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We study the cosmological confinement-deconfinement phase transition (PT)
of nearly conformal, strongly coupled large N field theories, applicable to compos-
ite Higgs models. We find that despite strong coupling, aspects of the PT can be
analyzed when the confinement is predominantly spontaneous. In this scenario, the
leading contribution to the transition rate can be computed within effective field the-
ory of dilaton— the pseudo Nambu-Goldstone boson associated with the spontaneous
breaking of conformal symmetry. We then show how the holographic dual formula-
tion in terms of 5D warped compactifications allows for qualitative understanding of
the missing pieces of the earlier described 4D picture and a quantitative improvement
of the calculations. In this description the PT is from a high-temperature black-
brane phase to the low-temperature Randall-Sundrum I phase, and the transition
proceeds by percolation of bubbles of IR-brane nucleating from the black-brane hori-
zon. We show that the bubble configuration interpolating between the two phases

can be smooth enough to be described within 5D effective field theory. We find that



cosmological PT in the minimal models can complete only after a large period of
supercooling, potentially resulting in excessive dilution of primordial matter abun-
dances. We then show how generic modifications of the minimal models can result in
a much faster completion of the PT. We also study the stochastic gravitational wave
background produced by the violent bubble dynamics and discuss the implications

of the PT for baryogenesis.



COMSOLOGICAL PHASE TRANSITION OF COMPOSITE
HIGGS CONFINEMENT

by

Majid Ekhterachian

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2021

Advisory Committee:

Professor Kaustubh Agashe, Chair/Advisor
Professor Zackaria Chacko

Professor Thomas Cohen

Professor Raman Sundrum

Professor Richard Wentworth



© Copyright by
Majid Ekhterachian
2021



Preface

This main part of the work for this thesis is done in collaboration with other
people. The thesis is mostly based on JHEP 05 (2020) 086 [1] and JHEP 02 (2021)
051 [2], both of which are co-authored with Kaustubh Agashe, Peizhi Du, Soubhik

Kumar and Raman Sundrum.

i



Dedication

To my parents Fariba Sha’bani and Mohsen Ekhterachian.

1ii



Acknowledgments

I owe my gratitude to all those who have made this thesis possible and because
of whom my experience in graduate school has become one to remember forever.

First, I would like to thank my advisor, Professor Kaustubh Agashe for giving
me the opportunity to work with him on several interesting projects. The experience
of working with him has helped me grow in both technical and professional aspects.
I appreciate his invaluable support at every stage of my graduate school experience,
and his patience in addressing all my concerns and questions.

I would also like to thank Professor Raman Sundrum. I have been very for-
tunate for having the opportunity to work with him on several projects, to get his
advice and to discuss various ideas with him regularly, and to be able to take three
courses with him through which I learned a lot about quantum field theory and
particle physics. These all have enriched my experience in graduate school.

Thanks are due to Professor Zackaria Chacko, Professor Thomas Cohen and
Professor Richard Wentworth for agreeing to be on my dissertation committee and
for spending their precious time reviewing the manuscript of the dissertation.

I would also like to thank the people who I have had the chance to col-
laborate with on different projects during graduate school. They include Arushi

Bodas, Daniel Carney, Kaustubh Deshpande, Peizhi Du, Reza Ebadi, Chee Sheng

v



Fong, Sugnwoo Hong, Anson Hook, Doojin Kim, Soubhik Kumar, Zhen Liu, Deepak
Sathyan, Yuhsin Tsai, and Luca Vecchi.

Many other fellow graduate students and post-docs have had important influ-
ences on my thinking and interactions with them has been very fruitful. I would
like to thank Stefano Antonini, Batoul Banihashemi, Jack Collins, Saurav Das, Ab-
hish Dev, David Curtin, Michael Geller, Gustavo Marques Tavares, and Rashmish
Mishra.

I appreciate my parents for their unlimited support and encouragement. I
would also like to especially thank Zahra for her invaluable friendship and support.

I would also like to acknowledge help and financial support from Maryland
Center for Fundamental Physics (MCFP) and National Science Foundation (NSF).

It is not possible to remember all, and I apologize to those that I have unin-

tentionally left out.



Table of Contents

Preface

Dedication

Acknowledgements

Table of Contents

List of Tables

List of Figures

List of Abbreviations

1

2

4

bt

A Dominance of O(3) symmetric, time independent bounce

B Subleading temperature correction to the bounce action in the supercooled

Introduction

The 4D view

2.1 Equilibrium description of the two phases
2.2 Phase transition in the thin-wall regime
2.3 Atwo-FP RGevolution . ... ... ... .. ... .. ........
2.4 Phase transition in the supercooled regime

Phase Transition from the Fifth Dimension
3.1 Equilibrium description of the two phases

3.2 The structure of the bounce

3.3 Phase transition in thin-wall regime
3.4 5D realization of the two-FP model
3.5 Phase transition outside thin-wall regime

Gravitational Wave Signature

Conclusions

vi

11

1ii

v

vi

viii

1X

x1

11
12
15
17
18

22
25
31
40
43
48

23

o8

62



regime
C Radion potential for the 5D model of the two fixed points

Bibliography

vil

64

66

73



List of Tables

3.1 Comparison of numerical results of S; (eq. (3.28)) and S5d°n (eq. (3.29))
for different model parameters €, X\. To get the concrete number for
Sradion we set the lower integration limit to p, in the first line of
eq. (3.29). We also show the full bounce action S}, (eq. (3.27)) in the
thin-wall limit in terms of Sy at (T/T.)*=1/2. . ... ... .. ... 42

viil



2.1

3.1

3.2

3.3

3.4

List of Figures

The scalar field dynamics of the PT in the prompt (orange) and su-
percooled (blue) regimes. ¢, denotes the release point, characterizing
the value of the dilaton field at the center of the bubbles at the mo-
ment of their nucleation. The free energy in the deconfined phase is
indicated along the vertical axis. The parts of the bounce trajectory
to the right/left of the vertical dotted lines correspond to regimes

(1)/(ii) in the text giving dominant/sub-dominant contributions to S.

(a) Topology of the bounce proposed in ref. [3]. In the gray region
the description of the ansatz gets out of 4D radion EFT as well as
5D EFT control. The orange surface shows the IR brane, and the red
dashed line indicates the adjustment of p, between its equilibrium
AdS-S value to zero at the RS2 limit. (b) Smooth bounce topol-
ogy /configuration proposed in this work, describable within 5D EFT.
The IR brane (the orange surface) is smoothly capped off at the hori-
zon. In the gray region, the (two-derivative) 4D radion EFT gets out
of control, but the bounce can still be described within 5D EFT.

An example of the profile of the bounce ansatz, obtained by solving
the EoM resuling from the action of eq. (3.22). The black dashed
lines represents the black-brane horizon and the blue curve shows the

IR-brane profile specified by ¢(r). . . . . ... ...

The profile of Goldberger-Wise scalar x(o) from two different poten-
tials: full potential eq. (3.31) and simplified potential eq. (3.35) . The
parameters we choose are m’? = —0.4, n = —0.5, ¢ = 1.5 and v=0.06,

a=0.1and L =15m. . . . . . . . .

The O(3) symmetric bounce action S3/(N*T'), where N = /1672 M3,
as a function of temperature T'/T, for different choices of € and A\. The
solid lines denote the results using 5D ansatz, while the dashed lines
use 4D radion/dilaton EFT (upto two derivatives) to estimate the

bounce. . . ...

1X

19

34



3.5

4.1

4.2

4.3

Nucleation temperature 7, /T, (for fixed T. ~ O(TeV)) as a function
of N for various € for fixed A = 0.5. The solid lines denote the results
using 5D ansatz, while the dashed lines use 4D radion EFT (upto
two derivatives) to estimate the bounce. The end point of each curve

shows the minimum 7}, and maximum N for a given parameter choice. 51

Nucleation temperature 7T;, /T, (left panel) and Bgw/Hpr (right panel)
as a function of e for different choices of N and fixed A = 0.5,

T.~O(TeV). .. .

Baw/Hpr as a function of nucleation temperature T,, /T, for different
choices of € and fixed A = 0.5, T, ~ O(TeV). On each curve, N is

varied while € and A are held fixed. . . . . . . .. .. ... ..

The spectrum of GW abundance Qqwh? as a function of GW fre-
quency [ from bubble collisions. We choose two sets of benchmark
parameters (8/H = 10, T, = TeV) and (8/H = 100, T, = TeV).
The projected sensitivity of LISA, DECIGO and BBO experiments

at Signal-to-Noise (SNR) = 5 are also included. . . . . ... ... ..

26



List of Abbreviations

4(5)D Four (five) dimensional

AdS Anti-de Sitter

AdS-S Anti-de Sitter-Schwarzschild

BSM Beyond the standard model

CFT Conformal field theory

d.o.f degrees of freedom

EFT Effective field theory

EoM equation of motion

eV, keV, MeV, GeV, TeV Electro-volt, kilo-, mega-, giga-,tera- electron-volt
EW Electroweak

FP Fixed point

GW Gravitational Waves

IR Infrared

KK Kaluza-Klein

LHC Large Hadron Collider

LISA Laser Interferometer Space Antenna
pNGB Pseudo-Nambu-Goldstone boson
PT Phase transition

QCD Quantum Chromodynamics

RG Renormalization group

RGE Renormalization group equation

RS Randall-Sundrum

SM Standard model (of particle physics)
uv Ultraviolet

VEV Vacuum expectation value

x1



Chapter 1: Introduction

With the discovery of the Higgs boson at the Large Hadron Collider (LHC)
[4,5], all of the particles in standard model (SM) have been observed. The SM has
been extremely successful in predicting and explaining a variety of experimental
results and passing different stress-tests. However it can not be the final theory of
fundamental physics. To have a complete description of gravity, the SM needs to be
extended or modified. Moreover, the SM does not account for the dark matter, does
not give mass to the neutrinos, and cannot explain the observed matter-antimatter
asymmetry of the universe.

The SM is best viewed as an effective field theory (EFT), valid up to some
energy scale Anxp. As an EFT, given the field content of the theory and their
(gauge) quantum numbers, one writes a Lagrangian with all allowed terms, which
are gauge and Lorentz invariant operators made out of the constituent fields with
arbitrary coefficients/couplings. There are infinite such terms that can be written
down, but for processes happening at a energy scale E smaller than the cutoff Ayp,
the contribution of higher-dimensional operators with mass-dimension d; > 4 are
suppressed by (ﬁ)di_{ Hence, at low energies and given a specific precision, one

can limit the operators considered in the EFT to the ones below some dimension.



In this view, part of the success of the SM can be understood in terms of the
accidental symmetries that emerge at low energies: assuming that Ayp is large and
hence keeping only operators of dimension d < 4 ! in the Lagrangian, one gets only a
limited set of interactions which respect global (exact and approximate) symmetries
that were not imposed. These symmetries include the global symmetries that result
in baryon and lepton family number conservations. This for example explains why
the proton is expected to have a long lifetime as its decay is forbidden as long
as baryon number is conserved. Proton decay has not been observed yet, and its
non-observation can be explained by taking the scale suppressing the corresponding
higher dimensional operators to be larger than O(10'°) GeV. It is also worth noting
that the small observed neutrino masses and mixings can be implemented in this SM
EFT by including the operator with lowest dimension beyond the renormalizable
Lagrangian (i.e. with d = 5), suppressed by a scale of O(10*) GeV. Moreover, lack
of deviation in various CP and flavor violating processes from the (renormalizable)
SM predictions suggest a cutoff scale Axp much larger than the TeV scale for the
SM as an EFT.

This of course does not mean that all higher dimensional operators necessarily
have to be suppressed by such a high scale, as is possible that new physics may
show up at lower energies, while still having accidental symmetries similar to those
of the SM. However, let us for now assume that this is the case, i.e. that the SM

is an EFT with a cutoff Axp much above the TeV scale. In this picture, one then

1Usually “the Standard Model” refers to the renormalizable Lagrangian made up of only these
terms.



expects, by dimensional analysis, that coefficient of relevant operators are also set
by the same scale. The unique dimension 2 operator in the SM is the mass term for
the Higgs boson, m2 HTH, which we may write as coA%pHH.

