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ABSTRACT. In this paper, we study the hulls of Z,Zy[v]- cyclic codes for any
prime p, where v2 = v. Firstly, we derive the generator polynomials of the
hulls of separable cyclic codes (SCCs) over ZpZp[v] and determine their di-
mensions using the concept of a generating function in combinatorics. We also
enumerate the SCCs over ZyZp[v] with hulls of a fixed dimension. Next, we
present the generator polynomials of the hulls of non-separable cyclic codes
(NSCCs) over ZsZs[v] with coprime odd block lengths and determine their
dimensions. Additionally, we enumerate the NSCCs over Z3Z3[v] with hulls of
a fixed dimension. As an application, we use the hulls of NSCCs over ZyZs[v]
to construct some good entanglement-assisted quantum error-correcting codes

(EAQECCs).

1. Introduction. To categorize finite projective planes, the idea of the hull of
a linear code, which is defined as the intersection of the code and its dual, was
first presented in [3]. Since then, the properties of the hulls of linear codes have
been thoroughly examined. Also, the dimension of the hull plays a crucial role in
determining the complexity of algorithms used to calculate permutation equivalence
between two linear codes and compute the automorphism of a given linear code
(discussed in [18, 19, 20, 25, 27]). Recently, the hulls of linear codes have also
been used in the construction of good EAQECCs, as detailed in [1, 10, 22, 30].
Consequently, the study of hulls and dimensions of the hulls of linear codes over
finite fields has gained significant interest. In 1997, Sendrier [26] identified the
number of distinct linear codes with hulls of a given dimension. Skersys [29] later
derived an expression for the average hull dimension of cyclic codes. Subsequently,
in 2018, Jitman and Sangwisut [15] explored the average dimension of the Hermitian
hulls of constacyclic codes. Recently, Sangwisut et al. [24] determined dimensions
of the Euclidean hull of cyclic and negacyclic codes over F, and calculated the
number of cyclic codes having Euclidean hulls of a fixed dimension. The average
hull dimension of negacyclic codes over F, has also been investigated.
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In 2018, Borges et al. [4] conducted the study of double cyclic codes over
Zs. Their study involved treating Zs-double cyclic codes as Zsg[z]-submodules of
Zo|x Zol|x
ous optimal codes within this framework. Similarly, Gao et al. [11] thoroughly ex-
amined the structural characteristics of double cyclic codes over Z,. Their research
focused on generator polynomials, minimum spanning sets, and the derivation of
corresponding dual codes. Furthermore, they found several non-linear optimal codes
over Zs. In 2020, Diao et al. [9] studied the additive-cyclic codes over mixed al-
phabet Z,Z,[v] . Their study determined the generator polynomials of cyclic codes

and their Euclidean dual codes.

Recently, Gao et al. [12] conducted a pioneering study on the hulls of double
cyclic codes over Zs. In their study, they determined the generator polynomials
of hulls in both separable and non-separable cases, provided explicit solutions for
the hulls of double cyclic codes, and enumerated cyclic codes with hulls of fixed
dimensions. Additionally, they constructed efficient EAQECCs using the Euclidean
hulls of double cyclic codes over Zs. Notably, before their research, no studies
had investigated the hulls of cyclic codes over mixed alphabets. Inspired by the
foundational insights from [9] and [12], we see an opportunity to explore the hulls
of Z,Zy[v]-cyclic codes. In this work, we address these gaps by systematically
studying the Euclidean hulls of Z,Z,[v]-cyclic codes. Our main contributions are
as follows:

. They successfully determined generating sets and identified numer-

e We derive the generator polynomials of the hulls of separable cyclic codes
(SCCs) over Z,Zy[v] and determine their dimensions using generating func-
tions from combinatorics. Additionally, we enumerate SCCs with hulls of a
fixed dimension.

e We determine the generator polynomials of the hulls of non-separable cyclic
codes (NSCCs) over ZoZso[v] with coprime odd block lengths, compute their
dimensions, and count the number of NSCCs with hulls of a fixed dimension.

e We construct entanglement-assisted quantum error-correcting codes
(EAQECCs) using the hulls of NSCCs over ZsZs[v]. The constructed
EAQECCs demonstrate improved parameters compared to existing codes in
the literature.

This paper is structured as follows. Section 2 provides essential background on
cyclic codes over Z, and Z,Zy[v], setting the foundation for our study. Section 3
delves into the Euclidean hulls of separable cyclic codes (SCCs) over Z,Z,[v], where
we determine their generator polynomials, dimensions, and enumerate SCCs with
hulls of a fixed dimension. In Section 4, we turn our attention to the Euclidean hulls
of non-separable cyclic codes (NSCCs) over ZaZso[v] with coprime odd block lengths.
This section explores their generator polynomials, dimensions, and the enumeration
of hulls with a fixed dimension. Section 5 presents a key application of our findings:
using the hulls of NSCCs over ZyZs[v] to construct efficient entanglement-assisted
quantum error-correcting codes (EAQECCs). Our constructions yield codes with
better parameters compared to existing EAQECCs in the literature. Finally, Sec-
tion 6 concludes the paper.

2. Preliminary. This section reviews some basic results and prior findings on
cyclic codes over Z, and Z,Zy[v]. For detailed information about Z,Z,[v]-cyclic
codes, we refer to [9].



HULLS OF Z,Z,[v]-CYCLIC CODES 211

2.1. Z,-Cyclic codes.

Definition 2.1. A linear code ® of length n over Z, is called a cyclic code if it
satisfies the property

(do, dl, Ce ,dnfl) eED 1mply1ng (dnfl, do, . .. s dn,Q) €.
The dual code ®+ with respect to the Euclidean inner product is defined to be
Dt ={decDt|c-d=0Y cecD}

The code D is a cyclic code if D is a cyclic code. The hull of ® with respect to

the Euclidean inner product is defined as
Hull(®) =® N D+,

Let a(z) = ap + a1z + -+ + ax_12*~! + 2> be a polynomial of degree X in Z,,

provided (ag # 0). The polynomial a*(z) = ag ' 298 %@ q(L) is called the reciprocal

polynomial of a(x). By definition it is clear that deg(a(x)) = deg(a*(z)). Moreover,
a(z) is called a self-reciprocal polynomial if a(z) = a*(x).

Theorem 2.2. [14] Let ©1 = (di(z)) and D2 = (d2(x)) be two cyclic codes of
length n over Z,. Then ©1 N Dq = (lem(dy(x), d2(x))).
Let R =27, +vZ, ={c+vd | c,d € Z,} with v? = v has p? elements. Let
Z,R ={(b,r)|beZ,, r € R}.

Any arbitrary element g € R can be written as g = £1a1 + §2a2, where aq, a2 € Zy,
& =vand & =1—vand R=&Z, ®EZ, (see [2]). Let n: R — Z, be defined by
n(&ra1 + &2a2) = as.

Using map 7, the scalar multiplication of R on Z,Z,[v] is defined as
g* (b,r) = (n(g)b, gr).

This scalar multiplication x can be extended over Zz)?\ x RY as

g*xX = (n(g)b()an(g)bh D »n(g)bA—hnggTh e .gT7,1)7

where x = (bg, b1,...,bx_1,70,T1,...,7y—1) € Z;,‘ x R7Y. Indeed, the multiplication
* endows Z;} x R with the structure of an R-module.

Definition 2.3. A non-empty R-submodule € of Zj x R™ is called a Z,Z,|v]-linear
code of length (A, 7).

Let ¢ : R — Zg be a Gray map defined by ¢(r) = (a1,a2)M, where r = £1a1 +
1 1
1 -1
odd prime. In case of p = 2, we define ¢(r) = (a1, aq), where r = &1a1+&2a9 € Zsa[v].
Now, we define a naturally extended Gray map ® : Z;} x RV — Z;}”V as

(b, 1) = (b, ¢(r)),

where b = (bg,b1,...,bx_1) € ZI’}7 r = (ro,m1,...,7y—1) € R and
o(r) = (¢(r0), d(r1), ..., d(rn—1)). It is clear that the map ® is Z,-linear. From
this, we have the following result.

fra2 € Rand M = 1 ) Note that this Gray map works only when p is an
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Proposition 2.4. Let € be a Z,Z,[v]-linear code of length (\,v) with |€| = pk.
Then ®(€) is a Zy-linear code with parameters (A + 27, k, dg].

Definition 2.5. A linear code € of length (A, ) over Z,Zjy[v] is a cyclic code if it
satisfies the following condition:

(bo,b1,. .. bx_1,70,71,...,7y—1) € €= (ba_1,b0,...,ba_2,7y_1,70,...,7y—2) EC.

Let Ry, = (3%5 [_;z]1> X (Ilz[f]n. Every element in Z;} x RY can be identified by using
a pair of polynomials in i) , as follows:

(05 D1y s DA_1, 7051y -+ oy Toy—1) —>(bo 4 b1 4 -+ by_y2* 7L,
ro+nrix+---+ T’yfllﬁ_1> = (b(.’I}), T(x))v

Zp[x] R[z]
where b(z) € -y D)

This shows that there is an R-module isomorphism between Zj x R and Ry .
Moreover, R  forms an R[z]-module. Therefore, any linear code € over Z,Z,[v] is
a cyclic code if and only if the polynomial representation of € is an R[z]-submodule
of m>\7fy.

We assume m = lem(A, ) for the rest of this paper. Let ¢(x) = (b(z),r(x)),
d(z) = ('(z),r'(x)) € R,y Define a map

and r(x) €

, and this is called polynomial representation.

o0: m)\ﬁ X 9{)\’7 —
by:

cfz) 0 ¢ (z) = Eb(a) 1 D T L (e (a))

m
/ -1
+ r(x)xm—l—deg(r (x));i(Tl*<x)) mod (xm . 1)-

Theorem 2.6. [9, Lemma 3.3-Lemma 3.6] Let € be a Z,Z,[v]-cyclic code of length
(A, 7). Then

¢ = ((m(z) [ 0), (k(z) | &111(x) + &2l2(2))),
where m(x), k(z) € <f§[f]1> yand I1(z),lz(x) € (ﬂfl?’[f]ﬂ with m(z),k(z) | 2 — 1 and
li(z),lo(z) | ¥ — 1. Moreover, deg(m(z)) > deg(k(z)), m(z) | la(x)k(z) and
m(z) | l2(x) ged(m(x), k(x)).

