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CURRENT COMMUTATORS

Roger Dashen, Rapporteur

The subject I discuss be§an, as we all know,
with Gell-Mann's suggestion*» 2 that the vector and
axial vector current of the hadrons might satisfy ex-
act equal-time commutation relations. During the
last two years we have seen this suggestion develop
into one of the most exciting branches of particle
physics. In this talk I attempt to summarize the
present status of the field, at least as I understand
it. It seems to me that there are four main topics
to be covered; they are:
(i) What is known (and not known) about the com-
mutation relations satisfied by current components.
(ii) The low-energy theorems for processes in-
volving soft pions,
(iii) Dispersion-theoretic sum rules.
(iv) Saturation of sum rules and the connection be-
tween current algebras and symmetries.
These topics are discussed in order,

I. The Commutation Relations

In any Lagrangian field theory which could pro-
duce SU(3) as an approximatéa symmetry, there will
be eight vector currents .(x), withi=1... 8,

. i . .
Using these currents, one can define eight charges
Fi(t) by integrating the time components over space:

Fi(t) = §d3x 20 (x,1) . (1)

Furthermore, as Gell-Mann pointed out, these
charges satisfy the equal-time commutation rela-
tions

[F; @), Fi(t)] = Zif Felt) . (2)

where the f.., are the structure constants of SU(3).
I would like ]t]o stress here that the above statements
are true in any reasonable field theory which could
possibly lead to SU(3) and are in no way peculiar to
the quark model. (In the present context the only
thing special about the quark model is that it is the
simplest model leading to the commutation rela-
tions, Eq. 2.)

Again in any field-theoretic model, there will
be an octet of axial vector currents j,?o (x), with

i=1. 8. In analogy with Eq. 1, one can define
axial charges according to
Fon = @’ #2000, (3)

and since the axial currents belong to an octet, we
have

5 . -
Fj (t)] = El fijk Fk(t) . (4)
Thus far, I have simply pointed out some very
general, formal properties of Lagrangian field
theory. The physics enters when we cease to think
of the h's and Z°'s as purely abstract objects
and identify them with the various components of the
physical weak and electromagnetic currents. The
well-known correspondence is2

o= e (N My (5)

em

[ F;(t),

v _ 5'5
and JO g =cos 0@k o tA )
. 5
+ sin 6 (44+15 +-9-4+A5), (6)

where, for example, &, ., = =< tid, and 0 is the
Cabibbo angle. It is wort]h emphasizing, I think, that
the identification of the physical weak and electro-
magnetic currents with objects which satisfy the
equal-time commutators 2 and 4 is a meaningful and
nontrivial statement about the physics of hadrons. In
principle, all the matrix elements of JY__ and

JY can be measured in electron and rieutrino scat-
té”rmg experiments. Given these matrix elements,
one could calculate the commutators and test Egs. 2
and 4 directly. Such a program is, of course, out of
the question at present, but as we shall see there is
considerable evidence in support of Egs. 5 and 6.

Besides 2 and 4, Gell-Mann further suggested
that the commutator of the axial charges should be a
vector charge, according to

5 5 7
[Fi(t), Fj(t)] =iZ L R (7

While, as I pointed out, Egs. 2 and 4 are true in any
reasonable field theory, Eq.7 is somewhat more re-
strictive. Examples of theories in which 7 would be
true are (i) the quark model, (ii) a model built on
eight elementary baryons, and (iii) an SU(3) generali-
zation of the 0 model4, 2 with eight elementary
baryons, nine pseudoscalar mesons, and nine scalar
mesons. An example of a theory for which Eq. 7 does
not hold would be a model built on eight baryons and
eight pseudoscalar mesons with no scalar mesons.
We know, of course, from the work of Adler™® and
Weisberger” that the physical vector and axial vector
currents do satisfy Eq.7. My reason for discussing
the above models was to bring out the following points.
Since 7 is not true in all models it is a nontrivial
statement about the physical currents. Nevertheless,
it does not necessarily have anything to say about
quarks.

In addition to the commutation relations among
charges one can ask about the commutators of the
densities themselves. If the theory is to be local,
we must have, for two charge densities,

iog3
(32 00, 22 (1,0)) = 28° (x-y) £, A8 0
+ (more singular terms). (8)

In this particular case of two charge densities, there
is no particular reason to believe that the more singu-
lar terms exist, since there is no known simple model
that produces them. On the other hand, we do not
have any real evidence that they are not there, either.
The situation is rather different when we consider the
local commutator of a charge densityd, with one of
the space components of the current 4, Again, on
grounds of locality we must have

[#2 600z 0] = 187 xy) 2 £ 2y (0
TV (6 (eoy) Sy) + o0 (9
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where I have explicitly written ouga possible gradient
term. In this case one can prove- that

(0| F [0y # o. (10)

There are two possibilities consistent with Eq. 10;
S;; can be either an operator or a C number. Un-
fortunately, it is not possible to prove from the basic
postulates of relativistic quantum mechanics such as
locality, Lorentz invariance, unitarity, and so on
that S;; either is or is not an operator, The reason
is simbply that there are free-field theories consistent
with all these postulates in which S;: is a C num-
ber (quark model) and in which Sij 1s an operator
(any theory with elementary charged mesons). The
actual character of this object Sjj probably depends
in a detailed way upon the dynamics of hadrons.

It turns out that the singular terms like Sij,
which may appear in the local commutators, never
seem to show up in any practical applications of the
commutators. One point of view would be, then, that
these complicated singular objects are not really rele-
vant to physics and may as well be forgotten. An al-
ternative point of view is that the very complexity
and model dependence of an object like S;; make it
interesting. If we could (i) "measure'" the matrix
elements of S;: by, say, a sum rule, and (ii) learn
how to interpret these matrix elements theoretically,
we might learn a lot about the actual dynamics of
hadrons. Unfortunately, at present, it is not clear
how one could do either (i) or (ii).

Finally, I would like to discuss, very briefly,
commutators of the space components of the currents,
I have stressed that the commutators 2, 4, and 7 of
the charges F and F5 are rather model-indepen-
dent. This is not the case for the commutators of the
space components. The quark model makes a pre-
diction for [}, 23] which is not shared by any
other known theory. Evidently, it would be of great
interest to test these predictions. However, it is
not at all clear how one could obtain such a test, and
we have, in fact, essentially no knowledge as to the
commutation relations among the space components
of the physical currents.

II. Low-Energy Theorems for Soft Pions

One of the most fruitful applications of the cur-
rent commutators has been their use in the derivation
of low-energy theorems for processes involving soft
pions, What I mean by a low-energy theorem for
pions is, perhaps, best explained by an example. Let
us consider a scattering process in which the initial
state contains a heavy particle i and a pion of iso-
topic spin a and momentum q,, and the final state
contains a heavy particle f and a pion of isotopic
spin b and momentum qp. We wish to find an
approximate expression for the scattering amplitude
that will be valid for small g and qy.