We can naturally expect that ¢, is of order one, which makes m?, much larger
than the square of the observed Higgs mass. One may ask what if somehow the UV
physics at Axp gives a very small ¢5? Of course in that case one should look for an
explanation of why ¢ is so small, but if possible, this may postpone this question
to much higher scales. So let’s assume for now that after integrating out the heavy
physics, we get a tiny ¢, and see if it solves the problem. To obtain the physical
Higgs mass and/or the parameters relevant for the electroweak symmetry breaking,
it is more convenient to use the renormalization group equations (RGE) and run
down to the renormalization group (RG) scale near the weak scale. This running

gives a contribution to the above dimension-two operator dominated by the effect of

3y?
1672

the top loop, which would be dm?; ~ A% p, where y; is the top Yukawa coupling.
So to obtain the observed Higgs mass, there has to be a very precise cancellation
between cyA%p at the UV cutoff of the EFT and the contributions between that
scale all the way down to the electroweak scale. This is the hierarchy problem.

To solve the hierarchy problem, it is clear from the discussion above that the
new physics should be introduced at a scale not very far from the electroweak scale.
Moreover, the new physics should be such that it does not reintroduce the problem.
This is possible if either the Higgs mass term and similar dimension 2 operators are

absent in the new model, or that they are protected from large quantum corrections

from the higher energy scales. The two main known class of solutions to the hierarchy



problem indeed use these two options. First class of these solutions invoke a new
spacetime symmetry, i.e. supersymmetry, which protects the Higgs mass from large
UV corrections (see [6] for review and references). In the second class of solutions,
known as the composite Higgs models (see references [7,8] for a review), the Higgs is
not an elementary particle, and above its compositeness scale there is no Higgs mass
term (or similar scalar mass terms). The compositeness scale is generated analogous
to what happens in quantum chromodynamics (QCD).

In fact, QCD gives rise to relatively light composite scalars, called pions. The
low energy EFT of the pions, known as the chiral Lagrangian, does however have
a cutoff not very far from the pion masses as expected from the above naturalness
discussion. Also the description above that cutoff, which is the QCD itself, does not
contain any scalars and so does not have a hierarchy problem. The QCD scale Aqcp
is much smaller than the cutoff scale for the QCD or the SM, which for now let’s take
to be Ayy. This is however generated from the running of the dimensionless QCD

1

gauge coupling g, In A%UCVD ~Eo where g, yy is the QCD running gauge coupling

at the scale Ayy. So the large hierarchy between Ayy and Aqep is generated by
exponentiation of a small, but not too small, dimensionless g, yy. This generation
of a scale from a dimensionless parameter is called dimensional transmutation. As
we will see in chapter 2, the compositeness scale for the composite Higgs models is
generated in an analogous fashion.

In composite Higgs theories, Higgs boson is a tightly confined composite made
of more fundamental constituents. These theories, in addition to addressing the hi-
erarchy problem mentioned, can explain the hierarchical flavor structure of the SM.

4



Due the strong coupling dynamics, theoretical analysis of these models is challeng-
ing. Composite Higgs flavor-physics typically requires strong coupling over a large
hierarchy of scales, such as occurs in the domain of an approximate fixed point (FP)
of the renormalization group (RG), and plausibly a large-N(color) structure (see
reference [9] for a review of large N). Greater theoretical control of the strong dy-
namics is then possible if the large-N approximate FP conformal field theory (CFT)
has a useful Anti-de Sitter (AdS)/CFT dual description [10-12]. Indeed, most of the
realistic model building has been done in such a holographic dual higher-dimensional
Randall-Sundrum (RS) warped spacetime [13-16] (see [17,18] for reviews).

In composite Higgs theories, at high enough temperatures, the Higgs boson and
other composites of the new strong dynamics are dissolved into their constituents.
In this thesis, we study this confinement-deconfinement phase transition (PT). This
PT is particularly important in studying the cosmological history of the universe in
these theories. In the early universe the temperature can be high enough for it to
be in deconfined phase. Then one important question is wether the universe would
ever get out of this phase. This is essential for these theories to having a consistent
cosmological history, since if they describe our universe, we should now be living
in the confined phase. Also even if the phase transition completes but only after a
long period of supercooling, it will have important consequences for generation of
the baryon asymmetry and dark matter, since this period can result in significant
dilution of matter abundances.

More generally, first order phase transitions can play an important role in cos-

mological evolution through dramatic rearrangements of particle physics degrees of



freedom (d.o.f). As out-of-equilibrium processes, such PTs can create new matter
asymmetries, or drastically alter pre-existing ones. They also can provide a spectac-
ular source for stochastic gravitational waves (GW) [19-22] (see reference [23] for a
review). While the Standard Model Higgs boson does not give rise to a first order
electroweak (EW) PT (see reference [24] for a review), this PT can be first order
in many beyond-SM (BSM) extensions. Further, BSM extensions may give rise to
other PTs, roughly connected to the EW scale by the naturalness principle. There
may then be one or more PTs in the ~ TeV - 100 TeV range. If so, we should be able
to probe such BSM physics by complementary means, its microphysics at particle
collider experiments, and the associated PT in GW detectors [25-29]. Composite
Higgs theories which beyond the EW PT itself undergo a fascinating and rich PT
(as was mentioned above) are particularly promising in this regard.

Studying the (de)confinement PT of composite Higgs theories, like studying
other aspects of them, is difficult because of the strong coupling dynamics. In this
work we will approach this problem from two directions. In chapter 3, we use the
holographic dual description of these theories which allows for a weakly coupled
and geometric description of the PT. But before using that description, in chapter
2, we first focus on another controlled regime, already visible in four dimensional
(4D) spacetime without using AdS/CFT. This happens if the breaking of approxi-
mate conformal invariance by confinement is primarily spontaneous, resulting in a
light pseudo Nambu-Goldstone boson (PNGB) “dilaton” field ¢ [30]. The vacuum
expectation value (VEV) of the dilaton field (¢) gives the confinement scale which

sets the masses of generic composites. This structure was first seen in composite



Higgs theories in the dual RS formulation in terms of the “radion” [13,14,31]. In
chapter 2 analyze the PT using the 4D dilaton effective field theory [16,32-37] and
reasonable physical expectations, as far as possible. In particular, we study the
conditions under which the dilaton dynamics dominates the bubble nucleation rate,
which competes with the cosmological expansion rate. The pioneering reference [3]
had already argued for dilaton dominance in the RS context, but not completely
within higher-dimensional EFT control, and they showed that the PT cannot be
prompt in the minimal RS model. References [38-40] showed that the PT could
nevertheless complete after a period of supercooling, assuming dilaton dominance
(see also [41-45] for further studies of supercooling). Our results will reinforce the
earlier work more systematically.

Ultimately, a more complete description and better justification of these ex-
pectations can be achieved by modeling the deconfined phase, outside the regime of
dilaton EFT. This is a task that we will come back to in chapter 3, where we use the
dual description. This dual description, as already indicated, requires large N and
yields a more tractable semi-classical, but higher-dimensional description of non-
perturbative 4D deconfinement in terms of a black brane horizon. The confinement
PT then corresponds to bubbles of the RS “IR brane” nucleating and expanding
from this horizon [3]. Our 5D analysis further justify and sharpen the dilaton dom-
inance approximation and account for subleading corrections. We will show that
a controlled calculation of the bubble nucleation rate, within the 5D EFT, can be
done using an ansatz that we introduce which smoothly interpolates between the

two phases.



In composite Higgs models (again in the 4D description), the large hierarchy
between the Planck and the weak scales is explained by a small deviation of the
theory from scale invariance, where the parameter characterizing the small deviation
generates the weak scale by dimensional transmutation. In the minimal models, the
same small parameter however significantly suppresses the transition rate, forbidding
the completion of PT or delaying it until after a large amount of supercooling.
For further studies along these lines see refs. [41-45]. Large supercooling would
strongly dilute any primordial (dark) matter abundances, produced before the PT,
potentially invalidating such primordial production as the dominant source of (dark)
matter seen today. We will show that in a scenario where the composite theory runs
from the proximity of an ultraviolet (UV) renormalization group fixed point (FP)
to that of an infrared (IR) FP, it is possible to have a much faster transition rate,
avoiding large primordial matter dilution. In this scenario the small anomalous
dimension corresponding to the UV FP generates the large hierarchy, while the
anomalous dimension corresponding to the IR FP, which can be much larger, controls
the transition rate. We will also present a robust AdS/CFT dual realization of this
two FP scenario in an explicit 5D model, where the extrema of a generic potential
for the Goldberger-Wise scalar field [31] play the role of the FPs. Refs. [46-51] also
explored the possibility of faster PTs within other non-minimal models.

We also study the stochastic gravitational wave background produced by this
PT. We will show systematically that, as it was pointed out in ref. [38,41], the
strength of the stochastic gravitational wave signal arising from the PT (specifically

from the better understood bubble collisions) is correlated with the degree of super-



cooling (and matter dilution). We quantitatively present this relationship using our
5D results and the variability of supercooling in our two-FP scenario. Of course, the
strength of the stochastic gravitational wave signal is critical for being able to detect
beyond astrophysical background and detector noise, but the signals can be large
enough that even the primordial anisotropies (analogous to those famously seen in
the cosmic microwave background) could be observable at future detectors [52]. The
gravitational wave detectors have to have sensitivity at frequencies determined by
the critical temperature T, of the PT. In the composite Higgs scenario T, ~ O(TeV),
corresponding to O(mHz) detection frequencies, but quite different frequencies and
T. are possible if an analogous PT occurs in a hidden sector [53]. Our results are
straightforwardly transferable to such hidden sector PTs.

Rest of the thesis is organized as follows. In chapter 2 , we study the phase
transition from the four dimensional view point. We show how using the dilaton
EFT, we can obtain the parametrically dominant contribution to the bubble nucle-
ation rate for this phase transition. We also show how by considering generalizations
of the minimal model for stabilization of the confinement scale, the transition rate
can become much faster. In chapter 3, we revisit the analysis of the PT from the
dual five-dimensional view. We show that the part of the bubble configuration that
could not be captured within the dilaton EFT, can be described by a smooth ge-
ometric description in the 5D EFT. We also show a concrete 5D realization of our
4D two fixed-point scenario that results in faster phase transition. In chapter 4, we
study the stochastic gravitational wave background produced by the phase transi-

tion. We then present our conclusions in chapter 5, and point to possible future



directions.

10



Chapter 2: The 4D view

In this chapter, we study the confinement-deconfinemet phase transition of
composite Higgs models, as was briefly outlined in chapter 1, using their 4D de-
scription. These models often need strong coupling over a large range of scales, as
it happens near RG fixed points, as well as large number of degrees of freedom.
So we will consider the confinement-deconfinement PT of approximately scale in-
variant, strongly coupled large N field theories. Of course, confinement break scale
invariance, but this breaking can be predominantly spontaneous. In that case we
may use the EFT of the corresponding pNGB to study the PT. We will identify the
regime where the dilaton EFT can give the parametrically leading contribution to
the bubble nucleation rate, and then use this“dilaton dominance approximation” to
analyze the PT.

We first study the equilibrium aspects of the two phases and the PT in section
2.1. In section 2.2 we apply our analysis to the minimal models we will see that the
bubble nucleation rate is very small for temperatures near the critical temperature
for the PT. This slow rate may prevent the PT form completing, or result in large
amount of supercooling before its completion, and such supercooling may dilute

pre-existing matter asymmetries to values below the observed matter-antimatter

11



asymmetry. We then introduce a two-fixed-point model, in which the transition
rate can be significantly enhanced, in section 2.3. Then in section 2.4 we study the

supercooled PT for both the minimal models and for ours two-FP scenario.

2.1 Equilibrium description of the two phases

We model the deconfined phase as an approximate CF'T, coupled to gravity,
with O(N?) d.o.f. At a temperature T its free energy (density) F' can be written
as [3],

chconﬁnod = ‘/0 - CN2T47 (21)

where 1} is a vacuum energy in the deconfined phase and C' is some strong-coupling
model-dependent O(1) constant. At low enough 7' the theory can spontaneously
confine giving rise to massive composite states. One of the light composites will be
the PNGB dilaton, as noted above. In addition, there may be an O(1) number of
other light composites, in particular the composite Higgs boson, which are weakly
coupled to the dilaton by 1/N. However, it is the dilaton that will play the central
role in determining the bubble nucleation rate, as discussed below. We will therefore
neglect the other light composites. Further there may be other light elementary
particles. They are very weakly coupled to the dilaton, are present in both phases,
and are essentially spectators to the PT.

Below the spontaneous confinement scale, we work in the dilaton EFT. We
model the small departure from conformal invariance by AL = ¢gO, where O is a

nearly-marginal composite operator and where the coupling g runs from the UV,

12



but stops at the confinement scale, locally given by ¢(x). This is the only way in
which conformal invariance is broken within the compositeness dynamics, leading
to an effective Lagrangian :

N2

Log =
£ 1672

((09)* = X(g(9)) &) — Vi, (2.2)

where the explicit breaking is characterized by the “running” quartic coupling
A(g(¢)). We see that if g did not run, the dilaton coupling would be exactly confor-
mally invariant ¢*. The vacuum energies of the two phases are equated by matching
at the common limit of the two phases, T' = 0, ¢ = 0. This vacuum energy also
breaks conformal invariance but is only of gravitational relevance. In this standard
large-N “glueball” normalization (reviewed in [9,54]), the self-coupling is expected
to be A ~ 1. However, it is certainly possible that A is somewhat smaller, in which
case theoretical control can be gained by expanding in A, as we will see below.

