existence of a nonzero neutrino mass has profound implications for the structure
of neutrino states. In the massless limit, neutrinos are purely left-handed and antineutrinos
are right-handed, as dictated by the Standard Model. However, once a mass term is
introduced, each neutrino state acquires both left- and right-helicity components due to the
Lorentz structure of the Dirac spinor. The right-helicity component of a neutrino (or left-
helicity component of an antineutrino) becomes nonzero, but its amplitude is suppressed
by a factor proportional to m,, / E,, where m, is the neutrino mass and E, its energy. Given
the extremely small mass of the neutrino compared to typical energies involved, the
right-helicity component is extremely suppressed and often considered unobservable.
Nonetheless, its existence is a direct consequence of neutrino mass and can, in principle, be
probed in precision experiments involving polarized sources or detectors.

In principle, the presence of both helicity components in a massive neutrino state opens
the possibility of helicity oscillations, especially when neutrinos propagate through external
fields or media. These transitions between left- and right-helicity states are suppressed in
vacuum due to the smallness of the mass, but can be enhanced in certain conditions, such
as in the presence of strong magnetic fields or dense matter through mechanisms involving
spin-flip processes or magnetic moment interactions [41-44]. Despite their tiny amplitude,
right-helicity neutrino components could have significant implications in astrophysical
environments, where long propagation distances and extreme conditions might lead to
cumulative effects. Moreover, if right-handed neutrinos are sterile, i.e., non-interacting
under the Standard Model forces, the conversion of active left-handed neutrinos into
sterile right-handed states could impact neutrino fluxes observed in experiments and
cosmological observables. Thus, even a seemingly negligible component may play a crucial
role in scenarios beyond the Standard Model.

Unfortunately, the interaction between right-handed neutrinos and neutrons is not
known. Within the framework of the Standard Model, such an interaction is strictly absent,
implying a vanishing cross section for right-handed neutrinos. However, as we shall
discuss below, the presence of a mass term leads to energy eigenstates that are admixtures
of left- and right-handed components. This mixing induces a small correction to the left-
handed component, even in states initially produced as purely left-handed. As a result, the
modified wave function can exhibit a suppressed but nonzero sensitivity to phenomena
that would otherwise involve only right-handed neutrinos. This subtle effect, though
minute, forms the basis for exploring possible deviations from Standard Model predictions
in neutrino scattering and propagation.

In a more specific way, if the mass of the neutrino is nonzero, then the energy eigen-
states are not eigenstates of chirality. The energy eigenstates can be written as a linear
combination of left- and right-chiral states through a unitary transformation:

) = cosf|vh) —sind [vR), (1)

v™) = sin@|vh) + cos@ [vR), ()
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where [T (7)) is the positive (negative) energy eigenstate, and |v"(R)) denotes the left-
(right-) chiral component of the neutrino.
In the limiting case of massless neutrinos, § — 0, and we recover the following:

V) = vh),

as expected, since helicity and chirality coincide for massless fermions.
The mixing angle 6 is given by the following:

my Ev
cosf =

Let us focus on Equation (1). The right-chiral component corresponds to a sterile neutrino,

sinf =

)

whose interactions with a neutron (or other Standard Model particles) are highly suppressed
or unknown. Therefore, when calculating the neutrino—neutron cross section, only the
left-chiral component contributes. However, due to the nonzero neutrino mass, the left-
chiral component is multiplied by a factor cos 0, reflecting the admixture of the sterile
(right-chiral) component. The importance of this correction depends directly on the energy
of the neutrino: the smaller the energy, the larger the deviation from a pure left-chiral state.

3. The Neutrino Mean Free Path for a Polarized System

In this section, we present analytical expressions for the mean free path (A) of left-
handed neutrinos in the reaction,

vin—v +1, (4)

where v (') and n (n") denote the initial (final) neutrino and neutron, respectively. Specifi-
cally, we compute the total cross section per unit volume (¢ / V), from which the neutrino
mean free path is straightforwardly obtained as

A= (c/V)"L. (5)

First, we introduce some elements of the equation of state (EoS) employed in this work,
where the magnetic field induces spin polarization in the neutron medium. For clarity,
the reader is advised that the term “polarization” in Section 2 refers to neutrino helicity,
whereas in this section, it pertains to neutron spin polarization. This brief description of
the EoS sets the stage for the subsequent discussion, and then we derive the expressions for
the cross section per unit volume.

3.1. The EoS Model for Pure Hot Neutron Matter in a Strong Magnetic Field

Our system consists of pure hot neutron matter in a strong magnetic field. To describe
it, we employ an equation of state (EoS) derived from the Skyrme model. We also employ
a non-interacting Fermi gas EoS, which is simply obtained from the former by putting
the strong interaction equal to zero. Due to the presence of the magnetic field, the system
becomes polarized. A system of spin-polarized neutron matter consists of an infinite
collection of neutrons categorized into two groups based on their spin orientation: those
with spin-up and those with spin-down. Their respective number densities are denoted as
On,s,=+1 and p, s, =—_1, where s, represents the spin projection. The total number density of
the system is then given by

Pn = pn,511:+1 +le,Sn:—1 (6)
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The degree of spin polarization in the system is quantified by the spin asymmetry density,
defined as

Wy = Pn,sp=+1 — Pn,sp=—1- (7)

A system with W, = 0 corresponds to an unpolarized neutron matter state, where spin-up
and spin-down neutrons are equally distributed. On the other hand, when W,, reaches
its extreme values of p, or —p;, all neutrons are aligned in the same direction, resulting
in a completely spin-polarized state: either all spin-up or all spin-down. Intermediate
cases, where W, takes values between these two extreme values, represent states of partial
spin polarization.

