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Abstract: We use the method of field decomposition, a widely used technique in relativistic magne-
tohydrodynamics, to study the small velocity approximation (SVA) of the Lorentz transformation in
Maxwell equations for slowly moving media. The “deformed” Maxwell equations derived using
SVA in the lab frame can be put into the conventional form of Maxwell equations in the medium’s
co-moving frame. Our results show that the Lorentz transformation in the SVA of up to O(v/c)
(v is the speed of the medium and c is the speed of light in a vacuum) is essential to derive these
equations: the time and charge density must also change when transforming to a different frame,
even in the SVA, not just the position and current density, as in the Galilean transformation. This
marks the essential difference between the Lorentz transformation and the Galilean one. We show
that the integral forms of Faraday and Ampere equations for slowly moving surfaces are consistent
with Maxwell equations. We also present Faraday equation in the covariant integral form, in which
the electromotive force can be defined as a Lorentz scalar that is independent of the observer’s frame.
No evidence exists to support an extension or modification of Maxwell equations.

Keywords: Maxwell equations; Lorentz transformation; relativistic magnetohydrodynamics; Galilean
transformation

1. Introduction

James Clerk Maxwell unified electricity and magnetism, the first unified theory of
physics, by constructing a set of equations now known as Maxwell equations [1] (for the
history of Maxwell equations, see, e.g., Ref. [2]). Maxwell equations are the foundation
of classical physics and many technologies that form the modern world. The Lorentz
covariance is hidden in the structure of Maxwell equations, which was first disclosed by
Albert Einstein in his well-known paper “On the electrodynamics of moving bodies” in
1905, which marked the discovery of special relativity [3–6].

Recently, an extension of conventional Maxwell equations has been proposed for charged
moving media [7] to describe the power output of piezoelectric and triboelectric nanogenera-
tors (TENGs) [8–10], a new technology that can be used to fully utilize the energy distributed
in our living environment with low quality, low amplitude and even low frequency. The
equations derived in Ref. [7] read (in cgs Gaussian unit and natural unit)

∇ · B(t, x) = 0 ,

∇× E(t, x) = −1
c

(
∂

∂t
+ v ·∇

)
B(t, x) ,

∇ ·D(t, x) = ρ f (t, x) ,

∇×H(t, x) =
1
c

J f (t, x) +
1
c

(
∂

∂t
+ v ·∇

)
D(t, x) , (1)

where v is the velocity of the medium and assumed to be much smaller than the speed of
light c, and D = D′ + Ps with D′ being the conventional electric displacement field and Ps
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representing the polarization owing to the pre-existing electrostatic charges on the media
that are induced by TENGs [7]. The fields E, B, D′ and H are the electric, magnetic strength,
electric displacement and magnetic fields in the observer’s frame (lab frame), respectively.
Note that Ps is not linearly proportional to the electric field [7]. The charge conservation
law in Ref. [7] is modified to(

∂

∂t
+ v ·∇

)
ρ f (t, x) +∇ · J f (t, x) = 0 . (2)

The differential equations in (1) were derived from an integral form of Maxwell equa-
tions [7]. They differ from conventional Maxwell equations in two respects: (a) the appear-
ance of the derivative operator ∂/∂t + v ·∇ to replace ∂/∂t; (b) the appearance of Ps. The
charge conservation law differs from the conventional one in (a).

It is obvious that the derivation of (1) and (2) is not based on the Lorentz transformation
in special relativity. A natural question arises: can these equations in (1), except Ps, be
derived from the Lorentz transformation under the small-velocity approximation (SVA)?
The purpose of this paper is to answer this question.

In this paper, we use the (rationalized) cgs Gaussian unit [11,12], in which electric
and magnetic fields have the same unit: Gauss. In the rationalized cgs Gaussian unit,
the irrational constant 4π is absent in Maxwell equations but appears in Coulomb and
Ampere force laws among electric charges and currents, respectively.

We work in the Minkowski space–time with the metric tensor gµν = gµν = diag(1,−1,
−1,−1) where µ, ν = 0, 1, 2, 3, so that we can write space–time coordinates as x = xµ =
(x0, x) = (ct, x) and xµ = (x0,−x) with x0 = x0 = ct. For a space position x = (x1, x2, x3),
we do not distinguish the superscripts and subscripts of its components, xi = xi = xi

for i = 1, 2, 3. Normally, we use Greek letters to denote four-dimensional indices of four-
vectors and four-tensors, while their spatial components are denoted by space indices
(Latin letters) i, j, k, l, m, n = 1, 2, 3. The four-dimensional Levi–Civita symbols are denoted
as εµνρσ and εµνρσ with the convention ε0123 = −ε0123 = 1, while the three-dimensional
Levi–Civita symbol is denoted as εijk with the convention ε123 = 1.

2. Field Decomposition and Lorentz Transformation

In the observer’s frame, the anti-symmetric strength tensor of the electromagnetic field
is given by

Fµν = ∂µ Aν − ∂ν Aµ , (3)

where xµ = (ct, x), Aµ = (A0, A), and ∂µ = (c−1∂t,−∇) with ∂0 ≡ c−1∂t ≡ c−1∂/∂t and
∂i = ∂/∂xi = −∂/∂xi ≡ −∇i. The components of Fµν are

F0i = ∂0 Ai − ∂i A0 =
1
c

∂t Ai +∇i A0 = −Ei ,

Fij = ∂i Aj − ∂j Ai = −εijkBk . (4)

The components of Fµν are then F0i = Ei and Fij = −εijkBk.
It is convenient to introduce a four-vector uµ to decompose Fµν(x) into the electric

and magnetic field

Fµν(x) = Eµ(x)uν − E ν(x)uµ + εµνρσuρBσ(x) , (5)

where Eµ and Bµ are four-vectors constructed from the electric and magnetic field, respec-
tively. Note that uµ corresponds to the four-velocity cuµ and satisfies uµuµ = 1; we also
assume that it is a space–time constant. They can be extracted from Fµν by

