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Abstract. In this paper, we study the hulls of ZpZp[v]- cyclic codes for any

prime p, where v2 = v. Firstly, we derive the generator polynomials of the

hulls of separable cyclic codes (SCCs) over ZpZp[v] and determine their di-
mensions using the concept of a generating function in combinatorics. We also

enumerate the SCCs over ZpZp[v] with hulls of a fixed dimension. Next, we

present the generator polynomials of the hulls of non-separable cyclic codes
(NSCCs) over Z2Z2[v] with coprime odd block lengths and determine their

dimensions. Additionally, we enumerate the NSCCs over Z2Z2[v] with hulls of

a fixed dimension. As an application, we use the hulls of NSCCs over Z2Z2[v]
to construct some good entanglement-assisted quantum error-correcting codes

(EAQECCs).

1. Introduction. To categorize finite projective planes, the idea of the hull of
a linear code, which is defined as the intersection of the code and its dual, was
first presented in [3]. Since then, the properties of the hulls of linear codes have
been thoroughly examined. Also, the dimension of the hull plays a crucial role in
determining the complexity of algorithms used to calculate permutation equivalence
between two linear codes and compute the automorphism of a given linear code
(discussed in [18, 19, 20, 25, 27]). Recently, the hulls of linear codes have also
been used in the construction of good EAQECCs, as detailed in [1, 10, 22, 30].
Consequently, the study of hulls and dimensions of the hulls of linear codes over
finite fields has gained significant interest. In 1997, Sendrier [26] identified the
number of distinct linear codes with hulls of a given dimension. Skersys [29] later
derived an expression for the average hull dimension of cyclic codes. Subsequently,
in 2018, Jitman and Sangwisut [15] explored the average dimension of the Hermitian
hulls of constacyclic codes. Recently, Sangwisut et al. [24] determined dimensions
of the Euclidean hull of cyclic and negacyclic codes over Fq and calculated the
number of cyclic codes having Euclidean hulls of a fixed dimension. The average
hull dimension of negacyclic codes over Fq has also been investigated.

2020 Mathematics Subject Classification. Primary: 94B05; Secondary: 94B15.
Key words and phrases. ZpZp[v]-cyclic codes, separable cyclic codes (SCCs), non-separable

cyclic codes (NSCCs), hulls, EAQECCs.
The authors are not supported by any funding.
∗Corresponding author: Ashish Kumar Upadhyay.

209

http://dx.doi.org/10.3934/amc.2025037
mailto:shuklaawadhesh@bhu.ac.in
mailto:opandey1302@bhu.ac.in
mailto:mishravipul10@bhu.ac.in
mailto:sachiniitk93@gmail.com
mailto:upadhyay@bhu.ac.in


210 AWADHESH KUMAR SHUKLA ET AL.

In 2018, Borges et al. [4] conducted the study of double cyclic codes over
Z2. Their study involved treating Z2-double cyclic codes as Z2[x]–submodules of
Z2[x]

⟨xr−1⟩ ×
Z2[x]

⟨xs−1⟩ . They successfully determined generating sets and identified numer-

ous optimal codes within this framework. Similarly, Gao et al. [11] thoroughly ex-
amined the structural characteristics of double cyclic codes over Z4. Their research
focused on generator polynomials, minimum spanning sets, and the derivation of
corresponding dual codes. Furthermore, they found several non-linear optimal codes
over Z2. In 2020, Diao et al. [9] studied the additive-cyclic codes over mixed al-
phabet ZpZp[v] . Their study determined the generator polynomials of cyclic codes
and their Euclidean dual codes.

Recently, Gao et al. [12] conducted a pioneering study on the hulls of double
cyclic codes over Z2. In their study, they determined the generator polynomials
of hulls in both separable and non-separable cases, provided explicit solutions for
the hulls of double cyclic codes, and enumerated cyclic codes with hulls of fixed
dimensions. Additionally, they constructed efficient EAQECCs using the Euclidean
hulls of double cyclic codes over Z2. Notably, before their research, no studies
had investigated the hulls of cyclic codes over mixed alphabets. Inspired by the
foundational insights from [9] and [12], we see an opportunity to explore the hulls
of ZpZp[v]-cyclic codes. In this work, we address these gaps by systematically
studying the Euclidean hulls of ZpZp[v]-cyclic codes. Our main contributions are
as follows:

• We derive the generator polynomials of the hulls of separable cyclic codes
(SCCs) over ZpZp[v] and determine their dimensions using generating func-
tions from combinatorics. Additionally, we enumerate SCCs with hulls of a
fixed dimension.

• We determine the generator polynomials of the hulls of non-separable cyclic
codes (NSCCs) over Z2Z2[v] with coprime odd block lengths, compute their
dimensions, and count the number of NSCCs with hulls of a fixed dimension.

• We construct entanglement-assisted quantum error-correcting codes
(EAQECCs) using the hulls of NSCCs over Z2Z2[v]. The constructed
EAQECCs demonstrate improved parameters compared to existing codes in
the literature.

This paper is structured as follows. Section 2 provides essential background on
cyclic codes over Zp and ZpZp[v], setting the foundation for our study. Section 3
delves into the Euclidean hulls of separable cyclic codes (SCCs) over ZpZp[v], where
we determine their generator polynomials, dimensions, and enumerate SCCs with
hulls of a fixed dimension. In Section 4, we turn our attention to the Euclidean hulls
of non-separable cyclic codes (NSCCs) over Z2Z2[v] with coprime odd block lengths.
This section explores their generator polynomials, dimensions, and the enumeration
of hulls with a fixed dimension. Section 5 presents a key application of our findings:
using the hulls of NSCCs over Z2Z2[v] to construct efficient entanglement-assisted
quantum error-correcting codes (EAQECCs). Our constructions yield codes with
better parameters compared to existing EAQECCs in the literature. Finally, Sec-
tion 6 concludes the paper.

2. Preliminary. This section reviews some basic results and prior findings on
cyclic codes over Zp and ZpZp[v]. For detailed information about ZpZp[v]-cyclic
codes, we refer to [9].
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2.1. Zp-Cyclic codes.

Definition 2.1. A linear code D of length n over Zp is called a cyclic code if it
satisfies the property

(d0, d1, . . . , dn−1) ∈ D implying (dn−1, d0, . . . , dn−2) ∈ D.

The dual code D⊥ with respect to the Euclidean inner product is defined to be

D⊥ = { d ∈ D⊥ | c · d = 0 ∀ c ∈ D}.

The code D⊥ is a cyclic code if D is a cyclic code. The hull of D with respect to
the Euclidean inner product is defined as

Hull(D) = D ∩D⊥.

Let a(x) = a0 + a1x + · · · + aλ−1x
λ−1 + xλ be a polynomial of degree λ in Zp,

provided (a0 ̸= 0). The polynomial a∗(x) = a−1
0 xdeg a(x)a( 1x ) is called the reciprocal

polynomial of a(x). By definition it is clear that deg(a(x)) = deg(a∗(x)). Moreover,
a(x) is called a self-reciprocal polynomial if a(x) = a∗(x).

Theorem 2.2. [14] Let D1 = ⟨d1(x)⟩ and D2 = ⟨d2(x)⟩ be two cyclic codes of
length n over Zp. Then D1 ∩D2 = ⟨lcm(d1(x), d2(x))⟩.

Let R = Zp + vZp = {c+ vd | c, d ∈ Zp} with v2 = v has p2 elements. Let

ZpR = {(b, r) | b ∈ Zp, r ∈ R}.

Any arbitrary element g ∈ R can be written as g = ξ1a1 + ξ2a2, where a1, a2 ∈ Zp,
ξ1 = v and ξ2 = 1− v and R = ξ1Zp ⊕ ξ2Zp (see [2]). Let η : R → Zp be defined by

η(ξ1a1 + ξ2a2) = a2.

Using map η, the scalar multiplication of R on ZpZp[v] is defined as

g ⋆ (b, r) = (η(g)b, gr).

This scalar multiplication ⋆ can be extended over Zλ
p ×Rγ as

g ⋆ x = (η(g)b0, η(g)b1, . . . , η(g)bλ−1, gr0, gr1, . . . .grγ−1),

where x = (b0, b1, . . . , bλ−1, r0, r1, . . . , rγ−1) ∈ Zλ
p × Rγ . Indeed, the multiplication

⋆ endows Zλ
p ×Rγ with the structure of an R-module.

Definition 2.3. A non-empty R-submodule C of Zλ
p ×Rγ is called a ZpZp[v]-linear

code of length (λ, γ).

Let ϕ : R → Z2
p be a Gray map defined by ϕ(r) = (a1, a2)M , where r = ξ1a1 +

ξ2a2 ∈ R and M = 1
2

(
1 1
1 −1

)
. Note that this Gray map works only when p is an

odd prime. In case of p = 2, we define ϕ(r) = (a1, a2), where r = ξ1a1+ξ2a2 ∈ Z2[v].
Now, we define a naturally extended Gray map Φ : Zλ

p ×Rγ → Zλ+2γ
p as

Φ(b, r) = (b, ϕ(r)),

where b = (b0, b1, . . . , bλ−1) ∈ Zλ
p , r = (r0, r1, . . . , rγ−1) ∈ Rγ and

ϕ(r) = (ϕ(r0), ϕ(r1), . . . , ϕ(rn−1)). It is clear that the map Φ is Zp-linear. From
this, we have the following result.
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Proposition 2.4. Let C be a ZpZp[v]-linear code of length (λ, γ) with |C| = pk.
Then Φ(C) is a Zp-linear code with parameters [λ+ 2γ, k, dH ].

Definition 2.5. A linear code C of length (λ, γ) over ZpZp[v] is a cyclic code if it
satisfies the following condition:

(b0, b1, . . . , bλ−1, r0, r1, . . . , rγ−1) ∈ C=⇒ (bλ−1, b0, . . . , bλ−2, rγ−1, r0, . . . , rγ−2) ∈C.

Let Rλ,γ =
Zp[x]

⟨xλ−1⟩ ×
R[x]

⟨xγ−1⟩ . Every element in Zλ
p ×Rγ can be identified by using

a pair of polynomials in Rλ,γ as follows:

(b0, b1, . . . , bλ−1, r0, r1, . . . , rγ−1) →(b0 + b1x+ · · ·+ bλ−1x
λ−1,

r0 + r1x+ · · ·+ rγ−1x
γ−1) = (b(x), r(x)),

where b(x) ∈ Zp[x]
⟨xλ−1⟩ and r(x) ∈ R[x]

⟨xγ−1⟩ , and this is called polynomial representation.

This shows that there is an R-module isomorphism between Zλ
p × Rγ and Rλ,γ .

Moreover, Rλ,γ forms an R[x]-module. Therefore, any linear code C over ZpZp[v] is
a cyclic code if and only if the polynomial representation of C is an R[x]-submodule
of Rλ,γ .

We assume m = lcm(λ, γ) for the rest of this paper. Let c(x) = (b(x), r(x)),
c′(x) = (b′(x), r′(x)) ∈ Rλ,γ . Define a map

o : Rλ,γ ×Rλ,γ → R[x]

⟨xm − 1⟩
,

by:

c(x) o c′(x) = ξ2b(x)x
m−1−deg(b′(x))x

m − 1

xλ − 1
(b′∗(x))

+ r(x)xm−1−deg(r′(x))x
m − 1

xγ − 1
(r′∗(x)) mod (xm − 1).