Let €y and €, be the canonical projections of the first A and last v coordinates,
respectively. Then €y = (ged(m(x), k(z))) and €, = (&11i(z) + &2la2(x)) are cyclic
codes over Z;, and R, respectively. Moreover, if € = € x €., then € is called a SCC
over ZyZy[v).

Corollary 2.7. [9] Let € be a SCC over Z,Z,[v]. Then k(x) = 0.

In [9], it has been proved that the dual code €+ of a cyclic code € is also cyclic.
Therefore, € = ((m(x) | 0), (k(x) | &1l (2) + &la())), where m(z), k(z) € 45,
and _ o
h(2),l() € s with m(z), k(z) | 2* — 1 and Iy (2),la(x) [ 27 — 1.

v —1)
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Theorem 2.8. [9, Theorem 4.5] Suppose € = ((m(z) | 0), (k(x) | &1l1(x)+Eia(x)))
is a ZypZyv]-cyclic code, and €+ = ((m(z) | 0), (k(x) | &1 (x) + Eala(z))) is its dual
code. Then

_ Z‘)\ -1
@) = edm(@) k@)
L) =y
I g — @ =1 ged(m(@), k(z))*
() m(2)l5(x)
™ — x
k(z) = ( m*ii/;( >7

-1
_ .m—deg(l2(z))+deg(k(z k™ (z) m”(z)
where p(x) = am—dea(la(@))+deg(k(@)) (m) mod <gd(m(m(£)))

Corollary 2.9. Suppose € = ((m(z) | 0),(0 | &ili(x) + &2l2(x))) s a SCC over
ZpZylv]. Then €&+ = ((m(z) | 0), (0| &1l (x) + Eala(x))), where

-1 - -1 - 7 —1
m(z) = ——, h(z) = 77—, L) = -7~
m*(x) I3 (x) I3 (x)
Proof. The result follows immediately if we put k(z) = 0 in Theorem 2.8. O

2.3. Factorizations of 2 — 1 and 27 — 1 over Z,. Now, we give the complete
factorizations of * — 1 and 27 — 1 over Z,, where X\ and y are positive integers. For
more details, we refer to [24].

Let ord,,(n) denote the multiplicative order of n modulo m for any coprime
positive integers m and n. We say a pair (m,n) is a good pair if there exists k € Z*
such that m | n* + 1. Otherwise, they are called a bad pair. Consider a function Y,
which maps N x N to {0,1} as follows:

1if (m,n) is a bad pair.

= 1
x(m;n) {O if (m,n) is a good pair , (1)
Suppose A = p® X and v = p*2%, where ged(p,A) = 1 = ged(p,7). Therefore,
2 =1 = (z* = 1)?" and 27 — 1 = (27 — 1)?"*. Now, the factorizations of z* — 1
and 7 — 1 are given by the following equations:

B V1 (w,p) @1 (w,p)
IE)\ - ]. = H H hew(x) H H tew (x)t:w(x)
w|A e=1 w|X e=1 (2)
X (w,p)=0 x(w,p)=1
= h1(@)ha(x) - - han, (2)t1 (2)8] (2)t2(2)t5(2) - - biny (2)17,, (2)
) V2 (v,p) 22 (v,p)
7 —1= H H fw(x) H H dlu(x)d:u(x)
vy i=1 v|y =1 (3)
x (v,p)=0 x(v,p)=1

= fi(@)fa(2) - - fry (w)dr (2)dy (2)d2 () d5 (2) - - - di, (2)d, (2),
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where
@) R ®)
Vi (w,p) = ordu(p)’ Py (w,p) = Yord,(p)’ (4)
wav) = S ) = 5 )

Here hey,(x) and f;,(x) are monic irreducible self-reciprocal polynomials of degree
ord, (p) and ord,(p), respectively, teu(z)tl, (x) and d;,(x)d}, (z) are monic irre-
ducible reciprocal polynomials pairs of degree ord,, (p) and ord, (p), respectively. ¢
is the Euler function. Moreover, m; and k; denote the number of self-reciprocal
irreducible polynomials in factorizations of 2* — 1 and 27 — 1 over Z,,, respectively,
my and ko denote the number of irreducible reciprocal polynomials pairs in factor-
izations of 2* — 1 and 7 — 1 over Z,, respectively.

The complete factorizations of #* — 1 and 27 — 1 are given by the following
equations:

1= -1

p°t
Uy (w,p) @1 (w,p) (6)
= ]I II het) ] ]I I te(@)ti(x)
w|h e=1 w|X e=1
X(w,p)=0 x(w,p)=1
a¥ —1= (a7 —1)P”
p°2
Wy (v,p) @2 (v,p) (7)
vy i=1 vy i=1
x(v,p)=0 x(v,p)=1

In the next theorem, we give the values of my, mo, k1, and ko present in Egs.
(2) and (3).

Theorem 2.10. [12, Theorem 2.6] Let Eqs. (2) and (3) be the factorizations of
2 —1 and 7 — 1. Then

= 30 x(@.0) 2 g = L3 () A

F ordy, (p) 255 du(p)’
N 60 I o)
k1 _Vzh(l X( 7p))0rd,,(p), ko 2;)(( 7p)0rdy(p).

3. Euclidean hulls of SCCs over Z,Z,|v].

3.1. Generator polynomials of hulls of SCCs over Z,Z,[v]. In this subsection,
we give the generator polynomials of hulls of SCCs over Z,Z,[v] and determine their
dimensions. First, we give a result discussed by Tian et al. in [31].

Proposition 3.1. [31, Theorem 2] Let €, = (§;l1(z) + &ala(x)) be a cyclic code
over R and € = (6111 () + &ala(x)) be its dual. Then

Hull(€.,) = <gl lem(ly (2), [ (2)) + & lem(la(), I (z))>.
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Theorem 3.2. Let ¢ = ((m(z) | 0),(0 | &li(x) + &la(x))) and its dual €+ =
<(T?L(:L’) | 0), (0 | flll( )-l-fglg( ))> be SCCs in 9%,\77. Then
Hull(¢) = <(1CH1( (z),m(x)) [ 0)), (0 ] & lem(ly(x), l1(2)) + & lcm(lz(x)al_z(fﬂ)))>-

Proof. Since € is a SCC in R} , therefore by Corollary 2.7, we have_k(:z:) = 0. Thus
€= ((m(z) | 0), (0] &ili(z)+&lz(w))), and €4 = ((m(z) | 0), (0 | &111(2) +&ala(2))).
By Theorem 2.2 and Proposition 3.1, we have

Hull(¢) = < (lem(m(x), m(z)) | 0))
(0] & lem(ly(x), 11 (2)) + &2 lem(la(2), la(x))) > -

The following corollary follows directly from the combination of Theorem 3.2 and
Corollary 2.9.

Corollary 3.3. Let € = ((m(z) | 0),(0 | &1la(x) + &xla(x))) and its dual €+ =
(s o |0), (0] & &=L %—52””7 1)) be SCCs in Ry . Then

me (@) (@)

|

m*(z)

+ Glen(taa), ) )

Lemma 3.4. [16, Lemma 3.2] Suppose s is a non-negative integer and 0 < ny,na, ng

< p® are integers. Then, the following holds:
s—1

7 —1

I (z)

(@) =( (tem(m(). £ 10) (0] @ lem(t (o). 5 )

1. 0 <p® —max{ny,p° —ni1} <p
2. 0 < p*t —max{ng, p® — n3} — max{nsz,p* —na} < p°.
Now, we determine the dimensions of hulls of SCCs in R .

Theorem 3.5. Suppose x, V1, ®1, U, and Py are the same as in Eqs. (1), (4),
and (5), respectively. Then the dimensions of hulls of SCCs in Ry  are of the form

D (1= x(w,p) ordy(p)uw + Y x(w, p) ordy (p)ve

w| X w|X

+ 3 (1= xwp) ordu ()l + 2] + Y x(v.p) ordy (p) [y + wi],
v|y v|y
where 0 < uy, < Uy (w,p)| B 1, 0 <oy < By (w,p)p™, 0 < @y, 2, < Us(v,p) |2 §2J
and O S Vy, Wy < (PQ(V p)p

Proof. Since € is SCC in Ry , then € = ((m(z) | 0), (0 | &11i(z) + &ola(x))). From
Egs. (6) and (7), we have

U1 (w,p) 1 (w,p)
m(z) = ] ( 11 (hew(x))a"’“) II ( 11 (tew(x))ﬂ”(tzw(ﬂﬂ))"“),

(8)

w|X e=1 w|X e=1
x(w,p)=0 x(w,p)=1
(9)
W2 (v,p) @2 (v,p)
= I1 | 1T twtwr ) TI {11 Gt | o
vy vy i=1

x(v:p)=0 x(v,p)=1
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V2 (v,p)
12(37) = H H f'w Uw
v|y i=1
x(v,p)=0
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@5 (v,p)
11 I @) (@, (@) |,
v|y i=1
x(v,p)=1

