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S e s s i o n 3 

CURRENT COMMUTATORS 

Roger Dashen, Rapporteur 

The subject I discuss began, as we all know 
with Gell-Mann's suggestion 1,2 that the vector and 
axial vector current of the hadrons might satisfy ex­
act equal-time commutation relations. During the 
last two years we have seen this suggestion develop 
into one of the most exciting branches of particle 
physics. In this talk I attempt to summarize the 
present status of the field, at least as I understand 
it. It seems to me that there are four main topics 
to be covered; they are: 

(i) What is known (and not known) about the com­
mutation relations satisfied by current components. 

(ii) The low-energy theorems for processes in­
volving soft pions, 
( i i i ) Dispersion-theoretic sum rules* 
(iv) Saturation of sum rules and the connection be­

tween current algebras and symmetries. 
These topics are discussed in order. 

I. The Commutation Relations 

In any Lagrangian field theory which could pro­
duce SU(3) as an approximate symmetry, there will 
be eight vector currents 4 ^ (x) , with i = 1 • • • 8. 
Using these currents, one can define eight charges 
F{(t) by integrating the time components over space: 

Furthermore, as Gell-Mann pointed out, these 
charges satisfy the equal-time commutation rela­
tions 

where the f. are the structure constants of SU(3). 
I would like Vo stress here that the above statements 
are true in any reasonable field theory which could 
possibly lead to SU(3) and are in no way peculiar to 
the quark model. (In the present context the only 
thing special about the quark model is that it is the 
simplest model leading to the commutation rela­
tions, Eq. 2. ) 

Again in any field-theoretic model, there will 
be an octet of axial vector currents ( x ) , with 
i = 1 • • • 8. In analogy with Eq. 1, one can define 
axial charges according to 

and since the axial currents belong to an octet, we 
have 

(4) 

Thus far, I have simply pointed out some very 
general, formal properties of Lagrangian field 
theory. The physics enters when we cease to think 
of the -^i' s and as purely abstract objects 
and identify them with the various components of the 
physical weak and electromagnetic currents. The 
well-known correspondence is, 2 

(5) 

i re , for example, ~ + * ̂ 2* a n c ^ ^ * s ^ e 

Dibbo angle. It is wort^h emphasizing, I think, that 
whei 
Cabibbo angle. It is worth emprj 
the identification of the physical weak and electro­
magnetic currents with objects which satisfy the 
equal-time commutators 2 and 4 is a meaningful and 
nontrivial statement about the physics of hadrons. In 
principle, all the matrix elements of J V and 
J"weak can be measured in electron and neutrino scat­
tering experiments. Given these matrix elements, 
one could calculate the commutators and test Eqs. 2 
and 4 directly. Such a program is , of course, out of 
the question at present, but as we shall see there is 
considerable evidence in support of Eqs. 5 and 6. 

Besides 2 and 4, Gell-Mann further suggested 
that the commutator of the axial charges should be a 
vector charge, according to 

While, as I pointed out, Eqs. 2 and 4 are true in any 
reasonable field theory, Eq. 7 is somewhat more re ­
strictive. Examples of theories in which 7 would be 
true are ( i ) the quark model, (ii) a model built on 
eight elementary baryons, and (ii i) an SU(3) generali­
zation of the <J model 2 » 3 w i t h eight elementary 
baryons, nine pseudoscalar mesons, and nine scalar 
mesons. An example of a theory for which Eq. 7 does 
not hold would be a model built on eight baryons and 
eight pseudoscalar mesons with no scalar mesons. 
We know, of course, from the work of Adler^ and 
Weisberger^ that the physical vector and axial vector 
currents do satisfy Eq. 7. My reason for discussing 
the above models was to bring out the following points. 
Since 7 is not true in all models it is a nontrivial 
statement about the physical currents. Nevertheless, 
it does not necessarily have anything to say about 
quarks. 

In addition to the commutation relations among 
charges one can ask about the commutators of the 
densities themselves. If the theory is to be local, 
we must have, for two charge densities, 

+ (more singular terms) . (8) 

In this particular case of two charge densities, there 
is no particular reason to believe that the more singu­
lar terms exist, since there is no known simple model 
that produces them. On the other hand, we do not 
have any real evidence that they are not there, either. 
The situation is rather different when we consider the 
local commutator of a charge density^? with one of 
the space components of the current Again, on 
grounds of locality we must have 
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where I have explicitly written out a possible gradient 
term. In this case one can prove that 

(0 | S.. |0) ^ 0. (10) 

There are two possibilities consistent with Eq. 10; 
Sjj can be either an operator or a C number. Un­
fortunately, it is not possible to prove from the basic 
postulates of relativistic quantum mechanics such as 
locality, Lorentz invariance, unitarity, and so on 
that Sij either is or is not an operator. The reason 
is simply that there are free-field theories consistent 
with all these postulates in which Sjj is a C num­
ber (quark model) and in which Sij is an operator 
(any theory with elementary charged mesons). The 
actual character of this object Sij probably depends 
in a detailed way upon the dynamics of hadrons. 

It turns out that the singular terms like Sij, 
which may appear in the local commutators, never 
seem to show up in any practical applications of the 
commutators. One point of view would be, then, that 
these complicated singular objects are not really rele 
vant to physics and may as well be forgotten. An al­
ternative point of view is that the very complexity 
and model dependence of an object like Sij make it 
interesting. If we could (i) "measure" the matrix 
elements of Ŝ j by, say, a sum rule, and (ii) learn 
how to interpret these matrix elements theoretically, 
we might learn a lot about the actual dynamics of 
hadrons. Unfortunately, at present, it is not clear 
how one could do either (i) or ( i i ) . 

Finally, I would like to discuss, very briefly, 
commutators of the space components of the currents. 
I have stressed that the commutators 2, 4, and 7 of 
the charges F and F^ are rather model-indepen­
dent. This is not the case for the commutators of the 
space components. The quark model makes a pre­
diction for [^I i, £T j ] which is not shared by any 
other known theory. Evidently, it would be of great 
interest to test these predictions. However, it is 
not at all clear how one could obtain such a test, and 
we have, in fact, essentially no knowledge as to the 
commutation relations among the space components 
of the physical currents. 

II. Low-Energy Theorems for Soft Pions 

One of the most fruitful applications of the cur­
rent commutators has been their use in the derivation 
of low-energy theorems for processes involving soft 
pions. What I mean by a low-energy theorem for 
pions is , perhaps, best explained by an example. Let 
us consider a scattering process in which the initial 
state contains a heavy particle i and a pion of iso­
topic spin a and momentum q a , and the final state 
contains a heavy particle f and a pion of isotopic 
spin b and momentum q^. We wish to find an 
approximate expression for the scattering amplitude 
that will be valid for small q a and q^. 