Theorem 2.6. [9, Lemma 3.3-Lemma 3.6] Let C be a ZpZp[v]-cyclic code of length
(λ, γ). Then

C = ⟨(m(x) | 0), (k(x) | ξ1l1(x) + ξ2l2(x))⟩,
where m(x), k(x) ∈ Zp[x]

⟨xλ−1⟩ , and l1(x), l2(x) ∈ R[x]
⟨xγ−1⟩ with m(x), k(x) | xλ − 1 and

l1(x), l2(x) | xγ − 1. Moreover, deg(m(x)) > deg(k(x)), m(x) | l2(x)k(x) and
m(x) | l2(x) gcd(m(x), k(x)).

Let Cλ and Cγ be the canonical projections of the first λ and last γ coordinates,
respectively. Then Cλ = ⟨gcd(m(x), k(x))⟩ and Cγ = ⟨ξ1l1(x) + ξ2l2(x)⟩ are cyclic
codes over Zp and R, respectively. Moreover, if C = Cλ×Cγ , then C is called a SCC
over ZpZp[v].

Corollary 2.7. [9] Let C be a SCC over ZpZp[v]. Then k(x) = 0.

In [9], it has been proved that the dual code C⊥ of a cyclic code C is also cyclic.

Therefore, C⊥ = ⟨(m̄(x) | 0), (k̄(x) | ξ1 l̄1(x) + ξ2 l̄2(x))⟩, where m̄(x), k̄(x) ∈ Zp[x]
⟨xλ−1⟩ ,

and
l̄1(x), l̄2(x) ∈ R[x]

⟨xγ−1⟩ with m̄(x), k̄(x) | xλ − 1 and l̄1(x), l̄2(x) | xγ − 1.
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Theorem 2.8. [9, Theorem 4.5] Suppose C = ⟨(m(x) | 0), (k(x) | ξ1l1(x)+ξ2l2(x))⟩
is a ZpZp[v]-cyclic code, and C⊥ = ⟨(m̄(x) | 0), (k̄(x) | ξ1 l̄1(x)+ ξ2 l̄2(x))⟩ is its dual
code. Then

m̄(x) =
xλ − 1

gcd(m(x), k(x))∗

l̄1(x) =
xγ − 1

l∗1(x)

l̄2(x) =
(xγ − 1) gcd(m(x), k(x))∗

m∗(x)l∗2(x)

k̄(x) =
(xλ − 1)µ(x)

m∗(x)
,

where µ(x) = xm−deg(l2(x))+deg(k(x))
(

k∗(x)
gcd(m(x),k(x))∗

)−1

mod

(
m∗(x)

gcd(m(x),k(x))∗

)
.

Corollary 2.9. Suppose C = ⟨(m(x) | 0), (0 | ξ1l1(x) + ξ2l2(x))⟩ is a SCC over
ZpZp[v]. Then C⊥ = ⟨(m̄(x) | 0), (0 | ξ1 l̄1(x) + ξ2 l̄2(x))⟩, where

m̄(x) =
xλ − 1

m∗(x)
, l̄1(x) =

xγ − 1

l∗1(x)
, l̄2(x) =

xγ − 1

l∗2(x)
.

Proof. The result follows immediately if we put k(x) = 0 in Theorem 2.8.

2.3. Factorizations of xλ − 1 and xγ − 1 over Zp. Now, we give the complete
factorizations of xλ−1 and xγ −1 over Zp, where λ and γ are positive integers. For
more details, we refer to [24].

Let ordm(n) denote the multiplicative order of n modulo m for any coprime
positive integers m and n. We say a pair (m,n) is a good pair if there exists k ∈ Z+

such that m | nk +1. Otherwise, they are called a bad pair. Consider a function χ,
which maps N× N to {0, 1} as follows:

χ(m,n) =

{
1 if (m,n) is a bad pair.

0 if (m,n) is a good pair ,
(1)

Suppose λ = ps1 λ̄ and γ = ps2 γ̄, where gcd(p, λ̄) = 1 = gcd(p, γ̄). Therefore,

xλ − 1 = (xλ̄ − 1)p
s1

and xγ − 1 = (xγ̄ − 1)p
s2
. Now, the factorizations of xλ̄ − 1

and xγ̄ − 1 are given by the following equations:

xλ̄ − 1 =
∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

heω(x)

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

teω(x)t
∗
eω(x)


= h1(x)h2(x) · · ·hm1(x)t1(x)t

∗
1(x)t2(x)t

∗
2(x) · · · tm2(x)t

∗
m2

(x)

(2)

xγ̄ − 1 =
∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

fiν(x)

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

diν(x)d
∗
iν(x)


= f1(x)f2(x) · · · fk1

(x)d1(x)d
∗
1(x)d2(x)d

∗
2(x) · · · dk2

(x)d∗k2
(x),

(3)
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where

Ψ1(ω, p) =
ϕ(ω)

ordω(p)
, Φ1(ω, p) =

ϕ(ω)

2 ordω(p)
, (4)

Ψ2(ν, p) =
ϕ(ν)

ordν(p)
, Φ2(ν, p) =

ϕ(ν)

2 ordν(p)
. (5)

Here heω(x) and fiν(x) are monic irreducible self-reciprocal polynomials of degree
ordω(p) and ordν(p), respectively, teω(x)t

∗
eω(x) and diν(x)d

∗
iν(x) are monic irre-

ducible reciprocal polynomials pairs of degree ordω(p) and ordν(p), respectively. ϕ
is the Euler function. Moreover, m1 and k1 denote the number of self-reciprocal
irreducible polynomials in factorizations of xλ̄ − 1 and xγ̄ − 1 over Zp, respectively,
m2 and k2 denote the number of irreducible reciprocal polynomials pairs in factor-
izations of xλ̄ − 1 and xγ̄ − 1 over Zp, respectively.

The complete factorizations of xλ − 1 and xγ − 1 are given by the following
equations:

xλ − 1 = (xλ̄ − 1)p
s1

=

 ∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

heω(x)

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

teω(x)t
∗
eω(x)




ps1

(6)

xγ − 1 = (xγ̄ − 1)p
s2

=

 ∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

fiν(x)

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

diν(x)d
∗
iν(x)




ps2

.
(7)

In the next theorem, we give the values of m1, m2, k1, and k2 present in Eqs.
(2) and (3).

Theorem 2.10. [12, Theorem 2.6] Let Eqs. (2) and (3) be the factorizations of

xλ̄ − 1 and xγ̄ − 1. Then

m1 =
∑
ω|λ̄

(1− χ(ω, p))
ϕ(ω)

ordω(p)
, m2 =

1

2

∑
ω|λ̄

χ(ω, p)
ϕ(ω)

ordω(p)
,

k1 =
∑
ν|γ̄

(1− χ(ν, p))
ϕ(ν)

ordν(p)
, k2 =

1

2

∑
ν|γ̄

χ(ν, p)
ϕ(ν)

ordν(p)
.

3. Euclidean hulls of SCCs over ZpZp[v].

3.1. Generator polynomials of hulls of SCCs over ZpZp[v]. In this subsection,
we give the generator polynomials of hulls of SCCs over ZpZp[v] and determine their
dimensions. First, we give a result discussed by Tian et al. in [31].

Proposition 3.1. [31, Theorem 2] Let Cγ = ⟨ξ1l1(x) + ξ2l2(x)⟩ be a cyclic code
over R and C⊥

γ = ⟨ξ1 l̄1(x) + ξ2 l̄2(x)⟩ be its dual. Then

Hull(Cγ) =
〈
ξ1 lcm(l1(x), l̄1(x)) + ξ2 lcm(l2(x), l̄2(x))

〉
.
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Theorem 3.2. Let C = ⟨(m(x) | 0), (0 | ξ1l1(x) + ξ2l2(x))⟩ and its dual C⊥ =
⟨(m̄(x) | 0), (0 | ξ1 l̄1(x) + ξ2 l̄2(x))⟩ be SCCs in Rλ,γ . Then

Hull(C) =
〈
(lcm(m(x), m̄(x)) | 0)), (0 | ξ1 lcm(l1(x), l̄1(x)) + ξ2 lcm(l2(x), l̄2(x)))

〉
.

Proof. Since C is a SCC in Rλ,γ , therefore by Corollary 2.7, we have k(x) = 0. Thus
C = ⟨(m(x) | 0), (0 | ξ1l1(x)+ξ2l2(x))⟩, and C⊥ = ⟨(m̄(x) | 0), (0 | ξ1 l̄1(x)+ξ2 l̄2(x))⟩.
By Theorem 2.2 and Proposition 3.1, we have

Hull(C) =
〈
(lcm(m(x), m̄(x)) | 0)) ,(
0 | ξ1 lcm(l1(x), l̄1(x)) + ξ2 lcm(l2(x), l̄2(x))

) 〉
.

The following corollary follows directly from the combination of Theorem 3.2 and
Corollary 2.9.

Corollary 3.3. Let C = ⟨(m(x) | 0), (0 | ξ1l1(x) + ξ2l2(x))⟩ and its dual C⊥ =

⟨( xλ−1
m∗(x) | 0), (0 | ξ1 xγ−1

l∗1(x)
+ ξ2

xγ−1
l∗2(x)

)⟩ be SCCs in Rλ,γ . Then

Hull(C) =
〈(

lcm(m(x),
xλ − 1

m∗(x)
) | 0

)
,

(
0 | ξ1 lcm(l1(x),

xγ − 1

l∗1(x)
)

+ ξ2 lcm(l2(x),
xγ − 1

l∗2(x)
))

)〉
.

Lemma 3.4. [16, Lemma 3.2] Suppose s is a non-negative integer and 0 ≤ n1, n2, n3

≤ ps are integers. Then, the following holds:

1. 0 ≤ ps −max{n1, p
s − n1} ≤ ps−1

2. 0 ≤ ps+1 −max{n2, p
s − n3} −max{n3, p

s − n2} ≤ ps.

Now, we determine the dimensions of hulls of SCCs in Rλ,γ .

Theorem 3.5. Suppose χ, Ψ1, Φ1, Ψ2, and Φ2 are the same as in Eqs. (1), (4),
and (5), respectively. Then the dimensions of hulls of SCCs in Rλ,γ are of the form∑

ω|λ̄

(1− χ(ω, p)) ordω(p)uω +
∑
ω|λ̄

χ(ω, p) ordω(p)vω

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)[xν + zν ] +
∑
ν|γ̄

χ(ν, p) ordν(p)[yν + wν ],

(8)

where 0 ≤ uω ≤ Ψ1(ω, p)⌊ps1

2 ⌋, 0 ≤ vω ≤ Φ1(ω, p)p
s1 , 0 ≤ xν , zν ≤ Ψ2(ν, p)⌊ps2

2 ⌋,
and 0 ≤ vν , wν ≤ Φ2(ν, p)p

s2 .

Proof. Since C is SCC in Rλ,γ , then C = ⟨(m(x) | 0), (0 | ξ1l1(x) + ξ2l2(x))⟩. From
Eqs. (6) and (7), we have

m(x) =
∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

(heω(x))
αeω

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

(teω(x))
βeω (t∗eω(x))

ηeω

 ,

(9)

l1(x) =
∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
δiν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
τiν (d∗iν(x))

ρiν

 , (10)
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l2(x) =
∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
σiν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
ξiν (d∗iν(x))

∆iν

 ,

(11)
where 0 ≤ αeω, βeω, ηe,ω ≤ ps1 and 0 ≤ δiν , τiν , ρiν , σiν , ξiν ,∆iν ≤ ps2 . Then

m∗(x) =
∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

(heω(x))
αeω

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

(teω(x))
ηeω (t∗eω(x))

βeω

 ,

l∗1(x) =
∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
δiν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
ρiν (d∗iν(x))

τiν

 ,

l∗2(x) =
∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
σiν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
∆iν (d∗iν(x))

ξiν

 .