(11)

where 0 < qew, Bews New < P and 0 < 04y, Tivs Pivs Tiv, Eiv, Dy < p°2. Then

U (w,p) @1 (w,p)
m*(z)= ][] | 11 I Cewl@)™e=(ts (@) |,
w|X e=1 w|\ e=1
x(w,p)=0 X(w,p)=1
W2 (v,p) @5 (v,p)
B =[] (fw@) | ] (div (@))P (d7y, ()™ |
vl i=1 vy i=1
(v,p)=0 (v,p)=1
Vo (v,p) @5 (v,p)
)= ][ (fw@)7 | ]I I @@)®e(dg, ()5 | .
vy i=1 v|y i=1
x(v,p)=0 x(v,p)=1
Hence
1 Uy (w,p) @1 (w,p)
St (T ) T (T e
w|A e=1 w|X e=1
X(w,p)=0 X(w,p)=1
(M E) L E“)
2 —1 W2 (v,p) @3 (v,p)
nsS2 _§. ns2 _p.
l*(;t) = H H (fw(x))p biv H ( H (diu('r))p Pu
1 |5 i=1 |5 i=1
x(v,p)=0 x(v,p)=1
<dz;<x>>”‘“"””> ,
1 Uy (v,p) @2 (v,p)
S2 4 2 A
s - (LD w10 ( | CC) i
2 |5 i=1 |5 i=1
(v,p)=0 x(v,p)=1
(di‘y(m))””&”) :
Now

X (w,p)=0

|

x))max{ﬁm P —New } (tZw

¥y (w,p)

H (hew (f))max{ae“’ ,p° _aew})

e=1

()t =oeed
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U2 (v,p)

Y1 .
lem (ll(x), "T*) = H H (fi (z))mex{On P2 =di }
li(x) e pale}
x(v,p)=0
13
s (v.p) | | (13)
S 1 I B CC) e R (A 9) e
v|y i=1
x(v,p)=1
Y —1 ¥a2(v,p) .
lem <l2($), *) = H H (fiy(x))max{aiy,p 2—0;}
12(25) v|y i=1
x(v,p)=0
14
@5 (v,p) ( )
< TI | TI (awlayymesteor™ = (gs, (g)ymatawe? ¢}
v|y =1
x(v,p)=1
where
VZ J < max{tew, p** — Qew} < P, p™ <max{Bew,p™ — New} 5)
+ maX{??emPSI - ﬁew} < 2p°t,
p>
\‘ 2 J S max{éiu7p52 - 611/} S p32, psz §max{7'il,,p52 — p“/} (16)
+ Inax{pq;mp” - Tiu} < 2p*2,
{pﬁJ < maX{Uz‘y,pSQ _ Uiu} < psz7 psz Smax{fil,,p” _ Aw}
21” (a7)

+max{A;,,p** — &, } < 2p*2.

*
1

Since Hull(¢) = <<lcm(m(x),%) | 0),(0 | fllcm(ll(x)’alc“’(;)l)

+& lem(lo (), 9;;(;)1 ) | ). Therefore,

dim(Hull(€))

=\ —deg (lcm (m(x), nj*(_x;>> + 2y — { deg (lcm (ll(ﬂc), xl; (;)1))
+ deg (lcm (12(:10), xl;(;)l>> }

8

Uy (w,p) 21 (w,p)
:< > ordu(p) P Y ordu(p) Yo Wt - Y ordu(p)
w|A e=1 w|A e=1 w|A
x(w,p)=0 x(w,p)=1 x(w,p)=0
W1 (w,p) @1 (w,p)
Z max{aew7p31 _aew} - Z Ordw(p) Z (max{ﬁewap51 —er}—F
e=1 w| X e=1

X(w,p)=1
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‘Ifz(wp) ‘1’2(%17)
maX{??evaSl* ﬂew})) + ( Z OI‘d Z p32 + Z OI'd Z 2p52
vy vy
x(v,p)=0 x(v,p)=1
U2 (v,p) D3 (v,p)
— Z ord, (p) Z max{d;,,p°2 — 6} — Z ord, (p) Z (max{r;,, p*?
v|y i=1 v|y i=1
x(v,p)=0 x(v,p)=1
‘1’2(1’27
— piv} + max{p;,, p*? — Tw})) + ( Z ord, ( Z p*? + Z ord, (
vy |y
x(v,p)=0 x(v,p)=1
D5 (v,p) U2 (v,p)
doowm— Y ord(p) Y, max{ow,p? —ou}— Y ord,(p)
i=1 v|y i=1 v|y
x(v,p)=0 x(v,p)=1
@2 (v,p)
Z (max{&,,p* — Au } + max{A;,,p** — fw})).
i=1
Moreover,
Uy (w,p) @1 (w,p)
dim(Hull(€)) :Z(l — x(w, p)) ord,, Z Ueyy + ZX w, p) ord( Z Vew
w|X w|A
(v,p) ‘I’z(VP
+Zl— (v,p)) ord, ( Z :c“,+ZXVpord Z Yiv
v|y V|5
Vs (v,p) (v,p)
+Y (1= xwp)ordy(p) Y zw+ Y x(v,p)ord,( Z Wi,
v|y =1 v|y
(18)
where

Uew = P — Max{ew, D™ — Qe }s Vew = 20" — max{Bew, P** — New }
(19)
- maX{er,psl - 6ew}a

x5, = p** —max{dy, p*? =i }, Yi = 2p° —max{7y,, p*? — pi } —max{pi,, p*? — 7 },
(20)

zip = p?—max{o;,, p*? —0i, }, Wi, = 2% —max{&,, p**— A }—max{A;,,p*? &, }.
(21)

By Egs. (15)-(17) and (19)-(21), we have

P p°?
0 < ttew < {ZJ 0 < ey <p™,0 <y, 24 < {ZJ and 0 < y;,, wy, < p™

(22)

Let Uy = Z;P:lgw’p) Uew, Vo = Z;P:l(lw,p) Vew, Ty = Z;I;Zl(mp) Tivy, Yo = Z;I):zfl/,p) Yiv,

2y = Z;le(y’p) zip and w, = Z?QV’M wj,. Putting these values in Eq.(18), we have

1=

dim(Hull(¢)) = Z(l — X(w, p)) ordy, (p)uw, + Z X(w, p) ordy, (p)ve

w| X w|A
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+> (1= x(v,p) ordy (p)z + Y x(v,p) ord,, (p)y

v|y vy
+) (1= x(v,p)ordy(p)zy + > x(v,p) ord, (p)w,.
vy vy
From Eq.(22), we get 0 < uy, < U1 (w,p)[Z-], 0 < vy, < ®1(w,p)p®™, 0 < 3,2, <
Uy (v, p) L%L and 0 < y,,w, < Po(v,p)p*2. This proves that the dimensions of
hulls of SCCs in R, satisfy the Eq.(8). O

We can re-write the Eq.(8) appeared in Theorem 3.5 in another form as follows:

Z ord,, (p)uy, + Z ord,, (p)v,, + Z ord, (p)[z, + 2]

w|X w|X V|’7_O
x(w,p)=0 x(w,p)=1 x(v,p)= (23)
+ Y ordy(p)lys + wy].
vy
x(v,p)=1

Now, Eq.(23) can be written in more simplified way using a multi-set S defined as
S = {\Ill(w,p)L%J xordy,(p) | wlA and x(w,p) =0} | {P1(w,p)p®* *ord, (p) | w|A
S2 —
and x(w,p) = 1} U {¥2(v,p)2[5] * ordy(p) | v[yand x(v,p) = 0}
U {®2(v,p)2p°2 % ord,(p) | v|¥ and x(v,p) = 1}, where ¢ * d in the multi-set is
defined as d,d,--- ,d.
—_———

c-copies
Each value in Eq. (23) represents the sum of elements from a subset of S.
These values can be determined using the generating function, as discussed in [8].
Alternatively, the dimensions of hulls of SCCs in fR) - correspond to the exponents
of X in the following expression:

Uy (w,p) [ 25-) @1 (w,p)p"L
H Z (Xordw (p))n H Z (Xordw (p))n
w|X n=0 w|A n=0
x(w,p)=0 . x(w,p)=1 (24)
20 (v,p) [ 55| 2®2(v,p)p°2?
H Z (Xordy(p) )n H Z (Xordl,(p) )n ,
v|y n=0 vy n=0
x(v,p)=0 x(v,p)=1

where x is defined in Eq.(1), ¥1, ®; in Eq.(2) and Uy, @5 in Eq.(4).

Example 3.6. Let p =2, A = 21 and v = 15. Then ged (21, 2) = ged(15,2) = 1, di-
visors of 21 are 1,3, 7, 21 and divisors of 15 are 1, 3,5, 15. Note that (1, 2), (3,2), (5,2)
are good pairs, and (7,2), (15,2), (21, 2) are bad pairs. Since ord7(2) = 3,0rd;5(2) =
4,0rd21(2) = 6. Therefore, by Theorem 3.5, the dimensions of hulls of SCCs of
length (21,15) in Ry , are of the form

3v7 + 6vo1 + 4y15 + 4dwss,

where 0 < v7,v91 < 1, and 0 < y15, w15 < 1. Furthermore by Eq.(29), the dimen-
sions of hulls of SCCs of length (21,15) in R , correspond to the exponent of X
in the expression of the generating function (1 + X3)(1+ X°)(1+ X*+ X8). These
exponents are 17,14,13,11,10,9,8,7,6,4,3,1,0.
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3.2. Enumeration of SCCs over Z,Z,[v] with hulls of a fixed dimension.
Now, we enumerate SCCs over Z,Z,[v] that have hulls of a fixed dimension, say d.
Since Eq. (8) determines the dimensions of hulls of SCCs, therefore, enumeration
of SCCs with a given hull dimension d can be obtained by solving the following
equation for the variables ey, Vew, Tiv, Yiv, Ziv, and w;,

@1 (w,p)
d= Zl— (w,p)) ord,,( Z uew—l—Zpr )ord,, (p) IZ; Vew
w| X w|A e=
\I/2 (v,p) <1>2(VP
—|—Z (1 = x(v,p))ord,( Z SCW—I—ZXI/]) )ord, ( Z Yiv (25)
v|y v|y
Wa(v,p) (I)Q(V)p)
+ Z(l — x(v,p)) ord, (p) Z Ziv + ZX v,p)ord,( Z Wiy,
vy i=1 v

where 0 S Uew S LP;J;O S Vew S Pslao S Livy Ziv S |_p22J;0 S Yiv and Wiy S pSQ-

For convenience, let ((ue,)) denote a vector whose entries satisfy 0 < we,, <

{%J , with indices constrained by w | A, X(w,p) =0, and 1 < e < Uy (w,p), ie

((U’EUJ)) = (uew)wD\, X (w,p)=0,1<e<¥; (w,p)*

Simﬂaﬂy? (('er)) = (er)w|5\,x(w,p):1,1§e§<1>1(u,p)7
() = @)@ =01<i<@a@p)r (Hiv)) = Wi)v5xwp)=1,1<i<ea(v,p))
((zi) = (Ziv)ugx(wp)=0,1<i< s (v,p)> ANA(Wir)) = (Win)y|5,x(v,p)=0,1<i<®s (,p) -

Let n = (((er)), ((Vew))s (i), ((yir))s ((zin)), ((w“,))) be the concatenation of
vectors ((uew)), ((vew)); (i), ((Yi)), ((2i)) and ((wiy)).