The derivation of the desired result would pro­
ceed as follows. One defines a function A as 

where ( Z f ^ ) " 2 = m ' Z (TT | 8 y ^ v 5 ( 0 ) 10) It is simply 
a mathematical fact that ( i) when q | = q£ = m 2 , A is 

equal to the scattering amplitude for ir a + i-* TT̂  + f, 
and (ii) for small q a and q^, A can be determined 
up to order q a q]3 in terms of known pole diagrams 
and the equal-time commutators [ F | , F ^ ] and 
[ F | , F ^ ] , The physics enters when we assume that 
the pion mass is sufficiently small and A is a suf­
ficiently slowly varying function of q a and q^ that the 
values of A as calculated from the known low q 
limit can give useful information about actual low-
energy pion scattering. I would like to emphasize 
that this physical assumption is by no means trivial . 
In an ordinary Lagrangian field theory with elemen­
tary pions and nucleons interacting through a pseudo-
scalar coupling, both (i) and (ii) above are true, 
order by order in perturbation theory. But in this 
theory, at least to low orders in the perturbation ex­
pansion, A is an extremely rapidly varying function 
and its low q limit is not useful for discussing pion 
scattering. In the real world, however, it does seem 
to be true that A is slowly varying over the relevant 
range of q. 

Here I have to mention one technical point. The 
expression one obtains in the low q limit contains 
an unknown operator = [ F A , F ^ ] . This object 
has the dimensions of mass and is something like the 
term in the Hamiltonian which violates conservation 
of the axial vector current. It turns out that if A is 
to be slowly varying, as appears to be the case, then 
Z a D must be very small and can be neglected. 

Neglecting, then, a presumably small term pro­
portional to 2 a b , one finds, for small q, the re ­
markably simple formula 

A ( q b b , q a a ) = Sifj tqa + q b ) - (P. + P f ) 6 ^ ( T

C ) f i 

+ poles + 0 ( q a a b ) , (12) 

where (T)-Q is the isospin matrix between the initial 
and final heavy particles. 

Equation 12 can be used to predict the TTN scat­
tering lengths. The predictions' are a | ^ 2 = ^.20 m^^ 
and 3L3/2~ -0,10 m^s which are in good agreement 
with the experimental values of 0.17 mifj-1 and 
-0.09 m " 1 . 

The low-energy theorem for pion scattering which 
I have just described is typical of a number of theo­
rems for processes involving soft pions. I would like 
to summarize, here, the main results of the theo­
rems. When they are put together, I feel that they 
constitute an impressive bit of physics. These re ­
sults can be listed as follows: 

(a) TT + N - » N + 2ir 
g 

L. Chang has calculated the amplitude for pro­
duction of two soft pions in a pion-nucleon collision. 
A preliminary comparison with experiment indicates 
good agreement up to incident pion energies of about 
300 MeV. 

(b) y + N - » IT + N 
Q 

The low-energy theorems for photoproduction 
are 

where the A and A 0 are the standard C G L N 
photoproduction amplitudes. A dispersion integral 
evaluation 1 0 of A+fq^ = 0) indicates that Eq, 13 is 
satisfied to within 15%, and it is known that 
A ° ten- - 0) is small in agreement with Eq. 14. 
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(c) Leptonic K Decays 

All amplitudes for Ke^j Ke3> and Ke4 de­
cays 11" 13 c a n D e expressed in terms of two matrix 
elements of the weak current. One prediction is 
f+ (q-rr = 0) + f„ (q^ = 0) = f^/fki where f+ and f_ 
are the Ke3 form factors. As pointed out by Cabibbo, 
this relation is compatible with experiment. The 
ratio R = T ( K + - * T T ° + e + V) /TT(K2-*TT+ + TT" + e +v) can 
also be predicted; comparison of theory and experi­
ment gives R theory/R exp = 1.0 ±0.2 . 

commutator itself, but with the Fourier transform of 
a retarded product. Let us define 

where A and B are local operators which we will 
later take to be various components of the currents 

& y and # As is well known, M is an analytic 
function of and satisfies the Low equation 

(d) Nonleptonic K Decays 
11 14 15 

Here ' ' we have to make some assumption 
about the weak Hamiltonian. The simplest hypothesis 
is that H w is a function of the weak current only, 
which wil l be the case if there is an intermediate 
boson or a local current-current interaction. With 
this assumption one finds that all K decays should 
respect the | A I | - l/Z rule even though H w may con­
tain a I A I | =.3/2 piece. The ratio 
R = r ( K j ->TT + TT")/ T ( K + - > TT+TT+TT"") is predicted with 
the result R 1 theory/R' exp = 0.80±0.05; all other 
ratios of rates follow from the | A I | - l/Z rule. 
Finally, the energy dependence of the matrix e l e ­
ments for K -+ 3TT can be calculated, and again, there 
is good agreement between theory and experiment. 

(e) Nonleptonic Decay of the Hyperons 

Making the same assumption as above about H w , 
one can obtain a low-energy theorem for the S-wave 
amplitudes in the decays B - • B 1 + TT. 16, 17 T n e con­
clusion is that "octet dominance, " which implies the 
| A l | = j rule and the Lee-Sugawara triangle, will 
hold if,and only if,the S-wave amplitude S ( ^ ) = 0. 
Experimentally, we seem to have both octet domi­
nance and S ( ^ | ) = 0. There are no predictions for 
the P-wave amplitudes, unless one makes additional 
dynamical assumptions such as the validity of the 
pole model; the pole model does not seem to work 
very well . 

I should make one final remark about the low-
energy theorems. It is very hard to understand how 
they could work so well if there is a strong TTTT inter­
action at low energies. Weinberg? has applied the 
current algebra techniques to TTTT scattering and finds 
scattering lengths 

which are, in fact, small. It would be very helpful 
to have more accurate experimental data on the TTTT 
interaction. 

Furthermore, one can convince himself that the 
equal-time commutator is given by 

So far, what has been accomplished is to relate 
the equal-time commutator to something which looks 
like the integral over the absorptive part of a scat­
tering amplitude: the sum rule is still not covariant 
because of the noninvariant integration contour, dkQ 
with k held fixed. Evidently, the next step will be to 
change to an invariant contour of integration, just as 
one does in going from the Low equation to a disper­
sion relation. 

