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The current matrix elements from HAL QCD method
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Abstract. HAL QCD method is a method to construct a potential (HAL QCD potential)
that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD poten-
tial is obtained from QCD by eliminating the degrees of freedom of quarks and gluons
and leaving only two particular hadrons. Therefor, in the effective quantum mechanics
of two nucleons defined by HAL QCD potential, the conserved current consists not only
of the nucleon current but also an extra current originating from the potential (two-body
current). Though the form of the two-body current is closely related to the potential, it is
not straight forward to extract the former from the latter. In this work, we derive the the
current matrix element formula in the quantum mechanics defined by the HAL QCD po-
tential. As a first step, we focus on the non-relativistic case. To give an explicit example,
we consider a second quantized non-relativistic two-channel coupling model which we
refer to as the original model. From the original model, the HAL QCD potential for the
open channel is constructed by eliminating the closed channel in the elastic two-particle
scattering region. The current matrix element formula is derived by demanding the ef-
fective quantum mechanics defined by the HAL QCD potential to respond to the external
field in the same way as the original two-channel coupling model.

1 Introduction

Nuclear physics is studied through quantum mechanics of nucleons defined by nucleon-nucleon po-
tentials (NN potentials). In the 90’s, several high precision potentials were constructed phenomeno-
logically so as to reproduce the NN scattering data and the deuteron properties[1, 2, 3]. Properties
of atomic nuclei such as binding energies, structures and reactions are being studied using these po-
tentials. Recently, a method to construct the NN potential from QCD was proposed by HAL QCD
collaboration[4]. In this method, the energy independent non-local NN potential (HAL QCD poten-
tial) is constructed by demanding it to reproduce the equal time Nambu-Bethe-Salpeter wave function
(NBS wave function) of two nucleons calculated from lattice QCD in the elastic region of the NN
scattering. It is shown that the equal time NBS wave functions in the center of mass frame have
asymptotic behaviors as (0 [N(r)N(0)| N(p)N(~p), in)l, ., = Ze® W [5, 6, 7]. By definition
of the HAL QCD potential, the phase shift is also reproduced by the potential together with the NBS
wave function. So, in other words, the HAL QCD method is a procedure to obtain the phase shift
equivalent potential from lattice QCD.

In order to calculate the current matrix elements of the nuclei from the quantum mechanics de-
fined by the phase shift equivalent potentials, extra considerations are needed. For example, in
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a system of two-nucleon interacting through OPEP, one may naively consider the proton current
Jz(x) = (zﬁ;(x)wp(x), —ﬁpzp;(x)?gbp(x)) as the conserved current since proton is the only charged
particle that appears explicitly. However, this current does not conserve. In order to define the con-
served current, not only the proton current but also the additional contribution originating from the
exchanged pion must be taken into account[8, 9]. In general, since NN interactions consists of ex-
changes of mesons, there exists additional meson exchange currents(two-body currents) originating
from the phase shift equivalent potentials[8]. Thus, the conserved current is a sum of the naive nu-
cleon one-body current J(’l‘ , and the two-body current J (é’) as J #(x) = J(’ll NEORS J(’zl)(x). Here, one may
naively expect that the two-body currents have smaller contributions than the one-body currents and to
be negligible. However, in some circumstances, two-body currents give dominant contributions to the
conserved currents of the nuclear systems. For example, in the d + ¥ — p + n reaction, the two-body
current of np system give dominant contribution to the form factor at a specific value of momentum
transfer[8]. The determination of the two-body current is a step which can not be skipped in order to
consider the conserved current of the atomic nuclei.