Theorem 3.7. Let A,y and d be positive integers such that d satisfies the FEq.(8).
Then the number of SCCs in Ry , whose hulls have dimension d is given by

¥y (w,p) 3, (w,p) er
Z( I I s —wdl T I 25 0w+ 1)

neh(d) w|A e=1 w|X e=1
X (w,p)=0 x(w,p)=1
W2 (v,p) Do (v,p)
1— P
11 H H{zaw,p™ —za} | ] H P g, +1) (g
v|y vy
x(v,p)=0 x(v,p)=1
V2 (v,p) @2 (v,p)
H H {Ziwp Zw}| H H p U) +1)>
vy v|y
x(v,p)=0 x(v,p)=1

where
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Uy (w,p) @1 (w,p)
{n|21 X(w, p)) ord,,( Z ucmrZprord Z Vew

w|X w|X
\1’2 (v,p) <I>2(Vp
+Zl— v,p))ord,( Z xw—&—ZXVp )ord, ( Z Yiv
v|y v|y
Vs (v,p) <I>2 (v,p)
+ Z(l — x(v, p)) ord, (p) Z Ziv + ZX v, p) ord, ( Z Wiy = d}
v|y =1 vy

(27)
and x, V1, P,y and P are as defined previously.

Proof. For w | A\, x(w,p) =0and 1 < e < ¥y (w,p), let ue, € {0,1,..., L%J} and
Qew € {0,1,...,p°1}. For w | A, x(w,p) = 1 and 1 < e < ¥y (w,p), let vey, Bew,
New € {0,1,...,p%1}. For v | 4,x(v,p) = 0and 1 < i < Uy(v,p), let 4,2 €
{0,1,..., L%J}and@y, ow € {0,1,...,p%2}. For v | ¥, x(w,p) =land 1 < e <
Do (w,p), let Yiv, Wiv, Tiv, Piv, &N € {0,1,...,p%2}. For a given n, we aim
to find the polynomials m(z),l;(z) and I3(x) as in Egs.(9), (10) and (11) such
that the dimension of the hull of a separable Z,Z,[v]-cyclic code generated by
((m(2) ] 0), (0 [ &l (2) + &ala(2))) is

@1 (w,p)
d= Zl— (w,p)) ord,,( Z uew—l—Zpr ) ord,, (p) IZ; Vew
w|A w|A e=
\112 (v,p) @3 (v,p)
—|—Z (1 = x(v,p))ord,( Z xw—l—Zx (v,p) ord, ( Z Yiv (28)
v|y v|y
Wa(v,p) ‘bz(l/,p)
+Z(1_X(V7p))0rdu(p) Z Zw"‘ZX 14 p OI‘d Z Wiy -
vly i=1 v|y

Equivalently, we determine all the values of awy, Bew, New, Oivs Tivs Pivy Tivy Eivy A
in Eqgs.(9), (10) and (11) that satisfy Eqgs.(19),(20),(21) and (25).

From Eqgs.(19)-(21), we get that a., is either ue,, or p** —ue,, d;, is either z;, or

p°2 —x;,, and oy, is either z;, or p*2 — z;,. Now we calculate the values of (Bew, New ),
(Tiv, piv) and (&, Ayy) into two cases for ve,,, y;, and w;,, respectively.
Case 1: Let ve, = p*', then max{few, p** — New} + max{ney, p*! — Bew} = .
Hence, Bew~+1ew = p°*. Therefore, (Bew, New) € {(p°* —k1,k1) | k1 € {0,1,...,p° }}.
Case 2: Let 0 < v, < p®t, then 2p51 —ve, = max{Bew, P! — New } + Max{New, p5* —
Bew - Therefore 2p®t — v, is either Bey, + New O, P! — Bew + P** — New- Therefore,
(Bews New) € {(P* = (Vew — k1), (p** — k1) | k1 € {0,1,.. ., vew}} o, (Bew,New) €
{(Vew — k1, k1) | k1 €{0,1,...,0e,}}. Similarly, we can calculate

o If y;, = p®2, then (7, piv) € {(p®2 — ko, ko) | k2 € {0,1,...,p%2}}.

e If 0 < y; < p®2, then (Ti,piv) € {(P2 — (ziv — k2),(P® — k2) | ko €
{0, 17 .. ~7Zz'1/}} or, (Tiu’piy) e {(ZW — kg,kg) | kg e {O7 1, .. .,ZW}}.

o If w;, = p°2, then (§;,,A;) € {(p®2 — ks, k3) | ks € {0,1,...,p%3}}.

e If 0 < w;, < p%2, then (&,,A;) € {(p°2 — (wi, — k3),(P*> — k3) | k3 €
{O, 1,... ,wil,}} or, (fiy, Aw) € {(wi,, — kg, 1{33) | ks € {07 1,... ,wil,}}.
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Therefore, for a given n, the number of SCCs such that the dimensions of their hulls
satisfy Eq. (27) is

Uy (w,p) @1 (w,p) (5
I II Hwewr —ued | T ] 2% e +1)
w|A e=1 wlA e=1
X(w,p)=0 x(w,p)=1
U3 (v,p) @2 (v,p) v
H H | {xw,p xw} | H H p [5# v+ 1)
wly vy
x(v,p)=0 x(v,p)=
T2 (v,p) P2 (v,p) =
I II ===t T I »7%% (wi +1).
wly o i=l vy =l
x(v,p)=0 x(v,p)=1
Adding this expression for all values of n € h(d), we get the desired result. O

The cardinality of h(d) as appeared in Eq. (27), or equivalently, the number of
solutions of Eq.(28) is the coefficients of X¢ in the generating function

Ui (wp) [ 125 ®1(w,p) / p°1
H H Z (Xordw(p))ucw H H < Z Xordw(p))vew>

w\A e=1 Uew=0 w|)\ e=1 Vew =0
X(w,p)=0 x(w,p)=1
Va(vp) (125 Q2(v,p) [/ p°2
0T (oo ) T (S eeoe)
v|5 i=1 i, =0 v|y =1 Yivr=0
x(v,p)=0 x(v,p)=1
Va(wp) (125 ®2(vp) [ p*
H H Z (XordV(P))zw H H ( Z Xord,,(p))ww> )
v|y 24, =0 v|y w;, =0
x(v,p)=0 x(v,p)=1

Corollary 3.8. Let A,y and d be positive integers such that ged(\,p) = 1 =
ged(v,p) and d satisfies the Eq.(8). Let x, V1, ®1, ¥y and Py be as defined previ-
ously. Then number of SCCs in Ry, whose hulls have dimension “d”
is 2matmet2(kitka) | (q)| | where my, mo,ki, ke are defined in Theorem 2.10, and

‘Pl(wﬁp)
h(d) = {((er) (Yiv), (win) Zx w, p) ordy( Z er+ZX v,p) ord, (p)

w|X v|y
Dy (v,p) @2 (v,p)
> v+ Y x(wp)ord,( Z ww—d}
=1 vy

(30)

Proof. Since ged(A,p) = ged(y,p) = 1, it follows that p®t = p2 = 1. From the
proof of Theorem 3.5, we obtain that ey, iy, z; = 0, for all w | A and v | ~y, while
Vews Yivs Wi, € {0,1}, for all w | A and v | v, respectively. Consequently, Eq.(26)
simplifies to 2m1+m2+2(k1+k2)| b (d)| and Eq. (27) reduced to Eq. (30). O

Example 3.9. In Ex. (3.6), we determine all the possible dimensions of hulls of
SCCs of length (21,15) in Ry -, which are 17,14,13,11,10,9,8,7,6,4,3,1,0. Here,
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we focus on counting the number of SCCs of length (21, 15) in Ry , with hulls of
dimension 10. Note that

h(10) = {((v1,7), (v1,21), (Y1,15)s (w1,15)) | Bv1,7 + 6v1 21 + 4y1,15 + 4wy 15 = 10},

where 0 < vy 7,v121 <1 and 0 < y;,15, w115 < 1. Moreover, using Eq.(29) we can
determine the cardinality of h(10), which corresponds to the coefficient of X0 in
the following generating function

1+XH1+XO1+XH(1+ XY
:X17+X14+2X13+X11
+2X10 4+ X X® 42X+ X0+ 2Xt + X7+ 1.
Since the coefficient of X0 is 2, it follows that |h(10)] = 2, and thus
h(10) = {((0), (1), (1), (0)), ((0),(1),(0),(1))}. Putting the elements of h(10) into

Eq.(26), we conclude that the total number of SCCs of length (21,15) in R , having
hulls of dimension 10 is 8192.

4. Euclidean hulls of NSCCs over Z;Zs[v]. In this section, we study the hulls

of NSCCs over ZyZs[v]. Throughout, we assume that A and 7 are odd, pair-

wise coprime integers. We define R, , = <ff[f]l> X <ﬁ[f}1>, where R = Zy + vZs

and v? = v.

