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Predicting the three-dimensional structure of a protein from its primary sequence of amino acids is known as the protein folding
problem. Due to the central role of proteins’ structures in chemistry, biology and medicine applications, this subject has been
intensively studied for over half a century. Although classical algorithms provide practical solutions for the sampling of the
conformation space of small proteins, they cannot tackle the intrinsic NP-hard complexity of the problem, even when reduced to
the simplest Hydrophobic-Polar model. On the other hand, while fault-tolerant quantum computers are beyond reach for state-of-
the-art quantum technologies, there is evidence that quantum algorithms can be successfully used in noisy state-of-the-art
quantum computers to accelerate energy optimization in frustrated systems. In this work, we present a model Hamiltonian with
O(N*) scaling and a corresponding quantum variational algorithm for the folding of a polymer chain with N monomers on a lattice.
The model reflects many physico-chemical properties of the protein, reducing the gap between coarse-grained representations and
mere lattice models. In addition, we use a robust and versatile optimization scheme, bringing together variational quantum
algorithms specifically adapted to classical cost functions and evolutionary strategies to simulate the folding of the 10 amino acid
Angiotensin on 22 qubits. The same method is also successfully applied to the study of the folding of a 7 amino acid neuropeptide
using 9 qubits on an IBM 20-qubit quantum computer. Bringing together recent advances in building gate-based quantum
computers with noise-tolerant hybrid quantum-classical algorithms, this work paves the way towards accessible and relevant

scientific experiments on real quantum processors.
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INTRODUCTION

The solution of Levinthal’s paradox' through a bias search in the
protein configuration space® demands a very fine description of
the amino acids interactions in their natural environment to
correctly drive the optimization in the rugged protein energy
landscape®™. GPU-assisted sampling methods of well parame-
trized coarse-grained models can provide useful insights regard-
ing the protein’s native conformation, but folding a small protein
in state-of-the-art simulations comes at a very high computational
cost®’. Protein lattice models reduce the conformational space
and obviate the high computational cost of an off-lattice
exhaustive sampling®®. Quantum algorithms cannot ignore those
simplifications because of the limited currently available quantum
resources. Perdomo-Ortiz et al. paved the way towards the
construction of spin Hamiltonians to find the on-lattice hetero-
polymer’s low-energy conformations using quantum devices, but
with unattainable high costs for near-term quantum compu-
ters'®'". Recently, the amount of resources needed for the
simulation of polymer lattice models was reduced, however still
maintaining an exponential cost in terms of number of qubits and
gates needed'®'®. These methods were used to fold a coarse-
grained protein model with 6 and 8 amino acid sequences on 2D
and 3D lattices, respectively, using a quantum annealer'®. These
experiments required 81 and 200 qubits and led to a final
population of 0.13% and 0.024% for the corresponding ground
state structures, using divide and conquer strategies. More
recently, Fingerhuth and coworkers proposed another approach
based on the Quantum Approximate Optimization Algorithm
(QAOA)'* using a problem-specific alternating operator ansatz to
model protein folding'®. Employing the same model proposed
in'® they succeeded in folding a 4 amino acid protein model on a
2D square lattice.

In this work, we present a coarse-grained model for protein
folding which is suited to the representation of branched
heteropolymers comprised of N monomers on a tetrahedral (or
"diamond”) lattice. This choice is motivated by the chemical
plausibility of the angles enforced by the lattice (109.47° for bond
angles, 180° or 60° for dihedrals), which allows an all-atom
description for a wide range of chemical and biological
compounds. Given the modest resources of actual quantum
devices, a two-centered coarse-grained description of amino acid
(backbone and side chain) was used to mimic the protein
sequence. Every monomer is depicted by one or multiple beads
that can have a defined number of ‘color shades’ corresponding to
different physical properties like hydrophobicity and charge.