The derivation of the desired result would pro-
ceed as follows. One defines a function A as

e 2
if - -i(g,-qp)-x
2 2,2 2 2
A(qbb, qaa.) = ﬁ— (qa-m'rr) (qb-m“)\s d4xe
m

X (f{T(BvQ'viv(x) BHJ?‘L(-X)) li) , (11)

where (2f4) % =m>2 (u |8, F#5(0) LO) ., It is simply
a mathematical fact that (i) when 95 =af= mTZr, A is
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equal to the scattering amplitude for m, + i—=>m, + £,
and (ii) for small q; and qp, A can be determined
up to order g9y in terms of known pole diagrams
and the equal-time commutators [Fg, Fg] and

[Fg, FT;’] . The physics enters when we assume that
the pion mass is sufficiently small and A is a suf-
ficiently slowly varying function of qa and qp that the
values of A as calculated from the known low q
limit can give useful information about actual low-
energy pion scattering. I would like to emphasize
that this physical assumption is by no means trivial,
In an ordinary Lagrangian field theory with elemen-
tary pions and nucleons interacting through a pseudo-
scalar coupling, both (i) and (ii) above are true,
order by order in perturbation theory. But in this
theory, at least to low orders in the perturbation ex-
pansion, A is an extremely rapidly varying function
and its low g limit is not useful for discussing pion
scattering. In the real world, however, it does seem
to be true that A is slowly varying over the relevant
range of q.

Here I have to mention one technical point. The
expression one obtains in the low q limit contains
an unknown operator X, = [Fg, Fp). This object
has the dimensions of mass and is something like the
term in the Hamiltonian which violates conservation
of the axial vector current. It turns out that if A is
to be slowly varying, as appears to be the case, then
Z,b must be very small and can be neglected.

Neglecting, then, a presumably small term pro-
portional to Zap,one finds, for small q, the re-
markably simple formula

.2 c
Alayb, ,2) = Bify (aa + ap) (B4 P,y (T
+ poles + O(qaay,) » (12)

where (T)¢; is the isospin matrix between the initial
and final heavy particles.

Equation 12 can be used to p_{redict the ™N scat-
tering lengths. The predictions/ are a4y /»=0.20my
and a3/2=-0.10 my?, which are in good’'agreement
with the experimental values of 0,17 m,‘.r1 and
-0.09 m;ri.

The low-energy theorem for pion scattering which
I have just described is typical of a number of theo-
rems for processes involving soft pions. I would like
to summarize, here, the main results of the theo-
rems. When they are put together, I feel that they
constitute an impressive bit of physics. These re-
sults can be listed as follows:

(@) T+ N= N+ 27

L. Chang8 has calculated the amplitude for pro-
duction of two soft pions in a pion-nucleon collision.
A preliminary comparison with experiment indicates
good agreement up to incident pion energies of about
300 MeV.

(b) Y+ N=T+ N

The low-energy theorems for photoproduction9
are

+ - 0) = 2 -

AT(qy = 0) = (G/4M°) (u)! - w), (13)
0 - = 2 '

A%(qy = 0) = (G/4M%) (1)) + 1) (14)

where the AT and A° are the standard CGLN
photoproduction amplitudes. A dispersion integral
evaluationl0 of A*(q_ = 0) indicates that Eq, 13 is
satisfied to within 15%, and it is known that

A° (q1T = 0) is small in agreement with Eq. 14,



Session 3

(c) Leptonic K Decays

All amplitudes for Kej, Ke3, and Keyq de-
caysii'“’ can be expressed in terms of two matrix
elements of the weak current. One prediction is
fr (qm = 0) + f. (qq = 0) = f/fx, where f, and f._
are the Kej form factors, As pointed out by Cabibbo,
this relation is compatible with experiment. The
ratio R =7(K'=>1% + e +v)/T(K3»7t + T + e +v) can
also be predicted; comparison of theory and experi-
ment gives R theory/R exp = 1.0+0.2,

(d) Nonleptonic K Decays

Here“’ 14,15 we have to make some assumption
about the weak Hamiltonian., The simplest hypothesis
is that HW is a function of the weak current only,
which will be the case if there is an intermediate
boson or a local current-current interaction. With
this assumption one finds that all K decays should
respect the |AI} = 1/2 rule even though H,, may con-
tain a |AI| = 3/2 piece. The ratio
R = 7(K{»ntr")/ 7(Kt > ntatn”) is predicted with
the result R' theory/R' exp = 0.80+0.05; all other
ratios of rates follow from the |AI| = 1/2 rule.
Finally, the energy dependence of the matrix ele-
ments for K - 37 can be calculated, and again, there
is good agreement between theory and experiment.

(e) Nonleptonic Decay of the Hyperons

Making the same assumption as above about Hy,,
one can obtain a low-energy theorem for the S-wave
amplitudes in the decays B —B' + . 16,17 The con-
clusion is that 'octet dominance, ' which implies the
|AI] =% rule and the Lee-Sugawara triangle, will
hold if,and only if,the S-wave amplitude S{Z}) = 0.
Experimentallz, we seem to have both octet domi-
nance and S(2J) = 0, There are no predictions for
the P-wave amplitudes, unless one makes additional
dynamical assumptions such as the validity of the
pole model; the pole model does not seem to work
very well,

I should make one final remark about the low-
energy theorems. It is very hard to understand how
they could work so well if there is a strong 7T inter-
action at low energies. Weinberg? has applied the
current algebra techniques to 7T scattering and finds
scattering lengths

_ -1
= 0.20 m_",

= -0.06 m_*,
™

a
0 (15)

a2
which are, in fact, small. It would be very helpful

to have more accurate experimental data on the mmw
interaction,

III, Dispersion-Theoretical Sum Rules

The basic idea of a sum rule is, of course, very
simple: one simply sandwiches a commutation rela-
tion between two states, inserts a complete set of
intermediate states, and thus obtains a sum rule.
Unfortunately, the sum rules obtained in the simple
way are not very useful: first, they are hard to com-
pare with experiment and, secondly, they are not ex-
plicitly covariant. For this reason, there has been
considerable work on the problem of transforming
sum rules into a covariant, dispersion-theoretic
form. I would like to sketch now how this transfor-
mation is accomplished and what the limitations of
the method are. Then I will give some of the experi-
mentally testable rules which have emerged.