For a small deformation g, we can expand A to first order,
A(g) = Ao + Aoy, (2.3)

where A\g = A(g = 0) and \j = %]920. For f(g) = d‘legM ~ €g, the scaling dimension
of O is determined to be 4+¢, and g(¢) ~ guv (%) , where gyy is the deformation
at UV cut-off scale Ayy. Plugging this and eq. (2.3) into eq. (2.2), gives us the

explicit form for the leading dilaton potential from which we derive the confinement

13



scale,

(¢) = Auv (— LA ) (2.4)

1 + 6/4 >\6ng

We note that an exponentially large hierarchy between (¢) and Ayy can be obtained
if € is small, given just a mild hierarchy between Ay and A\ygyy [16]. This is dual to
the minimal 5D Goldberger-Wise mechanism [31]. It is convenient to express the

potential in terms of (¢),

Nk 1 6\
Verr = 167r2)\0¢4 (1 1+ €/4 (@) ) + W (2.5)

We choose Vj to ensure the (almost) vanishing cosmological constant (CC) today,
i.e. we impose Veg((¢)) = 0. Note that, vacuum stability implies €Ay < 0.
Assuming a low critical temperature for the PT, T. < (¢), we can solve for it

by equating the free energies of the two phases:

Fdeconﬁned(Tc) = Fconﬁned (Tc> T 2@5) ‘/eff(<¢>>

= % — (#&ZE))M +0 (%) . (2.6)

We see that T, is self-consistently small for small € and/or small \y. Therefore
the confining phase is within dilaton EFT control. Since the coupling g(¢) blows
up in the IR for ¢ < 0, making the bounce calculation unreliable, we will consider
e > 0,\ < 0 in the minimal set-up. With this choice, approximate conformal
invariance only improves in the IR, so that the deconfined phase is expected to exist

at arbitrarily small 7', including at 7T,.. This expectation is borne out in the dual

14



RS analysis [3]. The simultaneously allowed phases at T, indicate a first-order PT.
It follows from eq. (2.6) that Vo = CN2T: for vanishing CC today.
A cosmological PT completes for sufficiently large bubble nucleation rate per

unit volume, I' > H*, where H is the Hubble scale. For T' < T,, H asymptotes to

a constant, driven by vacuum energy, H? ~ %’rG NVo ~ C?)]X;F%Tl : Here, Gy and Mp,
are respectively Newton’s constant and the reduced Planck scale, Mp; = 2.4 x 10'8
GeV. Semi-classically the finite temperature bubble nucleation rate I', is computed
in terms of the Euclidean bounce action S}, with time periodicity 1/7" as,

D~Tle ™ > HY (2.7)

completion

Thus for the PT to complete, Sy, < 41n <MT§'> ~ 140 for T, ~ TeV. For small A,
as we would expect, and will show in appendix A, the dominant finite-temperature

bounce solutions are O(3) symmetric (and Euclidean time independent).

2.2 Phase transition in the thin-wall regime

Let us first compute I' in the thin-wall approximation, for prompt PT, T ~ T..

In this approximation quite generally [55, 56]

o Sg o 167 513
&_T_EWMWT (2:8)

where AF' is the free energy difference between the two phases and S; is the surface

tension of the bubble wall. The bubble has to interpolate between the de-confined
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and the confined phases, see FIG. 2.1. This interpolation consists of two regions,
(i) the lowering of the dynamical confinement scale from (¢) down to ~ T, < (¢),
followed by (ii) the rearrangement of all d.o.f from confined into deconfined at < 7T,
scales. The first region is described purely within the dilaton EFT. To see this
note that the dilaton bounce solutions have |V¢| ~ +/Veg which implies |V¢|/¢p* ~
\/m < 1 for small \g. Thus for ¢ > T, gradients and T are smaller than the
local mass gap ¢, and do not excite the heavier composite d.o.f. In this dilaton

dominance approximation we find

1/4
) N2T?, (2.9)

€

. N [@
S0 _/ din/Veg ~ 0.6<
2 T,

o3
Aol
We see this is enhanced by small € and )y in 7, units because ¢ is getting large
in these units over the bounce trajectory as seen from eq. (2.6). We are therefore
insensitive to the lower limit of integration which we can approximate as vanishing.
In region (ii), ¢/7T,. ~ O(1) so that we do not expect enhancement by small € or Ag.

Therefore we have dilaton dominance, 57 ~ S{i),

3
S, 1 \* T./T
23 ~3.6 ( ) CiN? / . (2.10)
(1= (T/Te))
Let us apply the above result to the case of a PT at very roughly TeV scale in
the minimal scenario in which € accounts for the Planck-TeV hierarchy, ¢ ~ 1/25.
But we see from eq. (2.10) that a prompt PT cannot occur within theoretical

Ti-T4
control, even for [Ao| = 1/2, =7
c

= 1/2 and N > 1! To allow the PT to happen
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for larger values of N, we need larger values of € while still somehow generating a

large hierarchy. We now describe a simple scenario which achieves that.

2.3 A two-FP RG evolution

Earlier, to obtain eq. (2.5) we approximated (3(g) ~ €g for near-FP behavior.
However, it is possible that the running flows to this vicinity from a different UV

FP at g,. We then have two important critical exponents:

€(g« —g) for g near g,
Blg) = (2.11)

€g for g small.

The transition between the two regimes happens around some intermediate coupling,

1/e
g ~ gt at a scale Ay ~ Ayy (Z*_‘;?‘Q . The confinement scale is now generated
*— Yin

from Ay analogously to eq. (2.4) but with replacements Ayy — A and go — Gint,

(6) ~ (w)ya (_< Ao )1/6 Apy. (2.12)

Gx — Gint 14 €/4) N Gint

We see that we can now have a larger € controlling the PT dynamics while still
having a large Planck-TeV hierarchy given by small € (for a related idea see [45]).
Eq. (2.5) implies that the dilaton mass? o ¢, and hence a larger € implies a heavier
dilaton relative to the confinement scale (¢), relevant for collider searches. The
above two-FP structure of RG running can be simply modeled with a suitable 5D

scalar potential in the dual RS formulation as we will show in chapter 3. By contrast,
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the standard Goldberger-Wise 5D scalar [31] with only a mass term in the RS “bulk”
is dual to the minimal scenario discussed above.

For a benchmark set of parameters e = 0.5,|\¢| = 0.5,C = 1, # =1/2,
the bounce action can be obtained using eq. (2.10), with eq. (2.7) showing that
the PT can complete promptly for N &~ 2. This is marginally in theoretical control.
If we are outside the regime/parameters for prompt PT, the universe remains and
cools in the deconfined phase, and inflates due to the constant term in eq. (2.1).
Ultimately, the PT may complete in a supercooled regime, T' < T,.. We now turn

to this analysis.

2.4 Phase transition in the supercooled regime

For T <« T., by eqgs. (2.1) and (2.5) the release point in ¢ drops [47], see

FIG. 2.1 . Therefore the bounce only probes the dilaton potential for small ¢,

Vg & 1](\:2 M@t + Vo. In this regime we can use a scaling argument for the O(3)

symmetric bounce action,

s¢ N2 2 (49N .\ iy 2
o _M—T/drr (%) + X@" + 167°CT (2.13)

2 7\ 2 B
__N 3/d:tx2 a0 —¢* +167°C |, (2.14)
471")\0’1 dSE

where ¢ = |Ao|i¢/T and = = |Ao|irT. Thus we see that the S:gi) is not enhanced

by € compared to thin wall eq. (2.10), allowing a larger nucleation rate at low 7.

The dilaton profile is then given by extremizing this action subject to two boundary
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Figure 2.1: The scalar field dynamics of the PT in the prompt (orange) and super-
cooled (blue) regimes. ¢, denotes the release point, characterizing the value of the
dilaton field at the center of the bubbles at the moment of their nucleation. The
free energy in the deconfined phase is indicated along the vertical axis. The parts
of the bounce trajectory to the right/left of the vertical dotted lines correspond to
regimes (i)/(ii) in the text giving dominant/sub-dominant contributions to Sy,

>~ ¢
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conditions (BC). One is given by % = Z—f = 0 at » = 0. For the other BC, we
first note that part (ii) of the bounce connects to part (i) for ¢ ~ T < T, < ()
which we approximate as ¢ ~ 0 i.e. ¢ =~ 0. Due to the fact that part (ii) of
the bounce is insensitive to small [A\o|] < 1, we will have a A¢-independent ki-
netic/gradient energy (%2)?,_ = T4(Z—i’)2|¢;:0 where (Z—f)%;zo is some O(1) number
which we will fix below. These BCs imply that ¢(x) is independent of Ay and there-
fore the radius of the bubble where ¢ =~ 0 is W Beyond this radius, the
Ao-independent physics of part (ii) forms a “thin-wall” ~ (\g)? around the larger
part (i) of the profile. Thus, S:(,)ii) is proportional to the area of the bubble o W
The gradient energy at the matching point ¢ ~ 0 is then given by the thin-wall ap-

proximation (d¢/dr)? ~ YT AF = 16x2CT*. To summarize, S o [Ag|~#/4 while

S8V o¢ |Ao| 712, demonstrating dilaton dominance for |Ao] < 1. In chapter 3 we
will quantify and include the next-to-leading contribution due to region (ii). Having
demonstrated dilaton dominance for extreme T', we expect it to hold for all T, in
particular, intermediate temperatures. We can then evaluate the bounce action nu-
merically with the boundary condition above. The results of using this prescription
and its comparison with the full 5D result will be presented in section 3.5, where we
will also further discuss the consequences of supercooling.

In this chapter, we studied the confinement PT of composite Higgs from the
strongly coupled 4D description. We showed that dilaton EFT can account for the
parametrically dominant contribution to the bounce action, for small e and A\. What

we considered so far, however, misses a qualitatively important part of the bounce
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configuration which is outside dilaton EFT. In the next chapter we will approach
this problem from the dual higher dimensional perspective. The 5D description is
weakly coupled and as we will see, gives us a geometric view of the two phases. We
will use this description to construct a smooth bounce configuration interploating
between the two phases and show that it gives the same leading contribution to the
bounce action as we found in this chapter, as well as the subleading correction to it.
In the next chapter we will also show a concrete 5D realization of our two-fixed-point

scenario that was briefly introduced in this chapter.
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Chapter 3: Phase Transition from the Fifth Dimension

Composite Higgs theories often need large number of degrees of freedom ~ N2
of the confined constituents and an approximate conformal symmetry in order to
generate the large flavor hierarchies. But this conformal symmetry must break
down at the confinement scale. In chapter 2, we focused on the scenario where the
breakdown of conformal invariance is spontaneous, which we called “spontaneous
confinement”. There we clarified the parametric regime where the dominant piece
of bounce action, controlling the transition rate, can be computed in the confined
phase and within the effective field theory of the pseudo Nambu-Goldstone boson
of spontaneously broken conformal invariance, namely the dilaton. This paramet-
rically dominant piece, considered in the pioneering ref. [3], accounts only for the
approach of the confined phase towards deconfinement, missing the final transition
to deconfinement itself where the degrees of freedom are rearranged and the dilaton
EFT breaks down. Missing the physics of this final transition to deconfinement
means that our final approximate transition rates were useful but still crude.

Further theoretical control is possible when a holographic AdS/CFT dual
can be formulated, which is the subject of this chapter. The dual description in-

volves warped compactification of extra dimension(s) as in Randall-Sundrum mod-
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els. These theories exhibit a finite temperature black-brane solution as well as a
low (or zero) temperature standard RS1 solution. The transition between these two
phases is an analog of the well-known Hawking-Page PT of global AdS [57], but in
the AdS Poincare patch relevant here, there are significant differences. The transi-
tion considered here is dual to the (de)confinement PT mentioned above, where the
black brane is dual to the deconfined phase and RS1 is dual to the confined phase.
Remarkably, in this dual RS1 formulation, the transition is a non-perturbative 5D
quantum gravity process (~ e~*/¢~.50) in which bubbles of IR-brane nucleate from
the black-brane horizon, expand and collide, producing an observable stochastic
gravitational wave background! And remarkably again, this non-perturbative effect
can be captured by semiclassical methods.

