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Abstract

Being consistent with every experimental measurement made to date, the current

paradigm of particle physics, the Standard Model, remains a successful parametriza-

tion of nature. Together, the Standard Model plus the theory of General Relativity

seem to provide a consistent picture of physics at all scales, yet there is plenty of

room to believe the story is incomplete.

Puzzles that remain unanswered within the context of the Standard Model in-

clude (i) an explanation of the origin of Dark Matter, which accounts for no less

than ∼ 25% of the Universe’s energy budget, (ii) a meaningful answer to the ques-

tion of electroweak naturalness, (iii) a rationale for the absence of anti-matter in our

observable patch of the Universe, (iv) a dynamical picture of the vast hierarchies we

observe in fermion masses, and (v) a resolution to the strong CP problem. With the

exception of the Dark Matter mystery, all other objections to the Standard Model

listed here take the guise of a ‘hierarchy’ problem: why is some quantity (either a

scale or coupling) so small? This work addresses two of the objections to the Stan-

dard Model: the necessity of an explanation to the origin of Dark Matter, and the

question of naturalness as a guiding principle in nature, understood as the necessity

for a dynamical mechanism behind unexplained hierarchies.

Chapters 1 and 2 introduce the topics of naturalness and Dark Matter respec-

tively. The former makes an emphasis on the electroweak hierarchy problem, and

a particular class of theories that provide a solution to this puzzle: models based

on the Twin Higgs mechanism. Chapters 3 and 4 are based on work published

in [1] and [2], where novel theories of Dark Matter, and their phenomenology, are

explored in the context of Twin Higgs models. Chapter 5 explores structural aspects

of a particular mechanism – the so-called ‘clockwork’ – for generating hierarchies in

parameters in a way that can be considered natural, and it is based on [3]. Finally,

chapter 6 summarizes our conclusions and future outlook.

Other work published during my time as a graduate student include [4–7], but

those publications are not the focus of this thesis.
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Acronym Meaning Page
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BSM Beyond the Standard Model 1
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LH Left-handed 1
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Chapter 1

Naturalness

1.1 Naturalness and nature

Many of the mysteries left unanswered in the context of the Standard Model (SM),

and which Beyond-the-Standard-Model (BSM) theories aim to address, have at their

core an unexplained hierarchy of scales or couplings. From the smallness of the

cosmological constant to the electroweak scale to the vast hierarchies in Yukawa

couplings, the principle of naturalness urges us to refuse a just-so ‘explanation’

of these conundrums, and instead demands a dynamical mechanism behind them.

Unsurprisingly, dynamical mechanisms for generating hierarchies are at the centre

of much of the work done in BSM physics.

Not all of these ‘hierarchy problems’, however, have the same standing. If the

smallness of some parameter x can be justified by the fact that in the limit x → 0

the theory recovers a symmetry, then we say that x being very tiny is ‘technically

natural’ [8]. As a result, when we take into account quantum effects, the value of

x will not be destabilized from its originally small size, for its value is symmetry-

protected and therefore any quantum corrections must be proportional to some

power of x itself. This definition of naturalness was introduced by ’t Hooft in

[8]: “At any energy scale µ, a physical parameter or set of physical parameters

αi(µ) is allowed to be very small only if the replacement αi(µ) = 0 would increase

the symmetry of the system.”. Examples of this kind include the vast hierarchies

we observe in the masses of quarks and leptons, linked to the fact that some of

the Yukawa couplings are y � 1, instead of O(1) as one would näıvely expect

from a naturalness perspective. Although such a situation may be puzzling, it is

nevertheless technically natural: in the limit y → 0 the theory recovers a chiral

symmetry under which the left-handed (LH) and right-handed (RH) components

of the corresponding massless fermion transform differently. The renormalization

group (RG) evolution equations for y are then proportional to some power of y itself
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and, as a result, solving such a puzzle only requires a dynamical mechanism that

operates at tree-level – being symmetry-protected, quantum corrections will then

respect the tiny value of the tree-level parameter. This is not to say, however, that

staggering hierarchies in couplings that are technically natural are of no interest:

from a model building perspective, it is clearly desirable to be able to explain tree-

level hierarchies as outputs, rather than have them as inputs. This will be the focus

of chapter 5, where we explore some structural aspects of a mechanism for generating

hierarchies in scales and couplings – the ‘clockwork’ mechanism [9,10] – even though

they may be considered technically natural.

Another example of a small number present in nature that is nevertheless tech-

nically natural is the ratio of the QCD confinement scale, ΛQCD ∼ 100 MeV, to

the Planck scale mPl ∼ 1018 GeV, although in this case the dynamical mechanism

behind it is well know: dimensional transmutation [11]. In short, a small (and

dimensionless) gauge coupling g3 in the UV uniquely determines the value of the

(dimensionful) scale of QCD confinement, defined as the IR scale at which QCD dy-

namics become strongly coupled, and below which the relevant degrees of freedom

are no longer quarks and gluons but bound states thereof. The situation is techni-

cally natural because the β-function of g3 is proportional to g3 itself, so that a tiny

value of the gauge coupling in the UV is not destabilized by quantum corrections.

In particular, the QCD β-function at one-loop reads

dα3(µ)
d log µ = −b3α

2
3

2π , (1.1)

where α3 = g2
3/(4π), and b3 = 7. Taking as boundary condition the value of α3 at

some high scale ΛUV, and defining the scale of confinement as α3(ΛQDC) ≡ 1, one

finds

ΛQCD ≈ ΛUV exp
(
− 2π
b3αUV

3

)
, (1.2)

where αUV
3 ≡ α3(ΛUV) � 1. ΛQCD is then predicted to be exponentially smaller

than ΛUV, justifying the small ratio between the scale of QCD confinement and any

other physical scale in nature, all the way up to mPl.

On the other hand, other problems stand in a particularly privileged posi-
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tion for being ‘neglected’. The cosmological constant problem [12] falls into this

category. Whereas the energy density of the Universe has been measured to be

ΛCC ∼ (10−12 GeV)4, quantum effects would näıvely set its natural value to be of

order m4
Pl ∼ (1018 GeV)4 – a stunning 10120 factor above the experimental measure-

ment. However, the effect of a finite vacuum energy density can only be discussed in

the context of a theory of gravity, and considering quantum corrections to its value

certainly invokes the presumption that gravity can consistently be made quantum.

It is in this sense that particle physicists are sometimes willing to neglect the cos-

mological constant problem, for it is reasonable to believe that its resolution is tied

to a deep understanding of a theory of quantum gravity.

Of particular acuteness are those cases that do not fit into any of the two cat-

egories discussed above, a prime example being the electroweak hierarchy problem.

That the electroweak scale v ∼ 100 GeV is so much smaller than mPl is not a

technically natural statement: interactions between the Higgs and heavy particles

whose masses are at some high scale Λ lead to quantum corrections to the Higgs

mass-squared parameter that are quadratically sensitive to this new scale (be it at

the Planck scale or below). Unlike the cosmological constant, a resolution to the

electroweak hierarchy problem cannot be shamelessly deferred until the point where

our understanding of quantum gravity is complete: although the fact that v is not

of order mPl itself could conceivably be accounted for by a complete theory of quan-

tum gravity, the question would remain open as to why the Higgs mass-squared

appears to be insensitive to any other energy scale at which we expect some new

dynamics to be present. This new dynamics could be related to the generation of a

baryon asymmetry, or to a dynamical theory of flavor that explains the hierarchies

in Yukawa couplings, or to the existence of a unified gauge theory. In all these cases,

new dynamics at scales � v (although they may well be below mPl) are expected

to be present, and the question of why the weak scale is so much smaller than any

of these remains unanswered.

Another example of a hierarchy problem involving spin-0 states was already

realized in nature: the lightness of pions. Being scalars, the three pions we observe

(π0 and π±) are subject, in principle, to the same type of quantum corrections that
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destabilize the Higgs potential. Pions being so much lighter than any other scale

present in nature would correspond to an extreme fine-tuning. This situation is

however reconciled with the idea of naturalness because pions are in fact pseudo-

Nambu-Goldstone bosons (pNGB’s) of an approximate global symmetry. Restricting

the discussion to the first generation of quarks, up and down quarks respect a global

SU(2)L × SU(2)R chiral flavor symmetry that is broken down spontaneously to

a non-chiral flavor SU(2)V , as a result of the confining nature of QCD through

the presence of a non-zero chiral condensate 〈uu〉 = 〈dd〉 ∼ Λ3
QCD. This breaking

leads to 3 massless NGBs, which are bound states of u and d quarks. The global

SU(2)L × SU(2)R symmetry is further broken explicitly by non-zero quark masses.

But sincemu,md � ΛQCD, this breaking is tiny compared to the scale of spontaneous

breaking, and therefore pions remain parametrically lighter than the relevant QCD

scale, m2
π � (4πΛQCD)2, in a way that is perfectly natural.

In this chapter we will focus on the electroweak hierarchy problem. We review

in detail the problem of electroweak naturalness in section 1.2, and discuss the re-

quirements that any solution must fulfill. Section 1.3 is devoted to Supersymmetry

– one of the best theoretically motivated of all proposed solutions to the hierarchy

problem, but that nevertheless seems to be in tension with naturalness (at least in

its simplest implementations) in light of negative experimental results.1 Exploring

the difficulties of Supersymmetry when it comes to reconciling naturalness and ex-

periment will motivate our discussion of a different class of solutions to the hierarchy

problem: theories of Neutral Naturalness, the prime example of which are models

based on the Twin Higgs mechanism. We explore the Twin Higgs idea in section 1.4,

with a particular focus on its minimal implementation, the so-called Fraternal Twin

Higgs, which is the context in which the work of chapters 3 and 4 is developed.
1There are of course other solutions to the electroweak hierarchy problem. A prime example is

the idea of compositeness, which essentially consists in making the Higgs a ‘pion’, i.e. the pNGB
of some global symmetry that is spontaneously broken as a result of some confining dynamics (see
[8,13] for the earliest work). Another well-motivated class of solutions make use of the presence of
extra spatial dimensions, either warped [14] or flat [15]. We will not discuss these other possibilities
in this thesis.
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1.2 The electroweak hierarchy problem

The Higgs sector of the SM is effectively described by a potential of the form

V (|H|) = m2
H |H|2 + λ|H|4 , (1.3)

where H corresponds to the electroweak Higgs doublet. If the mass-squared param-

eter is m2
H < 0 then the Higgs gets a non-zero vacuum expectation value (vev)

〈|H|2〉 = −m
2
H

2λ ≡ v2

2 , (1.4)

which has been experimentally measured to be v ' 246 GeV from the properties of

the weak interactions. This non-zero vev breaks the SU(2)L×U(1)Y symmetry of the

SM down to U(1)EM, and, as a result, theW± and Z gauge bosons get masses of order

∼ 100 GeV. After eletroweak symmetry breaking, one real scalar degree of freedom

is left in the spectrum – the Higgs particle – with mass m2
h = 2λv2 = −2m2

H , which

has been measured to be mh ' 125 GeV. With the experimental measurements of v

and mh we can infer the values of the parameters in eq.(1.3) as m2
H ' −(90 GeV)2

and λ ' 0.13. The value of v is what we refer to as the weak scale, and it is set by

the Higgs mass-squared parameter, m2
H , evaluated at the weak scale itself.

An electroweak hierarchy problem arises in the context of theories beyond the

SM, with new degrees of freedom and dynamics present at some scale M � v

that interact with the SM sector (in particular with the Higgs). In such scenarios,

interactions between the Higgs and new particles with masses of order M lead to

quantum corrections to the Higgs potential that, näıvely, set the value of the mass-

squared parameter at large distances to be m2
H ∼ M2. The electroweak hierarchy

problem is thus sometimes stated as the question of why the weak scale is so much

smaller than any other scale M at which we expect new physics to appear, and

which a priori could be as high as mPl [8, 16–18].

To illustrate this point, let’s consider a complex scalar field ϕ, with mass M � v,

that interacts with the Higgs through a quartic coupling. The relevant interaction
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term in the lagrangian reads

L ⊃ −λ̃|H|2|ϕ|2 , (1.5)

and would result in a one-loop contribution to the Higgs two-point function given

by

iM(1)
2 =

'

�̃
H H

= −iλ̃
∫ d4k

(2π)4
i

k2 −M2 + iε
. (1.6)

The integral of eq.(1.6) is quadratically divergent, and we may use any regularization

procedure to make it finite. For instance, if we use a hard cut-off Λ as a regulator

we find

iM(1)
2 = − iλ̃

16π2

(
Λ2 − 2M2 log Λ

M

)
, (1.7)

which has both a quadratic divergence and a logarithmic divergence as we take

Λ→∞. To get rid of these divergences we may add counter-terms to the lagrangian,

of the form L ⊃ −m2
H,c.t|H|2, with m2

H,c.t such that the divergent terms in eq.(1.7)

are cancelled. Ignoring finite pieces, this requires

m2
H,c.t = − λ̃

16π2

(
Λ2 − 2M2 log Λ

µ

)
, (1.8)

where we have been forced to introduce an extra mass scale µ on dimensional grounds

– the so-called renormalization scale. Now, the tree-level and counter-term pieces,

together with our one-loop result, lead to a two-point function (at vanishing external

momentum) given by

iM2 = −i
(
m2
H −

λ̃

8π2M
2 log µ

M

)
. (1.9)

Demanding that the result of eq.(1.9) is independent of µ, as must be the case for

physical observables like n-point functions, leads to the one-loop RG equation for
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the mass-squared parameter m2
H :

dm2
H(µ)

d log µ = λ̃

8π2M
2 · θ(µ−M) , (1.10)

where we have included a factor θ(µ−M) to make it explicit that the contribution

from the massive scalar is only present at scales µ > M .2

RG equations are useful because they tell us about the properties of our theory as

we move from small to large distances. In particular, if the parameters of our theory

are specified as boundary conditions at some very high energy scale ΛUV > M � v,

then their values in the IR are encoded in their RG flow. For instance, in our

example, if the Higgs mass-squared is given in the UV as m2
H(ΛUV), its value at

scale v � ΛUV reads

m2
H(v) = m2

H(ΛUV)− λ̃

8π2M
2 log ΛUV

M
. (1.11)

Now, what happens if we change the size of the UV parameter by a fractional

amount εUV, such that m2
H(ΛUV) → (1 + εUV)m2

H(ΛUV)? We can parametrize the

effect of such a perturbation on the IR as m2
H(v) → (1 + εIR)m2

H(v). If εIR ∼ εUV

(i.e. changes in the properties of the theory at very small distances translate into

similar changes at large distances), we say that the theory is natural. On the other

hand, if εIR � εUV (i.e. the properties of the theory in the IR are extremely sensitive

to the UV boundary conditions), we say that the theory is finely tuned, with εIR

providing a measure of the degree of fine-tuning. In our example:

εIR ≈ εUV
λ̃

8π2
M2

m2
H(v) log ΛUV

M
∼ εUV

M2

8π2m2
H(v) , (1.12)

where in the last step we have assumed that both λ̃ and the log are O(1). Eq.(1.12)

illustrates how if there is new physics at some high scale M that interacts with the

Higgs with an O(1) coupling, the theory becomes finely tuned as soon as M & 1 TeV

(roughly a loop factor above the weak scale). In particular, if M ∼ mPl, then
2In renormalization schemes that are independent of the mass of the particles, like the hard

cut-off used here, the decoupling theorem [19] needs to be introduced ‘by hand’ in the RG equations
in this way.

7



εIR ∼ εUV1030, and we would need to specify the UV boundary condition to an

accuracy of roughly 1 part in 1030 for the IR limit of the theory to be consistent with

experimental observations. This is the electroweak hierarchy problem. Although we

have illustrated how fine-tuning arises through an interaction with a scalar field,

the form of Eqs.(1.10)-(1.12) would be the same in the case of fermions and gauge

bosons, up to signs and O(1) factors.

It is worth emphasizing that an electroweak hierarchy problem does not arise in

the context of the SM. If, defying expectations, the true theory of nature consisted

of the SM of particle physics plus classical General Relativity, then no such prob-

lem exists. In the context of a fully renormalizable theory like the SM, quantum

corrections to the Higgs mass-squared that are formally quadratically divergent are

renormalized away by adding the appropriate counter-terms, as we have illustrated.

Since the largest physical energy scale of the SM is the weak scale itself, the finite

radiative corrections to the Higgs mass are of precisely that same order.

Any solution to the electroweak hierarchy problem must therefore (i) introduce

new dynamics that remove the quadratic sensitivity of the Higgs mass-squared pa-

rameter to physics present at scales M � v, and (ii) it must do so at a scale not

far from ∼ 1 TeV for the solution to be natural.

In the following, we will define the degree of fine-tuning of a given theory as

∆ ≡
∣∣∣∣∣m2

H(v)
δm2

H

∣∣∣∣∣ = 1
2

m2
h

|δm2
H |
∼ ε−1

IR , (1.13)

where δm2
H refers to the radiative corrections to the Higgs mass-squared parameter

in the IR (the second term of eq.(1.11) in our example). Intuitively, our definition

of fine-tuning corresponds to the inverse of the parameter εIR that we introduced in

order to asses the sensitivity of physics at large distances to UV boundary conditions.
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1.3 Supersymmetry

1.3.1 Basic structure

Supersymmetry (SUSY) is a symmetry of space-time that arises as the only possi-

bility for a non-trivial extension of the Poincaré group if the original assumptions in

the Coleman-Mandula theorem [20] are relaxed to allow for anti-commuting gener-

ators [21]. The minimum possible amount of SUSY in 4 dimensions, referred to as

N = 1, contains two two-component spinor generators Qα and Q†α̇, with commutator

relations

[Qα, Pµ] = 0 [Qα,Mµν ] = (σµν)βαQβ (1.14)

{Qα, Q
†
β̇
} = 2(σµ)αβ̇Pµ {Qα, Qβ} = 0 , (1.15)

where Pµ and Mµν are the generators of space-time translations and Lorentz trans-

formations respectively, and σµν ≡ i
4(σµσν − σνσµ).

Irreducible representations of the SUSY algebra, known as supermultiplets, con-

tain fields related to each other by the action of Qα and Q†α̇. Since these are

spinors themselves, single-particle states within a given supermultiplet, known as

superpartners, have spins that differ by 1/2. On the other hand, the SUSY genera-

tors have trivial commutation relations with Pµ, and also with the generators of any

internal symmetry group, including those of gauge symmetries. As a result, super-

partners have equal mass, and transform under the same representation of the gauge

group. There are two types of supermultiplets relevant in N = 1 SUSY: chiral and

vector multiplets. On-shell, the former contains one two-component Weyl fermion

and a complex scalar, whereas the latter is made of one massless gauge boson and

a Weyl fermion – both multiplets contain two fermionic and two bosonic degrees

of freedom. As a consequence of imposing SUSY as a symmetry of space-time, the

number of degrees of freedom in the theory doubles, with the new states having

spins that differ by 1/2 compared to those of the original particles.

Its special status as the only possible non-trivial extension of the Poincaré group

provides a good motivation for considering SUSY a symmetry of nature, and it is

9



reinforced by the fact that it appears to be a necessary ingredient in order to build

consistent string theories that contain fermions (see e.g. [22, 23]). SUSY, however,

cannot be an exact symmetry of nature – if it was, the superpartners of ordinary

particles would have the same mass as their SM counterparts, a possibility that is

experimentally ruled out. If the scale of SUSY breaking is not far above the weak

scale, and the symmetry is broken softly, then SUSY provides a predictive framework

for gauge coupling unification [24–26], and, most importantly for our discussion, can

solve the electroweak hierarchy problem [25].

To illustrate how softly broken SUSY provides a solution to the hierarchy prob-

lem, let’s look at a toy example first. Consider a real scalar field φ, with mass-squared

m2
φ, two complex scalars ϕ1 and ϕ2, and a Dirac fermion f . The mass of the fermion

is M , and we write the mass-squared of the complex scalars as M2
s = M2 +m̃2, with

M,Ms � mφ. All of them have couplings to φ, of the form

L ⊃ − λ̃2φ
2(|ϕ1|2 + |ϕ2|2)− µ̃φ(|ϕ1|2 + |ϕ2|2)− y√

2
φff . (1.16)

The one-loop RG equation for m2
φ due to the interactions in eq.(1.16) reads

dm2
φ(µ)

d log µ = λ̃

4π2M
2
s + µ̃2

4π2 −
3y2

4π2M
2 . (1.17)

If the quartic and cubic couplings are given by λ̃ = y2, and µ̃ =
√

2yM , then

dm2
φ(µ)

d log µ = y2

4π2 (M2
s −M2) = y2

4π2 m̃
2 . (1.18)

The mass-squared parameter m2
φ is only sensitive to the mass difference between

scalars and fermions, and the quadratic sensitivity to the overall mass scale M that

we encountered in eq.(1.10) is no longer present, due to a cancellation between the

contributions from scalar and fermion degrees of freedom. The value of m2
φ in the IR

will only be logarithmically sensitive to M , and even this dependence will disappear

in the limit m̃2 → 0, in which fermion and scalars have the same mass.

The relations we had to impose among the different couplings (λ̃ = y2 and µ̃ =
√

2yM) are actually a requirement if the theory is supersymmetric. The interactions

10



in eq.(1.16) can then be written in a manifestly supersymmetric form as arising

from terms in the superpotential, W ⊃ yΦΦ1Φ2 + MΦ1Φ2. (Φ refers to the chiral

superfield whose scalar component has real part φ, and Φ1,2 are chiral superfields

with scalar and fermion components ϕ1,2 and ψ1,2 respectively, the two Weyl spinors

forming the Dirac fermion f .) In order to make the scalars ϕ1,2 heavier than the

fermion, we had to break SUSY. In our example, this breaking would just amount

to adding an extra term in the lagrangian, of the form

Lsoft = −m̃2(|ϕ1|2 + |ϕ2|2) . (1.19)

We refer to this type of breaking as soft because, as we have illustrated in eq.(1.18),

it does not introduce a quadratic sensitivity of m2
φ to the overall mass scale M – only

a mild logarithmic dependence remains. This is in contrast to what would happen

if the breaking had been hard: if we had instead broken SUSY by modifying the

quartic coupling between scalars, by having λ̃ = y2 + δy2, then the right-hand side

of eq.(1.18) would now include a term ∝ δy2M2, and a quadratic sensitivity to M

would have been reintroduced. This toy model illustrates the basics of how softly

broken SUSY provides a solution to the electroweak hierarchy problem.

It is worth noting that, if M is not very large, then soft breaking and hard

breaking may lead to a comparable degree of fine-tuning. However, soft breaking

is advantageous from the point of view of building a UV complete theory, since

we can consider physics at arbitrarily high scales while maintaining the quadratic

insensitivity of the Higgs mass-squared parameter.

1.3.2 The MSSM and fine-tuning

The Minimal Supersymmetric Standard Model (MSSM) is the minimal extension of

the SM that includes SUSY (for excellent reviews on the topic see e.g. [27, 28] and

references therein). It consists of 4-dimensional, N = 1 SUSY, with the particles of

the SM promoted to being one of the components of a given supermultiplet. The

fermions of the SM are now part of chiral multiplets, with the scalar components

being referred to as sfermions, whereas the vector bosons are now part of vector
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multiplets, with gauginos being their fermionic counterparts. In the MSSM, the

Higgs sector needs to be somewhat extended: two Higgs chiral superfields need to

be introduced, Hu and Hd, with hypercharge assingments +1/2 and −1/2 respec-

tively. The need for two Higgs multiplets with opposite hypercharge arises from

the requirement that all gauge anomalies be cancelled, and also as a model building

necessity in order to write Yukawa couplings to both up-type quarks (involving Hu)

and also to down-type quarks and leptons (for which Hd is required) as holomorphic

couplings in the superpotential. In the MSSM, the scalar components of both Hu

and Hd get non-zero vev’s, subject to the condition v2
u + v2

d = v2 ' (246 GeV)2,

and the ratio of the two vev’s is typically referred to as tan β ≡ vu/vd. We will

focus on the limit of large tan β, in which v ' vu and the discussion of electroweak

fine-tuning is largely simplified.

The terms in the MSSM superpotential relevant to our discussion read

WMSSM ⊃ ytQ3Huu3 + µHuHd , (1.20)

where Q3 = (T3, B3)T and u3 are the electroweak doublet and singlet superfields

corresponding to the top sector, and the µ-term is required to render the fermionic

partners of the Higgs, the higgsinos, massive. Terms in the scalar lagrangian that

involve the neutral component of Hu arising from eq.(1.20) read

L ⊃ −|µ|2|H0
u|2 − y2

t |H0
u|2(|t̃L|2 + |t̃R|2) , (1.21)

where t̃L and t̃R correspond to the scalar components of T3 and u3 respectively.

From the first term in eq.(1.21) we can already see a source of trouble: the µ-term

of eq.(1.20) translates into a mass-squared for Hu that is positive, therefore not

allowing for electroweak symmetry breaking at tree-level.

For phenomenological reasons, the interactions encoded in the superpotential of

eq.(1.20) need to be extended to include SUSY breaking. The most important terms

for the discussion of electroweak naturalness in the SUSY breaking lagrangian of the

12



MSSM read

Lsoft ⊃ −m2
Hu |Hu|2 − m̃2

t (|t̃L|2 + |t̃R|2)− 1
2(M3g̃g̃ + h.c.) . (1.22)

The first and second terms correspond to SUSY breaking mass-squared parameters

for the Higgs and stops respectively,3 whereas the last piece is a Majorana mass

term for the fermionic partners of the gluons, the so-called gluinos. All these terms

amount to a soft breaking of SUSY.

It is clear now that the Higgs mass-squared parameter will receive contributions

from different sources: from the supersymmetric |µ|2 piece, from a potential SUSY

breaking contribution m2
Hu present at tree-level, and from radiative corrections in-

volving the superpartners of the SM particles, the largest of which comes from the

top/stop sector (due to the large Yukawa coupling yt ≈ 1, and the colour mul-

tiplicity factor). In order to avoid fine-tuning, all these contributions cannot be

much above the weak scale. We now turn to the challenges this poses for theories

with MSSM-like structure. (For detailed and extensive discussions on this topic,

see [29–35].)

(i) The µ-problem. At tree level, the Higgs mass-squared parameter arising

from the terms in eq.(1.20) and eq.(1.22) is given by L ⊃ −(|µ|2 + m2
Hu)|H0

u|2. In

order to avoid fine-tuning already at tree-level, one needs µ ∼ 100 GeV, and of

the same order as a potential SUSY breaking term mHu . However, the µ-term is

a supersymmetric parameter that in principle has nothing to do with any source

of SUSY breaking, and is, a priori, unrelated to the value of the weak scale. To

avoid tuning, one therefore needs a dynamical mechanism that generates a µ-term

of the required size. Although possible, see e.g. [36–38], this introduces additional

model-building difficulties in MSSM-like theories.