From the proofs of dispersion relations, we know 
that Eq. 17 can be rewritten as 

(19) 
2 

where S = (k + P . ) , the variables being held fixed 
in the integration are invariant scalar products such 
as t = (Pi - P f ) 2 , k 2 , and q 2 = (P. + k - P f ) 2 , and 
M is an invariant function which may differ from M 
by kinematical factors. In the same manner, Eq. 18 
can be transformed into 

+ (subtractions), 

where the "form factor" G(t) represents the matrix 
element of the equal-time commutator. The sum 
rule has now been written in an invariant form, but 
before discussing applications we must face the 
problem of subtractions, the possible presence of 
which is indicated in Eqs. 17 and 20. 

III. Dispersion-Theoretical Sum Rules 

The basic idea of a sum rule is , of course, very 
simple: one simply sandwiches a commutation rela­
tion between two states, inserts a complete set of 
intermediate states, and thus obtains a sum rule. 
Unfortunately, the sum rules obtained in the simple 
way are not very useful: first, they are hard to com­
pare with experiment and, secondly, they are not ex­
plicitly covariant. For this reason, there has been 
considerable work on the problem of transforming 
sum rules into a covariant, dispersion-theoretic 
form. I would like to sketch now how this transfor­
mation is accomplished and what the limitations of 
the method are. Then I will give some of the experi­
mentally testable rules which have emerged. 

It is well known that in going from Eq. 17 to 19 
one may pick up subtraction terms, i. e, , polynomi­
als in S with coefficients which are functions of t, 
k 2 and q 2 ; the same thing can happen when one goes 
from Eq, 18 to 20. Evidently, the sum rule will be 
useless if subtractions are present, since the right-
hand side will contain unknown functions of t* In 
co:_imutators of current densities 4fiV and £PV , the 
situation with regard to subtractions is as follows: 
(i) For the commutator of two time components 
or ^ 1 0 , subtractions are not present and Eq. 20 
gives a useful sum rule; (ii) for one time component 
and one space component or the question of 
whether subtractions are present "a1 epends on dynami­
cal details and cannot be answered in general; 
(iii) for two space components subtractions are pres­
ent and Eq. 20 is not a useful sum rule. 

It is convenient to start, not with the equal-time Earl ier , I stated that we know quite a bit about 
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the commutators of time components, but hardly any­
thing about commutators of space components of the 
currents. This is , in large part, because one can 
write covariant dispersion-theoretic sum rules in the 
former case but not in the latter. 

Even in its dispersion-theoretic form, the gen­
eral sum rule 

is still not easy to test experimentally: for practical 
reasons one has to resort to special cases. Setting 

= q2 = o and taking the derivative with respect to 
t at t = 0 in Eq . 21 yields, for the commutator of 
Jr 0 and i f . ? , the r e l a t ion 1 8 

1 J 

where O^Jz i s t n e cross section for (isovector y) 
+ proton -*> I = 3/2 states, (J i/i is the cross section 
to make isospin 1/2 states, o> is the photon energy, 
and the ( r 2 ) 1 s and |i' s are charge radii and mag­
netic moments. A similar sum rule which makes 
use of the commutator and is therefore 
plagued by subtraction questions, i s 1 9 

where the subscripts A and P refer to proton and 
photon spins antiparallel and parallel. 

An interesting fact about the sum rule ZZ is that 
the left-hand side is negative, while the contribution 
of the (3,3) resonance to the right-hand side is posi­
t ive. The resulting failure of a simple resonance 
approximation in Eq. ZZ caused some worry when the 
sum rule was first derived, but a more careful evalu­
ation of the dispersion integral, ^0 including S waves 
and higher resonances, indicates that Eq. ZZ is , in 
fact, satisfied. 

The sum rule Z3 is interesting because, as men­
tioned above, it depends on the commutator 0 , ̂  ] . 
Unlike ZZ, Eq. Z3 is not satisfied in perturbation 
theory--a reflection of the subtraction question which 
shows up in these commutators. For these reasons 
it would be very interesting to know if this sum rule 
is satisfied. As far as I know, no numerical evalua­
tion has been attempted. 

In addition to the explicit evaluation of dispersion 
integrals, there is another way to test special cases 
of Eq. 21. One can show that the difference in neu­
trino cross sections (d /dk 2 ) a f^P) - cr(^P) , where 
k^ is the momentum transfer from the leptons to the 
hadrons, is essentially equal to 

where Im M comes from the commutator of j W eak 
and Jweak > a n c * S m a x is determined by the inci­
dent neutrino energy. For large neutrino energy, 

oo and one has Zl 

= G(0) = (known constant independent of k ) . 

IV. Saturation and Approximate Symmetries 

The final topic I wil l discuss concerns the use of 
current commutators to predict the properties of 
hadron states. Some examples of this idea, in its 
simplest form, are: 

(a) The commutator 

leads to a sum ru le 4 for TTTT scattering which is not 
satisfied if one includes only the contribution of the 
known resonances p and f 0 There have been 
some guesses that a strong low-energy TTTT inter­
action is necessary to bring the sum rule into agree­
ment with experiment, but it is, of course, very pos­
sible that the discrepancy is due to high- rather than 
low-energy effects. 

(b) If, in the corresponding sum rule for iTp scat­
tering, one assumes that the u> and $ mesons domi­
nate,then the wpTr coupling can be predicted with re­
sults that are in good agreement with experiment. 2 2 

In the examples described above, one simply ex­
amines a specific sum rule and tries to extract what­
ever information is available. While this approach 
may lead to interesting results, it is not very system­
atic. A more powerful approach is suggested by the 
fact that the sum rules are equivalent to the state­
ment that the F ' s and F^' s generate the algebra 
of SU(3) SU(3): thus the analysis of sum rules is 
really a problem in group theory. Now, in group 
theoretical language, the hypothesis that the sum 
rules are saturated by a small number of single-par­
ticle and resonant states is equivalent to the supposi­
tion that the physical particle states are mixtures of, 
at most, a few irreducible representations of 
SU(3) 0 SU(3). One may, then, try to classify the 
hadrons according to representations of SU(3)(^)(SU(3) 
and obtain, in some rather vague sense, a sort of 
higher symmetry. 

A considerable amount of work has been done on 
this problem of using current algebra to classify 
states. For a number of technical reasons, the prob­
lem is not easy. I will not go into any of the details 
here, but will simply describe the results of this pro­
gram as applied to the low-lying baryon states. 