This higher dimensional description has been used to study this PT [3, 38,
40,41, 47,50, 51, 58, 59], using an ansatz for the bounce configuration describing
critical bubbles first introduced in [3]. One might have hoped that the 5D EFT is
controlled despite the inevitable breakdown of the 4D dilaton EFT described above.
However this particular ansatz is not controlled, even in the 5D EFT, as will be
discussed in section 3.2. Quite apart from the detailed extremization of the bounce
configuration, 5D EFT control hinges on a qualitative puzzle: how to smoothly
interpolate in space-time between the IR-brane and black-brane phases? In this
paper, we begin by solving this qualitative problem and show what conditions it
places on possible bounce configurations. However, even within this smooth class it
is technically challenging to find the extremized bounce configuration that dominates

the transition rate. Instead, we introduce a new bounce ansatz within this smooth
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controlled class, depicted in figure 3.2, and show that it gives a rigorous and useful
lower bound on the transition rate in the thin-wall regime and a very plausible
estimate of the rate more generally.

In principle, the smooth class of bounce configurations can be extremized with
respect to the 5D action to determine the true transition rate, rather than settling
for an ansatz which at best bounds this rate. While we are currently unable to
accomplish this feat, it should be noted that in a roughly analogous 6D EFT a
domain wall solution between a black-brane phase and an “IR-brane” phase was
derived, exploiting a Z; symmetry between thermal Euclidean “time” and the sixth
dimension [60]. In the thin-wall limit this solution can be recast as a bounce solution
for transitioning between the two phases, which we hope to explore in future work.

Both our ansatz and the work related to the prior ansatz of [3] share the
correct parametrically dominant dilaton contribution to the bounce. Our improve-
ment is at the level of the parametrically subdominant corrections involving the IR-
brane/black-brane juncture. However, these corrections are qualitatively significant
as discussed above, and quantitatively significant for realistic choices of parameters.

In chapter 2, we introduced a scenario where the the theory runs from the
proximity of a UV FP towards an IR FP. we saw that in this scenario different
parameters control the hierarchy and the bubble nucleation rate, which allows for
having a much faster transition. In this chapter and in section 3.4 we introduce a
concrete 5D model realizing this scenario.

Using our ansatz we estimate the bounce action, which controls the transition
rate, for the minimal model and for the two-FP scenario. Comparing this rate with
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the dilaton/radion dominance approximation, we identify the subleading corrections
and see that in the paramateric regime identified for dilaton dominance the two
approaches agree, as expected. Then by comparing the transition rate with the rate
of expansion of the universe, we determine if the transition completes, and when it
does, we find the temperature at which this happens. We find that staying in the
regime where there is a controlled semiclassical approximation to the rate, and for
a realistic region of parameter space for which the PT completes, the corrections
to the 4D dilaton dominance approximation are quantitatively important, but are

captured by our 5D EFT treatment.

3.1 Equilibrium description of the two phases

We start with the general 5D action Ssp, which is a sum of Sggr, the gravita-

tional action and Sy, the action of Goldberger-Wise field x:

Ssp = Sar + Sy
- 2M53/d5xv —g (Rs + 12k7) +4M§)k/d4$\/ —K - de/d4$\/—_7+ Sx-

(3.1)

Here Ms, k are the 5D Planck scale and the AdS curvature scale, respectively. Along
with a bulk term that contains the 5D Ricci scalar R5, Sgr also contains a Gibbons-
Hawking-York boundary term [61,62] which make the variation of the bulk action
well defined in the presence of boundaries. This boundary term is characterized

by K = ¢g"K,,, the trace of the extrinsic curvature K,, of the boundary and,
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the induced metric 7, on the boundary. Lastly, 7,q denotes the tension on the
boundary. In the following we will always work in units where k£ = 1, unless explicitly
mentioned.

We first start by neglecting the contribution due to S,. In that case the RS
metric [13,14],

dp?
p*’

ds®> = —p*dt® + p Z da? + (3.2)

with the extra dimensional coordinate p ranging between Ajg < p < Ayv, represents
a solution to Sgr. Here Ageuv) represent the location of the IR (UV) boundary.
The tensions on the UV and the IR boundaries are given by +12M2 and —12M3
respectively. Given a choice of Ayy, the scale Ajg corresponds to the VEV of the
“radion” field ¢(z) that characterizes the dynamical size of the extra dimension. At
this stage Ag is an arbitrary integration constant corresponding to the fact that ¢
is a flat direction with no potential. In the dual 4D theory, Ajg = (¢) spontaneously
breaks the (approximate) conformal symmetry of the composite Higgs dynamics
and corresponds to the resulting spontaneous confinement scale. The associated
Goldstone boson is the dilaton, dual to the radion ¢(x) [15,16].
To have a predictive theory of Ajg and avoid a massless radion ¢, the Goldberger-

Wise action S, needs to be included as a weak perturbation. This leads to a potential
for ¢ naturally yielding a hierarchical separation between Ajg and Ayy. Over the
stabilized hierarchy the RS metric then models the confined phase at 7' = 0. Be-
fore discussing the details of the Goldberger-Wise stabilization, let us model the

deconfined phase at high 7.
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At high temperature, T' > Ag, but T' < Ayy, there is another approximate

solution to Sgr in eq. (3.1) given by the AdS-Schwarzschild (AdS-S) metric,

ds? — — 2_:0_% dt2 2 A2 dp?
A Ul +p* ) dai+ T (3.3)

2 _ Pu
P 02

This solution is exact for Ayy = oo.

In the metric in eq. (3.3), the surface p = p, corresponds to an event horizon
and therefore, the coordinate p extends between the UV boundary and the horizon,
pn < p < Ayy. Unlike the RS metric in eq. (3.2), the AdS-S metric in eq. (3.3)
does not have an IR boundary, which is now instead “hidden” behind the horizon.
Given the previous discussion, this absence of the IR boundary indicates an absence
of confinement. This lets us model the deconfined 4D theory using the dual AdS-S
geometry in eq. (3.3). The temperature of the deconfined plasma is dual to the

Hawking temperature corresponding to the horizon,
T = hpp/m, (3.4)

where we have momentarily written the factor of A explicitly for later purposes.
Given the absence of the IR boundary, and hence the radion modulus ¢, the
Goldberger-Wise perturbation does not play any significant role unlike the confined
phase and is therefore negelcted to a leading approximation.!

For finite Ayy, there exists an elegant exact solution given in [63]. From the

!The non-gravitational scalar action S, is not enhanced by a factor of M3/k® unlike Sgr, we
will ignore the contribution of Sy while discussing the deconfined phase.
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dual 4D perspective, it corresponds to the 4D deconfined plasma coupled to 4D GR,
gravitationally equivalent to a period of FRW radiation dominance. For Ayy > T,
this results in an adiabatic redshifting of 7" over time. That is to say that even for
finite but large Ayy, AdS-S metric in eq. (3.3) represents an approximate solution
if we take p, — pn(t), determined by the redshifting (3.4) and the Friedmann
equations.

In terms of this quasi-static T', one can calculate the free energy density of the

deconfined phase [3],
Faeconfined = Vo — 27[_4M53T47 (35)

where Vj is a possible constant energy density that will be determined in a moment.?

To compute the critical temperature corresponding to the PT, we also need to
compute the free energy of the RS phase. As mentioned earlier, without Goldberger-
Wise S, contribution, the radion ¢ is a flat direction. Therefore, the leading contri-
bution to the free energy corresponding to the confined phase at low 7' comes from

the perturbation S, in the background of the unperturbed RS metric eq. (3.2),

Sy = / d*z /A Vg {_%(%2 = Vax) = pd(p — Auv)w(x® = v*)* + pd(p — Ar)ax | -

IR

(3.6)

2In the full model the free energy would also include the contribution of the significant number
of (relativistic) non-composite elementary fields of the SM, appearing in 5D as zero modes which
are not strongly leaning towards the IR. However, in what follows they are largely “spectators”
which will not alter the leading results. We therefore omit them.
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A free Goldberger-Wise field, Vow(x) = %m2x2, with boundary terms above such

that they satisfy the boundary conditions for the yx field

Ix
X|P:AUV =v and pa_p =, (37)

p=AIr

is sufficient to stabilize the geometry [31].> The low energy radion effective action
(up to two derivative order) is given by eq. (3.1) after promoting A to the 4D
radion field ¢(x). In particular, the boundary terms of Sgr in eq. (3.1) gives the
kinetic term of the radion, and the Goldberger-Wise action in eq. (3.6) gives effective

radion potential V,,q so that the radion action becomes,
Soadion & / d*z (—6M2(99)* — Viaa(9)) - (3.8)

The effective radion potential is given by [31],

Vial) = 1208000 (1= 1 (5) ) 4w (3.9)

where A = (7, + 12M2 — £a?)/(12M2) and 7, is the tension of the IR boundary
which can be de-tuned away from the RS value of —12M3. The above potential has

a minimum at (¢) which is hierarchically smaller than Ayy [31,33],

(6) _ Am  [12MEN) (3.10)
Ayy Ay B av ' '

3Note, to get the UV boundary condition we assumed & > 1.
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Here, V] is a constant energy density that will be determined below. The parameter
e controlling the hierarchy is determined by the mass of the Goldberger-Wise field,

e=—-2+V4+m?2 ~ m?/4 (3.11)

m2«1

Requiring small back reaction of the Goldberger-Wise field to the AdS-S geometry
requires A, € < 1. If we think of Ayy being of the order of highest scales ~ Mp;, and
A 2 TeV, so as to solve the Hierarchy Problem, this large hierarchy can emerge
from modest parameters with 12M3)\/(av) and € being O(0.1). To get the free
energy, we note that for T’ < ¢, the KK modes are not excited and ¢(z) is the only
dynamical light field in the confined phase. Thus the above effective potential also

gives the free energy of the confined phase,

FCOII ne % -‘/;a . 3.12
fined | % a(9) (3.12)

Let us now relate the two constant energy densities appearing in eqgs. (3.5) and
(3.12). We require that the two geometries given by egs. (3.2) and (3.3) match
when p, — 0 and ¢ — 0 since in that case they both describe zero temperature
with the IR boundary removed (to p = 0). Thus the two free energies given in egs.
(3.12) and (3.5) should also match when 7" — 0 and ¢ — 0, thereby making Vj = V4.

We can now calculate the temperature at which the two free energies in egs. (3.5)
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and (3.12) become equal, namely the critical temperature for the PT, T,

T —6eA 1/4
F econine TC - FCO]’I ne TC < - . 1
deconfined (1¢) fined(1c) = A <7r4(4+e)> (3.13)

Thus T, is parametrically smaller than Ajg for small € and(or) small A. This justifies
the effective description of the confined phase involving only the radion as well as
eq. (3.8). Furthermore, the above fact indicates that at the temperature 7, we can
have a simultaneous existence of both the confined and the deconfined phases, and
thus the PT under consideration is first order in nature. It follows from eq. (3.13)
that Vo = 2n*M3T? for the almost vanishing cosmological constant today i.e. at
6= (6).

The semi-classical bounce solution that we will compute in the next section
will correspond to quantum tunneling in terms of the gravitational radius py, but
in terms of 7' (to match with CFT expectations), it will correspond to a thermal

transition as is clear from the presence of 7 in eq. (3.4).

3.2 The structure of the bounce

As discussed in the previous section, the effect of 4D gravity can be approxi-
mated by an adiabatic adjustment of the temperature 7" and the Hubble parameter
H. Starting at high T and in the AdS-S phase as the universe expands, T eventu-
ally drops below T.. As this happens, the RS phase having a smaller free energy,
becomes thermodynamically favorable and bubbles of the RS phase can start nucle-

ating. The phase transition completes only after the bubbles start percolating, and
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this happens when the rate of bubble nucleation per unit volume, I'; gets bigger than

271’4M§Tc4
3MZ,

H*. For T < T,, H asymptotes to a constant given by H? ~ 8?“GNVO ~
Here, G and Mp, are respectively Newton’s constant and the reduced Planck scale,
Mp; = 2.4 x 10'® GeV. To find the temperature at which the phase transition com-
pletes, we need to compute the nucleation rate I'. Since the 5D theory is weakly
coupled, we can use a semiclassical approximation to compute I' in terms of a Eu-
clidean bounce action S, as,

I~ T 5, (3.14)

Thus for the PT to complete one needs roughly

M
Sp < 41n ( Tm) ~ 140, (3.15)

where we used T, ~ O(TeV).