It is convenient to start, not with the equal-time
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commutator itself, but with the Fourier transform of
a retarded product, Let us define

Mligsk +++) =iS‘d4x o ik xe(xo) (£|[A), B(0)]]1),

(16)
where A and B are local operators which we will
later take to be various components of the currents

%Y and 245, As is well known, M is an analytic
function of kq and satisfies the Low equation

dk(') Im M(k('), k)
Mg,k -+ ) = | — = (17)
0" 0~ %o
Furthermore. one can convince himself that the
equal-time commutator is given by
(£ [§d3x ' X A(x, 0), B0)] |i)
= -klim koM(ko’.li cee)
—~» 00
0
= 1 1 oo
‘S‘ dk0 Im M(k0 ) k ). (18)

So far, what has been accomplished is to relate
the equal-time commutator to something which looks
like the integral over the absorptive part of a scat-
tering amplitude: the sum rule is still not covariant
because of the noninvariant integration contour, dkg
with k held fixed. Evidently, the next step will be to
change to an invariant contour of integration, just as
one does in going from the Low equation to a disper -
sion relation.

From the proofs of dispersion relations, we know
that Eq. 17 can be rewritten as

M(S...) =S lrnS_I:/I(_S'S—) dS' + (subtractions),
(19)

where S = (k + P.)Z, the variables being held fixed
in the integration are invariant scalar products such
as t= (P - P)?, k%, and q%= (P, + k - P)®, and
M is an invariant function which may differ from M
by kinematical factors. In the same manner, Eq. 18
can be transformed into

(el - 19 = aw :S‘dS‘ Im M(S',k

+ (subtractions), (20)

2 2
»q »t)

where the '"form factor'" G(t) represents the matrix
element of the equal-time commutator, The sum
rule has now been written in an invariant form, but
before discussing applications we must face the
problem of subtractions, the possible presence of
which is indicated in Egs. 17 and 20.

It is well known that in going from Eq. 17 to 19
one may pick up subtraction terms, i.e., polynomi-
als in S with coefficients which are functions of t,
kz, and g“; the same thing can happen when one goes
from Eq. 18 to 20. Evidently, the sum rule will be
useless if subtractions are present, since the right-
hand side will contain unknown functions of t, In
coiamutators of current densities 24Y and PV, the
situation with regard to subtractions is as follows:

(i) For ghe commutator of two time components

or %>, subtractions are not present and Eq. 20
gives a useful sum rule; (ii) for one time component
and one space component <h or #5, the question of
whether subtractions are present depends on dynami-
cal details and cannot be answered in general;

(iii) for two space components subtractions are pres-
ent and Eq. 20 is not a useful sum rule,

Earlier, I stated that we know quite a bit about
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the commutators of time components, but hardly any-
thing about commutators of space components of the
currents. This is, in large part, because one can
write covariant dispersion-theoretic sum rules in the
former case but not in the latter.

Even in its dispersion-theoretic form, the gen-
eral sum rule

Glt) = glm M(S', k%, ¢, t) ds' (21)

is still not easy to test experimentally: for practical
reasons one has to resort to special cases. Setting
k? = q2 = 0 and taking the derivative with respect to
t at t=0in Eq. 21 yields, for the commutator of
Jvf and J?, the relation

1 2 2 2
3RS Lo (D ) ey )

v
g

1 32729 42
- S‘ dw, (22)
2“20, @

v . . .
where 03/2 is the cross sgction for (isovector y)
+ proton 1= 3/2 states, 04 /2 is the cross section
to make isospin 1/2 states, @ is the photon energy,
and the (r“)'s and p's are charge radii and mag-
netic moments. A similar s rule which makes
use of the commutator [ ,Eri , and is therefore
. por . 1
plagued by subtraction questions, is

P'p - |J_n = (1/4FZG)W03/2 - 201/2)“;;

v
oy, 20, )p des@23)

where the subscripts A and P refer to proton and
photon spins antiparallel and parallel.

An interesting fact about the sum rule 22 is that
the left-hand side is negative, while the contribution
of the (3,3) resonance to the right-hand side is posi-
tive. The resulting failure of a simple resonance
approximation in Eq., 22 caused some worry when the
sum rule was first derived, but a more careful evalu-
ation of the dispersion integral, 0 including S waves
and higher resonances, indicates that Eq. 22 is, in
fact, satisfied.

The sum rule 23 is interesting because, as men-
tioned above, it depends on the commutator [ 0 ,é ]
Unlike 22, Eq. 23 is not satisfied in perturbation
theory--a reflection of the subtraction question which
shows up in these commutators, For these reasons
it would be very interesting to know if this sum rule
is satisfied. As far as I know, no numerical evalua-
tion has been attempted.

In addition to the explicit evaluation of dispersion
integrals, there is another way to test special cases
of Eq, 21, One can show that the difference in neu-
trino cross sections (d/dkz) o(VP) - o(vP) , where
k“ is the momentum transfer from the leptons to the
hadrons, is essentially equal to

o ImMs, k5 K5 0 ast,

where Im M comes from the commutator of jgveak
and jj,'v%ak , and S . is determined by the inci-
dent neutrino energy, For large neutrino energy,

Smax™ © and one has

lim 4 (o (vp) - a(vp) ) =\ Im M(S' ,kz,kZ,O)dS'
2
E ~> o dk
v (24)
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= G(0) = (known constant independent of kz).

A similar calculation for electron scattering produces
only an inequality
d Z'rra2
lim  —5 [(o(ep) + o(en)]> =7-, (25)
Ee—>oo dk k

where the k-4, which is missing in Eq. 24, comes
from the photon propagator. One hopes that this in-
equality can be tested in the near future.

The sum rules 22 and 23 are probably the only
predictions of the local commutators which are of
immediate experimental interest, This is not to say,
however, that the local commutators and dispersion
sum rules donot deserve further study. These commuta-
tors presumably contain a considerable amount of in-
formation about the relation between strong inter-
actions and the weak and electromagnetic interactions.

IV. Saturation and Approximate Symmetries

The final topic I will discuss concerns the use of
current commutators to predict the properties of
hadron states. Some examples of this idea, in its
simplest form, are:

(a) The commutator

5 5]_ .
[Fi’ Fyj=2ifn Fy

leads to a sum rule* for mw scattering which is not
satisfied if one includes oan the contribution of the
known resonances p and f . There have been
some guesses that a strong low-energy 7T inter-
action is necessary to bring the sum rule into agree-
ment with experiment, but it is, of course, very pos-
sible that the discrepancy is due to high- rather than
low-energy effects.

(b) If, in the corresponding sum rule for Tp scat-
tering, one assumes that the w and ¢ mesons domi-
nate,then the wpT coupling can be predicted with re-
sults that are in good agreement with experiment, 22

In the examples described above, one simply ex-
amines a specific sum rule and tries to extract what-
ever information is available. While this approach
may lead to interesting results, it is not very system-
atic, A more powerful approach is suggested by the
fact that the sum rules are equivalent to the state-
ment that the F's and F°'s generate the algebra
of SU(3) @ SU(3): thus the analysis of sum rules is
really a problem in group theory, Now, in group
theoretical language, the hypothesis that the sum
rules are saturated by a small number of single-par-
ticle and resonant states is equivalent to the supposi-
tion that the physical particle states are mixtures of,
at most, a few irreducible representations of
SU(3) ® SU(3). One may, then, try to classify the
hadrons according to representations of SU(3)(>) (SU(3)
and obtain, in some rather vague sense, a sort of
higher symmetry.