In zeroth approximation, one assigns the baryon 
octet and decuplet of resonances to the pure repre­
sentation (6 ,3) . To start with, at least, this assign­
ment seems to be fairly good. Some predictions are 
(i) |G_AJ = 5/3 as opposed to the experimental value 
of « 1.20, (ii) a D / F ratio of 3/2 for the matrix 
element of the axial current between baryons, and 

A similar calculation for electron scattering produces 
only an inequality 

2 
l im [ ( a ( e p ) + a ( e n ) ] > , (25) 
E —oo dk k 

e 
-4 

where the k , which is missing in Eq . 24, comes 
from the photon propagator. One hopes that this in­
equality can be tested in the near future. 

The sum rules 22 and 23 are probably the only 
predictions of the local commutators which are of 
immediate experimental interest. This is not to say, 
however, that the local commutators and dispersion 
sum rules do not deserve further study. These commuta­
tors presumably contain a considerable amount of in­
formation about the relation between strong inter­
actions and the weak and electromagnetic interactions. 
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(i i i) a value of G ' , the octet-decuplet matrix e le ­
ment of the axial current, which is in rather good 
agreement with experiment. The trouble comes when 
one looks at the baryon anomalous magnetic moments, 
which, it turns out, are predicted to be zero . The 
way out of this difficulty is , of course, to introduce 
some mixing; one also hopes that the mixing wil l im­
prove the prediction of Gj±. 

Several people 23-25 have studied the possibility 
of representing the octet and decuplet as (6,3) along 
with various admixtures of (8,1), (3,3), and (T,3). It 
turns out that there is more than one satisfactory 
solution to the problem, so that which is the "right" 
mixture is still not known. Nevertheless, there is 
some reason for optimism. The mixing schemes 
typically have three or four free parameters but can 
predict six quantities (GA> the D / F ratio for the 
axial current, G * , the neutron and proton magnetic 
moments, and the N - N * transition moment) to a very 
good accuracy. 
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Discussion 

Balachandran (Syracuse): M. G. Gundzik, F. 
Nicodemi, and I have obtained, besides the S-wave 
T T - N and K - N scattering lengths, the S-wave effec­
tive ranges and P-wave scattering lengths for these 
processes. The agreement between theory and ex­
periment is good except for the T T - N S-wave I = l / 2 
effective range and the T T - N 3-3 scattering length. 
In collaboration with Dr. Narayanaswami, we have 
also obtained preliminary results on low-energy 
photopion production. 

We have also done the TT-TT calculation. The 
S-wave scattering lengths we get are somewhat dif­
ferent from Professor Weinberg 's , although the 
signs and orders of magnitude are the same. The 
difference seems to be due to the choice of different 
extrapolations. The 0-meson term which was written 
down vanishes on the mass shell. Therefore, the 
Green's function with this term subtracted out is also 
an extrapolation in the pion mass of the S matrix. We 
do not of course know whether the gently varying ex­
trapolation must have the a-meson term or not. I 
would like to point out that the a-meson term cannot 
be evaluated by comparing the predictions with experi­
ment, as the extrapolation with this term included 
may not be gently varying. 

Lovelace (CERN): I understand that both the Weinberg 
TT-TT scattering lengths and the Adler sum rule are 
true in the Gell-Mann - Levy a-model, at least in 
perturbation theory. So any contradiction must de­
pend on additional assumptions, e. g. , that the TT-TT 
S wave has a weak energy dependence. 

Dashen: Remember that the a model does not fix 
the mass of the a meson; it could be anything. The 
Weinberg TT-TT scattering length has effectively given 
the a meson a large mass, large compared with the 
pion mass. Now, offhand I don't know if you can 
give the o a very large mass and still satisfy the 
sum rule. 

Weinberg (Berkeley): The Adler sum rule for TT-TT 
scattering is saturated by a a meson appearing in 
the t and u channels as well as the s channel, 
but not by an S-wave resonance alone unless its mass 
is extremely low. We have to learn how to put par­
ticles into sum rules in a crossing-symmetric way, 
but of course this is a problem for many people. 

Lovelace: Can Balachandran predict the TT -N S-
wave effective ranges? These were always the dif­
ficulty with vector-meson dominance. If you look at 
the T T - N S-wave scattering lengths by themselves, 
it appears that they are dominated completely by the 
vector mesons, because the spin-0 exchange vanishes. 
As soon as you go to the effective ranges, this goes 
completely wrong. 

Balachandran: Let me emphasize that the extrapola­
tion is highly nonunique, because the S matrix is 
not defined off the mass shell. You have to make a 
choice as to what extrapolation you use, and you 
hope that you've got the most gently varying one. We 
have used one particular extrapolation, and this gives 
the S-wave effective range and the P-wave scattering 
lengths for TT-TT scattering to be zero , and the S~ 
wave TT-TT scattering lengths are of the same order 
of magnitude and the same sign as Professor 
Weinberg 's , but they are not numerically equal, they 
are slightly different. But I would not like to swear 
by these numbers because I think that the problem of 
extrapolation for the TT-TT problem is extremely dif­
ficult and ambiguous. 

Lovelace: But what about T T - N scattering? 
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Balachandran: For the I = l /Z S-wave effective 
range, the number we get is 0.092 in pion masses, 
while the Hamilton-Woolcock number is - 0 . 0 2 1 . 
There is violent disagreement between the two num­
bers. For the 1 = 3 / 2 effective range we get -0.046, 
while the Hamilton-Woolcock number is -0 .0 51. I 
was told by Professor Wali that there is some experi­
mental disagreement between the S-wave fit of 
Hamilton and Woolcock and some low-energy data 
which have become available. 

Adler (Inst, for Advanced Study): If Weinberg's pre­
diction of small TT-TT scattering lengths is verified 
experimentally, this does not imply any contradiction 
with the TT-TT sum rule. In evaluating the sum rule, 
I inserted only the contribution from the known p 
and f° mesons, and assumed that the remainder 
needed to saturate the sum rule came from the 1 = 0 
S wave, and not from possible TT-TT resonances at 
energies higher than the f° or from a high-energy 
tail. If the I = 0 S wave turned out to be small, it 
would indicate that the region above the f° meson 
must be important; I don't believe this would con­
tradict any known experimental facts. 

Weinberg: Professor Khuri has looked at the problem 
of the extrapolation in the TT-TT scattering amplitude 
and has found that the method of extrapolation is 
essentially unique, providing that the TT-TT interaction 
is not too strong. 