To compute the bounce action, in principle, one has to look for a solution
of the Euclidean equation of motion (EoM) derived from the 5D action (3.1) that
smoothly interpolates between the two above mentioned geometries in egs. (3.3) and
(3.2) (with time compactified on a circle of circumference 1/7"). Authors of ref. [3]
attempted to make this trade at the common RS2 limit of both phases (RS2 is the
Ar = 0 limit of RS1 and also the limit 7" = 0 of AdS-S). They then tried to derive
the RS1 phase of the bubble interior by solving the Euclidean EoM within the 4D

radion EFT (up to two derivative order). Qualitatively, their results are shown in
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figure 3.2. In most of the interior region, the 4D radion EFT bounce is controlled
and approximates the true 5D bounce. However, as pointed out in ref. [3], the
central problem with this proposed bounce solution is that it goes out of 4D radion
EFT control as one approaches the RS2 juncture (shown in gray in figure 3.2) since
the IR scale ¢ becomes smaller than T'. Indeed, the lack of smoothness of the brane
at the RS2 point takes this bounce configuration outside even 5D EFT control. The
interpolation from RS2 to AdS-S is similarly out of the 5D EFT control.

By contrast, we will consider a smooth bounce configuration as illustrated in
figure 3.2. As in figure 3.2, the interior region is described by a bounce solution in
4D radion EFT, but deviates from figure 3.2 for ¢ ~ T near the transition regime
(shown in gray in figure 3.2), with the brane capped off smoothly so that it is
controlled within 5D EFT. With this smoothness criterion, which we will elaborate
further below, finding the bounce solution is a mathematically well-posed question.
However the exact solution is difficult to find in practice.* Instead, we will proceed
by making a reasonable ansatz for the 5D geometry of the bounce that satisfies the
same smoothness criterion. Although such an ansatz may not be the true bounce
solution, (a) we will argue later that in the thin-wall regime,

Slt)},lin—wall > Gthin-wall (3.16)

ansatz b, true

so it can provide an upper bound for S{hn-wall and hence a lower bound for I'; (b) it

b, true

4Nevertheless, see our remarks in the introduction regarding the possibility of obtaining the
actual bounce solution in the thin-wall limit for a 6D example [60], taking advantage of a symmetry
between the Euclidean time circle and the sixth dimension.
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Figure 3.1: (a) Topology of the bounce proposed in ref. [3]. In the gray region the
description of the ansatz gets out of 4D radion EFT as well as 5D EFT control. The
orange surface shows the IR brane, and the red dashed line indicates the adjustment
of p, between its equilibrium AdS-S value to zero at the RS2 limit. (b) Smooth
bounce topology/configuration proposed in this work, describable within 5D EFT.
The IR brane (the orange surface) is smoothly capped off at the horizon. In the
gray region, the (two-derivative) 4D radion EFT gets out of control, but the bounce
can still be described within 5D EFT.

provides a reasonable estimate for [' more generally.
For the smooth ansatz we consider in this paper, the entire configuration can

be described as globally AdS-S with the region inside the IR brane “cut-out”. In
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particular, the RS1 phase in the far interior is being approximated by the IR brane
cutting out a portion of AdS-S rather than a zero temperature AdS. This is a good
approximation because in the far interior ¢ > T. The key to smoothness of our
ansatz, and hence 5D EFT control, is that the brane is capped off at the horizon
p = ppn as opposed to at p = 0 as in ref. [3]. However, we make no claim that the
smooth transition region, shown in gray, is a controlled approximation to the true
bounce in that it does not solve the 5D Euclidean EoM. Rather, it is a qualitatively
accurate ansatz, which smoothly interpolates controlled approximations in the far
interior and the far exterior indicated in white region in figure 3.2. As pointed out
above, in the thin-wall limit this ansatz will provide us a lower bound on the true
nucleation rate while outside this limit, the ansatz can be expected to give us a
reasonable estimate of this rate.

In more detail, we take our ansatz for the bounce to be described by

ds® — 2_/)_;11 dt2 dp2 2 da? 317
S =0 =5 ) d + —— " Y da}, (3.17)
P Pz—p_g i

with pp, < ¢(r) < p < Ayy for r = |Z] < r, and py, < p < Ayy for r > r,. Here ¢(r)
changes between some release point ¢, > p, at r = 0 and p;, at r,, describing an
r-dependent IR brane end to the extra dimension in the region r < r,.> We see that
in the far exterior this is the AdS-S metric and in the far interior, since ¢, > py,, this
approximates RS1 at very low temperatures eq. (3.2). This gives an O(3) symmetric

ansatz for the bounce, schematically shown in figure 3.2. The justification for a time

°In the thin-wall regime, ¢, = (¢), but away from the thin-wall regime, ¢ generally approaches
a g, <(¢)atr=0
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independent O(3) symmetric bounce structure arises as a result of (two derivative)
radion dominance of the bounce action and is given in ref. [1]. Note that the choice
¢(r«) = pn, implies that the IR brane is pinching off to zero time circumference at
r, so that we have a closed IR brane hypersurface. It remains to choose a specific
¢(r) that this pinching off results in a smooth brane embedding seen in figure 3.2.
We will first show how to compute the action eq. (3.1) for a given ¢(r). We
will then discuss the conditions that ensure a smooth ansatz and minimize the
action subject to those conditions to obtain the ansatz (i.e. ¢(r)) that gives us
the strongest upper bound on the bounce action in the thin-wall limit. We now
proceed by computing different terms in the action eq. (3.1). To obtain the extrinsic

curvature K, we first find the unit normal vector to the surface p = ¢(r),

p2 1/2
ng = ————— 0,-¢,0,0,1), 3.18
¢ (p4—pi+¢’2) 0.~¢ ) (3.18)

where ¢/ = %. The induced metric on this surface is given by

4 /2
ds? | = <p2 - %) dt* + | p* + e dr? + p?(r*d0? + r? sin® 0de®).  (3.19)

4
2 _ Pu

P 2

From the above the trace of the extrinsic curvature and the determinant of the
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induced metric can be calculated as,

1/2

VA = rsind? (¢ — ph + )", (3.20)
1

/ 13
20— )% + (66" ~ 2pt)¢” — 26%-

VYK =r*sinf

+ (¢ — pp) (40" — 25 — 9" (1))

(3.21)

Using the above we can evaluate the full action in eq. (3.1) as a function of ¢(r) to
get,
/ ¢/3

4
5, = [ drr? IZMS(W (2000 — % + (60 — 200)0” — 267

(9" = ph)(AD" = 20 — 60")| + b — 20" = 66% (6" — ph + ¢) """ ) + Viaal0)

)

(3.22)

where Vi,a(¢) is the contribution coming from S,. For p > ¢ > p; (the white
interior region in figure 3.2 outside the orange surface), the AdS-S geometry, the
low temperature RS geometry, and the zero temperature RS geometry are all ap-
proximately the same and V;.q(¢) becomes the standard zero temperature radion
potential given in eq. (3.9). In this regime and for ¢/ < ¢?*, the effective action
(3.22) reduces to the standard two derivative radion action in the Euclidean time

independent O(3) symmetric regime,

N47r

Som = [ drr? [6M53¢’2 n Vrad(gb)]. (3.23)
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In this ¢ > p; region, the solution to the EoM derived from the above action is a
controlled approximation to the true bounce and gives the parameterically dominant
contribution to the bounce action, as anticipated in refs. [1,3] and fully justified in
section 3.3. However, the solution itself takes us out of radion EFT into the region
¢ ~ pp (shown in gray in figure 3.2). For ¢ ~ pj,, although it is not straightforward
to calculate the contribution of S, in detail, its contribution to Sy is suppressed by
the parameter A (see eq. (3.9)), whereas the rest of the terms in S, are unsuppressed,
as can be seen using eq. (3.22). Thus for ¢ ~ pp, Viaa(¢) will not play a significant
role in determining the bounce and we will keep using the same V,,q(¢) given in eq.
(3.9) even in this region for convenience. The contribution of S, to terms involving
¢’ is also suppressed by A compared to terms arising from 5D gravitational action
Scr and thus has been neglected in eq. (3.22).

To find the optimal form of ¢(r) for our anstaz (eq. 3.17 and discussion below
it, figure 3.2) in the thin-wall limit we will choose ¢(r) to minimize the bounce ansatz
action eq. (3.22) by solving the “EoM” that follows from it. We show an example of
such a solution in figure 3.2. For this solution, the 5D geometry is smooth everywhere
except in the potentially problematic region where the IR boundary merges into the
AdS-S horizon (r ~ r, region in figures 3.2 and 3.2). To see whether this merging
is smooth, we evaluate the induced metric in the near-horizon region by writing
B(r) = pp, + d¢(r). Assuming pidd < ¢, we get

¢/2
4prdg

dst q D dppdpdt* + dr? = 4pyPdt* + di?, (3.24)
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Figure 3.2: An example of the profile of the bounce ansatz, obtained by solving
the EoM resuling from the action of eq. (3.22). The black dashed lines represents
the black-brane horizon and the blue curve shows the IR-brane profile specified by

(r).
where we have made the change of variable/coordinate y = 1/d¢/pp,. Note that this

is the same as the metric of a flat space with the correct time periodicity. This piece

of flat space is embedded in AdS-Schwarzchild, with (near horizon) metric

ds* = 4piy*dt* + dy® + pi, (dr2 + r? (d@2 + sin? 9d<p2)) , (3.25)

at a fixed r. This ensures a smooth brane, smoothly embedded in AdS-S, with two
coordinates/directions t and r acting as spectators, analogous to embedding of a 2D
sphere in 3D flat space.

For concreteness, we will choose the boundary condition

& lo=pn = P (3.26)

for our ansatz which respects the above condition p3d¢ < ¢ near the horizon, en-
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suring a smooth brane embedding. This condition, along with the usual smoothness

condition at the bubble center, ¢'|,—y = 0, fixes our ansatz.°

3.3 Phase transition in thin-wall regime

Having discussed the effective action (3.22) for ¢ and the boundary conditions
needed to fix the solution, we can now calculate the bounce action based on our
ansatz. Although one can proceed numerically in general, in the thin-wall regime
(T~ T.) it is possible to obtain an analytical expression for the bounce action.

As mentioned before, we focus on the bounce action with O(3) symmetry.
The O(3) symmetric bounce action can be rewritten quite generally in the thin-wall
regime as [55,56],

Sy 16w S?

%= T =y AFPRT (3.27)

where AF' is the difference of the free energy in two phases. S; is the surface
tension of the bubble wall, evaluated in the degenerate limit AF = 0. Therefore,
any configuration of 57 is always bounded from below. Finding the true solution of
S1 is basically minimizing S;. Any other ansatz, which is not the solution, should
satisfy S ansatz > S1true- Combining with eq. (3.27), this leads to Sp ansatz > Sb.true-
However, a random Sy, ansat, might involve singularities which take us outside 5D
EFT control. In this regard, our smooth ansatz (figure 3.2) provides a controlled

upper bound on the true bounce action in the thin-wall limit.

6We note that although the action eq. (3.22) involves ¢”, the EoM obtained from it is still a
second order differential equation for ¢(r) and so (only) two boundary conditions are needed to
fix its solution.
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For our ansatz, the surface tension of the bubble S; can be obtained from eq.

(3.22) as,

L[ 2](66" = 20007 + (6" = ph) (46" — 201 — 60")]
Slz/dT 2M5 ¢4_p%+¢/2

+pp — 20" — 607 (¢" — pj, + ¢>’2)1/2> + Viaa(9) |- (3.28)

To clearly show the parametric dependence of S;, we divide it into two parts: S; =
Gradion 1 Gtransition " yhere STadion jg the part of bounce action deep inside the bubble
(see the white interior of figure 3.2), where 4D radion EFT (eq. (3.23)) is valid,
while Stramsition denotes the contribution in the transition region ¢ ~ p,, where the
5D EFT is needed (the gray region of figure 3.2). As shown around eq. (3.23), in
the interior of the bubble, where ¢ > p, and ¢ > ¢/, Sad°® reduces to the one

dimensional radion action

| o — @)
S{adlon ~ / dr |:6M§¢/2 + ‘/rad(gb)i| ~ 24M53 /> d(b V ‘/rad(gb)
0 <Ph

1/4
0.9 (167> M?) (g) T3 (eX <(2p9)

Q

where the equality in the first line follows from the EoM. One of the integration
limits is fixed because the bounce action starts at the minimum of the potential
(¢ = (¢)). As ¢ approaches py, the approximation in eq. (3.29) breaks down and
therefore we stop the integration at ¢ 2 p,. In the second line of eq. (3.29), we
used eq. (3.13) to rewrite (¢) in terms of T.. It is clear from eq. (3.29) that Siadion
is enhanced for small € and/or .
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The expression for Siamsition jg hard to obtain analytically but one can easily
get its parametric dependence. Given ¢ ~ pj, and ¢’ ~ p? in the transition region, all
terms in Siransition are of order M2p; (see eq. (3.28)). Therefore, Stransition  p373
and it is parametrically smaller than Si*d°n for small ¢ and/or \. Now we can
conclude that, for small € and/or A, S; ~ Stdion which means the bounce action
is dominated by the contribution from standard radion EFT (up to two derivative

order). Plugging S1d°m in to eq. (3.27), Sy, is therefore given as

~ 23 r3 i o I/T €
Sy ~ 8 (1672 M?) <€A) (= )T (X < 1). (3.30)

The radion EFT dominance is also justified based on some benchmark points in

table 3.1.
Model parameters | S;/(16m>M3T3) | Spdon /(1672 MST?) | Sy/ (167> M3)
c=1/2, A= 1/2 12 0.5 90
c=1/25,A=1/2 21 1.3 186
c=1/25,\=1/25 11 3.3 37 % 107
c=1/100, A = 1/100 8.7 73 3.4 x 107

Table 3.1: Comparison of numerical results of Sy (eq. (3.28)) and Stadion (eq. (3.29))
for different model parameters €, A\. To get the concrete number for Stdion we set
the lower integration limit to py, in the first line of eq. (3.29). We also show the full
bounce action Sy, (eq. (3.27)) in the thin-wall limit in terms of S; at (T'/T.)* = 1/2.