The equation of state (EoS) is evaluated within the Skyrme model, which provides
an effective framework for describing nuclear interactions [45]. This model consists of
a two-body contact potential along with additional terms that explicitly depend on den-
sity, accounting for the effects of three-body and multi-body forces. By employing this
interaction within the Hartree—Fock approximation, one constructs an energy density func-
tional and subsequently the Helmholtz potential. Minimizing this potential determines
the physical state of the system. This approach captures the competition between the
magnetic field, which promotes alignment of spins along its axis, and the Pauli exclusion
principle, which drives the populations p;; s, =11 and p,, s, —_1 toward equilibrium. The
resulting compromise leads to a state of partial spin polarization, quantified by W,,. The
corresponding single-particle spectrum can be written in a form where the interaction gives
rise to two distinct contributions: the effective mass and the residual potential energy.

To compute the equation of state (EoS), the required inputs are the total baryon density
pn, the temperature T, and the strength of a uniform magnetic field aligned along the
z-axis. The resulting outputs are the chemical potential yi;;, the single-particle energy, and
the spin-resolved number densities p;;,s,. In our framework, the chemical potential is
spin-independent, while the number density varies with spin projection.

We now introduce some definitions used throughout this work. First, the func-
tion fs,(En, T), which in the thermal equilibrium is given by the Fermi-Dirac particle

distribution function: 1

1 +exp[(En —un)/T]’

where E,, is the neutron single-particle energy and y;, its chemical potential. The expression

fsu(En, T) (®)

for the number density with a defined spin projection is

1 -
Pn, sy = W/dpn f(Es,, T), )

where p;, is the momentum carried by the neutron.
Before concluding this section, we introduce the expression for the spin asymmetry
parameter A;,
A, = Pn,sp=+1 — Pn,sy,=—1 . (10)
On,sp=+1 + On,sp=—1

This parameter quantifies the polarization level of the system and plays a key role in
specifying the initial wave function. For later convenience, we define the following
auxiliary quantities:

1+sy,

Snt - 7

ay = 1+2An <1J;sn> and a,| = 1—2An (1—2571), (11)

0
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An up arrow (down arrow) indicates spin up (down), thatis, s, = +1 (s, = —1). A more
detailed treatment can be found in [46,47].

3.2. The Neutrino Cross Section for a Polarized System

In this section, we present expressions for the left-handed neutrino cross section
per unit volume in a polarized system for the inelastic neutrino—neutron reaction. This
derivation differs from the one in [13], where we analyzed the same reaction with some
approximations. In [13], we split the cross section into two contributions: one for an initial
neutron with spin up and the other with spin down. In the present work, we consider a
mixed initial neutron wave function, including both spin-up and spin-down components.
This wave function is constructed to match the polarization of the entire system. More
explicitly, using the initial neutron spin wave function from Equation (A3) in Appendix A,
we obtain

(U,|S.|u,) = A,

N =

, (12)

where the value of A, is taken from the EoS.

The employment of this mixed spin wave function results in quantum interference
terms that were not considered in [13] and are discussed at the end of this section. Moreover,
we establish a self-consistent link between the evaluation of the EoS and the cross section.

Using the Fermi Golden Rule (see, e.g., [48]), we can write down the contribution of
the reaction (4), to the total cross section per unit volume simply as follows:

g d_' ! d_’ " d_’ !
(1;7) - / (zfrv)a / (zfzn)s / (2]7?:)3(271)45(@(%%”*%’*Pn’)

<|Mv’n/,wz |2>

S vmam 13
2%EyEy EnE,y (13)

X fsu (En, T)(1 = fs,, (Ew, T))
where p; = (E;, p;) is the four-momentum of particle 7, and M, ., is the so-called Moller
invariant transition matrix, which we define below. The symbol ( ) denotes the sum over
final states and an average over the initial ones. An important aspect of our scheme is that
the use of Equations (A1) and (A6), for the initial neutron and neutrino, implies that we do
not perform any averaging over the initial neutrino state or over the initial spin state of the
neutron, as both are assumed to be known by hypothesis.

The two ingredients required to obtain the total neutrino cross section are the invariant
transition matrix M, ,,, and a model for the equation of state (EoS) of neutron matter.
The former describes a two-body process mediated by the weak interaction, while the latter
characterizes the state of the strongly interacting neutron system, as previously discussed.
We now focus on the evaluation of the matrix M, ,,,,. Below, we outline the main steps in
its derivation; for further details, we refer the reader to [13].

Our starting point is the following Lagrangian density, written in terms of a current—
current interaction:

= 56 (B0 =150 ) (B rw(Cy = Carshn ) (1)

L
Here, Gr ~ 1.436 x 10~ erg cm 3 is the Fermi coupling constant, and the coefficients
Cy = —1/2and C4 = —1.23/2 are the vector and axial-vector couplings, respectively. This
expression can be employed only for left-handed neutrinos (or right-handed antineutrinos).
For simplicity, we neglect the weak magnetism term, as it is of order O(1/m) [24,49,50].
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as follows:

The matrix element M, ,, can be derived from the Lagrangian density above

Mu’n/,vn = %Gp (uv/fyf‘(l — 75)111/) (un/'yy(CV — CA’)/5)Mn> . (15)

It is convenient to express the squared matrix element as a contraction between a leptonic
(I**) and a hadronic (H,,,) rank-two tensor:

with

and

1
|M1/’n’,vn|2 = EG% lthwxl (16)
" = (uv'y”(l - 75)111//) (uvﬂy"‘(l - '75)u,/>, (17)
Hyy = (un(CV + CA'YS)'qun/) (”n"Ya(CV - CA'YS)”H) . (18)