Theorem 4.1. [9] Suppose € = ((m(zx) | 0), (k(x) | &1l (2) + &la(x))) is a NSCC

|
in Ry, as defined in Theorem 2.6. Then ged(m(z), ”l”:(;)l) # 1.

Theorem 4.2. Let € = {(m(x) | 0),(k(z) | &li(x) + &la(x))) be a NSCC in
Rry. Then € = ((z — 1)Ai(x) | 0), (Ai(z) | &ili(z) + &olo(2))) such that Ai(z) |
=1 h(x) |27 =1, lp(z) |27 — 1, 2 — 1{ Ai(x) and x — 11 Iy(x).

Proof. Since A, are pairwise coprime and ged(), 2) = 1 = ged(y, 2), it follows that
2* — 1 and 27 — 1 have only common factor x — 1. Now, suppose = — 1 | lz(z).
-1

Then, z — 11 % _1 . Consequently, we have ged(m(x), %) = 1. By Theorem

2.6, this implies that m(z) | k(z), which leads to a contradiction. Therefore, we
conclude that © — 1 1 Ia(x) and © — 1 | m(z). Let m(z) = (x — 1)A;1(z) and
’l‘;(;)l = (x — 1)Aa(z), where ged(A4;(x), Aa(x)) = 1. Since m(z) | ’l”:(;)lk(x) =
(x —1)A1(x) | (x —1)Ag(x)ko(x), implies A;(x) | As(z)k(z), implies A;(z) = k(x).
Therefore, € = ((z — 1)A;(z) | 0), (A1(z) | &1li(x) + Ela(x))) such that A;(z) |
=1L h(x) |2 =1, la(x) |27 =1, 2 — 11 Ay(z) and z — 11 Ia(2). O

In the following corollary, we determine the generator polynomials of €.

Corollary 4.3. Let € = ((m(z) | 0), (k(z) | §1l1( ) + &ala(x))) be a NSCC in
Ry, as defined in Theorem J.2. Then €+ = <(X1(;)1 2 ””7 1

S tnm )
Proof. By Theorem 2.8, ¢t = <(m( ) | 0), (k(z) | &li(x) + &la(x))), where
Y1 v

) (=hmar

B o - ¥ — cd(m(x),k(z))* 7
mw) = gamieye @) = Foh k) = CREEREEEE and k) =
zr— T —de T e T !
WD) where  plr) = andela) et (ki )
A A

m*(z) _ - 221 _ z
mod (qmmamr): Now, M) = Ganemer = o)
7 _ (z7=1) gcd(m(z),k(x _ (z*—1) A} (z) . v
Ja(z) = { Z,f*(m) ((z)) @) = HOHO R (zf1)l;1(m) Moreover, p(x) =

g
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mm—deg(lz(w))+deg(zc(w))< k* (2) *)—1 mod ( m*(x)(m))*)’ e, p(x) = 1

ged(m(z),k(x)) ged(m(z),k
mod (z — 1), then k(z) = % This completes the proof. O
Let II and II, be the canonical projections defined as IIy : Ry, — <Z§ 1y and

IL, : Ry, — %, respectively. As € and €+, are submodules of Ry,y, therefore
by Theorem 4.2 and Corollary 4.3, we have II,(€) = (ged((x — 1) A1 (z), A1(x))) =

(@), Th(€Y) = (G2ake), IL(©) = (Gh(@) + &l(@), and IL(€h) =
(51%7 RRIe TR
Proposition 4.4. LetIL, : Ry , —
I, (€N &+) C L (€) NIL, (&),

Proof. Suppose b(z) € IL, (€N €1), i.e., there exists (a(z),

that IL,(a(z),b(z)) = b(z).
that b(w) eI, (¢) NIL, (¢t

lts and € and €4 be NSCCs in Ry . Then

b(z)) € I, (€N €t) such
Thus b(z ) € I1,(€) and b(x) € IL,(€+). This implies
), ie, I, (€N L) CIL,(€) NIL, (¢h). O
Propoﬂﬁon1&5.lktHAzﬁhﬁ—%<fﬂﬂ>,ThazHA&HWQL)QIIAQ)QTU(CL)
Proof. The proof can be done using similar steps as the proof of Proposition 4.4. [

Lemma 4.6. If (hl(x)lcm(Al(x),@fS%) | flhg(x)lcm(ll(x),’f:(—;)l)

+&M@9mmb@%afﬁﬁaﬁ 0@%@%&h@)+&b@0 = 0. Then hy(z) +
ha(z) =0 mod (x —1).

Proof. Since, (hl(l") lem(A; (), (mff)%) | &1ha(x) lem(ly (), Qf:(;)l) + &aha(z)
mm@()gﬁvﬁno m@m&um+@u@)=uTmn

2 —1 7 —1
oA St

@ﬂ@km@ﬂm,

z7 —1
+ &2ho lem(la(2), m))o(z‘h(x% §ila () + 5212(:16))
xk_l * z™ —1 m—1—deg(Ai(x
= &hi(x) lem (Al(x), WW@)) A (z) — deg(A1(x))

7 —1 ™ —1 X
h 1 l 1 m—1—deg(l1(x))
+aa(oten (o), St @ S e

7 —1 * zm —1 m—1—deg(l2(x)) m
+ &oho(z)lem | lo(x), G-DE@ I5(x) e mod (z™ — 1)
2

=1\ 2™ —1 ,
= &hy () lem (Al( VAT, 1>> — lxm_l_deg’(Al(w)) + &ho(x)

(z
7T -1 m_1
lem (12(5(1)1;((5)7 (3;1)> Z,y 1 xm—l—deg(lz(;c)) mod (Qjm — 1)
m_q m_q
_ §2h1(x)gl (x)%xmflfdeg(f!ﬂx)) + €2h2(x)g3(x)%xmflfdeg(lz(x))
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mod (z™ — 1),

where g1(z) = Ai(x), if A1(x) is a self-reciprocal polynomial, otherwise g;(z) = 1
and g3(z) = lo(x), if Ia(x) is a self-reciprocal polynomial, otherwise gs(«) = 1. Thus,
either

hy(x)gy (z)z™ 1798 @) L opo (1) gs(x)a™imdee2(2) = 0 mod (2™ — 1), (31)
or,

hy(2)gy (z)z™ 1 —dee(A@) L po () gg(x)z™ 1 7dee2(@) = 0 mod (z—1). (32)
Due toz — 1| z™ —1, Eq. (31) implies Eq. (32). Because g1(z) =1 mod (x —1) ,
g3(z) =1 mod (z — 1) and ¥ =1 mod (x — 1), over Z,, where k € Z*, it follows
that hq(z) + ha(z) =0 mod (x —1). O
Theorem 4.7. Let € be a NSCC and ¢+ be its dual in R, as defined in Theorem
4.2 and Corollary 4.3, respectively. Then

Hull(¢) :< (lcm ((1‘ 1A (2), 2&;) ‘o) : <lcm (Al(a:% M)
27— 1

1 tem (M’ @) ) *elem (W’ <i1;ll<x>> >>
(33)

where Ay (x) | 2 — 1,11 (z) | 27 — L, la(x) |27 — 1, 2 — 11 Ay (2) and z — 11 z(2).

Proof. Since € and ¢+ both are NSCCs in R, ,, it follows that Hull(€¢) is also a

NSCCin R, . By Theorem 4.2, we can express Hull(¢) = (((z—1)E(x) | 0), (E(x) |

&1 F(2) + & Fy(x))), where E(x) | 22 — 1, Fy(x) | 27 — 1, Fy(x) |27 — 1, 2 — 11 E(x)

and z — 1 { Fy(x). We also have, II(Hull(¢)) = (E(z)), and II,(Hull(¢)) =
A

(E1F1(2) + &2F2(2))). Since TL(€) = (Ai(x)), TI\(€) = (ai ) TH(€) =

(&1l (x) + &la(x))), and IL,(€+) = (& gl”:(;)l + & (mfzﬁgl(z)»v then by Theorem

)

2.2, we have IT,(€) NI, (€1) = (lem(A;(z), (zf’f)%)), and 1L, (¢) NIL,(¢+) =
(&1 lem(ly (), ﬁ;T;)l) + & lem(ly(2), @f}%)y Since IT, (Hull(€)) = (€N ¢t) C
I\ (¢) N Iy (¢€t) and I, (Hull(¢)) = II,(¢ N e&t) C TI,(¢) N IL,(EL), then

A 27—
lem (41(2), iyt ) | B@) and (11em (1(2) + £23)
+&2 lem (l2 (x), ﬂ%) ) ‘F(a:) Therefore, E(xz)=hq(z)lcm (Al (x), ﬁ%),

F(z) = hao(x) (51 lem (ll(m) + %) + & lem (lg(x), ﬂ%) ) Putting these
values in the previous expression of Hull(€), we have
Hull(€)

< (hl(x) lem ((x —1)A;(z), ?T(QJD | 0> , (hl(x) lem (Al(z)’ (fol)Ai(:c)) ’
1

€1ha() lem (11(3:), xl: 5 ) + Eoha(z) lem (12(35), M) >>
Let

¢ = < <1cm ((x — 1) Ay (), 12’1*(;)1) ’()) ’ <1cm (Al(x)’ (fﬂi)_fé(x) ‘
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7 -1 7 —1
&1 lem (ll(l")’ *) + &2 lem (b(x), *) .
I3 () (z — 1)l5(x)
We now establish Hull(¢€) = ¢’. Firstly, we prove that Hull(¢) C ¢’. Given

<h1(1‘) lcm(Al(x),(xf;)%) | & ha(x) lcm(ll(x),gl”:(;)l) + &ho(z)lem(la(x),

¥ —1
E=syE
ha(z) =0 mod (x — 1). Therefore, hi(x) + ha(z) = p(z)(z — 1). Now,

x/\ —1 7 —1
<h1(ac) lem (Al(;zc)7 (:c—l)AT(x)) ‘§1h2(x) lem <l1(x)7 I (z) >

)) (Al(x),flll(x) + 52[2(33)) = 0, according to Theorem 4.6, hy(x) +

+ &2ha(2) lem (h(x)a @3ﬂ1;l§1@>>

> —
=p(x) * (lcm ((a: —1)A; (), A*{(x)1> ‘O) + ho(z) % <lcm (Al(x),

2 —1 7 —1 Gt /
> ’51 lem <l1(:c), > + &2 lem <l2(1')7 (Jc—l)l;(x))) e,

(z = 1) Aj(2) h(z)