Eµ = Fµνuν ,

Bµ =
1
2

εµνρσuνFρσ ≡ F̃µνuν , (6)
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where F̃µν = (1/2)εµναβFαβ is the dual of the field strength tensor. The field decom-
position (5) is widely used in relativistic magnetohydrodynamics [13–16]. The Lorentz
transformation of Fµν can be realized by that of four-vectors Eµ, Bµ and uµ,

F′µν(x′) = Λµ
αΛν

βFαβ(x)

= Λµ
αΛν

β

[
Eα(x)uβ − E β(x)uα + εαβρσuρBσ(x)

]
= E ′µ(x′)u′ν − E ′ν(x′)u′µ + εµνρσu′ρB′σ(x′) , (7)

where Λµ
α denotes the Lorentz transformation tensor and Eµ(x) and Bµ(x) are transformed

as four-vectors E ′µ(x′) = Λµ
αEα(x) and B′µ(x′) = Λµ

αBα(x). It seems that the degrees of
freedom of Fµν would increase because Eµ and Bµ are four-vectors and would have eight
independent variables. However, this is not true, since Eµ and Bµ are orthogonal to uµ, i.e.,
E · u = B · u = 0.

We have the freedom to choose any uµ to create the decomposition (5) for Fµν(x).
As the simplest choice, we take uµ = uµ

L ≡ (1, 0), which corresponds to the lab or observer’s
frame, as shown in Figure 1. Then, Equation (5) has the form

Fµν(x) = Eµ
L (x)uν

L − E ν
L(x)uµ

L + εµνρσuLρBLσ(x) , (8)

where Eµ
L = (0, E1, E2, E3) = (0, E) and Bµ

L = (0, B1, B2, B3) = (0, B). The matrix form of
Fµν corresponding to uµ

L is then

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (9)

which is just the matrix form of Equation (4).

Figure 1. The lab or observer’s frame and the comoving frame of the medium. The comoving frame
moves at a three-velocity v relative to the lab frame. All fields and space–time in the comoving frame
are labeled with primes.

As a second choice, we take uµ = γ(1, v/c) with γ = (1− v2/c2)−1/2 as the Lorentz
factor and v ≡ |v| as a three-velocity. In this case, the electric and magnetic field four-vectors
are given by
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Eµ(x) = γFµ0(x)− γ
vj

c
Fµj(x)

= γ
(v

c
· E, E +

v
c
× B

)
=
(v

c
· E ,E

)
,

Bµ(x) =
1
2

γεµ0ρσFρσ(x)− 1
2

γ
vi
c

εµiρσFρσ(x)

= γ
(v

c
· B, B− v

c
× E

)
=
(v

c
·B,B

)
, (10)

where E, B, E and B are all functions of x = (ct, x). We note that Eµ(x) and Bµ(x) are
space–time four-vectors. We now make the Lorentz transformation for Eµ(x) and Bµ(x) to
the comoving frame of the medium, which moves with v relative to the Lab frame (see in
Figure 1), so we have

E ′µ(x′) = Λµ
α(v)Eα(x) ,

B′µ(x′) = Λµ
α(v)Bα(x) , (11)

where x′µ = Λµ
α(v)xα. With u′µ = Λµ

α(v)uα = uµ
L, the transformation of Fµν following

Equation (7) reads

F′µν(x′) = E ′µ(x′)uν
L − E ′ν(x′)uµ

L + εµνρσuLρB′σ(x′) . (12)

On the other hand, using uµ
L, F′µν(x′) can be rewritten as

F′µν(x′) = E ′µL (x′)uν
L − E ′νL (x′)uµ

L + εµνρσuLρB′Lσ(x′) . (13)

Comparing Equation (12) with (13) we obtain

E ′µ(x′) = E ′µL (x′) = (0, E′(x′)) ,

B′µ(x′) = B′µL (x′) = (0, B′(x′)) , (14)

where E′(x′) and B′(x′) are the Lorentz-transformed electric and magnetic field in the
moving frame

E′(x′) = γ
[
E(x) +

v
c
× B(x)

]
+ (1− γ)E‖(x)

= γ
[
E⊥(x) +

v
c
× B(x)

]
+ E‖(x) ,

B′(x′) = γ
[
B(x)− v

c
× E(x)

]
+ (1− γ)B‖(x)

= γ
[
B⊥(x)− v

c
× E(x)

]
+ B‖(x) , (15)

where Y‖ = v̂(v̂ · Y) and Y⊥ = (1 − v̂v̂) · Y are the parallel and perpendicular parts
of a three-vector Y = E, B to the direction v̂ of v. Comparing the exact Lorentz trans-
formation (15) with E and B in Equation (10), we see proportional terms to 1 − γ =
−[γ2/(1 + γ)](v2/c2) ∼ v2/c2 are neglected in Equation (10) because we only consider the
SVA up to O(v/c).

3. Maxwell Equations

The covariant form of Maxwell equations in vacuum reads

∂µ F̃µν(x) = 0 , (16)

∂µFµν(x) =
1
c

Jν(x) , (17)

where Jν = (cJ0, J) = (cρ, J) is the four-current density. The homogeneous Equation (16)
provides the Faraday’s law and divergence-free property of the magnetic field, while



Symmetry 2022, 14, 1641 5 of 19

Equation (17) gives Coulomb’s and Ampere’s laws. Therefore, from Equations (16) and (17),
we obtain the conventional form of Maxwell equations in vacuum

∇ · B(x) = 0 ,

∇× E(x) = −1
c

∂B(x)
∂t

,

∇ · E(x) = ρ(x) ,

∇× B(x) =
1
c

J(x) +
1
c

∂E(x)
∂t

, (18)

where all fields are functions of x = (ct, x). The derivation of Equation (18) from
Equations (16) and (17) is given in Appendix A.