The analytical evaluation of Equation (16) is laborious but straightforward. In what

follows, we present its non-relativistic reduction, where we employ the spinors given in
Equations (A3), (A4), (A7), and (A9). First, we introduce the notation

<|Mv’n’,vn |2> = Trsn,S,,/ (01// 6y, ‘Pv’) + ATrSn,Sn/ (61// Oy, ‘Pv’)/ (19)

where 6, (0,) is the polar angle of the incoming (outgoing) neutrino measured with respect

to the direction of the magnetic field (taken along the Z-axis). Here, ¢,/ is the azimuthal

angle of the outgoing neutrino, and without loss of generality, we set ¢, = 0 for the

incoming neutrino. For left-handed neutrinos (or right-handed antineutrinos), we have

Trsl;,sn/ (61// 91/’/ (Pv’)

AT”SL,,,sn/ (91// 91/’/ (Pv’ )

m+ 4+ + + |

+ o+ + X

where

16E,E,rmy {CY (14 cos0y,,) (a5 15, + a5, 35,

2CyCy (cos by + cosb,) (agnT(ssn’T - a?niésn,i)

C% [(1+ cos 6y cos 8,, — sin B, sin 6,/ cos ¢V/)(a§;1T55n’T + a?wésn%)
2(1 — cos 6y + cosf,, — cos 6, cos le)agn l‘SSnI .
2(1+ cos 6, — cos6,, — cos b, cos 9v/)a§nT55n/$)]} (20)
32E,E,m3 ag,1a5,) {CvCa

[(sin 6y (1 + cosb,/) + sin 6,/ (1 — cos By) cos ¢y )ds, .,

(sin 6y (1 — cos 0,/) + sin 0,/ (1 + cos 6) cos ¢,)ds , |

C% [(sin 8, (1 + cos 6,/) — sin B,/ (1 — cos b,) cos (PV')(SSM

(sin 6y, (1 — cos B,/ ) —sinf,/ (1 + cosb,) cos 471,/)(55”]}, (21)

cos 0, ,, = cos 0y, cos b, + sin b, sinb,/ cos ¢, . (22)

These expressions contain different kinds of quantum interference terms. In the first place,
the terms proportional to the product Cy,C4 represent interference between the vector and
axial-vector components of the weak interaction. These terms vanish in the absence of a

magnetic field.

Our choice of the initial neutron wave function leads to two kinds of quantum inter-

ference terms from the hadron system: those proportional to a?ﬂ 1951 OF ﬂ?ﬂ@sn, 1, Which

we consider in this work; and those proportional to 45,14, | . The latter cancel out within

our scheme but yield a non-zero contribution when correlations beyond the mean field are
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taken into account. In our case, the strong interaction has been included at the mean-field
level within the Hartree—Fock approximation in the equation of state (EoS). The imple-
mentation of higher-order correlations, such as the ring approximation (see, e.g., [50,51]),
requires the inclusion of these terms.

We now return to Equation (13). Using momentum conservation, we performed the
integration over p,, and after some algebra we have

o dp, 7
(\;;V) = G / (2;77:)3 Y Tras, (00,00,¢0) S0, (90,3,T), @3

s,l,sn/:il

where g9 = E, — E,» and § = p, — p,». The structure function 521,52 (90,4, T), is defined by

" 1 7.
Sgn,S”/ (90,7, T) = n)2 / dPn6(qo+ En — Ew) fo, (En, T)[1 = f5,,(Ew, T)].  (24)

An analytical expression for this function is given in the Appendix B. As we are considering
massless neutrinos, E, = |p|.

Before concluding this section, we note that the limiting case B — 0 is easily obtained
from Equation (23) by setting A, = 0, which leads to agﬁ = a?ﬂ | = 1/2, and performing the
spin summation. In this limit, the neutron single-particle energy becomes spin-independent.
Consequently, the structure function is also spin-independent, and the spin summations in
Equations (20) can be carried out straightforwardly.

4. Results and Discussion

In this section, we present our results for the neutrino and antineutrino mean free
paths in hot, dense neutron matter under a strong magnetic field. We analyze a density
range of 0.05 < p < 0.4 fm~3, several temperatures up to T = 30 MeV, and various
magnetic field intensities ranging from B = 0 to B = 10'® G. To describe the medium, we
employ different models for the Equation of State (EoS) in order to assess the sensitivity
of the mean free path to the properties of the medium. Most of the results are obtained
using the LNS Skyrme interaction developed by Cao et al. [52], which we adopt because
its particular density dependence of the effective mass makes it especially suitable for our
framework. Unless otherwise specified, the equation of state just detailed is to be taken as
the default model.

In all cases, neutrinos and antineutrinos are assumed to be massless and not trapped
in the medium, so their chemical potential vanishes (y, = 0). They are described by the
standard Fermi—Dirac distribution,

1
eEv,V/T —+ ]_’

foo(Evp) = (25)
with energy E,y = |p,p|. Since py = 0, neutrinos and antineutrinos share the same
distribution and energy for a given momentum. A representative value for their energy in

a thermal medium is the average,

(Evo) = Jo B3/ (e¥/T +1)dE  7nt
V) = fowEZ/(eE/T+1)dE o 1806(3)

T~315T, (26)

which corresponds to the thermal average energy of a relativistic fermion in equilibrium.
However, for the sake of practicality and in line with common choices in the literature,
we adopt the approximate value E, ; = 3T in the following calculations. An immediate
consequence of this approximation, considering that we explore temperatures starting from
T = 5MeV, is that the effect of the neutrino mass is negligible: the ratio m, /E, < 6 x 1078,

~
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It is worth noting that it is also possible to work at T = 0, but in that case, the neutrino
energy must be modeled according to the emission mechanism. This conclusion is indepen-
dent of the EoS, as it concerns the neutrino wave function, which does not enter into the
EoS description.