(ii) Low tuning vs. a 125 GeV Higgs. The leading radiative correction to
3We could have of course written different SUSY breaking mass terms for t̃L and t̃R, but the

qualitative features of the discussion that follows would remain unchanged, so we focus on the case
of equal stop masses for clarity.
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the Higgs mass-squared parameter in the IR comes from the stop sector:

dm2
Hu(µ)

d log µ = 3y2
t

4π2 m̃
2
t + . . . ⇒ δm2

Hu ∼ −
3y2

t

4π2 m̃
2
t log ΛSUSY

m̃t

, (1.23)

where ΛSUSY refers to the scale at which SUSY breaking is communicated to the

SM. From eq.(1.23), it is clear that for low fine-tuning we would need light stops, as

well as a low SUSY-breaking scale.

On the other hand, the tree-level quartic coupling of the Higgs is given by λtree =

(g2 + g′2)/8, and so the physical Higgs mass, in the large tan β limit, is given by

m2
h,tree ' 2v2λtree = m2

Z – well below the experimental measurement. The leading

radiative contribution to the Higgs quartic coupling comes from the top/stop sector,

and reads (focusing only on the leading logarithmic piece):

δλ ' 3y4
t

16π2 log m̃
2
t +m2

t

m2
t

≈ 3y4
t

16π2 log m̃
2
t

m2
t

, (1.24)

leading to a change in the physical Higgs mass given by

δm2
h = 2v2δλ ≈ 3m2

ty
2
t

4π2 log m̃
2
t

m2
t

. (1.25)

The radiative contribution to the physical Higgs mass from the top/stop sector is

only logarithmically dependent on the stop mass. Thus, to achieve a phenomeno-

logically viable Higgs, it seems like we would prefer heavy stops, well into the TeV

regime (see [39–41] for detail computations and extended discussion), and in direct

contradiction with the requirements of naturalness.

(iii) The gluino ‘sucks’ problem. Even if there were other interactions that

lifted the Higgs mass to its observed value, so that the stops could remain light,

such a situation would be a fine-tuned affair within the MSSM. It turns out that

the stop mass-squared parameter also receives large radiative corrections from the

gluino sector, of the form

dm̃2
t (µ)

d log µ = −8αs
3π |M3|2 + . . . ⇒ δm̃2

t ∼
8αs
3π |M3|2 log ΛSUSY

|M3|
, (1.26)
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which implies that m̃t ∼M3 is the natural value for the stop mass at large distances.

This feature of the gluino driving the stop mass in the IR all the way up to ∼ M3

within a few decades of RG evolution (even if m̃t(ΛSUSY) = 0) is known as the

gluino ‘sucks’ problem [30]. Given that limits on gluino masses can be as stringent

as ∼ 2 TeV in the MSSM [42], this would lead to a fine-tuning of order

∆ = 1
2

m2
h

|δm2
H |
' 1

2
m2
h

3y2
t

4π2 m̃2
t log ΛSUSY

m̃t

' 1% , (1.27)

where in the last step we have taken m̃t = 2 TeV, and ΛSUSY = 10m̃t (only a decade

above the stop mass). The fine-tuning is already at the 1% level, even for a relatively

low SUSY-breaking scale.

Whereas there is nothing inconsistent with a theory that is finely-tuned at the

percent level, it starts becoming disappointing. As we have seen, the bad level of

fine-tuning in theories like the MSSM is directly related to the stringent bounds

that experiments like the LHC set on the masses of coloured SM partners. If we

could have SM partners that cancelled the quadratic sensitivity of the Higgs mass-

squared to high scales but that were not charged under the SM gauge group, then

experimental bounds on the masses of the new particles would not be anywhere near

as stringent, which could potentially allow for a much more comfortable level of fine-

tuning. This is the basic idea of Neutral Naturalness, a term that encodes theories

in which the SM partners responsible for protecting the Higgs potential from large

radiative corrections are neutral under SM gauge interactions. The prime example

of such theories are models based on the Twin Higgs mechanism, which we explore

in the remainder of this chapter.

1.4 Twin Higgs

The Twin Higgs idea is an alternative (partial) solution to the electroweak hierar-

chy problem, in which the Higgs is realised as a pNGB of an approximate global

symmetry [43–45]. It requires the presence of a hidden sector that is an exact copy

of the SM, and it is based on the idea that a discrete Z2 operates between the two

sectors, enforcing field content and couplings to be equal. On top of the discrete Z2,
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the scalar potential of Twin Higgs theories features an approximate global SU(4),

which arises as an accidental symmetry at the level of the quadratic terms as a

consequence of the discrete Z2. This SU(4) global symmetry is broken both spon-

taneously and explicitly, and a light pNGB remains in the spectrum, which is then

identified with the Higgs particle. The role of the Z2 is then to ensure that radiative

corrections to the mass-squared parameter in the scalar potential that are quadrat-

ically sensitive to UV scales remain SU(4) symmetric, thus not contributing to the

pNGB potential. In this way, Twin Higgs theories manage to solve the hierarchy

problem up to scales Λ ≈ 5− 10 TeV, at which new dynamics that preserve the Z2

must appear to keep the theory natural. We discuss in detail the basic idea behind

the Twin Higgs mechanism in section 1.4.1. In section 1.4.2 we explore its minimal

realization, the so-called Fraternal Twin Higgs [46], which is the framework in which

the work presented in chapters 3 and 4 was developed.

1.4.1 The Twin Higgs Mechanism

The Twin Higgs mechanism [43–45] requires the presence of a hidden sector – the

twin sector – that mirrors the SM both in terms of field content and interactions,

as enforced by the discrete Z2 symmetry that operates between the two sectors.4

The Higgs doublets of the visible and twin sectors (H and H ′ respectively) can be

arranged as H = (H,H ′)T , and the scalar potential of the theory respects a global

SU(4) symmetry, under which H transforms as a fundamental. At tree-level, the

scalar potential can be written as

V = m2
HH†H + λ(H†H)2 , (1.28)

with m2
H < 0. This leads to a non-zero vev 〈|H|2〉 = −m2

H/(2λ) ≡ f 2/2, that breaks

the SU(4) symmetry spontaneously down to SU(3). As a result, 7 NGBs arise, 6

of which become the longitudinal polarizations of the Z and W± vector bosons of

the SM and twin sectors. Two real scalar degrees of freedom then remain in the

spectrum: the remaining NGB (h) that will be identified with the Higgs, and a
4We refer to the twin sector (both their particles and gauge group) with a prime symbol.
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heavy scalar (h′) with mass
√

2λf .

The global SU(4) symmetry is further broken explicitly, by the gauging of a

SU(2) × SU(2) subgroup of SU(4) (these SU(2) components to be identified with

the SM and twin gauge groups SU(2)L and SU(2)′L), and by Yukawa couplings to

fermions. As a result, radiative corrections lead to a quartic term in the potential

that is SU(4)-breaking but Z2-preserving, of the form

V ⊃ η(|H|4 + |H ′|4) . (1.29)

This leads to both Higgs doublets getting a vev of the same size, 〈|H|2〉 = 〈|H ′|2〉 =

f 2/4, and the former NGB now gets a mass proportional to the SU(4)-breaking

quartic, m2
h = ηf 2. However, the physical mass-eigenstates are given by

h = 1√
2

(h0 − h′0) h′ = 1√
2

(h0 + h′0) , (1.30)

where h0 (h′0) refers to the real neutral component of the H (H ′) doublet – the two

physical scalars are an equal admixture of visible and hidden sector states.

Since a phenomenologically viable model must have a Higgs that couples domi-

nantly to the visible sector, a source of Z2-breaking must be included, that allows

the two vev’s to differ. We may do this by introducing a mass-squared term only

for H, of the form:

V ⊃ µ̃2|H|2 , (1.31)

which amounts to a soft breaking of the Z2 symmetry. Now, carefully choosing the

parameter µ̃2 > 0 allows for the two vev’s to be different, such that

〈|H|2〉 ≡ v2

2 �
f 2

2 〈|H ′|2〉 = 1
2(f 2 − v2) ' f 2

2 , (1.32)

which requires µ̃2 = η(f 2 − 2v2) ' ηf 2, and the masses of the two scalar states

are now m2
h ' 4ηv2 and m2

h′ ' 2λf 2. The need to introduce a Z2-breaking term

constitutes a source of fine-tuning in these kind of theories, which may be estimated
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as

∆ = 1
2
m2
h

µ̃2 '
1
2

4ηv2

ηf 2 = 2v2

f 2 . (1.33)

The two propagating scalars are now given by

h = h0 cos
(
v

f

)
− h′0 sin

(
v

f

)
h′ = h′0 cos

(
v

f

)
+ h0 sin

(
v

f

)
, (1.34)

so that for small v/f , h (h′) is mostly made of visible (twin) gauge eigenstates. From

eq.(1.34), we can see that Higgs couplings to visible sector states will be modified

from the SM prediction by a factor of cos (v/f) ' 1 − v2/(2f 2), whereas those to

hidden sector particles are suppressed by a factor sin (v/f) ' v/f .

The light Higgs being a small admixture of SM and twin gauge eigenstates, as

specified in eq.(1.34), is crucial for experimental exploration of Twin Higgs theories

– it provides the only portal of interactions between the two sectors. At colliders

like the LHC, twin particles will only be produced through this ‘Higgs portal’, and

thus their production cross sections are much smaller than those of extra states

present in other solutions to the hierarchy problem in which the new particles are

charged under the SM gauge group. Similarly, produced twin particles will only

be able to decay back into SM degrees of freedom through their interactions with

the Higgs. As a result, experimental bounds from direct searches on the masses

of twin particles are basically non-existent, and definitely irrelevant regarding fine-

tuning considerations [47] – in stark contrast with the situation in SUSY models as

a result of the stringent bounds on coloured sparticles like gluinos, as discussed in

section 1.3.2. Instead, the leading experimental constraints on these models stem

from measurements of Higgs properties. In particular, precision measurements of

Higgs couplings to visible sector states, as well as bounds on the Higgs invisible

branching fraction, put a lower bound on f/v & 3 [46], corresponding to a mild 20%

tuning. Even by the end of the LHC this bound will not be larger than f/v & 5,

driving the level of tuning only up to around 10% [47] – still within the domain of

naturalness. As we will discuss in chapters 3 and 4, the Higgs portal between SM

and twin sectors will also drive most of the Dark Matter phenomenology of Twin

Higgs theories.

18



To illustrate explicitly how the Twin Higgs mechanism solves the electroweak

hierarchy problem, and to what extent it is a successful solution, let’s consider two

complex scalar fields ϕ and ϕ′, with masses M and M ′ respectively (with M,M ′ �

f), and with couplings to H and H ′ of the form

L ⊃ −λ̃|H|2|ϕ|2 − λ̃′|H ′|2|ϕ′|2 . (1.35)

Radiative corrections to the quadratic terms in the scalar potential arising from

these interactions read (remember eq.(1.11))

∆V ' − λ̃

8π2M
2 log ΛUV

M
|H|2 − λ̃′

8π2M
′2 log ΛUV

M ′ |H
′|2 . (1.36)

Crucially, if λ̃′ = λ̃, and M ′ = M , as would be imposed by an exact Z2 symmetry

between the two sectors, then the above equation can be written as

∆V ' − λ̃

8π2M
2 log ΛUV

M
(|H|2 + |H ′|2) = − λ̃

8π2M
2 log ΛUV

M
|H|2 , (1.37)

i.e. radiative corrections to the mass-squared term that are quadratically sensitive

to higher mass scales are fully SU(4) symmetric, thanks to the discrete Z2, and

therefore do not contribute to the Goldstone potential.5 In essence, this is the Twin

Higgs mechanism.

This example, however, also clarifies the limitations of the Twin Higgs idea.

Keeping v2 tuned to its observed value, quantum corrections to the quadratic term

in the potential of the form shown in eq.(1.37) translate into a natural value of the

twin vev f given by

λf 2 ' |δm2
H| '

λ̃

8π2M
2 log ΛUV

M
. (1.38)

The natural value for f is then, roughly, no more than a loop factor below the scale

at which new physics is present. Thus, for the tuning between v and f to be the

only significant source of fine-tuning, and if we demand ∆ to be in the 10 − 20%

range, then the theory needs to be UV-completed at some scale Λ ≈ 5 − 10 TeV
5The interactions in eq.(1.35) will also generate an SU(4)-breaking, but Z2-preserving, quartic

coupling, of the form of eq.(1.29). However, these will only be logarithmically sensitive to UV
scales.
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with some new dynamics that respect the discrete Z2. The Twin Higgs mechanism

alone then succeeds in stabilizing the electroweak scale up to a cut-off Λ. We call

this a solution to the little hierarchy problem, since it only maintains naturalness

up to scales well below mPl.6

The extent to which the discrete Z2 symmetry is broken when it comes to inter-

actions involving heavy states constitutes an additional source of fine-tuning – on

top of the ‘v/f -tuning’ of eq.(1.33), and the ‘f -tuning’ of eq.(1.38). Such breaking

could happen softly, for instance by having M ′ 6= M in our example, or it could be

a hard breaking, as would happen if λ̃′ 6= λ̃. Although we expressed a preference

for soft versus hard breaking of a symmetry in our discussion of SUSY, in theories

with a relatively low cut-off, as is the case for Twin Higgs models, a hard breaking

may still be consistent with naturalness.

In the following, we explore the minimal implementation of the Twin Higgs idea

that allows for a low level of fine-tuning – the so-called Fraternal Twin Higgs [46].

This minimal senario precisely exploits the fact that, since the theory only provides

a solution to the little hierarchy problem, a hard breaking of the Z2 by not mirroring

all the particles of the SM in the twin sector is still compatible with a low level of

tuning.

1.4.2 Fraternal Twin Higgs

The Fraternal Twin Higgs scenario corresponds to the minimal realization of the

Twin Higgs idea, as far as naturalness is concerned, and it is based on the observation

that a low level of tuning does not require a twin sector that is a complete copy of

the SM, with partial matter and gauge content sufficing. The philosophy behind the

Fraternal Twin Higgs idea is thus to include only those degrees of freedom that, if

absent, would lead to an unacceptably large level of tuning, assuming the theory is

UV-completed at scales Λ ≈ 5− 10 TeV. The Fraternal Twin Higgs was introduced

in [46], and apart from a twin Higgs doublet, whose presence is at the core of the
6Several UV completions of Twin Higgs theories have been explored, either by invoking SUSY

[48–50], compositeness [51–54], or other more exotic possibilities [55,56]. In this work, we will only
be concerned with the effective theory below scale Λ, where the relevant degrees of freedom are
just the SM particles plus their twin sector counterparts.
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Twin Higgs mechanism, it also requires a twin top sector, twin SU(2)′L interactions,

and a twin SU(3)′ gauge group.

The requirement of a twin top sector (both an SU(2)′L doublet Q′3 = (t′L, b′L)T

and singlet t′R), can be readily understood by considering radiative corrections to the

Higgs mass-squared parameter from new heavy states related to the top sector of the

SM. Such new degrees of freedom could be the extra partners arising from whatever

UV-completion takes over at scale Λ. In order to parametrize the form of such

contributions, we can use a hard cut-off when computing the one-loop correction to

the Higgs two-point function from the SM top itself – the quadratically divergent

piece will be, parametrically, indicative of the size of the contributions arising from

whatever new states are present at scale Λ. One finds

∆V ' −3y2
t

8π2 Λ2|H|2 . (1.39)

Eq.(1.39) reflects how the absence of a twin top sector corresponds to a hard breaking

of the Z2, since the SU(4)-breaking mass-squared term is now quadratically senstive

to the UV scale Λ. This would lead to a level of fine-tuning

∆ ' 1
2
m2
h

3y2
t

8π2 Λ2
. 1%

(
5 TeV

Λ

)2

, (1.40)

i.e. worse than 1% for a cut-off of just 5 TeV!

Such fine-tuning is clearly unacceptable, therefore requiring the presence of a

twin top, with twin Yukawa coupling yt′ . Now, radiative corrections to the quadratic

term in the scalar potential from hypothetical new states present at the cut-off take

the form

∆V ' −3yt′2
8π2 Λ2|H|2 + 3(yt′2 − y2

t )
8π2 Λ2|H|2 . (1.41)

Whereas the first term in this equation is SU(4) symmetric, the last one is not, as a

result of the hard Z2-breaking we have introduced by allowing the two top Yukawa

couplings to differ, and will contribute to the level of fine-tuning. If we demand this

source of tuning be better than ∼ 20% (so that it is subleading to the v/f -tuning

of eq.(1.33)), then the value of the two Yukawa couplings at the cut-off scale must
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be rather similar. In particular, for Λ ≈ 5 TeV, we find

|yt′(Λ)− yt(Λ)|
yt(Λ) . 1% , (1.42)

i.e. they must be within 1% of each other.

Similarly, only gauging the SU(2)L group of the SM would lead to an unaccept-

able level of fine-tuning, and even two-loop corrections involving gluons are large

enough that a twin QCD gauge group is also required by naturalness. Low tuning

thus requires SU(2)L and SU(3) gauge interactions be mirrored in the twin sec-

tor, and, for a 5 TeV cut-off, the corresponding twin gauge couplings in the UV

must be within 10% and 20% of those in the SM, respectively. Moreover, once the

SU(2)′L and SU(3)′ groups are gauged, anomaly cancellation requires the presence of

a coloured SU(2)′L singlet b′R, and a lepton SU(2)′L doublet L′3 = (ν ′L, τ ′L)T . RH lep-

tons ν ′R and τ ′R may be added to the theory in order to render twin leptons massive,

although they are not required by anomaly cancellation or naturalness arguments.

Gauging twin hypercharge is not required by naturalness either, although it

would remain an accidental global symmetry of the twin sector. Similarly, the

smallness of all other Yukawa couplings compared to yt, means that first and second

generation fermions need not be mirrored in the twin sector. Moreover, naturalness

only requires Yukawa couplings of the twin fermions present (other than the twin

top) to be � yt ≈ 1, but otherwise they largely remain free parameters of the

effective theory.

In summary, the Fraternal Twin Higgs scenario contains: twin SU(2)′L and

SU(3)′ interactions, a twin Higgs doublet H ′, twin tops and bottom quarks (Q′3,

t′R, and b′R), and a twin lepton doublet L′3. This is the framework in which the work

described in chapters 3 and 4 is realised, although we will also consider the presence

of twin RH leptons for convenience.

The presence of a twin colour gauge group, as required by naturalness, is a

particularly interesting feature of Fraternal Twin Higgs models, and it drives much

of their phenomenology [46,57]. With only two quark flavors (t′ and b′), the SU(3)′

gauge group will confine in the IR, just as happens in the SM, but the smaller
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matter content of the twin sector leads to a more negative β-function coefficient

for the twin gauge coupling g′3. In the UV, far above any particle thresholds, the

one-loop β-function for the twin gauge coupling reads

dα′3(µ)
d log µ = −b

′
3α
′
3

2

2π , (1.43)

with b′3 = 29/3 > b3 = 7 (remember eq.(1.1)). As a result, even if the two gauge

couplings are approximately equal in the UV, i.e. g′3(Λ) ≈ g3(Λ), g′3 will run to-

wards larger values faster (i.e. within less decades of RG evolution), and the twin

colour sector will reach the regime of strong coupling at higher scales than its SM

counterpart. The prediction of a confining gauge group with a twin confinement

scale Λ′QCD > ΛQCD is an inevitable consequence of Fraternal Twin Higgs theories,

with the exact size of Λ′QCD fixed by the requirements of minimality and naturalness

alone [46].

Figure 1.1 illustrates the one-loop RG evolution of the colour gauge couplings in

the SM and twin sectors, assuming g′3(Λ) = g3(Λ) for Λ = 5 TeV. Although we have

taken f/v = 3 and yb′ = yb in figure 1.1, changing the f/v ratio by an O(1) amount

within the regime allowed by naturalness makes a negligible difference, and similarly

small effects arise if one increases the value of yb′ so long as it remains � 1. As

one can appreciate from figure 1.1, the twin confinement scale Λ′QCD is larger than

ΛQCD by around an order of magnitude. The exact value of Λ′QCD is however rather

sensitive to the value of g′3 in the UV: varying the value of g′3 in the UV by ∼ 10%

compared to the SM coupling results in Λ′QCD changing from ≈ 1 GeV to a few 10’s

of GeV. (More careful calculations including two-loop effects only make an O(1)

difference to these statements [46].)

The presence of a confining gauge group in the twin sector leads to a spectrum

of bound states. If all twin quarks have masses above the scale of confinement

Λ′QCD, then the low energy dynamics of the twin colour sector are those of a pure

gauge theory, and the lightest states are glueballs. As has been made apparent

by lattice studies [58–60], a rich spectrum of glueballs exists, with different JPC

quantum numbers, the lightest one being a scalar state with JPC = 0++, and mass
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Figure 1.1: One-loop RG evolution of the SM and twin colour gauge couplings, α3 and α′3,
assuming they are equal at scale Λ = 5 TeV. Faster running of the twin gauge coupling
results in a higher confinement scale, understood as the scale at which α′3 becomes unity
(indicated with a horizontal dashed line).

m0 ' 6.8Λ′QCD [58,59]. Figure 1.2 shows the masses of some of the lightest glueballs,

which can be found in terms of m0 from computations on the lattice. Given that

m0 is fixed by the confinement scale, the value of Λ′QCD is then the only ingredient

necessary to specify the spectrum of twin bound states.

With the lightest glueball having the same quantum numbers as the Higgs, the

two states can mix, and they indeed do so as a result of the effective coupling between

the Higgs and twin gluons, arising at one-loop order through the usual triangle

diagram involving quarks (mainly the top quark), but now with those of the twin

sector instead. This mixing provides a decay channel for the lightest glueball, which

now can decay into SM states by mixing with the Higgs, as well as for some of the

heavier glueballs that may decay first to the lightest one. At colliders, this feature

of Fraternal Twin Higgs models can lead to striking signatures, including displaced

vertices depending on the exact value of the 0++ mass (equivalently, depending on

the exact value of Λ′QCD), as was thoroughly explored in [46,57]. The mixing between

the Higgs and the confining twin sector will also be of crucial importance for the

Dark Matter phenomenology of this class of theories, and we discuss the relevant

details in chapters 3 and 4.

24



0++

2++

3++

0�+
2�+

1+�
3+�
2+�
0+�

1��2��3��

1.0

2.0

mG

m0

++ �+ +� ��
Figure 1.2: Spectrum of glueballs present in the confining phase of an SU(3) pure gauge
theory [58–60]. States are labelled by their JPC quantum numbers, and their masses are
specfied with respect to that of the lightest bound state, the 0++ glueball.



Chapter 2

Dark Matter

That Dark Matter (DM) accounts for roughly 25% of the content of the Universe is

a claim well supported by a wide range of experimental evidence, both at galactic

and cosmological scales. Moreover, it is known that the nature of this exotic form of

matter must be non-baryonic, with the familiar baryonic matter only accounting for

around 5% of our Universe’s energy budget. However, the nature of the DM remains

an unresolved mystery, and is one of the most important open problems in physics.

In this chapter, we review what is known about DM, how it may have been produced

in the early Universe, potential DM candidates, and the kind of experiments that are

carried out to try and detect it. In following chapters, the emphasis will be on how

DM may be accounted for in the context of BSM theories that provide a solution to

the electroweak hierarchy problem, rather than on the details of DM detection and

phenomenology.

2.1 What we know about DM

2.1.1 Observational evidence for DM

As early as the 1930s, Fritz Zwicky noticed that the radial velocities of galaxies in

the Coma Cluster were much larger than would be predicted by taking into account

the gravitational effects of visible matter in the Cluster [61, 62]. Although a good

part of that missing matter was actually accounted for by a halo of hot gas (only

observed many years later thanks to X-ray telescopes), some of it was what we refer

to today as DM, and Zwicky’s work provided the first hint of its existence at the

scale of galaxy clusters.

On galactic scales, the most solid evidence of the existence of DM comes from

measurements of rotation curves of galaxies, a work pioneered in the 1970s by Rubin

and collaborators [63, 64]. If only visible matter accounted for the total mass of a
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galaxy, at distances r far away from the centre of the galaxy (where the bulk of its

mass concentrates), stars would move with orbital velocities v ≈
√
GNMbulk/r. But

instead of a v ∝ r−1/2 behaviour, observations show that v remains essentially flat

for very large r [65, 66]. This indicates that the amount of matter in galaxies keeps

growing even very far from where most of the visible matter concentrates, leading

to the conclusion that an approximately spherical halo of DM exists. Attempts to

explain this ‘missing mass’ problem in galaxies without invoking DM have also been

made, by positing that Newtonian dynamics must break down at low accelerations.

This paradigm, known as Modified Newtonian Dynamics [67–69] is successful at

accommodating the observed galaxy rotation curves, but seems to fail on the scale

of galaxy clusters [70,71].

Another powerful method that allows for the determination of the total mass in

galaxies and galaxy clusters is gravitational lensing. Combined with observations of

their visible amount of matter, gravitational lensing measurements help determine

that the dominant component in these objects is in fact DM (see [72] for a review).

Gravitational lensing even enables the mapping of the distribution of visible matter

versus DM, the most famous example being that provided by the Bullet Cluster [73],

which enables us to set constraints on the strength of the DM self-interactions, as

we will discuss in section 2.1.2.

A further argument supporting the presence of DM has to do with the evolu-

tion of large scale structure. The net of galaxies and galaxy clusters we observe

today has its origin in the density perturbations present at the time of recombi-

nation, when photons started to stream freely and a hotter version of the Cosmic

Microwave Background (CMB) we see today was formed. After recombination took

place in the early Universe, baryons could then fall into overdense regions as a result

of the effects of gravity. To account for the structure we observe today, taking den-

sity perturbations at the time of recombination as our initial conditions, numerical

simulations show that some form of non-baryonic matter (invisible to photons) must

be present [74,75].

This argument is further reinforced by detailed measurements of the CMB carried

out by the Planck satellite, which provide the strongest piece of evidence for the

27



existence of DM on cosmological scales. Temperature anisotropies on the CMB carry

information about the density perturbations present at the time of recombination,

when the CMB was formed, and therefore about the amount of baryonic and non-

baryonic matter in the Universe. Planck measurements have established that the

fraction of the Universe’s energy budget in the form of baryonic and DM is Ωb '

0.048 and ΩDM ' 0.26 respectively [76]. This result is in keeping with the value of

Ωb that can be inferred from measurements of light elements abundances (like those

of D, 4He, 7Li) produced during Big Bang Nucleosynthesis (BBN) [77].

2.1.2 Properties of DM

All the evidence supporting the existence of DM, discussed in section 2.1.1, is of

gravitational origin. So although we know that DM behaves as regular matter as

far as gravity is concerned, we do not know whether it is subject to any other kind

of interaction with the SM sector – albeit we hope it is, for otherwise any attempt

at detecting DM in non-gravitational experiments would be doomed. We also do

know that the DM must be stable on cosmological timescales, with a lifetime much

larger than the age of the Universe (at least a factor of ∼ 108 larger than a Hubble

time [78,79]), and very close to being electromagnetically non-interacting [80].