In the presence of medium, one can introduce the tensor Mµν describing the polariza-
tion and magnetization of the medium. Similar to Fµν in Equation (5), the decomposition
of Mµν is in the following form

Mµν = −(Pµuν −Pνuµ) + εµνρσuρMσ(x) , (19)

where Pµ andMµ are the polarization and magnetization four-vectors, respectively. Note
that there is a sign difference between Pµ in the above formula and Eµ in Equation (5).
Similar to Equation (6), Pµ andMµ can be extracted from Mµν as

Pµ = −Mµνuν ,

Mµ =
1
2

εµνρσuν Mρσ . (20)

Then, we can define the Faraday field tensor Hµν as

Hµν = Fµν −Mµν

= Dµ(x)uν −Dν(x)uµ + εµνρσuρHσ(x) , (21)

where Dµ and Hµ are the electric displacement and magnetic field four-vector in the
medium, respectively and defined by

Dµ = Eµ + Pµ ,

Hµ = Bµ −Mµ . (22)

For homogeneous and isotropic dielectric and magnetic materials, we have the follow-
ing constitutive relations [17–22]

Dµ = εEµ ,

Hµ =
1
µ
Bµ , (23)

where ε is the electric permittivity (it is ε0 = 1 in vacuum) and µ is the magnetic permeabil-
ity (it is µ0 = 1 in vacuum) of the medium. Note that we use cgs Gaussian unit, ε and µ
correspond to the relative permittivity and permeability in SI unit, respectively. In terms of
Fµν and Hµν, we have Maxwell equations in the polarized and magnetized medium

∂µ F̃µν(x) = 0 , (24)

∂µHµν(x) =
1
c

Jν
f (x) , (25)

where Jµ
f = (cρ f , J f ) denotes the free four-current density with ρ f and J f as the free charge

and three-current densities. The only difference from Maxwell equations in vacuum is
the appearance of Hµν in the equation with the current instead of Fµν. In the presence of
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dielectric and magnetic media, we can also obtain similar equations or relations for Dµ and
Hµ as components of Hµν to Equations (10)–(15) in Section 2.

Corresponding to covariant Maxwell Equations (24) and (25) in dielectric and magnetic
media, we have Maxwell equations in the three-dimensional form

∇ · B(x) = 0 ,

∇× E(x) = −1
c

∂B(x)
∂t

,

∇ ·D(x) = ρ f (x) ,

∇×H(x) =
1
c

J f (x) +
1
c

∂D(x)
∂t

. (26)

The derivation of (26) from Equations (24) and (25) is similar to that of Equation (18)
in Appendix A.

4. SVA of Maxwell Equations in Moving Frame

We take the SVA in Equations (10) and (15) by neglecting all O(v2) terms, which is
equivalent to setting γ ≈ 1, and we obtain

E(x) ≈ E′(x′) ≈ E(x) +
v
c
× B(x) ,

B(x) ≈ B′(x′) ≈ B(x)− v
c
× E(x) , (27)

where E and B are the spatial components of Eµ and Bµ in (10), respectively. This indicates
that E(x) and B(x) are the same as those used in Equation (2.9) in Ref. [23]. Similarly, we
also obtain

D(x) ≈ D′(x′) ≈ D(x) +
v
c
×H(x),

H(x) ≈ H′(x′) ≈ H(x)− v
c
×D(x). (28)

in the presence of dielectric and magnetic media.
In order to derive Maxwell equations in terms of E(x) and B(x) in the SVA we can

insert Fµν in (5) with uµ = γ(1, v/c) into Equations (16) and (17), the covariant Maxwell
equations in vacuum. The resulting equations in three-dimensional form read(

∇+
v
c2

∂

∂t

)
·B(x) = 0 ,(

∇+
v
c2

∂

∂t

)
× E(x) = −1

c

(
∂

∂t
+ v ·∇

)
B(x) ,(

∇+
v
c2

∂

∂t

)
· E(x) = ρ(x)− 1

c2 v · J(x) ,(
∇+

v
c2

∂

∂t

)
×B(x) =

1
c
[J(x)− ρ(x)v] +

1
c

(
∂

∂t
+ v ·∇

)
E(x) . (29)

The derivation of the above equations from Equations (16) and (17) is given in
Appendix B.

In the presence of homogeneous and isotropic dielectric and magnetic materials
with the constitutive relations (23), we should start from Equation (25), aided by the
decomposition of Hµν in (21), to obtain non-homogeneous Maxwell equations under the
SVA. The homogeneous Equation (24) remains the same as in vacuum and gives the first
two equations of (29) under the SVA. The resulting Maxwell equations for moving media
now read
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(
∇+

v
c2

∂

∂t

)
·B(x) = 0 ,(

∇+
v
c2

∂

∂t

)
× E(x) = −1

c

(
∂

∂t
+ v ·∇

)
B(x) ,(

∇+
v
c2

∂

∂t

)
·D(x) = ρ f (x)− 1

c2 v · J f (x) ,(
∇+

v
c2

∂

∂t

)
×H(x) =

1
c

[
J f (x)− ρ f (x)v

]
+

1
c

(
∂

∂t
+ v ·∇

)
D(x) . (30)

The derivation of the above equations is similar to that of Equation (29), which is
given in Appendix B. Equations in (30) are Maxwell equations in the slowly moving media
seen in the lab frame. We can check the charge conservation law by acting as the operator
∇+ (1/c2)v(∂/∂t) on the fourth equation, using the third equation of (30) as(

∇+
v
c2

∂

∂t

)
·
[
J f (x)− ρ f (x)v

]
+

(
∂

∂t
+ v ·∇

)[
ρ f (x)− 1

c2 v · J f (x)
]
= 0 , (31)

which is equivalent to the charge conservation law in the lab frame up to O(v/c),

∂

∂t
ρ f (x) +∇ · J f (x) = 0 . (32)

Note that all terms of O(v/c) cancel in Equation (31). In deriving Equation (31) we
used the commutability of two derivative operators(

∇+
v
c2

∂

∂t

)(
∂

∂t
+ v ·∇

)
=

(
∂

∂t
+ v ·∇

)(
∇+

v
c2

∂

∂t

)
, (33)

for constant v.
We can express E and B in terms of E and B using Equation (10), and express D and

H in terms of D and H in a similar way. In an SVA of up to O(v/c), we take γ ≈ 1 and
drop O(v2/c2) terms to obtain

E(x) ≈ E(x)− v
c
×B(x) ,

B(x) ≈ B(x) +
v
c
× E(x) , (34)

D(x) ≈ D(x)− v
c
×H(x) ,

H(x) ≈ H(x) +
v
c
×D(x) . (35)

By inserting Equations (34) and (35) into three-dimensional Maxwell Equations (18)
and (26) respectively and neglecting terms of O(v2/c2), one can also obtain Equations (29)
and (30) similar to the method used in Refs. [23,24].