Before discussing our results, it is worth noting that, for trapped neutrinos and an-
tineutrinos, their distribution functions differ as follows:

1 1
fo(Ev) = ST T fo(Eg) = TETRT T (27)
This implies that (E,) # (Ey), which would in turn lead to different mean free paths for
neutrinos and antineutrinos. In addition, due to the definition of helicity, left-handed
neutrinos and right-handed antineutrinos share the same analytical expression for the
spinor (see Equations (A7) and (A9), respectively). Therefore, within our model, neutrinos
and antineutrinos have identical mean free paths.

To begin the discussion of our results, we compare them with those previously ob-
tained in Ref. [13], where certain approximations were made. Specifically, the neutron in
the initial state was assumed to have either spin up or spin down. Furthermore, it was
also assumed that the neutron’s final state always retained the same spin orientation as the
initial state. In our current model, the initial neutron spin state, given in Equation (A4),
is a mixed state in which each spin component is weighted by a factor. These factors are
chosen based on the results of the equation of state, so as to match the mean-field spin
projection with the system’s polarization. The use of such a wave function introduces
quantum interference terms that allow for the initial and final neutron spin states to differ.

In Figure 1, we show the previous results (dashed lines) and compare them with those
obtained using our improved scheme (solid lines). We recall that the Z-axis is defined
along the direction of the constant magnetic field, thereby establishing a preferred spatial
direction. In the absence of a magnetic field, the only relevant angle is the relative angle
between the incoming and outgoing neutrino. In the presence of the field, however, we
must consider the angle 6, between the initial neutrino direction and the magnetic field, the
corresponding 6,/ for the outgoing neutrino, and the azimuthal angle ¢,/ of the outgoing
neutrino. The weak interaction dynamics lead to different values for the neutrino mean
free path depending on 6,, as shown in Figure 1. This asymmetry in the mean free path
suggests that, due to the scattering process, a higher number of neutrinos are expected to
travel in the direction of the magnetic field, where the mean free path is longer.

B=10"G, T=15MeV

20

Figure 1. The Neutrino mean free path for two different models. The dashed lines correspond to
the scheme in [13], while the solid lines represent the results of the present work. Both models were
evaluated using the LNS Skyrme interaction [52].
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Continuing with the discussion of Figure 1, we observe good consistency between both
approximations. At low densities, the results for 8, = 77/2 are very similar. For 8, = 0 and
7T, our present model shows a reduction in the asymmetry. The situation changes at higher
densities: for all angles, the mean free path is longer in the present model. In any case,
the differences between both models are noticeable. Two points should be emphasized:
first, in Ref. [13], we noted that the results for 8, = 7r/2 were nearly identical for B = 0
and B # 0. This agreement remains valid in our improved model at low densities, but
it no longer holds at high densities, where the mean free path increases compared to the
previous model. Second, in this figure we have chosen a temperature of T = 15 MeV.
This temperature smooths the results. We will later discuss the case of T = 5 MeV, which
requires a more detailed analysis.

To enable a more quantitative analysis of these results, we define the function

A — \prev

¢ =100 x e

(28)
where AP™ denotes the neutrino mean free path obtained using the previous approxima-
tions from Ref. [13], and A corresponds to the result from our improved model. Note that
the mean free path depends functionally on p, T, B, and 6, i.e., A = A(p, T, B, 6, ), although
this dependence is omitted for brevity.

Table 1 presents the values of the function  for several densities and neutrino incident
angles. This table supports the qualitative discussion given in Figure 1. Beyond the
consistency between the two approximations, the differences introduced by the improved
model are significant enough to justify its implementation. In particular, the value { = 9.65
for p/pg = 2.5 and 0, = 71/2 stands out. This result has important implications within our
framework, although a detailed discussion is deferred to a later stage, specifically when
analyzing the case of temperature T = 5 MeV. It is well understood that all models are
approximations and inherently include some form of quantum interference terms. While
our proposed model provides a more accurate treatment of certain quantum interference
effects, direct comparisons between models remain challenging. Throughout this work,
we somewhat arbitrarily use the term “interference term” as a shorthand to refer to our
specific treatment of these terms.

Table 1. Values of the function { from Equation (28) for different densities and neutrino incident
angles. The density is given in units of the saturation density, pg = 0.16 fm~3. The EoS, temperature,
and magnetic field strength are the same as in Figure 1.

plpo 6, =0 0, = /2 0, =7
0.5 -2.97 1.81 6.01
1.0 —0.44 2.09 3.85
1.5 1.50 3.04 3.07
2.0 3.23 492 3.46
2.5 5.88 9.65 5.50

In what follows, we study the behavior of the neutrino mean free path as a function of
the magnetic field strength, temperature, and the equation of state. We begin in Figure 2,
showing results for different magnetic field strengths ranging from B = 10'® G up to
B = 10!8 G. For 6, = 77/2 and at low densities, the results are nearly identical for all values
of B (including B = 0). At high densities, we observe the previously mentioned increase
in the mean free path for B = 108 G, which decreases with lower values of B and almost
vanishes at B = 10!®> G. The asymmetry in the neutrino mean free path is significant for
B = 10'® G, barely noticeable for B = 107 G, and very small for the remaining values.



Symmetry 2025, 17, 896

11 of 24

20 T T
B=10"G  (b)
_ 15 8
g g
- N
~ 10+ 8
5 s s s 5 s s t
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
P [fm’] P [fin”]
20 , , 20— , ,
B=10"G (o) B=10"G (g
<

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

P [fm”] o [fm”]

Figure 2. The Neutrino mean free path for different values of the magnetic field and for T = 15 MeV.
The model interaction is the same as in Figure 1.