Hence,

xλ − 1

m∗(x)
=

∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

(heω(x))
ps1−αeω

 ∏
ω|λ̄

χ(ω,p)=1

(
Φ1(ω,p)∏
e=1

(teω(x))
ps1−ηeω

(t∗eω(x))
ps1−βeω

)

xγ − 1

l∗1(x)
=

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
ps2−δiν

 ∏
ν|γ̄

χ(ν,p)=1

(
Φ2(ν,p)∏
i=1

(diν(x))
ps2−ρiν

(d∗iν(x))
ps2−τiν

)
,

xγ − 1

l∗2(x)
=

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
ps2−σiν

 ∏
ν|γ̄

χ(ν,p)=1

(
Φ2(ν,p)∏
i=1

(diν(x))
ps2−∆iν

(d∗iν(x))
ps2−ξiν

)
.

Now,

lcm

(
m(x),

xλ − 1

m∗(x)

)
=

∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

(heω(x))
max{αeω,ps1−αeω}



×
∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

(teω(x))
max{βeω,ps1−ηeω}(t∗eω(x))

max{ηeω,ps1−βeω}

 ,

(12)
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lcm

(
l1(x),

xγ − 1

l∗1(x)

)
=

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
max{δiν ,ps2−δiν}



×
∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
max{τiν ,ps2−ρiν}(d∗iν(x))

max{ρiν ,p
s2−τiν}

 ,

(13)

lcm

(
l2(x),

xγ − 1

l∗2(x)

)
=

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

(fiν(x))
max{σiν ,p

s2−σiν}



×
∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(diν(x))
max{ξiν ,ps2−∆iν}(d∗iν(x))

max{∆iν ,p
s2−ξiν}

 ,

(14)

where⌊
ps1

2

⌋
≤ max{αeω, p

s1 − αeω} ≤ ps1 , ps1 ≤max{βeω, p
s1 − ηeω}

+max{ηeω, ps1 − βeω} ≤ 2ps1 ,

(15)

⌊
ps2

2

⌋
≤ max{δiν , ps2 − δiν} ≤ ps2 , ps2 ≤max{τiν , ps2 − ρiν}

+max{ρiν , ps2 − τiν} ≤ 2ps2 ,

(16)

⌊
ps2

2

⌋
≤ max{σiν , p

s2 − σiν} ≤ ps2 , ps2 ≤max{ξiν , ps2 −∆iν}

+max{∆iν , p
s2 − ξiν} ≤ 2ps2 .

(17)

Since Hull(C) =

〈(
lcm(m(x), xλ−1

m∗(x) ) | 0

)
,

(
0 | ξ1 lcm(l1(x),

xγ−1
l∗1(x)

)

+ξ2 lcm(l2(x),
xγ−1
l∗2(x)

)

)〉
. Therefore,

dim(Hull(C))

= λ− deg

(
lcm

(
m(x),

xλ − 1

m∗(x)

))
+ 2γ −

{
deg

(
lcm

(
l1(x),

xγ − 1

l∗1(x)

))

+ deg

(
lcm

(
l2(x),

xγ − 1

l∗2(x)

))}

=

( ∑
ω|λ̄

χ(ω,p)=0

ordω(p)

Ψ1(ω,p)∑
e=1

ps1 +
∑
ω|λ̄

χ(ω,p)=1

ordω(p)

Φ1(ω,p)∑
e=1

2ps1 −
∑
ω|λ̄

χ(ω,p)=0

ordω(p)

Ψ1(ω,p)∑
e=1

max{αeω, p
s1 − αeω} −

∑
ω|λ̄

χ(ω,p)=1

ordω(p)

Φ1(ω,p)∑
e=1

(max{βeω, p
s1 − ηeω}+
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max{ηeω, ps1− βeω})

)
+

( ∑
ν|γ̄

χ(ν,p)=0

ordν(p)

Ψ2(ν,p)∑
i=1

ps2 +
∑
ν|γ̄

χ(ν,p)=1

ordν(p)

Φ2(ν,p)∑
i=1

2ps2

−
∑
ν|γ̄

χ(ν,p)=0

ordν(p)

Ψ2(ν,p)∑
i=1

max{δiν , ps2− δiν} −
∑
ν|γ̄

χ(ν,p)=1

ordν(p)

Φ2(ν,p)∑
i=1

(max{τiν , ps2

− ρiν}+max{ρiν , ps2 − τiν})

)
+

( ∑
ν|γ̄

χ(ν,p)=0

ordν(p)

Ψ2(ν,p)∑
i=1

ps2 +
∑
ν|γ̄

χ(ν,p)=1

ordν(p)

Φ2(ν,p)∑
i=1

2ps2 −
∑
ν|γ̄

χ(ν,p)=0

ordν(p)

Ψ2(ν,p)∑
i=1

max{σiν , p
s2 − σiν} −

∑
ν|γ̄

χ(ν,p)=1

ordν(p)

Φ2(ν,p)∑
i=1

(max{ξiν , ps2 −∆iν}+max{∆iν , p
s2 − ξiν})

)
.

Moreover,

dim(Hull(C)) =
∑
ω|λ̄

(1− χ(ω, p)) ordω(p)

Ψ1(ω,p)∑
e=1

ueω +
∑
ω|λ̄

χ(ω, p) ordω(p)

Φ1(ω,p)∑
e=1

veω

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

xiν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

yiν

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

ziν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

wiν ,

(18)
where

ueω = ps1 −max{αeω, p
s1 − αeω}, veω = 2ps1 −max{βeω, p

s1 − ηeω}

−max{ηeω, ps1 − βeω},
(19)

xiν = ps2−max{δiν , ps2−δiν}, yiν = 2ps2−max{τiν , ps2−ρiν}−max{ρiν , ps2−τiν},
(20)

ziν = ps2−max{σiν , p
s2−σiν}, wiν = 2ps2−max{ξiν , ps2−∆iν}−max{∆iν , p

s2−ξiν}.
(21)

By Eqs. (15)-(17) and (19)-(21), we have

0 ≤ ueω ≤
⌊
ps1

2

⌋
, 0 ≤ veω ≤ ps1 , 0 ≤ xiν , ziν ≤

⌊
ps2

2

⌋
and 0 ≤ yiν , wiν ≤ ps2 .

(22)

Let uω =
∑Ψ1(ω,p)

e=1 ueω, vω =
∑Φ1(ω,p)

e=1 veω, xν =
∑Ψ2(ν,p)

i=1 xiν , yν =
∑Φ2(ν,p)

i=1 yiν ,

zν =
∑Ψ2(ν,p)

i=1 ziν and wν =
∑Φ2(ν,p)

i=1 wiν . Putting these values in Eq.(18), we have

dim(Hull(C)) =
∑
ω|λ̄

(1− χ(ω, p)) ordω(p)uω +
∑
ω|λ̄

χ(ω, p) ordω(p)vω
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+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)xν +
∑
ν|γ̄

χ(ν, p) ordν(p)yν

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)zν +
∑
ν|γ̄

χ(ν, p) ordν(p)wν .

From Eq.(22), we get 0 ≤ uω ≤ Ψ1(ω, p)⌊ps1

2 ⌋, 0 ≤ vω ≤ Φ1(ω, p)p
s1 , 0 ≤ xν , zν ≤

Ψ2(ν, p)⌊ps2

2 ⌋, and 0 ≤ yν , wν ≤ Φ2(ν, p)p
s2 . This proves that the dimensions of

hulls of SCCs in Rλ,γ satisfy the Eq.(8).

We can re-write the Eq.(8) appeared in Theorem 3.5 in another form as follows:∑
ω|λ̄

χ(ω,p)=0

ordω(p)uω +
∑
ω|λ̄

χ(ω,p)=1

ordω(p)vω +
∑
ν|γ̄

χ(ν,p)=0

ordν(p)[xν + zν ]

+
∑
ν|γ̄

χ(ν,p)=1

ordν(p)[yν + wν ].

(23)

Now, Eq.(23) can be written in more simplified way using a multi-set S defined as

S = {Ψ1(ω, p)⌊ps1

2 ⌋ ∗ ordω(p) | ω|λ̄ and χ(ω, p) = 0}
⋃

{Φ1(ω, p)p
s1 ∗ ordω(p) | ω|λ̄

and χ(ω, p) = 1}
⋃

{Ψ2(ν, p)2⌊ps2

2 ⌋ ∗ ordν(p) | ν|γ̄ and χ(ν, p) = 0}⋃
{Φ2(ν, p)2p

s2 ∗ ordν(p) | ν|γ̄ and χ(ν, p) = 1}, where c ∗ d in the multi-set is
defined as d, d, · · · , d︸ ︷︷ ︸

c-copies

.

Each value in Eq. (23) represents the sum of elements from a subset of S.
These values can be determined using the generating function, as discussed in [8].
Alternatively, the dimensions of hulls of SCCs in Rλ,γ correspond to the exponents
of X in the following expression:

∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)⌊ ps1
2 ⌋∑

n=0

(Xordω(p))n

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)ps1∑
n=0

(Xordω(p))n


∏
ν|γ̄

χ(ν,p)=0

2Ψ2(ν,p)⌊ ps2
2 ⌋∑

n=0

(Xordν(p))n

 ∏
ν|γ̄

χ(ν,p)=1

2Φ2(ν,p)p
s2∑

n=0

(Xordν(p))n

 ,

(24)

where χ is defined in Eq.(1), Ψ1,Φ1 in Eq.(2) and Ψ2,Φ2 in Eq.(4).

Example 3.6. Let p = 2, λ = 21 and γ = 15. Then gcd(21, 2) = gcd(15, 2) = 1, di-
visors of 21 are 1, 3, 7, 21 and divisors of 15 are 1, 3, 5, 15. Note that (1, 2), (3, 2), (5, 2)
are good pairs, and (7, 2), (15, 2), (21, 2) are bad pairs. Since ord7(2) = 3, ord15(2) =
4, ord21(2) = 6. Therefore, by Theorem 3.5, the dimensions of hulls of SCCs of
length (21, 15) in Rλ,γ are of the form

3v7 + 6v21 + 4y15 + 4w15,

where 0 ≤ v7, v21 ≤ 1, and 0 ≤ y15, w15 ≤ 1. Furthermore by Eq.(29), the dimen-
sions of hulls of SCCs of length (21, 15) in Rλ,γ correspond to the exponent of X
in the expression of the generating function (1+X3)(1+X6)(1+X4 +X8). These
exponents are 17, 14, 13, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0.
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3.2. Enumeration of SCCs over ZpZp[v] with hulls of a fixed dimension.
Now, we enumerate SCCs over ZpZp[v] that have hulls of a fixed dimension, say d.
Since Eq. (8) determines the dimensions of hulls of SCCs, therefore, enumeration
of SCCs with a given hull dimension d can be obtained by solving the following
equation for the variables ueω, veω, xiν , yiν , ziν , and wiν

d =
∑
ω|λ̄

(1− χ(ω, p)) ordω(p)

Ψ1(ω,p)∑
e=1

ueω +
∑
ω|λ̄

χ(ω, p) ordω(p)

Φ1(ω,p)∑
e=1

veω

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

xiν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

yiν

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

ziν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

wiν ,

(25)

where 0 ≤ ueω ≤ ⌊ps1

2 ⌋, 0 ≤ veω ≤ ps1 , 0 ≤ xiν , ziν ≤ ⌊ps2

2 ⌋, 0 ≤ yiν and wiν ≤ ps2 .