Moffat (Toronto): You mentioned at the beginning of 
your talk that the current algebras are essentially 
model-independent. It appears that the Adler-
Weisberger result for g ^ is based on choosing the 
quark current, so that you get 2 I 3 on the right-
hand side of the commutator. Has anyone succeeded 
in calculating the deviation (if any) from the Adler-
Weisberger result for gA» based on quarks, r e ­
sulting from the use of a model based on elementary 
pions, e. g. , the Yukawa coupling model associated 
with the "eightfold way" ? In such a model one gets 
2I3 plus something else on the right-hand side of the 
commutator in the SU(2)@SU(2) algebra. Is it pos­
sible to check the model dependence of the Adler -
Weisberger sum rule? 

Dashen: As far as I know, given the eightfold-way 
model, if that's what you call it, with eight e le ­
mentary s p i n - 1 / 2 baryons and eight elementary 
pseudoscalar mesons, there wouldn't be any way to 
evaluate the sum rule because you wouldn't know 
what the commutator is physically. Mathematically, 
it would be the part of the isotopic spin current that 
comes from nucleons, but you cannot separate that 
from the part that comes from the pions. It might be 
zero because it amounts to something like the core 
of the nucleon. Because of this, I don't think that 
one could learn anything about the possible validity of 
the eightfold model by use of a sum rule. 

Mandelstam (Berkeley): At the beginning of your 
talk you pointed out that the dispersion-relation sum 
rules obtained from commutation relations of space 
components of currents need subtractions. If I am 
not mistaken you need space components of currents 
in order to get SU(6) from current algebra taking only 
low-lying states. How do you handle the matter of 
subtraction terms in this ? 

Dashen: The original use of the commutation rela­
tions for the space components of the current was not 
done with covariant sum rules. One used a sum rule 
that looks like the Low equation, where there is no 
question about subtractions, but there are serious 
questions about the rate of convergence. 

Goldberger (Princeton): Most discussions of the appli­

cations of current commutators relate to scattering 
amplitudes for massive vector mesons on baryons or, 
'through PCAC, to pseudoscalar meson-baryon ampli­
tudes. The absence of similar relations for baryon-
baryon amplitudes has always seemed to me to indi­
cate a possible incompleteness in the theory. The 
reason why the baryon-baryon problem is difficult is, 
of course, clear in that one has not had Gell-Mann 
propose a set of commutation relations for the source 
of the baryon fields, and I wondered if there was any 
wisdom on that subject that I was unaware of? 

Dashen: There is one thing. Whenever all strongly 
interacting particles are on the mass shell, all the 
sum rules become trivial . They are related to the 
superconvergent sum rules of Fubini and his collabora­
tors, and will be discussed by Francis Low in his 
section. What happens is the following. If one writes 
down a sum rule for currents and then converts it 
into a sum rule for actual strongly interacting par­
t icles, he finds that the conclusion is that a certain 
integral must vanish. The statement that the integral 
vanishes is equivalent to a statement about the asymp­
totic behavior of the integrand, and it always turns 
out that in the derivation of the sum rule one has al­
ways assumed precisely this asymptotic behavior. 
Another way to state it is that one might say that the 
p-meson field is like the electromagnetic current. 
However, from the commutation relations of the vec­
tor current i t ' s impossible to get any nontrivial re ­
strictions on p-meson scattering, that is, restrictions 
that are not already implied by the assumptions used 
in deriving the sum rules. There is somewhat of a 
difference in the case of pions. If you say that the 
pion field is the divergence of an axial-vector current, 
then the explicit presence of a time derivative allows 
you to get some information about pion scattering, but 
only for fictitious zero-mass pions. If one wants to 
do a similar thing for the baryons, what is going to be 
necessary is to say that a s p i n - 1 / 2 field is something 
like the divergence of a Rarita-Schwinger field, and 
you would have to know something about the commu­
tation relations of these things. I don't know whether 
anybody has made such an attempt; it is certainly 
possible, but to what extent i t ' s useful I don't know, 

Ne 1 eman (Tel A v i v ) : A partial answer to Professor 
Goldberger 1 s question (amplitudes, though no direct 
sum rules as yet) is provided by the identification of 
an algebraic structure in the system of space inte­
grals of the factorized Regge residues. In that case, 
which involves generators with scalar densities, one 
gets predictions such as the Levin-Frankfurt ratio 
° " T r p / o - p p = 2 / 3 -

Hwa (Stony Brook): In connection with Goldhaber's 
comment, I want to remark that Nuyts and I have 
looked into just that problem. We postulated P C B C - -
that i s , we assumed the existence of a baryon "cur­
rent" whose divergence is related to the baryon field. 
We constructed the baryon current from a suitable 
product of three quarks. The anticommutator rela­
tion between a baryon and an antibaryon current was 
calculated on the basis of the canonical commutation 
relations of the quarks. It turned out, however, that 
the right-hand side of the anticommutation relation is 
terribly complicated. We could get no useful result 
out of it. We went on to consider the commutation 
relation between a baryon current and a meson cur­
rent and did obtain a very simple relationship. Taking 
matrix elements of the commutator between baryon 
and meson states, we obtained constraint relations 
among various form factors. 

Khuri (Rockefeller U. ) : Before we can answer 
Professor Goldberger 's question we must ask about 
PCAC for the K meson. In all the impressive list of 
successes listed by the rapporteur we find only pion 
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processes and not one soft kaon process. I would 
like to know if such results exist, and how they com­
pare with experiment? It might be that even in the 
case of the K meson, PCAC would turn out. to be 
not quite so useful, 

Dashen: I know that in the K-decay predictions one 
runs into some funny business if he tries to let the 
K-meson mass go to ze ro . However, some of the 
sum rules written in analogy with the Adler -
Weisberger sum rule use PCAC for the K meson, 
and as far as one can tell they work. I" m sure it 1 s 
possible to predict the K-nucleon scattering lengths, 
and I suppose it has been done, although I don't 
happen to know what the results are; that would be a 
possible way of telling. I think I should say that if 
you' re going to assume something like PCBC, then 
you are only going to be able to make predictions for 
zero-mass baryons, just as you can only make pre­
dictions for zero-mass pions. I suppose one can 
make many predictions for the emission of soft N 1 s, 
but I suspect that you wil l have to go to very high 
energy before baryons become soft. Of course, it 1 s 
not necessarily out of the question. 

Weinberg; I would like to use my prerogative as 
chairman, and give another answer to Goldberger' s 
question. I think you can't get something for nothing. 
Behind the successful predictions of PCAC lies a 
symmetry, that of SU(3) ® SU(3) or SU(2) 0 SU(2), 
which could be exact if the pion had zero mass, and 
which would then lead to exact low-energy theorems. 
PCAC just says that the real world is not too dif­
ferent from the ideal world, so we get approximate 
predictions only, a situation not too different from 
that with which we' re familiar in SU(3). 