We see that, while for very small € and A\, radion dominance gives a quantita-
tively good approximation, for small but not very small € and A, the approximation
is poor. In these cases of interest, our ansatz in the full 5D theory is key to providing
a rigorous bound on the true bounce action.

In the above, we have described the general considerations of PT dynamics
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in the thin-wall limit. However, when we apply them to the real world, we find
that the thin-wall limit is incompatible with the observed Planck-Weak hierarchy.
Concretely, with A < 1 to ensure a controlled back-reaction, and € = 1/25 to obtain
the large Planck-Weak hierarchy, we see that the PT does not complete near 7, even
for 16m2M2 = 1 as can be seen using eq. (3.15). However, for theoretical control of
the 5D EFT we need 16m*M2 > 1.7

However, non-minimal models can improve the compatibility with the thin-
wall limit. To allow the PT to happen for larger values of M3, we need larger values
of € (see the first line of table 3.1) while still generating the correct value of the
Planck-Weak hierarchy. We will introduce a scenario which achieves these goals in

the next section.

3.4 5D realization of the two-FP model

In the previous chapter, we proposed a scenario from the dual (near-)CFT
perspective with distinct UV and IR fixed points, which can simultaneously achieve
a large Planck-Weak hierarchy and also have a larger € controlling the PT, such that
it can complete promptly in a theoretically controlled parameter regime.

In this section, we will realize the above scenario in a simple explicit 5D model
utilizing an interacting Goldberger-Wise stabilizing field, and show that it indeed
leads to a relatively prompt P'T consistent with a large Planck-Weak hierarchy. This

will enable us to obtain explicit expressions of various 4D parameters such as e, €

"This is just a requirement that the quantum gravity loops or ~ 1/(1672M32) corrections are
small at the AdS curvature scale.
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etc. described above, in terms of fundamental 5D parameters, utilizing which we
will calculate the rate of the PT.

We consider the following Goldberger-Wise potential,

1 1 1
Vi= Em’QXQ + 57 Y+ 579 X' (3.31)

where m’ is the mass of the Goldberger-Wise scalar and 7, g are two coupling
constants. The EoM for the extra-dimensional profile of the Goldberger-Wise field

in the RS metric of eq. (3.2) is given by

p°02x + 5p*0,x — p°V = 0. (3.32)

o

For later purposes it is convenient to do a coordinate transformation, p = Ayve~

with 0 < 0 < L = In(Ayy/Amr), following which the EoM reads as,

O2x —40,x — V] =0. (3.33)

The above EoM indicates that there exist FP solutions in the extra-dimensional evo-
lution of the Goldberger-Wise profile. They appear where x = constant : V) (x) = 0

and are located at non-negative values

3 7] 772 2gm/2
X and x = X g ( 5 + 1 ( )

for m?,n < 0 and g > 0.
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Obtaining the analytical expression for the full radion action from the general
Goldberger-Wise potential in eq. (3.31) is challenging. However, we can obtain the
relevant qualitative insights about the behavior of the Goldberger-Wise profile under
eq. (3.31) by using the two-FP intuition described in the previous subsection.

In the proximity of the FPs at x = 0 and y = x., the field profile evolves quite
slowly, whereas as it evolves rapidly near the transition from the vicinity of one FP
to the other. Hence, as a simple approximation, we can split the evolution of x into
two regimes. In the first regime i.e. for field values between 0 < y < Y., we consider
the evolution to be governed by the FP at y = 0, and hence with a potential %m’QXQ.
For the other segment i.e. for field values between ., < x < xs, the evolution is
governed by the FP at y = x,. and hence with a potential %mZ(X — X«)? where

2

m* = V;(X*) = —2m'? — nx./2. We choose to match two regimes at a field value

Xm = (=1 + /n? — 2gm'?) /g, which is the inflection point of V(x). To summarize,

we consider the simplified Goldberger-Wise potential f/x,

Tm?x? for 0 < ¥ < Xm

Ve(x) ~ (3.35)
577 (X = x)? = € for xm < x < Xe.

In the above, C' = %mQ(Xm —x+)2— %m'Qxfn is a constant that ensures the continuity

of V,, at Xm.
A comparison of the numerical solution obtained for the full potential in
eq. (3.31) with the simplified potential in eq. (3.35) is shown in figure 3.3. Here

we choose the same boundary conditions as in eq. (3.7) with 0 < v < xpm, @ > v
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and fix L = 157. Figure 3.3 clearly shows the asymptotic behaviour of x(o) near

x = 0 and ., which act as the UV and IR fixed points with respect to the flow in

the extra dimension that is dual to the RG flow in the CFT perspective. As can be

seen from figure 3.3, the simplified potential gives a good approximation to the full

potential, and correspondingly we can trust the analytical calculation of the radion

potential using eq. (3.35).

v=0.06, = 0.1
m?=—-04,n=—-05¢9=15

1.5}F K g 11.5
= 10} {1.0
=

0.5¢ Full Potential V, 10.5

Piecewise Potential 1},
0.0~ : ' ' ' 0.0
0 10 20 30 40

g

Figure 3.3: The profile of Goldberger-Wise scalar x (o) from two different potentials:

full potential eq. (3.31) and simplified potential eq. (3.35) .

The parameters we

choose are m’? = —0.4, n = —0.5, g = 1.5 and v=0.06, « = 0.1 and L = 157.

Given the quadratic piecewise Goldberger-Wise scalar potential in eq. (3.35),

the radion potential can be calculated analytically (see details in appendix C), which

can be summarized as

/

7ot — avgt—e
‘/rad(qs) ~

(7 = ax ot + 2y (=2
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In eq. (3.36), 7 = 0Tir — %oﬁ is determined in terms of detuning on the IR boundary
6T, = Tir + 12M3, ¢ =2 — /4 +m” and e is defined in eq. (3.11). Finally, ¢y, =
e~Im where Ly, is the smallest size of the extra dimension where the Goldberger-Wise
profile reaches the value y,, on the IR boundary. For L < L,,, x(o) never grows to
reach xy, in the extra dimension, whereas for L > L., x(¢) becomes bigger than
Xm and goes to the vicinity of the IR FP near the IR boundary.

We can choose the parameters such that the radion potential above has only

one minimum for ¢ < ¢, at

o~ (i) (o) (337)

where 7 = 7 — ay, < 0. This expression of the hierarchy is to be compared
with eq. (3.10) in the single-FP scenario. The large Planck-Weak hierarchy can be
obtained from the first factor of the RHS of eq. (3.37) with a small ¢ ~ 1/25 and a
modest ratio of v/y.,® while now allowing € to be considerably larger. As shown in
section 3.2, it is the region ¢ < (@) < ¢y, that is relevant for PT dynamics and is
controlled by e. Consequently, our computation of the bounce action obtained in the
previous sections using eq. (3.9) can be applied, but now with only modestly small
e < 1, thereby achieving the goal stated at the end of section 3.3. Correspondingly
for € > €, the bounce action in the thin-wall regime becomes parametrically smaller,
as suggested by eq. (3.30), and this allows for the PT to complete for parametrically

larger N.

8As we explain in appendix C, the radion potential in eq. (3.36) has been obtained with the
approximation that the second factor of the RHS of eq. (3.37) is < 0.1.
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As discussed earlier, the bounce in the thin-wall regime encompasses ¢ < (¢) <
¢m. Thus we can directly use the second line of eq. (3.36) to calculate the bounce.
Given the exact similarity between this potential and the one in eq. (3.9), used to
calculate bounce action in section 3.3, we can directly re-use the results given in
table 3.1, even though such results were obtained in a single-FP scenario.

Having worked out these general features of the thin-wall regime in our two-
FP scenario, with the rigorous bounds following from our ansatz, we now apply
them to the case of a realistic PT consistent with the Planck-Weak hierarchy. For
a benchmark set of parameters e = 0.5, \ = 0.5, as shown in table 3.1, the PT
can complete promptly for 1672M2 > 1 in the thin-wall regime, (marginally) under
theoretical control. This was completely impossible in the original single-F'P scenario
mentioned in section 3.3.

For the regions of parameter space that the PT does not complete near 7, the
universe keeps cooling down to temperatures where the thin-wall approximation is

no longer valid. In the next section we will consider such transition temperatures

outside the thin-wall regime, with even better semi-classical control.

3.5 Phase transition outside thin-wall regime

We now study the bounce for smaller 7', where the thin-wall approximation
is not valid and our ansatz bounce can no longer be shown to be a rigorous upper
bound on the true bounce action. However, our bounce ansatz smoothly and simply

interpolates the two phases and should still provide a very reasonable estimate
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of the true bounce action. Therefore, we will continue to use eq. (3.22) and the
boundary conditions mentioned in and around eq. (3.26) to numerically obtain the
O(3) symmetric bounce action S5 for all temperature (see solid lines in figure 3.4).
In figure 3.4 we also show the bounce action found using the two-derivative 4D EFT
of the dilaton (dual to radion of the 5D theory). As we discussed in [1], the bounce
action is dominated by such an EFT for small € and A. This is dual to the radion
two-derivative EF'T dominance in our 5D ansatz for small ¢ and A, as discussed
before. To compare the two-derivative approximation to our full 5D results in this
paper, we use the radion EFT Lagrangian shown in eq. (3.23) and follow the same
strategy as in [1] to determine one of the boundary conditions as ¢'|,—o = /7*1*/3
and thereby solve the bounce. Note that this choice extends into the region ¢ < T'
where the two-derivative EFT clearly breaks down. However, since T' < T, < (¢)
for small € and A, the contribution from this uncontrolled region is parametrically
small and can be viewed as a subleading correction to the true bounce. As shown in
figure 3.4, the bounce action S3 calculated by the 4D two-derivative EFT and the
full 5D ansatz agree for small € and A, as expected from the argument in [1]. On
the other hand, for larger A (A = 0.5) we see from figure 3.4 that the two-derivative
approximation is only very crude and the full 5D treatment is required.

Having considered the general structure and parametrics of the PT dynamics,
we now consider values of € and A such that the observed Planck-Weak hierarchy and
a successful PT are achieved. This will necessitate values of € and A large enough
that the two-derivative radion dominance approximation is insufficient and a fully

5D treatment is necessary. The 5D bounce is at least mathematically soluble in
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Figure 3.4: The O(3) symmetric bounce action S3/(N?T), where N = /1672M3,
as a function of temperature T/T, for different choices of ¢ and A. The solid lines

denote the results using 5D ansatz, while the dashed lines use 4D radion/dilaton
EFT (upto two derivatives) to estimate the bounce.

principle, qualitatively in the class described above in figure 3.2, but in this paper
we will proceed with our ansatz (3.22).

In an expanding universe the PT completes at a temperature 7;,, where the
nucleation rate I'(T},) becomes as large as H*, that is T}, is found by solving I'(T},) =
H(T,)*. The solid lines in figure 3.5 show the relation between T, /T. and N for
fixed T, ~ O(TeV) obtained using our 5D ansatz bounce. For comparison, similar
curves obtained using 4D radion EFT are shown by the dashed lines in figure 3.5.
As shown in figure 3.5, for a fixed A\, both the maximum N and the minimum 7" for
which the PT could happen increase as e gets larger. Also, for a given nucleation
temperature T,,, as € increases, completion of PT becomes possible for larger N and
thus in better 5D perturbative control.