We can rewrite Equation (30) in a compact form if we replace E(x), B(x), D(x) and
H(x) by E′(x′), B′(x′), D′(x′) and H′(x′) following Equations (27) and (28). The resulting
equations read

∇′ · B′(x′) = 0 ,

∇′ × E′(x′) = −1
c

∂

∂t′
B′(x′) ,

∇′ ·D′(x′) = ρ′f (x′) ,

∇′ ×H′(x′) =
1
c

J′f (x′) +
1
c

∂

∂t′
D′(x′) , (36)
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where we used the Lorentz transformation in the SVA up to O(v/c) for the quantities
and operators listed in the second column of Table 1. We can also rewrite the charge
conservation law (31) in terms of quantities in the comoving frame

∂

∂t′
ρ′f (x′) +∇′ · J′f (x′) = 0 , (37)

which can be proved by taking the divergence ∇′ of the fourth equation and using the
third equation of (36). In Table 1, the Lorentz transformation in the SVA obviously differs
from the Galilean transformation in the first three rows: the time, the charge density and
the space-derivative operator ∇ are not invariant in the former, while they are invariant in
the latter. However, different from the cases of the space–time and charge-current density,
the Galilean transformation of electric and magnetic fields is not well-defined; see, e.g.,
Refs. [25–27] for discussions of this topic.

Table 1. The Lorentz transformation, its SVA up to O(v/c) and Galilean transformation for some
quantities and derivative operators. The Galilean transformation differs from the SVA of the Lorentz
transformation in the first three rows, which are labeled by “(∗)”. The Lorentz transformation reduces
to the Galilean one for xµ = (ct, x) in two conditions [28]: (a) v/c → 0; (b) |x| ∼ vt, as it does for
Jµ = (cρ, J).

Lorentz Lorentz [SVA up to O(v/c)] Galilean

t′ = γ(t− v
c2 · x) t′ ≈ t− v

c2 · x t′ = t (∗)

∇′ = γ
(
∇+ v

c2
∂
∂t

)
∇′ ≈ ∇+ v

c2
∂
∂t ∇′ = ∇ (∗)

ρ′(x′) = γ
[
ρ(x)− v

c2 · J(x)
]

ρ′(x′) ≈ ρ(x)− v
c2 · J(x) ρ′(x′) = ρ(x) (∗)

x′ = γ(x− vt) x′ ≈ x− vt x′ = x− vt

∂
∂t′ = γ

(
∂
∂t + v ·∇

)
∂

∂t′ ≈
∂
∂t + v ·∇ ∂

∂t′ =
∂
∂t + v ·∇

J′(x′) = γ[J(x)− vρ(x)] J′(x′) ≈ J(x)− vρ(x) J′(x′) = J(x)− vρ(x)

Equation (36) is nothing but Maxwell equations in the comoving frame of the medium.
It is not surprising that Maxwell equations have the same form in the comoving frame, as
shown in (36). However, what makes Equation (30) [another form of (36)] special is that
all fields are in the comoving frame, while the space–time coordinates are in the lab frame.
The physical meaning of Equation (30) needs to be clarified, especially when applied to
real problems, such as TENGs.

We see that Equations (30) and (31) look similar to Equations (1) and (2) derived
in Ref. [7]. However, the main difference is that all fields (including charge and current
densities) in Equations (30) and (31) are those in the comoving frame, while all fields
in Equations (1) and (2) are those in the lab frame. Another difference is that ∇′ =
∇ + (v/c2)∂t appears in Equations (30) and (31) instead of ∇ in Equations (1) and (2).
These differences seem to indicate that Equation (1) might be related to the Galilean
transformation, instead of the SVA of the Lorentz transformation. Additionally, the electric
and magnetic fields are thought to move with the medium from the arguments of Ref. [29],
which behave like scalar fields.

The conditions where ∇′ = ∇+ (v/c2)∂t can be approximated as ∇ are

1
c2

∂

∂t
(v ·F ) � ∇ ·F , for F = D,B, J f − ρ f v

1
c2

∂

∂t
(v×F ) � ∇×F . for F = E ,H (38)
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In the space of the wave number k and the frequency ω of above fields, the above
conditions can be put into a general form

ω

k
� c2

v
. (39)

Note that, in the SVA of Lorentz transformation, we have v � c, which leads to
c2/v� c.

The conditions for some four-vectors, such as xµ = (ct, x) and Jµ = (cρ, J) [or Jµ
f =

(cρ f , J f )], for the Lorentz transformation to reduce to the Galilean one, are

|x| ∼ vt� ct, |J| ∼ ρv� ρc. (40)

Meaning that we have t′ ≈ t and ρ′(x′) ≈ ρ(x) up to O(v/c). However, the Galilean
transformation for electric and magnetic fields is not well-defined [25,27]. There are two
limits in applications: the electric quasi-static limit, in which the system is dominated by
ρ and E relative to J and B, respectively, and the magnetic quasi-static limit, in which the
system is dominated by J and B relative to ρ and E, respectively. We can check whether the
conditions (38)–(40), as well as the above two limits, are really satisfied in TENGs.