For convenience, let ((ueω)) denote a vector whose entries satisfy 0 ≤ ueω ≤⌊
ps1

2

⌋
, with indices constrained by ω | λ̄, χ(ω, p) = 0, and 1 ≤ e ≤ Ψ1(ω, p), i.e.,

((ueω)) := (ueω)ω|λ̄, χ(ω,p)=0, 1≤e≤Ψ1(ω,p).

Similarly, ((veω)) := (veω)ω|λ̄,χ(ω,p)=1,1≤e≤Φ1(ν,p),

((xiν)) := (xiν)ν|γ̄,χ(ω,p)=0,1≤i≤Ψ2(ν,p), ((yiν)) := (yiν)ν|γ̄,χ(ν,p)=1,1≤i≤Φ2(ν,p),

((ziν)) := (ziν)ν|γ̄,χ(ν,p)=0,1≤i≤Ψ2(ν,p), and((wiν)) := (wiν)ν|γ̄,χ(ν,p)=0,1≤i≤Φ2(ν,p).

Let n =
(
((ueω)), ((veω)), ((xiν)), ((yiν)), ((ziν)), ((wiν))

)
be the concatenation of

vectors ((ueω)), ((veω)), ((xiν)), ((yiν)), ((ziν)) and ((wiν)).

Theorem 3.7. Let λ, γ and d be positive integers such that d satisfies the Eq.(8).
Then the number of SCCs in Rλ,γ whose hulls have dimension d is given by

∑
n∈h(d)

( ∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

| {ueω, p
s1 − ueω} |

∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

p1−[ veω
ps1

](veω + 1)

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

| {xiν , p
s2 − xiν} |

∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

p1−[
yiν
ps2

](yiν + 1)

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

| {ziν , ps2 − ziν} |
∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

p1−[
wiν
ps2

](wiν + 1)

)
,

(26)

where
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h(d) =

{
n |
∑
ω|λ̄

(1− χ(ω, p)) ordω(p)

Ψ1(ω,p)∑
e=1

ueω +
∑
ω|λ̄

χ(ω, p) ordω(p)

Φ1(ω,p)∑
e=1

veω

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

xiν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

yiν

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

ziν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

wiν = d

}
,

(27)
and χ,Ψ1,Φ1,Ψ2 and Φ2 are as defined previously.

Proof. For ω | λ̄, χ(ω, p) = 0 and 1 ≤ e ≤ Ψ1(ω, p), let ueω ∈ {0, 1, . . . , ⌊ps1

2 ⌋} and

αeω ∈ {0, 1, . . . , ps1}. For ω | λ̄, χ(ω, p) = 1 and 1 ≤ e ≤ Ψ1(ω, p), let veω, βeω,
ηeω ∈ {0, 1, . . . , ps1}. For ν | γ̄, χ(ν, p) = 0 and 1 ≤ i ≤ Ψ2(ν, p), let xiν , ziν ∈
{0, 1, . . . , ⌊ps2

2 ⌋}andδiν , σiν ∈ {0, 1, . . . , ps2}. For ν | γ̄, χ(ω, p) = 1 and 1 ≤ e ≤
Φ2(ω, p), let yiν , wiν , τiν , ρiν , ξiν ,∆iν ∈ {0, 1, . . . , ps2}. For a given n, we aim
to find the polynomials m(x), l1(x) and l2(x) as in Eqs.(9), (10) and (11) such
that the dimension of the hull of a separable ZpZp[v]-cyclic code generated by
⟨(m(x) | 0), (0 | ξ1l1(x) + ξ2l2(x))⟩ is

d =
∑
ω|λ̄

(1− χ(ω, p)) ordω(p)

Ψ1(ω,p)∑
e=1

ueω +
∑
ω|λ̄

χ(ω, p) ordω(p)

Φ1(ω,p)∑
e=1

veω

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

xiν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

yiν

+
∑
ν|γ̄

(1− χ(ν, p)) ordν(p)

Ψ2(ν,p)∑
i=1

ziν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

wiν .

(28)

Equivalently, we determine all the values of αeω, βeω, ηeω, δiν , τiν , ρiν , σiν , ξiν ,∆iν

in Eqs.(9), (10) and (11) that satisfy Eqs.(19),(20),(21) and (25).
From Eqs.(19)-(21), we get that αeω is either ueω or ps1 −ueω, δiν is either xiν or

ps2 −xiν and σiν is either ziν or ps2 −ziν . Now we calculate the values of (βeω, ηeω),
(τiν , ρiν) and (ξiν ,∆iν) into two cases for veω, yiν and wiν , respectively.
Case 1: Let veω = ps1 , then max{βeω, p

s1 − ηeω} + max{ηeω, ps1 − βeω} = ps1 .
Hence, βeω+ηeω = ps1 . Therefore, (βeω, ηeω) ∈ {(ps1−k1, k1) | k1 ∈ {0, 1, . . . , ps1}}.
Case 2: Let 0 ≤ veω < ps1 , then 2ps1 −veω = max{βeω, p

s1 −ηeω}+max{ηeω, ps1 −
βeω}. Therefore 2ps1 − veω is either βeω + ηeω or, ps1 − βeω + ps1 − ηeω. Therefore,
(βeω, ηeω) ∈ {(ps1 − (veω − k1), (p

s1 − k1) | k1 ∈ {0, 1, . . . , veω}} or, (βeω, ηeω) ∈
{(veω − k1, k1) | k1 ∈ {0, 1, . . . , veω}}. Similarly, we can calculate

• If yiν = ps2 , then (τiν , ρiν) ∈ {(ps2 − k2, k2) | k2 ∈ {0, 1, . . . , ps2}}.
• If 0 ≤ yiν < ps2 , then (τiν , ρiν) ∈ {(ps2 − (ziν − k2), (p

s2 − k2) | k2 ∈
{0, 1, . . . , ziν}} or, (τiν , ρiν) ∈ {(ziν − k2, k2) | k2 ∈ {0, 1, . . . , ziν}}.

• If wiν = ps2 , then (ξiν ,∆iν) ∈ {(ps2 − k3, k3) | k3 ∈ {0, 1, . . . , ps3}}.
• If 0 ≤ wiν < ps2 , then (ξiν ,∆iν) ∈ {(ps2 − (wiν − k3), (p

s3 − k3) | k3 ∈
{0, 1, . . . , wiν}} or, (ξiν ,∆iν) ∈ {(wiν − k3, k3) | k3 ∈ {0, 1, . . . , wiν}}.
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Therefore, for a given n, the number of SCCs such that the dimensions of their hulls
satisfy Eq. (27) is∏

ω|λ̄
χ(ω,p)=0

Ψ1(ω,p)∏
e=1

| {ueω, p
s1 − ueω} |

∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

p1−[ veω
ps1

](veω + 1)

∏
ω|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

| {xiν , p
s2 − xiν} |

∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

p1−[
yiν
ps2

](yiν + 1)

∏
ω|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

| {ziν , ps2 − ziν} |
∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

p1−[
wiν
ps2

](wiν + 1).

Adding this expression for all values of n ∈ h(d), we get the desired result.

The cardinality of h(d) as appeared in Eq. (27), or equivalently, the number of
solutions of Eq.(28) is the coefficients of Xd in the generating function

∏
ω|λ̄

χ(ω,p)=0

Ψ1(ω,p)∏
e=1

⌊ ps1
2 ⌋∑

ueω=0

(Xordω(p))ueω

 ∏
ω|λ̄

χ(ω,p)=1

Φ1(ω,p)∏
e=1

(
ps1∑

veω=0

(Xordω(p))veω

)

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

⌊ ps2
2 ⌋∑

xiν=0

(Xordν(p))xiν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(
ps2∑

yiν=0

(Xordν(p))yiν

)

∏
ν|γ̄

χ(ν,p)=0

Ψ2(ν,p)∏
i=1

⌊ ps2
2 ⌋∑

ziν=0

(Xordν(p))ziν

 ∏
ν|γ̄

χ(ν,p)=1

Φ2(ν,p)∏
i=1

(
ps2∑

wiν=0

(Xordν(p))wiν

)
.

(29)

Corollary 3.8. Let λ, γ and d be positive integers such that gcd(λ, p) = 1 =
gcd(γ, p) and d satisfies the Eq.(8). Let χ,Ψ1,Φ1,Ψ2 and Φ2 be as defined previ-
ously. Then number of SCCs in Rλ,γ whose hulls have dimension “d”

is 2m1+m2+2(k1+k2)|h(d)|, where m1,m2,k1, k2 are defined in Theorem 2.10, and

h(d) =

{
((veω), (yiν), (wiν))|

∑
ω|λ̄

χ(ω, p) ordω(p)

Φ1(ω,p)∑
e=1

veω +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

yiν +
∑
ν|γ̄

χ(ν, p) ordν(p)

Φ2(ν,p)∑
i=1

wiν = d

}
.

(30)

Proof. Since gcd(λ, p) = gcd(γ, p) = 1, it follows that ps1 = ps2 = 1. From the
proof of Theorem 3.5, we obtain that ueω, xiν , ziν = 0, for all ω | λ and ν | γ, while
veω, yiν , wiν ∈ {0, 1}, for all ω | λ and ν | γ, respectively. Consequently, Eq.(26)
simplifies to 2m1+m2+2(k1+k2)|h(d)| and Eq. (27) reduced to Eq. (30).

Example 3.9. In Ex. (3.6), we determine all the possible dimensions of hulls of
SCCs of length (21, 15) in Rλ,γ , which are 17, 14, 13, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0. Here,
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we focus on counting the number of SCCs of length (21, 15) in Rλ,γ with hulls of
dimension 10. Note that

h(10) = {((v1,7), (v1,21), (y1,15), (w1,15)) | 3v1,7 + 6v1,21 + 4y1,15 + 4w1,15 = 10},
where 0 ≤ v1,7, v1,21 ≤ 1 and 0 ≤ y1,15, w1,15 ≤ 1. Moreover, using Eq.(29) we can
determine the cardinality of h(10), which corresponds to the coefficient of X10 in
the following generating function

(1 +X3)(1 +X6)(1 +X4)(1 +X4)

= X17 +X14 + 2X13 +X11

+ 2X10 +X9 +X8 + 2X7 +X6 + 2X4 +X3 + 1.

Since the coefficient of X10 is 2, it follows that |h(10)| = 2, and thus
h(10) = {((0), (1), (1), (0)), ((0), (1), (0), (1))}. Putting the elements of h(10) into
Eq.(26), we conclude that the total number of SCCs of length (21, 15) inRλ,γ having
hulls of dimension 10 is 8192.

4. Euclidean hulls of NSCCs over Z2Z2[v]. In this section, we study the hulls
of NSCCs over Z2Z2[v]. Throughout, we assume that λ and γ are odd, pair-

wise coprime integers. We define Rλ,γ = Z2[x]
⟨xλ−1⟩ × R[x]

⟨xγ−1⟩ , where R = Z2 + vZ2

and v2 = v.

Theorem 4.1. [9] Suppose C = ⟨(m(x) | 0), (k(x) | ξ1l1(x) + ξ2l2(x))⟩ is a NSCC

in Rλ,γ , as defined in Theorem 2.6. Then gcd(m(x), xγ−1
l2(x)

) ̸= 1.

Theorem 4.2. Let C = ⟨(m(x) | 0), (k(x) | ξ1l1(x) + ξ2l2(x))⟩ be a NSCC in
Rλ,γ . Then C = ⟨(x − 1)A1(x) | 0), (A1(x) | ξ1l1(x) + ξ2l2(x))⟩ such that A1(x) |
xλ − 1, l1(x) | xγ − 1, l2(x) | xγ − 1, x− 1 ∤ A1(x) and x− 1 ∤ l2(x).