We emphasize the significance of supercooling on cosmological (dark) matter
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Figure 3.5: Nucleation temperature 7,,/7, (for fixed T, ~ O(TeV)) as a function of
N for various € for fixed A = 0.5. The solid lines denote the results using 5D ansatz,
while the dashed lines use 4D radion EFT (upto two derivatives) to estimate the
bounce. The end point of each curve shows the minimum 7,, and maximum N for
a given parameter choice.

abundances [41]. For concreteness, we focus on the baryon/lepton asymmetry. We
denote this asymmetry before the temperature falls to T, by Yiefore, where Y =
BB where ng (njg) is the number density of baryons (antibaryons). Before the PT,
as the universe keeps expanding ng, ng and s get diluted o< 7% and hence Y stays
constant. After the PT completes at T' = T,,, the universes gets reheated to T' ~ T,
and unless the PT itself generates an asymmetry, ng — ng does not increase, while
s increases to s ~ T2 and so after the PT, Yager ~ Yiefore (%)3 For the observed
Y ~ 1071° if T,,/T. < O(1073), then even if an O(1) asymmetry is generated
before the PT, it would get diluted to a value below the observed asymmetry by the
PT. So such a degree of supercooling, typical of the minimal € ~ 1/25 scenario, is

inconsistent with a purely high-scale mechanism for baryogenesis. However, within

our two-FP model and by choosing a larger ¢ < 1, the above dilution is much
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smaller, making the PT compatible with baryogenesis above T.. Of course, it is
possible that baryogenesis/dark matter production may take place during or after
the transition, see e.g. [64-67], in which case such production does not get overly
diluted by supercooling.

In this chapter, we studied the cosmological phase transition of theories with
a warped compact extra dimension. We showed how the bubble nucleation rate
can be computed using a smooth bounce configuration, within 5D EFT control.
This sharpened and completed our analysis of chapter 2, using the dual strongly
coupled 4D description. Remarkably this PT generates a stochastic gravitation wave
background that can survive until now and be observed by future gravitational wave
detectors. In the next chapter, chapter 4, we study the gravitational wave signal

produced by the PT.
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Chapter 4: Gravitational Wave Signature

In the previous chapters, we showed how to compute the bubble nucleation
rate for the cosmological PT of composite Higgs confinement. Using the bubble
nucleation rate, we found the region in parameter space for which the PT can
complete and the temperature at which this happens. We also discussed some of
the phenomenological consequences of this PT for baryonic and dark matter genesis.
We now study the direct signature of this PT: the gravitational waves generated
during this PT.

When the first order PT, described above, takes place, a stochastic background
of gravitational waves (GW) gets generated. Along with the collisions of the bubbles
of the confined phase, both the turbulence and the sound waves in the plasma,
formed after bubble collisions, can source GW (for reviews see [23,68] and references
therein). The properties of GW sourced by the sound waves and turbulence is an
active area of research. On the other hand, the contribution from bubble collisions is
analytically better understood within the so-called “envelope approximation”, but
there can be significant corrections such as discussed in [69-73]. In the following
we focus on only the contribution due to bubble collisions and for simplicity use

the envelope approximation to get a crude sense of the GW signal strength as a
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function of our parameters. It is worth keeping in mind that for some parameter

< T, away from the extreme supercooling), the contribution

~Y

space (especially for T;,
from sound waves and turbulence can dominate over that from bubble collisions.
GW signals from bubble collisions can be characterized by the fractional abun-

dance Qgw ph? and peak frequency f, of GW [23]:

Quwh?(f) =167 x 1077 (HPT)2( K )2 (100)1/3 0.1103  3.8(f/f,)**

Baw 1+a s 0.42 +v2 1+ 2.8(f/f,)38
(4.1)
_ 0.62 BGW T* Gx 1/6
=1.65x 107" H ( ) , 4.2
Jo x “ 1.8~ 0.1v, + 02 Hpr 1 TeV \100 (4.2)
where we assume the bubble wall velocity v, = 1; effective degrees of freedom

g« = 100; that almost all of the latent heat is transferred to the bubble wall k; ~ 1.
a denotes the ratio of the latent heat released in the PT to the energy in the sur-
rounding radiation bath, which is typically a > 1 for a supercooled PT. Moreover,
the duration of phase transition is defined as 1/fgw and Hpr is the Hubble pa-
rameter during the PT. T, is the temperature of the radiation bath right after the
PT.

As shown in eq. (4.1), the strength and peak frequency of the gravitational
wave signal produced by the phase transition depend strongly on the duration of

phase transition, 1/fqw. Baw is defined as

Baw  Tdl S,
Pew — 20 N 4720 4,
HPT I'dr Th + dT Tn’ ( 3)
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where eq. (3.14) was used.
We now argue, using radion dominance approximation that in the supercooled

regime Sgw is small for small €, as it was pointed out in ref. [41]. In a generic PT,

dSp
dlnT

Mp;

~ Sp ~ In 7 . Remarkably, for small €, Sgw is suppressed [41] and the GW

abundance is enhanced. In order to see this, first note that in the supercooled regime
the leading Sy, in eq. (2.14), is independent of T'. The temperature dependence arises
from keeping the subleading part of the dilaton potential, eq. (3.9), for small ¢, in
the derivation of eq. (2.14). This effectively results into the replacement in eq.
(2.14) of Ag = Ao (1 - (W)j as shown in appendix B.

Therefore eq. (4.3) gives

6GW ( Tn )6 MPI
— ~ —4 4 3¢ In , 4.4
Hor ey ) T (4.4)

where we have taken In(Mp/T.) > In(T./T,). This suppression of Sgw can allow
large enough GW backgrounds so that even the primordial fluctuations contained
in it may be observable [52]. As € increases, the PT duration decreases and bubble
collision effects become less important, while the less diluted plasma effects become
more important.

Here we compute Sgw using our bounce ansatz and the results are shown in
figures 4.1 and 4.2. In figure 4.1 we show the dependence of T,,/T, and Bgw on €
explicitly with different choices of N and fixed A. As we can see in (the right panel
of) figure 4.1, Bgw gets smaller as e¢ decreases. In figure 4.2 we show Sgw as a

function of T, /T, for fixed A and different choices of € based on our 5D ansatz. It
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Figure 4.1: Nucleation temperature 7, /T, (left panel) and Sow/Hpr (right panel)
as a function of e for different choices of N and fixed A = 0.5, T.. ~ O(TeV).
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Figure 4.2: Bgw/Hpr as a function of nucleation temperature T,,/7, for different
choices of € and fixed A = 0.5, 7. ~ O(TeV). On each curve, N is varied while €
and A are held fixed.

is clear from figure 4.2 that Sqw drops as T, becomes smaller. One can also see
from figure 4.2 that to achieve a certain GW signal strength, meaning a given choice
of Baw/Hpr, a theory with larger e will have larger T,,/T. and thus less dilution
of primordial matter abundances (see discussion in section 3.5). Moreover, larger e
also leads to larger NV and better perturbative control.

In figure 4.3 we show the spectrum of the fractional abundance of the GW

signal for two choices of 5/H and T,, considering only the more well understood

o6



- I \\\\H\ I 1 Tt T rrrrr T rrrrr \\HE
10775 — B/H =10 =107
— B/H =100 E
1079 N =107
R 2101
: :
S e
10_13 _; 10—13
— LISA:SNR=5 3
1071 DECIGO: SNR=5 21071
BBO; SNR=5
10*17 = L \\\\HI L \\HH“ L “HH‘; L \\\\H‘ L L1l i 0*17
107° 10~* 1073 1072 107! 109’

fHz]

Figure 4.3: The spectrum of GW abundance Qgwh? as a function of GW frequency
f from bubble collisions. We choose two sets of benchmark parameters (5/H = 10,
T.=TeV)and (8/H = 100, T, = TeV). The projected sensitivity of LISA, DECIGO
and BBO experiments at Signal-to-Noise (SNR) = 5 are also included.

contribution of bubble collisions. As mentioned before, the universe will reheat
back to temperature around 7T, after the PT and thus we take T, = T, in figure 4.3.
We see that both cases can be observed by LISA, DECIGO and BBO even with
this conservative estimate for the gravitational signal. For experimental sensitivity
curves, we refer the reader to [74] and references therein. Although the two choices
of 5/H or T, above may be realized in the standard RS models, our two-FP model
allows larger values of € and thus less dilution of primordial abundances and better

perturbative control as mentioned before.
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Chapter 5: Conclusions

Composite Higgs models are among the most theoretically motivated candi-
dates for physics beyond the Standard Model (SM). This is because they can address
some of the problems of the standard model, by explaining the large observed hi-
erarchies in particle physics. Moreover, they can be probed by current and future
high energy collider and low-energy flavor experiments. In these models, the Higgs
boson is a composite state of a new strong dynamics at or above the TeV scale, and
the early universe can undergo a confinement phase transition (PT) during which
Higgs and other composite states are formed. This PT produces gravitational waves
that can be detected by future gravitational wave detectors. Therefore, composite
Higgs models can result in correlated future collider and gravitational wave signals.

In general the confining dynamics are strongly coupled and non-perturbative,
and the PT is difficult to formulate and analyze theoretically. However, in this
work we have re-examined such PTs in the context of spontaneous confinement,
and shown that the bubble nucleation rate is dominated by relatively simple dilaton
dynamics, and that the dominant contribution to the bubble nucleation rate can be
computed within the dilaton effective field theory (EFT).

We have also studied theories that have a weakly coupled holographic dual
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description of RS1-type, in which we are able to make progress and study the part of
the transition that cannot be captured by dilaton EFT. We have shown how smooth
EFT-controlled 5D bounce configurations can interpolate between the two phases,
which in 5D terms are given by a black-brane (dual to deconfined) phase and an IR
brane (dual to confined) phase. Our 5D construction goes beyond the conventional
ansatz based on 4D radion EFT that is usually employed in the literature. While
the usual radion-dominance ansatz can give a correct estimate for the rate of the
PT for parametrically small values of model parameters (such as €, \ defined in
section 3.1), we find the 5D ansatz does become important for larger values relevant
for a realistic PT consistent with observed Planck-Weak hierarchy.

Previous studies have shown that for realistic values of model parameters, con-
sistent with Planck-Weak hierarchy, the Universe often supercools significantly be-
low the critical temperature ~TeV, thereby diluting primordial matter abundances
generated before the PT. This makes high-scale mechanisms of (dark) matter gene-
sis potentially incompatible with the minimal Goldberger-Wise radius stabilization
mechanism (dual to the composite Higgs theories in the vicinity of a single fixed
point).

However, we showed that this conclusion can easily be avoided with the sim-
ple generalization of the Goldberger-Wise bulk potential. This is dual to composite
Higgs models controlled by separate UV and IR fixed points with separate critical
exponents controlling particle hierarchies and the phase transition. Consequently,
we have opened up a novel parameter space with only modest cooling, with the

associated gravitational waves signal still be readily observable at future detectors,
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such as LISA, DECIGO and BBO. In parts of the parameter space, the stochas-
tic gravitational wave background can be sufficiently strong that even primordial
anisotropies may be observable [52].

There remain several interesting future directions. While our 5D formulation
allows the bounce configuration dominating the transition rate to be semi-classically
determined in principle, here we introduced a simple, qualitatively correct, bounce
ansatz. We showed this implied a rigorous lower bound on the transition rate in
the thin-wall regime, and a very plausible estimate more generally. However, it
would be very interesting and important to obtain the true semi-classical bounce
configuration. By way of inspiration, in the roughly analogous 6D model of ref. [60]
(which however does not address the Hierarchy Problem), a domain wall solution
was tractable and can be recast as a semi-classical bounce for the analogous phase
transition.

From a more phenomenological perspective, it would also be very interesting
to develop baryogenesis mechanisms exploiting the first order nature of the phase
transition. Also since our two fixed-point scenario allows for less dilution of pre-
existing baryon asymmetry, it is interesting to reconsider baryogenesis mechanisms
in composite Higgs models in which asymmetry generation happens before the PT !.
Alternately, it is interesting to consider warped phase transitions with very different
critical temperatures (and thus gravitational wave frequencies) in the context of dark

sectors. It is possible that the 5D holographic formulation can be useful to model

IFor example in refs. [75,76] high scale leptogenesis has been studied in models which have the
structure expected from implementation of standard high-scale seesaw mechanism in the composite
Higgs framework.
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aspects of the bubble and plasma dynamics relevant for a detailed understanding of

the gravitational wave spectrum.
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Appendix A:  Dominance of O(3) symmetric, time independent bounce

In this appendix, we argue that for small )y, the dominant dilaton bounce
is O(3) symmetric and independent of 1/7 periodic Euclidean time as claimed in
chapter 2.