Let us comment on the main results, Equations (V.7) and (V.8), of Ref. [24]. These equa-
tions mix fields of different frames and were previously derived by Pauli [20]. The fields
E∗(x) and H∗(x) defined by Pauli are actually E(x) and H(x) in the SVA,

E∗(x) ≡ E(x) +
v
c
× B(x) ≈ E(x) ≈ E′(x′),

H∗(x) ≡ H(x)− v
c
×D(x) ≈H(x) ≈ H′(x′), (41)

Then, one can verify Equation (274) of Ref. [20],

∇× E(x) = ∇× E(x) +
1
c
∇× [v× B(x)]

= −1
c

(
∂

∂t
+ v ·∇

)
B(x), (42)

∇×H(x) = ∇×H(x)− 1
c
∇× [v×D(x)]

=
1
c

J f (x) +
1
c

∂D(x)
∂t

− v
c
∇ ·D(x) +

v
c
·∇D(x)

=
1
c

[
J f (x)− ρ f (x)v

]
+

1
c

(
∂

∂t
+ v ·∇

)
D(x) (43)

where we used Maxwell equations in (26). Note that J f (x)− ρ f (x)v in Equation (43) can be
approximated as J′f (x′) in the SVA of Lorentz transformation or Galilean transformation;
see Table 1. In the same spirit, we can rewrite the charge conservation equation as(

∂

∂t
+ v ·∇

)
ρ f (t, x) +∇ ·

[
J f (x)− ρ f (x)v

]
= 0. (44)

One can verify that Equation (42) is equivalent to the second equation of (30) and
Equation (43) is equivalent to the fourth equation of (30) after expressing B(x) in terms
of E(x) and B(x) following Equation (34) and D(x) in terms of D(x) and H(x) follow-
ing Equation (35). We classify Equations (42)–(44) to Maxwell equations in case (d) in
Table 2, and we will show in Sect. 6 that these equations are actually Faraday and Am-
pere equations for moving surfaces. Note that Equations (42)–(44) are also different from
Equations (1) and (2).

In Table 2, we list another three equivalent forms of Maxwell equations (of course,
there are many other equivalent forms, besides those listed in the table).
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Table 2. Maxwell and charge conservation equations in different forms, which are all equivalent
in the SVA of Lorentz transformation up to O(v/c). These are fields in the lab frame: E(x), B(x),
D(x), H(x), ρ f (x) and J f (x). These are fields in the comoving frame: E′(x′), B′(x′), D′(x′), H′(x′),
ρ′f (x′) and J′f (x′). Note that E(x) is approximately E′(x′) but expressed in the lab-frame space–time,
since it is a linear combination of E(x) and B(x), as do other fields in calligraphic fonts. We use the
(rationalized) cgs Gaussian unit, in which electric and magnetic fields have the same unit: Gauss.

Transformation of Fields

E(x) ≈ E′(x′) ≈ E(x) + v
c × B(x) J′f (x′) ≈ J f (x)− ρ f (x)v

B(x) ≈ B′(x′) ≈ B(x)− v
c × E(x) ρ′f (x′) ≈ ρ f (x)− v

c2 · J f (x)

D(x) ≈ D′(x′) ≈ D(x) + v
c ×H(x) t′ ≈ t− v

c2 · x, x′ ≈ x− vt

H(x) ≈ H′(x′) ≈ H(x)− v
c ×D(x) ∂

∂t′ ≈
∂
∂t + v ·∇, ∇′ ≈ ∇+ v

c2
∂
∂t

(a) Lab Frame (b) Comoving Frame

∇ · B(x) = 0 ∇′ · B′(x′) = 0
∇× E(x) = − 1

c
∂B(x)

∂t ∇′ × E′(x′) = − 1
c

∂
∂t′B

′(x′)
∇ ·D(x) = ρ f (x) ∇′ ·D′(x′) = ρ′f (x′)

∇×H(x) = 1
c J f (x) + 1

c
∂D(x)

∂t ∇′ ×H′(x′) = 1
c J′f (x′) + 1

c
∂

∂t′D
′(x′)

∂
∂t ρ f (x) +∇ · J f (x) = 0 ∂

∂t′ ρ
′
f (x′) +∇′ · J′f (x′) = 0

(c) Fields in the Comoving Frame and Space-Time in the Lab Frame(
∇+ v

c2
∂
∂t

)
·B(x) = 0(

∇+ v
c2

∂
∂t

)
× E(x) = − 1

c

(
∂
∂t + v ·∇

)
B(x)(

∇+ v
c2

∂
∂t

)
·D(x) = ρ f (x)− v

c2 · J f (x)(
∇+ v

c2
∂
∂t

)
×H(x) = 1

c

[
J f (x)− ρ f (x)v

]
+ 1

c

(
∂
∂t + v ·∇

)
D(x)(

∂
∂t + v ·∇

)[
ρ f (x)− 1

c2 v · J f (x)
]
+
(
∇+ v

c2
∂
∂t

)
·
[
J f (x)− ρ f (x)v

]
= 0

(d) Fields in Both Frames and Space-Time in the Lab Frame

∇ · B(x) = 0
∇× E(x) = − 1

c

(
∂
∂t + v ·∇

)
B(x)

∇ ·D(x) = ρ f (x)

∇×H(x) = 1
c

[
J f (x)− ρ f (x)v

]
+ 1

c

(
∂
∂t + v ·∇

)
D(x)(

∂
∂t + v ·∇

)
ρ f (x) +∇ ·

[
J f (x)− ρ f (x)v

]
= 0

5. Discussions about Extended Hertz Equations and Constitutive Relations

To derive the extended Hertz equations for E(x) and B(x) in moving media with
homogeneous and isotropic dielectric and magnetic properties, we need to express D(x)
and H(x) in the fourth equation of (30) in terms of E(x) and B(x) using the covariant
linear constitutive relations

D(x) = εE(x),

H(x) =
1
µ
B(x), (45)
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following Equation (23). The above constitutive relations lead to the ones in fields of the
lab frame up to O(v/c)