Next, in Figure 3, we analyze the effect of temperature on the neutrino mean free
path. Recall that we evaluate the mean free path as the inverse of the total cross section
per unit volume, as given by Equation (23). The available phase space is determined by
the distribution functions fs, (En, T) (see Equation (8)). As the temperature increases, these
distribution functions allow access to a larger phase space, leading to an increase in the cross
section and, consequently, a decrease in the mean free path, as shown in Figure 3. Regarding
the asymmetry in the mean free path, it also decreases with increasing temperature (note
the logarithmic scale in the figure). This is due to the reduction in spin polarization of the
system at higher temperatures, which in turn leads to a reduced asymmetry in the mean
free path. Thermal disorder tends to suppress spin alignment. Beyond these considerations,
note the crossing of the mean free paths for 8, = w/2 and 6, = 0 at T = 5 MeV. This
curious result is discussed in detail at the end of this section.

We now turn to the analysis of the dependence of the neutrino mean free path on
different models for the equation of state (EoS). This study is performed using three EoS
models: one that includes no strong interactions between neutrons, and two based on
different parameterizations of the Skyrme-type effective interaction. The first is the LNS
Skyrme model, and the second is the SLy4 model developed by Douchin et al. [53]. The
Skyrme framework incorporates strong interactions at the mean-field level. In the absence
of strong interactions, the EoS is determined solely by phase-space considerations arising
from the Pauli exclusion principle. These three EoS models have been selected for the
following reasons. The parameters of the LNS Skyrme model were fitted to reproduce
the nuclear matter EoS obtained in the non-relativistic Brueckner-Hartree—Fock (BHF)
approach using the Argonne V18 [54] nucleon—nucleon potential, supplemented with the
Urbana IX [55] three-nucleon force. This model yields neutron effective masses that do
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not deviate significantly from the bare mass; however, it exhibits a so-called ferromagnetic
instability at high densities. In contrast, the SLy4 model does not present this issue, but it
predicts small effective masses, which, as we will show, leads to an unexpected increase in
the neutrino mean free path. Finally, the inclusion of an EoS without strong interactions
serves to isolate and highlight the role of strong interactions in determining the neutrino
mean free path. A similar analysis for charge-exchange reactions was presented in [56].

100 ¢

T

|

i

i

i
SN

[
o)
1

-3
p [fm”)
Figure 3. The Neutrino mean free path for different temperatures and for B = 10'® G. The model
interaction is the same as in Figure 1.

For convenience, we discuss this topic using two figures, Figures 4 and 5, correspond-
ingto T = 15MeV and T = 5 MeV, respectively. In both figures, panel (a) corresponds
to the free (non-interacting) EoS, panel (b) to the LNS Skyrme model, and panel (c) to the
Douchin parameterization of the strong interaction. From both figures, our first conclusion
is that the neutrino mean free path shows a strong dependence on the EoS, as the results
differ significantly across the various models. We emphasize this point, as our calculation is
fully self-consistent: we compute the EoS, and from it, determine the spin asymmetry, the
chemical potential, and the single-particle energies, which are then used in the calculation
of the neutrino mean free path. To the best of our knowledge, there is no universally
preferred set of EoS parameters. As a result, the predictions for the neutrino mean free path
remain model-dependent, pending observational data that could provide constraints to
select the most appropriate EoS.

We now examine the behavior of the neutrino mean free path in each panel individually.
For simplicity, we focus on Figure 4 (the discussion for Figure 5 is very similar). The results
for the free EoS shown in panel (a) illustrate the basic concepts of the problem: as the
density increases, the probability of scattering events increases, and thus the mean free path
decreases. Regarding the system’s spin asymmetry, increasing the baryon density enhances
the effect of the Pauli exclusion principle, favoring a more symmetric configuration with
equal numbers of spin-up and spin-down particles. A direct consequence of this reduced
spin asymmetry is a decrease in the asymmetry of the neutrino mean free path, as seen
in panel (a).



Symmetry 2025, 17, 896 13 of 24

B=10", T=15MeV
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Figure 4. The Neutrino mean free path for different equations of state (EoSs), at T = 15 MeV and
B=1018G. In panel (a), the free interaction EoS is employed. Panels (b,c) use the Hartree-Fock
approximation with Skyrme interactions. Specifically, panel (b) employs the LNS Skyrme interac-
tion [52], while panel (c) uses the parameterization developed by Douchin et al. [53].

B=10"G, T=5MeV
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Figure 5. The The same as in Figure 4, but for T = 5 MeV. The meaning of each panel is the same as
in Figure 4.
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Panels (b) and (c) include the effects of the strong interaction, leading to a more
complex behavior. At low densities, the (short-range) strong interaction plays a minor role,
and the behavior resembles that of panel (a), albeit with a slightly reduced asymmetry in
the mean free path. At higher densities, the strong interaction becomes more significant,
and an increase in the mean free path with density is observed. This increase arises from
two different effects. In particular, in panel (b), there is a non-physical magnetization of the
system induced by the Skyrme interaction. Additionally, at high densities, a pronounced
reduction in the neutron effective mass contributes to the increased mean free path; this
effect is especially important in panel (c).

In both Figures 4 and 5, we observe an increase in the neutrino mean free path for
6, = /2 relative to the two remaining angles. This effect is subtle at T = 15 MeV but
becomes very pronounced at T = 5 MeV, where, in all panels, a crossing occurs with the
result for 6, = 0. The origin of this behavior will be discussed in detail in the remainder
of this section. From these figures, our first conclusion is that this feature is unlikely to be
directly related to the EoS, as it appears consistently across all models considered.