Following egs. (2.2) and (2.5), the generic Euclidean action for the dilaton is

given by,

S = N—2/1 df/dme((a $)? + ;(8@2
Aol o : Aol t/2H

d (1 e (|Ao|54<¢>)6&6> +167°C) (A1)

where ¢ = |\o|4¢/T, & = |No|*rT, T = tT. For simplicity, first focus on the case
of small T such that In(7./T") 2 1/¢, where the the potential term proportional to
$*¢ can be neglected. Due to the periodicity of Euclidean time and the fact that
¢ has to change by at least an O(1) amount in order to interpolate between the
deconfined phase (¢ ~ 0) and a release point, we get ;¢ ~ Ap/At ~ O(1) for a
bounce profile gg that depends on time at the leading order. In this case, for small
Ao, due to the W(@;@Z term, a time-dependent action is parametrically larger

than the time-independent O(3)-symmetric bounce eq. (2.14). So the only way to
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have a smaller time-dependent bounce action, is to have a bounce that has a leading

time-independent part, gzgo(x), and a subleading time-dependent part, f(x,t):

¢(ZE’ t) = gbo(l’) + f(l’,t), (AQ)

|'/4 or smaller. The ambiguity of separating ¢ into a time

where f is of order |\g
dependent and time independent part is removed by requiring that fol dtf =0. In

this case the action can be expanded in powers of Ay, which to first nontrivial order

in f becomes

N2 I , L i . 2 2
S ~ —47r|)\0|3/4/0 dt/dmx <(@x¢o) —¢o +167 C’+W(0gf) +(8,f) )7 (A.3)

where terms linear in f are not present since they vanish after integrating over t.
The quadratic term in f arising from the potential has been dropped since it has a
necessarily subdominant contribution to the action for small A\g. We see that to this
order, &0 and f have to independently satisfy the equations of motion and a nonzero
f has a positive contribution to the action, so that a time-independent bounce
solution has a lower action than any such time-dependent configurations/solutions.

In the thin-wall regime, we can parallel the above arguments. In this regime
the dominant contribution to the bounce comes from the region where ¢ ~ (¢) > T..

Thus the effective Lagrangian relevant for a thin-wall bounce can be obtained by
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expanding eq. (2.2) around (¢) to get,

N2

Lo = 1672

((0¢2)* + 2eXo(0)¢2) + -+, (A.4)

where ¢, = ¢—(¢). Keeping the terms proportional to ¢2, ¢? in the above expansion,
will not change the parametric argument that follows. We can recast the above using
the rescalings, (53 = (6‘)‘0‘)1/4¢5/T7 <(5s> = (€|A0|)1/4<¢>/Tca T = (€|A0|)1/4TT7 2?: tT,

as
N2T?

Log =~
ff 1672

((6‘)\;‘1/2) (85&5)2 + (0@&53)2 + 2<Q~55>2q~5§) , (A5)

where we have used T' =~ T, which is appropriate for the thin-wall regime. Using
the above effective Lagrangian, the Euclidean action can be constructed. Then we
can repeat all the arguments given above for the supercooling regime to conclude
again that the dominant bounce is time-independent, this time due to the smallness
of the quantity e\y. Even for intermediate T', these arguments can be generalized

to show time-independence of the dominant dilaton bounce.

Appendix B:  Subleading temperature correction to the bounce ac-

tion in the supercooled regime

In this section we calculate the subleading correction to Sy, in the supercooled

regime, using which we can find the parameter Sgw relevant for gravitational waves
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as was discussed in chapter 4. There the result of this appendix was used to obtain
eq. (4.4). The relevant action can be read off from eq. (A.1) by dropping the

time-dependent contribution,

N2 ~ ~ 1 T ¢ ~e
S0 = Tl / do” (W)Z 4 (1 “ v (\Ao\1/4<¢>> ® ) * 16”20) |
(B.1)

We will expand in (W)e by treating the term in the potential proportional to
é4+5 as a perturbation, and obtain the leading temperature correction to S}, by first
solving the “zeroth-order” bounce equation in the absence of the q54+6 term. Let us
denote such a bounce solution as qgo(a:) and the corresponding zeroth-order bounce

action as Séo). The leading correction to Sl()o) is then given by

o N2 1 T ‘ 2 T4+€
ASb‘47r|A0|3/41+e/4<|Ao|1/4<¢>) / draon™. (B2)

Note that even though the solution 95 is corrected by the perturbation, the change
of the action due to this correction vanishes to first order since the first variation
of the action vanishes when evaluated on the solution of equation of motion. Then,

for small €, we can approximate the above correction as,

N2 T ‘ 974
3= g () [ 2o ()
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This implies the temperature dependent bounce action can be approximated as,

Sy ~ 47r‘>\ |3/4 [ dza? < (8p00)* — &2 ( — 1+6/4 (W)e) - 167T2C> (B.4)

~ B La () 20 (1= () ) ot + 162CTY) . (BS)

where in the second line we have re-expressed the action in terms of ¢ and r. There-
fore including this subleading temperature correction is equivalent to a correspond-

ing change in the dilaton quartic coupling,

2o (1= (s ) ) (5.6)

in eq. (2.13). Thus to first order in (W) and for small € we have using eq.

3 T ¢
szsét)) (1+Z(—|A0|1/4(¢)> > (B.7)

which when used in eq. (4.3) gives eq. (4.4).

(2.14),

Appendix C: Radion potential for the 5D model of the two fixed

points

In this appendix, we complete the derivation of an analytic approximation to

the radion potential, eq. (3.36), in our two-FP scenario introduced in section 3.4.

66



As discussed in section 3.4, we consider the following polynomial potential for the

Goldberger-Wise field, eq. (3.31):

1, ., 1 1,

V(x) = §m’2x + 57 Y+ 579X (C.1)

where we assume the following signs for the coefficients in the potential: m? <

0,7 <0, and g > 0. The EoM for y is

— v —4—v =V'(v) = 2
T2X X = Vi(x) =0, (C.2)

where ¢ is the extra dimensional coordinate with the range 0 < ¢ < L and dif-
ferentiation with respect to o will be denoted by a dot. We consider the following

boundary conditions, as in eq. (3.7) for y,

which can be obtained from boundary potential terms for the GW field,

SEV = — /d4x v/ =vov (X° — 112)2 : (C.5)
S;R = /d4x V=R X, (C.6)

where STV and S} denote the UV and IR brane terms respectively. To impose the

UV boundary condition, x(oc = 0) = v , one needs to take the limit of large k. In
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this limit the only effect of this term is setting the boundary condition and does not
have any extra contribution to the radion potential. The SiR term, on the other
hand, will contribute to the radion potential.

As mentioned in section 3.4, the above potential in eq. (C.1) has two extrema'

at

3 2 2 12
XZOandXZX*Z—(—QJr T gm>, (C.7)
g

corresponding to two constant-y solutions of EoM. To compute the radion potential
analytically, we approximate the Goldberger-Wise bulk potential by a piecewise-

quadratic potential given by

sm2 X < Xm

VX(X) = ’ (C.8)
(X —x«)? = C X > Xm

"

where m* =V, (x.) = —2m"* —1x./2 and we have matched the two approximations

at xm = (—n++/n? — 2gm’?) /g corresponding to the inflection point of the potential

in eq. (C.1). The constant C' = $m?(xm — x«)> — 3m*x2, ensures the continuity of

Vi (x). We are interested in the case of |m’?| < m?, using which we get Y ~ 2Xx
and C =~ fzm?x2.

We choose v in the range 0 < v < x., and close to y = 0 . With this choice,

for small enough L, the field value is always smaller than x, and thus VX(X) in

!The potential of eq. (C.1) has another extremum in x < 0, but that is not important for the
solutions for x that we consider here, as we choose the UV boundary value v to be on the range
0 <v < Xx-
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eq. (C.8) reduces to the standard quadratic potential. In this case, the standard

Goldberger-Wise solution applies [35]:
x(0) = ve + %6(4_6/)(0_1') (for L < Lyy,), (C.9)

where ¢ = 2 — /4 + m’? and we have dropped terms that are higher order in ¢’ and

e~ L. We define L, as the special value of L that satisfies:

€ (%

X(D)|t=Lm = Xm — Lm =~ l,ln (Xm_—a/él) : (C.10)

It is easy to see from eq. (C.9) that in the region L < L, the field profile x(o)
always stays smaller than x,, and thus it was self-consistent to use eq. (C.9).

For larger values of L, i.e. for L > L,,, the solution has the form

A7 + Ayjelt=<)e 0 < Om
o) (C.11)
Blefe(ofam) + BQQ(4+E)(O*UYH) + X« O >0p

in which oy, is defined as x(0w) = xm and € = —2 4+ /4 +m?2.2 In the expression
above A;, B;, o, are independent of o, but are in general L-dependent. In addition
to the two boundary conditions, there are three other conditions that we have to
impose to solve for the five unknowns A;,, By2 and o,. These conditions are
continuity of x and x at oy, implied by continuity of V' (x)(or finiteness of V'(x))

and the EoM for x, and that the field value is equal to x,, at o,. So we need to

2We choose to work with positive € and € and thus there is a sign difference in their expressions.
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solve the following set of equations:

A+ Ay =

Ayeon 1 Ayel-om —

€ Are?Tn 4 (4 — &) Aye@=<)om = _eB) + (4+ €) By (C.12)
By + By = xu — X

—eBjecL—om) 4 (4+ €)B26(4+6)(L70m) —

\

In terms of oy, the first two and last two equations can be solved separately:

(

Ay v — e ()om

A2 ~ Xme—(4—€’)0m _ Ue—(4—25’)am

(C.13)
_ (4+5)(Xm_X*)e(4+6>(Liom)_04 ~ a _—(44€)(L—om
Bl - (4+e)e(4+€)(L—(7m)J,-ee—f(L—Um) ~ (Xm - X*) - 4+€€ ( )( )
_ a—€(Xx—Xm) e—€(L—om) ~ 0 —(4+e)(L—om) _ _€ . —(44+2€)(L—om)
By = (Ate)elttoT—om) —co—el—om) > Z4eC Tte (X« — Xm)e

\

Now putting these into the third equation of egs. (C.12), we find an equation for

Om:

—(4 - 26’)1)66/0’“ + (4 —€)xm = e(Xs — Xm) + (a —e(xx — Xm)e’E(L"’"‘)) et (L—om)

(C.14)

The right-hand-side of this equation becomes small quickly as L — o, increases,
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making e€“m weakly dependent on L. Expanding in ¢ and e~¢~=7m) we get

4+€

Xm = S0 = Xm) + Txm @ (xm = §00 = Xm) + %xm) ! gire

e . (C.15)

v 4v )

We now move on to calculate the radion potential. As mentioned in section 3.1,
radion action is obtained by promoting e~% to ¢(x) in Ssp (eq. (3.1)). The dom-
inant contribution to 4D radion potential V;.q(¢) comes from S, (eq. (3.6)) after
integrating over the 5th dimension. For ¢ > ¢,, = e ™, the Goldberger-wise scalar
X(0) has the standard form eq. (C.9) and thus the radion potential is the same
as eq. (3.9). For ¢ < ¢, Goldberger-wise scalar y(o) has the form in eq. (C.11)
given our piecewise-potential approximation in eq. (C.8). Similar to case of free
Goldberger-Wise field, we can use the EoM in the bulk and then integrate by parts

to get the radion potential in terms of only the boundary terms:

1

Vol ) 2 | 3]

which in terms of ¢ and the coefficients A, 5 and By > becomes

Viaa(¢) D —300? <2x* + By (e7™¢)" + By (e"m¢)_(4+€)> + 3xs€ 4™ (—eBy + (4 + €) By)

—Lv (€A1 + (4 — €)Ay) — S(etom — 4L, (C.17)
Substituting the coefficients in eq. (C.17) and including the IR brane tension de-
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tuning and dropping the constant terms, we obtain the following radion potential

keeping the leading order in € and €

Tt — awgt ¢ > P
Viad (@) = , (C.18)

—E(y— e/€
(7 = ax.)6" + alx. — xm) (L2 ) T gt 6 < g,

where 7 = 7, + 12M32 — o?/8 and 7, is allowed to be detuned away from the RS
value —12M3.

We can choose 7 > 0 and 77 = 7 — ay, < 0 while all other parameters
in eq. (C.18) are positive. For this choice of parameters, the above potential in

eq. (C.18) has only one minimum which is located in the ¢ < ¢, range:

o~ (ertm) (o) (©:19

where we have used x, = %X* to simplify the expression. This completes the

derivation of eqs (3.36) and (3.37), mentioned in section 3.4.
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