The explicit form of the two-body current is closely connected with the explicit form of the poten-
tial. However, it is not easy to extract the former from the latter. It can be shown that, the conservation
law for the current J #(x) constrains the space components of the two-body current J (g)(x) as

V-Jox)=-i

V, ) s x - n)l (D

i=12

[8, 10]. In the equation above, V denotes the NN potential and J°(x) ~ =12 €;6°(x — r;) is assumed
with r; being the position of the i-th nucleon. Here, ¢; = %e(l +7;,) stands for the charge where 7;, is the
isospin operator which acts on the i-th nucleon. Though the conservation law constrains the two-body
currents, it is not strong enough to determine the form uniquely. In the case of OPEP, there exist two
currents that satisfy Eq.(1): Sachs current and one pion exchange current (OPEC) [9, 11]. In order to
determine the conserved currents, one may think of applying Noether’s theorem. However, Noether’s
theorem can not be applied to theories with potentials such as OPEP, the high precision NN potentials
and also the HAL QCD potential. This is because Noether’s theorem is not defined in theories with
non-local interactions. So, different strategy must be taken. Thompson and Heller derived OPEC by
demanding it to reproduce the Bremsstrahlung amplitude calculated from the 7N coupling model[11].
Among the Sachs current and the OPEC, latter is believed to be the appropriate one since it reproduces
the Bremsstrahlung amplitude while former does not. At any rate, to determine the exchange current,
an additional requirement to the current besides of the conservation law is necessary.

In this work, we construct the formula to calculate the current matrix element of the conserved
current in the effective quantum mechanics defined by HAL QCD potential. In order to avoid any
approximations, as for a first step, we consider a simple but non-trivial Galilei covariant model which
we refer to as the original theory: the second quantized non-relativistic two channel coupling model
(np — np* coupling model)[12, 13, 14]. Details of this model will be given in section 2. In section 3,
the HAL QCD potential is constructed by integrating out the closed channel. The effective quantum
mechanics for the open channel in the elastic region is defined. In section 4, the HAL QCD potential
in the presence of the external field is defined. In section 5, we derive the current matrix element
formula by demanding that effective quantum mechanics defined by the HAL QCD potential responds
to the external field in the same way as the original two-channel coupling model. We will give the
conclusions and future perspectives in section 6.
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2 The model

The model which we employ as the original theory is the second quantized non-relativistic two chan-
nel coupling model that is defined by the Hamiltonian # = T + V, where T = T} + T, + T3 denotes
the kinetic term where

2
1o = f d*x §i(x) (—%)%(x) )

. n V2 .
T, = fd3x¢1((x) (—2—)¢1(x)
m
. n v? n
T, = f & x $l(x) (—— + A) $r(x).
2m
V=Y, p=12 \A/aﬁ denotes the interaction term

Vs = f Pxdy BB G Vas(x — 9)Bse)do(x). 3)

This model mimics the np-np* coupling system[12, 13, 14]. Here, ¢o(x), ¢;(x) and ¢, (x) correspond
to the neutron (n), the proton (p) and an excited proton (p*) whose excitation energy is A, respectively.
In this paper, we use fonts such as x and y to indicate three dimensional vectors and % to indicate that
they are operators acting on the Fock space. Also, we will treat all the particles as elementary bosons.
Thus the operators corresponding to the particles satisfy the commutation relation [éﬁa(x), &S;(y)]

8apd>(x — y), and all the other combinations vanish. The eigenvalue relation for H is H|n, P)
E,(PY)|n, P), where P is the total momentum and index n labels the intrinsic excitation in the center
of mass frame. E,(P?) and |n, P) are the energy eigenvalue and the state respectively. These states are
normalized as (m, Qln, P) = (21)38,,0° (P 0). Using the Galilei covariance, the energy eigenvalue
is decomposed into two parts E,(P?) = E,, + —P2 where E, denotes the intrinsic energy.

The model has a U(1) symmetry generated by the charge O, = f dx (g?ﬁf () (x) + &;(x)éﬁz(x))
which is equivalent to the sum of the number of proton and its excited state. The U(1) current operator
in this model is defined as

Jr0= Y 00080 = Y 501003 1001, @)

j=12 k=123

<«
Here, k and 0 indicates the spatial coordinates and the differential operator that acts on fields coming

to its left and right sides as 6 - 6 respectively. ¢,(x) = ”HXO(;S (x)e"”"‘0 denotes Heisenberg field
operator.