Proof. Since λ, γ are pairwise coprime and gcd(λ, 2) = 1 = gcd(γ, 2), it follows that
xλ − 1 and xγ − 1 have only common factor x − 1. Now, suppose x − 1 | l2(x).
Then, x − 1 ∤ xγ−1

l2(x)
. Consequently, we have gcd(m(x), xγ−1

l2(x)
) = 1. By Theorem

2.6, this implies that m(x) | k(x), which leads to a contradiction. Therefore, we
conclude that x − 1 ∤ l2(x) and x − 1 | m(x). Let m(x) = (x − 1)A1(x) and
xγ−1
l2(x)

= (x − 1)A2(x), where gcd(A1(x), A2(x)) = 1. Since m(x) | xγ−1
l2(x)

k(x) =

(x− 1)A1(x) | (x− 1)A2(x)k2(x), implies A1(x) | A2(x)k(x), implies A1(x) = k(x).
Therefore, C = ⟨(x − 1)A1(x) | 0), (A1(x) | ξ1l1(x) + ξ2l2(x))⟩ such that A1(x) |
xλ − 1, l1(x) | xγ − 1, l2(x) | xγ − 1, x− 1 ∤ A1(x) and x− 1 ∤ l2(x).

In the following corollary, we determine the generator polynomials of C⊥.

Corollary 4.3. Let C = ⟨(m(x) | 0), (k(x) | ξ1l1(x) + ξ2l2(x))⟩ be a NSCC in

Rλ,γ , as defined in Theorem 4.2. Then C⊥ = ⟨( xλ−1
A1(x)∗

| 0), ( xλ−1
(x−1)A1(x)∗

| ξ1 xγ−1
l∗1(x)

+

ξ2
xγ−1

(x−1)l∗2(x)
)⟩.

Proof. By Theorem 2.8, C⊥ = ⟨(m̄(x) | 0), (k̄(x) | ξ1 l̄1(x) + ξ2 l̄2(x))⟩, where

m̄(x) = xλ−1
gcd(m(x),k(x))∗ , l̄1(x) = xγ−1

l∗1(x)
, l̄2(x) = (xγ−1) gcd(m(x),k(x))∗

m∗(x)l∗2(x)
and k̄(x) =

(xλ−1)µ(x)
m∗(x) , where µ(x) = xm−deg(l2(x))+deg(k(x))

(
k∗(x)

gcd(m(x),k(x))∗

)−1

mod
( m∗(x)
gcd(m(x),k(x))∗

)
. Now, m̄(x) = xλ−1

gcd((x−1)A1(x),A1(x))∗
= xλ−1

A∗
1(x)

,l̄2(x) = (xγ−1) gcd(m(x),k(x))∗

m∗(x)l∗2(x)
=

(xλ−1)A∗
1(x)

(x−1)A∗
1(x)l

∗
2(x)

= xγ−1
(x−1)l∗2(x)

. Moreover, µ(x) =
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xm−deg(l2(x))+deg(k(x))
(

k∗(x)
gcd(m(x),k(x))∗

)−1

mod
( m∗(x)
gcd(m(x),k(x))∗

)
, i.e., µ(x) ≡ 1

mod (x− 1), then k̄(x) = (xλ−1)
(x−1)A∗

1(x)
. This completes the proof.

Let Πλ and Πγ be the canonical projections defined as Πλ : Rλ,γ → Z2[x]
⟨xλ−1⟩ and

Πγ : Rλ,γ → R[x]
⟨xγ−1⟩ , respectively. As C and C⊥, are submodules of Rλ,γ , therefore

by Theorem 4.2 and Corollary 4.3, we have Πλ(C) = ⟨gcd((x− 1)A1(x), A1(x))⟩ =
⟨A1(x)⟩, Πλ(C

⊥) = ⟨ xλ−1
(x−1)A∗

1(x)
⟩, Πγ(C) = ⟨ξ1l1(x) + ξ2l2(x)⟩, and Πγ(C

⊥) =

⟨ξ1 xγ−1
l∗1(x)

+ ξ2
xγ−1

(x−1)l∗2(x)
⟩.

Proposition 4.4. Let Πγ : Rλ,γ → R[x]
⟨xγ−1⟩ and C and C⊥ be NSCCs in Rλ,γ . Then

Πγ(C ∩ C⊥) ⊆ Πγ(C) ∩Πγ(C
⊥).

Proof. Suppose b(x) ∈ Πγ(C∩ C⊥), i.e., there exists (a(x), b(x)) ∈ Πγ(C∩ C⊥) such
that Πγ(a(x), b(x)) = b(x). Thus b(x) ∈ Πγ(C) and b(x) ∈ Πγ(C

⊥). This implies
that b(x) ∈ Πγ(C) ∩Πγ(C

⊥), i.e, Πγ(C ∩ C⊥) ⊆ Πγ(C) ∩Πγ(C
⊥).

Proposition 4.5. Let Πλ : Rλ,γ → Z2[x]
⟨xλ−1⟩ . Then Πλ(C ∩ C⊥) ⊆ Πλ(C) ∩Πλ(C

⊥).

Proof. The proof can be done using similar steps as the proof of Proposition 4.4.

Lemma 4.6. If
(
h1(x) lcm(A1(x),

xλ−1
(x−1)A∗

1(x)
) | ξ1h2(x) lcm(l1(x),

xγ−1
l1(x)

)

+ξ2h2(x) lcm(l2(x),
xγ−1

(x−1)l∗2(x)
)
)

o
(
A1(x), ξ1l1(x) + ξ2l2(x)

)
= 0. Then h1(x) +

h2(x) ≡ 0 mod (x− 1).

Proof. Since,
(
h1(x) lcm(A1(x),

xλ−1
(x−1)A∗

1(x)
) | ξ1h2(x) lcm(l1(x),

xγ−1
l1(x)

) + ξ2h2(x)

lcm(l2(x),
xγ−1

(x−1)l∗2(x)
)
)
o
(
A1(x), ξ1l1(x) + ξ2l2(x)

)
= 0. Then(

h1(x) lcm(A1(x),
xλ − 1

(x− 1)A∗
1(x)

) | ξ1h2 lcm(l1(x),
xγ − 1

l1(x)
)

+ ξ2h2 lcm(l2(x),
xγ − 1

(x− 1)l∗2(x)
)
)
o
(
A1(x), ξ1l1(x) + ξ2l2(x)

)
= ξ2h1(x) lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)
A∗

1(x)
xm − 1

xλ − 1
xm−1−deg(A1(x))

+ ξ1h2(x) lcm

(
l1(x),

xγ − 1

l∗1(x)

)
l∗1(x)

xm − 1

xγ − 1
xm−1−deg(l1(x))

+ ξ2h2(x) lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

)
l∗2(x)

xm − 1

xγ − 1
xm−1−deg(l2(x)) mod (xm − 1)

= ξ2h1(x) lcm

(
A1(x)A

∗
1,

xλ − 1

(x− 1)

)
xm − 1

xλ − 1
xm−1−deg(A1(x)) + ξ2h2(x)

lcm

(
l2(x)l

∗
2(x),

xγ − 1

(x− 1)

)
xm − 1

xγ − 1
xm−1−deg(l2(x)) mod (xm − 1)

= ξ2h1(x)g1(x)
xm − 1

x− 1
xm−1−deg(A1(x)) + ξ2h2(x)g3(x)

xm − 1

x− 1
xm−1−deg(l2(x))
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mod (xm − 1),

where g1(x) = A1(x), if A1(x) is a self-reciprocal polynomial, otherwise g1(x) = 1
and g3(x) = l2(x), if l2(x) is a self-reciprocal polynomial, otherwise g3(x) = 1. Thus,
either

h1(x)g1(x)x
m−1−deg(A1(x)) + h2(x)g3(x)x

m−1−deg(l2(x)) ≡ 0 mod (xm − 1), (31)

or,

h1(x)g1(x)x
m−1−deg(A1(x)) + h2(x)g3(x)x

m−1−deg(l2(x)) ≡ 0 mod (x− 1). (32)

Due to x− 1 | xm − 1, Eq. (31) implies Eq. (32). Because g1(x) ≡ 1 mod (x− 1) ,
g3(x) ≡ 1 mod (x− 1) and xk ≡ 1 mod (x− 1), over Z2, where k ∈ Z+, it follows
that h1(x) + h2(x) ≡ 0 mod (x− 1).

Theorem 4.7. Let C be a NSCC and C⊥ be its dual in Rλ,γ , as defined in Theorem
4.2 and Corollary 4.3, respectively. Then

Hull(C) =

〈(
lcm

(
(x− 1)A1(x),

xλ − 1

A∗
1(x)

) ∣∣∣0) ,

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)
∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))〉
.

(33)
where A1(x) | xλ − 1, l1(x) | xγ − 1, l2(x) | xγ − 1, x− 1 ∤ A1(x) and x− 1 ∤ l2(x).

Proof. Since C and C⊥ both are NSCCs in Rλ,γ , it follows that Hull(C) is also a
NSCC inRλ,γ . By Theorem 4.2, we can express Hull(C) = ⟨((x−1)E(x) | 0), (E(x) |
ξ1F1(x)+ ξ2F2(x))⟩, where E(x) | xλ− 1, F1(x) | xγ − 1, F2(x) | xγ − 1, x− 1 ∤ E(x)
and x − 1 ∤ F2(x). We also have, Πλ(Hull(C)) = ⟨E(x)⟩, and Πγ(Hull(C)) =

⟨ξ1F1(x) + ξ2F2(x))⟩. Since Πλ(C) = ⟨A1(x)⟩, Πλ(C
⊥) = ⟨ xλ−1

(x−1)A∗
1(x)

⟩, Πγ(C) =

⟨ξ1l1(x) + ξ2l2(x))⟩, and Πγ(C
⊥) = ⟨ξ1 xγ−1

l∗1(x)
+ ξ2

xγ−1
(x−1)l∗2(x)

)⟩, then by Theorem

2.2, we have Πλ(C) ∩ Πλ(C
⊥) = ⟨lcm(A1(x),

xλ−1
(x−1)A∗

1(x)
)⟩, and Πγ(C) ∩ Πγ(C

⊥) =

⟨ξ1 lcm(l1(x),
xγ−1
l∗1(x)

) + ξ2 lcm(l2(x),
xγ−1

(x−1)l∗2(x)
)⟩. Since Πλ(Hull(C)) = Πλ(C ∩ C⊥) ⊆

Πλ(C) ∩ Πλ(C
⊥) and Πγ(Hull(C)) = Πγ(C ∩ C⊥) ⊆ Πγ(C) ∩ Πγ(C

⊥), then

lcm
(
A1(x),

xλ−1
(x−1)A∗

1(x)

) ∣∣∣E(x) and
(
ξ1 lcm

(
l1(x) +

xγ−1
l∗1(x)

)
+ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))∣∣∣F (x). Therefore, E(x)=h1(x) lcm
(
A1(x),

xλ−1
(x−1)A∗

1(x)

)
,

F (x) = h2(x)
(
ξ1 lcm

(
l1(x) +

xγ−1
l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))
. Putting these

values in the previous expression of Hull(C), we have

Hull(C)

=

〈(
h1(x) lcm

(
(x−1)A1(x),

xλ − 1

A∗
1(x)

)
| 0
)
,

(
h1(x) lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣
ξ1h2(x) lcm

(
l1(x),

xγ − 1

l∗1(x)

)
+ ξ2h2(x) lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))〉
.

