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Abstract
X-ray beams with orbital angular momentum (OAM) have

emerged as a powerful tool for investigating matter. Tradi-
tional optical elements, such as spiral phase plates and zone
plates, have been employed to generate OAM light. How-
ever, applying these elements in x-ray free-electron lasers
(XFELs) remains challenging due to high impinging inten-
sities and efficiency concerns. The self-seeded FEL with
OAM (SSOAM) method has been recently proposed to gen-
erate intense x-ray vortices, overcoming these limitations.
In this study, we focus on optimizing the SSOAM scheme
to enhance the production of high-power x-ray vortices. A
Bayesian optimization approach is employed to optimize the
undulator tapering, ensuring the efficient generation of x-ray
OAM pulses in XFELs.

INTRODUCTION
Structured light generation can offer new insights into var-

ious physical phenomena. Optical vortices, carrying orbital
angular momentum (OAM) and characterized by a helical
phase-front, have been extensively studied and utilized in
fields such as optical tweezers, quantum entanglement, super-
resolution microscopy, and optical data transmission [1,2].
Short-wavelength OAM beams, in particular, can initiate
new phenomena through light-matter interactions and hold
potential for applications in areas such as quadrupolar x-ray
dichroism, photoionization, resonant inelastic x-ray scatter-
ing, and time-resolved twisted x-ray diffraction [3–6].

Modern x-ray free-electron lasers (FELs) deliver high-
brightness pulses ranging from tens of femtoseconds to at-
toseconds, enabling research across multiple scientific disci-
plines [7]. Most x-ray FEL facilities worldwide employ the
self-amplified spontaneous emission (SASE) mechanism,
which operates over a wide spectral range, reaching sub-
angstrom wavelengths. Self-seeding schemes have been
suggested to enhance the temporal coherence and spectral
density of FEL pulses [8]. However, the transverse FEL
radiation profile of both SASE and self-seeding schemes at
saturation is typically Gaussian-like [9].

A straightforward method for generating x-ray OAM light
involves using optical elements, such as spiral phase plates
(SPP) [10,11], spiral Fresnel zone plates (SZP) [12,13], and
diffractive optics [14], placed after the undulator. These
elements, well-developed and experimentally demonstrated
to produce soft and hard x-ray OAM light at synchrotron
sources, face challenges regarding thermal loading and
efficiency when applied to XFELs with high pulse ener-
gies. These challenges become even more critical in high-
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repetition-rate XFELs based on superconducting accelera-
tors.

Various XFEL operation modes have been proposed to
generate OAM light, including using helical undulators [15,
16], forming electron bunches with helical shapes [17,18], or
XFEL oscillators [19]. Nonetheless, these methods exhibit
limitations, such as weaker harmonic emissions, seed laser
availability, and harmonic conversion numbers. Generating
OAM light with the XFEL oscillator requires a substantial
upgrade of the modern XFEL facilities. Consequently, there
is significant interest in creating intense OAM light in planar
undulators using the widely adopted SASE or self-seeding
operation modes.

Recently, a self-seeded FEL with OAM (SSOAM) method
[20] has been proposed to generate high-power x-ray vortices.
This approach does not require helical undulators or external
seed laser systems, making it suitable for all existing XFEL
user facilities with minimal hardware addition, especially
when integrated with self-seeding setups. In this paper, we
introduce the Bayesian optimization method for efficiently
optimizing the SSOAM scheme.

PRINCIPLE OF THE SSOAM SCHEME

The schematic layout of the SSOAM scheme is depicted
in Fig. 1. In this scheme, the undulator is divided into two
stages. The first stage operates in SASE mode to generate a
relatively weak seed pulse. An optical element, such as an
SPP or SZP, is then used to imprint the helical phase of a low-
order OAM mode onto the FEL beam, creating an OAM seed
pulse. A small magnetic chicane, situated between the first
and second stages, is necessary to divert the electron bunch
and eliminate the microbunching introduced in the first stage,
resulting in a minor delay of fewer than ten femtoseconds
between the OAM seed and the electron bunch. Finally, the
OAM seed pulse interacts with the electron beam in the
second-stage undulator and is substantially amplified. In
this scheme, a relatively long electron bunch or fresh-slice
operation is required to ensure the amplification of the OAM
seed in the second stage.

As emphasized in [20], the seed pulse generated in the first
stage is not a pure Gaussian pulse, suggesting that multiple
transverse mode competition will occur in the second-stage
undulator. Assuming a helical phase of exp(𝑖𝜙) is intro-
duced by an SPP, the 𝑙 = 0 mode in the first stage will be
transformed to the 𝑙 = 1 mode in the second stage and am-
plified. Consequently, in the SSOAM scheme, it is crucial
to optimize the first-stage undulator to ensure high mode
purity of the 𝑙 = 0 mode and the second-stage undulator to
guarantee effective amplification of the 𝑙 = 1 mode.
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Figure 1: Schematic layout of the SSOAM scheme.
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Figure 2: (a) Temporal power of the FEL seed pulse at the
entrance of the second-stage undulator. (b) Ratio of the 𝑙 = 1
mode along the FEL seed pulse. (c) Gain curves of different
OAM modes along the second stage. (d) Temporal power of
the FEL pulse at the end of the second-stage undulator.