Another rather well-established property of the DM is that most of it must

be ‘cold’ DM, which means it was already non-relativistic at the time of matter-

radiation equality. This allows the DM to form clumps before recombination takes

place, when photons start to stream freely and baryons can then surrender to gravi-

tational collapse. If most of the DM had been relativistic at matter-radiation equal-

ity (so-called ‘hot’ DM), it would have washed-out density perturbations, affecting

the subsequent formation of structure in a way incompatible with current observa-

tions. Constraints from DM free-streaming suggest a lower bound mDM & 1 keV

(for instance, see [81]). Notice that this lower bound on the DM mass rules out SM

neutrinos as potential DM candidates, since their masses are known to be below

∼ 1 eV. Therefore, explaining the origin of DM requires new degrees of freedom

beyond those of the SM. Arguably, the existence of DM is the most solid piece of

evidence for BSM physics.
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As opposed to baryons, the DM halo structure that we observe in galaxies sug-

gests that most of the DM must be non-dissipative. Otherwise, emission of some

light state would allow the DM to cool down and collapse to a disk, in the same

way that baryonic matter collapses through emission of photons. Not all of the DM,

however, needs to be of this non-dissipative nature, and it is believed that a fraction

of around 5− 10% of all the DM could have some kind of dissipative dynamics [82].

Models in which a component of the DM is dissipative arise, for example, in theories

with rich dark sectors featuring a dark photon that interacts with the DM particle.

Such a situation arises naturally in the context of Twin Higgs models in which the

hypercharge gauge group of the SM is mirrored in the twin sector, as we will mention

in chapter 4.

That the DM has to be (mostly) non-dissipative does not imply that it cannot be

self-interacting. The strongest constraints on DM self-interactions are derived from

studies on colliding galaxy clusters (like the Bullet Cluster), which leads to an upper

bound σself/mDM . 0.5 cm2 g−1 ≈ 10−24 cm2 GeV−1 [83]. Notice this is in fact a

rather weak bound: in comparison, the cross section for nucleon-nucleon interactions

is, parametrically, σQCD ∼ Λ−2
QCD ∼ 10−26 cm2 – i.e. the DM may be subject to

interactions even stronger than those of QCD. Suggestively, DM self-interactions

towards the allowed upper bound seem to ameliorate apparent disagreement between

the observed shape of galactic halos and the results of numerical simulations, as first

noted in [84,85].

2.2 DM production and candidates

Any successful DM candidate must have been produced in the early Universe in a

way such that it accounts for the present DM relic abundance, ΩDM ' 0.258, or,

more precisely, that it does not exceed that amount.1 A common and well-motivated

assumption is that the DM was in equilibrium with the SM thermal plasma at very

early times. In this work, we will assume this is indeed the case, and will focus on

two possibilities for DM production that arise in this context: freeze-out production
1Stable states whose present relic abundace fall below ΩDM ' 0.258 will still account for a

fraction of all the DM. The remaining fraction will be due to some other particle species, leading
to a multicomponent DM scenario.
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of DM and Asymmetric DM. We review the former in section 2.2.1, following [81],

and the latter in section 2.2.2. Section 2.2.3 briefly reviews other possible DM

candidates.

2.2.1 Freeze-out production of DM

The assumption of thermal equilibrium between the DM and the thermal plasma

implies that, at some very high temperature, annihilation and production of DM

occurred efficiently as the Universe expanded. If Γann is the rate for the annihilation

process, then the assumption of thermal equilibrium holds so long as Γann(T ) >

H(T ).

The DM annihilation rate is given by Γann = nDM,eq〈σannv〉, with σann the an-

nihilation cross-section, nDM,eq the equilibrium number density of the DM parti-

cles, v their velocity, and the brackets denote thermal averaging. At tempera-

tures T � mDM, the DM is relativistic, nDM,eq ∼ T 3 and thus the requirement

Γann(T ) > H(T ) is easily satisfied. But at temperatures T ∼ mDM, the DM be-

comes non-relativistic, and its number density is now given by

nDM,eq = gDM

(
mDMT

2π

)3/2
e−mDM/T , (2.1)

i.e. it decreases exponentially as the temperature drops. As a result, Γann(T ) eventu-

ally becomes smaller than H(T ) – the DM falls out of equilibrium with the thermal

plasma and the annihilitation/production of DM stops.

This departure from equilibrium is known as freeze-out, and the temperature TF

at which Γann(TF ) = H(TF ) is the freeze-out temperature. For temperatures T <

TF , the number density (per comoving volume) of the DM remains approximately

constant.

The transition from equilibrium to out-of-equilibrium dynamics is captured by

the Boltzmann equation:

dnDM

dt
+ 3HnDM = 〈σannv〉(n2

DM − n2
DM,eq) , (2.2)

30



which may be more conveniently written as, defining Y ≡ nDM/T
3, and x ≡ mDM/T ,

dY

dx
= − α

x2 (Y 2 − Y 2
eq) , (2.3)

where α is given by

α = 3
π

√
10

g∗(T )mDMmPl〈σv〉 . (2.4)

For temperatures T � TF , the value of Y stays approximately equal to

Y∞ ≈
xF
α

, (2.5)

where xF = mDM/TF .

From Y∞ it is now straightforward to obtain the current DM energy density,

ρDM,0, and thus its relic abundance, which is given by

ΩDM ≡
ρDM,0

ρc,0
≈ 0.26 xF

25

√
g∗(mDM)

100
1.7 · 10−9 GeV−2

〈σannv〉
, (2.6)

where ρc,0 = 3m2
PlH

2
0 is the present value of the critical density. Numerically, for

DM in the GeV − TeV range, one typically finds that xF ∼ 10 and g∗ ∼ 100 are

good approximations. The value of 〈σannv〉 can be computed within the context

of a given particle physics model, and will determine the viability of a given DM

candidate.

WIMP’s

Weakly interacting massive particles (WIMP’s) have been, by far, the most studied

DM candidates. Their popularity stems from the fact that a DM particle interacting

with the SM sector with a strength equal to that of the weak interactions (set by

the Fermi constant GF = 1/(
√

2v2) ∼ 10−5 GeV−2) leads to, parametrically,

〈σannv〉 ∼
1

4πG
2
Fm

2
DM ∼ 10−9 GeV−2

(
mDM

10 GeV

)2
, (2.7)

which is the right cross-section to account for the observed DM abundance (see

eq. (2.6)) for a DM mass of ∼ 10 GeV (not too far from the weak scale) – an
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observation that has been referred to as the ‘WIMP miracle’ [86]. Although once

worthy of its name, current direct detection constraints (to be discussed in section

2.3) put the simplest version of the WIMP paradigm well under tension.

However, the term WIMP has been broadened to include any DM candidate

whose mass is not too far from the weak scale, and with an annihilation cross-

section similar to that of the SM weak interactions. In fact, WIMP-like candidates

for DM remain exceptionally well motivated in the context of theories concerned

with electroweak naturalness: in order to address the electroweak hierarchy problem,

new particles not too far above the weak scale must be present in the theory, with

interactions whose strength is not too different from that of the SM electroweak

sector.2 Chapter 3 will be concerned with an example of this kind, in which a

WIMP-like DM candidate arises naturally in the context of Fraternal Twin Higgs

models.

2.2.2 Asymmetric DM

Within the assumption that the DM had been in equilibrium with the thermal

plasma in the early Universe, a second possibility for DM production that arises

very naturally is that of Asymmetric DM (ADM) [87–99]. In ADM, the final DM

abundance is not set by the energy density after freeze-out, but rather by a primor-

dial asymmetry between the number density of DM and anti-DM particles, given

by

ηDM ≡
nDM − nDM

nγ
. (2.8)

For a scenario of ADM to work, thermal equilibrium between the DM and the

visible sector needs to hold for long enough such that essentially all of the anti-DM

annihilates (i.e. the remaining freeze-out abundance is essentially zero), and only the

asymmetric population of DM particles, which could not find anti-DM to annihilate

with, remains.
2Crucially, in theories with extended dark sectors, as naturally occurs in Twin Higgs models,

the DM annihilation cross section can be similar in size to that of eq.(2.7) without being in conflict
with direct detection constraints, so long as the dominant annihilation channels proceed through
particles of the dark sector, and interactions with the SM feature much smaller scattering cross
sections.
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Although this scenario may sound more involved than that of simple freeze-out,

it is worth remembering that our very baryon relic abundance was not set by freeze-

out dynamics, but precisely by an asymmetry between the number of baryons and

anti-baryons, ηb ∼ 10−10. In fact, one of the strongest motivations for ADM is that

it enables an explanation (or at least proceeds in the direction of explaining) of why

the ratio ΩDM to Ωb is an O(1) number, ΩDM ' 5Ωb. Without a common origin, one

would expect these two quantities to differ by orders of magnitude. In the context

of ADM, the ratio of energy densities is given by

ΩDM

Ωb

= mDM

mN

ηDM

ηb
. (2.9)

Hence, if the two asymmetries are of a similar size, ηDM ∼ ηb, then a DM mass of

size mDM ≈ 5mN ≈ 5 GeV would account for the experimentally observed ratio. In

chapter 4, we discuss an example of ADM that arises in the context of Fraternal

Twin Higgs theories.

2.2.3 Other DM candidates

It is also possible for the DM to have been produced through a mechanism that

did not require thermal equilibrium with the SM sector. Examples of such non-

thermal production of DM include axions (for a review see [100,101]), and primordial

Black Holes. Black Holes (BH’s) formed in the early Universe (before ∼ 1 s) are

referred to as primordial BH’s (pBH’s), and could be potential DM candidates for

BH masses above 1015 g (pBH’s with mass mBH < 1015 g would have evaporated

by now). Experimental constraints on pBH’s with masses mBH & 1015 g arise

from a variety of sources: evaporation (even if they have not evaporated completely

by now, partial evaporation from pBH’s with masses 1015 − 1017 g would lead to

detectable γ-ray emission), gravitational lensing, accretion effects, etc. (see [102,103]

for a comprehensive review). As a result, the possibility of pBH’s of a given mass

accounting for all of the DM abundance seems in high tension with observations.

However, pBH’s in several mass ranges could still account for around 10% of the

DM (and in some cases that fraction is somewhat larger), chiefly pBH’s with masses
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1017 − 1018 g, 1024 − 1028 g, and 10M� − 102M� [102].

The most likely scenario is that the DM is actually made of different compo-

nents. For instance, even if pBH’s did not account for most of the DM, it seems

reasonable that they may account for some fraction of it, with the remaining frac-

tion being accounted for by, for instance, WIMP-like particles, or axions. Scenarios

of multicomponent DM, in which the DM is made of different particle species, also

arise in the context of models with enough symmetry content so that two or more

states remain stable. Chapters 3 and 4 explore explicit examples, in the context of

Fraternal Twin Higgs models, in which the DM is naturally of this multicomponent

form.

2.3 Detection of DM

In this section, we briefly comment on two methods for DM detection that are most

relevant for the models of DM we discuss in chapters 3 and 4: direct and indirect

detection experiments. Collider searches for DM also provide useful constraints (the

best in some regions of parameter space, e.g. for masses below ∼ 1 GeV where direct

detection experiments lack sensitivity), but they will not be relevant for the work

presented in this thesis, so we will not discuss them further. (For a recent review of

the status of DM searches at the LHC, see [104].)

Direct Detection

The idea behind DM direct detection experiments is that some density of DM must

be present at our position in the Galaxy, from the galactic DM halo. These experi-

ments then aim to detect DM particles by measuring the recoil energy they would

produce when scattering off target nuclei. A comprehensive review on the principles

of DM direct detection, which we discuss below, can be found in [105].

If the DM density distribution is approximately static in the galactic rest frame,

and taking into account that the Sun moves around the centre of the Galaxy with

velocity v� ≈ 200 km s−1, the relative velocity of the DM halo with respect to the

Earth is of roughly the same size – from the Earth, we observe a DM ‘wind’ moving

towards us with speed v ≈ 200 km s−1 ∼ 10−3. The maximum recoil energy that
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a DM particle with mass mDM and velocity v would generate when scattering off a

target nucleus with mass MN is given by

Emax
R = 2µ2v2

MN

(2.10)

where µ = mDMMN/(mDM + MN) is the reduced mass of the DM-nucleus system.

For MN ∼ 10 GeV, Emax
R varies between a few keV for light DM (mDM ∼ GeV), and

a few 10’s of keV for heavy DM (mDM � MN). These small recoil energies make it

very challenging for experiments to be able to detect a DM signal above background

arising from, for instance, cosmic rays (to reduce the levels of background, DM direct

detection experiments are typically built underground). However, one feature of a

potential DM signal that would make it potentially distinguishable from background

events is that it must show an annual modulation: during the summer (when the

velocity of the Earth around the Sun is aligned with that of the Sun itself), the

relative velocity of the DM particles is a bit larger, so a few more scattering events

should be observed (due to the increase in effective DM flux); whereas the oppostive

effect occurs during the winter [106].

The differential rate of scattering events with a given nuclear recoil energy ER,

per unit mass of target nuclei, is given by

dR
dER

= 1
MN

ρ0

mDM

∫ ∞
vmin

dvvf(v) dσ
dER

, (2.11)

where ρ0 refers to the local DM density, and σ is the scattering cross section for

interactions between the DM and the nucleus. Direct detection experiments measure

the number of scattering events as a function of the recoil energy, and then derive

bounds on the size of the scattering cross section between the DM and a single

nucleon. However, in deriving those bounds several assumptions need to be made.

First, notice how ρ0 enters eq. (2.11). The typical value used for this paramter is

ρ0 ' 0.3 GeV cm−3, but, as discussed in [107], that value is subject to significant

uncertainties, and so the bounds on the interaction cross section would be stronger

(weaker) if we happened to live in a region of the Galaxy with a larger (smaller) DM

density. Second, it is important to consider the nature of the interactions between
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the DM and the nucleus, which can be classified in two basic types: spin-independent

(SI) and spin-dependent (SD). In the case of SI interactions, the differential cross

section may be written as (assuming the DM interacts equally with all nucleons)

dσSI

dER
= A2F (ER)2 MN

2µ2v2σ
SI
n , (2.12)

where A is the total number of nucleons in the nucleus, σSI
n the interaction cross-

section between the DM particle and a single nucleon, and F (ER) ≤ 1 is a nuclear

form factor, such that F (0) = 1.3 SD interactions, on the other hand, do not present

this A2 enhancement, and so constraints on them are weaker.

To date, no direct detection experiment has found unambiguous evidence for the

existence of DM.4 The strongest constraints on σSI
n come from the PandaX [109] and

LUX [110] experiments, with the latter ruling out cross sections as small as 10−46 cm2

for a DM mass around 50 GeV. Notice this upper bound is almost 10 orders of

magnitude smaller than the value of 10−9 GeV−2 ∼ 10−37 cm2 required by the

‘WIMP miracle’, if DM annihilation proceeds mainly through SM degrees of freedom.

For DM masses below ∼ 10 GeV, direct detection experiments start losing sensitivity

due to the small recoil energies involved. On the other hand, for heavy DM (mDM �

MN), the nuclear recoil energy produced by a DM particle stays constant, in the

10’s of keV regime, but the flux of DM particles that reaches the detector (ṅDM =

vρ0/mDM) decreases, and so the bounds on the cross section decrease linearly for

large masses (remember eq. (2.11)). Direct detection experiments are thus ideal to

look for DM candidates with mass in the 10 GeV − 1 TeV range. Next-generation

experiments such as LZ [111] may be operative in a few years, and will be able to

improve on current limits by several orders of magnitude. In chapters 3 and 4, we
3The role of the nuclear form factor is to account for the non-trivial structure of the nucleus, that

may be probed by the DM-nucleus interactions if the momentum transferred in the interaction, q, is
large enough. For very small momentum transfer, q−1 � RN , where RN is the nuclear radius, the
nucleus can be treated as a point particle, and thus F (ER) ' 1. If, on the other hand, q−1 ∼ RN ,
the interaction may probe the nuclear structure, and the final cross section will deviate from the
point-like case.

4Famously, the DAMA collaboration claims they have found evidence for DM with mass ∼
10 GeV, with an annual modulation in their signal, with a significance of 9σ [108]. However, the
fact that these claims have not been reproduced by any other detectors, combined with the fact that
the relevant region of parameter space has already been ruled out by several other experiments,
makes a DM interpretation of these anomalies dubious.
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comment on current bounds and how they affect our proposed DM candidates.

Indirect Detection

DM indirect detection methods aim to detect the final products that would be

produced by DM annihilating or decaying today. Of particular interest are those

cases where the final state includes γ-rays and highly energetic neutrinos, but also

positrons and antiprotons.

High energy γ-rays produced in DM annihilation or decay would provide a very

clean signature – photons travel from their sources in straight lines, suffering very

little disruption (see [112] for a review). The most sophisticated instrument trying

to detect high energy γ-rays arising from DM annihilation or decay is Fermi LAT

– a γ-ray telescope covering the energy range 0.2 - 300 GeV. At the moment, the

most stringent limits on the γ-ray flux are set by Fermi, from observations of dwarf

spheroidal galaxies in the outskirts of the Milky Way [113], which are some of the

most DM-dominated astrophysical objects. The Fermi LAT collaboration reported

an excess in γ-rays in the GeV range from the galactic centre [114], although the

strength of the excess depends strongly on the details of how the γ-ray background is

modelled – an endeavour that becomes particularly complicated close to the centre

of the Galaxy. Although this mild excess does not amount to strong evidence of the

existence of DM, we briefly comment on a possible DM origin in chapter 3.

Another potential final state in the process of DM annihilation is highly energetic

neutrinos – even if the DM does not annihilate into neutrinos directly, they will likely

be produced from the decay of heavier SM particles. More specifically, as the Sun

moves around the galactic halo, DM particles will scatter off baryons in the Sun.

Such scattering events will cause the DM particles to lose some of their momentum,

and potentially become gravitationally bound to the star. The more DM particles

get captured, the more annihilations will take place, until an equilibrium is reached

such that Γann = ΓC/2, where Γann and ΓC refer to the annihilation and capture

rates respectively. The neutrinos produced in the annihilation process will have

energies of order the DM mass – in particular, DM in the GeV range will produce

neutrinos with such high energies that no other process in the Sun could mimic such
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an event. Because of their small scattering cross section with all other particles,

neutrinos escaping from the Sun will reach the Earth essentially unimpeded, and, if

detected, would provide unambiguous evidence for the presence of DM. The most

competitive instrument aimed at trying to detect such highly energetic neutrinos

coming from the Sun is the IceCube telescope, which has set stringent bounds on

the DM scattering cross section [115].

In a Universe made of matter, sources of anti-matter are scarce, yet annihilating

DM would produce equal fractions of matter and anti-matter in the final state.

This effect could be observed as an excess in the positron and antiproton fractions

of cosmic rays. In the absence of primary sources of positrons and antiprotons, these

are only produced in the collision of cosmic rays with the interstellar material. This

secondary production provides a background for primary positron and antiproton

searches. Dedicated detectors like PAMELA and AMS-02 are designed to study

the composition of cosmic rays, and could provide indirect hints of the existence of

annihilating DM. Unlike photons, however, positrons and antiprotons interact with

the interstellar material and magnetic fields, which affect their propagation until

they reach the detector. Uncertanties in both secondary production mechanisms

and propagation strongly affect the possible constraints on annihilating DM that

can be set using these final states [116, 117]. In 2008, the PAMELA collaboration

reported an observed increase in the cosmic ray positron fraction for energies between

10 GeV and a few 100 GeV [118], later confirmed by Fermi [119] and AMS-02 [120].

Although at first sight the data seems incompatible with secondary positrons only,

it is now believed that properly taking propagation uncertainties into account could

make these observations consistent with the expected background [121]. We will

not comment further on a possible positron excess with a DM origin in this work.

Regarding antiprotons, a p/p ratio larger than expected from secondary emission

was reported by AMS-02 [122], although production and propagation uncertainties

are also believed to play a major role in the compatibility between background and

observations [123]. We will briefly discuss DM constraints from antiproton injection

in the context of the DM models explored in chapter 3.
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Chapter 3

Twin WIMP Dark Matter

Based on work done in collaboration with Robert Lasenby and John March-Russell [1].

3.1 Introduction

This chapter explores the possibilities for DM candidates in the context of Twin

Higgs models, with a focus on the Fraternal Twin Higgs scenario described in sec-

tion 1.4.2. We consider the case where there is no asymmetry present in the twin

sector, and where U(1)′Y remains a global symmetry (not gauged, in the spirit of

the most economical version of the Fraternal Twin Higgs model). The very different

scenarios that arise when a twin asymmetry is present, and when U(1)′Y is gauged,

are explored in chapter 4.

The twin and SM sectors remain in thermal equilibrium well below the UV cutoff

as a result of the interactions between the two sectors that take place via the Higgs

portal, with a strength set by the ratio f/v – a fact that is at the heart of the Twin

Higgs mechanism. This observation allows for the possibility of twin DM with a relic

abundance that is set purely by freeze-out dynamics (as described in section 2.2.1),

and makes unambiguous predictions regarding DM direct detection signatures, as

we explore in section 3.4. We show that the most attractive DM candidates are twin

leptons (τ ′ and ν ′), whose relic abundance is determined by twin weak interactions,

with a strength set by g′2 ' g2 and G′F = (v/f)2GF , and directly related to that of

SM weak interactions purely by naturalness arguments – a twin-WIMP miracle.

We focus on the most natural case where yb′ ≈ yb and yt′ ≈ yt, and we take

Λ′QCD = 3 GeV as our default value (a discussion as to why much smaller values of

Λ′QCD may not be desirable can be found in section 3.8). For the values of f/v & 3

that are phenomenologically allowed, this realises the heavy quark limit in the twin

QCD sector (i.e. mb′ ,mt′ � Λ′QCD). As a result, the lightest states in the QCD′

sector are twin glueballs, which will not account for a significant fraction of the DM
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but nevertheless lead to very interesting phenomenology, as we discuss in section 3.6.

3.2 Stable and metastable states

The twin sector in the Fraternal Twin Higgs scenario we are concerned with features

three U(1) global symmetries: twin baryon number B′, twin lepton number L′ (in

the absence of Majorana mass terms for RH leptons, as we will assume is the case),1

and twin ‘charge’ Q′ (in the case where the U(1)′Y symmetry is not gauged). If

these global symmetries remain unbroken, the lightest states in the theory carrying

B′, L′, and Q′ charge will be stable, making them automatic DM candidates. We

are aware that higher dimensional operators (HDO’s), perhaps connected to the UV

completion of the theory, may break these global symmetries. However, in this work

we will assume that those effects are small enough so that the lightest states charged

under these symmetries remain stable on timescales & 108H−1
0 [78, 79].

In the näıvely most natural case where mν′ < mτ ′ , and mν′ ,mτ ′ < mW ′ , both

ν ′ and τ ′ are stable (protected by L′ and Q′ respectively), and thus potential DM

candidates. Although we will focus on the regime mτ ′ & mh/2 (to avoid collider

constraints from the invisible Higgs width), we allow ν ′ to be heavy or essentially

massless. In the former case, it contributes to the final DM abundance, whereas in

the latter it behaves as dark radiation (DR) and will contribute to the number of

effective neutrino species ∆Neff , as discussed in section 3.8. If mτ ′ + mν′ > mW ′ ,

W ′± gauge bosons are also stable, and could contribute significantly to the DM

energy density (although the amount of fine-tuning required in this case approaches

an unpleasant regime, as we discuss in section 3.5).

In the quark sector, one obvious stable state is the spin-3/2 baryon ∆′, made

of three b′ quarks, which is the lightest state with B′ charge. However, twin QCD

interactions lead to efficient annihilation of b′b′ pairs into twin gluons (or glueballs

and quarkonia if the freeze-out temperature of the b′ quark is below that of the

QCD′ phase transition), rendering them irrelevant as potential DM candidates unless
1Both B′ and L′ may be considered good global symmetries at scales well below the temperature

of the SU(2)′L phase transition, where anomaly effects that violate both B′ and L′ are exponentially
suppressed. This is an appropriate assumption in our case, since the freeze-out temperatures of
our DM candidates are well below this scale, as will become apparent in section 3.4 and 3.5.
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mb′ & 1 TeV, a possibility we comment on in section 3.5.

Concerning the twin QCD sector, in the heavy quark regime we are considering,

the lightest states are twin glueballs, the spectrum of twin quarkonia being heavier.

The lightest such glueball is a scalar state, with quantum numbers 0++ and mass

m0 ' 6.8Λ′QCD [58,59], and therefore mixes with the Higgs before decaying into light

SM fermions, the mixing angle given by [46]

θ = α′3vF0

6πf 2(m2
h −m2

0) ≈
vm3

0
8π2f 2m2

h

, (3.1)

where F0 = 3.06m3
0/(4πα′3) [59] is the 0++ glueball decay constant, and in the final

step we have assumed m2
h � m2

0. As a result, the 0++ glueball decays quickly into

SM states (τ0++ ∼ 4 × 10−10 s for Λ′QCD = 3 GeV and f/v = 3). In the case of

massless ν ′, all other glueballs decay to some number of 0++ glueballs and ν ′ν ′ pairs

in some appropriate angular momentum state, leaving no stable twin glueballs that

could be the DM.

When the ν ′ as well as the τ ′ are heavy (heavier than the mass splittings between

glueballs, which are of order Λ′QCD), then two other glueballs become worthy of

consideration, for they can be stable or very long-lived metastable states:2 a 0−+

glueball, with mass m0−+ ≈ 1.5m0 [58, 59], and a 1+− glueball, with mass m1+− ≈

1.7m0 [58, 59]. Nevertheless, as we discuss in section 3.6, the relic abundance of

these glueballs would only amount to a ∼ 10−10 fraction of the DM. Such a tiny

contribution to the final DM abundance would render glueballs irrelevant as far

as their gravitational effects are concerned, but if they happened to decay around

the time of recombination or later, they could be subject to constraints from CMB

and cosmic ray observations, providing interesting indirect signals of this scenario

beyond those of the DM itself, as we discuss in section 3.7.

Finally, notice that twin discrete symmetries P and C are maximally violated by

SU(2)′L, but twin CP may remain conserved. We concentrate on the case where twin

CP is unbroken, although we note that twin CP -breaking would have important
2As we thoroughly discuss in section 3.6, the (meta)stability of these glueballs depends strongly

on the UV completion of the theory and on whether twin CP remains unbroken, as well as on the
exact values of the IR parameters of the theory.
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phenomenological consequences – we mention where this would make a difference.