Adler : The sum rules relating the strangeness-
changing axial-vector coupling constants to kaon-
nucleon cross sections are not sensitive tests of 
PCAC for the strangeness-changing current. The 
reason is that they typically involve the ratio 
a 0 ( K N ) / g 0 ( K N B ) 2 , where a 0 ( K N ) and g Q ( K N B ) are 
respectively the kaon-nucleon cross section and the 
kaon-nucleon-baryon coupling constant at zero kaon 
mass. It is possible that CT()(KN) and gQ(KNB) are 
appreciably different from their on-mass-shell values, 
but that the ratio involved in the sum rule is still 
nearly the same as its on-mass-shell value. To 
check PCAC for the A s j- 0 currents, one should 
look at relations connecting hyperon beta decay, kaon 
beta decay, and kaon-nucleon coupling constants, 
analogous to the usual Goldberger-Treiman relation 
relating nucleon beta decay, pion beta decay, and the 
pion-nucleon coupling constant. 

Feynman (Cal Tech): I am not commenting on Mr. 
Goldberger 's question, but on something else. It is 
interesting that if one writes some axial-vector 
meson field is proportional to the axial current 
pjj = FjJ , then current algebra permits one to cal­
culate some properties of the propagator for the 
meson (vacuum expectation value of FjJ F~j). The 
result is that the propagator no longer is purely trans­
verse , but a new term, purely longitudinal, arises 
with an independent denominator permitting new poles 
and thus representing pseudoscalar particles coupled 
to the divergence of Frj, and satisfying the conditions 
of PCAC. 

Logunov (Serpukhov): You presented a calculation for 
the cross section of the reaction T T + n - ^ T T + T T + n . In 
what way was the direct TTTT interaction taken into 
account, if at all? The same question about the K 
decay into three pions. 

Dashen: In the production of two soft pions, the one-
pion-exchange pole is explicitly taken into account, 

using the scattering lengths for the TTTT interaction 
predicted by the low-energy theorems. 

Tavkheledze (Dubna): N. Bogolubov drew attention 
to the fact that many results usually obtained from 
the algebra of currents are in fact the consequence 
of dispersion relations and assumptions about the 
subtractions in these dispersion relations. Consider 
the amplitudes 

Using local properties (microcausality), 

[ j ( x ) » j ( y ) ] " 0, with x and y spacelike, 

we get dispersion relations for T ( s , t ) . Separating 
the spin and unitary spin structure, we get 

If we suggest dispersion relations for f . ( s , t ) and 
sf . ( s , t ) (both without subtractions), we get the sum 
rules 

applied to the amplitude 

This technique allows one to obtain the well-known 
Cabibbo-Radicatti sum rules. 

When they are applied to the amplitude 

suggesting unsubtracted dispersion relations, we ob­
tain, for t = 0, 

To calculate f(0,0), we suggest that the amplitude f 
is composed of the quark amplitudes in an additive 
way. Taking account of only the Born term in the 
quarks amplitude gives f(0,0) = ( g ^ . ) q u a r k = 1> a ^ d 
we have the Adler-Weisberger relation. 

Dashen: As I was saying, most of the commutation 
relations are rather model-independent, and in al­
most everything one does in practice, it looks like 
all the peculiar gradient of 6-function terms either 
never enter into the calculation or else cancel out. 
For that reason, in the commutation relations that 
I wrote down in the beginning there is only really one 
independent assumption, and that is that the charges 

and F^ when commuted give back twice the third 
component of isotopic spin. Almost everything else that 
I have said can be considered as a consequence of 
dispersion relations and of the conservation of iso­
topic spin along with SU(3), Now, if one wants to 
introduce this assumption in some other way than 
saying it came from an equal-time commutator, he 
is perfectly free to do so, and he will probably end 
up getting the same answers. There is really just 
one independent number, which can be taken as the 
one on the right-hand side of the Adler-Weisberger 
sum rule, and the fact that it is one and not 0.7 is 
not a consequence of dispersion relations or locality. 
It is a consequence of a commutation relation, for 
example. 
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Appendix 

Approximate Hadron Symmetries 

Introductory Remarks at Preliminary Session 3b 

B. W. L e e , Discussion Leader 

I would like to divide the contributions to this 
session into three categories. These are: 

First : Chiral and Collinear Algebra and Classifica­
tion of Hadron States 

Second: Local Current Commutation Relations and 
Their Representations 

Third: Miscellaneous 

In the first category, I propose to focus our 
attention on the following papers: 

1. Relation Between D/F and G A / G y from 
Current Algebra - - Gatto et al. [Phys . Rev. Letters 
16, 377 (1966)] 

2. Mixing Effects in Baryon Spectroscopy Gatto 
et al. [Phys . Rev. Letters 16_, 918 (1966)] 

3. Current Algebras and Magnetic Moments 
Gatto et al. [ Phys. Letters 21, 459 (1966)] 

4. Current Algebra and Representation Mixing - -
H a r a r i [ P h y s . Rev. Letters 16_, 964 (1966)] 

5. Current Commutators, Representation Mixing, 
and Magnetic Moments - - Harari [Phys , Rev. Letters 
17, 56 (1966)] 

6. Chiral Algebra, Configuration Mixing, Magnetic 
Moments, and Pion Photoproduction Gerstein and 
Lee [Phys . Rev. Letters 16̂ , 1060 (1966) and Phys. 
Rev. (to be published)] 

7. Saturation of Sum Rules in Particle Representa­
tion of Resonances - - Cheng and Kim [tobe published] 

8. PCAC and Chiral Representation Mixing—Horn 
[ to be published] 

I do not think it is necessary to reiterate why we 
choose to saturate current commutators at infinite 
momentum. I assume it is also well known that the 
chiral U(3) ® U(3) algebra generated by the space 
integrals of the time components of the vector and 
axial vector currents, and the collinear U(3) @ U(3) 
algebra generated by 

V 1 s f dx VJ (x, t ) ~ f dj qV) k \ ( X ) 

and J ~ u ~ J ~ ~ 

A^ =£dx ( x , t )~Jd | q t (x)a 3 K i q(x) , 

are "equivalent, M in the sense that the two algebras 
are isomorphic, and the diagonal matrix elements of 
the two algebras coincide. (We assume, from now on, 
that the z direction is the direction of the infinite 
momentum. ) 

At this point, I would like us to agree on nota­
tions: irreducible representations of either chiral 
or collinear algebra will be labeled by (n,m)^,where 
n and m are the dimensions of the SU(3) representa­
tions generated by 1/2 (V 1 + A 1 ) [ o r 1/2 (V 1 + A§)] 
and l / 2 ( V 1 - A 1 ) ; X is the eigenvalue of the operator 
A^ / 2 , which may be called the "quark" helicity. 