In this work, we will focus on the two particle subspace & which is spanned by the states
as ) = [dxdy (p(x)6]®)10) Y1(x, ) + $(x)$5®) |0} Ya(x,y)), where [0) denotes the non-
relativistic vacuum. Also, we introduce a cutoff by using a projection operator Py = [0)(0] +

E”<A f oy L |n, P)(n, P| and the truncated subspace F, is defined by F = Py - F. We will use this
pro_]ection to construct the HAL QCD potential in the external field in section 4.

Using the field operators and the energy eigenstates, the equal time Nambu-Bethe-Salpeter wave

functions (NBS wave function) for the np (i = 1) and np* (i = 2) channels are defined as,

yi(x,y; tln, P) = (0|o(x, Ddity. 1)| n, P). )
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By making use of Galilei covariance, NBS wave function can be factorized as

Yo (x,y, 11, P) = Yo (r, tin) exp (iP - R) exp (—iﬁ Pzt) , (6)

where R is the center of mass coordinate and r = y — x is the relative coordinate with x and y being
the position of n and p (p*). ¥,(r, tjn) denotes a reduced NBS wave function defined as

Ya(r. 1) = (0|Go(r/2, da(-1/2,1)

nP=0). @

The reduced NBS wave function satisfies the coupled channel Schodinger equation

~  V2\_ ~ —~
(En + ﬁ)wrm) = Vi (rln) + Via(r)(rin) ®)

- V? — — —
(En + ﬁri - A) Ya(rin) = Vo (g (rin) + Vo (rig (rin), 9

where m = m/2 denotes the reduced mass.

3 HAL QCD potential and the effective quantum mechanics

We will apply HAL QCD method to our model to obtain an effective np potential which is used to
construct the effective quantum mechanics for the np channel. In order to obtain the reduced HAL
QCD potential ‘V(r, r"), we firstly demand the reduced NBS wave functions of the states with energies
of no more than A to satisfy the Schrodinger equation

(En+ %V%)%mm: f PF Ve PG (). (10)

This Schrodinger equation is satisfied by the following form of the non-local energy independent
potential
En<A

V)= ) (V@ (rlm) + Via(riaeim) ) (¢ m). (1n

m

Here, we introduced the dual vector le(rlm) which is constructed as %V (rln) = ZHE;"A(K/ - )nmJ}k(ﬂm),
with the norm kernel K/nm = f dr %{mn)&;l (rjm). The dual vector and the reduced NBS wave func-
tion satisfy the orthogonality relation by definition as f d3rl,Z,V (rlm)r,(rln) = 6. Using these expres-
sions, it is straight forward to prove that the right hand side of eq(10) is equivalent to that of eq(8) for
states with energy eigenvalues no more than A. By making use of the Galilei covariance, it is possible
to generalize the reduced HAL QCD potential to the potential for arbitrary frame (not only the center
of mass frame) V(x,y; x’,y’). Here, we will show only the results.

, ~ , , X+ x' +y
Vx,y;x",y)=V(ix-y;x —y)63(Ty— 2y). (12)

The Schrodinger equation is then generalized to

1 1
E(P) + =—V3+ —V; |y1(x,yln, P) = dex' &y Ve, y; ¥,y Wi (x',y'ln, P).  (13)
2m 2m Y



EPJ Web of Conferences 175, 06008 (2018) https://doi.org/10.1051/epjconf/201817506008
Lattice 2017

Farther details of the derivations are given in [14].
For later discussions, we will briefly introduce the eigenvalue property of the effective quantum
mechanics. Firstly, for the center of mass frame, we have the eigenvalue equations as

ExR(r) = —;ixn () + f &r Vi, iy }), (14)

=~ V2 _
Eny (1) = =5=X, (1) + f V).