The origin of the crossing of the mean free paths discussed above is subtle and
involves several elements. It arises from quantum interference terms, which, to the best
of our knowledge, are analyzed for the first time in the present work. These terms result
from the dynamics of the weak interaction. At this stage, and for the purpose of gaining
insight into the underlying mechanism, it is more convenient to consider the total cross
section per unit volume rather than the mean free path. For simplicity, we focus on the
free interaction EoS at T = 5 MeV. The total cross section is given in Equation (23) and can
be naturally decomposed into four terms according to the spin projections of the initial
and final neutron states: uu, ud, du, and dd. For instance, the ud term corresponds to an
initial neutron with spin up and a final neutron with spin down. This decomposition is
shown in Figure 6. All curves in panels (a) and (b) exhibit the expected behavior, namely
a monotonic increase with density. What ultimately determines the behavior of the total
cross section is the relative contribution of each term.

Panel (a) shows the sum of the direct contributions (uu + dd) and the interference
terms (ud + du) for two relevant neutrino angles. All contributions increase monotonically
with density. The direct terms converge at high densities, with uu + dd taking consistently
lower values for 8, = 0. The interference terms, on the other hand, behave differently:
ud + du is larger for 8, = 0 than for 8, = 71/2, and the difference between the two remains
approximately constant at medium and high densities. This panel reveals that the total
contribution (uu + dd + ud 4 du) exhibits a crossing between the results for the two angles.
This identifies the origin of the nontrivial behavior, though it does not yet constitute a full
explanation. It is now clear that the interference terms are responsible for the observed
feature. As already mentioned, to the best of our knowledge, these contributions are
accounted for explicitly here for the first time.

We now turn to the trace function Trk . (6,,6,,,¢,) in Equation (20). From this

Sn,Syt
expression, we define two functions associated with the interference contributions:

®ud(9w 91/’) = 1+cosf, —cosf, —cosb,cosb,, (29)
®4,(0,,0,) = 1—cosb,+ cosb, —cosb, cosb,, (30)

Inspection of Equation (20) shows that ©,,;(6,,6,/) and ©,,(0,,6,/) are associated with the
ud and du contributions, respectively.
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Figure 6. Different Contributions to the cross section per unit volume. The magnetic field intensity
is B = 1018 G and the temperature T = 5 MeV. Panel (a) shows the sum of the interference terms,
while panel (b) displays the individual contribution of each term. Further details are provided in the
main text.

Panel (b) of Figure 6 shows the individual interference terms. It is useful to keep in
mind the expressions for ©,,; and ©,,,, and their values for 8, = 0 and 8, = /2, listed in
Table 2. From this panel, one finds that

ud(6,=0) = 2ud(8, =mn/2),
du(f, =0) 0,

which can be directly understood from Table 2.

Table 2. Particular values for the functions ©,,4(6,,6,/) and ©y4,(6,0,/), as defined in Equations (29)
and (30), respectively.

6, =0 0, = /2 0, =
©,4(0y,0,) 2(1—cosb,) 1—cos@, 0
Oy, (0y,0,) 0 1+ cos 6, 2 (1+ cosB,)

It remains to understand why ud(6, = 71/2) > du(6, = 7t/2). This result is somewhat
counterintuitive, given that the system’s polarization favors neutrons with spin down. In
Equation (20), we observe that the ud contribution is weighted by the factor a?nT, while the
corresponding factor for du is a?ﬂ |- with ufnT < agn |- This inequality in the cross section can
be understood in terms of the structure function 581,52 (90,7, T), defined in Equation (24).
Figure 7 shows the structure function as a function of gy for a representative value of |7],
selected from the numerical analysis.
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Figure 7. Energy Energy dependence of the structure function Sg./s f(qo,q, T), shown in units of

1073 MeV~fm~3. The results correspond to a baryon density of p/pg = 2.5, where pg = 0.16 fm 3.
The spin projections s; and sy take the values u and d, corresponding tos = 1and s = —1, respectively.
The magnetic field strength is B = 10'8 G, and the temperature is fixed at T = 5 MeV. Panel (a) shows
all the terms of the structure function, while panel (b) provides a detailed view of the interference
terms of the same function.

Under the conditions of Figure 7 (g = 30 MeV), the cross section receives contributions
from values of gy within the approximate range ~ (—10,5) MeV. These values are schematic
in nature and are presented solely for illustrative purposes, to highlight the features of our
results. Notably, over the entire range of g0, S, dominates over S ,. However, due to the
fixed neutrino energy E, = 3T, the kinematics restrict the range of accessible gg values, as
discussed above. This restriction accounts for the observed hierarchy between ud and du
and also explains why the effect becomes less pronounced at higher temperatures.

In summary, the peculiar behavior originates in the weak interaction dynamics, en-
coded in the functions ©,,4(6y,0,/) and O, (6,,0,/). As a final point, in Figure 8, we present
the neutrino mean free path as a function of the incoming neutrino angle 6, for two different
baryon densities. At low density, the result is as expected: neutrinos are preferentially
emitted parallel to the magnetic field. However, at high density, the maximum occurs near
6y < 7t/2. This outcome significantly alters the prevailing paradigm regarding asymmetric
neutrino emission due to neutrino—neutron scattering. It indicates that at high densities
and low temperatures, neutrinos are predominantly emitted perpendicular to the magnetic
field. As discussed, this result is independent of the equation of state.
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Figure 8. Neutrino Neutrino mean free path plotted as a function of the incoming neutrino angle 6,,
over the interval 8, € [0, 7], for two different baryon densities: p/pp = 0.7 in panel (a) and p/pp = 2.5
in panel (b). The magnetic field strength is B = 10'® G, and the temperature is fixed at T = 5 MeV.