3.3 Twin QCD phase transition

Before we continue to compute the relic abundances of the stable twin states that

might account for the DM, it is important to consider the nature of the twin

QCD phase transition, expected to take place at a temperature T ∼ Λ′QCD. Since

Λ′QCD = O(1 GeV), the temperature at which the phase transition takes place will

fall below the freeze-out temperature of our DM candidates (since their masses are

∼ 100 GeV). Thus, it is crucial to assess whether entropy production during a po-

tentially first order QCD′ phase transition could have led to the dilution of the DM

relic abundance.

It is well known that in the regime of only one light flavour, the QCD′ phase

transition between the unconfined and confined phases proceeds as a smooth cross-

over (with no non-equilibrium dynamics), and remains so as long as the quark

mass satisfies mb′ . 8Λ′QCD [124–126]. The transition becomes second order for

mb′ ∼ 8Λ′QCD, and above such value the pure gauge case is recovered, in which

the phase transition is of a weak first order kind, as shown by both analytical

arguments [124, 127] and lattice computations [128]. Our default choices yb′ ' yb,

f/v ' 3, and Λ′QCD ' 3 GeV, lead to mb′ ' 12 GeV < 8Λ′QCD, well within the

smooth cross-over regime, but larger values of f/v will quickly drive the value of

mb′ into the weakly first order region. We therefore dedicate the rest of this section

to the details of the weakly first order case, in which the phase transition takes place

via nucleation of bubbles of the confined phase.

The rate of bubble nucleation at finite temperature per unit volume is given by

Γ(T ) ∼ T 4e−∆Fc/T [129], where ∆Fc is the free energy cost of nucleating a bubble of

critical size (i.e. a bubble just big enough such that its free energy cost decreases as it

grows). If the unconfined phase is supercooled to a temperature T = Tc(1− δ) < Tc,

with δ � 1 (as one would expect for a weakly first order transition), a difference

in pressure between the two phases will arise, and bubbles of the confined phase

could grow if this pressure was large enough to overcome their wall tension. The
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free energy cost of nucleating a bubble with radius R is given by

∆F = −4π
3 R3|∆V |+ 4π2R2σ , (3.2)

where |∆V | is the free energy density difference between the unconfined and confined

phases (i.e. the difference between the finite temperature effective potential between

the two vacua), and σ the bubble wall tension. The radius of a critical bubble is

then defined as ∂∆F
∂R

∣∣∣
Rc
≡ 0, which yields Rc = 2σ

|∆V | , and the free energy cost for a

critical bubble

∆Fc = 16π
3

σ3

|∆V |2 . (3.3)

On the other hand, ∆V = −∆P , where ∆P is the pressure difference between the

two phases, which for small δ is approximately given by

∆P ' ∆T ρL
T
' δ · ρL , (3.4)

where ∆T = T − Tc = δ · Tc, and ρL is the latent heat per unit volume. This leads

to
∆Fc
T
' 16π

3
σ3

Tcρ2
L

δ−2 ≈ 3 · 10−5 δ−2 , (3.5)

where in the last step we have used the results from lattice studies, which yield

ρL ' 1.4T 4
c and σ ' 0.0155T 3

c [130]. (Lattice computations also show that the

critical temperature for a pure gauge QCD′ phase transition is Tc ' 1.26Λ′MS
QCD [131],

and so Tc ∼ Λ′QCD as one would expect.)

We define the nucleation temperature Tn as the temperature at which the proba-

bility of nucleating a bubble in a Hubble volume in a Hubble time becomes of order

unity, i.e. Γ(Tn) ≈ H(Tn)4, and we find δn ≈ 4 · 10−4, where Tn ≡ Tc(1− δn). Thus,

a small supercooling δ & δn easily leads to a large bubble nucleation rate: a drop

in log T by only 10−6 results in Γ increasing by a factor of e, which confirms the

validity of our δ � 1 approximation. Notice that this extremely large nucleation

rate that arises as soon as the temperature decreases ever so slightly below Tc has to

do with the smallness of the bubble wall tension σ ∼ 10−2 T 3
c (as computed on the

lattice), parametrically smaller than the naive T 3
c value one would have expected,
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which makes it easier for the bubbles to expand, and therefore to nucleate bubbles

of critical size.

Regarding the entropy produced during the phase transition, its maximum pos-

sible value corresponds to the case in which the out-of-equilibrium dynamics (when

the pressure difference between phases drives bubble expansion) is responsible for

converting all the volume occupied by the unconfined phase into confined phase,

i.e. all the difference in free energy density between the two vacua goes into entropy

increase:

∆s ' ∆P
Tc
' δ · ρL

Tc
∼ few× δnρL

Tc
∼ 10−3 T 3

c � T 3
c . (3.6)

Since the maximum possible value of the entropy density generated by the phase

transition is much smaller than the entropy density due to the thermal plasma

(s ∼ T 3
c ), we can confidently neglect the effects of the QCD′ phase transition on the

calculation of the relic abundance of our DM candidates.

3.4 Twin τ DM

After having shown in section 3.3 that entropy injection due to a potentially (weak)

first order QCD′ phase transition would lead to no significant dilution of relics, we

can now compute the final abundance of our DM candidates. First, we consider the

simplest case in which twin τ leptons account for all of the DM, and so we assume

the ν ′ to be effectively massless. (Notice the situation in which ν ′ was the DM and

τ ′ was very light would be exactly the same, given that U(1)′Y is not gauged, as long

as a ν ′ Dirac mass arose through a Yukawa coupling.) Annihilation of τ ′τ ′ pairs

proceeds mostly via SU(2)′L interactions into b′b′ and ν ′ν ′ pairs (predominantly the

former due to the colour factor). Annihilation via SM Higgs exchange (through a

coupling of the form y′τ√
2
v
f
hτ ′τ ′) gives a subleading effect, except in a small window

around the resonance region mτ ′ ∼ mh/2.

Figure 3.1 shows the ratio of the present energy density of τ ′ species to the ob-

served DM density, for several values of f/v.3 For f/v ≈ 3, the observed DM density

is achieved for a mass mτ ′ ≈ 63 GeV, whereas larger values of this ratio necessi-
3The calculation of this and other relic densities in this work are carried out using the dedicated

software MicrOMEGAs [132].
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Figure 3.1: Ratio of τ ′ energy density to the observed DM density, as a function of mτ ′

for several values of f/v. The light (dark) pink region indicates the 2-sigma bounds from
invisible Higgs width constraints and modified couplings to SM states for f/v = 3 (3.5)
(f/v & 4 remains unconstrained). Notice that in the light mτ ′ region, annihilations would
receive important non-perturbative corrections if Λ′QCD was so large that m0 & 2mb′ , but
since this regime leads to overproduction of DM it is not our concern in this work.

tate heavier DM. The calculation is performed taking mb′ ≈ 15 GeV (a value that

naturally arises for yb′ ' yb and f/v ' 3), which saturates the experimental bound

from constraints on the Higgs width for f/v ≈ 3. (Notice yb′ is only constrained

by naturalness arguments to be yb′ � yt′ , which is perfectly satisfied in this case.)

We emphasize that a different value of mb′ would not affect our results as long as

mb′ � mτ ′ (and Λ′QCD � mτ ′), for in that regime the τ ′ relic density is essentially

independent of the exact value of mb′ .

As anticipated in section 3.1, the relic density of our (successful) DM candidate is

set by the strength of the twin weak interactions, whose gauge coupling g′2 ' g2 and

gauge boson masses mW ′ ' (f/v)mW are linked to those of the SM sector purely

by naturalness arguments, giving rise to a twin-WIMP miracle.

Regarding direct detection signatures, scattering of τ ′ off SM nuclei takes place

at tree-level via Higgs exchange. Figure 3.2 shows the SI scattering cross section

per nucleon for τ ′ DM, as a function of its mass and for the values of f/v that yield

the correct DM abundance. At the time [1] was written, all values of f/v & 3 were

below existing bounds set by LUX [133]. Now, more stringent constraints [110] rule

out values of f/v . 6, constraining the level of fine-tuning in this scenario to be at

the 5% level at best, and the DM mass to be mτ ′ & 165 GeV. Ratios f/v & 6 will
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Figure 3.2: Dashed green line: SI scattering cross section per nucleon for τ ′ DM as a
function of mτ ′ , and for values of f/v such that the correct DM density is obtained, with
red dots pointing out particular values of f/v; blue areas: LUX 2014 [133] and LUX
2016 [110] bounds; pink area: region ruled out by bounds on the invisible Higgs width and
modified couplings to visible sector particles [46].

be probed by next-generation experiments such as LZ [111].

3.5 Multicomponent, W ′, and ∆′ DM

If mτ ′ + mν′ > mW ′ , W ′ gauge bosons cannot decay. Moreover, in the regime

mτ ′ ∼ mν′ and mτ ′ ,mν′ < mW ′ , all three states are stable and may contribute

significantly to the DM energy density, opening a possibility for a three-component

DM scenario.

In figure 3.3 we show the contribution to the DM energy density from these three

particle species (τ ′, ν ′ and W ′), normalized to ΩDM, for several values of the SU(2)′L

gauge coupling (we allow a deviation by 10% from its central value g′2 = g2 ≈ 0.64).

For concreteness, we take mτ ′ = mν′ ≈ 0.55 mW ′ , with mW ′ = g′2f/2. As can be

appreciated, the correct DM abundance is only obtained for rather large values of

f/v, leading to a fine-tuning between 5% and 1%. The reason why larger values

of f/v are needed (compared to the pure τ ′ DM case) is that since both τ ′ and ν ′

are now required to be heavier (for the W ′ to be stable), their annihilation cross

sections ∝ m2
τ ′,ν′/f

4 are also larger, and thus f needs to be increased accordingly to
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Figure 3.3: Contribution to the energy density of the Universe from τ ′, ν ′ and W ′, species
normalized to the observed DM energy density, as a function of f/v and for different
values of the twin weak coupling g′2. Vertical lines represent tuning contours. We indicate
the W ′ mass for the three different values of g′2 considered when the right DM density is
achieved.

compensate. As can be seen from figure 3.3, the correct DM abundance is obtained

for f/v ≈ 9, which drives the fine-tuning to the 2% level. In this particular case, W ′

species contribute roughly 25% to the DM, with τ ′ and ν ′ making for the remaining

75%.

With respect to direct detection signatures, the prediction for the SI scattering

cross section per nucleon is of order ∼ 10−46 cm2 for all three particle species in-

volved, and for the range of masses that lead to the correct DM abundance. This

is well below current bounds, leaving next-generation direct detection experiments

such as LZ [111] as the only hope for probing this scenario.

Small variations of mτ ′ and mν′ do not make a significant difference to our results,

except when mτ ′ + mν′ < mW ′ , in which case the W ′ is no longer stable and only

τ ′ and ν ′ species contribute to the DM. Enough annihilation in this two-component

scenario requires mτ ′ ,mν′ & mh/2, which automatically evades invisible Higgs width

constraints. The different contribution to the DM from the two particle species

would depend solely on the ratio of their masses: if mτ ′ = mν′ , both components
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would contribute equally, whereas if they differ by approximately 10 GeV the right

DM abundance requires mν′ ≈ 70 GeV (therefore mτ ′ ≈ 80 GeV) and ν ′ and τ ′

species would make for 65% and 35% of DM respectively. Regarding the strength of

direct detection signals, this two-compononent case is completely analogous to the

single-component scenario discussed in section 3.4.

Finally, we comment briefly on the potential DM candidate from the twin quark

sector, the ∆′ baryon. In this case, annihilation of b′b′ pairs into twin gluons occurs so

efficiently in the early Universe that the remaining freeze-out density of ∆′ baryons

would be irrelevantly small unless mb′ & 1 TeV � Λ′QCD. To estimate the ∆′

relic density, we consider the case where the b′ freeze-out temperature is well above

Λ′QCD, (in that regime, quarks and gluons are the appropriate degrees of freedom),

and compute the abundance of the b′ species after the annihilation rate into a pair of

gluons, whose cross section scales as σv ∼ (α′3/mb′)2, has frozen out. By numerically

evaluating the annihilation rate, we find a freeze-out temperature Tf ∼ mb′/30, and

a non-negligible freeze-out density of the b′ species only for mb′ & 1 TeV, which

in turn requires f/v & 30 and thus an extreme level of fine-tuning (this statement

applies if we insist on keeping yb′ . 0.2 so as not to introduce yet further tuning at

1-loop). We can therefore conclude that the ∆′ baryon is a rather unattractive DM

candidate in the Fraternal Twin Higgs model.4

3.6 Stable and metastable twin glueballs

As mentioned in section 3.2, the lightest states in the QCD′ sector are twin glueballs,

with the lowest lying one being a 0++ state that mixes with the SM Higgs and quickly

decays to SM final states (mainly to bb pairs, as long as m0++ > 2mb). Most other

glueballs will be able to decay to some number of 0++ glueballs, in some appropriate

angular momentum state, that later decay into SM degrees of freedom. However,

in the absence of other light states in the twin sector (e.g. massless ν ′), two other

glueballs become worthy of attention: those with quantum numbers 0−+ and 1+−,
4Notice that our estimate of the ∆′ relic abundance is an optimistic one (and thus the lower

bound on mb′ is equally optimistic), for the number density of ∆′ baryons does certainly not
correspond to 1/3 the number density of b′ quarks. After the QCD′ phase transition takes place,
many of the remaining b′ quarks would combine with b

′ into mesons. The fraction of b′ quarks
that actually combine into ∆′ baryons escapes our knowledge.
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with mass m0−+ ≈ 1.5m0++ and m1+− ≈ 1.7m0++ respectively, as mentioned already

in section 3.2.

The pseudoscalar 0−+ glueball is the lightest (twin) CP -odd state in the twin

sector. Thus, if CP remains a good symmetry of the twin sector, this state would

be completely stable. However, new interactions between the two sectors arising

from a UV completion of the theory could render the 0−+ glueball unstable. For

example, the lowest HDO’s that would allow the decay of the 0−+ glueball directly

into SM states, conserving the product of CP in both sectors but violating them

individually, are of dimension 7, parametrically given by

L ∼ 1
M3 qγ

5q × tr(G′G̃′) , (3.7)

where q refers to SM fermions, G′ represents the QCD′ field strength, and M is

some UV mass scale, at least as high as the cutoff of the theory. If the operator of

eq. (3.7) were indeed present, the lifetime of the 0−+ glueball would be

τ0−+ ∼ 10−12 s
(

M

5 TeV

)6 (3 GeV
Λ′QCD

)7

, (3.8)

which is cosmologically safe (well before BBN as long as M . 500 TeV), but poten-

tially interesting for displaced vertices at the LHC.

Regarding the 1+− glueball, the lowest HDO’s that would make it decay are of

dimension 10, parametrically

L ∼ 1
M6 qγµγ

5q × ∂µG′G′G′ , (3.9)

which would lead to a lifetime

τ1+− ∼ 10 s
(

M

5 TeV

)12 (3 GeV
Λ′QCD

)13

. (3.10)

If, on the other hand, only IR operators are to be relevant regarding the 1+− glueball

decay, then its decay could proceed to two 0++ glueballs in an angular momentum

L = 1 state, one of them necessarily being off-shell and therefore mixing with the
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Higgs before decaying to SM states. Since the final state has quantum numbers 1−+,

it is clear that although CP is conserved in this process, both C and P are violated.

Hence, this decay must proceed via SU(2)′L interactions involving both axial and

vector currents. Notice this can only happen through a b′b′ pair formed inside the

glueballs, and thus we need to know the QCD corrections to the axial and vector

weak currents that arise in the heavy quark limit we are concerned with. These were

computed in [134,135], and are given by

δJV
µ = g′33

16π2mb′
4∂α Tr

(1
7Gστ{Gστ , Gαµ} −

14
45Gµσ{Gστ , Gτα}

)
, (3.11)

and

δJA
µ = g′23

48π2mb′
2 εµρτσTr(Gαρ∂αG

τσ + 2Gτσ∂αG
αρ), (3.12)

for the vector and axial currents respectively. This leads to a decay rate

Γ1+− ∼ 1
32π3

(
g′33

16π2m4
b′

g′23
16π2m2

b′

)2 (
g′22

16m2
Z′

)2 (
θ

m2
0

)2

Γh→SM(m∗0)× m̃20 . (3.13)

The first numerical factor comes from 3-body-decay phase space, the second from

QCD corrections to the vector and axial weak currents, the third from s-channel

exchange of a Z ′ gauge boson, the fourth from the off-shell 0++ glueball mixing

with the Higgs, the factor of Γh→SM(m∗0) corresponds to the decay width of the SM

Higgs with a mass equal to that of the off-shell glueball, and the final factor (of

mass dimension 20) accounts for dimensions (m̃ will typically be either m1+− or√
m2

1+− −m2
0 ≈ 1.4m0). The lifetime of the 1+− glueball is then, parametrically

τ1+− ∼ 102 s
(
yb′

yb

)12 (
f/v

3

)20 (3 GeV
Λ′QCD

)23

. (3.14)

Notice the strong dependence of τ1+− on the value of yb′ , the ratio f/v, and the twin

confinement scale Λ′QCD. For example, whereas τ1+− ∼ 102 s for Λ′QCD = 3 GeV, it

is ∼ 109 s for Λ′QCD = 1.5 GeV, and ∼ 10−5 s for Λ′QCD = 6 GeV – a factor of 2

change in Λ′QCD changes τ1+− by 7 orders of magnitude! In view of this, all one can

say is that, for some resonable values of the parameters involved, the 1+− glueball

50



may have a lifetime long enough to be of cosmological interest.

If these two glueballs are indeed metastable, one should be concerned about

their relic abundance after freeze-out, either to find out what fraction of the DM

they account for (if their lifetime was larger than the age of the Universe), or to

assess the strength of the constraints coming from energy injection into the thermal

plasma after BBN. In order to compute their relic abundace, we note that the last

number-changing interactions to fall out of equilibrium will be two-to-two scattering

processes, like 0−+0−+ → 0++0++ or 1+−1+− → 0++0++. The strength of this

interaction would be characterized by the twin confinement scale, and thus 〈σv〉 ∼

Λ′−2
QCD, which would lead to a relic abundance

Ωglue

ΩDM
∼ 10−10

(
Λ′QCD

3 GeV

)2

. (3.15)

If the metastable glueballs only accounted for a 10−10 fraction of the DM, they

would have no observable gravitational consequences, and all other effects would be

negligible if they decayed before the time of recombination (t ∼ 1013 s), since they

would not have enough energy to disrupt BBN or the CMB spectrum [136–138].

However, an energy injection of & 10−10 of the DM energy density can, depending

on the injection time and channels, have observational consequences if it occurs

around recombination time or later, either through CMB effects, or via cosmic ray

observations [78,138]. Thus, it may be a requirement that the meta-stable glueballs

have lifetimes shorter than ∼ 1013 s.

3.7 Indirect detection

DM annihilating today may lead to observable signatures in indirect detection ex-

periments, since the Higgs portal interaction between SM and twin sectors will result

in some of the DM annihilation products finally decaying into light SM degrees of

freedom. In particular, for τ ′ and ν ′ DM, arguably the most attractive DM candi-

dates as discussed in section 3.4, the dominant annihilation channel is to b′b′ pairs

proceeding via Z ′ exchange. Given the confining nature of the QCD′ sector, the

final b′b′ pair will then fragment into some number of twin glueballs and quarkonia,
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albeit we expect dominantly glueballs in the heavy quark limit.

If twin neutrinos are effectively massless (and thus only τ ′ is the DM), then

heavier glueballs will decay to the lightest 0++ state and ν ′ν ′ pairs, with the scalar

glueball then decaying via mixing with the Higgs. If, on the other hand, the ν ′

were heavy (and therefore contributed to the DM), then some of the annihilation

products would be the 0−+ and 1+−, which in this scenario may be extremely long-

lived, while all other glueballs would still be able to decay to some number of 0++

states. Either way, the final annihilation products will contain some invisible fraction

(either massless ν ′ν ′ pairs or (meta)stable glueballs), and a number of off-shell SM

Higgs states h∗, with off-shell masses determined by the glueball mass splittings

(∼ Λ′QCD) and the details of the QCD′ fragmentation process. For the values of

Λ′QCD considered in this work, most of these h∗ will decay into bb pairs, although

some fraction of them may not be above the bb threshold and would decay into ττ

pairs instead. Final SM annihilation products will be a spectrum of bb, and ττ to

a lesser extent, with energies determined by the hadronization process of the twin

sector. For the range of DM masses considered here (mDM ∼ 100 GeV), the most

sensitive probes of this kind of energy injection are cosmic ray antiprotons, and

gamma-rays.

The most stringent constraints on antiproton injection from annihilating DM

come from the AMS-02 detector. In [122], this experiment reported that the mea-

sured p/p ratio was somewhat larger than expected for kinetic energies larger than

∼ 20 GeV (the measured ratio stayed constant at higher energies rather than de-

crease), a behaviour that could not be explained by antiprotons arising from cos-

mic ray collisions. Taking AMS-02 data at face value, DM annihilating into bb

pairs with a thermal freeze-out cross section would be ruled out for DM masses

mDM . 100 GeV. However, the background against which AMS-02 compares their

data depends strongly on the parameters chosen for modelling the production of

secondary antiprotons and their propagation through the interstellar medium, as

thoroughly discussed in [123]. Taking these uncertainties into account, the upper

bound on the cross section of DM annihilating into bb pairs may change by up to

an order of magnitude, which might considerably weaken (or strengthen) the lower
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bound on the DM mass.

Regarding highly energetic gamma-ray emission from annihilating DM into bb

or ττ pairs, the most stringent constraints come from measurements of the Fermi-

LAT instrument. By looking at 15 dwarf spheroidal galaxies that are satellities

of the Milky Way, Fermi observations seem to disfavour the existence of DM with

mass . 100 GeV annihilating into bb or ττ pairs with a thermal freeze-out cross

section [113]. However, although dwarf spheroidal galaxies are known to be the

most DM dominated astrophysical objects, their DM distribution is rather uncertain,

and taking these uncertainties into account could weaken the lower bound on the

DM down to around 20 GeV. Similar measurements performed by Fermi in the

Milky Way halo region also render similar constraints, i.e. mDM & 20 GeV, for DM

annihilating into bb or ττ pairs [139].

In our particular case, the fact that the fraction of invisible annihilation products

is rather unknown, together with the uncertainty in the off-shell Higgs spectrum

of masses, means we cannot make detailed predictions that could be compared

with current bounds from either AMS or Fermi data. However, the fact that we

are already considering DM masses & 100 GeV, together with the existence of a

significant fraction of invisible decay products, means that the models discussed

here are certainly not currently ruled out, but may be probed in the near future

(especially for the lowest possible values of the ratio f/v, for which the coupling

between twin and SM sectors is strongest).

On a more speculative note (but nevertheless worth considering), future mea-

surements that would help clarify the nature of the gamma-ray excess in the few

GeV range seen by Fermi would be of special interest [114]. Although the excess is

mild, and seems to depend strongly on the model of interstellar emission used to

interpret the gamma-ray background, it has been claimed that DM particles with

mDM ∼ 40 GeV annihilating to quarks with roughly thermal freeze-out cross sections

(or ∼ 10 GeV DM annihilating to leptons) could account for the excess [140,141]. In

the models discussed here, although the mass of the DM is larger than these values,

the masses of the off-shell Higgs states that finally decay into SM fermions are much

smaller than the DM mass, and could potentially give a good fit to the observed
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excess. Unfortunately, a more detailed assessment of this possibility would require

a thorough understanding of the fragmentation process in the twin sector, as well

as a more precise determination of the fraction of invisible decay products.

Finally, another indirect signature of these models may arise (in the case of

heavy ν ′) if a significant fraction of metastable glueballs are produced when the DM

annihilates. These long-lived states could travel for very long distances, perhaps

very far from the centre of the Galaxy where most of the DM accumulates, before

decaying into light SM states. This could lead to striking signatures for indirect

detection experiments: the products of annihilating DM would seem to proceed less

from the centre of the Galaxy, and more from its outskirts. For this effect to be

relevant, glueball lifetimes would need to be of order the size of the Milky Way

(∼ kpc ≈ 1011 sec), a theoretical possibility as discussed in section 3.4.

3.8 Equilibration of sectors

In the case where the ν ′ are light, they will not contribute to the DM abundance,

and we expect all glueballs to decay with short lifetimes. On the other hand, light

twin neutrinos will result in a contribution to DR, and constraints on the number

of effective neutrino species, ∆Neff , may apply.

Direct couplings between ν ′ and the SM sector are so weak that they fail to

maintain equilibrium between the two sectors below temperatures of order mb′ �

Λ′QCD at best, a scenario that would typically lead to a small contribution to ∆Neff .

However, the twin QCD sector will maintain equilibrium with the ν ′ sector down

to temperatures presumably close to Λ′QCD, through the decay of heavier glueballs

to lighter ones, accompanied by emission of a ν ′ν ′ pair in some appropriate angular

momentum state. If most of the entropy in the QCD′ sector degrees of freedom

goes into the ν ′ sector and remains decoupled from the SM, then a potentially large

contribution to ∆Neff may arise. The situation leading to the smallest contribution

to ∆Neff arises when both interactions between the QCD′ sector and ν ′, and between

QCD′ and the SM plasma remain in thermal equilibrium until after the QCD′ phase

transition, and have been so for long enough such that the ν ′ and SM sectors reached
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full thermal equilibrium.

Regarding ν ′ ↔ QCD′ interactions, the latest to freeze-out would be the decay

of the 0−+ glueball, taking place as 0−+ → 0++ν ′ν ′ (with angular momentum L = 1

in the final state). Notice the final state has quantum numbers 0−+ (both P and C

are conserved in this decay), and so although the decay needs to proceed through

s-channel exchange of a Z ′ gauge boson, it can do so via two axial currents. The

decay rate for this process is, parametrically

Γν′↔QCD′ ∼
1

32π3

(
g′23

16π2m2
b′

g′22
16m2

Z′

)2

m9
0−+ , (3.16)

and this remains larger than H(T ) so long as

T

Λ′QCD
. 7 · 102

(
Λ′QCD

3 GeV

)7/2 ( 3
f/v

)4 ( 100
g∗(T )

)1/4

, (3.17)

which is larger than 1 for Λ′QCD & 0.5 GeV. So for all the values of Λ′QCD of interest,

interactions ν ′ ↔ QCD′ remain in thermal equilibrium until after the QCD′ phase

transition.

The question is then whether QCD′ ↔ SM interactions are also fast enough to

be in thermal equilibrium until temperatures T ∼ Λ′QCD. The most efficient process

is the decay of the 0++ glueball into SM degrees of freedom by mixing with the

Higgs, whose rate is given by [46]

Γ0++ ≈ 1.6 · 10−15 GeV
(

Λ′QCD

3 GeV

)7 ( 3
f/v

)4

, (3.18)

and this remains larger than H(T ) so long as

T

Λ′QCD
. 1

(
Λ′QCD

1 GeV

)5/2 ( 3
f/v

)2 ( 100
g∗(T )

)1/4

, (3.19)

which is larger than 1 for Λ′QCD & 1 GeV.