RESULTS
The configuration qubits

As for the previous models in literature, a polymer configuration is
grown on the lattice by adding the different beads one after the
other and encoding, in the qubit register the different "turn” t; that
defines the position of the bead i+ 1 relatively to the previous
bead i. Using a tetrahedral lattice, we distinguish two sets of non-
equivalent lattice points .4 and B (see Fig. 1). At the A sites, the
polymer can only grow along the directions t; € {0, 1, 2, 3} while at
site B the possible directions are t; € {0,7,2,3}. Along the
sequence, the A and B sites are alternated so that we can use the
convention that A (respectively ) sites correspond to even (odd)
is. Without loss of generality, the first two turns can be set to
t; =1 and t, =0 due to symmetry degeneracy. To encode the
turns, we assign one qubit per axis t; = g4;_304i_204i—194; (Fig. 1
(). Therefore, the total number of qubits required to encode a
conformation q.s corresponds to N = 4(N — 3). If the monomers
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Fig. 1 Tetrahedral lattice polymer model. a Labeling of the
coordinate systems at the sub-lattices .4 and B. b Typical polymer
conformation (10 monomers). The red and dark green dashed lines
represent a subset of inter-bead interactions considered in our
model. Side chain beads are shown in orange. ¢ Example of turn
encoding. d Number of qubits required by the sparse (3-local terms)
model (blue) and its dense (5-local terms) variant (orange) as a
function of the number of monomers. e Number of Pauli strings
with respect to the number of monomers for the sparse and dense
encoding models. The parameters of the fit are (a, b) = (0.15, 1.49).
The exponential curve (dotted line) is given as a reference.

are described by more than one bead, the same formula holds by
replacing N with the total number of beads in the polymer. A
denser encoding of the polymer chain using only 2(N —3)
configuration qubits is presented in the Supplementary Methods.

The interaction qubits

To describe the interactions, we introduce a new qubit register q;,,
composed of q,(y for each [ nearest neighbor (-NN) interaction
on the lattice (see red and green dashed lines for /=1 and /=2 in
Fig. 1, b) between beads i and j. The use of these registers will be
explained in connection to the definition of the interaction energy
terms. The number of qubits constituting the interaction register,
Nin, is entirely determined by the skeleton of the polymer (i.e.,
including the side chains), regardless of the beads’ color, and
scales as O(N?). Note that two 1-NN beads occupy positions on
different sub-lattices (A4 or B). On the other hand, for />1 all
beads of both sub-lattices can potentially interact. Given a primary
sequence, the pairwise interaction energies €} between the
beads at distance / can be arbitrarily defined to reproduce a fold of
interest or it can be adapted from pre-existing models, like the
one proposed by Miyazawa and Jernigan (MJ) for 1-NN
interactions'”.

The Hamiltonian

The next step defines the qubit Hamiltonian that describes the
energy of a given fold defined by the sequence of beads (fixed)
and the encoded turns. Penalty terms are applied when physical
constraints are violated (e.g, when beads occupy the same
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position on the lattice), and physical interactions (attractive or
repulsive in nature) are applied when two beads occupy
neighboring sites or are at distance /> 1, where [ is the length
of the shortest lattice path connecting them. The different
contributions to the polymer Hamiltonian are, therefore (with

q= {qcfr qin})r
H(d) = Hgc(acf) + Hen(Acr) + Hin(4)- m

The definitions of the geometrical constraint (Hg., which
governs the growth of the primary sequence with no bifurcation)
and the chirality constraint (Hg, which enforces the correct
stereochemistry of the side-chains if present) are given in the
Supplementary Methods.

The interaction energy terms

For each bead i along the sequence the distance to the other
beads j#i can uniquely be determined by the state of the N
configuration qubits. To this end, for each pair of beads (i,j) we
introduce a four-dimensional vector (see Supplementary Equation
13), the norm of which uniquely encodes they reciprocal distance
d(i, j). As an example, we consider the energy contributions for 1-
NN interactions. For each pair of beads (i, j) an energy contribution
of efjl) is added to H,) when the distance d(i,j) =/. However, a
contribution of the form s,-(jl> 8(d(i,j) —I) cannot be efficiently
implemented as a qubit string Hamiltonian (here 6(.) stands for
the Dirac delta function). Using the set of contact o,ubits qg;; we,
therefore, define an energy term of the form qf)(efj) +A(d(1,j) —
1)) for each value of [ and A > e,.(j/). This definition implies that the
contribution ef-’ for the formation of the "interaction” (i,j) at
distance /is on(y assigned when the contact qubit q,(z = Tand d(j,
j) =1, simultaneously. For q,{- =1 and d(i, ) # | the factor A adds a
large positive energy contri{bution that overcomes the stabilizing
energy ¢; . The case of d(i,j) </ is detailed in the Supplementary
Methods.

Finally, in our model we prevent the simultaneous occupation
of a single lattice site by two beads, as discussed in the
Supplementary Methods. In a nutshell, we only prevent overlaps
that occur in the vicinity of an interaction pair. If g;; = 1, we apply
penalty functions so that i and j + 1 cannot overlap when / =1, for
instance.