This proves that Hull(¢) C ¢’.
Now, we prove that ¢ C Hull(€¢). For (lcm (Al(ac)

zY—1 )) € ¢ and (Ai(z) | &l(x) +

51 lcm (ll(l’), %) + 52 lCm <12(I'), m

z =1
’ (wfl)AI(w)) ‘

&la(x)) € €, we have

e )

+ & lem <l2(x), M) >0(A1(x) | &1li(x) + 5212($))

2% — 1 m-1-deg(As(2)

=1
=& lem <A1($)7 (55—1)AT(~T)> A (z) 1

z¥ —1 ™ -1
1 I * m—1—deg(li(x))
+atem (o) S @05 e

z" -1 m—1—deg(l2(z)) m
(x) — &t mod (z™ — 1)
7 —

8
=2
—_
~| |
—
N % |
—~
8
~
N———
N ¥

+ & lem (Zg(x), @

A m __
— 52 lem (141K (.’E)Al({t)’ z 1 ) x 1xm—1—deg(A1(w))
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+ & lem (15 (2)ly (x), 27 — 1) Exm—l—deg(ll(x))
' ! 7 —1

Y1\ 2™ -1
+ & lem <l§ (2)la(z), x) L gmimdes((@)  pod (o™ — 1)

(x—1)/) v -1
™ -1 1
_ €2P($>ﬁ ™ 1—deg(A1(x)) + 51@1( )( m 1)xm 1—deg(l1(x)) + 52@2(37)7
" — 1mm—1—deg(l2(a:)) mod (xm _ 1)
r—1
P _11 (Pla)am=imdeEdi@) 4 Qy()gm1-dee=))  mod (a™ — 1),
T —

where P(xz) = A;i(x) if A;(z) is a self-reciprocal polynomial, otherwise P(z) = 1.
Similarly, Q1(z) = {1(z) or Q1(z) =1 and Q1(z) = la2(z) or Q2(x) = la(x).

Note that P(x) =1 mod (z — 1), Q2(z) =1 mod (x — 1) over Zg, (2™ — 1) 4
(P(x)xmflfdeg(fh(z)) + Q2(x)xm717deg(l2(z))) and (z — 1) | (xmflfdeg(Al(m)) +

gm—izdee=(@))  over  Zo. Therefore, 221 | P(z)zm-1-des(Ai(@)

+Q2(x)xm1deg(l2($))> =0 mod (z™ — 1). Thus,

<lcm <A1(a?)7 (xf)\l)_A}{(x)) ‘51 lem (ll(x)’ xl;*(;)l)

+&lem <z2(x), (”ﬂ_l> >0<A1(x) &l (2) + 5212(93)) =0 mod (2™ — 1).

x— 1)l (x)

As (Al(x) | &li(x) + fglg(:b)) € €, then <lcm (A( ), m)‘

&1 lem (ll(x), %) + & lem (lg(aﬁ), ﬁ%) ) € ¢+. Thus, we have ¢ C ¢1.

A
QI o) € ¢ and (e (A(), k)

For ((1 1)A* @)

’glmnlﬁlmn i}1)+g2mn102(),thﬁ§§uﬁ)> € ¢’, we have

(lcm (Al(x) (j’z);) \51 lem (ll( ), Q’Z(;D
+ clem (10, 75 ) ) (craelTe oo w)

gj>‘ - 1 l'm - 1 mf)\+d0g(A1(:E)) :E)\ —1
—521CH1 (Al(x);(x_l)A»{(x)> x)\_]_x m
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x’Y — LN 2™ = i rdeg( (o) 2] 1
+ & lem (ll , ) e (l1(x)

+ & lem <12 -1 ) 2™~ 1 oy tdeg(la(a)) (f”—l>

(x=Dl(x)) v —1 (x —1)la(x)
mod (z™ — 1)

™ —1
_527—1

Clearly, (2™ —1) J(a:m_k‘*‘deg(f“l(x)) 4+ gmrtdes(2(2) and (g —1) | g Ades(Ai(@) 4
xm7~/+deg(l2(x)) Therefore z —11( mf)\ereg(Al(z))+:L.m7'y+deg(l2(z))) =0 mod (xmi
1). Thus,

om0 5 o 559

+ &lem <l2(x), (:Ejﬂl;l;@)) )0 ((:c f 1_141 ‘fl xz - 1 + & (z x'yl;l;(x)>
=0 mod (z™ —1).

(xm—)\-&-deg(Al(z)) + xm—’v-‘-deg(lz(r))) mod (z™ — 1).

. 2 —1 1 z—1
SIHCG7 <($ I)A @) fll (@) +§2(3¢—1)l3($)) e ¢ 5 then <1Cm <A1($)7W)

’gl lem (zl( ), ﬂ;j(xl) +&lem (12( ), m)) € ¢. S0 @ C ¢, and hence ¢ C

Hull(€) . Thus,

Hull(¢) =< (lcm ((m —DAi(w), M) ‘0> ’ (1”“ (Al(m)’ M)
ot (11 535 ) weem (. . 251) ) ) o

Theorem 4.8. Let A and v be pairwise coprime odd positive integers. Suppose X,
Uy, Wy, &y, and $o are the same as in Egs. (1), (4), and (5), respectively. Then
the dimensions of hulls of NSCCs in Ry , are of the form

1+ Z x(w, 2).ord,, (2).v], + Z x(v,2).0rd, (2).y,, + Z x(v,2).0rd, (2).w),, (34)

w|A v]y vy
where 0 < v, < ®1(w,2), 0 <y, w, < Py(v,2).
Proof. As A and ~ are odd integers, therefore, A = A and v = 7. By Theorem 4.2,

C=((z—1)A(x) | 0),(Ai(2z) | &li(x) + &la(2))). Then by Egs. (6) and (7), we
have

¥ (w,2) Py (w,2)
A= ] II (ew@@)™| ]I I (tew@)Pe (t2, (2)) e
w|A e=1 w|A e=1
X (w,2)=0,w#1 x(w,2)=1

(35)
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Wy (v,2) ) Py (v, 2) )
Liz) = H ( (fiu(l’))éi”> H ( T di(@)””) (36)
1

vly = vy =1
x(v,2)=0 x(v,2)=1
o (v, Dy (v,2)
(o) = ]I H (fiv(e 11 (diy ()5 (5 ()2 | |
vy i=1 v|y =1
x(v,2)=0,v#1 x(v,2)=1

where ae wﬁe wnew € {07 1} and 5117 zy’pzlﬁ zu?gzuﬂ ;21/ € {07 1}' Now,

U (w,2) ) @ (w,2) , ,
HE | ( 1T (hew(l”))%“> II ( 11 (few(w))"ew(tzw(x))ﬁe“),

w|A e=1 w|A e=1
x(@,2)=0,w#1 x(w,2)=1

U (w,2) ) &y (w,2) / ,
(z=DAi@)= T] (H <hew<z>>“w) 11 ( <tew<z>>"ew<t2w<x>>ﬁw),

w|A e=1 w|A e=1
x(w,2)=0 X(w,2)=1
Wy (v,2) D5 (v,2)
HES | IT @) | 1 (diy ()7 (d5, ()™ |
vy =1 vy i=1
x(v,2)=0 x(v,2)=1
\112(11,2) <I>2(V,2)
b= 1 [T Gatn ] TI (i (2)) 5 (d, ()5
vy =1 vy i=1
x(v,2)=0,v#1 x(v,2)=1
\IJQ(V 2) @2(1/,2)
ORI | (i)™ | I] (i ()5 (d, ()
vy el vy \ i
x(v,2)=0 x(v,2)=1
1 Uy (w,2) Py (w,2)
= —a
—= I ( II Geten' =) I | II
Ai(z) -
w|A e=1 w|A e=1
X(UJ,2):0 X(wa2):1

w|A e=1
X (w,2)=0,w#1
Pq(w,2)

11 I1 (tew(x))l_"“(t*w(x))l_’ieL“)7

@ha VT
2 —1 Uy (v,2) ) Py (v,2)
=11 | II Gatn = | TT { II @) =" (d, @) |,
l (x) vy =1
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7 1 Vo (v,2) By (1,2)
Homn 8 BT EEZCI R I U BN I | O A
2 vy i=1 vy i1

x(¢,2)=0, x(v,2)=1

:U’Y _ 1 \112(1/,2)
T aNIR N . 1—0iv
(z — 1)i3(z) H 11 (fun(2))
x(v,2)=0,v#1
<I>2(l/,2)
H H (di ()20 (d2, ()"~ Siv
vly i=1
x(v,2)=1
According to Theorem 4.7,
ar —1
=1 —1)A i
Gy =lem <(x (), s )
\1’1(UJ72)
- H H (hew(z))ma)({a“wlia“’}
w|A e=1 38
X(w72):0 ( )
Py (w,2)
X H H (tew(z))max{ﬁw,lfnw}(t:w (l,))max{ncw,lfﬁew}
w|A e=1
x(w,2)=1
ar —1
Gy =lem (Al(gc), *>
(z —1)Ai(z)
¥y (w,2)
- I 1 (hew(aymeietizail
w|A e=1 39
X (w,2)=0,w#1 ( )
D1 (w,2)
< 1 IT (tew(@)ymextfestmnesd (g2 (z)ymextnes 1=Feut | |
w|A e=1
x(w,2)=1
7 —1
Gs = <51($)7 *)
[ (z)
Vs (v,2)
= I | I Gatapmetoii=ouy
vy i=1 10
X(V72):0 ( )
Py (v,2)
X H H (diy(x))max{‘l'iwlfpi,,}(d;‘y(m))max{piwlfq—w}
v|y i=1

x(v,2)=1
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7 —1

G4 = lcm(lg(x), 7*)
(z = 1Di3(z)
\IIQ(I/,Q)
= 0T [ II Galapmtobtoaid )
vly i=1 (41)
x(v,2)=0,v#1
@2(1/,2)
11 (g () (Ehr A= 0 (d, () e 6000
vy =1
x(v,2)=1
where
max{al, ,1—al,}=1and 1 <max{f,,,1—1n.,}+max{n, ,1—p5.} <2 (42)
maX{élu’ } =land1< max{ zu’ p;u} + maX{p;yv 1- Tz'lu} < 27 (43)
max{o},,1 —o},} =1and 1 <max{£,,1 — A} } +max{Al, 1 ¢ } <2 (44)
and