Before concluding this section, it is worth noting that, due to the scale of the reaction
under consideration, the density, temperature, and magnetic field are treated as locally
constant. In a realistic neutron star model, these quantities vary with position inside the
star. To implement such a model, it is necessary to know the cross section (or, equivalently,
the mean free path) for the reaction of interest, among other inputs; this is the focus of the
present contribution. In a recent work [56], we addressed charge-exchange reactions under
the same level of approximation. Unfortunately, our non-relativistic model is not suitable
for describing the dense stellar core; a relativistic treatment is necessary. Together with the
inclusion of nuclear correlations beyond the mean-field level, we consider the development
of a relativistic model a possible direction for future work, although it lies beyond the scope
of the present study. Under the conditions considered here, a fully relativistic model should
reproduce our results in the appropriate limit. This highlights the role of the non-relativistic
result as a guiding reference for the more comprehensive relativistic treatment.

Regarding the pulsar kick problem, our present results disfavor asymmetric neutrino
emission as its explanation. This stands in contrast to the findings for charge-exchange
reactions discussed in Ref. [56]. Ultimately, incorporating all relevant reactions into a
realistic neutron star model would be necessary to resolve this issue conclusively. For a
recent review of the pulsar kick problem, we refer the reader to the work of Lambiase and
Poddar [57], where several possible explanations are briefly discussed.

5. Summary and Conclusions

In this work, we have analyzed the neutrino—neutron scattering reaction v +n —
v/ 4+ n’, in neutron matter at finite temperature and in the presence of a strong magnetic field.
Particular attention was given to the issue of the neutrino mass, which remains an open
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problem with far-reaching implications. Although our analysis shows that the inclusion of
a finite neutrino mass does not affect the results presented here, this conclusion is nontrivial
and, as such, warrants a dedicated discussion. The core of this study focused on the
development and application of a formalism that explicitly includes quantum interference
terms, which, to the best of our knowledge, had not been previously considered in this
context. These interference terms were found to have a significant impact on the neutrino
scattering process and, consequently, on the mean free path.

We performed a fully self-consistent calculation where the neutrino mean free path
was computed using the same theoretical model as the equation of state (EoS), evaluated
under identical conditions of density, temperature, and magnetic field. To assess the model
dependence of the reaction rates, we also considered different EoSs. Our results show
that the mean free path exhibits a strong sensitivity to the choice of EoS, underlining the
relevance of adopting a self-consistent approach. The presence of the magnetic field in-
troduces an angular asymmetry in the mean free path, which we have analyzed in detail.
Remarkably, we find that the inclusion of quantum interference terms significantly alters
the behavior of this asymmetry, modifying the prevailing paradigm that has governed our
understanding of neutrino—neutron scattering in magnetized matter up to now. Further-
more, we observe that for low and intermediate densities, the neutrino flux is enhanced
for neutrinos propagating parallel to the magnetic field. In contrast, at high densities, the
dominant contribution to the flux arises from neutrinos moving perpendicular to the field.
Assuming that the magnetic field of the star possesses cylindrical symmetry, the emission
of neutrinos in the direction perpendicular to the field results in a significant suppression of
the relative weight of this contribution to the explanation of the pulsar kick phenomenon.

As discussed in the previous paragraph, quantum interference terms play a crucial role
not so much in determining the mean free path itself, but rather in modifying its angular
dependence. These terms are included for the first time in this work and originate from
a dynamical effect of the weak interaction. Remarkably, we find that this effect persists
across all the EoS models considered. The strong interaction is treated at the mean-field
level throughout our analysis. However, we also show that going beyond the mean-field
approximation leads to the emergence of a new set of interference terms, which have not
been previously explored. In this work, we provide the analytical expressions for these
additional contributions. Their impact could be further investigated by incorporating
correlations of the ring type, which offers a promising direction for future studies.
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Appendix A. Wave Function for Neutrons, Neutrinos, and Antineutrinos

This appendix is devoted to the description of the wave functions for the neutron and
the neutrino. All wave functions are normalized within a reference volume V, introduced
for convenience. It is important to note that the final expressions for the cross section per
unit volume do not depend on the specific choice of V. We assume a uniform magnetic
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field oriented along the z-axis, B = Bk. Furthermore, as noted in the main body of the text,
a distinction is made between wave functions corresponding to the initial and final states.

Appendix A.1. The Neutron

We employ a non-relativistic wave function for the neutron, given by

Yalf,t) = (V) 2 PBO U, (AD)
where
p% Usy
E, =my + Zm;‘n + 3 - Sn,uBnB/ (A2)
with pp, = —1.913uy. In this expression, m; represents the effective mass, and vs, denotes

the single-particle energy potential. Both quantities depend on spin, and their analytical
expressions within the Skyrme model can be found in [46,58]. For the non-interacting
model, we have m{ — my and vs, — 0.

For the spin part of the wave function, we distinguish between the neutron being in
the initial or final state:

i.  Neutron in the initial state: The spin component of the wave function is given by

1 0
0 1
U, = (anT) + (ani) (A3)
0 0
0 0
ii. ~ Neutron in the final state: We have two spinors
63»1’T
u, = | % |, (A4)
! 0
0

and we must sum up over s, = +/ — 1, for spin up or down, respectively. Finally, at
this point, it is convenient to include

_ 1 3
/dHn *sn;ﬂ 2n)? /d Pn- (A5)

Appendix A.2. The Neutrino
We are considering massless neutrinos which are left-handed (or polarized). In this
case, for a neutrino with momentum p,, its energy is | g, | and the wave function is
given by
YL(7, 1) = v 2l PR UL (o, ¢,), (A6)

where

—+/1—cos(8,) e~ ¢
1 1+ cos(6y)
V2 1—cos(6,)e ¢ |’

—+/1+cos(6,)

Uk (0u, ¢v) = (A7)
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where 0, is the polar angle for g, and ¢, is its azimuthal angle. As we are considering a
single neutrino with its wave function given by Equation (A6), no summation over the
neutrino initial state is needed.