So it seems that, as long as Λ′QCD & 1 GeV, there will be some range of temper-

atures above Λ′QCD where the rate of interactions ν ′ ↔ QCD′ and QCD′ ↔ SM are

fast enough to maintain equilibrium. (This justifies our choice of Λ′QCD ≈ 3 GeV,
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somewhat larger than the lower bound of 1 GeV to account for the fact that equi-

libration between sectors does not happen instantaneously.) Under the assumption

of thermal equilibrium between the ν ′ and SM sectors down to Λ′QCD, it becomes

then straightforward to estimate the temperature of the ν ′ background compared to

that of the ν background. Using conservation of entropy per comoving volume, one

finds

Tν′ ≈
(
g∗(1 MeV)
g∗(Λ′QCD)

)1/3

Tν ≈
(10.75

75

)1/3
Tν ≈ 0.53 Tν , (3.20)

where g∗(1 MeV) ≈ 10.75 is the effective number of relativistic degrees of freedom

at the time of neutrino decoupling (which happens at ∼ 1 MeV), and g∗(Λ′QCD) the

same quantity at temperatures T ≈ Λ′QCD, which is approximately 75 for Λ′QCD =

O(1 GeV).

If we define the contribution from the ν ′ sector to the energy density in DR as

ρDR
ν′ ≡ ∆Neff,ν′ ρν,SM , (3.21)

where ρν,SM refers to the energy density of a single neutrino species, then we have

∆Neff,ν′ =
(
Tν′

Tν

)4
'
(10.75

75

)4/3
' 0.075 . (3.22)

Given that the contribution form the SM itself is ∆Neff,SM ' 0.046, and Planck has

measured ∆Neff = 0.15±0.2 [142], a contribution to ∆Neff,ν′ of this size is consistent

with current observations, and potentially in reach of future measurements.

3.9 Conclusions

In this chapter, we have considered the possibility of DM candidates arising in the

context of the Fraternal Twin Higgs model [46]. We have shown that twin states

may account for the observed DM abundance, and although a weak first order phase

transition in the twin QCD sector may take place in the early Universe, the amount

of entropy produced in such event would be insignificant.

The most attractive DM candidate is the twin tau lepton, with a mass mτ ′ >

mh/2 in order to account for the observed relic abundance and evade constraints
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from Higgs invisible width measurements. Interactions with SM nuclei proceed via

the Higgs portal, and current bounds on the SI cross section per nucleon from the

LUX experiment [110] already rule out ratios f/v . 6 (driving the level of fine-

tuning to around 5% at best), which requires DM masses mτ ′ & 165 GeV. Larger

values of f/v will only be accesible to next-generation experiments [111].

Scenarios of multicomponent DM seem to arise naturally in the context of Frater-

nal Twin Higgs models: as soon as mτ ′ ∼ mν′ , both particle species will contribute

significantly to the DM energy density. (Admittedly, the phenomenology of this

two-component case is very similar to the single-component scenario, except for the

absence of a contribution to ∆Neff .) Moreover, as soon as mτ ′ + mν′ > mW ′ , W ′

gauge bosons also become stable, and all three species of twin particles will typically

contribute to the DM energy density, albeit the large value of f/v required in this

case drives the fine-tuning to the few percent level – worse than the single-component

case.

The case in which the DM is made of twin baryons (∆′ baryon made of three b′

quarks, the lightest state carrying twin baryon number) is a possibility, but only a

viable one in a rather extreme region of parameter space, requiring masses mb′ &

1 TeV, and ratios f/v & 30 for yb′ ≈ 0.2, which drives the fine-tuning to the 0.5%

level.

With respect to indirect detection signatures, annihilation of twin DM particles

proceeds mostly into b′b′ pairs, which in turn hadronize and result in some number

of twin sector glueballs. These glueballs will then decay into light SM states and

some fraction of invisible (twin) states (either ν ′ν ′ pairs for the case of massless ν ′,

or (meta)stable twin glueballs). SM products will mostly consist of bb pairs, and also

ττ pairs to some extent, which means that bounds from experiments like AMS-02

and Fermi-LAT are applicable, although a direct comparison with existing data is

not possible given the lack of knowledge about how the fragmentation process in the

twin sector takes place. Given the masses of our DM candidates (mDM & 165 GeV),

it is clear that the models described here are completely consistent with current

bounds, but may be probed in the coming future. In those versions of the model

where metastable glueballs exist, decays of these states far from the galactic centre
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could also provide striking signatures for indirect detection experiments, although

the extreme dependence of glueball lifetimes on parameters like Λ′QCD, the exact

value of mb′ , and potential contributions from HDO’s, makes it impossible to make

concrete predictions.

Although a vanishing contribution to ∆Neff is possible for large ν ′ masses, a

massless twin neutrino will give ∆Neff ≈ 0.075 at least. A prediction of this size,

albeit compatible with current measurements, will certainly be probed in the near

future.

Finally, we note that similar investigations of DM in Twin Higgs models have

been carried out by other groups [143] and [144].
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Chapter 4

Twin Asymmetric Dark Matter

Based on work done in collaboration with R. Lasenby and J. March-Russell [2].

4.1 Introduction

This chapter explores the possibility of ADM in the context of Fraternal Twin Higgs

theories. As discussed in section 2.2.2, the paradigm of ADM provides a context in

which the O(1) ratio between the DM and baryon relic abundances, ΩDM/Ωb ' 5,

can be explained. A true explanation, however, requires a rationale for having

ηDM ∼ ηb, and also mDM ∼ mN . Here, we will assume that the two asymmetries are

of the same order, but we will see that mDM ∼ mN ∼ GeV is in fact a feature of this

class of Twin Higgs models, and it is fixed by the requirements of naturalness alone.

Unlike in chapter 3, we work in the regime mb′ . Λ′QCD, where the twin QCD′

theory is determined by a single scale – the scale of twin QCD confinement Λ′QCD.

In section 4.2, we study potential stable states in the twin sector, and argue that the

baryon ∆′ ∼ b′b′b′ arises as a natural DM candidate. We study its characteristics,

and direct detection phenomenology, in section 4.3. In section 4.4 we deviate from

the most minimal version of Fraternal Twin Higgs, and consider the case in which

U(1)′Y is gauged. Now, an atomic bound state made of ∆′ and τ ′ can be the DM.

4.2 Stable and relativistic twins

Within the Fraternal Twin Higgs scenario, the twin sector respects three accidental

global symmetries: twin baryon number B′, lepton number L′ and ‘charge’ Q′. If

these are not too badly broken by HDO’s, as we will assume, then the lightest twin

particles carrying these quantum numbers will be cosmologically stable states. Twin

CP could be a good discrete symmetry of the twin sector, although both P and C

are violated by SU(2)′L interactions.
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We consider massive τ ′ but allow for heavy or massless ν ′, usually with mτ ′ +

mν′ < mW ′ so that W ′± gauge bosons decay, although a possibly interesting scenario

arises if mτ ′ + mν′ > mW ′ and W ′± are stable. For mb′ . Λ′QCD, the lowest QCD′

states are b′b′ mesons, the lightest being a pseudoscalar η̂ and a scalar χ̂ with masses

mη̂ ≈ (2 − 3)Λ′QCD and mχ̂ ≈ 1.5mη̂ [145]. (A distinctive feature is the absence of

pNGB’s due to the chiral anomaly.) The glueball spectrum is heavier and only

weakly mixed with the mesons, with the lightest being a 0++ state of mass m0 '

6.8Λ′QCD [58,59]. Meson/glueball states decay quickly via SU(2)′L interactions to ν ′ν ′

pairs ifmν′ ≈ 0 (and multi-γ′ states if U(1)′Y is gauged) and lighter mesons/glueballs,

or to SM states via twin-scalar−Higgs mixing [46, 135]. Independently of mν′ , the

lightest twin meson η̂ may decay very fast via dimension-6 HDO’s that preserve total

CP , of the form ∼ (qγ5q b′γ5b′)/M2, where q denotes SM quarks (for M ∼ 10 TeV,

this gives a lifetime τ−1
η̂ ∼ 10−14 s).

The spin-3/2 twin ∆′ baryon with mass m∆′ ≈ 5Λ′QCD [145] and Q′ charge −1,

is naturally extremely long-lived since it is the lightest B′ 6= 0 object. Moreover,

the leading HDO violating SM and twin baryon numbers but preserving a linear

combination is dimension-12, resulting in a lifetime τ∆′ ∼ 1026 s for m∆′ ∼ 10 GeV

and M ∼ 10 TeV. Thus even in the presence of HDO’s, ∆′ can be stable on

cosmological timescales. For the purposes of this chapter we assume that the ∆′ is

the only B′-carrying state with a cosmologically relevant lifetime. (The presence of

heavier stable twin baryon states would not qualitatively change our conclusions.)

DR contributions to the number of effective neutrino species, ∆Neff , can arise

from light twin neutrinos, and twin photons when U(1)′Y is gauged. Due to the

extremely fast decay of the lightest twin meson η̂ into SM states naturally present via

HDO’s, we expect the ν ′ and γ′ sectors to remain in equilibrium with the SM after the

QCD′ phase transition, even for values of Λ′QCD as small as ∼ 0.5 GeV. As a result,

in the case of mν′ ≈ 0 and no gauged U(1)′Y we expect a contribution to ∆Neff of

≈ 0.075 (as argued in section 3.8) and of ≈ 0.16 when twin photons are also present.

Notice these are the minimum possible contributions to ∆Neff and are compatible

with the current measured value ∆Neff −∆Neff,SM ' 0.1±0.2 [142], although future

experiments may achieve an accuracy of ∼ 0.05 [146,147] and therefore probe these
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two scenarios.

4.3 Twin baryon and W ′ DM

The ADM scenario necessarily has a linked asymmetry in SM- and twin-sector quan-

tum numbers. The generation of such an asymmetry is a UV issue — here we sim-

ply assume that it is present. In addition, ADM requires efficient annihilation of

the symmetric component of stable DM states, so that the final DM abundance is

dominantly set by the asymmetry. In our case, annihilation of the symmetric com-

ponent of the twin baryon states happens efficiently via twin strong interactions.

Sufficiently heavy τ ′ and ν ′ species also annihilate efficiently, mainly to b′b′ states

(see figure 2 in [148]). The QCD′ phase transition for mb′ . Λ′QCD is a smooth

crossover [124–126], so we expect neither significant non-equilibrium dynamics nor

entropy production affecting relic densities.

A twin baryon number asymmetry implies an asymmetric relic population of

∆′ baryons. If ηQ′ = 0, then the (ungauged) charge density of the ∆′ population

must be balanced by a population of twin charged states. So, if the ∆′ baryons are

to be the only significant DM component, either mτ ′ ≈ 0 so that an asymmetric

abundance of these can exist as DR, or we must have a compensating asymmetry

in (global) twin charge, ηQ′ ' −ηB′ . Depending on UV dynamics there may be a

non-zero twin lepton asymmetry setting an asymmetric ν ′ DR relic density (the τ ′

density is fixed by ηB′ and ηQ′).

As anticipated in section 4.2, m∆′ ≈ 5Λ′QCD [145], which translates into ηB′/ηb ≈

mN/Λ′QCD, with Λ′QCD = 0.5 − 20 GeV [46]. Thus this framework allows for a

successful realisation of ADM in which the mass of the DM particle is not tuned to

be ∼ 1−10 GeV, but rather is set by the confinement scale of the DM sector, whose

range is restricted directly by naturalness arguments. The value of yb′ is irrelevant

for the DM mass as long as mb′ . Λ′QCD is realised. DM in this framework is then

made of individual ∆′ baryons. Bound states, if they exist in the spectrum, will not

form in the early universe, since the only states parametrically lighter that could

be emitted in the binding process are ν ′ or light SM states, but these both only
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interact via tiny sub-weak interactions. Moreover, we find that even in the presence

of twin photons, radiative capture is not fast enough to give a significant population

of ∆′ −∆′ bound states as the electric and magnetic dipole radiative capture rates

vanish. (This situation can be significantly different when lighter generations are

present, in which case bound states may form allowing for a scenario of nuclear

DM [149,150].)

Regarding ∆′ self-interaction bounds we have, parametrically, σ∆′/m∆′ ∼ (Λ′QCD)−3 ∼

10−3− 10−8 cm2 g−1 for Λ′QCD = 0.5− 20 GeV, well below the current experimental

upper bound of ∼ 0.5 cm2 g−1 [151].

Finally, in the case where mτ ′+mν′ > mW ′ , W ′± are also stable states, and even if

ηB′ = −ηQ′ , an asymmetric population of τ ′ (τ ′) states could survive, whose charge is

balanced by an equal number of asymmetric W ′+ (W ′−) states. Notice that for small

values f/v ≈ 3− 5 (see figure 4 in [148]), annihilation of the symmetric populations

of τ ′, ν ′ and W ′± occurs very efficiently. For this latter possibility to be realised

without introducing significant extra tuning, one would need mτ ′ ,mν′ ∼ 102 GeV

(since mW ′ ≈ (f/v)mW ), above the mass range where ADM scenarios work most

naturally.

4.3.1 Direct detection

Scattering of ∆′ baryons off SM nucleons happens via Higgs exchange or by ex-

changing a twin scalar state (χ̂ meson or 0++ glueball) that mixes with the Higgs.

Couplings between scalar mesons/glueballs and a pair of twin baryons are unknown

and require dedicated lattice computation. We find that within a reasonable range

for the couplings and mixing angles either Higgs exchange or meson/glueball ex-

change can dominate the scattering. We therefore separately consider the two pro-

cesses (ignoring interference effects) to give an idea of the possible scattering cross

sections.

In the case where Higgs exchange dominates, the SI scattering cross section is

given by

σSI
h ≈

1
π
µ2
N∆′

(fNmN)2

m4
hv

4
(m∆′f∆′)2

(f/v)4 , (4.1)
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where µN∆′ = mNm∆′/(mN + m∆′) is the reduced mass of the ∆′-nucleon system.

fN ≈ 0.32 [152–154] and f∆′ = (2+87fb′)/31 (following [155]) are the effective Higgs

couplings to nucleons and ∆′ baryons, respectively, where fb′ is the dimensionless

part of the matrix element of b′ in ∆′. In the light b′ case, one expects fb′ � 1 albeit

its exact value requires dedicated lattice study. In the case where the dominant

process is meson exchange, the cross section can be written as

σSI
χ̂ ≈

1
π
µ2
N∆′

(fNmN)2

m4
χ̂v

2 λ′
2
θ′

2
, (4.2)

where λ′ is the coupling between χ̂ and a pair of ∆′ baryons and θ′ is the Higgs-χ̂

mixing angle

θ′ = fχ̂mχ̂

2f(f/v)
Fχ̂

m2
h −m2

χ̂

, (4.3)

with Fχ̂ the 0++ meson decay constant that we define as Fχ̂ ≡ a′m2
χ̂ (with a′ an

unknown dimensionless constant) and fχ̂ = (2 + 58f̃b′)/31 accounts for the effective

coupling between meson and Higgs. Numerical evaluation shows that for λ′ .

1 Higgs exchange dominates, whereas for λ′ & 4π meson exchange provides the

leading interaction. In the event of glueball exchange being the dominant process,

the scattering cross section is given by eq.(4.2) after performing the appropriate

substitutions.

Figure 4.1 shows these SI scattering cross sections for particular choices of the

unknown parameters. To illustrate the range possible we have chosen the minimum

Higgs-exchange cross section (i.e. fb′ = 0), while for meson exchange we have

selected reasonably large values of the parameters. Note that different choices allow

Higgs or glueball exchange to dominate. A significant portion of parameter space is

covered by the neutrino floor, in particular the region m∆′ ≈ 5 GeV that would allow

for ηB′ ≈ ηb. For values m∆′ ≈ 10−50 GeV, which correspond to ηB′/ηb ≈ 0.5−0.1,

predicted cross sections escape the neutrino background and sit close to (or within)

the region that will be probed by next-generation experiments such as LZ [156].
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Figure 4.1: Illustrative range of possible SI scattering cross sections of ∆′ baryons off
SM nucleons when either Higgs or χ̂ meson exchange dominates (dashed and thick lines
respectively). We take mχ̂ = 3Λ′QCD, λ′ = 4π, a′ = 1, fb′ = 0 and f̃b′ = 0.1 for illustration.
Dark blue region: LUX bounds at the time [2] was written [133]; light blue: current region
of parameter space excluded by LUX [110]; orange: neutrino background [156]; pink dotted
line: LZ sensitivity [156]; pink: values of m∆′ (equivalently, of Λ′QCD) that imply extra
tuning [46].
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4.4 Twin atoms

Once the U(1)′Y group is gauged, the physics becomes substantially richer. Twin-

charge neutrality of the Universe requires ηQ′ = 0, which means that a B′ asymmetry

resulting in a non-zero asymmetric population of ∆′ baryons must be balanced by

an L′ asymmetry, such that an equal asymmetric population of τ ′ is present (we

here assume that W ′± are unstable). Due to twin electromagnetic interactions,

the asymmetric populations of ∆′ and τ ′ states may form bound states. In fact,

the late-time DM population must consist of overall-neutral ‘twin atoms’, rather

than a plasma of charged states, for values of the twin electromagnetic coupling α′

that are not extremely small; otherwise, the long-range interactions between DM

particles result in plasma instabilities that strongly affect Bullet Cluster-like col-

lisions [157, 158]. Requiring that efficient twin recombination takes place imposes

non-trivial constraints on the sizes of α′ and the mass of the twin atom Ĥ [159].

Further constraints are present due to DM self-interactions: low energy atom-atom

scattering processes have cross sections σ ≈ 102(a′0)2 where a′0 = (α′µĤ)−1 is the

atomic Bohr radius and µĤ the reduced mass of the atomic system, although the

exact value of σ depends strongly on the ratio R ≡ m∆′/mτ ′ for values R & 15 [160].

We impose the constraint σ/mĤ . 0.5 cm2 g−1 [151] applicable to contact-like DM

scattering, since the effect of hard scatterings generally dominates over soft or dis-

sipative processes for atom-atom scattering in the regimes we consider. Figures 4.2

and 4.3 show constraints from recombination [159] and DM self-interactions, for

ratios R ≡ m∆′/mτ ′ = 1 and 10 respectively.

For values of α′ and mĤ satisfying recombination and self-interaction constraints,

and for the parameter ranges we consider, annihilation of the symmetric populations

of ∆′ and τ ′ happens very efficiently. As can be seen from figures 4.2 and 4.3, the

minimum value of α′ consistent with all constraints is α′ ≈ 10−2, in which case the

twin atom mass is constrained to be mĤ ≈ 20, 40 GeV for R = 1, 10 respectively.

This results in binding energies of order ∼ 102 keV, and a hyperfine splitting of the

first atomic energy level of order ∆E ∼ 10 eV.

Before twin sector recombination occurs, the ∆′ and τ ′ are coupled to the twin
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photon bath, constituting a dark plasma that can undergo ‘dark acoustic oscilla-

tions’ [159]. If twin sector recombination is late enough, these oscillations can leave

an imprint in the power spectrum of baryonic matter. However, since α′ & 10−2

in our allowed regions, the binding energy of our twin atoms is sufficiently high

(� 10 keV) that twin recombination is always too early to realise this possibility.

Another possibility is that, after dark recombination, molecular bound states

may form at lower temperatures. However, radiative capture of two neutral atoms

to a ‘dark hydrogen molecule’ is very suppressed [161], with molecule formation

requiring that there is an abundance of charged particles to catalyse the reactions.

Given the constraints that must already be satisfied, our estimates indicate that a

significant proportion of molecules will not be formed, either in the early universe,

or in halos.

We remark that most of the physics discussed in this section is not specific

to Fraternal Twin Higgs models, relying only on asymmetric DM charged under a

dark U(1) gauge group. There is a large body of literature on the physics of such

‘dark atoms’, e.g. [162–165], which in particular can arise in many ‘mirror world’

models [166,167].

4.4.1 Direct detection

We first neglect the impact of kinetic mixing between the twin and SM photons

on direct detection signatures and concentrate on the process of scattering purely

via Higgs exchange or by exchange of a twin scalar that mixes with the Higgs. An

interesting situation arises for R ≈ 1. In this case, m∆′ ≈ mτ ′ and therefore the

Higgs couples to both states with equal strength. On the other hand, the typical

size of the atom is set by a′0 = (α′µĤ)−1, which is ≈ 4 fm for α′ ≈ 10−2 and

mĤ ≈ 20 GeV, values consistent with all constraints (see figure 4.2). The size

of the atomic system is thus comparable to that of SM nuclei relevant for direct

detection experiments, and the possibility of a detectable ‘dark form factor’ arises

(with the form factor approximately given by the Fourier transform of the ground

state atomic wavefunction squared). While such a signal would be degenerate with

modifications to the DM halo velocity distribution for data from a single direct
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detection experiment [168], multiple experiments with different SM target nuclei

could allow the dark form factor contribution to be disentangled [169].

Alternatively, if R � 1 then the atom’s coupling to the Higgs is dominantly

through the ∆′, whose structure is on smaller scales than SM nuclei, since Λ′QCD >

ΛQCD. Thus, in this case, we would have a basically momentum-independent dark

form factor, and SI cross sections would be like those shown in figure 4.1.

Finally, kinetic mixing between the two sectors can arise via the operator ε
2FµνF

′µν .

This results in twin sector particles acquiring SM-sector electric charges of size ∼ εe′,

with e′ =
√

4πα′. Low-energy radiative contributions to the kinetic mixing parame-

ter appear to be absent up to three-loop order [43,46], and therefore one can expect

ε ∼ (16π2)−4 ∼ 10−9 if a non-vanishing four-loop contribution to ε indeed exists (UV

contributions to kinetic mixing can be present depending on the completion). Notice

that our DM atoms are neutral under both visible and twin sector electromagnetism

and have vanishing permanent electric dipole moments, due to their spherical dis-

tribution of charge. Nevertheless, twin atoms have magnetic dipole moments under

both sectors, with the visible sector moment suppressed by a factor of ε. Experi-

mental constraints on ε arise from a combination of astrophysical, accelerator, and

direct detection considerations [170–174]. The nature of the dominant constraint

depends strongly on the values of α′, mĤ and R, but for the range of parameters

considered here, values of ε . 10−9 are likely to satisfy all current bounds.

4.5 Conclusions

We have shown that for the values of Λ′QCD allowed by naturalness, and in the

ungauged U(1)′Y case, the twin hadron ∆′ ∼ b′b′b′ is a successful ADM candidate,

with mass ∼ 1 − 10 GeV – automatically in the most attractive regime for ADM

theories to explain the O(1) ratio of DM-to-baryon energy densities. If U(1)′Y is

gauged, an asymmetric population of ∆′ baryons is balanced by an equal number

of asymmetric τ ′. In significant regions of parameter space, twin atoms are formed

and are successful DM candidates consistent with all current constraints, although

modified halo dynamics and direct detection signals are possible.
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Chapter 5

Disassembling the Clockwork Mechanism

Based on work done in collaboration with Nathaniel Craig and Dave Sutherland [3].

5.1 Introduction

The problems of the SM remain as striking as ever, but their solutions — if they

indeed exist — have yet to make themselves apparent. From the electroweak hier-

archy problem to the DM puzzle to the inflationary paradigm, experimental data

largely disfavors solutions involving mass scales and couplings commensurate with

those seen elsewhere in nature.

Perhaps this is a sign that the degrees of freedom solving the problems of the SM

are in some way sequestered from us, interacting feebly due to small dimensionless

couplings or the suppression by vast dimensionful scales. Indeed, extensions of

the SM operating along these lines are among the most compatible with existing

data: cosmological observations are accommodated by inflationary potentials that

are flat on trans-Planckian scales; the electroweak hierarchy problem may be solved

by the evolution of fields across similarly trans-Planckian distances [175]; and DM

may be explained by light particles carrying infinitesimal electromagnetic charges.

Recent attempts to test these feebly-interacting degrees of freedom have led to a

proliferation of novel experiments across the energy, intensity, and cosmic frontiers.

Such feeble interactions require large parametric hierarchies with respect to the

couplings and scales of the SM and quantum gravity. These parametric hierarchies

are challenging to understand from the perspective of naturalness, which prefers

O(1) dimensionless couplings and degenerate scales in the fundamental theory. Even

parameters that are technically natural or otherwise radiatively stable beg for deeper

explanation if they are infinitesimally small. Beyond questions of field-theoretic nat-

uralness, extremely weak couplings are challenging to reconcile with generic prop-

erties of quantum gravity [176].
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To this end, there has recently been considerable progress in generating large

effective hierarchies from theories whose fundamental parameters are all natural

in the conventional sense. These include models of inflation with sub-Planckian

intrinsic scales and super-Planckian effective couplings [177–179], as well as more

general theories realizing exponential hierarchies in the decay constants of pseudo-

goldstone bosons [9,10]. Such “clockwork” models involve a linear quiver with N+1

sites, where each site possesses a global U(1) symmetry acting on a complex scalar

field. The U(1)N+1 symmetry of the quiver is explicitly broken by asymmetric

nearest-neighbour interactions that preserve a single U(1). When the scalars acquire

vacuum expectation values, the resulting goldstone boson is a linear combination of

fields from each site whose weights follow a geometric sequence, and the unbroken

symmetry is asymmetrically distributed among sites. As a result, any coupling

of additional fields to the scalar at a specific site gives rise to an exponentially-

suppressed and site-dependent coupling of those fields to the goldstone boson. This

provides a natural mechanism for generating exponential hierarchies in a theory

whose fundamental parameters are all of comparable size, and leads to a variety of

model-building possibilities [180–182].

In [183], the clockwork mechanism was generalized to include states of higher

spin, giving rise to exponentially small fermion masses, gauge millicharges, and grav-

itational couplings. Even more ambitiously, the authors of [183] also conjecture a

continuum counterpart to four-dimensional clockwork in the form of five-dimensional

linear dilaton models, which in turn are holographically related (with the addition

of two more compact dimensions) to little string theory [184]. If true, this would

open the door to a wider variety of constructions in both four and five dimen-

sions [185,186].

Given the potentially vast applications of clockwork to questions of phenomeno-

logical interest, it is crucial to precisely determine the scope of clockwork. As such,

in this chapter we systematically answer two questions:

1. What theories can be clockworked in four dimensions?

2. What are their higher-dimensional continuum counterparts?
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To answer these questions, we must take care to carefully define the features of a

clockwork theory. In particular, the definition must distinguish genuine “clockwork”

phenomena from already-familiar hierarchies arising from volume suppression [15]

or curvature-induced localization [14] in extra dimensions (or their deconstructed

counterparts [187–189]). For our purposes, we will take clockwork to involve the

salient features of the original models [9, 10], namely

Clockwork: A four-dimensional quiver theory with no exponential hi-

erarchies in fundamental parameters that gives rise to exponentially sup-

pressed (and site-dependent) couplings to a symmetry-protected zero mode.