The folding algorithm

The solution to the folding problem corresponds to the ground
state of the Hamiltonian H(q) and therefore lies in the 2N«
dimensional space of the configuration qubits. To reach this state,
we prepare a variational circuit, comprising both the configura-
tional and the interaction registers, which is composed by an
initialization block with Hadamard gates and parametrized single
qubit Ry gates followed by an entangling block and another set of
single qubit rotations. We denote by 8 = (8, 6" the set of angles
of size 2n where n= N+ N is the total number of qubits.
Differently to the quantum mechanical case, for the solution of the
‘classical problem’ (e.g., folding) we do not need an estimate of
the Hamiltonian expectation value, but we only require the
sampling of the low energy tail of the energy distribution.
Therefore, the optimization of the angles 0 is performed using a
modified version of the Variational Quantum Eigensolver
(VQE)'®'® algorithm named Conditional Value-at-Risk (CVaR) VQE
or simply CVaR-VQE®. Briefly, CVaR defines an objective function
based on the average over the tail of a distribution delimited by a
value a (see histogram in Fig. 2(a)) which is denoted CVaR,(0) = (¢
(0)|H(q)|p(8)),. Compared to conventional VQE, CVaR-VQE pro-
vides a drastic speed-up to the optimization of diagonal
Hamiltonians as shown in’. The classical optimization of the gate
parameters is performed using a Differential Evolution (DE)
optimizer?!, which mimics natural selection in the space of the
angles 6. The optimization procedure is summarized in Fig. 2(a).
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Fig. 2 Schematic representation of the folding algorithm and folding process. a Starting from a random population (up-center) of circuit
parameters {6}, every parent, 6°, undergoes a parametrized recombination with other individuals according to the procedure detailed in
Section “Methods” The corresponding trial wavefunctions are generated in the quantum circuit as described in the main text and measured to
estimate the new CVaRs. They determine the selection criteria of whether to replace a parent by its offspring for the new generation. b
Folding of the ten amino acid Angiotensin peptide. Energy distribution at the convergence of the low-energy folds for the population
obtained with the CVaR-VQE algorithm and the DE optimizer. The results were obtained using 128 (blue) and 1024 measurements (orange).
Simulations were carried out using a realistic parametrization of the noise. The binary strings (q1,691,891,1092,792,993,893,1094,995,10) associated
with the different bars represent the contact qubits (see text) that entirely define the conformation energies. The numbers labeling the bars
correspond to the exact degeneracy of the conformations. The total probabilities of finding low-energy conformations (energy below 0) adds
up to 89.5% (small sampling, blue) and 100% (large sampling, orange). The fittest individual in the population collapses to the ground state
with a probability of 42.2% (Supplementary Methods, Fig. 2). ¢ Primary sequence of Angiotensin. To each amino acid is assigned a color that
characterizes its specific physical properties. The letters stand for Aspartic-Acid (D), Arginine (R), Valine (V), Tyrosine (Y), Histidine ( ), Proline
(P), Phenylalanine (F), and Leucine (L). d Pairwise interaction matrix for Angiotensin constructed using the MJ model (Table 3 in'’).

Note that at each step of the optimization, the wavefunctions
|w(6P)) corresponding to the different individuals 6 (Fig. 2(a))
collapse during measurement leading to binary strings, which are
uniquely mapped to the corresponding configurations and
energies. We denote by P¢(p) the overlap probability of the state
associated to individual p (at convergence) with the f lowest
energy fold state.

Scaling

We define the scaling of the algorithm as the number of terms (or
Pauli strings), in the n-qubit Hamiltonian H(q) (see also Supple-
mentary Table 1)

N n
= Z hy ® q;’
Y i=1

where h, are real coefficients, q; = 07)/2, of is the Z Pauli
matrix, y,e {0, 1}, and N, is the total number of terms. A thorough
investigation of the scaling (see Supplementary Methods) reveals
that the geometrical constraints imposed by the tetrahedral lattice
give rise to all possible 2-local terms within the N conformation
qubits. Due to the coupling (entanglement) with the interaction
qubits the Hamiltonian locality (i.e., the maximum number of Pauli
operators different from the identity in H(q)) is strictly 3 for,\}he 1-
NN interaction. Moreover, the scaling is bound by Ny ~ Nin ( ) =
O(N*) even for I-NN interactions, with /= 1. Figure 1(d) and (e)
respectively report the scaling of the proposed model and its
qubits requirements.