D(x) = εE(x) +
α

c̃2
v
c
×H(x),

B(x) = µH(x)− α

c̃2
v
c
× E(x), (46)

where c̃ ≡ 1/
√

εµ is the speed of light in the medium and α ≡ 1− c̃2 is a constant related
to the medium and vanishes in vacuum. Using (45), the second and fourth equations of
(30) give

∇× E(x) = −1
c

(
∂

∂t
+ αv ·∇

)
B(x) +

1
εc2 v× J f (x)− c̃2

c
∇[v ·B(x)]

≈ −1
c

∂

∂t
B(x) +

1
c
∇× [αv×B(x)] +

1
εc2 v× J f (x)− c̃2

c
∇[v ·B(x)] ,

∇×B(x) =
1

c̃2c

(
∂

∂t
+ αv ·∇

)
E(x) +

µ

c

[
J f (x)− ρ f (x)v

]
+

1
c
∇[v · E(x)]

≈ 1
c̃2c

∂

∂t
E(x)− 1

c̃2c
∇× [αv× E(x)]

+µ
1
c

[
J f (x)− c̃2ρ f (x)v

]
+

1
c
∇[v · E(x)] , (47)

where we expressed ∂E(x)/∂t and ∂B(x)/∂t in the second and fourth equation of (30) in
terms of B and E , respectively, by using the other equation. We see that the modified
derivative time operators in medium in two equations have the same form, ∂̃t′ ≡ ∂t + αv ·∇.
Equation (47) can be rewritten in terms of E(x) and B(x) using Equations (27) [and the
same relations for D and H to D and H] and (45) as

∇× (E +
α

c
v× B) = −1

c
∂B
∂t

+
α

c
∇× (v× B) ,

∇× (H− α

c
αv×D) =

1
c

J f (x) +
1
c

∂D
∂t
− α

c
∇× (v×D) , (48)

which is consistent with the corresponding equations in Refs. [24,30]. If we neglect v ·B
and v · E terms in Equation (47), and calculate the dispersion relation without free charges
and currents, we obtain two modes: one mode has the group velocity less than c̃, while
the other mode has a larger group velocity than c̃ and then is superluminal. These modes
are observed in the lab frame, so the dispersion relations depend on the velocity v of the
medium. However, if we work in the comoving frame of the medium with Equation (36),
we will see that all modes propagate at the speed of light c̃ without any dispersion.

We note that, when deriving Equation (47), we used the covariant constitutive relations
in (45) for the fields in the comoving frame. If one uses the constitutive relations for the
fields in the lab frame

D(x) = εE(x) ,

H(x) =
1
µ

B(x) , (49)
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which are only valid for static media but not for moving media, one would obtain up to
O(v/c)

∇× E(x) = −1
c

(
∂

∂t
+ αv ·∇

)
B(x)− c̃2

c
∇[v ·B(x)]

≈ −1
c

∂

∂t
B(x) +

1
c
∇× [αv×B(x)]− c̃2

c
∇[v ·B(x)] ,

∇×B(x) =
1

c̃2c

(
∂

∂t
− αv ·∇

)
E(x) +

1
c̃2c

∇[v · E(x)]

≈ 1
c̃2c

∂

∂t
E(x) +

1
c̃2c

∇× [αv× E(x)] +
1

c̃2c
∇[v · E(x)] , (50)

where the charge and current densities have been neglected. Note the opposite sign of α

terms in modified derivative time operators ∂̃t′ ≡ ∂t ± αv ·∇ in medium, which clearly
indicates that the Lorentz covariance is lost in the moving medium. Similar equations are
derived in Ref. [23], except v ·B and v · E terms. The opposite sign of α terms leads to the
superluminal problem (without v ·B and v · E terms), as shown in Ref. [23].

What is the reason for the sign problem in Equation (50)? The answer lies in the linear
constitutive relations (49) defined in the lab frame. This is valid for a static medium and not
for a moving medium. The linear constitutive relations should be defined in the medium’s
comoving frame as the relations for three-vector fields and be modified in the lab frame
in a nontrivial way [11,31]. The covariant form of the constitutive relations (23) meets this
requirement and, therefore, leads to Equation (30) with an implicit Lorentz covariance in
the SVA.

6. Integral Forms of Faraday and Ampere Laws for Moving Surfaces

The integral form of Maxwell equations can be written in accordance with the dif-
ferential form. However the integral form involves the definition of the integrals over
volumes, closed or open surfaces and closed lines (loops). When these volumes, surfaces
and loops move in one specific frame, the integral form of the equations in this frame
becomes more subtle than expected. The subtlety lies in the fact that these equations are
in three-dimensional forms instead of covariant forms. This is the case for Faraday and
Ampere laws, which involve time derivatives of surface integrals as well as loop integrals.

Let us first look at Faraday law in the following integral form in the lab frame

EEMF = −1
c

dΦ(t)
dt

= −1
c

d
dt

∫
S

dS · B(x), (51)

where EEMF is the electromotive force and Φ(t) is the flux of magnetic field through a
surface S.

When S is static and fixed in the lab frame (not moving), there is no ambiguity for
EEMF which is given by

EEMF =
z

C

dl · E(x), (52)

where C is the boundary of S. As S and C are static and fixed in the lab frame, the time
derivative can be moved inside the integral and work on B(x) = B(t, x), which gives the
differential form of Faraday equation with the help of Stokes theorem

∇× E(x) = −1
c

∂B(x)
∂t

. (53)
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Now, we consider the case where S and C are moving in the lab frame with a low speed
v� c. In this case, we show the explicit time dependence of the surface and its boundary as
S(t) and C(t). Then, the time derivative of the flux in Equation (51) becomes [12]

dΦ(t)
dt

=
1
c

∫
S(t)

dS · ∂B(x)
∂t

+
1
c

lim
∆t→0

1
∆t

(∫
S(t+∆t)

−
∫

S(t)

)
dS · B(x)