A considerable amount of work has been done on
this problem of using current algebra to classify
states, For a number of technical reasons, the prob-
lem is not easy. I will not go into any of the details
here, but will simply describe the results of this pro-
gram as applied to the low-lying baryon states.

In zeroth approximation, one assigns the baryon
octet and decuplet of resonances to the pure repre-
sentation (6,3)., To start with, at least, this assign-
ment seems to be fairly good. Some predictions are
(i) ‘GA! = 5/3 as opposed to the experimental value
of = 1,20, (ii) a D/F ratio of 3/2 for the matrix
element of the axial current between baryons, and
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(iii) a value of G*, the octet-decuplet matrix ele-
ment of the axial current, which is in rather good
agreement with experiment. The trouble comes when
one looks at the baryon anomalous magnetic moments,
which, it turns out, are predicted to be zero. The
way out of this difficulty is, of course, to introduce
some mixing; one also hopes that the mixing will im-
prove the prediction of Ga.

Several peop1e2'3 -25 have studied the possibility
of representing the octet and decuplet as (6,3) along
with various admixtures of (8,1), (3,3), and (3,3). It
turns out that there is more than one satisfactory
solution to the problem, so that which is the ""right"
mixture is still not known. Nevertheless, there is
some reason for optimism. The mixing schemes
typically have three or four free parameters but can
predict six quantities (Ga, the D/F ratio for the
axial current, G*, the neutron and proton magnetic
moments, and the N-N* transition moment) to a very
good accuracy,
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Discussion

Balachandran (Syracuse): M. G. Gundzik, F.
Nicodemi, and I have obtained, besides the S-wave
wm-N and K-N scattering lengths, the S-wave effec-
tive ranges and P-wave scattering lengths for these
processes. The agreement between theory and ex-
periment is good except for the m-N S-wave [ = 1/2
effective range and the T-N 3-3 scattering length,
In collaboration with Dr. Narayanaswami, we have
also obtained preliminary results on low-energy
photopion production.

We have also done the w-T calculation. The
S -wave scattering lengths we get are somewhat dif-
ferent from Professor Weinberg's, although the
signs and orders of magnitude are the same. The
difference seems to be due to the choice of different
extrapolations. The ¢-meson term which was written
down vanishes on the mass shell, Therefore, the
Green's function with this term subtracted out is also
an extrapolation in the pion mass of the S matrix, We
do not of course know whether the gently varying ex-
trapolation must have the g -meson term or not. I
would like to point out that the ¢ -meson term cannot
be evaluated by comparing the predictions with experi-
ment, as the extrapolation with this term included
may not be gently varying.

Lovelace (CERN): I understand that both the Weinberg
m-T scattering lengths and the Adler sum rule are
true in the Gell-Mann - Levy ¢0-model, at least in
perturbation theory. So any contradiction must de-
pend on additional assumptions, e.g., that the m-mw

S wave has a weak energy dependence.

Dashen: Remember that the ¢ model does not fix
the mass of the ¢ meson; it could be anything, The
Weinberg w-m scattering length has effectively given
the ¢ meson a large mass, large compared with the
pion mass. Now, offhand I don't know if you can
give the ¢ a very large mass and still satisfy the
sum rule.

Weinberg (Berkeley): The Adler sum rule for m-T
scattering is saturated by a 0 meson appearing in
the t and u channels as well as the s channel,
but not by an S-wave resonance alone unless its mass
is extremely low. We have to learn how to put par-
ticles into sum rules in a crossing-symmetric way,
but of course this is a problem for many people.

Lovelace: Can Balachandran predict the m-N S-
wave effective ranges? These were always the dif-
ficulty with vector-meson dominance. If you look at
the m-N S-wave scattering lengths by themselves,

it appears that they are dominated completely by the
vector mesons, because the spin-0 exchange vanishes.
As soon as you go to the effective ranges, this goes
completely wrong.

Balachandran: Let me emphasize that the extrapola-
tion is highly nonunique, because the S matrix is
not defined off the mass shell. You have to make a
choice as to what extrapolation you use, and you

hope that you' ve got the most gently varying one. We
have used one particular extrapolation, and this gives
the S-wave effective range and the P-wave scattering
lengths for T-T scattering to be zero, and the S-
wave T-T scattering lengths are of the same order
of magnitude and the same sign as Professor
Weinberg's, but they are not numerically equal, they
are slightly different. But I would not like to swear
by these numbers because I think that the problem of
extrapolation for the 7-T problem is extremely dif-
ficult and ambiguous.

Lovelace: But what about 7-N scattering?
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Balachandran: For the I = 1/2 S-wave effective
Tange, the number we get is 0.092 in pion masses,
while the Hamilton- Woolcock number is -0.021,
There is violent disagreement between the two num-
bers. For the I = 3/2 effective range we get -0.046,
while the Hamilton-Woolcock number is -0.054., I
was told by Professor Wali that there is some experi-
mental disagreement between the S-wave fit of
Hamilton and Woolcock and some low-energy data
which have become available.

Adler (Inst. for Advanced Study): If Weinberg's pre-
diction of small m-T scattering lengths is verified
experimentally, this does not imply any contradiction
with the -7 sum rule. In evaluating the sum rule,
I inserted only the contribution from the known p
and f° mesons, and assumed that the remainder
needed to saturate the sum rule came from the I =0
S wave, and not from possible T-T resonances at
energies higher than the f® or from a high-energy
tail, If the I =0 S wave turned out to be small, it
would indicate that the region above the £ meson
must be important; I don't believe this would con-
tradict any known experimental facts,

Weinberg: Professor Khuri has looked at the problem
of the extrapolation in the T-T scattering amplitude
and has found that the method of extrapolation is
essentially unique, providing that the T-T interaction
is not too strong.

Moffat (Toronto): You mentioned at the beginning of
your talk that the current algebras are essentially
model-independent, It appears that the Adler-
Weisberger result for ga is based on choosing the
quark current, so that you get 2I3 on the right-
hand side of the commutator, Has anyone succeeded
in calculating the deviation (if any) from the Adler-
Weisberger result for ga, based on quarks, re-
sulting from the use of a model based on elementary
pions, e.g., the Yukawa coupling model associated
with the "eightfold way" ? In such a model one gets
213 plus something else on the right-hand side of the
commutator in the SU(2)X)SU(2) algebra. Is it pos-
sible to check the model dependence of the Adler-
Weisberger sum rule?