These are not merely incidental properties of clockwork, but essential ones. In

particular, site-dependent exponentially suppressed couplings are a hallmark of the

asymmetric distribution of the unbroken symmetry among different sites. This

clearly distinguishes the clockwork theories of [9, 10] in four dimensions from, say,

deconstructions of extra dimensions with flat or bulk AdS metrics. For example,

deconstructions of flat extra dimensions involve no hierarchies in fundamental pa-

rameters, but only give rise to site-independent zero mode couplings suppressed by

∼
√
N factors. Similarly, deconstructions of Randall-Sundrum and other warped

models can give rise to exponentially-suppressed (albeit position-independent) zero

mode couplings, but necessarily involve exponential hierarchies in the vacuum expec-

tation values of the link fields. The genuine novelty of clockwork is that it furnishes

exponential and site-dependent effective couplings from a fundamental theory with

no large parametric hierarchies or multiplicity of sites. To the extent that these prop-

erties arise from the asymmetric distribution of an unbroken symmetry subgroup,

in what follows we will refer to the localization of fields in the space of appropriate

symmetry generators as ‘symmetry-localization.’ Such symmetry-localization con-

trols the couplings of fields dictated by gauge or global symmetries. As we will

see, this symmetry-localization differs in important ways from localization of fields

propagating in a non-trivial geometry with respect to a 5D metric.

As we will show, the answers to these questions are:

1. Clockwork is a strictly abelian phenomenon. In particular, there is no clock-
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work for Yang-Mills theories, non-linear sigma models, or gravity.

2. Geometry alone cannot clockwork bosonic fields. Zero modes of massless bosonic

bulk fields are flat, regardless of apparent features of the metric. In partic-

ular, higher-dimensional models with massless bulk fields on linear dilaton

backgrounds do not furnish continuum counterparts of clockwork. Successful

continuum clockwork requires bulk and brane masses to symmetry-localize the

zero mode.

These conclusions are consistent with the original clockwork proposals [9, 10],

but they are in tension with the results of [183], applications thereof [185], and sub-

sequent attempts to clockwork non-abelian global symmetries [186]. Insofar as it

is not possible to clockwork gravity in the sense of generating an asymmetrically-

distributed general coordinate invariance, clockwork offers no new solution to the

electroweak hierarchy problem. Moreover, in those cases where clockwork is possible,

namely for spin-0 and abelian spin-1 fields, we argue that — appropriately inter-

preted — deconstructions of five-dimensional linear dilaton models do not exhibit

clockwork phenomena.

We emphasize that our statement about the lack of a clockwork solution to the

hierarchy problem stems solely from the fact that gravity cannot be consistently

clockworked, as we prove in section 5.2.4. This is not a statement about the po-

tential of linear dilaton theories for solving the hierarchy problem — that they do

is well-known [190, 191]. In these theories exponential hierarchies are generated by

a linear profile for the dilaton, whose exponential coupling gives rise to the desired

hierarchies. When deconstructed, they do not lead to four-dimensional theories

with a clockwork graviton in which the surviving general coordinate invariance is

asymmetrically distributed among different sites.1

More optimistically, we construct five-dimensional theories with bulk and brane

masses that exhibit clockwork phenomena. These are the continuum counterparts

of clockwork theories, in the sense that discretizing them gives four-dimensional

theories whose spectra and couplings match those of a uniform four-dimensional
1Very much in the same way that other extra dimensional solutions, like Randall-Sundrum [14]

or large flat extra dimensions [15], do not lead to a clockwork graviton when deconstructed.
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clockwork up to appropriately small 1/N corrections. The emergence of meaning-

ful clockwork phenomena in the deconstruction of higher-dimensional theories with

bulk and brane masses opens the door to a variety of promising model-building

possibilities.

We stress that further model building opportunities may arise if the definition

of clockwork is significantly relaxed. In particular, if we do not require that the

zero-mode be symmetry protected, it is possible to construct a quiver of non-linear

sigma models whose zero-mode has exponentially suppressed, and site-dependent,

couplings [192]. Whilst such a zero-mode is necessarily massive, it may be para-

metrically lighter than the other modes of the quiver — a fact which is mirrored

in the quiver’s 5D analog as the fifth component of a non-Abelian gauge field in

AdS. However, in keeping with the original clockwork model, we will insist on a

symmetry-protected, massless zero-mode.

The chapter is organized as follows: in section 5.2 we review the essential features

of the discrete clockwork mechanism, following the arguments of [183], and illustrate

how effective clockworking arises only for goldstone bosons of spontaneously broken

abelian global symmetries, and gauge bosons of abelian gauge symmetries. We ex-

plicitly show how an analogous mechanism cannot be built for non-abelian gauge

bosons and gravitons. In section 5.3 we turn to the conjectured continuum coun-

terpart of viable four-dimensional clockwork. We show that the couplings between

the zero mode of a massless bulk scalar or vector and matter localized at some

point in the fifth dimension do not reproduce the properties of clockwork models

when deconstructed – a statement that holds for a general class of warped metrics,

and includes linear dilaton theories. Given the failure of geometry alone to produce

clockwork, in section 5.4 we show that genuine clockwork arises in the deconstruc-

tion of extra dimensions with a flat metric and suitably-chosen bulk and brane mass

terms that preserve a massless zero mode. In section 5.5 we explicitly show how

the deconstruction of a gravitational extra dimension does not lead to a graviton

clockwork, in keeping with our results of section 5.2. We summarize our conclusions

in section 5.6.
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5.2 Discrete clockwork

In this section, we discuss the basic features of the discrete clockwork mechanism

using the framework introduced in [183]. Sections 5.2.1 and 5.2.2 focus on the spin-

0, and abelian spin-1 scenarios, in which a finite amount of clockworking may be

successfully generated in a consistent fashion (as defined in section 5.1). On the other

hand, sections 5.2.3 and 5.2.4 illustrate how an analogous clockwork mechanism

cannot be consistently constructed in the non-abelian spin-1 and spin-2 cases. We

summarize these results from the perspective of the clockwork symmetry in section

5.2.5.

5.2.1 Scalar clockwork

The discrete scalar clockwork mechanism involves N + 1 real scalar fields, together

with N charge and mass-squared parameters, qj and m2
j (j = 0, ..., N−1), such that

the lagrangian of the scalar sector is given by2

L4 = −1
2

N∑
j=0

(∂µφj)2 − 1
2

N−1∑
j=0

m2
j(φj − qjφj+1)2 . (5.1)

The N + 1 scalar fields φj may be conveniently thought of as the Goldstone

bosons of a global U(1)N+1 symmetry, spontaneously broken at some high scale f .

Eq.(5.1) can then be regarded as the effective lagrangian of the Goldstone sector,

valid at scales � f , and with the mass-squared parameters m2
j introducing an

explicit breaking of N of the N + 1 global symmetries. As a result, the effective

theory of the Goldstone sector features only one massless state.

The parameters m2
j may arise from the vacuum expectation values (vev’s) of N

additional scalar fields charged under the U(1)j and U(1)j+1 global subgroups, with

charges +1 and −qj respectively, as discussed in [183]. This allows for the effective

theory defined through eq.(5.1) to be UV completed in a way such that all sources

of symmetry breaking are spontaneous.

The profile of the massless mode corresponding to the single Goldstone that
2Throughout this chapter, implicit contraction of Greek indices denotes contraction with ηµν =

(−1,+1,+1,+1).
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remains in the spectrum is given by φ(0) = ∑N
j=0 cjφj, with

cj = c0

j−1∏
k=0

1
qk

(for j > 1) , and c0 =
1 +

N∑
j=1

j−1∏
k=0

1
q2
k

−1/2

, (5.2)

where the expression for c0 comes from demanding the kinetic term of φ(0) be canon-

ical. In particular, in the case of equal clockwork parameters (m2
j ≡ m2, qj ≡ q ∀ j =

0, ..., N − 1) considered in [183], one finds cj ' q−j (for q > 1 and large N). The

massless mode therefore has a profile that is exponentially localized towards the

j = 0 site.

The clockwork mechanism as a means of generating large hierarchies comes into

play when we introduce an axion-like coupling between one of the scalar fields

(e.g. the scalar field of the k-th site), and a non-abelian gauge theory, of the form

L4 ⊃ −
1

4g2GµνG
µν + φk

16π2f
GµνG̃

µν . (5.3)

The term in the above equation involving only the scalar zero mode reads3

L4 ⊃
ckφ(0)

16π2f
GµνG̃

µν ≡
φ(0)

16π2f0
GµνG̃

µν , (5.4)

where we have defined an effective axion coupling scale

f0 = f

ck
= fqk

c0
' qkf = qkMPl

(
f

MPl

)
. (5.5)

(We have restricted ourselves to the case of equal charges, qj ≡ q > 1, for illustra-

tion.) An effective axion coupling that is hierarchically larger than the symmetry

breaking scale f is dynamically generated if the gauge theory is coupled to one of

the scalar fields towards the end of the array of sites.

The clockwork mechanism for scalars then allows for exponentially different ef-

fective axion couplings depending on where the gauge theory is localized, as a result

of the symmetry-localization of the massless scalar field along the lattice, and in the
3Notice that since M2 is a real symmetric matrix (therefore it can be diagonalized by an or-

thogonal matrix), the scalar field of the j-th site may be written in terms of mass eigenstates as
φj = cjφ(0) + ..., where the dots denote strictly massive modes.
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absence of site-dependent hierarchies in the decay constants of the N + 1 axions in

the unbroken phase. In particular, for two non-abelian gauge theories localized on

opposite sites, but otherwise identical (with the same gauge coupling, and therefore

the same physical properties like their confinement scales), the clockwork mechanism

leads to a hierarchy of effective axion couplings:

f0,k=0

f0,k=N
= q−N � 1 . (5.6)

Finally, notice that f0 can be super-Planckian in a natural fashion, in the sense

that it is achieved with parametrically few lattice sites, each of which may have a

sub-Planckian symmetry breaking scale f .

5.2.2 Abelian vector clockwork

In analogy with the scalar mechanism described in section 5.2.1, the abelian vector

clockwork [193] consists of N + 1 U(1) gauge theories, each with its own gauge

coupling gj, together with N charge and mass-squared parameters, qj and v2
j (j =

0, ..., N − 1), such that the lagrangian of the vector sector is given by

L4 = −
N∑
j=0

1
4g2

j

F 2
jµν −

1
2

N−1∑
j=0

v2
j (Ajµ − qjAj+1µ)2 . (5.7)

The mass terms have the same form as those in eq.(5.1) for the scalar case, and,

as before, may be regarded as arising from the vev’s of N scalar fields Φj (j =

0, ..., N − 1) with charges +1 and −qj under U(1)j and U(1)j+1 respectively. As a

result, N of the N + 1 abelian gauge symmetries are broken spontaneously, with a

single unbroken U(1) factor remaining. Eq.(5.7) then corresponds to the effective

lagrangian describing the vector sector, in unitary gauge. The terms involving the

only massless vector that remains in the spectrum are given by the substitutions

Ajµ = cjAµ(0) + . . ., with cj as in eq.(5.2) and the dots denoting strictly massive

modes, yielding an effective gauge coupling

1
g2

(0)
=

N∑
j=0

c2
j

g2
j

' c2
0
g2 , (5.8)
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where in the last step we have assumed qj ≡ q > 1 and gj ≡ g ∀ j for simplicity.4

If we now consider a scalar field ϕ with charge Qϕ under the U(1)k gauge group,

then its kinetic term reads

L4 ⊃ −|(∂µ + iQϕAkµ)ϕ|2 ' −|(∂µ + iQϕc0q
−kA(0)µ + ...)ϕ|2 , (5.9)

where the dots denote strictly massive modes, and in the second equality we have

again considered the case of qj ≡ q > 1. The effective coupling strength between ϕ

and the massless vector is then given by ∼ g(0)Qϕc0q
−k ' gQϕq

−k. In particular,

for two scalar fields, ϕ0 and ϕN , charged under the gauge groups at opposite sites

with the same charge Qϕ, the clockwork mechanism leads to an effective hierarchy

of charges under the unbroken gauge group:

Q0,k=N

Q0,k=0
= q−N � 1 . (5.10)

As in the scalar case, the exponential difference in effective couplings arises as a

consequence of the symmetry-localization of the massless vector along the lattice,

and in the absence of site-dependent hierarchies in the gauge couplings of the N + 1

vectors in the unbroken phase.

5.2.3 (No) Non-abelian vector clockwork

The difficulties for constructing a non-abelian version of the discrete clockwork mech-

anism become apparent after having reviewed the abelian case. By analogy, we

might choose the N scalar link fields, responsible for spontaneously breaking the

non-abelian GN+1 group down to G, to transform under different representations

of adjacent gauge groups. However, as we show below, such a symmetry breaking

pattern would not leave a single non-abelian symmetry group intact (the N vev’s

would break all N + 1 copies of G). The only viable lagrangian, which retains a G

symmetry after the link fields acquire vev’s, has link fields transforming as bifun-

damentals, in which case it is clear that no clockworking can be generated, as this
4Strictly speaking, in the gauge U(1) case we consider here the coefficients cj are equal to those

in eq.(5.2) for j ≥ 1 with c0 = qN , so that charge quantization in the N -th site in units of g
corresponds to charge quantization of the unbroken gauge theory in units of g(0) ' gq−N .
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would be analogous to the abelian case discussed in section 5.2.2 with all qj = 1.

To illustrate this situation, consider N + 1 copies of a non-abelian gauge group

SU(n), and N scalar fields Φj (j = 0, ..., N − 1) transforming as bifundamentals

under SU(n)j and SU(n)j+1. After spontaneous symmetry breaking of N of the

N + 1 SU(n) gauge symmetries due to the non-zero vev’s of the scalar fields, the

effective lagrangian of the vector sector, in unitary gauge, is that of eq.(5.7) after

setting qj ≡ 1, and with the obvious replacements Ajµ → Aajµ and Fjµν → F a
jµν . The

massless vector lagrangian is then obtained by the substitutions Aajµ = Aaµ(0) + . . .,

and the effective gauge coupling of the unbroken non-abelian gauge theory is given

by
1
g2

(0)
=

N∑
j=0

1
g2
j

. (5.11)

Consider now a scalar field ϕ transforming under a representation R of the gauge

group SU(n)k. Its kinetic term reads

L4 ⊃ −|(∂µ + iAakµT
a
R)ϕ|2 = −|(∂µ + iAa(0)µT

a
R + ...)ϕ|2 , (5.12)

where T aR are the generators of SU(n) in the appropriate representation, and the dots

denote strictly massive modes. The field ϕ then transforms under representation R

of the unbroken SU(n) factor, with an effective gauge coupling g(0) independent of

the position of the k-th site.5

Moreover, notice from eq.(5.11) that it is not possible to generate a parametri-

cally small effective gauge coupling in a natural fashion. In particular, eq.(5.11) has

two ineffective limits. One, we may set all gj = g, such that g(0) ' g/
√
N , and so

an unnaturally large number of sites N would be required to generate a meaning-

ful hierarchy between g(0) and gj. Two, the individual gj may be of parametrically

different sizes, the smallest of which determines the size of g(0) ∼ minj gj.

We can be more general, and prove that the lack of symmetry-localization of the

massless vector mode along the different sites is in fact a requirement if its mass is

to be protected by gauge invariance.6 To illustrate this, consider the case in which
5This is a hardly surprising result, for our construction is manifestly gauge invariant, and

a massless state with different effective gauge couplings to different matter fields would violate
gauge invariance explicitly.

6Above, we have only shown that non-abelian clockwork cannot arise if the N scalar fields
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the vector field on every site is given by Aajµ = cjA
a
(0)µ + ..., with the dots denoting

massive modes as usual, and let’s remain agnostic about the dynamical origin of the

coefficients cj. The kinetic terms of the N + 1 non-abelian gauge theories read

L4,kin = −
N∑
j=0

1
4g2

j

(
F a
jµν

)2

= −
N∑
j=0

1
g2
j

{1
4
(
F̂ a
jµν

)2
+ fabc∂µA

a
jνA

bµ
j A

cν
j + 1

4f
abcfarsAbjµA

c
jνA

rµ
j A

sν
j

}
,

(5.13)

where F̂ a
jµν ≡ ∂µA

a
jν−∂νAajµ. Substituting Aajµ = cjA

a
(0)µ + ..., the terms in eq.(5.13)

involving the massless mode Aa(0)µ only read

L4,kin ⊃−
1
4

 N∑
j=0

c2
j

g2
j

 F̂ a 2
(0)µν −

 N∑
j=0

c3
j

g2
j

 fabc∂µAa(0)νA
bµ
(0)A

cν
(0)

− 1
4

 N∑
j=0

c4
j

g2
j

 fabcfarsAb(0)µA
c
(0)νA

rµ
(0)A

sν
(0) .

(5.14)

Gauge invariance of the massless mode lagrangian requires all three sums in the

equation above be equal,7 and they define the effective gauge coupling of the unbro-

ken theory, i.e.
1
g2

(0)
≡

N∑
j=0

c2
j

g2
j

=
N∑
j=0

c3
j

g2
j

=
N∑
j=0

c4
j

g2
j

. (5.15)

The above equalities are only satisfied if cj ∈ {0, 1} ∀j, and the terms in eq.(5.14)

are then manifestly invariant under infinitesimal gauge transformations of the usual

form Aa(0)µ → Aa(0)µ + ∂µα
a − fabcαbAc(0)µ.

This general argument addresses, in particular, the case in which the scalar

fields Φj are chosen to transform under inequivalent representations of the gauge

groups at sites j and j + 1, as well as more intricate constructions in which the Φj

are chosen to transform non-trivially under non-contiguous gauge groups. Either

transform as bifundamentals. However, one could ask whether a more complicated construction
(for instance, the case in which each Φj transforms under inequivalent representations of contiguous
gauge groups, or a construction that is not restricted to nearest neighbour interactions) could lead
to consistent non-abelian clockwork.

7Gauge invariance requires both the terms in eq.(5.14), and interaction terms between the
massless mode and massive modes (omitted from eq.(5.14)) be gauge invariant independently.
However, focusing on the terms in eq.(5.14) will be sufficient to prove that it is not possible to
build non-abelian clockwork.
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way, the resulting effective lagrangian describing the vector sector will not have a

clockworked non-abelian gauge boson.

Thus, although it is possible to build constructions leading to cj /∈ {0, 1}, and in

which the lowest lying vector mode is massless at tree-level (e.g. by writing a mass

term for the non-abelian gauge sector as in eq.(5.7) with qj > 1), the masslessness

of this mode will not be protected by gauge invariance. We can therefore conclude

that a meaningful clockwork mechanism is impossible to engineer in the context

of a non-abelian gauge theory. As we discuss next in section 5.2.4, this statement

straightforwardly generalizes to the graviton case – an unsurprising result, for gravity

is a non-abelian theory itself.

5.2.4 (No) Graviton clockwork

After having discussed the scalar and vector cases, one could wonder whether a

spin-2 version of the clockwork mechanism may be consistently built. As before, the

starting point would consist of N+1 sites, each of them with its own metric gjµν and

general coordinate invariance symmetry GCj. Allowing for gravitational interactions

of varying strength on each site, the Einstein-Hilbert part of the lagrangian simply

reads

L4,EH =
N∑
j=0

M2
j

2
√
|gj|Rj , (5.16)

where Rj is the Ricci scalar corresponding to the metric gjµν , and Mj the reduced

Planck mass at site j. Eq.(5.16) is manifestly invariant under all N + 1 copies of

GCj. If we expand the metric on every site as a perturbation around flat space,

i.e. gjµν = ηµν +hjµν , then the expansion of eq.(5.16) up to O(h2
j) takes the familiar

form

L4,EH =
N∑
j=0

M2
j

2

{
−1

4(∂µhjρσ)2 + 1
4(∂µhj)2 + 1

2(∂µhµνj )2 − 1
2∂

µhj∂
νhjµν + ...

}
,

(5.17)

where hj ≡ ηµνh
µν
j .

Subtleties arise when trying to write a mass term that would render N of the

gravitons massive in a way that allows for the full general coordinate invariance of
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the theory to be restored at some high scale. This was thoroughly explored in [194],

where it is argued that this may be achieved by introducing N ‘link’ fields Y µ
j

(j = 0, ..., N − 1), which transform non-trivially under GCj and GCj+1, in complete

analogy with the scalar fields Φj introduced in the vector case. As discussed in [194],

each field Y µ
j corresponds to a map between a set of coordinates xµj at site j and

coordinates Y µ
j (xj) at site j + 1, and defines a pullback map from site j + 1 to site

j. For instance, using this map we can pullback the metric gj+1µν , which is defined

at site j + 1 and transforms non-trivially under GCj+1, to find an object

Gjµν(xj) ≡
∂Y α

j

∂xµj

∂Y β
j

∂xνj
gj+1αβ(Yj(xj)) , (5.18)

which is now defined at site j, and transforms as a metric under GCj. In particular,

it is now possible to add a term to the lagrangian that respects the full general

coordinate invariance of the theory, of the form [194]

L4 ⊃
1
2

N−1∑
j=0

√
|gj|

M2
jm

2
j

4 (gjµν −Gjµν)(gjαβ −Gjαβ)(gµνj g
αβ
j − g

µα
j gνβj ) , (5.19)

where the mass parameters mj will set the mass scale of the N massive graviton

excitations, and are analogous to the mass parameters introduced in the scalar and

vector cases.

Since we are interested in expanding the metric on every site around the same

flat space background, unitary gauge corresponds to Y µ
j = xµj ∀ j = 0, ..., N − 1.8

In this gauge, the terms in eq.(5.19) that are quadratic in the perturbation lead to

a mass term

L4,mass = 1
2

N−1∑
j=0

M2
jm

2
j

4
{

(hj − hj+1)2 − (hjµν − hj+1µν)2
}
. (5.20)

As in the non-abelian case, the massless graviton lagrangian can be obtained by the

substitutions hjµν = h(0)µν + ..., where the dots denote strictly massive states, and
8This is not necessarily the case in general, but it holds if we are expanding around flat space

in each site, since in this case the pullback of the background metric acting at site j + 1 must be
equal to the background metric acting at site j.
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eq.(5.17) then defines an effective 4D Planck scale

M(0) =
 N∑
j=0

M2
j

1/2

. (5.21)

This expression clearly illustrates how an effective scale M(0) much larger than the

fundamental scale Mj of the individual sites is not possible to engineer in this con-

text. In particular, in the simplest case Mj ≡M ∀ j, M(0) 'M
√
N , and so a large

hierarchy between M(0) and M would require an even larger value of N , frustrating

any attempt to build a solution to the electroweak hierarchy problem in a natural

fashion.

If we now consider a stress energy tensor defined on the k-th site, its leading

coupling to the metric perturbation is of the form

L4 ∝ hkµνT
µν = h(0)µνT

µν + ... , (5.22)

where the dots denote strictly massive graviton modes. We see how the massless

graviton couples with the same strength to a given stress-energy tensor, indepen-

dently of the position of the site in which T µν is defined, in keeping with the Equiv-

alence Principle.

As in the non-abelian case of section 5.2.3, we can be more general and prove

that the flatness of the massless graviton mode across the different sites is again a

requirement if its mass is to be protected by diffeomorphism invariance.9 In order

to do this, it is crucial to consider terms in the expansion of eq.(5.16) that involve

higher-order terms in the metric perturbation. Schematically, such an expansion

has the form

L4,EH ∼
N∑
j=0

M2
j

{
∂2h2

j +
∑
n

∂2h2+n
j

}
. (5.23)

Now, if we allow ourselves to write hjµν = cjh(0)µν + ..., without prejudice about the
9So far, we have only shown that a term like that of eq.(5.19) does not lead to an asymmetrically

distributed massless graviton. However, one could ask whether a more complicated version of
eq.(5.19) could lead, at quadratic order, to an effective mass term like that in eq.(5.20) but with
asymmetric couplings in front of the hj and hj+1 terms.
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origin of the cj coefficients, then the previous equation reads

L4,EH ∼

 N∑
j=0

M2
j c

2
j

 ∂2h2
(0) +

∑
n

 N∑
j=0

M2
j c

2+n
j

 ∂2h2+n
(0) + ... , (5.24)

where the dots denote terms involving massive graviton modes only, but also inter-

action terms between the massless and massive gravitons. As in the non-abelian

case, that the terms in the effective lagrangian involving the massless graviton be

diffeomorphism invariant requires that all the sums in the equation above be equal,10

and define an effective Planck scale, i.e.

M2
(0) ≡

N∑
j=0

M2
j c

2
j =

N∑
j=0

M2
j c

2+n
j ∀ n ≥ 1 . (5.25)

As in section 5.2.3, these equalities are only satisfied for cj ∈ {0, 1}. The terms in

eq.(5.24) are then invariant under infinitesimal diffeomorphism transformations of

the usual form

h(0)µν → h(0)µν + ∂µεν + ∂νεµ + fρσµν ∂ρε
αh(0)ασ + εα∂αhµν , (5.26)

where fρσµν ≡ δρµδ
σ
ν + δρνδ

σ
µ .11 Hence, any construction that leads to cj /∈ {0, 1} will

feature a lowest-lying graviton excitation whose mass is not protected by diffeomor-

phism invariance, even if it is engineered to be massless at tree-level.

In analogy with the results of section 5.2.3 for non-abelian gauge fields, we con-

clude that it is not possible to build a 4D effective theory in which a massless spin-2

particle is symmetry-localized and, at the same time, retains diffeomorphism invari-

ance. Moreover, in the absence of exponential hierarchies among the values of the

different scales Mj, the effective Planck scale only depends on the number of sites

as ∼
√
N . Consequently, it is apparent that there is no such thing as a clockwork

10Again, we emphasize that diffeomorphism invariance requires both the terms explicitly written
in eq.(5.24), and interaction terms between massless and massive modes be invariant independently.
However, focusing on the terms in eq.(5.24) will be enough to rule out the possibility of building
a clockwork graviton.

11We remind the reader that eq.(5.26) is the way in which the metric perturbation hµν changes
under an infinitesimal diffeomorphism transformation, which in a coordinate basis is given by
Y µ = xµ + εµ, regardless of the size of hµν . The last term in eq.(5.26) captures the non-abelian
nature of gravity, and must be taken into account if we want to assess whether the masslessness
of the graviton is indeed symmetry-protected.
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graviton, and, by extension, no such thing as a clockwork solution to the hierarchy

problem. (In section 5.5 we explicitly show how a clockwork graviton does not arise

when deconstructing a gravitational extra dimension.)