=
1
c

∫
S(t)

dS · ∂B(x)
∂t
− 1

c

z

C(t)

dl · [v× B(x)], (54)

where the second term is from the change in S(t). Using Faraday equation in the lab frame,
Equation (53), and then Stokes theorem, we obtain

dΦ(t)
dt

= −
∫

S(t)
dS ·∇× E(x)− 1

c

z

C(t)

dl · [v× B(x)]

= −
z

C(t)

dl ·
[

E(x) +
1
c

v× B(x)
]

. (55)

The above equation defines EEMF for a moving S(t) and C(t) [12],

EEMF =
z

C(t)

dl ·
[

E(x) +
1
c

v× B(x)
]

. (56)

Obviously, this is not the form in Equation (52) for the static case. Therefore, the
Faraday equation in the integral form for a slowly moving surface reads [12]

z

C(t)

dl ·
[

E(x) +
1
c

v× B(x)
]
= −1

c
d
dt

∫
S(t)

dS · B(x). (57)

Rewriting the term
u

C(t) dl · (v × B) in Equation (54) into a surface integral using
Stokes theorem, Equation (57) gives the Faraday equation in the differential form

∇×
[

E(x) +
1
c

v× B(x)
]
= −1

c

(
∂

∂t
+ v ·∇

)
B(x), (58)

which is just Equation (42), given by Pauli and consistent with Equation (53). This corre-
sponds to case (d) in Table 2. Note that the field in the loop integral for the moving surface
is the comoving field E(x) = E(x) + (1/c)v× B instead of E(x). This is due to the fact that
EEMF measures the electromotive force in the moving loop C(t), which should include the
Lorentz force (1/c)v× B.

The integral form of Ampere law (equation) for the slow-moving surface in the lab
frame can be presented in a similar way. The resulting equation reads

z

C(t)

dl ·
[
H(x)− v

c
×D(x)

]
=

1
c

∫
S(t)

dS ·
[
J f (x)− ρ f (x)v

]
+

1
c

d
dt

∫
S(t)

dS ·D(x), (59)

which gives the Ampere equation in the differential form

∇×
[
H(x)− v

c
×D(x)

]
=

1
c

[
J f (x)− ρ f (x)v

]
+

1
c

(
∂

∂t
+ v ·∇

)
D(x). (60)
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The above is just Equation (43) given by Pauli and consistent with the last line of
Equation (26). This corresponds to case (d) in Table 2.

The integral and differential forms of Faraday and Ampere laws for moving surfaces
are summarized in Table 3.

Table 3. The integral and differential forms of Faraday and Ampere laws for the moving surface S(t)
with the boundary C(t). They are all consistent with Maxwell equations in the lab frame (and in any
frame of course).

Form Faraday Law

Integral
u

C(t) dl ·
[
E(x) + 1

c v× B(x)
]
= − 1

c
d
dt
∫

S(t) dS · B(x)

Differential ∇×
[
E(x) + 1

c v× B(x)
]
= − 1

c

(
∂
∂t + v ·∇

)
B(x)

Ampere Law

Integral
u

C(t) dl ·
[
H(x)− v

c ×D(x)
]
= 1

c
∫

S(t) dS ·
[
J f (x)− ρ f (x)v

]
+ 1

c
d
dt
∫

S(t) dS ·D(x)

Differential ∇×
[
H(x)− v

c ×D(x)
]
= 1

c

[
J f (x)− ρ f (x)v

]
+ 1

c

(
∂
∂t + v ·∇

)
D(x)

To ultimately remove such a subtlety, we should derive the Faraday equation in the
covariant integral form [32]. Before we do so, we have to define an arbitrary open surface S
and its boundary (a closed curve) C in Minkowski space. The world line of all points xµ on
the curve forms a two-dimensional tube in Minkowski space, which can be parameterized
by two parameters. We choose a frame four-vector nµ, which satisfies nµnµ = 1 and define
the proper time τ as

n · x ≡ nµxµ = cτ. (61)

The open surface S can be parameterized by xµ(τ, w1, w2) at fixed τ. Its boundary C
can be obtained by setting w1(τ, θ) and w2(τ, θ). We can define the total time derivative of
the magnetic flux in the covariant form

1
c

dΦ
dτ

=
1
c

[∫
S(τ)

dσµν
∂F̃µν

∂τ

+ lim
∆τ→0

1
∆τ

(∫
C(τ+∆τ)

−
∫

C(τ)

)
dσλρ F̃λρ

]
, (62)

where the area element dσµν on S(τ) is defined as

dσµν =
1
2

εµναβ
∂xα

∂w1

∂xβ

∂w2
dw1dw2, (63)

and the area element dσλρ on the boundary C(τ) is defined as

dσλρ =
1
2

ελραβ

(
∂xα

∂τ
− cnα

)
∂xβ

∂θ
dτdθ. (64)

Substituting (64) into the second term of (62) and using

1
c

∂F̃µν

∂τ
=

∂F̃µν

∂xλ
nλ, (65)
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we obtain

1
c

dΦ
dτ

=
∫

S(τ)
dσµν

∂F̃µν

∂xλ
nλ

−
z

C(τ)

dθFαβ

(
1
c

∂xα

∂τ
− nα

)
∂xβ

∂θ
. (66)

One can prove with the first equation of (16)

∫
S(τ)

dσµν
∂F̃µν

∂xλ
nλ = −

z

C(τ)

dθFαβnα ∂xβ

∂θ
. (67)

Using the above equation in Equation (66), only the first term inside the parenthesis
survives, so the electromotive force in the covariant form is given by

EEMF = −1
c

dΦ
dτ

=
1
c

z

C(τ)

dlβFαβ
∂xα

∂τ
, (68)

where dlβ = dθ(∂xβ/∂θ) is the line element of C(τ). If we let ∂xα/∂τ = cuα and use
Equation (6), the above equation becomes

EEMF = −
z

C(τ)

dlµEµ. (69)

We see that EEMF is a loop integral of the electric field Eµ. For example, one can choose

nµ = (1, 0),
∂xα

∂τ
= cuα ≈ c(1, v/c), dlβ = (0, dl), (70)

then one can verify that EEMF recovers the three-dimensional form in (56).
The most important message we would like to deliver in this section is that the integral

forms of Faraday and Ampere Equations (57) and (59) for slowly moving surfaces are
consistent with Maxwell equations in (26). The fields in loop integrals must be those in the
comoving frame, E(x) and H(x), not E(x) and H(x); otherwise, the resulting equations
would be inconsistent with Maxwell equations and lead to contradiction.