Let

C′ =

〈(
lcm

(
(x− 1)A1(x),

xλ − 1

A∗
1(x)

) ∣∣∣0) ,

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣
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ξ1 lcm

(
l1(x),

xγ − 1

l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))〉
.

We now establish Hull(C) = C′. Firstly, we prove that Hull(C) ⊆ C′. Given(
h1(x) lcm(A1(x),

xλ−1
(x−1)A∗

1(x)
) | ξ1h2(x) lcm(l1(x),

xγ−1
l1(x)

) + ξ2h2(x) lcm(l2(x),

xγ−1
(x−1)l∗2(x)

)

)
o

(
A1(x), ξ1l1(x) + ξ2l2(x)

)
= 0, according to Theorem 4.6, h1(x) +

h2(x) ≡ 0 mod (x− 1). Therefore, h1(x) + h2(x) = p(x)(x− 1). Now,(
h1(x) lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)∣∣∣ξ1h2(x) lcm

(
l1(x),

xγ − 1

l1(x)

)

+ ξ2h2(x) lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))

= p(x) ⋆

(
lcm

(
(x− 1)A1(x),

xλ − 1

A∗
1(x)

)∣∣∣0)+ h2(x) ⋆

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)∣∣∣ξ1 lcm(l1(x), xγ − 1

l1(x)

)
+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))
∈ C′.

This proves that Hull(C) ⊆ C′.

Now, we prove that C′ ⊆ Hull(C) . For

(
lcm

(
A1(x),

xλ−1
(x−1)A∗

1(x)

) ∣∣∣
ξ1 lcm

(
l1(x),

xγ−1
l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))
∈ C′, and (A1(x) | ξ1l1(x) +

ξ2l2(x)) ∈ C, we have(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))
o
(
A1(x) | ξ1l1(x) + ξ2l2(x)

)

= ξ2 lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)
A∗

1(x)
xm − 1

xλ − 1
xm−1−deg(A1(x))

+ ξ1 lcm

(
l1(x),

xγ − 1

l∗1(x)

)
l∗1(x)

xm − 1

xγ − 1
xm−1−deg(l1(x))

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

)
l∗2(x)

xm − 1

xγ − 1
xm−1−deg(l2(x)) mod (xm − 1)

= ξ2 lcm

(
A∗

1(x)A1(x),
xλ − 1

(x− 1)

)
xm − 1

xλ − 1
xm−1−deg(A1(x))
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+ ξ1 lcm (l∗1(x)l1(x), x
γ − 1)

xm − 1

xγ − 1
xm−1−deg(l1(x))

+ ξ2 lcm

(
l∗2(x)l2(x),

xγ − 1

(x− 1)

)
xm − 1

xγ − 1
xm−1−deg(l2(x)) mod (xm − 1)

= ξ2P (x)
xm − 1

x− 1
xm−1−deg(A1(x)) + ξ1Q1(x)(x

m − 1)xm−1−deg(l1(x)) + ξ2Q2(x),

xm − 1

x− 1
xm−1−deg(l2(x)) mod (xm − 1)

= ξ2
xm − 1

x− 1

(
P (x)xm−1−deg(A1(x)) +Q2(x)x

m−1−deg(l2(x))
)

mod (xm − 1),

where P (x) = A1(x) if A1(x) is a self-reciprocal polynomial, otherwise P (x) = 1.
Similarly, Q1(x) = l1(x) or Q1(x) = 1 and Q1(x) = l2(x) or Q2(x) = l2(x).

Note that P (x) ≡ 1 mod (x − 1), Q2(x) ≡ 1 mod (x − 1) over Z2, (x
m − 1) ∤(

P (x)xm−1−deg(A1(x)) + Q2(x)x
m−1−deg(l2(x))

)
and (x − 1) |

(
xm−1−deg(A1(x)) +

xm−1−deg(l2(x))
)

over Z2. Therefore, xm−1
x−1

(
P (x)xm−1−deg(A1(x))

+Q2(x)x
m−1−deg(l2(x))

)
≡ 0 mod (xm − 1). Thus,

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))
o

(
A1(x) | ξ1l1(x) + ξ2l2(x)

)
≡0 mod (xm− 1).

As

(
A1(x) | ξ1l1(x) + ξ2l2(x)

)
∈ C, then

(
lcm

(
A1(x),

xλ−1
(x−1)A∗

1(x)

)∣∣∣
ξ1 lcm

(
l1(x),

xγ−1
l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))
∈ C⊥. Thus, we have C′ ⊆ C⊥.

For
(

xλ−1
(x−1)A∗

1(x)

∣∣∣ξ1 xγ−1
l∗1(x)

+ ξ2
xγ−1

(x−1)l∗2(x)

)
∈ C⊥ and

(
lcm

(
A1(x),

xλ−1
(x−1)A∗

1(x)

)
∣∣∣ξ1 lcm(l1(x), xγ−1

l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))
∈ C′, we have

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))
o

(
xλ − 1

(x− 1)A∗
1(x)

∣∣∣ξ1xγ − 1

l∗1(x)
+ ξ2

xγ − 1

(x− 1)l∗2(x)

)

= ξ2 lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)
xm − 1

xλ − 1
xm−λ+deg(A1(x))

(
xλ − 1

(x− 1)A1(x)

)
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+ ξ1 lcm

(
l1(x),

xγ − 1

l∗1(x)

)
xm − 1

xγ − 1
xm−1−γ+deg(l1(x))

(
xγ − 1

(l1(x)

)

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

)
xm − 1

xγ − 1
xm−γ+deg(l2(x))

(
xγ − 1

(x− 1)l2(x)

)

mod (xm − 1)

= ξ2
xm − 1

x− 1
(xm−λ+deg(A1(x)) + xm−γ+deg(l2(x))) mod (xm − 1).

Clearly, (xm−1) ∤ xm−λ+deg(A1(x))+xm−γ+deg(l2(x)) and (x−1) | xm−λ+deg(A1(x))+

xm−γ+deg(l2(x)). Therefore, xm−1
x−1 (xm−λ+deg(A1(x))+xm−γ+deg(l2(x))) ≡ 0 mod (xm−

1). Thus,(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

) ∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)

+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))
o

(
xλ − 1

(x− 1)A∗
1(x)

∣∣∣ξ1xγ − 1

l∗1(x)
+ ξ2

xγ − 1

(x− 1)l∗2(x)

)
≡ 0 mod (xm − 1).

Since,
(

xλ−1
(x−1)A∗

1(x)

∣∣∣ξ1 xγ−1
l∗1(x)

+ ξ2
xγ−1

(x−1)l∗2(x)

)
∈ C⊥, then

(
lcm

(
A1(x),

xλ−1
(x−1)A∗

1(x)

)
∣∣∣ξ1 lcm(l1(x), xγ−1

l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ−1
(x−1)l∗2(x)

))
∈ C. So C′ ⊆ C, and hence C′ ⊆

Hull(C) . Thus,

Hull(C) =

〈(
lcm

(
(x− 1)A1(x),

xλ − 1

A∗
1(x)

) ∣∣∣0) ,

(
lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)
∣∣∣ξ1 lcm(l1(x), xγ − 1

l∗1(x)

)
+ ξ2 lcm

(
l2(x),

xγ − 1

(x− 1)l∗2(x)

))〉
.

Theorem 4.8. Let λ and γ be pairwise coprime odd positive integers. Suppose χ,
Ψ1, Ψ2, Φ2, and Φ2 are the same as in Eqs. (1), (4), and (5), respectively. Then
the dimensions of hulls of NSCCs in Rλ,γ are of the form

1 +
∑
ω|λ

χ(ω, 2). ordω(2).v
′
ω +

∑
ν|γ

χ(ν, 2). ordν(2).y
′
ν +

∑
ν|γ

χ(ν, 2). ordν(2).w
′
ν , (34)

where 0 ≤ v′ω ≤ Φ1(ω, 2), 0 ≤ y′ν , w
′
ν ≤ Φ2(ν, 2).

Proof. As λ and γ are odd integers, therefore, λ = λ̄ and γ = γ̄. By Theorem 4.2,
C = ⟨(x − 1)A1(x) | 0), (A1(x) | ξ1l1(x) + ξ2l2(x))⟩. Then by Eqs. (6) and (7), we
have

A1(x)=
∏
ω|λ

χ(ω,2)=0,ω ̸=1

Ψ1(ω,2)∏
e=1

(heω(x))
α′

eω

 ∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
β′
eω (t∗eω(x))

η′
eω


(35)
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l1(x) =
∏
ν|γ

χ(ν,2)=0

Ψ2(ν,2)∏
i=1

(fiν(x))
δ′iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
τ ′
iν (d∗iν(x))

ρ′
iν

 (36)

l2(x) =
∏
ν|γ

χ(ν,2)=0,ν ̸=1

Ψ2(ν,2)∏
i=1

(fiν(x))
σ′
iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
ξ′iν (d∗iν(x))

∆′
iν

 ,

(37)
where α′

e,ω, β
′
e,ω, η

′
e,ω ∈ {0, 1} and δ′iν , τ

′
iν , ρ

′
iν , σ

′
iν , ξ

′
iν ,∆

′
iν ∈ {0, 1}. Now,

A∗
1(x)=

∏
ω|λ

χ(ω,2)=0,ω ̸=1

Ψ1(ω,2)∏
e=1

(heω(x))
α′

eω

 ∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
η′
eω (t∗eω(x))

β′
eω

 ,

(x−1)A∗
1(x)=

∏
ω|λ

χ(ω,2)=0

Ψ1(ω,2)∏
e=1

(heω(x))
α′

eω

 ∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
η′
eω (t∗eω(x))

β′
eω

 ,

l∗1(x)=
∏
ν|γ

χ(ν,2)=0

Ψ2(ν,2)∏
i=1

(fiν(x))
δ′iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
ρ′
iν (d∗iν(x))

τ ′
iν

 ,

l∗2(x) =
∏
ν|γ

χ(ν,2)=0,ν ̸=1

Ψ2(ν,2)∏
i=1

(fiν(x))
σ′
iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
∆′

iν (d∗iν(x))
ξ′iν



(x−1)l∗2(x) =
∏
ν|γ

χ(ν,2)=0

Ψ2(ν,2)∏
i=1

(fiν(x))
σ′
iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
∆′

iν (d∗iν(x))
ξ′iν

 .

xλ − 1

A∗
1(x)

=
∏
ω|λ

χ(ω,2)=0

Ψ1(ω,2)∏
e=1

(heω(x))
1−α′

eω

 ∏
ω|λ

χ(ω,2)=1

(
Φ1(ω,2)∏
e=1

(teω(x))
1−η′

eω (t∗eω(x))
1−β′

eω

)
,

xλ − 1

(x− 1)A∗
1(x)

=
∏
ω|λ

χ(ω,2)=0,ω ̸=1

Ψ1(ω,2)∏
e=1

(heω(x))
1−α′

eω


∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
1−η′

eω (t∗eω(x))
1−β′

eω

 ,

xγ − 1

l∗1(x)
=

∏
ν|γ

χ(ν,2)=0

Ψ2(ν,2)∏
i=1

(fiν(x))
1−δ′iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
1−ρ′

iν (d∗iν(x))
1−τ ′

iν

 ,
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xγ − 1

l∗2(x)
=

∏
ν|γ

χ(ν,2)=0,

Ψ2(ν,2)∏
i=1

(fiν(x))
1−σ′

iν

 ∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
1−∆′

iν (d∗iν(x))
1−ξ′iν

 ,

xγ − 1

(x− 1)l∗2(x)
=

∏
ν|γ

χ(ν,2)=0,ν ̸=1

Ψ2(ν,2)∏
i=1

(fiν(x))
1−σiν


∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
1−∆′

iν (d∗iν(x))
1−ξ′iν

 .