It was shown by Gerstein, Dashen and Gell-Mann, 
and others that assigning the octet of l / 2 + baryons 
and the 3/2+ decimet to the representation (6, 3 ) ^ / ^ 
leads to the well-known SU(6) results. Since some 
of these predictions are not satisfactory, one must 
allow the baryons to transform reducibly under the 
algebra. Furthermore, in order to obtain nonzero 
magnetic moments we must allow an additional de­

gree of freedom associated with an orbital angular 
momentum excitation. To be more precise we must 
introduce a degree of freedom which we define as 
the orbital helicity A3 = J3 - X., where J3 is the true 
helicity. In a pure quark model, we have 

J 3 = A 3 + A ° / 2 , 

The papers 1 through 6 and 8 cited above discuss 
these questions and investigate consequences of some 
representation»mixing schemes. 

Actually, there are two different attitudes taken 
by the authors of the above papers. Since there 
seems to be some confusion in the literature, I may 
be allowed to make some pedantic remarks on this 
point. This has to do with what subalgebra of the 
algebra of Dirac covariants built out of quark fields, 
U(1Z), is assumed to be good at infinite momentum. 
By a good algebra, we mean an algebra which (a) 
is not plagued by Schwinger and super-Schwinger 
terms, and (b) gives rise to a fairly rapidly conver­
gent sum rule. In Papers 5, 6, and 8, the chiral (or 
collinear) algebra is assumed good, but not the so-
called SU(6 ) W . When one takes this attitude, it makes 
no sense to ask, for example, whether the state 
| (6, 3 ) ^ 2 ) comes from 56 of SU(6). It can be a 
linear combination of an infinite number of irreducible 
representations of SU(6) which contain (6, ^)\JZ% O*1 

the other hand, in Papers 1 through 4, the entire 
SU W (6) is assumed to be good, so that physical states 
are assumed to be linear combinations of a few i r r e ­
ducible representations of SU(6). In this approach, 
U(3) (R) U(3) is just a convenient subgroup from 
which alone G A / G y and ( D / F ) axial can be uniquely 
computed. At the practical level , there are two main 
differences, depending on which philosophy one sub­
scribes to: 

(a) In S U ( 6 ) w , to construct a state of definite j 
and j z out of an irreducible representation of SU W (6) 
and an irreducible representation of 0(3) of the 
"orbital" angular momentum, the usual vector addi­
tion rule is to be followed. Thus, if one is to con­
struct a state of j = l / 2 , j z = 1/2 out of the spin- l /2 
part of 20 and L = 1, one has 

No such constraint exists in U(3) @ U(3). 
(b) In S U W ( 6 ) , once the SU(6) and L content of & 

state of definite j and j z are given, the SU(6) and 
L, contents of states of the same j and different j z 

are uniquely determined. For instance, if one 
assumes | j = 3/2, j z = 1/2) belongs to (6,3)^ ,^ of 
56 with L = 0, the state | j = 3/2, j = 3/2) is' given 
uniquely by 

This is not the case in U(3 )0U(3 ) 
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In all the papers I cited, discussions are based 
on the approximation of treating resonances as single 
particles. Since the same commutators lead to dis­
persion-relation-type sum rules such as Adler -
Weisberger , i t is most appropriate to compare the 
contribution from the idealized single-particle state 

of mass M, isospin I [ o r SU(3) dimensionality] 
to the commutator with the Adler-Weisberger integral 

I (M, I, J P ) = 

where <y (M, I , jP) is the resonance cross section res 
in the appropriate channel, expressed in terms, for 
instance, of the Breit-Wigner formula. Table 3-AI 
shows I (M, 1,1^) for various resonances below ss Z BeV 
in the pion nucleon channel: 

Two remarks are in order here: For the 3/2 deci-
met contribution, we find a narrow resonance approxi­
mation is a poor approximation, because of the near­
ness of the resonance to the threshold and the con­
siderable variation of the width with energy. The 
estimate of I (M, I , jP ) for the (3,3) resonance is about 
2/3 of Weisberger ' s value, which is obtained by in­
tegrating over the total cross section over the range 
of the (3,3) resonance; inspection of Table 3-AI 
reveals that the resonance contributions listed ex­
haust the sum rule. In fact, as Cheng and Kim point 
out, with 1(1236, 3/2, 3 /2 + ) taken to be 0*65, one 
gets G a = 1.18. Thus, I believe it is tenable to 
assume that the background contributions (that below 
and near 2 BeV and the Pomeranchuk tail) that have 
not been taken into account cancel in the commutator. 
It should perhaps be stressed, however, that the 
numbers exhibited in Table 3-AI are subject to error 
of order of, say, 15 to 20%. 

Now, going back to individual contributions : in 
Paper 1, Gatto and collaborators proposed the scheme 
of assigning the l / 2 + octet of baryons to a mixture of 
56 of SU(6) W with L = 0, and 20 with L = 1. The 
TfZ^ decimet is assigned to 5£T~with L = Q. Thus 
the 1/2+ octet is expressed,~m the U(3)(§)U(3) 
language, as 

Gatto and collaborators note a relation that follows 
from these assignments, independently of the mixing 
angle 0, 

which seems to be well satisfied experimentally. 
Harari came up with more or less the same model in 
Papers 4 and 5. In terms of the mixing angle 6, we 
have in this model 

1(1236, 3/2, 3 /2 + ) = ( 1 ) cos 2 0 . 

With the choice 0 « 3 7 ° , one gets - G A / G y = 1.19, 
( D / F ) a x i a l = 3/2 X 1.2, and 1(1236) = 1.1. 

In Paper 2, the authors discuss several alterna­
tive mixing schemes based on SU(6) . The first 
model considered is the mixing of (56, L = 0) and 
(56, L = 1), as the "orbital" excitation model sug­
gests 0 They find that in this model the ( D / F ) a x j a l 
remains the same, i . e . , 3/2, but - G a / G y ^ 5 / 3 . 
The second model considered is the mixing of 
(56,0) and (70,1) , as Dali tz 's classification of the 
negative-parity baryon states suggests. They find 
that this mixing scheme leads to no constraint be­
tween the values of - G A / G y and ( D / F ) a x i a l . They 
also discuss the mixing of (56,0) and (700, 0) , based 
on the observation that the nohcompact'rTT(6,6)[ which 
contains the chain{ U(6) ® U(6)} n o n c h i r a l ^ ^ w j 
has a ladder representation that contains the series 
56, 56, 700, . This scheme turns out not to give 
aTsatisfactory relation between - G a / G y and 
( D / F ) a x i a l . 