Dashen: As far as I know, given the eightfold-way
model, if that's what you call it, with eight ele-
mentary spin-1/2 baryons and eight elementary
pseudoscalar mesons, there wouldn't be any way to
evaluate the sum rule because you wouldn't know
what the commutator is physically, Mathematically,
it would be the part of the isotopic spin current that
comes from nucleons, but you cannot separate that
from the part that comes from the pions. It might be
zero because it amounts to something like the core
of the nucleon. Because of this, I don't think that
one could learn anything about the possible validity of
the eightfold model by use of a sum rule,

Mandelstam (Berkeley): At the beginning of your

talk you pointed out that the dispersion-relation sum
rules obtained from commutation relations of space
components of currents need subtractions. If I am
not mistaken you need space components of currents
in order to get SU(6) from current algebra taking only
low-lying states. How do you handle the matter of
subtraction terms in this ?

Dashen: The original use of the commutation rela-
tions for the space components of the current was not
done with covariant sum rules, One used a sum rule
that looks like the Low equation, where there is no
question about subtractions, but there are serious
questions about the rate of convergence.

Goldberger (Princeton): Most discussions of the appli-
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cations of current commutators relate to scattering
amplitudes for massive vector mesons on baryons or,

through PCAC, to pseudoscalar meson-baryon ampli-

tudes, The absence of similar relations for baryon-
baryon amplitudes has always seemed to me to indi-
cate a possible incompleteness in the theory. The
reason why the baryon-baryon problem is difficult is,
of course, clear in that one has not had Gell-Mann
propose a set of commutation relations for the source
of the baryon fields, and I wondered if there was any
wisdom on that subject that I was unaware of ?

Dashen: There is one thing. Whenever all strongly
interacting particles are on the mass shell, all the
sum rules become trivial. They are related to the
guperconvergent sum rules of Fubini and his collabora-
tors, and will be discussed by Francis Low in his
section. What happens is the following. If one writes
down a sum rule for currents and then converts it

into a sum rule for actual strongly interacting par-
ticles, he finds that the conclusion is that a certain
integral must vanish. The statement that the integral
vanishes is equivalent to a statement about the asymp-
totic behavior of the integrand, and it always turns
out that in the derivation of the sum rule one has al-
ways assumed precisely this asymptotic behavior,
Another way to state it is that one might say that the
p-meson field is like the electromagnetic current.
However, from the commutation relations of the vec-
tor current it's impossible to get any nontrivial re-
strictions on p-meson scattering, that is, restrictions
that are not already implied by the assumptions used
in deriving the sum rules., There is somewhat of a
difference in the case of pions. If you say that the
pion field is the divergence of an axial-vector current,
then the explicit presence of a time derivative allows
you to get some information about pion scattering, but
only for fictitious zero-mass pions. If one wants to
do a similar thing for the baryons, what is going to be
necessary is to say that a spin-1/2 field is something
like the divergence of a Rarita-Schwinger field, and
you would have to know something about the commu-
tation relations of these things. I don't know whether
anybody has made such an attempt; it is certainly
possible, but to what extent it's useful I don't know.

Ne'eman (Tel Aviv): A partial answer to Professor
Goldberger's question (amplitudes, though no direct
sum rules as yet) is provided by the identification of
an algebraic structure in the system of space inte-
grals of the factorized Regge residues. In that case,
which involves generators with scalar densities, one
gets predictions such as the Levin-Frankfurt ratio
O'-n-p/oPp = 2/3.

Hwa (Stony Brook): In connection with Goldhaber's
comment, I want to remark that Nuyts and I have
looked into just that problem. We postulated PCBC--
that is, we assumed the existence of a baryon ''cur-
rent'" whose divergence is related to the baryon field,
We constructed the baryon current from a suitable
product of three quarks. The anticommutator rela-
tion between a baryon and an antibaryon current was
calculated on the basis of the canonical commutation
relations of the quarks. It turned out, however, that
the right-hand side of the anticommutation relation is
terribly complicated. We could get no useful result
out of it., We went on to consider the commutation
relation between a baryon current and a meson cur-
rent and did obtain a very simple relationship, Taking
matrix elements of the commutator between baryon
and meson states, we obtained constraint relations
among various form factors.

Khuri (Rockefeller U,): Before we can answer

Professor Goldberger's question we must ask about
PCAC for the K meson. In all the impressive list of
successes listed by the rapporteur we find only pion
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processes and not one soft kaon process. I would
like to know if such results exist, and how they com-
pare with experiment? It might be that even in the
case of the K meson, PCAC would turn out to be
not quite so useful.

Dashen: I know that in the K-decay predictions one
runs into some funny business if he tries to let the
K-meson mass go to zero. However, some of the
sum rules written in analogy with the Adler-
Weisberger sum rule use PCAC for the K meson,
and as far as one can tell they work., I'm sure it's
possible to predict the K-nucleon scattering lengths,
and I suppose it has been done, although I don't
happen to know what the results are; that would be a
possible way of telling. I think I should say that if
you' re going to assume something like PCBC, then
you are only going to be able to make predictions for
zero-mass baryons, just as you can only make pre-
dictions for zero-mass pions, I suppose one can
make many predictions for the emission of soft N 's,
but I suspect that you will have to go to very high
energy before baryons become soft. Of course, it's
not necessarily out of the question.

Weinberg: I would like to use my prerogative as
chairman, and give another answer to Goldberger's
question. I think you can't get something for nothing.
Behind the successful predictions of PCAC lies a
symmetry, that of SU(3) @ SU(3) or SU(2) ® su(2),
which could be exact if the pion had zero mass, and
which would then lead to exact low-energy theorems.
PCAC just says that the real world is not too dif-
ferent from the ideal world, so we get approximate
predictions only, a situation not too different from
that with which we' re familiar in SU(3).

Adler: The sum rules relating the strangeness-
changing axial-vector coupling constants to kaon-
nucleon cross sections are not sensitive tests of
PCAC for the strangeness-changing current. The
reason is that they typically involve the ratio
UO(KN)/gO(KNB)Z, where 0((KN) and g,(KNB) are
respectively the kaon-nucleon cross section and the
kaon-nucleon-baryon coupling constant at zero kaon
mass. It is possible that 0(KN) and go(KNB) are
appreciably different from their on-mass-shell values,
but that the ratio involved in the sum rule is still
nearly the same as its on-mass-shell value. To
check PCAC for the AS # 0 currents, one should
look at relations connecting hyperon beta decay, kaon
beta decay, and kaon-nucleon coupling constants,
analogous to the usual Goldberger-Treiman relation
relating nucleon beta decay, pion beta decay, and the
pion-nucleon coupling constant.