As an aside, we note that it is sometimes common, and convenient, to rescale

the metric perturbation as hjµν → 2hjµν/Mj, so that the kinetic terms in eq.(5.17)

are canonical. In this rescaled basis, eq.(5.20) now reads

L4,mass = 1
2

N−1∑
j=0

m2
j


(
hj −

Mj

Mj+1
hj+1

)2

−
(
hjµν −

Mj

Mj+1
hj+1µν

)2
 , (5.27)

and the massless graviton mode is just given by h(0)µν = ∑N
j=0(Mj/M(0))hjµν .12 The

graviton coupling to matter in eq.(5.22) is now

L4 ∝
hkµν
Mk

T µν = h(0)µν

M(0)
T µν + ... , (5.28)

which again makes it explicit how the strength of gravitational interactions between

matter and the massless graviton mode is just set by M(0), as given in eq.(5.21).

5.2.5 When does clockwork not work?

The results of the previous sections can also be understood clearly from the perspec-

tive of the unbroken clockwork symmetry, both in the low-energy effective theory

and in possible UV completions. For simplicity we will focus here on abelian vec-

tor clockwork, for which the role of the clockwork symmetry is particularly clear,

though the conclusions apply equally well to all spins, and clarify the cases in which

meaningful clockwork is possible.

The abelian vector clockwork of eq.(5.7) arises from a UV theory of N + 1 U(1)

gauge bosons connected by N link scalar fields Φj via

L4 = −
N∑
j=0

1
4g2

j

F 2
jµν −

N−1∑
j=0
|DµΦj|2 + . . . , (5.29)

where DµΦj ≡ [∂µ + i (Ajµ − qjAj+1µ)] Φj and the dots denote, e.g., potentials for
12Notice eq.(5.27) has the form of eq.(2.35) in [183], but with the extra necessary condition

qj = Mj/Mj+1, i.e. non-unit q’s are only a consistent choice in the presence of an exponential
distribution of Planck scales.
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the Φj. For simplicity, we will focus on the case of equal charges, couplings, and

symmetry breaking scales, but our conclusions hold for any theory in which there

are no large hierarchies. If the Φj acquire vacuum expectation values 〈|Φj|2〉 = f 2/2,

this results in a clockwork mass matrix for canonically normalized gauge fields of

the form

−
N−1∑
j=0

g2f 2

2 (Ajµ − qAj+1µ)2 . (5.30)

In order to probe the unbroken clockwork symmetry, we introduce a matter field

ϕ charged under the U(1) gauge group of site k with charge Qϕ. The clockwork

gauge symmetry preserved by eq.(5.30) corresponds to Ajµ → Ajµ + ∂µα(x)/qj ∀j.

Under such a gauge transformation, ϕ → eiαQϕ/q
k
ϕ, which is naturally interpreted

as a small and site-dependent charge Qϕ/q
k under the unbroken U(1). This makes

clear the sense in which the site-dependent charges found in section 5.2.2 are a direct

probe of the asymmetric distribution of the clockwork symmetry among different

sites.

Considering clockwork from the perspective of the unbroken symmetry also

makes apparent the sense in which theories with the mass matrix eq.(5.30) may

fail to generate clockwork. In particular, the clockwork theory of eq.(5.29) without

any large hierarchies of couplings, charges, and scales (“Theory A”) is not the only

way of generating the mass matrix in eq.(5.30). An identical mass matrix arises in

a theory (“Theory B”) of N + 1 U(1) gauge bosons with N bifundamental scalars

Φj, likewise described by eq.(5.29), in which the Φj carry opposite charges under

adjacent groups (qj = 1), the gj are unequal and satisfy gj+1/gj = q, and the vac-

uum expectation values vj of the scalars Φj satisfy g2
j v

2
j = g2f 2. Notably, there

is an exponential hierarchy between the couplings and vev’s at either end of the

Theory B quiver, gN/g0 = v0/vN = qN . Such a theory likewise preserves a U(1)

symmetry, but one that is symmetrically distributed among sites and exhibits no

clockwork phenomena. Given a probe field ϕ of charge Qϕ on the site k, a gauge

transformation of the unbroken U(1) symmetry induces a rotation of the probe field

by eiαQϕ , independent of the position of the site. This universality is born out by

diagonalizing the mass matrix and studying the couplings of the massless gauge
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field: the zero mode is ∝ ∑N
j=0 g

−1
j Ajµ, and therefore couples universally to matter

fields on different sites. This theory does not clockwork, though it shares the mass

matrix of eq.(5.30) with a theory that does.

One might object that Theory A and Theory B are actually the same theory,

related by rescaling the gauge kinetic terms and the charges of both the link fields

Φj and the probe fields ϕ in Theory B to match those of Theory A, so that there is

no invariant distinction between the two. This is certainly true if the gauge group

at each site is taken to be R rather than U(1), but in this case there is no notion of

natural charge assignments and clockwork is uninteresting to begin with. Rather,

an invariant distinction exists when additional criteria restrict the gauge groups to

genuine U(1)s and fully specify the spectrum of electric and magnetic charges, as is

the case in a theory of quantum gravity.

In a theory of quantum gravity (including all known examples in string theory),

all continuous gauge groups are compact and satisfy the Completeness Hypothesis

[195], namely that every electric and magnetic charge allowed by Dirac quantization

is present in the spectrum. In this case, Theory A possesses a spectrum of states

at each site carrying all possible electric charges n ∈ Z (in units of gj = g) and

all possible magnetic charges 2πn/gj. Theory B possesses a similarly complete

spectrum, but with respect to the exponentially varying gj. Rescaling the charges

and couplings of Theory B to match those of Theory A leads to a gap in the spectrum

of electric and magnetic charges at each site, in conflict with the Completeness

Hypothesis. Equivalently, the spectrum of states charged under the unbroken U(1)

differs between the two theories. In Theory A, the number of states of charge Q ∈ N,

in units of the effective coupling of the massless U(1), is the largest i ≤ N + 1 for

which qi divides Q. However, in Theory B, there are simply N + 1 states of any

given charge under the unbroken U(1), which attests to the diagonal nature of the

symmetry breaking in this latter case. For instance, in Theory A there is only one

state of unit electric charge in units of the effective coupling of the massless U(1),

while in Theory B there are N + 1 such states with unit electric charge under the

unbroken U(1). Thus Theory A and Theory B are genuinely distinct theories, with

distinct physical observables, and only the former exhibits clockwork phenomena.
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The distinction between the two theories is not merely academic, but is essential

for generating natural exponential hierarchies in a theory of quantum gravity. For

example, Theory A can satisfy the magnetic form of the Weak Gravity Conjecture

(WGC) in the UV, but upon higgsing gives rise to an effective theory for the mass-

less U(1) that exponentially violates the magnetic WGC [193]. This is a precise

sense in which the clockwork mechanism is a useful generator of natural exponential

hierarchies. In contrast, if Theory B satisfies the magnetic WGC in the UV, then

the effective theory of the massless U(1) also trivially satisfies the magnetic WGC.

Theory B generates no useful exponential hierarchies – rather, it requires them as

inputs.

Aside from quantum gravity arguments, discerning whether an abelian gauge

theory ‘clockworks’ or not requires making reference to a localized lattice of charged

states. The requirement that states with the same integer charge on different sites

have (exponentially) different charges under the unbroken gauge theory singles out

models with symmetry-localized zero modes as the only ones that can exhibit clock-

work dynamics.

As we will see, the distinction between Theory A and Theory B becomes im-

portant when attempting to identify the continuum equivalent of discrete clockwork

in an extra dimension. One can always find a metric for which the Kaluza-Klein

decomposition of a bulk field gives rise to the mass matrix in eq.(5.30). But as we

have argued, this alone is not enough for the continuum theory to generate clock-

work. Whether the continuum theory provides a successful realization of clockwork

depends on whether its discretization gives Theory A or Theory B. More precisely,

continuum clockwork requires a compact 5D U(1) gauge theory to lead, upon com-

pactification, to a 4D effective gauge theory that is non-compact.

While we have focused on abelian vector clockwork, one would expect that iden-

tical arguments go through for abelian scalar clockwork whenever there exists a

well-defined notion of an asymmetrically-distributed global symmetry (see [196]).

For example, in a UV completion of scalar clockwork, the roles of gauge trans-

formations and probe charges in vector clockwork are played by global symmetry

transformations and anomaly coefficients. The connection should become partic-
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ularly transparent when one considers that all apparent global symmetries should

originate as gauge symmetries in a theory of quantum gravity.

Finally, the distinction between Theory A and Theory B makes clear why clock-

work is an inherently abelian phenomenon. While one is free to choose the charges

and couplings in a quiver theory with abelian symmetry factors to obtain Theory A

or Theory B, in a quiver theory with non-abelian symmetry groups the only option

consistent with the symmetries is the non-abelian version of Theory B, as we will

now see more rigorously.

5.3 No clockwork from geometry

After having rigorously established in section 5.2 that it is only possible to build

consistent clockwork models in the spin-0 and abelian spin-1 cases, we now set to

answer the question of whether such discrete models could arise from the decon-

struction of 5D theories in which the corresponding bosonic fields propagate in a

non-trivial background. We find that the answer is negative: geometry alone cannot

clockwork bosonic fields. This statement is true in that neither the continuum the-

ory nor its deconstruction exhibits position dependent couplings as a consequence

of a symmetry-localization of the scalar or vector massless modes. In particular, we

establish how, at best, it is possible to accommodate the discrete clockwork models

of sections 5.2.1 and 5.2.2 as the deconstruction of 5D theories with conformally

flat metrics, but then ad hoc exponential hierarchies in the couplings between bulk

and brane fields need to be introduced in order for the deconstruction to match

clockwork. This is true in particular of 5D theories in linear dilaton backgrounds,

as considered in [183], and in section 5.3.3 we make it explicit how couplings in-

volving the dilaton field do not change the above statements. In the language of

section 5.2.5, linear dilaton backgrounds always give the unclockworked Theory B.

This is particularly clear in the vector case, where continuum clockwork requires a

non-compact (therefore R) 4D effective abelian gauge symmetry arising from a com-

pact 5D symmetry (i.e. a genuine U(1)). As we emphasize in this section, geometry

alone only allows compact higher-dimensional gauge theories to generate compact
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4D effective ones, therefore precluding any kind of clockwork dynamics.

We consider an extra dimension compactified on an S1/Z2 orbifold, with the fifth

dimension parametrized by a coordinate y, and with two end-of-the-world branes

present at the orbifold fixed points (y = 0 and y = πR). We will focus on the case in

which both the scalar and gauge fields are even under the orbifolding Z2 symmetry,

in order to allow for a massless state to be present in the spectrum of KK-modes.

In keeping with the notation introduced in [183], we consider a background metric

of the general form

ds2 = gMNdx
MdxN = X(y)dxµdxµ + Y (y)dy2 , (5.31)

with y ∈ [0, πR]. We consider a bulk scalar field coupled to a brane-localized non-

abelian gauge theory in section 5.3.1, and then discuss the case of a bulk U(1) gauge

theory in section 5.3.2.

5.3.1 Scalar case

The action of a massless, non-interacting real scalar field propagating in a non-trivial

background is given by

S5,bulk = −1
2

∫
d4xdy

√
|g|gMN∂Mφ∂Nφ . (5.32)

In a background of the form given in eq.(5.31), and after expanding the 5D scalar

field φ as a sum over KK-modes as φ = ∑∞
n=0 χn(y)φ(n)(x), the equations of motion

and boundary conditions for the different modes read

∂y

(
X2
√
Y
∂yχn

)
+m2

nχnX
√
Y = 0 (5.33)

∂yχn = 0 at y = 0, πR , (5.34)

where m2
n corresponds to the mass-squared of the n-th KK-mode excitation. In par-

ticular, a massless mode is present in the KK-spectrum, whose profile is a constant
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χ0(y) = C0.13

If we now consider a non-abelian gauge theory localized on a brane at position

y = y0 that interacts with the 5D scalar field through an axion-like coupling, the

corresponding brane-localized terms in the action have the form

S5,brane =
∫
d4xdy

√
|g|δ(y − y0)

√
g55

− 1
4g2 g

µρgνσGµνGρσ

+ φ

16π2F 3/2
εµνρσ√
|g(4)|

GµνGρσ

 ,

(5.35)

where
√
|g(4)| = X(y)2 in our notation. The effective interaction between the gauge

theory and the massless scalar mode is then

L4 ⊃
C0φ

(0)

16π2F 3/2GµνG̃
µν ≡ φ(0)

16π2f0
GµνG̃

µν , (5.36)

where GµνG̃
µν ≡ εµνρσGµνGρσ, as usual, and the last expression defines an effective

axion coupling f0, which may be written as

f0 = F 3/2C−1
0 = MPl

(
F

M5

)3/2
, (5.37)

and in the last step we used the relationship between the fundamental scale of the

5D theory, M5, and the 4D Planck scale MPl.14

Eq.(5.37) illustrates how (i) the effective coupling of the massless mode to the

brane-localized gauge theory is independent of the position of the brane y0 for any

geometry – a direct consequence of the flat profile of the zero mode – , and (ii) a

significant hierarchy between f0 and MPl only arises if a similar hierarchy between

the 5D symmetry breaking scale F and M5 is introduced ad hoc in the fundamental

5D picture.

It is illuminating to consider what happens to this theory when deconstructed.

If we latticize the extra dimension in N segments, with lattice spacing a, such that

13For a canonically normalized scalar field C0 =
(∫ πR

0 dyX(y)
√
Y (y)

)−1/2
.

14In a background of the form specified in eq.(5.31), this is given by M2
Pl =

M3
5
∫ πR

0 dyX(y)
√
Y (y).
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Na = πR, the terms in the 4D effective lagrangian corresponding to eq.(5.32) read15

L4 ⊃ −
1
2

N∑
j=0

(∂µφj)2 − 1
2a2

N−1∑
j=0

Xj

Yj

φj − X
1/2
j Y

1/4
j

X
1/2
j+1Y

1/4
j+1

φj+1

2

, (5.38)

where fj ≡ f(aj) (for f = φ,X, Y ). This corresponds to the effective lagrangian of

eq.(5.1), with mass-squared parameters and charges

m2
j = 1

a2
Xj

Yj
, qj =

X
1/2
j Y

1/4
j

X
1/2
j+1Y

1/4
j+1

, (5.39)

in agreement with what is found in [183], and the profile of the massless state present

in the spectrum is now given by φ(0) = ∑N
j=0 cjφj, with

cj = c0
X

1/2
j Y

1/4
j

X
1/2
0 Y

1/4
0

and c0 =
1 +

N∑
j=1

Xj

√
Yj

X0
√
Y0

−1/2

. (5.40)

In particular, the deconstruction of a real scalar field propagating in a linear dilaton

background of the form X(y) = Y (y) = e−4ky corresponds to m2
j = a−2, and qj =

e3ka ∀ j.

However, upon deconstruction, the brane-localized terms of eq.(5.35) read (tak-

ing into account the appropriate field redefinitions)

L4 ⊃ −
1

4g2GµνG
µν + φj0

16π2F
√
FaX

1/2
j0 Y

1/4
j0

GµνG̃
µν , (5.41)

i.e. the brane-localized interaction of the 5D theory is deconstructed into a coupling

of the gauge theory to the scalar field of the j0 site, where y0 = j0a. Written

in terms of mass eigenstates, eq.(5.41) includes an effective coupling between the

massless scalar and the gauge sector that reads

L4 ⊃
c0

X
1/2
0 Y

1/4
0

φ(0)

16π2F
√
Fa

GµνG̃
µν . (5.42)

As expected from our discussion of the continuum 5D theory, the effective axion

coupling in the deconstructed theory is independent of the position of the site j0 –
15A field redefinition φj → φj(aXj

√
Yj)−1/2 is performed to obtain canonically-normalized scalar

fields.
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in contrast with the discrete construction of section 5.2.1. At best, conformally flat

backgrounds of the linear dilaton type, for which m2
j = a−2 and qj = q independent

of j (see eq.(5.39)), can accommodate discrete clockwork, but only if the hierarchy

of effective scales to be obtained in the discrete theory is put in by hand from the

5D perspective.

5.3.2 Vector case

The action of a massless, non-interacting U(1) gauge theory propagating in a non-

trivial background is given by

S5,bulk = −
∫
d4xdy

√
|g| 1

4g2
5D
gMRgNSFMNFRS , (5.43)

where g5D is the 5D gauge coupling.

Working in the A5 = 0 gauge, and expanding the 5D vector field as a sum

over KK-modes Aµ = ∑∞
n=0 ψn(y)A(n)

µ (x), the equations of motion and boundary

conditions for the different modes in the background of eq.(5.31) read

∂y

(
X√
Y
∂yψn

)
+m2

nψn
√
Y = 0 (5.44)

∂yψn = 0 at y = 0, πR . (5.45)

In particular, a massless mode is present in the KK-spectrum, whose profile is a

constant independent of y. Without loss of generality, one may take ψ0 = 1, a

choice that defines a 4D gauge coupling, g4D, given by g−2
4D = g−2

5D
∫ πR
0 dy

√
Y (y).

If we now consider a brane-localized scalar field ϕ with charge Qϕ under the U(1)

gauge group, the corresponding brane-localized terms in the action read

S5,brane = −
∫
d4xdy

√
|g|δ(y − y0)

√
g55

gµν(Dµϕ)†Dνϕ , (5.46)

where Dµϕ = (∂µ + iQϕAµ)ϕ. After the appropriate rescaling ϕ → ϕ/
√
X(y0),

so that the scalar field features a canonically normalized kinetic term, the terms
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involving ϕ in the 4D effective lagrangian are given by

L4 ⊃ −|(∂µ + iQϕAµ(y0))ϕ|2 = −|(∂µ + iQϕA
(0)
µ + ...)ϕ|2 , (5.47)

where the dots denote strictly massive vector modes. The effective coupling between

A(0)
µ and the brane-localized scalar field is given by ∼ g4DQϕ, which is independent

of the position of the brane along the extra dimension: two scalar fields with the

same fundamental charge under the 5D gauge theory will couple to the massless

vector mode with exactly the same strength, regardless of where they are localized

– a direct consequence of the lack of symmetry-localization of the vector zero mode.

This is consistent with what one finds upon deconstruction. Now, from eq.(5.43)

we obtain a 4D effective lagrangian of the form

L4 ⊃ −
N∑
j=0

1
4g2

j

F 2
jµν −

1
2a2

N−1∑
j=0

Xj

Yj

1
g2
j

(Ajµ − Aj+1µ)2 , (5.48)

where g−2
j = g−2

5Da
√
Yj, and eq.(5.48) corresponds to the effective lagrangian of

eq.(5.7), with mass-squared parameters and charges

g2
j v

2
j = 1

a2
Xj

Yj
, qj = 1 . (5.49)

In the language of section 5.2.5, we recognize that the linear dilaton background

deconstructs into the unclockworked Theory B.

The couplings of the massless vector can be found by the substitution Ajµ =

c0A(0)µ + ..., where c0 = 1, a choice that defines an effective gauge coupling for the

unbroken gauge theory, g(0), given by g−2
(0) = ∑N

j=0 g
−2
j . Upon deconstruction, the

brane-localized terms of eq.(5.46) read

L4 ⊃ −|(∂µ + iQϕAj0µ)ϕ|2 = −|(∂µ + iQϕA(0)µ + ...)ϕ|2 , (5.50)

where the dots denote strictly massive modes. The effective coupling between the

massless vector and the brane-localized scalar is ∼ g(0)Qϕ, which is independent of

the position where ϕ is localized – in stark contrast with the discrete theory of 5.2.2.
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It becomes clear that an attempt to obtain discrete clockwork from the de-

construction of an abelian gauge theory propagating in a non-trivial background

fails, regardless of the choice of geometry. At most, conformally flat metrics, for

which g2
j v

2
j = a−2 and qj = 1 when deconstructed (see eq.(5.49)), can accommodate

discrete clockwork, but only if the hierarchy of effective charges between different

matter fields to be obtained in the discrete theory is put it by hand from the 5D

perspective.

5.3.3 Including dilaton couplings

In theories involving a dilaton, after going from Jordan frame to Einstein frame, a y-

dependent factor typically remains present in front of both bulk and brane terms, and

corresponds to some power of eS, where S is the dilaton field that gets a y-dependent

vev. One could wonder whether the presence of such terms alters the story told in

sections 5.3.1 and 5.3.2, and whether clockwork could arise from the deconstruction

of theories with a dilaton. In this section, we show that this is not the case: the

presence of dilaton couplings does not qualitatively change our conclusions, so long

as no additional breaking of scale invariance is introduced through the coupling

of the dilaton to brane-localized states. We emphasize this requirement is a weak

restriction. For instance, in the vector case, it ensures that the 5D gauge symmetry

is indeed compact. There is no symmetry localization in going from a non-compact

5D gauge symmetry to a non-compact effective 4D construction, and such models

do not lead to the emergence of clockwork dynamics.

Let’s consider the scalar case of section 5.3.1 first. In the presence of a dilaton,

eq.(5.35) will typically include a y-dependent factor Q(y), of the form16

S5,brane =
∫
d4xdy

√
|g|Q(y)δ(y − y0)

√
g55

− 1
4g2 g

µρgνσGµνGρσ

+ φ

16π2F 3/2
εµνρσ√
|g(4)|

GµνGρσ

 .

(5.51)

The presence of a non-trivial function Q(y) alters the value of the effective gauge
16No such factor appears, in Einstein frame, for a bulk scalar field, and so an analogous y-

dependent factor does not need to be included in eq.(5.32).
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coupling of the brane non-abelian gauge theory, which is now given by g∗(y0) =

g/
√
Q(y0). The effective interaction between the gauge theory and the massless

scalar mode is modified to

L4 ⊃
(

g

g∗(y0)

)2 C0φ
(0)

16π2F 3/2GµνG̃
µν , (5.52)

and so the effective axion coupling is now given by

f0 =
(
g∗(y0)
g

)2

F 3/2C−1
0 =

(
g∗(y0)
g

)2

MPl

(
F

M5

)3/2
. (5.53)

From eq.(5.53), we see that if Q(y) is a non-trivial function of y – a common

occurrence in theories with a dilaton – the gauge coupling of the non-abelian theory

depends on y0 and, in turn, the effective axion coupling between the massless scalar

and the gauge theory will depend on y0 through its dependence on g∗. In particular,

two non-abelian gauge theories with the same fundamental gauge coupling g, but

localized on different branes, will feature different effective axion couplings only be-

cause of the difference in their effective gauge couplings. Crucially, any hierarchy in

couplings involving the massless scalar field only arises as a result of the two gauge

theories being physically distinct (with different gauge couplings, and therefore dif-

ferent physical properties, like their confinement scales), but not as a consequence

of a symmetry-localization of the scalar zero mode.

The same effect persists when deconstructing the brane terms of eq.(5.51). Eq.(5.41)

now generalizes to

L4 ⊃ −
1

4g2
∗j0
GµνG

µν +
(
g

g∗j0

)2
φj0

16π2F
√
FaX

1/2
j0 Y

1/4
j0

GµνG̃
µν , (5.54)

and thus the effective coupling between the massless scalar and the gauge sector

reads

L4 ⊃
(
g

g∗j0

)2
c0

X
1/2
0 Y

1/4
0

φ(0)

16π2F
√
Fa

GµνG̃
µν . (5.55)

As expected from our discussion of the continuum 5D theory, the effective axion

coupling in the deconstructed theory depends on the position of the site j0 only

through the value of the effective gauge coupling g∗j0 . As we move from site to site,
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the axion effective coupling will change as a result of the change in the properties of

the non-abelian gauge theory. This picture is in stark contrast with the clockwork

mechanism described in section 5.2.1, where the effective axion coupling changes as

the gauge theory moves from site to site because of the symmetry-localization of the

scalar field, whereas the physical properties of the non-abelian gauge theory remain

unchanged.

We now turn to the U(1) vector case discussed in section 5.3.2. In the presence of

a dilaton, eq.(5.43) will typically include a y-dependent factor in front of the vector

kinetic term, of the form

S5,bulk = −
∫
d4xdy

√
|g|F(y)

4g2
5D
gMRgNSFMNFRS . (5.56)

Although this will in general affect the equations of motion for the KK-modes, which

now read

∂y

(
F X√

Y
∂yψn

)
+m2

nψnF
√
Y = 0 , (5.57)

a massless mode is present in the spectrum, and its profile remains flat. With the

choice ψ0 = 1, the 4D gauge coupling is now defined as g−2
4D = g−2

5D
∫ πR

0 dyF(y)
√
Y (y).

Similarly, eq.(5.46) will be generalized to include a y-dependent factor, of the

form

S5,brane = −
∫
d4xdy

√
|g|H(y)δ(y − y0)

√
g55

gµν(Dµϕ)†Dνϕ , (5.58)

where the function H(y) will in general be different from F(y).17 After the appro-

priate rescaling ϕ→ ϕ/
√
X(y0)H(y0), so that the scalar field features a canonically

normalized kinetic term, the terms involving ϕ in the 4D effective lagrangian are

just given by eq.(5.47). The effective coupling between A(0)
µ and the brane-localized

scalar field is just ∼ g4DQϕ – again independent of y0.

When deconstructed, this more general case features exactly the same properties

discussed in section 5.3.2, with the only difference that the gauge couplings on each

site are now given by g−2
j = g−2

5Da
√
YjFj, and the presence of dilaton couplings has no

effect on our conclusions. The inability of dilaton couplings to reproduce meaningful
17In models involving a dilaton, different powers of eS appear in front of bulk and brane-localized

terms when going to Einstein frame, a fact we capture here by considering two different functions
F(y) and H(y).
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clockwork is clear in the language of section 5.2.5: a successful modification of the

linear dilaton background to generate clockwork would need to alter the physical

spectrum of charged states on probe branes, rather than merely modifying gauge

couplings.

5.4 Towards continuum clockwork

In this section, we present a 5D implementation of the clockwork mechanism that,

when deconstructed, successfully preserves the appealing features of the discrete set-

up described in sections 5.2.1 and 5.2.2. In order to emphasize how geometry plays

no role, we consider the case of a flat background, and include bulk and brane mass

terms for scalar and abelian vector fields. Both from the 5D perspective, and when

deconstructed, the scenario presented here features hierarchical couplings to brane-

localized states as a consequence of the symmetry-localization of the corresponding

bulk fields. In terms of the discrete clockwork parameters of sections 5.2.1 and 5.2.2,

the set-up we consider appears as a small perturbation from the discrete clockwork

mechanism in which all parameters are taken to be equal. We discuss the scalar

case first in section 5.4.1, albeit only at the level of a toy model; a well-defined

notion of a clockworked continuum global symmetry would entail embedding the

continuum global symmetry in a continuum gauge symmetry, which lies beyond the

scope of the current work (see [196] for work in this direction). In section 5.4.2

we discuss the vector case in full detail, realizing a scenario in which continuum

clockwork arises when a compact 5D gauge symmetry leads to a non-compact 4D

one. Section 5.4.3 clarifies the connection between our 5D construction and the

linear dilaton background implementation of [183].