In Paper 6, SU W (6) is assumed to be not a good 
algebra and rejected. Thus the entire discussion is 
based on [ U(3) ® U ( 3 ) ] c h i r a l ® U ( l ) , the factor 
U ( l ) being the one-parameter algebra generated by 
A 3 , the orbital helicity. The model proposed is 

where the subscripts refer to helicities. In this 
model 

independently of the value p. It is noted that 
cos p = (3/8) V 2 gives 
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between the spin l / 2 + baryons at infinite momentum 
is equal to the anomalous magnetic moment. The 
structure of D ± with respect to U(3)@U(3)0TJ(1) 
is such that it transforms like (8, 1)Q + (1, 8)Q with 
L = ± 1. Thus in the expression 

< B - l / 2 I D l I B l / 2 > 

there are two nonvanishing reduced matrix elements 

{ ( 6 . 3 ) 1 / 2 , 0 > « - { { 3 " . 3 ) l / 2 L z = - 1} and 

{ ( 3 , 3 ) l / 2 , L z = 0> - { ( I . 3 ) l / 2 L z = - l ) 

in the Gatto et al. — Harari model; and this is only 
one 
L, 

reduced matrix element { (6,3) i / 2 , ° ) **" { 
- - 1 } in the Gerstein-Lee model. The relation 

follows from either model, while the latter model 
predicts in addition M-A(P) = " HA-fr)- T n e value for 
|i* is estimated by Dalitz and Sutherland to be 

( l x \ _ s = ( 1 . 2 8 ± 0 . 0 2 ) ( „ * ) s u { 6 ) 

= d.28±0.02) ^ ( p ) . 

Gerstein and Lee carried out an analysis of \x based 
on the correspondence between the commutation r e ­
lation [ A ^ , D^] and the Fubini-Furlan-Rossetti 
sum rule and the photoproduction data, and obtained 

The Gatto-Harari model, with 0 - 37°, gives 

3 V 
while the Gerstein-Lee model, with (3 = 47°, gives 

ilJL 1.6 (-

In the above discussion, we have assumed that 
the photoexcitation of the (3,3) resonance proceeds 
only thr.ough the M l multipole, as there is over­
whelming evidence for this. In Paper 3, Gatto and 
collaborators point out that in S U W ( 6 ) , the moments 
u^(p,n) , fa* are all zero . The reason is as follows: 
since in Gatto et a l . ' s scheme | A j / 2 ) is assigned 
to 1(6 ,3)^2,0) and the SU(6) 56, it follows that 
\&2>/2) must be assigned to i (157*1)3/2* 0) • However, 
there is no nonvanishing matrix element of D | be­
tween | (10 , l )3 /2 ,0) and | B i / 2 ) . Thus u* = 0 
(since the E2 moment is assumed to be z e r o ) , and 
from the relation cos 6 u"* = - Jz U A ( N ) > M<A(N) = 0. 
This difficulty arises from assuming SUw(6) to be a 
good algebra, and does not exist in U(3) 0 U(3). 
For, in the latter scheme, it is not necessary to 
assign | A 3 / Z ) to a pure | (10, 1)3/2, 0) . 

Gerstein and Lee consider the possibility that 
the stable baryons, the 3/2+ decimet, the 1405 sing­
let, and the 3/2" and 5/2+ octet form the reducible 
representation 

{ ( 6 , 3 ) l / z , 0 } , { ( 3 , 3 ) _ l / z , 1} and { ( 8 , 1 ) ^ , ± - \ \ . 

The strengths of N * * , N * * * -*• N + TT predicted are 
compared with experiment and found not too satis­
factory. It appears that further chiral representa­
tions should be mixed into the 3/2" and 5/2+ reso­
nances. This means that more states are needed to 
saturate the Adler-Weisberger sum rule than those 
already taken into account. A similar conclusion 
can be drawn about the Harari model from the work 
of D. Horn. 

An interesting observation made by Gerstein 

and Lee is that the photoproduction amplitude of the 
isospin 1/2 resonances (3/2" and 5/2*) from nucle-
ons transforms like pure isovector. There seems to 
be some support for this experimentally. 

In the third category, we have the contributions : 
1. Relations between the Pion-Nucleon and the 

Meson Coupling Constants from Pion Scattering 
Length - Sakurai 

2. Symmetry Predictions from Sum Rule Without 
Saturation - Gilman and Schnitzer 

3. Axial Vector Current Consisting of Pseudo-
scalar Octet - Kao and Sugawara 

4. Universality and Quark Models - Freund 
5. Calculation of Transition Probabilities from 

Noncompact Dynamical Groups - Barut 

The first two papers rederive the Kawarabayashi 
and Suzuki relation 

which was first derived by applying current algebra 
to the process p 2TT . Sakurai derives it by equat­
ing the Tomozawa-Weiberg formula for TTN scat­
tering length, 

with the expression one gets if one assumes A j 
comes from the p-meson exchange: 

p 

Gilman and Schnitzer, on the other hand, note that 
two Adler-Weisberger- type relations result for the 
process p + IT p + IT, depending on whether one 
chooses to contract two p" meson fields or pion 
fields. In the former case, one obtains the commu­
tator of vector currents through the assumption that 

f 
V 

while in the latter, one gets the commutator of axial 
vector currents through PCAC. In the two sum rules 
that ensue, the continuum contributions are the same 
(in the approximation of neglecting the off-mass-shell 
corrections), and one obtains the formula exhibited 
above. Thus the Kawarabayashi-Suzuki relation ap­
pears to be a consistency requirement on the chiral 
algebra, PCAC and the hypothesis about the p-
meson dominance of the vector current form factors. 
It is well to recall that substantially the same formu­
la follows from SU(6) with ( G A / G V ) Z restricted to 
( l / 2 ) (25 /9 ) . 

Another interesting point that Gilman and 
Schnitzer make is that if the relation 

due to Lipkin and Scheck (this also follows from the 
assumption that in charge exchange and forward TTN 
and pN processes, the t channel is dominated by 
the same octet coupled to the isospin current) is used 
to represent the continuum contribution beyond the 
(3,3) resonance in the Adler-Weisberger and 
Cabibbo-Radicati sum rules, one obtains relations of 
the type 

which agrees with experiment to within 10%, 