According to Theorem 4.7,

G1 = lcm

(
(x− 1)A1(x),

xλ − 1

A∗
1(x)

)

=
∏
ω|λ

χ(ω,2)=0

Ψ1(ω,2)∏
e=1

(heω(x))
max{α′

eω,1−α′
eω}



×
∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
max{β′

eω,1−η′
eω}(t∗eω(x))

max{η′
eω,1−β′

eω}

 ,

(38)

G2 = lcm

(
A1(x),

xλ − 1

(x− 1)A∗
1(x)

)

=
∏
ω|λ

χ(ω,2)=0,ω ̸=1

Ψ1(ω,2)∏
e=1

(heω(x))
max{α′

eω,1−α′
eω}



×
∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∏
e=1

(teω(x))
max{β′

eω,1−η′
eω}(t∗eω(x))

max{η′
eω,1−β′

eω}

 ,

(39)

G3 =

(
l1(x),

xγ − 1

l∗1(x)

)

=
∏
ν|γ

χ(ν,2)=0

Ψ2(ν,2)∏
i=1

(fiν(x))
max{δ′iν ,1−δ′iν}



×
∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
max{τ ′

iν ,1−ρ′
iν}(d∗iν(x))

max{ρ′
iν ,1−τ ′

iν}

 ,

(40)
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G4 = lcm(l2(x),
xγ − 1

(x− 1)l∗2(x)
)

=
∏
ν|γ

χ(ν,2)=0,ν ̸=1

Ψ2(ν,2)∏
i=1

(fiν(x))
max{σ′

iν ,1−σ′
iν}

×

∏
ν|γ

χ(ν,2)=1

Φ2(ν,2)∏
i=1

(diν(x))
max{ξ′iν ,1−∆′

iν}(d∗iν(x))
max{∆′

iν ,1−ξ′iν}

 ,

(41)

where

max{α′
eω, 1− α′

eω} = 1 and 1 ≤ max{β′
eω, 1− η′eω}+max{η′eω, 1− β′

eω} ≤ 2, (42)

max{δ′iν , 1− δ′iν} = 1 and 1 ≤ max{τ ′iν , 1− ρ′iν}+max{ρ′iν , 1− τ ′iν} ≤ 2, (43)

max{σ′
iν , 1− σ′

iν} = 1 and 1 ≤ max{ξ′iν , 1−∆′
iν}+max{∆′

iν , 1− ξ′iν} ≤ 2. (44)

and
Hull(C) = ⟨(G1 | 0), (G2 | ξ1G3 + ξ2G4)⟩. (45)

From Eqs. (38)-(41) and Eqs.(42)-(44), we have

dim(Hull(C)) =λ− deg(G1) + 2γ − (deg(G3) + deg(G4))

=

( ∑
ω|λ

χ(ω,2)=0

ordω(2)

Ψ1(ω,2)∑
e=1

1 +
∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

2

−
∑
ω|λ

χ(ω,2)=0

ordω(2)

Ψ1(ω,2)∑
e=1

max{α′
eω, 1− α′

eω}

−
∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

(max{β′
eω, 1− η′eω}+max{η′eω, 1− β′

eω})

)

+

( ∑
ν|γ

χ(ν,2)=0

ordν(2)

Ψ2(ν,2)∑
i=1

1 +
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2

−
∑
ν|γ

χ(ν,2)=0

ordν(2)

Ψ2(ν,2)∑
i=1

max{δ′iν , 1− δiν}

−
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{τ ′iν , 1− ρ′iν}+max{ρ′iν , 1− τ ′iν})

)

+

( ∑
ν|γ

χ(ν,2)=0

ordν(2)

Ψ2(ν,2)∑
i=1

1 +
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2



232 AWADHESH KUMAR SHUKLA ET AL.

−
∑
ν|γ

χ(ν,2)=0,ν ̸=1

ordν(2)

Ψ2(ν,2)∑
i=1

max{σ′
iν , 1− σ′

iν}

−
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{ξ′iν , 1−∆′
iν}+max{∆′

iν , 1− ξ′iν})

)

=

( ∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

2−
∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

(max{β′
eω, 1− η′eω}

+max{η′eω, 1− β′
eω})

)
+

( ∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2−
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{τ ′iν , 1− ρ′iν}+max{ρ′iν , 1− τ ′iν})

)
+

(
ord1(2)

Ψ2(1,2)∑
i=1

1

+
∑
ν|γ

χ(ν,2)=0,ν ̸=1

ordν(2)

Ψ2(ν,2)∑
i=1

1 +
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2−
∑
ν|γ

χ(ν,2)=0,ν ̸=1

ordν(2)

Ψ2(ν,2)∑
i=1

max{σ′
iν , 1− σ′

iν} −
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{ξ′iν , 1−∆′
iν}

+max{∆′
iν , 1− ξ′iν})

)

=

( ∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

2−
∑
ω|λ

χ(ω,2)=1

ordω(2)

Φ1(ω,2)∑
e=1

(max{β′
eω, 1− η′eω}

+max{η′eω, 1− β′
eω}+

∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2−
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{τ ′iν , 1− ρ′iν}+max{ρ′iν , 1− τ ′iν}) + 1 +
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

2

−
∑
ν|γ

χ(ν,2)=1

ordν(2)

Φ2(ν,2)∑
i=1

(max{ξ′iν , 1−∆′
iν}+max{∆′

iν , 1− ξ′iν})

)
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= 1 +
∑
ω|λ

χ(ω, 2). ordω(2)

Φ1(ω,2)∑
e=1

v′eω +
∑
ν|γ

χ(ν, 2). ordν(2)

Φ2(ν,2)∑
i=1

y′iν

+
∑
ν|γ

χ(ν, 2). ordν(2)

Φ2(ν,2)∑
i=1

w′
iν ,

(46)

where

v′eω = 2−max{β′
eω, 1− η′eω} −max{η′eω, 1− β′

eω} (47)

y′iν = 2−max{τ ′iν , 1− ρ′iν} −max{ρ′iν , 1− τ ′iν} (48)

w′
iν = 2−max{ξ′iν , 1−∆′

iν} −max{∆′
iν , 1− ξ′iν}. (49)

By Eqs.(42)-(44) and Eqs.(47)-(49), we have v′eω, y
′
iν , w

′
iν ∈ {0, 1}. Then Eq.(46)

becomes

dim(Hull(C)) =1 +
∑
ω|λ

χ(ω, 2). ordω(2).v
′
ω +

∑
ν|γ

χ(ν, 2). ordν(2).y
′
ν

+
∑
ν|γ

χ(ν, 2). ordν(2).w
′
ν ,

(50)

where v′ω =
∑Φ1(ω,2)

e=1 v′eω, y
′
ν =

∑Φ2(ν,2)
i=1 y′iν and w′

ν =
∑Φ2(ν,2)

i=1 w′
iν . From Eqs.(47)-

(49), we get that 0 ≤ v′ω ≤ Φ1(ω, 2), 0 ≤ y′ν ≤ Φ2(ν, 2), and 0 ≤ w′
ν ≤ Φ2(ν, 2).

This completes the proof.

The multi-set S in this case is of the form, S = {Φ1(ω, 2) ∗ ordω(2) | ω|λ and
χ(ω, 2) = 1}

⋃
{1 ∗ ordν(2) | ν|γ, χ(ν, 2) = 0 and ν = 1}

⋃
{2Φ2(ν, 2) ∗ ordν(2) |

ν|γ and χ(ν, 2) = 1}.
Each value in Eq. (50) represents the sum of elements from a subset of S.

These values can be determined using the generating functions, as discussed in [8].
Alternatively, the dimensions of hulls of NSCCs inRλ,γ correspond to the exponents
of X in the following expression:

∏
ω|λ

χ(ω,2)=1

Φ1(ω,2)∑
n=0

(Xordω(2))n

X
∏
ν|γ

χ(ν,2)=1

2Φ2(ν,2)∑
n=0

(Xordν(2))n

 , (51)

where χ,Φ1,Φ2 be as defined previously.

Example 4.9. Let λ = 7 and γ = 15. Then divisors of 7 are 1, 7 and divisors
of 15 are 1, 3, 5, 15. Note that χ(1, 2), χ(5, 2) = 0 and χ(7, 2), χ(15, 2) = 1. Since
ord7(2) = 3, ord15(2) = 4, according to Theorem 4.8, the dimensions of hulls of
NSCCs of length (7, 15) in Rλ,γ are of the form

1 + 3v′7 + 4y′15 + 4w′
15,

where 0 ≤ v′7 ≤ 1, and 0 ≤ y′15, w
′
21 ≤ 1. Moreover, by Eq.(51), the dimensions of

hulls of NSCCs of length (7, 15) in Rλ,γ are the exponents of X in the expression
(1 +X3)X(1 +X4 +X8), which are 12, 9, 8, 5, 4, 1.

In the next theorem, we determine the number of NSCCs over Z2Z2[u] having
hulls of a fixed dimension (say d′).
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Theorem 4.10. Let λ, γ be odd, pairwise coprime integers and d′ be given in the
form of Eq.(34). Let χ,Φ1 and Φ2 be the same as in Eqs.(1), (4), and (5), respec-
tively. Then the number of NSCCs over Z2Z2[v] whose hulls have dimension “d′”
is 2m2+2k2 |h(d′)|, where m2 and k2 are defined in the Theorem 2.10, and

h(d′) =

{
((v′eω), (y

′
iν), (w

′
iν))|1 +

∑
ω|λ

χ(ω, 2) ordω(2)

Φ1(ω,2)∑
e=1

v′eω +
∑
ν|γ

χ(ν, 2) ordν(2)

Φ2(ν,2)∑
i=1

y′iν +
∑
ν|γ

χ(ν, 2) ordν(2)

Φ2(ν,2)∑
i=1

w′
iν = d′

}
.

(52)

Proof. The proof can be done using the same concept as Corollary 3.8.

Example 4.11. In Example 4.9, we determine all the possible dimensions of hulls
of NSCCs of length (7, 15) in Rλ,γ , which are 12, 9, 8, 5, 4, 1. Here, we count the
number of NSCCs of length (7, 15) in Rλ,γ having hulls of the fixed dimension 4.
Note that

h(4) = {((v′1,7), (y′1,15), (w′
1,15)) | 1 + 3v′1,7 + 4y′1,15 + 4w′

1,15 = 4},

where 0 ≤ v′1,7 ≤ 1 and 0 ≤ y′1,15, w
′
1,15 ≤ 1. Moreover, we can determine the

cardinality of h(4), which is coefficient of X4 in (1 + X3)X(1 + X4)(1 + X4) =
X12 + X9 + X8 + X5 + X4 + X3 + X. Since the coefficient of X4 is 1, then
|h(4)| = 1. Therefore, by Theorem 4.10, the number of NSCCs of length (7, 15) in
Rλ,γ having hulls of fixed dimension 4 is 21+2·1.|h(4)| = 8

We list all eight NSCCs of length (7, 15) in Rλ,γ whose hulls have the fixed
dimension 4 in Table 1.