5.4.1 Continuum scalar clockwork

Apart from the kinetic term of eq.(5.32), the 5D action of a real scalar field may

also involve mass terms

S5,mass = −1
2

∫
d4xdy

√
|g|φ2

(
M2

φ + m̃φ
δ(y)− δ(y − πR)

√
g55

)
, (5.59)
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where we fix the brane-localized mass terms to have equal size but opposite sign, in

order to allow for a massless state to be present in the KK-mode spectrum. Although

the bulk and brane mass terms of eq.(5.59) are certainly consistent from an effective

field theory perspective, negative brane masses might pose challenges when trying

to embed this framework into a full UV completion – an issue that we do not try

to address in this work. In the generic warped background of eq.(5.31), and after

expanding the 5D scalar field φ as a sum over KK-modes as before, the equations

of motion and boundary conditions for the different modes now read

∂y

(
X2
√
Y
∂yχn

)
+ χnX

√
Y
(
m2
n −XM2

φ

)
= 0 , (5.60)

(
∂y −

m̃φ

2
√
Y
)
χn = 0 at y = 0, πR . (5.61)

As first noted in [197], the presence of non-zero bulk and brane mass terms makes

the zero mode’s profile non-flat. In particular, if we demand this profile to be of an

exponential form χ0(y) ∝ eβy, where β is some mass scale, eq.(5.61) requires Y (y) is

independent of y, and without loss of generality we may take Y = 1, in which case

β = m̃φ/2 and thus χ0(y) ∝ em̃φy/2. Moreover, for a given X(y), eq.(5.60) requires

bulk and brane mass terms to satisfy

m̃2
φ + 4m̃φ

∂yX

X
− 4M2

φ = 0 . (5.62)

For instance, in a flat background, where X(y) = 1, m̃φ = ±2
√
M2

φ; whereas in

an RS background, where X(y) = e−2ky, m̃φ = 2
(
2k ±

√
4k2 +M2

φ

)
, in agreement

with [197]. Although choosing m̃φ such that eq.(5.62) is satisfied may appear like a

fine-tuned choice, we emphasize that it is a technically natural one, since only for

those values of m̃φ the lowest lying scalar mode recovers a shift symmetry – it is a

symmetry enhanced point. Depending on whether m̃φ is positive or negative, the

massless mode will be localized towards the y = πR or y = 0 branes respectively.

Here, we consider the case of a flat background (X = Y = 1), and, without loss of

generality, focus on the choice m̃φ < 0, so that the zero mode profile is exponentially

localized towards y = 0. (The case m̃φ > 0 is completely analogous but replaces the

98



role of the two branes.)

In this case, after setting Q(y) = 1 in eq.(5.35), the effective axion coupling of

eq.(5.42) is given by

f0 = F 3/2χ0(y0)−1 = F 3/2

√√√√em̃φπR − 1
m̃φ

e−m̃φy0/2 ' F 3/2√
|m̃φ|

e|m̃φ|y0/2 , (5.63)

where in the last term we have focused on the case m̃φ < 0, and assumed |m̃φ|πR =

O(1). From eq.(5.63), it is clear that the non-trivial profile of the zero mode trans-

lates into an effective axion coupling that depends on the position of the brane

where the gauge theory is localized. Two gauge theories with identical properties

localized on different branes will feature exponentially different effective axion cou-

plings, as a result of the symmetry-localization of the scalar zero mode along the

extra dimension, even for natural choices of the 5D parameters, mφπR = O(1).

We now consider the deconstruction of this theory, and compare it to the discrete

clockwork of section 5.2.1. The 4D effective lagrangian of the scalar sector reads

L4 = −1
2

N∑
j=0

(∂µφj)2 − 1
2

N∑
i,j=0

M2
φ,ijφiφj , (5.64)

with a mass-squared matrix given by

M2
φ,ij =δij

(
M2

φ + 2
a2

)
− 1
a2 (δij+1 + δij−1)

−δiNδjN
(
m̃φ

a
+ 1
a2

)
+ δi0δj0

(
m̃φ

a
− 1
a2

)
.

(5.65)

As in the continuum case, for a given bulk mass term M2
φ there are two values of

m̃φ that allow for a massless mode to be present in the latticized spectrum, which

are of equal size but opposite sign,18 and, as before, we focus on the case m̃φ < 0.

Moreover, upon deconstruction the brane-localized coupling between the 4D

gauge theory and the 5D scalar field now reads

L4 ⊃
φj0

16π2F
√
Fa

GµνG̃
µν = cj0φ(0)

16π2F
√
Fa

GµνG̃
µν + ... , (5.66)

18One can check that m̃φ = ±
(

2
√
M2
φ +O(1/N)

)
, as expected.
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where the dots correspond to strictly massive modes, and the effective axion cou-

pling scale is now given by f0 = F
√
Fa c−1

j0 . Unlike the scenarios considered in

section 5.3.1, the deconstructed effective coupling now depends on j0 as a result

of the uneven distribution of the massless scalar along the different lattice sites,

mirroring the situation found from the 5D perspective.

In particular, it is illuminating to match this deconstructed scenario into the

discrete clockwork set-up of section 5.2.1, by finding the corresponding clockwork

parameters qi and m2
i (i = 0, ..., N−1), since one may worry that this may now look

like an unnaturally hierarchical set of choices, and that the ‘naturalness’ we recover

in the 5D picture by introducing mass terms and considering a flat background, may

be lost in the deconstruction. Instead, we find that this is not the case: when decon-

structed, the scenario we consider has approximately equal qj and m2
j parameters.

To illustrate this fact, in figure 5.1 we show the values of qi and m2
i (normalized to

the values on the first site) for
√
M2

φπR = 15 (just for illustration). From figure 5.1

one can appreciate that the effective charges and mass-squared parameters are all

of similar size, no large hierarchies between them are present, and all of them tend

to the same value as one approaches the large N limit. As a result, the profile of

the massless mode also very closely resembles an exponential, as we illustrate in

figure 5.2.

5.4.2 Continuum vector clockwork

As in the scalar case discussed in the previous section, we may in general include

both bulk and brane mass terms for a 5D abelian gauge field,19

S5,mass = − 1
2g2

5D

∫
d4xdy

√
|g|gMNAMAN

(
M2

A + m̃A
δ(y)− δ(y − πR)

√
g55

)
, (5.67)

and we note that these may be generated through spontaneous symmetry breaking

(due to the non-zero vev of a 5D scalar field featuring both bulk and brane-localized

kinetic terms, as pointed out in [198]), and thus do not necessarily require an explicit

breaking of the fundamental 5D gauge symmetry. As in section 5.4.1, the presence
19The unconventional g−2

5D factor in front of eq.(5.67) is in keeping with our notation in previous
sections, and in particular with eq.(5.43).
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Figure 5.1: Left: Values of the charges qj (normalized to q0, for j = 0, ..., N − 1) that
correspond to a discrete clockwork mechanism arising from the deconstruction of a massive
5D scalar field in a flat background, as described in section 5.4.1. For illustration, we
choose

√
M2
φπR = 15, and focus on the case of N = 5, 10, and 100 lattice sites. We make

the first and last point coincident, so that the hierarchy between the first and last charge
parameters, and how it changes as we increase the number of sites, be compared between
all three cases. Right: Same as in the left figure but for the mass-squared clockwork
parameters m2

j .
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Figure 5.2: Profile of the massless mode obtained from the deconstruction of a massive
5D scalar field in a flat background, as described in section 5.4.1, for the case of N = 5
and 10 lattice sites, and for

√
M2
φπR = 15 for illustration. The black line corresponds to

the case of an exact exponential profile ∝ e−
√
M2
φ
y.
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of negative brane-localized mass terms is consistent within an effective description,

although such terms may be non-trivial to realize in the context of a full UV com-

pletion and potentially pose an obstruction to genuine continuum clockwork.

As was first noted in [198–200], the presence of non-zero bulk and brane mass

terms makes the profile of the vector zero mode non-flat. For an exponential profile

ψ0(y), the appropriate boundary conditions require again Y = 1, in which case

ψ0(y) ∝ em̃Ay/2. Without loss of generality, one may take ψ0(y) = em̃Ay/2, a choice

that defines a 4D gauge coupling g4D given by g−2
4D = g−2

5D(em̃AπR−1)/m̃A. Moreover,

for a given X(y), the equation of motion for the zero mode demands bulk and brane

mass terms to satisfy

m̃2
A + 2m̃A

∂yX

X
− 4M2

A = 0 . (5.68)

For instance, in a flat background, where X(y) = 1, m̃A = ±2
√
M2

A; whereas in

an RS background, where X(y) = e−2ky, m̃A = 2
(
k ±

√
k2 +M2

A

)
(in agreement

with [200]). As before, the values of m̃A that satisfy eq.(5.68) constitute a technically

natural choice of parameters, since only for those values the theory recovers 4D gauge

invariance of the zero mode – again, a symmetry protected choice.

In the case of a flat background (X = Y = 1), the effective interaction term

defined through eq.(5.47) is now given by

L4 ⊃ −|(∂µ + iQϕAµ(y0))ϕ|2 = −|(∂µ + iQϕe
m̃Ay0/2A(0)µ + ...)ϕ|2 . (5.69)

The effective coupling between the scalar field and the massless vector is∼ g4DQϕe
m̃Ay0/2.

An exponential hierarchy of effective charges may now be generated by localizing

matter on opposite branes, as a result of the physical localization of the vector zero

mode.

When deconstructed, the general features of the discrete version are very similar

to those of the scalar case described in section 5.4.1. For finite N , the discrete

clockwork parameters all have similar size, and asymptote to a common value in the

continuum limit, whereas the distribution of the massless mode along the different

sites approaches again an exponential profile.

One may try to implement an analogous mechanism for a non-abelian gauge the-
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ory. This possibility was considered in [201], where both bulk and brane mass terms

(of the right size) are included for a non-abelian gauge theory propagating in a slice

of AdS, and the authors of [201] find that an exponentially-localized zero mode is

present in the KK-spectrum. As a result of the zero mode’s non-trivial profile, its

cubic and quartic couplings are found to differ, and brane-localized kinetic terms

need to be included to render them equal. This ensures that those terms in the

effective lagrangian involving only the massless vector mode exhibit 4D gauge in-

variance. However, gauge invariance of the zero mode also requires interaction terms

involving the zero mode and massive KK-modes be gauge invariant independently

– a requirement that is not fulfilled in [201]. As a result, although the lowest-lying

vector mode appears massless at tree-level, its mass remains unprotected under

quantum corrections.

5.4.3 Relation to linear dilaton theories

As we have seen in sections 5.3.1 and 5.4.1, the scalar clockwork parameters cor-

responding to the deconstruction of a massive scalar field propagating in a flat

background are rather similar to those that arise in the deconstruction of a massless

field in a linear dilaton geometry. In terms of the discrete clockwork mechanism of

section 5.2.1, the latter seem to correspond to identical clockwork parameters across

sites, whereas the former appears just as a small perturbation thereof.

The reason for this similarity is a deeper relation between the two theories at the

5D level. The KK-mode spectrum of a massless 5D scalar theory in a background

given by functions X(y) and Y (y) is identical to that of a massive theory with

an exponentially localized zero mode, χ0(y) ∝ em̃φy/2, in a background given by

functions X̃(y) and Ỹ (y) = 1, provided

Y (y) = e2m̃φy/3 , and X(y) = X̃(y)Y (y) = X̃(y)e2m̃φy/3 . (5.70)

(This can be checked from eq.(5.60) and eq.(5.61) by performing a field redefinition

χn → em̃φy/2χn, and taking into account eq.(5.62).) Whereas the two theories are

identical as far as the scalar sector is concerned (the spectrum of KK-mode masses

103



is the same), the profiles of the different modes in the massive theory correspond

to those of the massless theory after a rescaling by a factor of em̃φy/2. This feature

crucially distinguishes the two theories when the 5D scalar couples to brane-localized

states: in the flat case, the massless mode is symmetry-localized along the extra

dimension, whereas this is not the case in linear dilaton geometries. Only in the

flat case, couplings between the scalar zero mode and brane-localized states depend

exponentially on the position of the branes as a result of the zero mode’s non-trivial

profile.

In particular, for a massless scalar field in a linear dilaton geometry X(y) =

Y (y) = e−4ky, the spectrum of KK-modes is identical to that of a massive theory

with m̃φ = −6k (therefore M2
φ = (3k)2), and Ỹ = X̃ = 1 – i.e. a massive scalar

theory in a flat background, of the kind considered in section 5.4.1. In the continuum

limit, the mass spectrum of KK-modes is given by

m2
n

(1/R)2 = (3kR)2 + n2 = M2
φR

2 + n2 for n ≥ 1 . (5.71)

Upon deconstruction, the spectrum of massive states, i.e. the ‘clockwork gears’,

differ between the two theories for a given number of sites N . In particular, in the

linear dilaton background with vanishing bulk and brane masses, the mass of the

n-th clockwork gear is given by [183]

m2
n

∣∣∣
L.D

= m2
(
q2 + 1− 2q cos πn

N + 1

)
, (5.72)

with q = e3ka and m2 = a−2. Taking the large N limit, while keeping Na = πR

constant,

m2
n

(1/R)2

∣∣∣∣∣
L.D

= (3kR)2 + n2 + 1
N

(27
π2 (kπR)3 + n2(3kπR− 2)

)
+O

( 1
N2

)
, (5.73)

and so the mass of the n-th clockwork gear approaches the mass of the n-th KK-

mode linearly in 1/N . Similarly, when deconstructing the theory of section 5.4.1, the

mass of the n-th clockwork gear approaches the mass of the n-th KK-mode linearly

in 1/N , although the size of the ∼ 1/N corrections in the flat deconstruction is much
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Figure 5.3: Left: Spectrum of massive KK-modes for a massless scalar field in a linear
dilaton geometry given by X(y) = Y (y) = e−4ky, which is identical to that of a scalar field
in a flat background with bulk mass M2

φ = 3k, and boundary mass parameter m̃φ = −6k.
Center: Spectrum of clockwork gears arising from the deconstruction of a massive scalar
field in a flat background. Right: Spectrum of clockwork gears arising from the decon-
struction of a massless scalar field in a linear dilaton geometry. For illustration, we take
kπR = 5 in all three cases, and the center and right figures correspond to deconstructions
featuring N = 30 sites.

smaller than in the linear dilaton deconstruction.20 In any case, both deconstructions

reproduce the same mass matrix for the scalar sector up to 1/N corrections.

Crucially, however, the symmetry-localization of the zero mode in the theory

of section 5.4.1, and the absence of it in linear dilaton theories, leads to similarly

different behaviour upon deconstruction: whereas the deconstruction of the theory

in flat space with bulk and brane masses leads to a meaningful clockwork mechanism

(i.e. it corresponds to Theory A, in the language of section 5.2.5), deconstructing

the linear dilaton theory merely leads to a discrete theory with approximately the

same spectrum of massive modes, but it does not exhibit clockwork dynamics (i.e. it

corresponds to Theory B).

The situation for the vector case is completely analogous to the scalar case de-

scribed above. The KK-mode spectrum of a massless 5D U(1) gauge theory in a

background given by X(y) and Y (y) is identical to that of a massive theory with an

exponentially localized zero mode, ψ0(y) ∝ em̃Ay/2, in a background given by X̃(y)
20For instance, for kπR = 5, the mass of the first clockwork gear in the linear dilaton background

only comes to within 10% of the first KK-mode for N ≈ 80. On the other hand, the deconstruction
of the flat theory already features the first clockwork gear with a mass less than 2% different from
that of the first KK-mode in the most minimal case of three lattice sites (N = 2).
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and Ỹ (y) = 1, provided

Y (y) = e2m̃Ay , and X(y) = X̃(y)Y (y) = X̃(y)e2m̃Ay . (5.74)

As before, although the spectrum of masses is the same in the two theories, the

mode profiles differ by an overall factor of em̃Ay/2, and therefore the two theories

exhibit crucially different behavior in their couplings to brane-localized states. In

particular, the spectrum of KK-modes of a massless U(1) gauge field in a linear

dilaton background is identical to that of a massive theory with m̃A = −2k, and

Ỹ = X̃ = 1. Upon deconstruction, the spectrum of massive vector modes will be

the same up to 1/N corrections, but, just as in the scalar case discussed above, only

one of the theories exhibits meaningful clockwork dynamics – that of a massive 5D

vector with bulk and brane masses in a flat background.

5.5 Deconstructing gravitational extra dimensions

In this section, we briefly illustrate, following [202], how the deconstruction of a

gravitational extra dimension leads to the discrete, unclockworked, scenario of sec-

tion 5.2.4 – regardless of the choice of metric. We consider perturbations around

the geometry defined by eq.(5.31), of the form

ds2 = gMNdx
MdxN = X(y)g̃µνdxµdxν + Y (y)dy2 , (5.75)

where g̃µν = ηµν + hµν . The 5D Einstein-Hilbert action is then given by

S5,EH = M3
5

2

∫
d4xdy

√
|g|R5[g]

= M3
5

2

∫
d4xdy

√
|g̃|

X√Y R4[g̃]

+ 1
4X

−2Y −1(g̃µν g̃αβ − g̃µαg̃νβ)∂y(Xg̃µν)∂y(Xg̃αβ)
 .

(5.76)

Expanding eq.(5.76) to quadratic order in hµν , and writing hµν as a sum over KK-

modes as usual, hµν = ∑∞
n=0 ϕn(y)h(n)

µν (x), one can find the corresponding equations

of motion and boundary conditions. In particular, a massless mode is present in the
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spectrum, whose profile is a constant (to preserve the normalization of the massless

mode’s self interactions, we take ϕ0 = 1). The first term in eq.(5.76) then defines

the effective 4D Planck scale, given by

M2
Pl = M3

5

∫ y=πR

y=0
dyX(y)

√
Y (y) . (5.77)

When deconstructed, the first term in the second equality of eq.(5.76) leads to

a term of the form

L4 ⊃
N∑
j=0

√
|g̃j|

M3
5

2 aXj

√
YjR4[g̃j] ≡

N∑
j=0

√
|g̃j|

M2
j

2 R4[g̃j] , (5.78)

where g̃jµν = ηµν +hjµν , and Mj corresponds to the effective 4D Planck scale at site

j, given by

M2
j = M3

5aXj

√
Yj . (5.79)

For instance, in a linear dilaton background of the form X(y) = Y (y) = e−4ky,

Mj = (M3
5a)1/2e−3kja, whereas in a Randall-Sundrum geometry, X(y) = e−2ky,

Y (y)=1, one finds Mj = (M3
5a)1/2e−kja, in agreement with [203]. In both cases, the

effective Planck scale on a given site depends exponentially on the position of the

site.

Moreover, upon deconstruction, the second term in the second equality of eq.(5.76)

leads to a mass term of the form (expanding up to O(h2))

L4 ⊃
1
2

N−1∑
j=0

M2
j

4a2
Xj

Yj

{
(hj − hj+1)2 − (hjµν − hj+1µν)2

}
, (5.80)

which corresponds precisely to eq.(5.20), with mass-squared parameters

m2
j = 1

a2
Xj

Yj
. (5.81)

The deconstructed theory is therefore identical to the discrete 4D scenario described

in section 5.2.4, in which no clockwork graviton arises.
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5.6 Conclusions

The elusiveness of physics beyond the SM strongly motivates the search for theories

in which large hierarchies of effective interactions arise from natural fundamental

parameters. The clockwork mechanism beautifully realizes this goal, generating

exponentially-suppressed couplings to a symmetry-protected state without signifi-

cant hierarchies in the UV theory. Such a phenomenon invites both exploration of

its full scope and application to extensions of the SM.

In this chapter we have systematically investigated the scope of clockwork phe-

nomena in four dimensions, as well as possible continuum counterparts in five di-

mensions. We have demonstrated that clockwork is an intrinsically abelian phe-

nomenon, suitable for generating exponentially suppressed couplings to goldstone

bosons of spontaneously broken abelian global symmetries, or to gauge bosons of

abelian local symmetries. It is manifestly impossible to realize a clockwork mecha-

nism for non-abelian symmetries protecting a light state, precluding the application

of clockwork to Yang-Mills theories, non-linear sigma models, or gravity (thereby

frustrating any attempts to solve the hierarchy problem by clockworking gravity).

We have also explored the extent to which viable clockwork models in four di-

mensions have continuum counterparts in five dimensions. We study a general class

of five-dimensional theories with a compact fifth dimension, whose metrics preserve

four-dimensional Lorentz invariance with warp factors that are a function of the fifth

coordinate. Members of the class include flat, Randall-Sundrum, and linear dilaton

models. The zero modes of all massless bosonic bulk fields on these metrics are flat

in the sense that they couple equally to states localized on codimension-one surfaces

anywhere in the fifth dimension. These five-dimensional theories are therefore not

continuum counterparts of four-dimensional clockwork. Moreover, their deconstruc-

tions cannot be identified with four-dimensional clockwork, as zero modes in the

deconstructions couple universally to states localized at specific sites, in contrast

with clockwork. In addition, any nontrivial warp factor in the metric of a higher-

dimensional theory corresponds to a hierarchy of couplings and scales intrinsic to

each site in its deconstruction, again in contrast with clockwork.21

21For abelian bulk fields the hierarchies of scales and couplings in the deconstruction can be
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Among other things, this implies that linear dilaton models (and more generally

a broad class of five-dimensional theories whose metrics give nominal hierarchies)

are not the continuum counterparts of clockwork. Linear dilaton theories may still

be of interest in addressing the hierarchy problem in their own right, but they so in

a way that is unrelated to clockwork. In particular, the deconstruction of gravity

in linear dilaton backgrounds necessarily involves the same sort of site-by-site scale

hierarchies found in the deconstruction of Randall-Sundrum models, rather than the

parametrically similar scales found in clockwork.

This leaves the question of what five-dimensional theories, if any, are the con-

tinuum counterparts of abelian clockwork models. Although physically meaningful

coupling hierarchies for the zero modes of bulk bosons cannot be generated by met-

ric factors, they can be generated by non-trivial zero mode profiles unrelated to the

metric. We have found that candidate continuum counterparts of abelian clockwork

involve scalars or vectors with bulk and brane masses tuned to preserve a mass-

less zero mode. This imparts a physically meaningful profile to the zero mode that

generates the desired exponential and position-dependent hierarchy in couplings to

localized states. Deconstructions of these continuum theories do exhibit clockwork

phenomena, and their masses and couplings agree with those of uniform clockwork

up to corrections that fall off with the number of sites. These 5D theories may be a

fruitful setting for additional clockwork model-building.

absorbed into genuine clockwork-like charges, but the zero mode in these deconstructions still
lacks the position-dependent couplings of clockwork unless position-dependent charges are put in
by hand at the outset.
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Chapter 6

Conclusions

The absence of unambiguous signs of new physics from colliders or DM experiments

is calling into question the most traditional solutions to some of the caveats of the

SM. In this work, we have considered theories based on the Twin Higgs mechanism,

which provide a partial solution to the electroweak hierarchy problem, and have

explored their potential for solving the DM mystery. Specifically, we have focused

on Fraternal Twin Higgs models, which implement the minimal version of the Twin

Higgs idea, and we have seen that these constructions do indeed provide natural

DM candidates.

In chapter 3, we have focused on the simplest version of the Fraternal Twin

Higgs proposal, in which there is neither a twin hypercharge gauge group nor an

asymmetry in the twin sector. In this case, we have seen that twin leptons are in

fact the preferred DM candidates, and predictions concerning their scattering cross

sections with SM nuclei fall in the region of parameter space of interest for current

and future direct dection experiments. So much so that since the work discussed in

chapter 3 was originally published in [2], a significant region of parameter space has

already been ruled out by the latest results from the LUX detector [110]. These new

constraints set the ratio between the twin and SM Higgs vev’s to be f/v & 6, which

in turn implies a fine-tuning ∼ 5%. This dominates over LHC bounds, which only

exclude the regime f/v & 3. This highlights how exploration of different aspects of

theories of Neutral Naturalness is both relevant and timely, with experiments other

than colliders likely to be the most interesting probes of these new class of models.

Whereas in chapter 3 the final DM abundance was set purely by freeze-out

dynamics, in chapter 4 we considered the case in which an asymmetry was present

in the twin sector. In this case, the natural DM candidate happens to be a bound

state of three twin quarks, and its relic abundance is purely set by the primordial

asymmetry. Naturalness considerations then set the mass of the DM particle to
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be in the 1 − 10 GeV regime, which is the attractive range for models of ADM.

A dynamical mechanism to obtain asymmetries of similar size in the SM and twin

sector was not considered in chapter 3, and remains an interesting model building

challenge.

In chapter 5 we have focused on some structural aspects of the clockwork mech-

anism for generating hierarchies. We have proved that clockwork can only be con-

sistently implemented in theories with abelian symmetries, and it is precluded in

non-abelian theories including Yang-Mills and gravity. The applicability of clock-

work is then restricted to models featuring states protected by U(1) symmetries,

either global or gauged. In the former case, the prime example is the ‘clockwork

axion’ [9, 10], where a very light axion remains in the spectrum protected by a

rather unsual U(1) symmetry that allows the axion decay constant to be paramet-

rically larger than the fundamental scale of spontaneous symmetry breaking, and

that might be even larger than mPl. When gauged, the massless state is a photon,

and the clockwork mechanism provides a framework in which matter fields may have

exponentially different charges under the unbroken gauge symmetry in a way that is

perfectly natural [193]. Although clockwork is intrinsically a 4D discrete construc-

tion, we have shown that its continuum limit requires bulk and brane masses to

localize the zero modes, and that effects arising from non-trivial extra-dimensional

geometries do not lead to clockwork.

Some of the most interesting open questions related to the clockwork mechanism

are purely theoretical. For instance, the only non-trivial continuum limit of clock-

work requires brane masses with opposite signs to be present on the 4D branes of a

compactified 5D orbifold construction. Whereas negative brane masses do not lead

to any inconsistency within the effective theory, whether they can be consistently

included into a full UV-completion remains unclear. Because of this potential issue,

it could well be the case that clockwork is a purely discrete construction. Moreover,

reconciling spin-0 clockwork with the statement that unbroken global symmetries do

not exist within a theory of quantum gravity would require to either gauge the (orig-

inally global) U(1) symmetry, or allow for symmetry-breaking effects suppressed by

some power of mPl. Whether the main features of scalar clockwork survive either
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of these attempts requires more thought (see [196] for work in this direction).

Finally, even vector clockwork, in which the U(1) symmetry is gauged, raises

interesting theoretical questions regarding the applicability of the WGC as a veto on

effective field theories, a discussion originally introduced in [193]. Spin-1 clockwork

provides an explicit example in which a theory that violates the WGC in the IR can

be consistently UV-completed into a theory that satisfies it. In [193], an extended

version of the WGC was introduced, with a milder restriction on the cut-off of the

effective theory. Interestingly, clockwork theories appear to saturate this new bound,

raising the question of whether other theories exist somewhere in between. Most

ambitiously, if a clockwork-like construction could be engineered within a controlled

string theory set-up, it would provide the first explicit UV counter-example to the

original WGC proposal, a direction that is worth exploring.
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