7. Summary

We derived a set of Maxwell equations for slowly moving media from the Lorentz
transformation in the small velocity approximation (SVA). Our derivation is based on
the field decomposition method that widely used in relativistic magnetohydrodynamics,
in which the four-vectors of electric and magnetic fields with Lorentz covariance can be
defined. We start from the covariant form of Maxwell equations to derive these equations
by taking an expansion in the medium velocity v/c and keeping terms up to O(v/c). These
“deformed” Maxwell equations are written in the space–time of the lab frame, which can
recover the conventional form of Maxwell equations if all fields and space–time coordinates
are written in the comoving frame of the medium.

The Lorentz transformation plays the key role to maintain the conformality of Maxwell
equations: the time and charge density must also change when transforming to a different
frame even in the SVA, not just the position and current density, as in the Galilean transforma-
tion. This marks the essential difference between the Lorentz and the Galilean transformation.

The integral forms of Faraday and Ampere Equations (57) and (59) for slowly moving
surfaces are consistent with Maxwell equations in (26). The fields in loop integrals over
moving surfaces must be those in the comoving frame instead of those in the lab frame;
otherwise, the resulting equations would be inconsistent with Maxwell equations and lead
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to contradiction. We also present the Faraday equation in the covariant integral form, in
which the electromotive force can be defined as the four-dimensional loop integral of the
comoving electric field, a Lorentz scalar independent of the observer’s frame.

From the results of this paper, no evidence is found to support an extension or modifi-
cation of Maxwell equations.
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Appendix A. Derivation of 3-Dimensional Maxwell Equations from Covariant Ones

In this appendix, we derive Maxwell equations in three-dimensional form from the
covariant ones in Equations (16) and (17). The ν = 0 component of Equation (16) reads

0 =
1
2

εi0αβ∂iFαβ = −1
2

ε0ijk∂iFjk

= ∇ · B , (A1)

where we have used Fij = Fij = −εijkBk. The ν = i component of Equation (16) reads

0 =
1
2

ε0iαβ∂0Fαβ +
1
2

εjiαβ∂jFαβ

= −
(

1
c

∂B
∂t

+∇× E
)

i
, (A2)

where we have used F0i = −F0i = −Ei. The above equation leads to Faraday’s law

∇× E = −1
c

∂B
∂t

. (A3)

The ν = 0 component of Equation (17) reads

∂iFi0 = ∇ · E = ρ . (A4)

The ν = i component of Equation (17) reads

1
c

Ji = ∂0F0i + ∂jFji

=

(
−1

c
∂E
∂t

+∇× B
)

i
, (A5)

which leads to Ampere’s law

∇× B =
1
c

J +
1
c

∂E
∂t

. (A6)
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Then, the above equations are put together into Equation (18).

Appendix B. Equations for E and B in SVA

Substituting Equation (5) into Equation (17), we obtain

0 =
1
2

εµναβ∂µFαβ

= εµναβuβ∂µEα − u · ∂Bν + uν(∂ · B) . (A7)

We can write u · ∂ and ∂ · B explicitly

u · ∂ =
1
c

γ

(
∂

∂t
+ v ·∇

)
,

∂ · B =

(
∇+

1
c2

∂

∂t
v
)
·B. (A8)

In the SVA up to O(v/c), the ν = 0 component of Equation (A7) gives

0 = εµ0αβuβ∂µEα − u · ∂B0 + u0(∂ · B)

≈
(
∇+

v
c2

∂

∂t

)
·B , (A9)

where we have neglected O(v2/c2) term.
In the SVA up to O(v), the ν = i component of Equation (A7) gives

0 = εµiαβuβ∂µEα − u · ∂Bi + ui(∂ · B)

≈ γ

[
− 1

c2 v× ∂

∂t
E −∇× E − 1

c

(
∂

∂t
+ v ·∇

)
B
]

i
, (A10)

which leads to (
∇+

v
c2

∂

∂t

)
× E = −1

c

(
∂

∂t
+ v ·∇

)
B , (A11)

where we have used Equation (A9).
From Equations (5) and (17), we obtain

∂µFµν(x) = ∂µ

[
Eµ(x)uν − E ν(x)uµ + εµνρσuρBσ(x)

]
= uν∂ · E − u · ∂E ν + εµνρσuρ∂µBσ

=
1
c

Jν . (A12)

In the SVA up to O(v/c), we obtain the ν = 0 component of Equation (A12) as

∂µFµ0(x) = u0∂ · E − u · ∂E0 + εµ0ρσuρ∂µBσ

≈ γ
[
∇ · E +

v
c
· (∇×B)

]
= ρ . (A13)

Using Equation (A16) and neglecting O(v2) terms, we obtain(
∇+

v
c2

∂

∂t

)
· E = ρ− 1

c2 v · J . (A14)
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In the SVA up to O(v/c), the ν = i component of Equation (A12) is simplified as

1
c

Ji = ∂µFµi(x)

= ui∂ · E − u · ∂E i + εµiρσuρ∂µBσ

≈ γ

[
1
c

ρv− 1
c

(
∂

∂t
+ v ·∇

)
E +

1
c2

∂

∂t
(v×B) +∇×B

]
i
, (A15)

which leads to (
∇+

v
c2

∂

∂t

)
×B =

1
c
(J− ρv) +

1
c

(
∂

∂t
+ v · ∇

)
E , (A16)

where we have used Equation (A14).
Equations (A9), (A11), (A14) and (A16) are Maxwell equations in moving frame and

put together into Equation (29).
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