In this work, we adopt the same simulation framework
as detailed in [20]. We consider a 14 GeV electron beam
characterized by a normalized emittance of 0.5 mm.mrad,
a bunch length of 20 femtoseconds, and a flat-top current
profile of 5000 A. These parameters have been selected to
produce FEL pulses at 9 keV. For the first-stage undulator,
the configuration follows the original SSOAM paper [20],
utilizing nine undulator cells with a slight reverse taper. The
FEL pulse generated in the initial stage then passes through
an SPP, where a helical phase of exp(𝑖𝜙) is introduced, and
an efficiency of 10% is assumed. The power profile of the
OAM seed pulse at the entrance of the second-stage undula-
tor is illustrated in Fig. 2(a). The pulse energy of the OAM
seed pulse is approximately 0.96 µJ. The mode decomposi-
tion of the pulse reveals that the relative weights of the 𝑙 = 0,
𝑙 = −1, and 𝑙 = 1 modes are 91%, 3%, and 3%, respectively.
The ratio of the 𝑙 = 1 mode along the seed pulse is depicted
in Fig. 2(b). In the original SSOAM paper [20], a linear
taper is adopted for the second-stage undulator, and a fresh

electron bunch is employed to amplify the OAM seed pulse.
The gain curve of the FEL pulse along the second-stage un-
dulator is presented in Fig. 2(c), where nine undulator cells
are utilized. As demonstrated in Fig. 2(d), at the end of the
undulator, the FEL pulse is amplified to 307.94 µJ. The ratio
of the 𝑙 = 1 mode in the amplified pulse is around 78%. The
𝑙 = 0 mode is also amplified in portions of the electron beam
with relatively weak OAM seed power, which is the primary
cause of the mode purity drop for the entire pulse. How-
ever, for those parts with strong OAM seed power, the power
and purity of the 𝑙 = 1 mode remain high. One possible
approach to further improve the scheme is by optimizing the
taper configuration of the second-stage undulator to favor
the amplification of the 𝑙 = 1 mode.

BAYESIAN OPTIMIZATION OF THE
UNDULATOR TAPERING

Undulator tapering is a critical technique for obtaining
high-power FEL pulses, particularly in self-seeding oper-
ations. Taper optimization has garnered significant inter-
est over the past decades, and various strategies have been
proposed to address this optimization challenge [21]. In-
telligent algorithms, such as multi-objective evolutionary
algorithms (MOEAs), offer an effective means for optimiz-
ing undulator tapering [22]. However, MOEAs typically
require a large number of objective evaluations, which can
be time-consuming for both simulation-based optimization
and online experiments.
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Figure 3: Objective values (a) and pulse energy of the FEL
pulse (b) at different evaluations.
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Bayesian optimization [23, 24] is a probabilistic model-
based algorithm that utilizes prior knowledge and uncer-
tainty to guide the optimization process. By incorporating
Gaussian processes [25], Bayesian optimization can capture
uncertainty and efficiently explore the search space, result-
ing in a balance between exploration and exploitation. In
recent years, Bayesian optimization has gained considerable
attention due to its potential for hyperparameter tuning in
neural networks [26]. More recently, Bayesian optimization
has been proposed for efficient online control of particle
accelerators and XFELs [27,28]. In this study, we employ
Bayesian optimization to efficiently optimize undulator ta-
pering within the SSOAM scheme.

We perform piecewise optimization of the second-stage
undulator. The field strength of the initial undulator cell,
the linear taper term, and the quadratic taper term are opti-
mized using Bayesian optimization. In the SSOAM scheme,
our goal is to obtain an XFEL pulse with both high peak
power and good purity of the OAM mode simultaneously.
As such, we set the optimization objective as 𝑃𝑅𝑙=1 , where
P represents the pulse energy, and 𝑅𝑙=1 denotes the ratio of
the 𝑙 = 1 mode in the entire pulse.

During the optimization process, Gaussian process regres-
sion is employed to construct a probabilistic model for the
objective, with 20 random samples utilized to initialize the
Gaussian process model. The upper confidence bound [29]
serves as the acquisition function. Fig.3 displays the results
of the Bayesian optimization. After 60 evaluations, the ob-
jective value converges to approximately 108. Fig.4 depicts
a typical optimized case, in which the pulse energy reaches
458.67 µJ, and the ratio of the 𝑙 = 1 mode is 76%. Overall,
the 𝑙 = 1 mode has been amplified around 400 times in the
second stage. Compared to the results presented in Fig. 2,
the pulse energy has increased by 48.95%. Fig.4(a) illus-
trates the power profile of the FEL pulse at the end of the
second-stage undulator. Fig.4(b) shows the ratio of the 𝑙 = 1
mode along the pulse, indicating that the high-power portion
of the FEL pulse maintains good mode purity. Fig.4(c) and
Fig.4(d) present the transverse profile and transverse phase
distribution at the peak power position of the FEL pulse,
respectively.

CONCLUSION
In summary, this study demonstrates the application of

Bayesian optimization for undulator tapering in the SSOAM
scheme, aiming to enhance the x-ray OAM pulse generation.
The optimization results reveal that the SSOAM scheme
holds promise as a method for generating intense x-ray OAM
pulses. It is important to note that the optimization presented
here is merely a first step. More systematic optimization
efforts, including undulator tapering for both the first and
second stages, electron beam size, and quadrupole mag-
nets within the undulator section, can further improve the
performance of x-ray vortices. Furthermore, Bayesian opti-
mization is shown to be an effective and efficient strategy for
optimizing undulator tapering, which will be beneficial for
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Figure 4: Temporal power (a) and ratio of the 𝑙 = 1 mode (b)
of the FEL pulse at the end of the second-stage undulator,
obtained using the optimized undulator tapering. Transverse
profile (c) and transverse phase distribution (d) at the position
of maximum power in the pulse.

both design and online experiments of other FEL schemes
in the future.
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