Feynman (Cal Tech): I am not commenting on Mr.
Goldberger's question, but on something else. It is
interesting that if one writes some axial-vector
meson field is proportional to the axial current

pn = F;, » then current algebra permits one to cal-
culate some properties of the propagator for the
meson (vacuum expectation value of Fj Fy). The
result is that the propagator no longer is purely trans-
verse, but a new term, purely longitudinal, arises
with an independent denominator permitting new poles
and thus representing pseudoscalar particles coupled
to the divergence of Fa, and satisfying the conditions
of PCAC.

Logunov (Serpukhov): You presented a calculation for
the cross section of the reaction "+ N—=7+ 7+ N. In
what way was the direct 77 interaction taken into
account, if at all? The same question about the K
decay into three pions.

Dashen: In the production of two soft pions, the one-
pion-exchange pole is explicitly taken into account,
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using the scattering lengths for the 77 interaction
predicted by the low-energy theorems.

Tavkheledze (Dubna): N. Bogolubov drew attention
to the fact that many results usually obtained from
the algebra of currents are in fact the consequence
of dispersion relations and assumptions about the
subtractions in these dispersion relations. Consider
the amplitudes

T(s,t) =§eiq' 0(x o) (p'[§(x)j(0) )

a ,a a_.a
h j i f Vv, A A =j",
where j is one o w A BH wo

Using local properties (microcausality),
[i=), iy)] = 0, with x and y spacelike,

we get dispersion relations for T(s,t). Separating
the spin and unitary spin structure, we get

T(s,t) :??i £ (s,t).

If we suggest dispersion relations for f.(s,t) and
sf.(s,t) (both without subtractions), we get the sum

rules
+ 00
g fi(s,t) ds =0

- 00

applied to the amplitude
7P o\ el %0 ) (pr |1 Vo), VP(0)] |
pv 0 (P ph y p) -

This technique allows one to obtain the well-known
Cabibbo-Radicatti sum rules.
When they are applied to the amplitude

T - §ei¢ *0(x)(p'| %, Py ]py

suggesting unsubtracted dispersion relations, we ob-
tain, for t =0,

2 0
2 f " kdw
f(0, 0) = gA + -I\—/I S‘O 7 (O-,H.-P - 01T+P) .

To calculate £(0,0), we suggest that the amplitude £
is composed of the quark amplitudes in an additive
way., Taking account of only the Born term in the
quarks amplitude giveg £(0,0) = (g%)quark =1, and
we have the Adler-Weisberger relation,

Dashen: As I was saying, most of the commutation
relations are rather model-independent, and in al-
most everything one does in practice, it looks like
all the peculiar gradient of 6-function terms either
never enter into the calculation or else cancel out,
For that reason, in the commutation relations that

I wrote down in the beginning there is only really one
independent assumption, and that is that the charges
F% and F? when commuted give back twice the third
component of isotopic spin. Almosteverything else that
I have said can be considered as a consequence of
dispersion relations and of the conservation of iso-
topic spin along with SU(3). Now, if one wants to
introduce this assumption in some other way than
saying it came from an equal-time commutator, he
is perfectly free to do so, and he will probably end
up getting the same answers. There is really just
one independent number, which can be taken as the
one on the right-hand side of the Adler-Weisberger
sum rule, and the fact that it is one and not 0.7 is
not a consequence of dispersion relations or locality.
It is a consequence of a commutation relation, for
example.
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Appendix

Approximate Hadron Symmetries

Introductory Remarks at Preliminary Session 3b

B. W. Lee, Discussion Leader

I would like to divide the contributions to this
session into three categories. These are:
First: Chiral and Collinear Algebra and Classifica-
tion of Hadron States
Second: Local Current Commutation Relations and
Their Representations
Third: Miscellaneous

In the first category, I propose to focus our
attention on the following papers:

1. Relation Between D/F and GA/GV from
Current Algebra -- Gatto et al. [ Phys. Rev. Letters
16, 377 (1966)]

" 2. Mixing Effects in Baryon Spectroscopy -- Gatto
et al. [ Phys. Rev, Letters 16, 918 (1966)]

3. Current Algebras and Magnetic Moments --
Gatto et al. [ Phys. Letters 21, 459 (1966)]

4. Current Algebra and Representation Mixing --
Harari | Phys. Rev. Letters 16, 964 (1966)]

5. Current Commutators, Representation Mixing,
and Magnetic Moments -- Harari [ Phys. Rev. Letters
17, 56 (1966)]

6. Chiral Algebra, Configuration Mixing, Magnetic
Moments, and Pion Photoproduction -- Gerstein and
Lee [ Phys., Rev. Letters 16, 1060 (1966) and Phys.
Rev. (to be published)]

7. Saturation of Sum Rules in Particle Representa-
tion of Resonances -- Cheng and Kim [to be published]

8. PCAC and Chiral Representation Mixing--Horn
[ to be published]

I do not think it is necessary to reiterate why we
choose to saturate current commutators at infinite
momentum. I assume it is also well known that the
chiral U(3) U(3) algebra generated by the space
integrals of the time components of the vector_and
axial vector currents, and the collinear U(3) @ U(3)
algebra generated by

. 29 . I8 3
vt ES & VS (x, t)"‘) d{Z’ q'(x) Nq(x)
and - - - - -

A3i Egd% A31 (§,t)~§d% qt(gg) o3kiq(3§),

are "equivalent,' in the sense that the two algebras
are isomorphic, and the diagonal matrix elements of
the two algebras coincide. (We assume, from now on,
that the z direction is the direction of the infinite
momentum, )

At this point, I would like us to agree on nota-
tions: irreducible representations of either chiral
or collinear algebra will be labeled by (n, m),,where
n and m are the dimensions of the SU(3) representa-
tions generated by 1/2 (V1 + Al)[or 1/2 (V! + Ad)]
and 1/2 (V! - AY); N\ is the eigenvalue of the operator
A°3 /2, which may be called the ""quark" helicity.

It was shown by Gerstein, Dashen and Gell-Mann,
and others that assigning the octet of 1/2¥ baryons
and the 3/2" decimet to the representation (6, 3)1/2
leads to the well-known SU(6) results. Since some
of these predictions are not satisfactory, one must
allow the baryons to transform reducibly under the
algebra. Furthermore, in order to obtain nonzero
magnetic moments we must allow an additional de-

gree of freedom associated with an orbital angular
momentum excitation. To be more precise we must
introduce a degree of freedom which we define as
the orbital helicity A3 = J3 - N\, where J3 is the true
helicity. In a pure quark model, we have

_ 6
Jy = A3 + A3/2,
. 3.0t 8 _ .8
Aj = 1S-d xq (x) (x oy " Y 3% 1)
3.0t
3 gd rqi(r) 04 a(x) .
The papers 1 through 6 and 8 cited above discuss

these questions and investigate consequences of some
representation~mixing schemes.