Table 1. NSCCs of length (7, 15) in Rλ,γ , whose hulls have the
fixed dimension 4

Generator of C Generator of Hull(C)

⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x − 1) + ξ2(x
2 + x + 1))⟩ ⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x4 + x3 + x2 + x + 1) + ξ2(x
2 + x + 1))⟩ ⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x − 1) + ξ2(x
4 + x3 + x2 + x + 1))⟩ ⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4+x3+x2+1 | 0), (x3+x+1 | ξ1(x4+x3+x2+x+1)+ξ2(x
4+x3+x2+x+1))⟩ ⟨(x4 + x3 + x2 + 1 | 0), (x3 + x + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x − 1) + ξ2(x
2 + x + 1))⟩ ⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x4 + x3 + x2 + x + 1) + ξ2(x
2 + x + 1))⟩ ⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x − 1) + ξ2(x
4 + x3 + x2 + x + 1))⟩ ⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩

⟨(x4+x2+x+1 | 0), (x3+x2+1 | ξ1(x4+x3+x2+x+1)+ξ2(x
4+x3+x2+x+1))⟩ ⟨(x4 + x2 + x + 1 | 0), (x3 + x2 + 1 | ξ1(x15 − 1) + ξ2(x

14 + x13 + · · · + x + 1))⟩
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5. Construction of EAQECCs. In quantum information processing and quan-
tum computation, quantum error-correcting codes are crucial [6, 17, 28]. Dual-
containing (or self-orthogonal) classical codes can be constructed as ordinary quan-
tum codes using the stabilizer formalism [6]. The dual-containing condition, how-
ever, presents a challenge to the advancement of quantum coding theory. If shared
entanglement is available between the sender and receiver, Brun et al. [5] showed
that entanglement-assisted (EA) stabilizer formalism can be used to generate
EAQECCs from non-dual-containing classical codes.

An [[n, k, d; c]]q EAQECC over a Fq, encodes k information qubits into n channel
qubits by means of c pairs of maximally-entangled Bell states (i.e., c ebits ) and
correct up to [d−1

2 ] errors, where d is the minimum distance of EAQECC. Notably,
when c = 0, the EAQECC simplifies to a q-array standard [[n, k, d]] QECC. The
performance of an [[n, k, d; c]]q EAQECCs is measured by its rate k

n and net rate
k−c
n .

Definition 5.1. [23] An [[n1, k1, d1; c1]]q EAQECC is said to be better than any
other [[n2, k2, d2; c2]]q EAQECC if at least one of the following conditions holds:

1. k1

n1
> k2

n2
, and k1−c1

n1
> k2−c2

n2
if d1 = d2, i.e., larger code rate and net rate

with same distance.
2. d1 > d2, if

k1−c1
n1

= k2−c2
n2

i.e, larger distance with same net rate.

Theorem 5.2. [5, EA Singleton Bound] An [[n, k, d; c]]q EAQECC with 0 ≤ c ≤
n− 1, satisfies 2(d− 1) ≤ n− k + c.

An EAQECC achieving this singleton bound is called a maximum-distance sep-
arable (MDS) EAQECC.

Definition 5.3. [21] An EAQECC with parameters [[n, k, d; c]]q is called a weakly
maximum-distance separable (WMDS) EAQECC if 2d = n− k + c.

Theorem 5.4. [13] Let C be an [n, k1, d] linear code and C⊥ be its Euclidean dual
code with parameters [n, k2, d

⊥]. Then [[n, k1−dim(Hull(C)), d, k2−dim(Hull(C))]]q
and [[n, k2 − dim(Hull(C)), d⊥, k1 − dim(Hull(C))]]q EAQECCs exist.

In the following example, we construct EAQECCs using hulls of SCCs over
ZpZp[v].

Example 5.5. Let q = 5, λ = 3, γ = 5 and C = ⟨(x2 + x+ 1 | 0), (0 | ξ1(x+ 4)4 +
ξ2(x + 4)5)⟩ be a SCC of length (3, 5) in Rλ,γ , and Φ(C) has parameters [13, 2, 3].
Then by Theorem 2.8, C⊥ = ⟨(x + 4 | 0), (0 | ξ1(x + 4) + ξ2(1))⟩ and Φ(C⊥) has
parameters [13, 11, 2]. Moreover, Hull(C) = ⟨((x3 − 1 | 0), (0 | ξ1(x4 + x3 + x2 + x+
1)+ ξ2(x

5 − 1)))⟩ and dim(Hull(C)) = 1 By Theorem 5.4, we get an EAQECC with
parameters [[13, 10, 2; 1]]5. The parameters of this EAQECC satisfy 2d = n− k+ c,
i.e., it is a WMDS EAQECC.

Example 5.6. Let q = 7, λ = 11, γ = 13 and C = ⟨(x+6 | 0), (0 | ξ1(x+1)+ξ2(1))⟩
be a SCC of length (11, 13) in Rλ,γ , and Φ(C) has parameters [37, 35, 2]. Then by
Theorem 2.8, C⊥ = ⟨(x10 + x9 + · · · + x + 1 | 0), (0 | ξ1(x12 + x11 + · · · + x + 1) +
ξ2(x

13−1))⟩ and Φ(C⊥) has parameters [37, 2, 11]. Moreover, Hull(C) = ⟨((x11−1 |
0), (0 | ξ1(x13−1)+ξ2(x

13−1)))⟩ and dim(Hull(C)) = 0 By Theorem 5.4, we get an
EAQECC with parameters [[37, 35, 2; 2]]7. The parameters of this EAQECC satisfy
2d = n− k + c, i.e., it is a WMDS EAQECC.
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Çalişkan et al. in [7] and Liu et al. in [21] have used Euclidean and Hermitian
hulls of skew cyclic codes over F2 × (F2 + uF2), and the Euclidean hulls of cyclic
codes over Fq+uFq, respectively, to construct some good EAQECCs over F2. In the
following examples, we construct some good EAQECCs using the Euclidean hulls of
NSCCs over Z2Z2[v]. Moreover, our EAQECCs have better parameters than those
of [7, 21].

Example 5.7. Let λ = 47, γ = 21 and C = ⟨((x24 + x23 + x20 + x18 + x15 +
x12 + x11 + x9 + x8 + x5 + x4 + 1) | 0), ((x23 + x19 + x18 + x14 + x13 + x12 +
x10 + x9 + x7 + x6 + x5 + x3 + x2 + x + 1) | ξ1(x19 + x18 + x16 + x15 + x13 +
x12 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1) + ξ2(x

2 + x+)))⟩ be a NSCC of
length (47, 21) in Rλ,γ and Φ(C) has parameters [89, 44, 9]. Then by Corollary
4.3, C⊥ = ⟨((x24 + x23 + x20 + x18 + x15 + x12 + x11 + x9 + x8 + x5 + x4 + 1) |
0), ((x23+x19+x18+x14+x13+x12+x10+x9+x7+x6+x5+x3+x2+x+1) | ξ1(x2+
x+1)+ξ2(x

18+x15+x12+x9+x6+x3+1)))⟩ and Φ(C⊥) has parameters [89, 45, 2].
Moreover, Hull(C) = ⟨((x24+x23+x20+x18+x15+x12+x11+x9+x8+x5+x4+1) |
0), ((x23 + x19 + x18 + x14 + x13 + x12 + x10 + x9 + x7 + x6 + x5 + x3 + x2 + x+1) |
ξ1(x

21+1)+ξ2(x
20+x19+· · ·+x+1)))⟩ and Φ(Hull(C)) has parameters [89, 24, 12]. By

Theorem 5.4, we have an EAQECC with parameters [[89, 20, 9; 21]]2. This EAQECC
has a better net rate than the net rate of the existing EAQECC [[90, 10, 9; 80]]2 in
[21].

Example 5.8. Let λ = 25, γ = 33 and C = ⟨((x5 +1) | 0), ((x4 + x3 + x2 + x+1) |
ξ1(x

13+x12+x10+x9+x8+x5+x4+x3+x+1)+ξ2(x
12+x9+x7+x6+x5+x3+1)))⟩

be a NSCC of length (17, 9) in Rλ,γ and Φ(C) has parameters [91, 61, 2]. Then by
Corollary 4.3, C⊥ = ⟨((x−1)(x20+x15+x10+x5+1) | 0), ((x20+x15+x10+x5+1) |
ξ1(x

20+x19+x18+x15+x14+x10+x6+x5+x2+x+1)+ξ2(x
20+x19+x18+x15+x14+

x10+x6+x5+x2+x+1)) and Φ(C⊥) has parameters [91, 30, 10]. Moreover, Hull(C) =
⟨((x25+1) | 0), ((x24+x23+ · · ·+x+1) | ξ1(x33+1)+ ξ2(x

32+x33+ · · ·+x+1)))⟩
and Φ(Hull(C)) has parameters [91, 1, 34]. By Theorem 5.4, we have an EAQECC
with parameters [[91, 29, 10; 60]]2. This EAQECC has a better net rate than the net
rate of the existing EAQECC [[90, 28, 10; 62]]2 in [21].

Example 5.9. Let λ = 31, γ = 9 and C = ⟨((x − 1)(x5 + x3 + 1)(x5 + x2 + 1) |
0), ((x5+x3+1)(x5+x2+1) | ξ1(x−1)+ξ2(x

6+x3+1)(x2+x+1)))⟩ be an NSCC
of length (31, 9) in Rλ,γ and Φ(C) has parameters [49, 29, 2]. Then by Corollary 4.3,
C⊥ = ⟨((x−1)(x5+x3+x2+x+1)(x5+x4+x2+x+1)(x5+x4+x3+x+1)(x5+
x4 + x3 + x2 + 1) | 0), ((x5 + x3 + x2 + x+ 1)(x5 + x4 + x2 + x+ 1)(x5 + x4 + x3 +
x + 1)(x5 + x4 + x3 + x2 + 1) | ξ1(x8 + x7 + · · · + x + 1) + ξ21))⟩ and Φ(C⊥) has
parameters [49, 20, 9]. Moreover, Hull(C) = ⟨((x31−1) | 0), ((x30+x29+ · · ·+x+1) |
ξ1(x

9−1)+ξ2(x
8+x7+ · · ·+x+1)))⟩ and Φ(Hull(C)) has parameters [49, 1, 40]. By

Theorem 5.4, we have an EAQECC with parameters [[49, 19, 9; 28]]2. This EAQECC
has a better net rate than the net rate of EAQECC [[48, 9, 9; 39]]2 in [7].

6. Conclusion. We have characterized the hulls of ZpZp[v]-cyclic codes for separa-
ble and non-separable cases. In Section 3, we determined the generator polynomials
in Theorem 3.2 and Corollary 3.3, and derived the solutions of hulls of SCCs over
ZpZp[v] using the concept of the generating function in combinatorics in Theorem
3.5. We also enumerated SCCs over ZpZp[v] having a fixed dimension in Theorem
3.7 and Corollary 3.8. Section 4 focused on NSCCs over Z2Z2[v] with coprime odd
block lengths, where we provided generator polynomials, found the solutions of hulls
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of NSCCs over Z2Z2[v] in Theorem 4.7 and Theorem 4.8, respectively. Moreover,
in Theorem 4.10, we enumerated NSCCs over Z2Z2[v] having hulls of a fixed di-
mension. In Section 5, we applied our findings to construct good EAQECCs over
Z2 using the hulls of NSCCs over Z2Z2[v] in Example 5.7 - Example 5.9, having a
better rate than some of the existing EAQECCs.
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[4] J. Borgers, C. Fernández-Córdoba and R. Ten-valls, Z2-double cyclic codes, Des. codes cryp-
togr., 86 (2018), 463-479.

[5] T. Brun, I. Devetak and M. Hsieh, Correcting quantum errors with entanglement, Science,

314 (2006), 436–439.
[6] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction

via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
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