where &, is the energy eigenvalue. The HAL QCD potential is defined so as to reproduce the NBS
wave functions in the elastic region of np scattering. This implies that, for the states with reduced
energy eigenvalues less than A, the reduced right elgenvector )( (r) is equal to the reduced NBS wave
function. Therefor, we have the relation y,R(r) = zpl(r|n) foré} = E (8 <A).
Us1ng Galilei covariance, the reduced eigenvectors are generalized to arbitrary frames as
X, P “(x, y) = x.X(x—y)-exp (+1P 50+ y)) where yX(x,y) and xR (x, y) are the right and left eigenvec-
tors. The sign in the exponential is plus for the right and minus for the left eigenvectors respectively.
Associated with the energy eigenvalue &,(P?) = &, + ﬁPZ, the eigenvalue equation for these vectors
are given as

s)

2m

62 62 / ’ ’ ’ ’ ’
EP R p(xy) = [——x - ﬁ xﬁp(x,y)+fd3x &y Vg x g e p(x' . y)

3 3 X5 p(x,y) + f &X' &y xy p(x Yy )V Y x,y).

2 9,
EP )y pxy) = {————”

These left and right eigenvectors satisfy the orthogonal relations[14]. Here, the right eigenvector is
equal to the NBS wave function of the np channel in the elastic region.

4 HAL QCD potential in the external field

In order to calculate the matrix element of the U(1) current in the effective quantum mechanics which
was introduced in the previous section, we will use the external field method. In this work, we will
consider a space-time dependent external field A, (x, 7). The current matrix elements are derived by
demanding the response of the effective quantum mechanics to the external field to be same as the
response of the original theory. To do so, we firstly introduce the external field to the original theory.
Regarding the fact that the conserved U(l) current is as given in eq.(4), the external field couples to
the kinetic term of the Hamiltonian as H[A,] = T[A,] + V. Here, the kinetic terms are given as

N R 0%\ .

Ty = f d3x¢$(x)(—%)¢o(x) (16)
N o 0—-iA(x, 2 n
T\[A/] = f d*x ! (x) (—% —~ Ao(x, t))«pl(x)

. N @ —iA(x,1))? n
Th[A] = fd3x¢§(x) (—T —Ag(x, 1) + A) ha(x).
Because the external field has a time-dependence, it shifts the states in the subspace 75 to the
region above the np* threshold. Consequently, it triggers unwanted transitions harmful when con-
structing the low-energy effective quantum mechanics. In order to construct the effective quantum
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mechanics, we need to terminate these transitions. This can be achieved by generating the time evo-
lution by the truncated Hamiltonian HA[A,] = PAA [A,]I@’A. The time evolution operator which we
will refer to as the truncated time evolution operator is expressed as the time ordered product of this
truncated Hamiltonian as

L t 1, 1
Oa(t,5:4)= ) (=)' f dt, f diyy -+ f dny Ha[A,)HAA,, -+ HalA,]. (17
n=0 s N N

In the external field, the equal time NBS wave function with the truncated time evolution operator
is defined as

U154, P) = (0]3 w108 . 1), P) (18)

for i = 1,2. Here, 3"y, 1;A) = U0, 1; A)do(x)U(1,0; A) denotes the Heisenberg operator for the
particles evolving in time by the truncated operator. Since the introduction of the external field breaks
the Galilei covariance, this truncated NBS wave function can not be reduced any more unlike eq.(6).

The truncated NBS wave function satisfy the coupled channel Schrédinger equation in the external
field

2m  2m

— fd3x/ d3y/

X Vi x s A ey, 1 Aln, P+ Via(e, y; Xy Ay (e g, Al ) (19)

o 0 Dy @)
lat t o+t +A0(!I, t) (ﬂl (xay, Z’Aln’ P)

2m  2m

— fd3x'd3y'

x VoG, ys Xy AW (g, 15 Aln, P) + Voo (e, s X',y s AgwSY (x,y, 6 Aln, PY) . (20)

o B D ®
i0r+ 5=~ + 5— + Ao, 1) — Ay, (x,y,1;Aln, P)

Here, D, = d,—iA(y, ?) is the covariant derivative and coordinate y denotes the position of the proton.
The coupled channel potentials V;;(x,y; x",y’"; A;) (i, j = 1,2) has been modified by the existence of
the external field and the cutoff and its exact form is

Vap(X,5: X'y s A)) = Vop(x — )8 (x = x)5° (y —y') + AVop(x,y: X',y s A)), @n

with
AVop(x,y; X', y's A)) = — <0 \%(x)%(y) (- Ba) ATAIPAG) ()W) 0> : (22)
The additional term AV,z(- - -) originates from the projection operator and terminates the additional
shifts by the external field. If it were not for A, (x,?), the additional term vanishes due to the factor
(I — Po)A[A,1P4. Also note that, the term has time dependence since it depends on the external field.