)

Applications

We first apply our quantum algorithm to the simulation of the
folding of the 10 amino acid peptide Angiotensin. Using our coarse-
grained model on the tetrahedral lattice the simulation of this
system would require 35 qubits, which is computationally
unaffordable. We, therefore, introduced a denser encoding of the
polymer configuration that requires only 2 qubits per turn t;=qy;
_102;, reducing the total number of qubits to 22. This variant
generated 5-local (instead of 3-local) terms in the qubit Hamiltonian
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while keeping the total number of Pauli strings within an affordable
range for small instances (see Fig. 1d). To further reduce the
number of qubits, we also integrate the side chains with the
corresponding bead along the primary sequence and neglect
interactions with /> 1. Each bin of the histogram in Fig. 2b counts
the number of individuals (of the population) that converge to a
fold f (characterized by the corresponding energy), including the
minimum energy fold (with f = 0) and the next 18 folds (histogram
bars). The different colors refer to the number of measurements n;
=128 (blue bars) and ny = 1024 (orange bars) used to evaluate the
energy expectations at each minimization step. More than 80% of
the individuals in the final population can generate the minimal
conformations after 80 generations (red bars), which occurs with a
probability max, P¢(p) = 42.2%. The evolution of the percentage
throughout the minimization can be found in the Supplementary
Fig. 1). By reducing the number of measurements to 128 shots, we
obtained a broader spectrum of low energy conformations, which
still includes the global minimum but with a lower probability.
Among the low-energy conformations (with energies below 0), we
can clearly identify the formation of an a-helix and a [-sheet
(conformations marked with a gray arrow in Fig. 2b). Indeed, by
tuning the interaction matrix (see Supplementary Fig. 2), we can
foster the formation of secondary structural elements. The 22-qubit
Angiotensin system is still too large for encoding in state-of-the-art
quantum hardware. To this end, we investigated the folding of a
smaller 7 amino acid neuropeptide with sequence APRLRFY (using
the one-letter code) that can be mapped to 9 qubits. The
corresponding CVaR-VQE circuit is shown in Fig. 3a. As the
entangling block we used a closed-loop of CNOT gates that fits
the hardware connectivity of the ibmqg_poughkeepsie 20-qubit
backend (Fig. 3b). The mean CVaR, energy value of the population
as a function of the number of generations shows a robust and
smooth convergence towards the optimal fold (Fig. 3d). More
importantly, the average probability (Fig. 3e) of the ground state
averaged over the entire population, (Py(p)), increases mono-
tonically reaching a final value larger than 20% and with
max, Po(p) peaking up at 33% (see Fig. 3c and e).
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A. Robert et al.

o
w o —JHE- ® 035 F
—— Average --+- Best I's
qr [0) iy va /
oz " All
R o
w0 —BHE—1— O<O@C
: R oD
a3 o) —.—|m§||: A4 (b) 8
B
R Va =
__________________ @
=2 ' 1 Qo
vo —EHEH, T ] > :
| 506 [ o
. . V= \ aD
qs 10) i 2 0410334 I A7
3 i
| 02 !
| 2
v ———H & H—o o
i
|
R i(c) 010100101 rest | o N
g 1o [T}—i4(Q o0 rest P D 5|
—5 bk L " s . . L .
Q9 [0 =4 B 5y 0 20 40 60 0 20 40 60
N Generation Generation

Fig. 3 Experiment results for the folding of the 7 amino acid neuropeptide. a Parametrized quantum circuit for the generation of the
protein configurations. The optimal set of qubit gate rotations is used to reconstruct the optimal fold. b Schematic representation of the
ibmqg_poughkeepsie 20-qubit backend used in this experiment. Qubit 7 is used to close the loop by swapping with qubit 8. ¢ Converged
maximal ground state probability for the ground state fold, max, Po(p). d Evolution of the ground state probability during the CVaR-VQE
minimization (i.e,, number of generations) with a parameter set to 5%. e Evolution of the mean probability (over the population ensemble,
(Po(p))) and of the best individual probability for the ground state fold, mpax Po(p).