Appendix A.3. The Antineutrino

The massless antineutrinos are right-handed. The wave function is given by
‘YU (P/ 4717/ z, t) = Vﬁl/zeii(ﬁﬁ.?i ‘ﬁﬂ‘t) u17 (917/ ¢17)/ (A8)
where Py is the momentum, | py | its energy, and

—/1 —cos(8;) e~ ¢v
R 1+ cos(6y)
UV(GV/ (Pv) - \/E 1_ COS(Bﬁ) e*ilPV 7 (A9)

—/14cos(6y)

is the antineutrino spinor, where 6; is the polar angle of py, and ¢y is its azimuthal angle.
Note that massless neutrinos are left-handed, while antineutrinos are right-handed. The
helicity operator differs in sign due to the momentum of these particles, which explains
why Equations (A7) and (A9) are identical. Additionally, since massless neutrinos and
antineutrinos have only one possible state, there is no need to distinguish between initial
and final states.

Appendix B. Evaluation of the Structure Function S°

In this Appendix, we derive an analytical expression for the structure function of
a system of neutral particles in a strong magnetic field. A similar derivation, but for
unpolarized particles, can be found in [23]. We provide the most general expression for
this structure function. The structure function is given by the following expression:

S (90,7, T) = (Zln)z / dp16(q0 + E1 — E2) fi(Ey, T) [1 = fo(E2, T)], (A10)

where 7; is the momentum of the hadron in the initial state. For the final state, we have
P2 = pP1 + §. The distribution function is given by

1
14 e(Ei—ui)/T"

fo(Ei, T) = (A11)
For neutral particles within the Skyrme model, the single-particle energy is given by

the following:

P% Us
E1 = MmN + i + ? — SL‘MB”B, (A12)
51
- + 2 0
E;, = mny+ % + % — SopipnB, (A13)
s2

where my is the nucleon mass. In this expression, the effective mass (1m;,), together with
the single particle potential energy (vs,), depend on the density of the system, and explicit
expressions are found in [46,58]. To solve the integral in Equation (A10), we start analyzing
the energy coacervation:

go+E1 —Ex=0, (A14)

where we now employ the expressions for E; and E; given in Equations (A12) and (A13),
respectively. After some algebra, we found
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mé‘z 2 ‘72
kKo=—|Ampitwo— 5+ |, (A15)
piq < n 2ms,
with the following definitions:
_ Pgq
p1q
1
wy = qO + g (Usl - USQ) + (52 - Sl),uBnB/
1( 1 1
Ay = = ——— | (Ale)
2 \mg  mg,
Now the energy conservation is rewritten as
_ s
(g0 + E1 — E2) = — 4(k —xo). (A17)
p1q
Considering that
27 1 [
[dp= [ dp [ ax [“dpipt (a18)
0 -1 0
and using the energy conservation, Equation (A10) is now
0 = 1 m;(Z
Ss12 (0,0, T) = 5— == / dprpr fi(EL, T) 1= fa(Ev+4q0,T)]. (A19)
T g Jlxol<1
To solve this integral, we define
Ei —m
¢ = 2-F
{ = 7‘70”]3_”2, (A20)
we have dpy py = Tmg d¢. After some algebra, we rewrite Equation (A19) as
1 mgmg, T 1 1
0 = S517°52
T) = ———=—
S515(90,9,T) 27 q /dé 14+e¢ 14+e¢-¢
m*m* T ¢ (P1)max
_ 1 1) MMy 1 1+e (A21)

E<_ ) q 1_87€ n67€+e§ (pl)min

This is the final expression for the structure function after fixing the integration limits,

(P1)min and (p1)max- These values are determined by the condition |xg| < 1, and after

squaring Equation (A15), we obtain the following:
f(x)=ax®>+Bx+v<0,
where

2
P1,
a = A2 ,

=
|

(A22)

(A23)
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The roots of Equation (A22), together with the condition f (x) <0, determine the range of
integration. In the following, we analyze the two possible cases according to the relative
values of the masses.

Appendix B.1. When m, # mg,

This situation take place when s; # sy, and also when we have two different kind of
particles. Note that by construction, « > 0. The range of integration is obtain by the roots of
f(x) = 0. Let us call these roots x,,;;, and Xax, With x;,; < Xyax. To analyze the different
possibilities, we introduce

disc = p* —4a .

Having in mind the condition f(x) < 0, we have

e Ifdisc <0, then S%(qo,4, T) = 0, because the condition f(x) < 0 can not be fulfilled.

e Ifdisc =0, then S°(qo,§, T) = 0 because there is only one point where the condition
f(x) < 0is fulfilled.

o Ifdisc > 0and xyar <0, then So(qo, 4, T) = 0 because there are no real values for p.

e Ifdisc > 0and xu;,, < 0, but x4x > 0, then the integration over p; has the range

p1 € [0/ RV xmax}~
e Ifdisc > 0and x,,;, > 0, then the integration over p; has the range p1 € [\/Xin, /Xmax)-

Appendix B.2. When mg, = mg,
In this case, Ay = 0, and Equation (A22) reduces to

Bx+y <0, (A24)
therefore, the limits of integration are
mi w
(Pl)min = s; ¢ g'
(Pl)max - 09, (A25)
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