A

Actually, there are two different attitudes taken
by the authors of the above papers. Since there
seems to be some confusion in the literature, I may
be allowed to make some pedantic remarks on this
point. This has to do with what subalgebra of the
algebra of Dirac covariants built out of quark fields,
U(12), is assumed to be good at infinite momentum,
By a good algebra, we mean an algebra which (a)
is not plagued by Schwinger and super-Schwinger
terms, and (b) gives rise to a fairly rapidly conver-
gent sum rule. In Papers 5,6, and 8, the chiral (or
collinear) algebra is assumed good, but not the so-
called SU(6)w. When one takes this attitude, itmakes
no sense to ask, for example, whether the state
|(6,3)1/2) comes from 56 of SU(6). It can be a
linear combination of an infinite number of irreducible
representations of SU(6) which contain (6,3)4/2. On
the other hand, in Papers 1 through 4, the entire
SUw(6) is assumed to be good, so that physical states
are assumed to be linear combinations of a few irre-
ducible representations of SU(6). In this approach,
U(3) @ U(3) is just a convenient subgroup from
which alone GaA/Gy and (D/F) axial can be uniquely
computed. At the practical level, there are two main
differences, depending on which philosophy one sub-
scribes to:

(@) In SU(6),,, to construct a state of definite j
and j, out of an irreducible representation of SUy(6)
and an irreducible representation of O(3) of the
"orbital' angular momentum, the usual vector addi-
tion rule is to be followed. Thus, if one is to con-
struct a state of j = 1/2, j, = 1/2 out of the spin-1/2
part of 20 and L = 1, one has

|J= 1/2, jz = 1/2) = 4 %‘ |(§’3)1/2’ I—‘z=0>

Iy -
- 3 I (3:3)_1/23 Lz =+ 1) .

No such constraint exists in U(3) ® u(3).

(b) In SU(6), once the SU(6) and L content of a
state of definite j and j, are given, the SU(6) and
L contents of states of the same j and different j,
are uniquely determined. For instance, if one
assumes | j = 3/2, j, = 1/2) belongs to (6,3), ), of
56 with L = 0, the state | j = 3/2, j, = 3/2) i¢ given
uniquely by

li=3/2,3,=3/2) =|(10,1)3 5, L, = 0).

This is not the case in U(3®U(3) .
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In all the papers I cited, discussions are based
on the approximation of treating resonances as single
particles. Since the same commutators lead to dis-
persion-relation-type sum rules such as Adler-
Weisberger,it is most appropriate to compare the
contribution from the idealized single-particle state
JP of mass M, isospin I [or SU(3) dimensionality]
to the commutator with the Adler-Weisberger integral

4 m®Gp® (Cav
M, L3P = 3 BSA_ S o (M, 1,0P),
g, NN

where ¢ (M, 1 ,Jp) is the resonance cross section
in the appropriate channel, expressed in terms, for
instance, of the Breit-Wigner formula, Table 3-AI
shows I(M, ]I, Jp) for various resonances below = 2 BeV
in the pion nucleon channel:

Table 3-Al. Some values of I(M, I, JP).

M I JP 1M1, TP Source
1236  3/2 3/Z+ 1.05 Cheng and Kim
(0.65)
0.68 Gerstein and Lee
0.72 Gilman and

Schnitzer

1480 1/2  1/2  0.10 Cheng and Kim

1518 1/2 3/2" 0.12 Cheng and Kim
0.12 Gerstein and Lee

1688 1/2 5/2°  0.08 Cheng and Kim
0.09 Gerstein and Lee

1924 3/2 7/2%  0.07
2190 1/2 /2" 0.03

Cheng and Kim
Cheng and Kim

Two remarks are in order here: For the 3/2+ deci-
met contribution, we find a narrow resonance approxi-
mation is a poor approximation, because of the near-
ness of the resonance to the threshold and the con-
siderable variation of the width with energy. The
estimate of I(M, I, JP) for the (3,3) resonance is about
2/3 of Weisberger's value, which is obtained by in-
tegrating over the total cross section over the range
of the (3,3) resonance; inspection of Table 3-AI
reveals that the resonance contributions listed ex-
haust the sum rule. In fact, as Cheng and Kim point
out, with I(1236, 3/2, 3/27) taken to be 0.65, one
gets GA = 1,18, Thus, I believe it is tenable to
assume that the background contributions (that below
and near 2 BeV and the Pomeranchuk tail) that have
not been taken into account cancel in the commutator.
It should perhaps be stressed, however, that the
numbers exhibited in Table 3-Al are subject to error
of order of, say, 15 to 20%.

Now, going back to individual contributions: in
Paper 1, Gatto and collaborators proposed the scheme
of assigning the 1/2"' octet of baryons to a mixture of
56 of SU(6), with L. = 0, and 20 with L= 4, The
372t decimet is assigned to 56 with L = 0. Thus
the 1/27% octet is expressed, Tn the U(3)QU(3)
language, as

18,5 =1/2, j, = 1/2) = cos 0](6,3)1/2, 0)
+ sin e{/§|(§,3)1/2, o>-_/%—| (33)_1/2, 1)} ,

and the decimet is

10, j = 3/2, i, = 1/2) =| (6,3)1/2, 0) .
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Gatto and collaborators note a relation that follows
from these assignments, independently of the mixing
angle 0,

Sa

GV
which seems to be well satisfied experimentally.
Harari came up with more or less the same model in
Papers 4 and 5. Interms of the mixing angle 06, we
have in this model

D+
D-F’

oy

=1
3

- GA/GV = g-coszﬂ + %sinze ,

cosZ'G + -?1)- sinZG

(D/F)

axial = — 2 __ 2 ’
§cose

2
11236, 3/2, 3/27) = (%) cose .

With the choice 6= 37°, one gets -Ga/Gy = 1.19,
(D/F)axial = 3/2 X 1.2, and I(1236) = 1.1,

In Paper 2, the authors discuss several alterna-
tive mixing schemes based on SU(6) . The first
model considered is the mixing of (g%), L =0) and
(56, L = 1), as the ""orbital" excitation model sug-
gests. They find that in this model the (D/F),y a1
remains the same, i.e., 3/2, but -Ga/Gv< 573.
The second model considered is the mixing of
(56,0) and (70,1), as Dalitz's classification of the
negative-parity baryon states suggests. They find
that this mixing scheme leads to no constraint be-
tween the values of -GA/GV and (D/F)axial. They
also discuss the mixing of (56, 0) and (700, 0), based
on the observation that the ndhcompact U{6,6)[ which
contains the chain{ U(6) & U(6)} ponchiral2V(6)w]
has a ladder representation that contains the series
56, 56, 700, ---., This scheme turns out not to give
2 satisfactory relation between -Gp/Gy and

(D/ Flaxial

In Paper 6, SU(6) is assumed to be not a good
algebra and rejected. Thus the entire discussion is

based on [U(3) & U(3)]chiral ® U(1), the factor
U(1) being the one-parameter algebra generated by
A3, the orbital helicity., The model proposed is

|B4/2)=cos B[(6.3), /5, 0)

+ sin B{cos a ](3,?)_1/2, 1)

+ sin al (8,1))\,% - )\)} , Narbitrary,
|A1/2> = “653)1/2: 0> s

where the subscripts refer to helicities. In this
model

-GA/Gy = —35— cosZB + sinzﬁ ,

.2
cos B+ sin B coszu

(O/F) il = 72 2 z_
3 cos B + sinB sin"a
2
1(1236) = (%) coszﬁ .