Hull(€) = ((G1]0), (G2 | £1G3 + £2G4)). (45)
From Eqgs. (38)-(41) and Eqgs.(42)-(44), we have

dim(Hull(€)) =) — deg(G1) + 27 — (deg(G3) + deg(Gy))

¥ (w,2) <I>1(w,2)
:(Zord Zl—FZord 22
w|A w|A e=1
x(w,2)=0 x(w,2)=1
¥ (w,2)
- Z ord,,(2) Z max{al ,1—al,}
w|A e=1
x(w,2)=0
Py (w,2)
- Z Ordw(Q) Z (max{ﬁéwvl_nt/sw}—i_max{néwal_ﬁ(/sw}))
w|A e=1
x(w,2)=1
Vo (v,2) <I>2(V2)
+<Zord SRR WREVED o
vy vy
x(v,2)=0 x(v,2)=1
Wy (v,2)
- Z ord, (2) Z max{d.,,1—d;,}
vy =1
x(v,2)=0
Py (v,2)
- Y od@ S (max{r, pzy}+max{p;w1—m}>>
vy i=1
x(v,2)=1
Vo (v,2) P2 (v,2)
+<Zord Zl—i—Zord ZQ
vy vy

x(v,2)=0 x(v,2)=1
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Vs (v,2)
- Z Ordu(2) Z ma’X{Uzuv *O—;u}
vly i=1
x(v,2)=0,v#1
Py (v,2)
- Z Ordl’(2) Z (ma’X{ng? 1/} +maX{A'LV7 g;u}))
]y i=1
x(v,2)=1
‘I>1 (w,2) ® (w,2)
—< Z OI'd Z 2 — Z Ordw(2) Z (max{ﬁéuﬂ 1- nf/aw}
w w e=1
X(w,‘Q))\:l X(w,|2))\:1
<I>2(u 2)
+ max{n.,,1 —ﬁ’ew})> + ( Z ord,, ( Z 2 — Z ord,(2)
vy vy
x(v,2)=1 x(v,2)=1
Py (v,2) Wy(1,2)
S (max{rl,, 1~ gy} + max{pl, 1 - n’m) ¥ (d >
=1
Wy (v,2) ‘1>2(V72)
+ Z ord, (2) Z 1+ Z ord, ( 2— Z ord, (2)
X(V,2)U‘ZP}EJ.V751 = X(Vuagzl - h
’ x(v,2)=0,v#1
Uy (v,2) <I>2(V,2)
Z max{o},,1—o0,,} — Z ord, ( Z (max{&,,1— Al }
i=1 v|y i=1
x(v,2)=1

+ max{Aj,, 1 §§u})>

Py (w,2) @ (w,2)
—< Z OI‘d Z 2 — Z Ordw(Q) Z (max{ﬂéw’ 1- néw}

w|A w|A e=1
x(w,2)=1 x(w,2)=1
<I’2(1’2)
+ max{n.,,1— 6.} + Z ord, ( Z 2- Z ord, (2)
v]y v]y
x(v,2)=1 x(v,2)=1
By (1,2) <I>2(V 2)
> (max{r/,,1 - pj,} + max{p},, 1 =7, }) +1+ »  ordy( Z 2
i=1 v
X(u,|2’;:1
Py (v,2)
- Z Ordu(2) Z (ma‘x{gzw w}+maX{Azu7 g;u})>
vy =1

x(v,2)=1
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Q1 (w,2) <I>2(u 2)
71+ZX ). ord,,( Z vew+ZXV2 ).ord, ( Z Yi,
wlA vy
46
‘1’2(’/ 2) (46)
+ZXV2 ). ord,( Z wh,,
vly
where
ygu = 2- maX{ 11/7 p;l/} - max{p;,, - z/u} (48)
w’zl/ = 2 max{é‘ll/’ ’LV} maX{AZV7 5’;1’}‘ (49)
By Eqgs.(42)-(44) and Egs.(47)-(49), we have v.,,,y},,w};, € {0,1}. Then Eq.(46)
becomes
dim(Hull(€)) =1 + Z X(w, 2). ord, (2).v), + Z x(v,2).0ord,(2).y,
w|A v
| ] (50)
+) x(v,2). ord, (2).w),
vy

where v/, = Zfl(lw 2) f,w, Y, = Zi"f”g) yl, and w, = Z?T’ 2) ! . From Eqgs.(47)-

(49), we get that 0 < v/, < ®1(w,2), 0 < yl, < Po(v,2), and 0 S wl, < Dy(v, 2).
This completes the proof.

The multi-set .S in this case is of the form, S = {®;(w,2) * ord,(2) | w|A and
X(w,2) =1} U {l*xord,(2) | v|y,x(r,2) =0 and v = 1} | {2P2(v,2) * ord,(2) |
vly and x(v,2) = 1}.

Each value in Eq. (50) represents the sum of elements from a subset of S.
These values can be determined using the generating functions, as discussed in [8].
Alternatively, the dimensions of hulls of NSCCs in R} ,, correspond to the exponents
of X in the following expression:

<I>1(w,2) 2<I>2(l/,2)
QD SRESEIA P 1 U SRE SR B
w|A n=0 vy n=0
X(w,2)=1 x(v,2)=1

where y, @1, Po be as defined previously.

Example 4.9. Let A = 7 and v = 15. Then divisors of 7 are 1,7 and divisors
of 15 are 1,3,5,15. Note that x(1,2),x(5,2) = 0 and x(7,2), x(15,2) = 1. Since
ord7(2) = 3,ord;5(2) = 4, according to Theorem 4.8, the dimensions of hulls of
NSCCs of length (7,15) in Ry, are of the form

1+ 3vy + 4yy5 + dwis,

where 0 < v, < 1, and 0 < yi5,wh; < 1. Moreover, by Eq.(51), the dimensions of
hulls of NSCCs of length (7,15) in R, are the exponents of X in the expression
(14 X3)X(1+ X* + X8), which are 12,9,8,5,4, 1.

In the next theorem, we determine the number of NSCCs over Z,Zs[u] having
hulls of a fixed dimension (say d’).
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Theorem 4.10. Let ),y be odd, pairwise coprime integers and d' be given in the
form of Eq.(34). Let x,®1 and ®2 be the same as in Eqs.(1), (4), and (5), respec-
tively. Then the number of NSCCs over ZsZs[v] whose hulls have dimension “d"”
is 2m22k2|h(d")|, where my and ky are defined in the Theorem 2.10, and

@1(0.),2)
(d') =4 (Vi) Wh)s (Wi )1+ D x(w,2)ordu(2) Y vl + Y x(v,2) ord, (2)
w|A e=1 vly
@2(1/,2) ‘13‘2(11,2)
Doy Y xm2)ord,(2) Y wp, =d
i=1 u"y =1
(52)
Proof. The proof can be done using the same concept as Corollary 3.8. O

Example 4.11. In Example 4.9, we determine all the possible dimensions of hulls
of NSCCs of length (7,15) in R, -, which are 12,9,8,5,4, 1. Here, we count the
number of NSCCs of length (7,15) in Ry , having hulls of the fixed dimension 4.
Note that

h(4) = {((9/1,7)7 (9/1,15)» (w’1715)) |1+ 37/1,7 + 4?/1,15 + 471111,15 = 4},
where 0 < v, < 1 and 0 < yj 45, w] 15 < 1. Moreover, we can determine the
cardinality of h(4), which is coefficient of X* in (1 + X3)X (1 + X*)(1 + X*) =
X2 4+ X%+ X8 + X5+ X* 4+ X2 + X. Since the coefficient of X* is 1, then
|h(4)] = 1. Therefore, by Theorem 4.10, the number of NSCCs of length (7,15) in
MR, having hulls of fixed dimension 4 is 2! 721 |h(4)| = 8

We list all eight NSCCs of length (7,15) in %R, whose hulls have the fixed
dimension 4 in Table 1.

