

Band structures in doubly odd ^{120}I and their microscopic description

Anshul Kumar^{1,2}, S. Sihotra^{2,*}, S. Jehangir³, G.H. Bhat⁴, Nazira Nazir⁵, J. A. Sheikh⁵, S. Rouf³, N. Rather³, Reenu Joshi², N. Singh², J. Goswamy², R. P. Singh⁶, S. Muralithar⁶, S. Nag⁷, P. Singh⁷, K. Selvakumar⁷, A. K. Singh⁷, H. P. Sharma¹, J. Sethi⁸, S. Saha⁸, R. Palit⁸, and D. Mehta²

¹Department of Physics, Institute of Science,
Banaras Hindu University, Varanasi, India

²Department of Physics, Panjab University, Chandigarh-160014

³Department of Physics, Islamic University of Science
and Technology, Jammu and Kashmir, 192 122, India

⁴Department of Physics, S.P. College,
Srinagar, Jammu and Kashmir, 190001, India

⁵Department of Physics, University of Kashmir, Srinagar-190006

⁶Inter-University Accelerator Centre, New Delhi-110067

⁷Indian Institute of Technology, Khargpur-110067 and

⁸Department of Nuclear and Atomic Physics, TIFR, Mumbai-400005

Introduction

The transitional region with $A \sim 120$ has gained considerable attention in high spin spectroscopic studies mainly because of the softness [1, 2] of the nuclei towards γ deformation resulting from the number of valence nucleons outside the closed shell [3]. Both the valence protons and neutrons are expected to have strong and specific shape driving force on the core when occupying the high- j orbitals that are close to Fermi surface. The proton Fermi surface lies just below the $h_{11/2}$ subshell, while the neutron Fermi surface lies in the $h_{11/2}$ midshell. The active proton orbitals in this mass region are $g_{7/2}, d_{5/2}$, the $g_{9/2}$ extruder and the unique parity $h_{11/2}$ intruder. In the chiral mechanism as described by Frauendorf and collaborators [4–6], high- j particles of one kind of nucleon and high- j holes of the other kind are combined with the triaxial deformed potential in these odd-odd nuclei. One of experimental signatures of the chirality is the observation of a pair of $\Delta I = 1$ collective bands with the same parity and a small energy difference.

A particularly interesting feature of transitional region with $A \sim 120$ region is the observation of highly deformed rotational bands extending into the $I \approx 50$ region. Their configurations involve neutron and proton excitations across the $N = 82$ and $Z = 50$ shell gaps, respectively.

Experimental details

Excited states in the ^{120}I nucleus ($Z=53$, $N=67$) were populated in the $^{112}\text{Cd}(^{11}\text{B}, 3\text{n})^{120}\text{I}$ fusion-evaporation reaction at $E_{\text{lab}} = 50$ MeV. The de-excitations were investigated through in-beam γ -ray spectroscopic techniques. The ^{11}B beam was provided by the Pelletron-LINAC facility at TIFR, Mumbai. The ^{112}Cd target of thickness ~ 3 mg/cm² was prepared onto a ~ 8 mg/cm² thick Pb backing. The recoiling nuclei in the excited states were stopped within the target and the de-exciting γ -rays were detected using the Indian National Gamma Array (INGA) consisting of 16 Compton suppressed clover detectors. Two and higher fold clover coincidence events were recorded in a fast digital data aquisition system based on Pixie-16 modules of XIA LLC [10].

*Electronic address: ssihotra@pu.ac.in

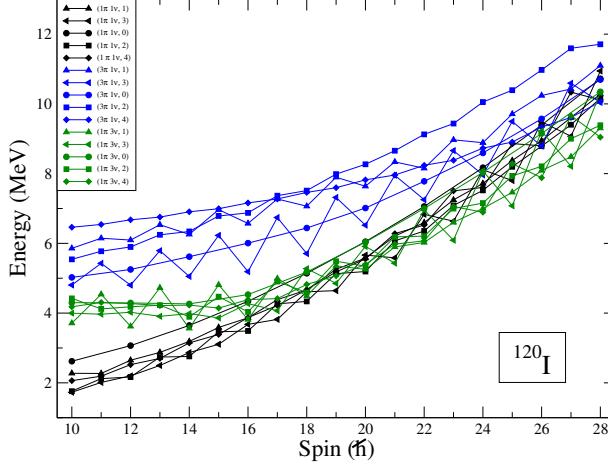


FIG. 1: (Color online) TPSM projected energies, before band mixing, of positive parity states for ^{120}I . Bands are labelled by $(K, \#)$ that designate the states with K quantum number and $\#$ the number of quasiparticles. For instance, $(1, 1n1p)$, $(2, 1n1p)$, $(3, 1n1p)$, $(4, 1n1p)$ correspond to the $K = 1, 2, 3, 4$ one-neutron coupled to one-proton quasiparticle state.

Discussion

The present level scheme of doubly-odd ^{120}I is built on the $\text{I}^\pi = 2^-$ ground state ($T_{1/2} = 81$ min) [7–9]. The level scheme has been extended substantially with addition of about fifty new transitions and one new band to the earlier reported ones [7–9]. The level scheme is established up to ~ 8 MeV excitation energy and level in B1-B10 band structures. The previous reported low-lying band structure is confirmed [9]. Present level scheme differ from the previous reported work [8] in the positive-parity band structures and at lower spin. In previous in-beam studies,[7] the decay of band B1 is followed down to an isomeric state with $T_{1/2} = 53$ min. Band B1 is previously established up to the (16^-) state [7]. The triaxial projected shell model (TPSM) approach has been applied to reproduce the properties of various band structure in this nucleus [Fig.1]. The results of data analysis in framework of TPSM will be presented in symposium. Authors acknowledge the joint effort of IUAC, New Delhi, TIFR, Mumbai, and IUC-DAEF

and SINP, Kolkata, in establishing the INGA clover array.

References

- [1] I. Ragnarsson *et al.*, Nucl. Phys. A **233**, 329 (1974).
- [2] Y. S. Chen *et al.*, Phys. Rev. C **28**, 2437 (1983).
- [3] G. Andresson *et al.*, Nucl. Phys. A **268**, 205 (1976).
- [4] S. Frauendorf, Rev. Mod. Phys. **73**, 463 (2001).
- [5] V.I. Dimitrov *et al.*, Phys. Rev. Lett. **84**, 5732 (2000).
- [6] S. Frauendorf, J. Mend, Nucl. Phys. A **617**, 131 (1997).
- [7] H. Kaur *et al.*, Phys. Rev. C **55**, 512 (1997).
- [8] L. I. Li *et al.*, Chin. Phys. Lett. **30**, 062301 (2013).
- [9] C. B. Moon, J. Korean Phys. Soc. **59**, 1525 (2011).
- [10] R. Palit *et al.*, Nucl. Instrum. Methods A **90**, 680 (2012).