The choice cos’a = 3/5 yields
(D/F) 3

axial = 2

independently ?f the value B. It is noted that
cos B = (3/8)1/2 gives

-GA/GV = 1.25, 1(1236) = 0.67.

The expectation value of the electric dipole operator
D
1'

_ 3 .
Di - S‘d ?ix Jo(f:t)r
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between the spin 1/Z+ baryons at infinite momentum
is equal to the anomalous magnetic moment, The
structure of Dy with respect to U(3)®U(3)®U(1)

is such that it transforms like (8, 1) + (1, 8)¢ with
L, = + 1, Thus in the expression

(B_1/2 | Dy [ Byy2)

there are two nonvanishing reduced matrix elements
{(6:3)1/23 0} <—>{(3:3)1/2‘ LZ =- 1} and
{(3:3)1/2’ Lz = 0} ‘_’{(313)1/2 LZ == 1}

in the Gatto et al. — Harari model; and this is only
one reduced matrix element {(6,3)1/2, 0} «{ (3,3)) /2
L, =~1} inthe Gerstein-Lee model. The relatidn

Z
b= - -ggg— Baln) =+ E%;EE”A(P)

follows from either model, while the latter model
predicts in addition pA(p) = - pA(n). The value for
p® is estimated by Dalitz and Sutherland to be

* ~ *
2, 2
= (1.2820,02) &= p . (p) .
Gerstein and Lee carried out an analysis of L based
on the correspondence between the commutation re-
lation [ Aj, Dy} and the Fubini-Furlan-Rossetti
sum rule and the photoproduction data, and obtained

* 2,/2 _
(CRPRTS % up). by = Meota1® -

The Gatto-Harari model, with 6 = 37°, gives
* 2./2
(b)) > 1.3 (—-3£|LP) ,

while the Gerstein-Lee model, with p = 47°, gives
1,6 (%E mp

In the above discussion, we have assumed that
the photoexcitation of the (3,3) resonance proceeds
only through the M1 multipole, as there is over-
whelming evidence for this, In Paper 3, Gatto and
collaborators point out that in SUy(6), the moments
pa(p,n), p* are all zero. The reason is as follows:
since in Gatto et al.'s scheme |A1/2> is assigned
to [(6,3)4/2,0) and the SU(6) 56, it follows that

A3/2) must be assigned to ﬁ (10‘:‘1)3/2, 0). However,
there is no nonvanishing matrix element of D, be-
tween [(10, 1)3/2,0> and |B1/2>. Thus p" =0
(since the EZ2 'moment is assumed to be zero), and
from the relation cos 6 p™ = - /2 pa(n), pa(n) = 0.
This difficulty arises from assuming SUg(6) to be a
good algebra, and does not exist in U(3) U(3).
For, in the latter scheme, it is not necessary to

assign |A3/2 ) to a pure |(10, 1)3/2,0).

= 1,4 (

Gerstein and Lee consider the possibility that
the stable baryons, the 3/2% decimet, the 1405 sing-
let, and the 3/2” and 5/2%7 octet form the reducible
representation

{(6,3)1/2,0}:{(33)_1/2' 1} and {(8,1))\: ‘é" A}

The strengths of N**, N*** = N + 7 predicted are
compared with experiment and found not too satis-
factory. It appears that further chiral representa-
tions should be mixed into the 3/2” and 5/2% reso-
nances., This means that more states are needed to
saturate the Adler-Weisberger sum rule than those
already taken into account. A similar conclusion
can be drawn about the Harari model from the work
of D. Horn.

An interesting observation made by Gerstein
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and Lee is that the photoproduction amglitude of the
isospin 1/2 resonances (3/2” and 5/2%) from nucle-
ons transforms like pure isovector. There seems to
be some support for this experimentally.

In the third category, we have the contributions:

1. Relations between the Pion-Nucleon and the
Meson Coupling Constants from Pion Scattering
Length - Sakurai

2. Symmetry Predictions from Sum Rule Without
Saturation - Gilman and Schnitzer

3. Axial Vector Current Consisting of Pseudo-
scalar Octet - Kao and Sugawara

4. Universality and Quark Models - Freund

5. Calculation of Transition Probabilities from
Noncompact Dynamical Groups - Barut

The first two papers rederive the Kawarabayashi
and Suzuki relation

2 2 4 2/ 2
fp _ GTTNN GV /rn
4 |~ 4T
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which was first derived by applying current algebra
to the process p — 27 . Sakurai derives it by equat-
ing the Tomozawa- Weiberg formula for mN scat-
tering length,

2 2/ -
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with the expression one gets if one assumes Aq
comes from the p-meson exchange:

2 2 -
A :-sz_ PN _L_PI‘.TN
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Gilman and Schnitzer, on the other hand, note that
two Adler-Weisberger-type relations result for the
process p + T - p+ T, depending on whether one
chooses to contract two p~ meson fields or pion
fields. In the former case, one obtains the commu-
tator of vector currents through the assumption that

™

- fp -
p= — V ,
B mZ "

p

while in the latter, one gets the commutator of axial
vector currents through PCAC. In the two sum rules
that ensue, the continuum contributions are the same
(in the approximation of neglecting the off-mass-shell
corrections), and one obtains the formula exhibited
above. Thus the Kawarabayashi-Suzuki relation ap-
pears to be a consistency requirement on the chiral
algebra, PCAC and the hypothesis about the p-
meson dominance of the vector current form factors.
It is well to recall that substantially the same formu-
la follows from SU(6) with (Ga/Gvy)% restricted to

(1/2)(25/9).

Another interesting point that Gilman and
Schnitzer make is that if the relation

G(mp) - a(mp) = o(p P) - olp P)

due to Lipkin and Scheck (this also follows from the
assumption that in charge exchange and forward TN
and pN processes, the t channel is dominated by
the same octet coupled to the isospin current) is used
to represent the continuum contribution beyond the
(3,3) resonance in the Adler-Weisberger and
Cabibbo-Radicati sum rules, one obtains relations of
the type

- - Ga 1
bp T T 2Emn /T 2/EM 150 o )
which agrees with experiment to within 10%.