TABLE 1. NSCCs of length (7,15) in fR) , whose hulls have the
fixed dimension 4

Generator of ¢ Generator of Hull(¢)

(" +2° +2° +1]0),(@® + 2+ 1| & (e — 1)+ Ea(a® + 2 +1))) (@42’ +2* +110), @ +2+1] 6@ - D)+ & +2% 4+t 1)
(@t +a®+22+1]0), (@ +z+1|&@ +a® +a? o+ 1) +&@2+a+1) (@ +e®+22+1]0), @ +2+1]&@0 - 1)+ @ +2B +-- - +2+1))
(@ +2® +2° +110),@* + 2+ 1] &(e - 1) + (e +2° +2° + 2 +1))) ((@* +2° +22+1]0),(@® + 2+ 1| & = 1) + L@+ + - +z+1))

(@' +a®+22+1]0), @ +ao+1 | & (@' +a®+a” 4o+ 1)+ &+’ +22+a+1) (@ +2° +2° 410, @ +2+1 6@ - D+ &@ +a 4+ +1))

(@' +2? +2+1]0), (2" +2% +1 | &1(z — 1) + €2(2® + =+ 1)) (@' + 2% +2+1]0),(c®+22+1] &0 1)+ & +2B +- +2+1)))
(@' 4+ +2+1]0), (@ +22+1 [ &@ +2® +22 o+ 1) +&@2+a+1) (@ 4+ +2+1]0), (@ +22+1]&@0 - 1)+ @ +2B +-- +2+1)))
(@ +a2” +2+110), (@ + 2 +1] (e - 1) + (e’ +2° +2° + 2+ 1)) (@ +2” +2+110), @ +a?+1 &7 —1) + @™+ + +a+1)

(@' +224+2+1]0), (2®+22+1 | & (e +a® +a? +a+1) +&(a +ad +22+2+1))) (@' +2+2+1]0),(@® +22 +1 & - 1)+ & +2® + - +2+1)))
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5. Construction of EAQECCs. In quantum information processing and quan-
tum computation, quantum error-correcting codes are crucial [6, 17, 28]. Dual-
containing (or self-orthogonal) classical codes can be constructed as ordinary quan-
tum codes using the stabilizer formalism [6]. The dual-containing condition, how-
ever, presents a challenge to the advancement of quantum coding theory. If shared
entanglement is available between the sender and receiver, Brun et al. [5] showed
that entanglement-assisted (EA) stabilizer formalism can be used to generate
EAQECCs from non-dual-containing classical codes.

An [[n, k,d; c]]; EAQECC over a F,, encodes k information qubits into n channel
qubits by means of ¢ pairs of maximally-entangled Bell states (i.e., ¢ ebits ) and
correct up to [%] errors, where d is the minimum distance of EAQECC. Notably,
when ¢ = 0, the EAQECC simplifies to a g-array standard [[n, k, d]] QECC. The
performance of an [[n, k, d; c]]; EAQECCs is measured by its rate % and net rate
k—c
Definition 5.1. [23] An [[nq, k1, d1;c1]]; EAQECC is said to be better than any
other [[ng, ko, d2; ¢2]] EAQECC if at least one of the following conditions holds:

1. % > %, and kln—*lcl > kzn;;z if dy = da, i.e., larger code rate and net rate
with same distance.

2. dy > do, if k1n;161 = k%;;? i.e, larger distance with same net rate.

Theorem 5.2. [5, EA Singleton Bound] An [[n, k,d;c]lq EAQECC with 0 < ¢ <
n— 1, satisfies 2(d—1) <n—k+c.

An EAQECC achieving this singleton bound is called a maximum-distance sep-
arable (MDS) EAQECC.

Definition 5.3. [21] An EAQECC with parameters [[n, k, d; c]]4 is called a weakly
maximum-distance separable (WMDS) EAQECC if 2d =n — k + c.

Theorem 5.4. [13] Let € be an [n, k1,d] linear code and €+ be its Euclidean dual
code with parameters [n, ko, d*]. Then [[n, k1 — dim(Hull(€)), d, ks — dim(Hull(€))]],
and [[n, k2 — dim(Hull(€)), d*, k; — dim(Hull(¢))]], EAQECCs exist.

In the following example, we construct EAQECCs using hulls of SCCs over
ZypLp[v).

Example 5.5. Let =5, A=3,y=5and € = (22 + 2 +11]0),(0 | &(x+4)* +
&(z +4)%)) be a SCC of length (3,5) in Ry ,, and ®(€) has parameters [13,2, 3].
Then by Theorem 2.8, €+ = ((z +4 | 0),(0 | &1 (z + 4) + €2(1))) and ®(€1) has
parameters [13, 11, 2]. Moreover, Hull(¢) = (((z* —1]0), (0 | & (2t + 23 + 2% + 2 +
1) +&(2° —1)))) and dim(Hull(¢)) = 1 By Theorem 5.4, we get an EAQECC with
parameters [[13, 10, 2; 1]]5. The parameters of this EAQECC satisfy 2d =n — k + ¢,
i.c., it is & WMDS EAQECC.

Example 5.6. Let g =7, =11,y =13 and € = ((x+6 | 0), (0 | & (z+1)+&(1)))
be a SCC of length (11,13) in R, ,, and ®(&) has parameters [37,35,2]. Then by
Theorem 2.8, €+ = (210 + 2% 4+ - +24+11]0),0 | &2+ + -+ 2+ 1) +
& (212 —1))) and ®(€1) has parameters [37,2,11]. Moreover, Hull(¢) = (((z*! —1 |
0), (0] & (213 —1) + & (213 —1)))) and dim(Hull(¢)) = 0 By Theorem 5.4, we get an
EAQECC with parameters [[37, 35, 2; 2]]7. The parameters of this EAQECC satisfy
2d=n—k+c, ie., it is a WMDS EAQECC.
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Caliskan et al. in [7] and Liu et al. in [21] have used Euclidean and Hermitian
hulls of skew cyclic codes over Fy x (Fy 4+ ulFs), and the Euclidean hulls of cyclic
codes over IF, +ulF, respectively, to construct some good EAQECCs over Fy. In the
following examples, we construct some good EAQECCs using the Euclidean hulls of
NSCCs over ZsZs[v]. Moreover, our EAQECCs have better parameters than those
of 7, 21].

Example 5.7. Let A = 47,7 = 21 and € = (((z* + 22 + 220 + 218 + 215 +
22 4 e 2t S at 1) ] 0), (@ 2 S a3 g 12
20 4 a% paT r b b v r a4+ 1) | E(c + 2t 4 2t6 gl 13
o124 210 4 2% 427 +2b + 2t + 23 + 2+ 1) + &(2? + 24)))) be a NSCC of
length (47,21) in Ry, and ®(C€) has parameters [89,44,9]. Then by Corollary
43, ¢t = ((z* + 22 + 220 + 28 + 2B + 22 4 2 + 2% + 28 + 2 + 2t + 1) |
0), (&2 +29 42 1o 43 421242101 29 4 o7 428 1ot adtal+at1) | & (22 +
r+1)+& (@B + 2P+ 22+ 2% + 25+ 23 +1)))) and ®(¢+) has parameters [89, 45, 2].
Moreover, Hull(€) = (((z**+ 22+ 220+ 218 + 25 + 22 42 4 2%+ a8 + 2P+ 2t +1) |
0), (22 + 20 12 4o 4 2B 4212 4210 129 4 o7 128 45 1 ad p a2 b 1) |
& (2?1 4+1)+& (2204294 - ~+2+41)))) and ®(Hull(€)) has parameters [89, 24, 12]. By
Theorem 5.4, we have an EAQECC with parameters [[89, 20, 9; 21]]2. This EAQECC
has a better net rate than the net rate of the existing EAQECC [[90, 10, 9; 80]]2 in
[21].

Example 5.8. Let A =25,y =33 and € = (((2°+1) | 0), ((z* + 23 + 22 +z + 1) |
E1(xB a2 12104 29 1St ad ot L ot 1) H o (2 1 ad + a7 +ab S +ad 1))
be a NSCC of length (17,9) in Ry, and ®(&) has parameters [91,61,2]. Then by
Corollary 4.3, €4 = (((z—1) (2 + 2B +219+25+1) | 0), (2 + 25 + 210+ 25+ 1) |
£1(x20 4219418 4 154 14 104 064 05 102 Lt 1) 4y (220 419418 4 15y 10y
219420+ 25422+2+1)) and ®(€) has parameters [91, 30, 10]. Moreover, Hull(¢) =
(@ +1)]0), (@ +2 +-+2+1) [ G@B+1) + L@+ 28+ + 2 +1))))
and ®(Hull(€)) has parameters [91, 1, 34]. By Theorem 5.4, we have an EAQECC
with parameters [[91, 29, 10; 60]]2. This EAQECC has a better net rate than the net
rate of the existing EAQECC [[90, 28, 10; 62]], in [21].

Example 5.9. Let A = 31,y =9 and € = (((z — 1)(z® + 23 + 1)(2® + 22 + 1) |
0), (z°+23+1) (2% +22+1) | &(z— 1)+ & (28 + 23 + 1) (2?2 +2+1)))) be an NSCC
of length (31,9) in R 5 and () has parameters [49,29,2]. Then by Corollary 4.3,
Lt =(((z-)(@°+23+22+x+ D) (@ +2* + 22+ + 1) (2 + a2t + 22 + 2+ 1) (2% +
422+ 22+1)]0), (P + 23+ 22+ + D)@+t + 22 + 2+ 1) (2® + 2t + 23 +
s+ D@+t + 22+ 224+ 1) | @+ 27+ + 2+ 1) + &1))) and ®(C) has
parameters [49, 20, 9]. Moreover, Hull(¢) = (((#31 —1) | 0), (z3°+ 2%+ - - +2+1) |
(2 =)+ &8+ 27+ +2+1)))) and ®(Hull(€)) has parameters [49, 1,40]. By
Theorem 5.4, we have an EAQECC with parameters [[49, 19, 9; 28]]2. This EAQECC
has a better net rate than the net rate of EAQECC [[48,9,9;39]]2 in [7].

6. Conclusion. We have characterized the hulls of Z,Z,[v]-cyclic codes for separa-
ble and non-separable cases. In Section 3, we determined the generator polynomials
in Theorem 3.2 and Corollary 3.3, and derived the solutions of hulls of SCCs over
ZpZy[v] using the concept of the generating function in combinatorics in Theorem
3.5. We also enumerated SCCs over Z,Z,[v] having a fixed dimension in Theorem
3.7 and Corollary 3.8. Section 4 focused on NSCCs over ZsZo[v] with coprime odd
block lengths, where we provided generator polynomials, found the solutions of hulls
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of NSCCs over ZyZs[v] in Theorem 4.7 and Theorem 4.8, respectively. Moreover,
in Theorem 4.10, we enumerated NSCCs over Z2Zs[v] having hulls of a fixed di-
mension. In Section 5, we applied our findings to construct good EAQECCs over
Zs using the hulls of NSCCs over ZsZs[v] in Example 5.7 - Example 5.9, having a
better rate than some of the existing EAQECCs.
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