The effective Schrodinger equation and the HAL QCD potential in the external field can be defined
from the truncated NBS wave function. The result is

a2 Dy A
(z’af tomd ol Ay, z)] v\ (x,y,1; Aln, P) (23)

- f X Py Viey; ¥y ANy 1 Aln, P),
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where,

Vx,y;x',y'; A) 24)

En<A

- favay

m=0
{(VinGe,ys 7,y Adin (6 =y Im) + Via (e, g X7,y An(x” — g lm))
x// + y// x/ + y/

2 2

x@Yuf—ywmyﬁ(

5 The current matrix element formula

After defining the effective quantum mechanics and deriving its Schrodinger equation, the current
matrix element for the open np channel can be calculated in a closed way. By demanding the response
of the effective quantum mechanics to the external field to be equal to that of the original theory, we
obtain the current matrix element formula in the effective quantum mechanics. For any states |[m, Q),
|n, P) € F», the matrix element of the current operator j “(z) is given in the form

(m.Q|j"@|n, P) (25)
= f d’xd’y f I &Y X oYK (x5 Xy s DX p(x Y.
Here, K*(x,y;x’,y’; z) is the current operator in the effective quantum mechanics
K(x,y:x'.y': 2)0(1 — 20) (26)

, , oVix,y;x',y’; Ay
= P -yox - x)8 Y -yt - 20) + AL AL
6A0(z,20)

s

A=0

K'(x,y;x",y'; 2)0(t — 20)
—

oV(x,y;x",y'; Ay)
5Ai(Z, Z())

— _alz S 3 AN < _
= o -07(z —y)o°(x —x")07(y —y' )o(t — z0) +
mi

A=0

The detail of the derivation is in our latest paper [14]. Here, we give some comments on this formula.

1. In the conventional quantum mechanics defined by the hermitian Hamiltonian, the current ma-
trix elements are derived by sandwiching the current operator with the state vector and its her-
mitian conjugate. However, since the HAL QCD potential is non-hermitian, the matrix element
is derived by sandwiching the operator with the left and right eigenvectors.

2. The first term of the current operator K'(x,y;x’,y’; 2)0(t — 7o) represents the naive one-body
current. The second term represents the two-body current.

3. In a realistic circumstances, the HAL QCD potentials are some times defined using derivative
expansion. However, the same strategy as given here works even if the construction procedure
of the HAL QCD potential is different from the one demonstrated in section 3 and 4.
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6 Conclusion

In this work, we have derived the formula to calculate the current matrix element in the effective
quantum mechanics defined by the HAL QCD potential. The current matrix element obtained here
is faithful to the original non-relativistic model. In order to give an explicit example, we employed
the non-relativistic np — np* two channel coupling model as the original model so as to avoid any
approximations. From the model, the effective quantum mechanics for the open np channel was
constructed by eliminating the closed np* channel by applying the HAL QCD method. The effective
np potential (HAL QCD potential) was obtained by demanding it to reproduce the equal time NBS
wave function in the elastic scattering region for the np channel. We also constructed the HAL QCD
potential in the presence of the external gauge field. By demanding the effective quantum mechanics to
have the same response to the external field as the original theory, the current matrix element formula
was determined in a closed analytic form.

To use our result in lattice QCD simulations, farther considerations are necessary. Firstly, we need
to generalize our method to relativistic framework in order to apply it to QCD. Secondly, we have to
deal with the composite particles such as hadrons. In other words, we need to take into account the
form factors which we did not consider at present. Finally, we have to deal with the time-evolution in
the presence of the external field with the cutoff. In order to achieve our goals, some approximations
may be necessary.
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