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As was shown by Berry [1] the wave function of a time dependent physical
system acquires a geometric phase under an adiabatic and cyclic variation.
Soon after its discovery, Berry’s phase was measured in numerous
experiments in different fields of physics [2]. Two ingredients appear in the
definition of Berry’s phase: adiabaticity and the existence of a parameter space.
Thus, in the elementary example of a spin 1/2 particle in a magnetic field B,
one has the following situation: adiabaticity is satisfied when the period T of

the B-rotation is much larger than the period t of the Zeeman splitting © = %7)5-

(ho is the Zeeman splitting); the parameter space is given by the direction
angles of the field B. In the band structure of solids, adiabaticity is satisfied,
when the time dependent perturbation is slow, e.g., when the frequencies
corresponding to the relevant energy gaps are much larger than the
frequencies in the Fourier transform of the perturbation. Since in solids, the
energy bands form a piecewise continuous spectrum, the K-vector in the
Brillouin zone can serve as the parameter space for the definition of Berry’s
phase [3]. In a periodic solid, K is a conserved quantity, and the Bloch function
Yl 1) s specified by a band index n and K. By applying a perturbation one can
make K vary on a closed path in the Brillouin zone, and Wnk( T) will acquire a
Berry phase. The latter can assume in general a value between 0 and 2x.
However, when the solid possesses some symmetry, Berry’s phases can
become quantized and they assume discrete values when k varies along

vectors of the reciprocal lattice K [3]
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On the other hand, it is well known that energy bands can be generated by
using Wannier functions which are defined with respect to discrete centers in

the Bravais lattice. These discrete centers are called Wyckoff positions and
they are the symmetry centers in the unit cell of the Bravais lattice [4]. The

Wyckoff positions are used for labeling band representations of space
groups [5,6]. In this talk we show how the Wyckoff positions are connected to
Berry phases for energy bands in solids. The discussion is restricted to simple
energy bands (in a simple energy band one Bloch function corresponds to each
k-vector in the Brillouin zone).

Let Gy, be an isotropy group of the Wyckoff position w. An element (Y/;)

of Gy, when applied to w gives

(7/?)v'6=y-7’v+t (1)

. . . =0
We define a Bravais lattice vector R‘? /% insuch a way that

O . (/D —_ T
(“y/'c-RwY )W=w,RwY =yw+t-w )]

In the case of a simple band, we have for any element of G,y the following

relation [5]
w/t) kR U, [y, ) = DO Un (y1K,3) 3)

where Un(k, ) is the periodic part of the Bloch function Yk (T), pliXy)is a
one-dimensional representation of the point group of Gy, and where the

subscript and superscript of R were deleted for simplifying notations.
Berry's phase in solids, for an energy band n and a K-vector of the

reciprocal lattice, is defined in the following way [3]
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where the integration is along the K-vector, and where

Xan (9 =i Q U;ci,q)ai’ﬁ—un@,quq
u.c. (5)

In Eq. (5), Q is the volume of the unit cell of the reciprocal lattice, and where
the integration is over the unit cell in the Bravais lattice. From Egs. (3) and 5)

we find

x<1<)=-ﬁ+£xd<")
dk (6)

where K’ =¥k, and where the second term is a diadic product. This means

that the i-component of both sides of Eq. (6) can be written as follows

ak _ 52 dz, )
aki (63)

X(k) = -R; +

where now the re is a scalar product on the right-hand side. By using the

definition of Berry’s phase [Eq. (4)], we find

Ba®) - Bely'k) = R K @)
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This is the main result of the talk: Eq. (7) gives a connection between Berry’s
phase on the K-vector path in the energy band n, and the Bravais lattice vector
R which according to Eq. (2) can be used for determining the Wyckoff position
w. '

As an example, let us consider the space group F222 (#22). The Wyckoff
positions corresponding to maximal isotropy groups [3] are as follows [4] (U,

Uy, U2 are rotations by © around the x, y, and z-axes correspondingly)

3 =(0,0,0); G E, U, UY,U*
(o 0, )Gb , (U*/00c), (UY /00c), U
®
¢=(ak i’n} Ge E (U"/obi (UY/aoszl)(UZ/alzlo)

B[y 35} oo (/03 (0/30%) (/a8

The F222-space group is face-centered orthorhombic with unit vectors of the

Bravais lattice

41=029,%=@0293%=3L0
a1(22)a2 (2 2)a3 (22) ©)

and unit vectors of the reciprocal lattice

b % (10)
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The band representations for the Wyckoff positions in Eq. (8), all correspond to
simple energy bands. Let us apply Eq. (7) to the Wyckoff positions d and b in
Eq. (8). For 3, the R-vectors [Eq. (2)] are zero for all the symmetry elements.

Correspondingly, from Eq. (7), one finds

For the BWyckoff position Rb is zero for UZ and is -(00c) for UZ and Uy.
Formula (7) gives a set of equations for determining the Berry phases of the
energy bands that are built on the Wyckoff position b. We have o'l =U*or UY
in [Eq. (7)]

U E] = '(E] + Ez + 123), Ux 122 = I—(.al Ux I—éa - I-<.2
(12)

U)’ El = E;;, Uy I_<.2 = -(I—é] + I-Zz + I_<.3), U I_<.3 = E1

By using the fact that Ba(-K) = -Bu(K) we find the following set of equations (we
use Egs. (7), (12) and the value of the R, vector for UX and UY [R, = -(0,0,0)D

2O (Ky) + B (o) + B (Ka) = 21
O K - B (Kz) =2
B Ky) - B (Ky) = 21

The solution of these equations is as follows
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Bu(K1) = B (K2) = -Bn(Ka) = m (13)

In a similar way, one finds the following Berry phases for the Wyckoff

positions ¢ and d. We have

BEKy) = B (Ky) = BOKs) -z
(14)

BOK) = B (K = BOKs) = L

Let us remark that the choice of the group F22 was not accidental. In fact,
there is a very special reason for choosing this group, and it is as follows. In
one-dimensional crystals, it was proven many years ago [7] that there is a one-
to-one correspondence between the Wyckoff positions (these are 0 and a/2,
where a is the lattice constant) and the symmetries of the Bloch functions in
the Brillouin zone. It turns out that such a one-to-one correspondence is, in
general, correct also for simple bands in three-dimensional solids. There are,
however, exceptions, and one of them is the F222-group. Thus, it was recently
found [6] that the a, b, and ¢, d Wyckoff positions, in pairs, lead to identical
symmetries of Bloch functions in the Brillouin zone. These pairs of Wyckoff
positions constitute therefore an example, when Wannier functions around
different symmetry centers in the unit cell of the Baravais lattice, lead to
identical symmetries for their Bloch functions. It was recently shown [8] that

despite of them having identical symmetries, the Bloch functions \Ifia)

and \V;b)
for bands of the type a and b (belonging to Wyckoff positions a and b) cannot be
connected by a continuous k-dependent phase factor when the crystal becomes
infinite. A similar situation prevails for the Wyckoff positions ¢ and d. What

this means is that topologically the bands of type a and b are different (also ¢
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and d). In this talk we show that the bands, a and b (also ¢ and d) have also
different Berry phases [Egs. (11), (13), and (14)}.

The discussion in this talk was restricted to simple bands. The latter

correspond to a single Wyckoff position. In general, for composite energy

b
b
b

ands, there is a star of Wyckoff positions that appear in their definition via
and representations [5]. Little is known about the topology of composite

ands, and it should be of much interest to connect their Wyckoff positions

and Berry phases.
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