DISCUSSION

In this work, we introduced a quantum algorithm for the solution
of the PF problem on a regular tetrahedral lattice. The model
Hamiltonian describes a primary coarse-grained protein sequence
where each bead represents an amino acid. However, side chains
can also be modelled by means of additional beads connected to
the main chain. The interaction between the amino acids is based
on the formation of contacts between beads occupying NN sides
on the lattice. To enable the simulation of medium to long-range
interactions, we also extended the model Hamiltonian to include /-
NN (with /> 1) contacts along the lattice edges. Furthermore,
overlaps (i.e, beads occupying the same lattice side) are avoided
by the inclusion of cost-effective penalty terms. The resulting
Hamiltonian enables the modeling of sophisticated coarse-grained
models accounting for Lennard-Jones and Coulombic like inter-
actions. In particular, we showed how the model can correctly
reproduce secondary structure elements through the simple
adaptation of the imputed interaction potential map.

The number of qubits scales quadratically with the number of
amino acids (N) while the number of elements in the Hamiltonian
scales in O(N*). This is achieved by means of the unconventional
treatment of the overlaps, which are avoided through the addition
of penalty terms in the Hamiltonian, as described above. Even
though the PF problem is a classical optimization problem, the
variational quantum algorithm used, namely CVaR-VQE, drastically
reduces the number of optimizer iterations (and thus circuit
evaluations) required to minimize the classical cost function
(instead of the quantum mechanical expectation value), and may
speed-up the search in the solution space by means of the
quantum entanglement (see also Section IV). In fact, the
construction of specific mixing ansatz can drastically speed-up
the search in the configuration space even when the ground state
is not entangled but classical'®?% The qubits encode directly
accessible physical properties such as the polymer configuration
and the interactions. Therefore, we can exploit physical and
chemical insights to elaborate more ingenious entanglement
schemes and initialization procedures to further accelerate the
convergence of the algorithm. In summary, the locality of the
Hamiltonian combined with the favorable scaling of the qubit
resources and the circuit depth with the number of monomers,
make our model the candidate of choice for the solution of the PF
problem on near-term devices and other quantum technologies.

As a demonstration of our algorithm, we performed the
simulation of the folding of the 10 amino acids protein
Angiotensin using a realistic model for the noise of the one and
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two-qubit gate operations. Furthermore, we used a 20 qubit IBM Q
processor to compute the folding of a 7 amino acid peptide on 9
qubits, which is to our knowledge the largest folding calculation
(at the time of the submission of this work) on a near-term device
using a variational algorithm.

The success of this calculation demonstrates the potential of
our folding algorithm and opens up new interesting avenues for
the use of quantum computers in the optimization of classical cost
functions using the CVaR-VQE approach combined with a genetic
algorithm for the selection of the optimized variational para-
meters. The algorithm can be further extended to include a more
realistic representation of the amino acid side chains and a more
systematic treatment of the long-range interactions.

METHODS
The variational algorithm

The noisy simulations were conducted with a = 1% (resp. a = 0.1%) for the
128 shots (resp. 1024 shots) simulation with an “all-to-all” entangling
scheme on Qiskit®. All circuits were constructed with a VQE depth of m =
2. Given a run with n qubits, the size of the population for the evolutionary
algorithm was set to P = 5 mn, a typical size according to the literature. The
selection strategy of the DE algorithm is practically identical to the original
“current-to-best/1/bin"**. Other full-quantum VQE optimization schemes
can also be applied in future calculations®2°,

The proposed approach, namely CVaR-VQE, is a hybrid quantum-
classical algorithm that operates as all hybrid schemes designed for near-
term quantum processors. The genetic algorithm generates a ‘population’
of parameters (i.e., an offspring) at each single VQE iteration, which keeps
the memory of the past generations and introduces a level of stochasticity
(through the mutation rates) in a process that is governed by a highly
corrugated potential energy surface where analytic gradients are very
inefficient in guiding the minimization process. However, this does not
imply that other optimizers will perform less well than GA in this particular
application. For more information on this topic, we refer to*’, where we
provide details on the use of CVaR-VQE with the COBYLA classical
optimizer.

The Genetic Algorithm optimizer

The benefit of using a quantum computer lies in the capability of efficiently
sampling the exponentially growing space of potential solutions, which
can be further improved through the use of entanglement; in fact, by
means of the superposition principle alone, it is impossible to access the
full Hilbert space associated to a given number of qubits. In the particular
case of PF, the solution consists of a classical state (a binary string), and
therefore the only advantage stem from the efficient search in the
exponentially large configuration space, while the access to non-classical
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trial states (as the wavefunction in quantum chemistry) is of less
importance in PF and may only play a role as an ‘unphysical’ intermediate
state mediating the optimization.
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